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The average return on equities has been substantially higher than the average return

on risk free bonds over long periods of time. Between 1946 and 2015, the S&P500 earned

63 basis points per month more than 30 days T-bills (i.e. over 7% annualized). Over

the years, many dynamic equilibrium asset pricing models have been proposed in the

literature to understand the nature of risks in equities that require such a large premium

and why risk free rates are so low. A common feature in most of these models is that

risk premium on equities does not remain constant over time, but varies in a systematic

and stochastic manner. A large number of academic studies have found support for

such predictable variation in equity premium.1 This led Lettau and Ludvigson (2001) to

conclude ”it is now widely accepted that excess returns are predictable by variables such

as price-to-dividend ratios.”

Goyal and Welch (2008) argue that variables such as price-to-dividend ratios, although

successful in predicting stock index returns in-sample, fail to predict returns out-of-sample.

The difference between in-sample and out-of-sample prediction is the assumption made on

investors’ information set. Traditional dynamic equilibrium asset pricing models assume

that, while investors’ beliefs about investment opportunities and economic conditions

change over time and drive the variation in stock index prices and expected returns, these

investors nevertheless have complete knowledge of the parameters describing the economy.

For example, these models assume that they know the true model and model parameters

governing consumption and dividend dynamics. However, as Hansen (2007) argues, ”this

assumption has been only a matter of analytical convenience” and is unrealistic in that

it requires us to ”burden the investors with some of the specification problems that

challenge the econometrician”. Motivated by this insight, a recent but growing literature

has focused on the role of learning in asset pricing models. Timmermann (1993) and

Lewellen and Shanken (2002) demonstrate, via simulations, that parameter uncertainty

can lead to excess predictability and volatility in stock returns. Johannes, Lochstoer,

and Mou (2014) propose a Markov-switching model for consumption dynamics and show

that learning about the consumption process is reflected in asset prices and expected

returns. Croce, Lettau, and Ludvigson (2014) show that a bounded rationality limited

information long-run risks model can generate a downward-sloping equity term structure.

Collin-Dufresne, Johannes, and Lochstoer (2016) provide the theoretical foundation that

1See, among others, Campbell and Shiller (1988b), Fama and French (1993), Lamont (1998), Baker
and Wurgler (2000), Lettau and Ludvigson (2001), Campbell and Vuolteenaho (2004), Lettau and
Ludvigson (2005), Polk, Thompson, and Vuolteenaho (2006), Ang and Bekaert (2007), van Binsbergen
and Koijen (2010), Kelly and Pruitt (2013), van Binsbergen, Hueskes, Koijen, and Vrugt (2013), Li, Ng,
and Swaminathan (2013), and Da, Jagannathan, and Shen (2014).

1



parameter learning can be a source of long-run risks under Bayesian learning.2 We add

to this literature.

The main contributions of our paper, which distinguish it from the existing literature

on the interaction between learning and asset pricing, is as follows. First, we show that,

when equity markets are frictionless and efficient, an asset pricing model that is closer

to the true asset pricing model, i.e. the model that better describes investors’ behavior,

should better forecast stock index returns. This provides the theoretical foundation for

the economic significance of an asset pricing model’s performance in forecasting annual

stock index returns as a measure to assess that model. Then, we show that, when learning

about dividend dynamics is incorporated into a long-run risks model, the model predicts

as much as 22.4 percent of the variation in annual stock index returns between 1976

and 2015 out-of-sample. This not only addresses the Goyal and Welch (2008) critique

and significantly revises upward the degree of return predictability documented in the

existing literature, but also lends support to the view that both investors’ aversion to

long-run risks and learning about these risks play important roles in determining asset

prices and expected returns.34

To study how learning about dividend dynamics affects stock index prices and expected

returns, we first need a dividend model that is able to realistically capture how investors

form expectations about future dividends. Inspired by Campbell and Shiller (1988b), we

put forth a model of dividend growth rates that incorporates information in corporate

payout policy into the latent variable model used in Cochrane (2008), van Binsbergen

and Koijen (2010), and others. Our model explains serial correlations in annual dividend

growth rates up to 5 years. Further, our model predicts 42.8 percent of the variation in

annual dividend growth rates between 1946 and 2015 in-sample and predicts 33.4 percent

of the variation in annual dividend growth rates between 1976 and 2015 out-of-sample.

Based on these results, we comfortably reject the null that expected dividend growth rates

are constant and demonstrate that the superior performance of our dividend model over

alternative models in predicting annual dividend growth rates is significant.

We document that uncertainties about parameters in our dividend model, especially

parameters surrounding the persistent latent variable, are high and resolve slowly. That

2Instead of learning, an alternative path that researchers have taken is through introducing preferences
shocks. See Albuquerque, Eichenbaum, and Rebelo (2015).

3Our paper is also consistent with the argument of Lettau and Van Nieuwerburgh (2008) that steady-
state economic fundamentals, or in our interpretation, investors beliefs about these fundamentals, vary
over time and these variations are critical in determining asset prices and expected returns.

4Following the existing literature, we adopt the stock index as a proxy for the market portfolio.
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is, these uncertainties remain substantial even at the end of our 70 years data sample,

suggesting that learning about dividend dynamics is a difficult and slow process. Further,

when our dividend model is estimated at each point in time based on data available

at the time, model parameter estimates fluctuate, some significantly, over time as more

data become available. In other words, if investors estimate dividend dynamics using our

model, we expect their beliefs about the parameters governing the dividend process to

vary significantly over time. We then show that these changes in investors’ beliefs can

have large effects on their expectations of future dividends. Through this channel, changes

in investors’ beliefs about the parameters governing the dividend process can contribute

significantly to the variation in stock prices and expected returns.

We provide evidence that investors behave as if they learn about dividend dynamics

and price stocks using our model. First, we define stock yields as discount rates that equate

the present value of expected future dividends to the current prices of the stock index.

From the log-linearized present value relationship of Campbell and Shiller (1988), we

write stock yields as a function of price-to-dividend ratios and long-run dividend growth

expectations. We show that, assuming that investors learn about dividend dynamics,

these stock yields explain 14.9 percent of the variation in annual stock index returns

between 1976 and 2015. In comparison, stock yields, assuming full information, predict

only 9.9 percent of the same variation. Next, we embed our dividend model into an

dynamic equilibrium asset pricing model that features Epstein and Zin (1989) prefer-

ences, which capture preferences for the early resolution of uncertainty, and consumption

dynamics from the long-run risks model of Bansal and Yaron (2004). We refer to this

model as our long-run risks model. We find that, assuming learning, our long-run

risks model predicts 22.4 percent of the variation in annual stock index returns between

1976 and 2015. Learning accounts for over half of the 22.4 percent. Both the model’s

forecasting performance and the incremental contribution of learning to this performance

are significant.

Our results suggest that, aside from a common persistent component in consumption

and dividend growth rates, the assumption that investors hold Epstein and Zin (1989)

preferences with early resolution of uncertainty, a critical component of any long-run risks

model, is essential to the model’s strong performance in predicting annual stock index

returns. More specifically, we find that, replacing Epstein and Zin (1989) preferences

with constant relative risk aversion (CRRA) preferences, R-square value for predicting

annual stock index returns, between 1976 and 2015, drops from 6.4 percent to 4.9 percent
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for the case of full information and from 22.4 percent to 11.1 percent after learning is

incorporated. This substantial deterioration in forecasting performance is evidence that

the assumption of early resolution of uncertainty, as modeled through Epstein and Zin

(1989), brings us steps closer to discovering the true asset pricing model.

We follow Cogley and Sargent (2008), Piazzesi and Schneider (2010), and Johannes,

Lochstoer, and Mou (2014), and define learning based on the anticipated utility of Kreps

(1998), where agents update using Bayes’ law but optimize myopically in that they do not

take into account uncertainties associated with learning in their decision making process.

That is, anticipated utility assumes agents form expectations not knowing that their

beliefs will continue to evolve going forward in time as the model keeps updating. Given

the relative complexity of our long-run risks model and the multi-dimensional nature of

learning, we find that solving our model with parameter uncertainties as additional risk

factors is too computationally prohibitive.5 Therefore, we adopt the anticipated utility

approach as the more convenient alternative.

The rest of this paper is as follows. In Section 1, we introduce our dividend model

and evaluate its performance in capturing dividend dynamics. In Section 2, we show that

investors’ beliefs about dividend model parameters can vary significantly over time as a

result of Kreps’ learning about dividend dynamics. In Sections 3, we show that learning

accounts for a significant fraction of the variation in both long-run and short-run expected

stock index returns. In Section 4, we first discuss how an asset pricing model’s performance

in predicting stock index returns can be used as a criterion to evaluate that model. Then,

we demonstrate that, between 1976 and 2015, a model that incorporates Kreps’ learning

into a long-run risks model predicts 22.4 percent of the variation in annual stock index

returns and explain why such a finding provides us insight into investor preferences and

the role of learning in describing investors’ behavior. In Section 5, we conclude.

1 The Dividend Model

In this section, we present a model for dividend growth rates that extends the latent

variable model of Cochrane (2008), van Binsbergen and Koijen (2010), and others by

incorporating information in corporate payout policy into the model. The inclusion of

corporate payout policy in explaining dividend dynamics is inspired by Campbell and

5Collin-Dufresne, Johannes, and Lochstoer (2016) provide the theoretical foundation for studying
uncertainties about model parameters as priced risk factors.
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Shiller (1988b), who show that cyclical-adjusted price-to-earnings (CAPE) ratios, defined

as the log ratios between real prices and real earnings averaged over the past decade, can

predict future growth rates in dividends.

We begin with the latent variable model in Cochrane (2008), van Binsbergen and

Koijen (2010), and others. Let Dt be nominal dividend of the stock index, dt = log(Dt),

and ∆dt+1 = dt+1 − dt be log dividend growth rate. The model is described as:

∆dt+1 − µd = xt + σdεd,t+1

xt+1 = ρxt + σxεx,t+1(
εd,t+1

εx,t+1

)
∼ i.i.d. N

(
0,

(
1 λdx

λdx 1

))
, (1)

where time-t is defined in years to control for potential seasonality in dividend payments.

Following van Binsbergen and Koijen (2010), we fit our model to the nominal dividend

process. As shown in Boudoukh, Michaely, Richardson, and Roberts (2007), equity is-

suance and repurchase tend to be more sporadic and random compared to cash dividends.

For this reason, we focus on modeling the cash dividend process. In (1), expected dividend

growth rates are a function of the latent variable xt, the unconditional mean µd of dividend

growth rates, and the persistence coefficient ρ of the latent variable xt:

Et [∆dt+s+1] = µd + ρsxt, ∀s ≥ 0. (2)

Before we introduce corporate payout policy into this model, we first recall the dividend

model used in Campbell and Shiller (1988b). Define pt as log nominal price of the

stock index, et as log nominal earnings, πt as log consumer price index, and, following

Campbell and Shiller (1988b), consider the following vector-autoregression for annual

nominal dividend growth rates, log price-to-dividend ratios, and CAPE ratios: ∆dt+1

pt+1 − dt+1

pt+1 − ēt+1

 =

b10

b20

b30

+

b11 b12 b13

b21 b22 b23

b31 b32 b33


 ∆dt

pt − dt
pt − ēt

+

 σdεd,t+1

σ(p−d)ε(p−d),t+1

σ(p−ē)ε(p−ē),t+1

 ,

 εd,t+1

ε(p−d),t+1

ε(p−ē),t+1

 ∼ i.i.d. N

0,

 1 λ12 λ13

λ12 1 λ23

λ13 λ23 1


 . (3)
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where, as in Campbell and Shiller (1988b), CAPE ratio is defined as:

pt − ēt = pt −

(
πt +

1

10

10∑
s=1

(et−s+1 − πt−s+1)

)
. (4)

Estimates of b10, b11, b12, and b13 from (3), based on data between 1946 and 2015, are

reported in the first row of Table 1.6 We see that both price-to-dividend ratios and CAPE

ratios have significant effects on future dividends, but in the opposite direction. That is,

increases in price-to-dividend ratios predict increases in future dividend growth rates, but

increases in CAPE ratios predict decreases in future dividend growth rates. Further, we

note from Table 1 that b12 + b13 = 0 cannot be statistically rejected. For this reason, we

restrict b13 = −b12 and re-write (3) as:

∆dt+1 = β0 + β1∆dt + β2 (ēt − dt) + σdεd,t+1, εd,t+1 ∼ i.i.d N(0, 1). (5)

Stock index price pt does not appear in (5). Instead, dividend growth rates over the next

year are a function of some measure of retention ratios, i.e. ēt−dt. Estimated coefficients

from (5) are in the second row of Table 1. We see that the β2 estimate is significant,

suggesting that expected dividend growth rates respond to corporate payout policy. High

earnings relative to dividends implies that firms have been retaining earnings in the past

and so they are expected to pay more dividends in the future.

b10 b11 b12 b13

-0.004 0.478∗∗∗ 0.154∗∗∗ -0.167∗∗∗

(0.061) (0.111) (0.058) (0.067)

β0 β1 β2

-0.038 0.482∗∗∗ 0.143∗∗∗

(0.028) (0.111) (0.056)

Table 1: Campbell and Shiller (1988b) Betas for Predicting Dividend Growth Rates: This
table reports coefficients from predicting annual nominal dividend growth rates using (3) and (5), based on
data between 1946 and 2015. Newey and West (1987) adjusted standard errors are reported in parentice.
Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

We extend (1) based on this insight that corporate payout policy contains information

6We report results based on overlapping monthly data. In each month, we fit or predict dividend
growth rates and stock index returns over the next 12 months. We report standard errors, F -statistics,
p-values, and Q-statistics adjusted to reflect the dependence introduced by overlapping monthly data.
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about future dividends. Define ∆et+1 = et+1− et as log nominal earnings growth rate and

qt = et − dt as log earnings-to-dividend ratio, i.e. retention ratio. We write our dividend

model as the following system of equations:

∆dt+1 − µd = xt + φ
(
qt − µq

)
+ σdεd,t+1,

xt+1 = ρxt + σxεx,t+1,

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1,εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,

 1 λdx λdq

λdx 1 λxq

λdq λxq 1


 . (6)

In our model, dividend growth rates over the next year are a linear combination of three

components. First, they consist of the latent variable xt, which follows a stationary AR[1]

process. Second, they are affected by changes in retention ratios. That is, we expect firms

to pay more future dividends if they have retained more earnings. Third, they consist

of white noises εd,t. For convenience, we model retention ratios as an AR[1] process, and

assuming that it is stationary implies that dividend and earnings growth rates have the

same unconditional mean µd. In (6), expected dividend growth rates are:

Et[∆dt+s+1] = µd + ρsxt + φθs(qt − µq), ∀s ≥ 0. (7)

This means that, aside from the latent variable xt and retention ratios, expected dividend

growth rates are a function of the unconditional mean µd of dividend growth rates, the

unconditional mean µq and persistence θ of retention ratios, the persistence ρ of the latent

variable xt, and coefficient φ that connects corporate payout policy to dividend dynamics.

The earnings process is not modeled explicitly in (6). However, because earnings growth

rates are, by definition, a function of dividend growth rates and retention ratios, i.e.:

∆et+1 = (qt+1 − qt) + ∆dt+1, (8)

and because both dividend growth rates and retention ratios are modeled in (6), we can

solve for earnings growth rates as:

∆et+1 = µd + xt + (θ + φ− 1)(qt − µq) + σeεe,t+1, εe,t+1 ∼ N(0, 1), (9)

where σe =
√
σ2
d + σ2

q + 2σdσqλdq and εe,t+1 =
σdεd,t+1+σqεq,t+1

σe
.

A type of model commonly used to forecast macroeconomic variables is a Markov-
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switching model. For example, the Markov-switching model is used to describe consump-

tion dynamics in Johannes, Lochstoer, and Mou (2014). The same model can be applied

to dividend growth rates:

∆dt+1 = µd(st) + σd(st)εd,t+1, st ∈ {1, 2, 3},

p(st+1 = i|st = j) = φij,

φij ∈ [0, 1] ∀i, j ∈ {1, 2, 3},
3∑
i=1

φij = 1 ∀j ∈ {1, 2, 3}. (10)

That is, p(st+1 = i|st = j) is the probability that the economy transfers from state

j ∈ {1, 2, 3} to state i ∈ {1, 2, 3}, and µd(st) and σd(st) are the mean and standard

deviation of dividend growth rates in a particular state.7 A key feature of this model that

is not present in dividend models discussed so far is that it is able to incorporate, albeit in

a restricted manner, both regime changes and stochastic volatility. We adopt this model

as another baseline and compare it against our dividend model in our subsequent analysis.

1.1 Data and Estimation

Due to the lack of reliable historical earnings data on the CRSP value-weighted market

index, we use the S&P500 index as the proxy for the market portfolio. That is, throughout

this study, data on prices, dividends, and earnings are from the S&P500 index. These

data can be found on Prof. Robert Shiller’s website.

We compute the likelihood of our dividend model (i.e. (6) and (9)) using Kalman

filters (Hamilton (1994)) and estimate model parameters,

Θ = {µd, φ, σd, ρ, σx, µq, θ, σq, λdx, λdq, λxq} (11)

based on maximum-likelihood. See Appendix A.1 for details. Table 2 reports model

parameter estimates based on overlapping annual data between 1946 and 2015. Standard

errors are based on bootstrap simulation, described in Appendix A.2. Because λdx and

λxq are not significantly different from zero, we force these correlation parameters to

be zeros in our subsequent analysis for the purpose of parameter reduction.8 Previous

7An alternative approach of incorporating time varying parameters and stochastic volatility is by
estimating parameters in a dividend model at each point in time using a rolling-window of historical
data. We explore this option in the Online Appendix.

8In the Online Appendix, we replicate our main results using a data sample that stretches to prior to
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works have suggested a regime shift in dividend dynamics before and after World War II.

Fama and French (1988) note that dividends are more smoothed in the post-war period.

Chen, Da, and Priestley (2012) argue that the lack of predictability in dividend growth

rates by price-to-dividend ratios in the post-war period is attributable to this dividend

smoothing behavior. Consistent with our intuition, coefficient φ that connects corporate

payout policy to dividend dynamics is estimated to be positive and significant. That is,

high retention ratios imply high future dividend growth rates. The annual persistence of

retention ratios is estimated to be 0.302. The latent variable xt is estimated to be more

persistent at 0.496. So there is a moderate level of persistence in dividend growth rates

between 1946 and 2015 based on estimates from our model.

µd φ σd
0.060 0.139 0.025

(0.015) (0.018) (0.013)

ρ σx
0.496 0.046

(0.160) (0.009)

µq θ σq
0.722 0.302 0.276

(0.047) (0.116) (0.027)

λdx λdq λxq
0.016 0.858 0.034

(0.133) (0.032) (0.128)

Table 2: Dividend Model Parameter Estimates: This table reports estimated parameters from
our dividend model, based on data between 1946 and 2015. Bootstrap simulated standard errors are
reported in parentice. Simulation is based on 100,000 iterations.

To provide a more intuitive visualization of how various types of shocks to dividend

growth rates at a given time affect investors’ expectations of dividends going forward,

we consider an one unit change to εd,t, εx,t, or εq,t and show how such a change affects

expected dividend growth rates both immediately and up to 10 years into the future, i.e.

time-t to time-(t + 10). We report these impulse response functions in Figure 1. We see

that εd,t affects dividend growth rates immediately but its effect does not persist into the

the Great Depression, i.e. 1930-2015.

9



future, whereas εx,t and εq,t affect dividend growth rates with a one-period lag but their

effects are persistent over time.

εd,t εx,t εq,t

Figure 1: Impulse Response Functions on Shocks that Affect Expected Dividend Growth
Rates. This figure plots the changes to expected dividend growth rates from immediately to over the
next 10 years due to a unit change in shocks to dividend growth rates: εd,t, εx,t, and εq,t.

In Table 3, we report serial correlations, up to 5 years, for dividend growth rates

and dividend growth rate residuals, which we define as the difference between dividend

growth rates and our dividend model’s expected rates, along with Ljung and Box (1978)

Q-statistics for testing if dividend growth rates and growth rate residuals are serially

correlated. We also report serial correlations and Q-statistics for dividend growth rate

residuals of one of the baseline dividend models described in (1), (3), and (10). We find

that our model is reasonably successful at matching serial correlations in dividend growth

rates for up to 5 years. That is, our model’s dividend growth rate residuals appear to be

serially uncorrelated. In comparison, the baseline models all perform considerably worse

along this dimension.

In the first column of Table 4, we report our dividend model’s performance in predict-

ing dividend growth rates. Between 1946 and 2015, our model predicts 42.8 percent of

the variation in annual dividend growth rates, which is a significant improvement over the

baseline models. Given these statistics are in-sample, we know that at least a part of this

improved forecasting performance comes from adding more parameters to existing models

and is thus mechanical. Thus, to address the concern that our model overfits the data,

10



∆dt+1 − Et[∆dt+1]

∆dt+1 J&L Baseline 1 Baseline 2 Baseline 3

Serial Correlation (Years)

1 0.435 -0.029 0.122 0.088 0.343
2 -0.063 -0.122 -0.200 -0.208 -0.160
3 -0.274 -0.019 -0.208 -0.185 -0.284
4 -0.296 0.057 -0.132 -0.091 -0.236
5 -0.209 0.184 -0.063 -0.032 -0.170

Q-Statistics 34.72 4.623 10.38 8.221 26.76
[0.000] [0.464] [0.065] [0.144] [0.000]

Table 3: Serial Correlations in Dividend Growth Rates and Residuals: This table reports the 1,
2, 3, 4, and 5 years serial correlations for annual nominal dividend growth rates and growth rate residuals
of our dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. Baseline
1), the dividend model in Campbell and Shiller (1988b) (i.e. Baseline 2), or a 3-state Markov-switching
model (i.e. Baseline 3), based on data between 1946 and 2015. Also reported are the Ljung and Box
(1978) Q-statistics for testing if dividend growth rates and growth rate residuals are serially correlated.
p-values for Q-statistics are reported in square parentice.

we also assess our model based on how it forecasts dividend growth rates out-of-sample.

That is, instead of estimating model parameters based on the full data sample, we predict

dividend growth rates at each point in time using dividend model parameters esstimated

based on data available at the time. Forecasting performance of a model Mi is then

evaluated using out-of-sample R-square value as defined in Goyal and Welch (2008):

R2 = 1−
1

T−T0+1

∑T−1
t=T0

(∆dt+1 − Et[∆dt+1|Mi])
2

1
T−T0+1

∑T−1
t=T0

(
∆dt+1 − µ̂d,t

)2 , (12)

where µ̂d,t is the average of dividend growth rates up to time-t:

µ̂d,t =
1

t

t−1∑
s=0

∆ds+1. (13)

We use time-0 to denote the start of the data sample, time-T0 to denote the end of the

training period, and time-T to denote the end of the data sample. Due to the relative

complexity of our model, we use the first 30 years of our data sample as the training period

so that out-of-sample prediction is for the period between 1976 and 2015. Throughout this

paper, for predictive analysis, we assume investors have access to earnings information 3

months after fiscal quarter or year end. The choice of 3 months is based on Securities and
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Exchange Commission (SEC) rules since 1934 that require public companies to file 10-Q

reports no later than 45 days after fiscal quarter end and 10-K reports no later than 90

days after fiscal year end.9 We assume that information about prices and dividends is

known to investors in real time.10 In the third and fourth columns of Table 4, we report

out-of-sample R-square value for predicting dividend growth rates and the corresponding

p-value from the adjusted-MSPE statistic of Clark and West (2007). Results show that

our model predicts 33.4 percent of the variation in annual dividend growth rates between

1976 and 2015 out-of-sample, which is a significant improvement over the 20.8 percent,

26.1 percent, and -1.9 percent from the baseline models.

We proceed to show that the differences in forecasting performance between our model

and the baseline models is significant. For two modelsMi andMj, we define incremental

R-square value of Mi over Mj as:

R2
I(Mi,Mj) = 1−

1
T−T0+1

∑T−1
t=T0

(∆dt+1 − Et[∆dt+1|Mi])
2

1
T−T0+1

∑T−1
t=T0

(∆dt+1 − Et[∆dt+1|Mj ])
2
, (14)

and report statistics in Table 4. If incremental R-square value is significantly positive, it

suggests that our dividend model is an improvement over the baseline models in predicting

annual dividend growth rates. Taken as a whole, we note that the difference in forecasting

performance between our model and the baseline models is significant.

1.2 Inflation and Real Rates

In a standard neoclassical asset pricing model, real dividend growth rates, not nominal

rates, are of interest to investors in forming their investment decisions. To convert nominal

dividend growth rates into real rates, we need to specify a process for inflation. We model

inflation as a stationary AR[1] process:11

∆πt+1 − µπ = η (∆πt − µπ) + σπεπ,t+1, επ,t+1 ∼ N(0, 1). (15)

9In 2002, these rules were updated to require large firms file 10-Q reports no later than 40 days after
fiscal quarter end and 10-K reports no later than 60 days after fiscal year end.

10To demonstrate the robustness of these assumptions, in the Online Appendix, we also replicate our
main results imposing an additional 3 months lag in our estimation of dividend model parameters.

11In the Online Appendix, we explain why AR[1] is the most appropriate ARMA(p, q) model for
inflation. Nevertheless, to show that our results are not driven by our inflation model or learning about
the inflation process, we replicate our main results assuming inflation rates to be i.i.d. with a fixed mean
and standard deviation.
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In-Sample Out-of-Sample

R2 R2 p-value

J&L 0.428 0.334 0.000

Baseline 1 0.190 0.208 0.004

Baseline 2 0.217 0.261 0.001

Baseline 3 0.133 -0.019 1.000

Out-of-Sample

R2
I p-value

J&L over Baseline 1 0.159 0.013

J&L over Baseline 2 0.100 0.053

J&L over Baseline 3 0.347 0.000

Table 4: Dividend Growth Rates and Expected Growth Rates. The top panel. The first column
of this table reports in-sample R2 value for predicting annual nominal dividend growth rates using our
dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. Baseline 1),
the dividend model in Campbell and Shiller (1988b) (i.e. Baseline 2), or a Markov-switching model (i.e.
Baseline 3). The second and third columns report the out-of-sample R-square value for predicting annual
dividend growth rates and the corresponding p-value from the adjusted-MSPE statistic of Clark and West
(2007). The bottom panel. This table reports incremental R-square value of our dividend model over
each one of the baseline models for predicting annual dividend growth rates. In-sample (out-of-sample)
statistics are based on data between 1946 and 2015 (1976 and 2015).
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Table 5 reports parameter estimates of the inflation model based on data between 1946

and 2015. We see a moderate level of persistence in inflation. Because λdπ, λxπ, and λqπ

are not significantly different from zero, we force these correlation parameters to be zeros

in our subsequent analysis for the purpose of parameters reduction. Given this inflation

model, we can then derive the expression for expected real dividend growth rates based

on expected nominal rates and inflation as:

Et[∆d̃t+s+1] = (µd − µπ) + ρsxt + φθs(qt − µq)− ηs+1 (∆πt − µπ) , ∀s ≥ 0. (16)

where ∆d̃t = ∆dt −∆πt denotes real dividend growth rate.12

µπ η σπ λdπ λxπ λqπ
0.035 0.568 0.026 0.265 -0.268 0.232

(0.013) (0.109) (0.020) (0.142) (0.146) (0.137)

Table 5: Inflation Model Parameter Estimates: This table reports estimated parameters from our
inflation model, based on data between 1946 and 2015. Bootstrap simulated standard errors are reported
in parentice. Simulation is based on 100,000 iterations.

In Table 6, we report the in-sample and out-of-sample R-square values for predicting

real, rather than nominal, dividend growth rates using either our model or one of the

baseline models. We find that our model also outperforms the baseline models in fore-

casting real dividend growth rates. It predicts 37.3 percent of the variation in real annual

dividend growth rates between 1946 and 2015 in-sample and 32.7 percent of the variation

in real annual dividend growth rates between 1976 and 2015 out-of-sample.

2 Parameter Uncertainty and Learning

The difference between in-sample and out-of-sample prediction is the assumption made

on investors’ information set. Model parameters reported in Table 2 are estimated using

data up to 2015, so they reflect investors’ knowledge of dividend dynamics at the end of

2015. That is, if investors were to estimate our dividend model at an earlier date, they

would have estimated a set of parameter values different from those reported in Table

2. This is a result of investors’ knowledge of dividend dynamics evolving as more data

12Throughout this paper, we put ∼ on top of a variable to denote that the variable is defined in real,
not nominal, terms.
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In-Sample Out-of-Sample

R2 R2 p-value

J&L 0.373 0.327 0.000

Baseline 1 0.228 0.220 0.003

Baseline 2 0.241 0.239 0.002

Baseline 3 0.188 -0.099 1.000

Out-of-Sample

R2 p-value

J&L over Baseline 1 0.138 0.021

J&L over Baseline 2 0.115 0.037

J&L over Baseline 3 0.388 0.000

Table 6: Dividend Growth Rates and Expected Growth Rates (Real Rates). The top panel.
The first column of this table reports in-sample R2 value for predicting annual real dividend growth
rates using our dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010)
(i.e. Baseline 1), the dividend model in Campbell and Shiller (1988b) (i.e. Baseline 2), or a Markov-
switching model (i.e. Baseline 3). The second and third columns report the out-of-sample R-square value
for predicting annual dividend growth rates and the corresponding p-value from the adjusted-MSPE
statistic of Clark and West (2007). The bottom panel. This table reports incremental R-square value
of our dividend model over each one of the baseline models for predicting annual dividend growth rates.
In-sample (out-of-sample) statistics are based on data between 1946 and 2015 (1976 and 2015).
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become available. We call this learning. That is, we use learning to refer to investors

estimating model parameters at each point in time based on data available at the time.

In this section, we summarize how learning affects investors’ beliefs about the parameters

governing the dividend process, assuming that investors behave as if they learn about

dividend dynamics using our model. We then show that learning can have significant

asset pricing implications.

We report, in Figure 2, dividend model parameters, estimated based on data up to

time-τ , for τ between 1976 and 2015. There are several points we take away from Figure

2. First, there is a gradual upward drift in investors’ beliefs about the unconditional mean

µq of retention ratios. This suggests that firms have been paying a smaller fraction of

earnings as cash dividends in recent decades. Second, there are gradual downward drifts

in investors’ beliefs about φ that connects corporate payout policy to dividend dynamics.

This means that dividends have become more smoothed over time. Third, a sharp drop

in investors’ beliefs about the persistence θ of retention ratios towards the end of our data

sample is due to the abnormally low earnings reported in late 2008 and early 2009 as a

result of the financial crisis and the strong stock market recovery that followed.

Figure 2 shows that the persistence ρ of the latent variable xt, as well as volatility

σd, σx, and correlation λdq of shocks to the dividend process, are the parameters hardest

to learn and least stable over time. Investors’ beliefs about ρ, σd, σx, and λdq fluctuate

significantly over the sample period. For example, there are three times when investors’

beliefs about ρ sharply drops. The first is at the start of Dot-Com bubble between 1995

and 1998. The second is during the crash of that bubble in late 2002 and early 2003. The

third is during the financial crisis in late 2008 and early 2009. Further, there is also a

long-run trend that sees a gradual decrease in investors’ beliefs about ρ since early 1980s.

That is, if we were to pick a random date between 1976 and 2015 and estimate our model

based on data up to that date, on average we would have estimated a ρ of 0.734.13 This

would be significantly higher than the 0.496 reported in Table 2 estimated using the full

data sample.

We can infer, from standard errors reported in Table 2, that learning about dividend

dynamics is a slow process. That is, even with 70 years of data, there are still significant

uncertainties surrounding the estimates of some model parameters. For example, the 95

percent confidence interval for ρ is between 0.183 and 0.807. To quantify the speed of

13To establish a point of reference, Bansal and Yaron (2004) calibrate annualized persistence of expected
dividend growth rate to be 0.97912 = 0.775.
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µd φ σd

ρ σx µq

θ σq λdq

Figure 2: Evolution of Dividend Model Parameter Estimates Over Time. This figure plots
estimates of the nine dividend model parameters, assuming that these parameters are estimated based
on data up to time-τ for τ between 1976 and 2015.
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learning, following Johannes, Lochstoer, and Mou (2014), for a parameter in our dividend

model, we construct a measure that is one minus the inverse ratio between the bootstrap

simulated standard error assuming that the parameter is estimated based on data up to

2015 and the bootstrap simulated standard error assuming that the parameter is estimated

based on 10 additional years of data (i.e. if the parameter were estimated in 2025). In

other words, this ratio reports how much an estimated parameter’s standard error would

have reduced if investors were to have 10 more years of data. So the closer this ratio is to

zero, the more difficult it is for investors to learn about that parameter. In Table 7, we

report this measure for each of the nine model parameters. Overall, 10 years of additional

data would only decrease the standard errors of parameter estimates by between 3 and

8 percent. Further, consistent with results in Figure 2 and in Table 1, we find that it is

more difficult to reduce uncertainties surrounding ρ, σd, σx, and λdq than any of the other

parameters.

µd φ σd ρ σx µq θ σq λdq
0.076 0.076 0.051 0.049 0.032 0.073 0.082 0.079 0.050

Table 7: Speed of Learning about Dividend Model Parameters: This table reports the speed
of learning for the nine dividend model parameters. Speed of learning is defined as one minus the inverse
ratio between the bootstrap simulated standard error assuming that the parameter is estimated based on
data between 1946 and 2015 and the bootstrap simulated standard error assuming that the parameter is
estimated based on 10 additional years of data (i.e. if the parameter were estimated in 2025). Simulation
is based on 100,000 iterations.

2.1 Parameter Uncertainty and Investors’ Expectations for the

Long-Run

We show that learning about dividend dynamics can have significant asset pricing impli-

cations. That is, consider the log linearized present value relationship in Campbell and

Shiller (1988):

pt − dt =
κ0

1− κ1
+
∞∑
s=0

κs1 (Et[∆dt+s+1]− Et[Rt+s+1]) , (17)

where κ0 and κ1 are log-linearizing constants and Rt+1 is the stock index’s log return.14

The expression is a mathematical identity that connects price-to-dividend ratios, expected

14To solve for κ0 = log(1 + exp(p− d))− κ1(p− d) and κ1 = exp(p−d)
1+exp(p−d) , we set unconditional mean of

log price-to-dividend ratios p− d to 3.46. This gives κ0 = 0.059 and κ1 = 0.970.
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dividend growth rates, and discount rates, i.e. expected returns. We define stock yields as

discount rates that equate the present value of expected future dividends to the current

price of the stock index. That is, rearranging (17), we can write stock yield as:

syt ≡ (1− κ1)
∞∑
s=0

κs1Et[∆Rt+s+1]

= κ0 − (1− κ1)(pt − dt) + (1− κ1)

∞∑
s=0

κs1Et[∆dt+s+1]. (18)

We define long-run dividend growth expectations as:

∂t ≡ (1− κ1)
∞∑
s=0

κs1Et[∆dt+s+1]. (19)

Given that price-to-dividend ratios are observed, there is a one-to-one mapping between

long-run dividend growth expectations and stock yields. Further, long-run dividend

growth expectations are specific to the dividend model and its parameters. For example,

using our dividend model, we can re-write expected long-run dividend growth rates as:

∂t = (1− κ1)

∞∑
s=0

κs1
(
µd + ρsxt + φθs(qt − µq)

)
. (20)

If investors instead use a different dividend model, their expectations of long-run dividend

growth rates will also be different. For example, if we assume that dividend growth rates

follow a white noise process centered around µd, we can re-write (19) instead as ∂t = µd.

Further, because long-run dividend growth expectations are functions of dividend model

parameters, it is also affected by whether these parameters are estimated once based

on the full data sample, or estimated at each point in time based on data available

at the time. The first case corresponds to investors having complete knowledge of the

parameters describing the dividend process. The second case corresponds to investors

having to learn about dividend dynamics. In Figure 3, we plot our model’s long-run

dividend growth expectations, either assuming learning or assuming full information. The

plot shows that learning can have a considerable effect on investors’ long-run dividend

growth expectations.

In Figure 4, we plot stock yields, either assuming learning or assuming full information,

computed by substituting (20) into (18):

syt = κ0 − (1− κ1)(pt − dt) + µd + (1− κ1)

(
1

1− κ1ρ
xt +

φ

1− κ1θ
(qt − µq)

)
. (21)
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Figure 3: Expected Long-Run Dividend Growth Rates. This figure plots long-run dividend
growth expectations, computed using our dividend model, for the period between 1976 and 2015. Dividend
model parameters are estimated based on data since 1946. Assuming full information, model parameters
are estimated once based on the full data sample. Assuming learning, those parameters are estimated at
each point in time based on data available at the time.

We also plot price-to-dividend ratios in Figure 4, and scale price-to-dividend ratios to

allow for easy comparison to stock yields. We note that, assuming full information, there

is almost no noticeable difference between the time series of price-to-dividend ratios and

stock yields. This suggests that the variation in long-run dividend growth expectations,

assuming that investors do not learn, is minimal relative to the variation in price-to-

dividend ratios, so the latter dominates the variation in stock yields, as stock yields are

a linear combination of these two components. However, assuming learning, we find

significant differences between the time series of price-to-dividend ratios and stock yields.

3 Learning about Dividends and the Time Variation

in Discount Rates

Results in the previous section show that parameters in our dividend model can be difficult

to estimate with precision in finite sample. As a result, we argue that learning about

model parameters can have significant asset pricing implications. This claim is based on
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Figure 4: Stock Yields. This figure plots stock yields syt, computed using our dividend model, and
log price-to-dividend ratios (scaled) for the period between 1976 and 2015. Dividend model parameters
are estimated based on data since 1946. Assuming full information, model parameters are estimated once
based on the full data sample. Assuming learning, those parameters are estimated at each point in time
based on data available at the time.

the assumption that our model captures investors’ expectations about future dividends.

That is, we assume that investors behave as if they learn about dividend dynamics using

our model, not a model that is very different from ours. In this section, we present

evidence that supports this assumption.

First, we show that stock yields, assuming learning, predict annual stock index re-

turns.15 To establish a baseline, note that, if we assume dividend growth rates follow a

white noise process centered around µd, stock yields can be simplified to:

syt = κ0 − (1− κ1)(pt − dt) + µd. (22)

That is, under the white noise assumption, stock yields are just scaled price-to-dividend

ratios. So, we regress stock index returns over the next year on price-to-dividend ratios,

based on data between 1976 and 2015. We report regression statistics in the first column

of Table 8. Standard errors reported are Newey and West (1987) adjusted.16 Results from

15Ideally, we should show that stock yields, assuming learning, better capture the variation in long-run
stock index returns. However, due to our limited data sample, we do not have sufficient non-overlapping
data points of long-run returns to carry out this analysis. For this reason, we instead rely on annual
returns.

16Stambaugh (1999) shows that, when variables are highly serially correlated, OLS estimators’ finite-
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Table 8 show that, between 1976 and 2015, price-to-dividend ratios predict 9.9 percent of

the variation in annual stock index returns.

We then regress stock index returns over the next year on stock yields in (21), assuming

learning. We report regression statistics in the second column of Table 8. We see that R-

square value from this regression is 14.9 percent. We note that the only difference between

this regression and the baseline regression is the assumption on dividend dynamics. That

is, here we assume that investors behave as if they learn about dividend dynamics using

our model, whereas in the baseline regression we assume that expected dividend growth

rates are constant. This means that we can attribute the increase in R-square value from

9.9 percent to 14.9 percent to our modeling of learning about dividend dynamics. To

emphasize the importance of learning, we regress stock index returns over the next year on

stock yields in (21), assuming full information. We report regression statistics in the fourth

column of Table 8. Results show that stock yields, assuming full information, perform

roughly as well as price-to-dividend ratios in predicting annual stock index returns. This

is consistent with results in Figure 4, which show that there is almost no noticeable

difference between the time series of price-to-dividend ratios and stock yields, assuming

full information. To show that the differences in the R-square values in Table 8 are

significant, we run bi-variate regressions of stock index returns over the next year on

both stock yields, assuming learning, and either price-to-dividend ratios or stock yields,

assuming full information. Statistics are in the fourth and fifth columns of Table 8. Results

show that stock yields, assuming learning, strictly dominate both price-to-dividend ratios

and stock yields, assuming full information, in predicting annual stock index returns.

It is worth noting that, for learning to be relevant in our context, investors must

behave as if they are learning about dividend dynamics using our model. To illustrate

this point, we regress stock index returns over the next year on stock yields, assuming

instead that investors behave as if they learn about dividend dynamics using one of the

three baseline models. Statistics are in the sixth to eighth columns of Table 8. We find

that stock yields, assuming learning based on one of the baseline models, perform no

better than price-to-dividend ratios in predicting annual stock index returns.

We can decompose stock index returns into the risk free rate component and the risk

premium component. To investigate whether the gap in forecasting performance is for

predicting risk free rates or risk premium, in the last row of Table 8, we report R-square

sample properties can deviate from the standard regression setting.
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Baseline
J&L 1 2 3

pt − dt -0.114∗∗ 0.017
(0.046) (0.075)

syt(L) 3.955∗∗∗ 4.368∗∗ 4.554∗∗ 2.971∗∗ 3.205∗∗ 2.026∗∗

(1.101) (1.756) (1.871) (1.254) (1.254) (1.030)

syt(F) 3.742∗∗ -0.778
(1.485) (2.533)

R2

Return 0.099 0.149 0.103 0.149 0.150 0.086 0.101 0.054
Exc. Return 0.092 0.142 0.096 0.142 0.143 0.079 0.094 0.046

Table 8: Stock Index Returns and Stock Yields: This table reports the coefficient estimates and
R-square value from regressing stock index returns over the next year on log price-to-dividend ratios and
stock yields, computed using our dividend model (i.e. J&L), the dividend model in van Binsbergen and
Koijen (2010) (i.e. Baseline 1), the dividend model in Campbell and Shiller (1988b) (i.e. Baseline 2), or
a Markov-switching model (i.e. Baseline 3), and assuming investors either learn (i.e. L), or do not learn
(i.e. F), about model parameters. Regression is based on data between 1976 and 2015. Dividend model
parameters are estimated based on data since 1946. Newey and West (1987) standard errors are reported
in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗,
and ∗ ∗ ∗.

value for predicting stock index excess returns.17 Results show that the differences in

forecasting performance is mostly for predicting risk premium.

3.1 Learning about Dividend Dynamics and the Term-Structure

of Discount Rates

Although stock yields are, by definition, optimal forecasts of long-run stock index returns,

they do not reveal information about the term-structure of discount rates, i.e. the

difference in how investors discount near-term versus distant-term cash flows. Further, if

learning about dividend dynamics also affects the term structure of discount rates aside

from its effect on long-run discount rates, the effect of learning on the variation in annual

17Let R̂t be stock index return forecast and Rf,t be the risk free rate. The in-sample R-square value

for predicting stock index returns is ˆvar(Rt+1−R̂t+1)
ˆvar(Rt+1)

, where ˆvar(·) is the sample variance. The in-sample

R-square value for predicting stock index excess returns is
ˆvar((Rt+1−Rf,t+1)−(R̂t+1−Rf,t+1))

ˆvar(Rt+1−Rf,t+1)
.
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stock index returns cannot be captured by its effect on stock yields alone. To see this, we

run bi-variate regressions of stock index returns over the next year on stock yields in (21),

assuming learning, and investors beliefs about one of the nine dividend model parameters,

estimated at each point of time based on data avaliable at the time. For example, for

the parameter ρ, let ρ̂t denote the estimate of ρ based on data up to time-t, we run the

bi-variate regression:

Rt+1 = α + β · syt(L) + γ · ρ̂t + εt+1 (23)

where L stands for our learning. Estimated coefficients from (23) are reported in Table

9. The regression examines whether the effect of learning on the variation in annual

stock index returns can be fully accounted for by the effect of learning on stock yields.

If learning affects the variation in annual stock index returns only through its effect on

long-run discount rates, we should see that the γ estimates are not significantly different

from zero. Instead, results show that learning about four of the nine model parameters,

namely persistence ρ of the latent variable xt and volatilty σd, σx, and correlation λdq

of shocks to the dividend process, significantly influences the variation in annual stock

index returns, even after controlling for the effect of learning on stock yields. Including

investors’ beliefs about one of these four parameters as the additional regressant increases

R-square value for predicting the variation in annual stock index returns from 14.9 percent

to between 21.6 percent and 25.6 percent.18 This confirms that, aside from its effect on

long-run discount rates, learning about dividend dynamics also affects the term structure

of discount rates in a way that is not captured by its effect on stock yields alone.

4 Learning about Dividends in a Dynamic

Equilibrium Model

Our results thus far show that learning about dividend dynamics affects both long-run

discount rates and the term structure of discount rates. This motivates a model of stock

index returns that also allow for learning. In this section, we search for a dynamic

equilibrium asset pricing model that is able to quantitatively capture the role of learning in

determining asset prices and expected returns. That is, a model that, after incorporating

learning about dividend dynamics, is able to show strong performance in predicting annual

stock index returns that is consistent with the data.

18Interestingly, we recall that, based on earlier results in Table 2, Table 7, and Figure 2, these four
parameters are also the hardest for investors to learn over time.
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µd φ σd

β 4.032∗∗∗ 5.606∗∗∗ 6.165∗∗∗

(1.158) (1.270) (0.884)

γ -0.446 -0.601 -6.320∗∗∗

(2.499) (0.449) (1.981)

R2

Return 0.149 0.179 0.216
Exc. Return 0.142 0.173 0.210

ρ σx µq

β 5.700∗∗ 6.142∗∗ 3.971∗∗∗

(0.688) (0.728) (1.290)

γ -0.401∗∗∗ 6.773∗∗∗ 0.022
(0.082) (1.463) (1.107)

R2

Return 0.256 0.250 0.149
Exc. Return 0.250 0.244 0.142

θ σq λdq

β 4.058∗∗∗ 4.414∗∗∗ 4.731∗∗∗

(0.981) (1.078) (0.766)

γ -0.192 0.413∗ 0.370∗∗∗

(0.117) (0.215) (0.077)

R2

Return 0.169 0.167 0.249
Exc. Return 0.163 0.160 0.243

Table 9: Stock Index Returns, Stock Yields, and Investors’ Beliefs about Dividend Model
Parameters: This table reports the coefficient estimates and R-square value from regressing stock
index returns over the next year on stock yields, assuming learning, and investors beliefs about one of
our dividend model parameters, estimated using our dividend model at each point in time based on
only data avaliable at the time. Regression is based on data between 1976 and 2015. Dividend model
parameters are estimated based on data since 1946. Newey and West (1987) standard errors are reported
in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗,
and ∗ ∗ ∗.
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For the rest of this section, we first provide the theoretical foundation that how well

stock index returns can be predicted using an asset pricing model can be used to assess

that model. Then, we incorporate learning about dividend dynamics into a long-run risks

model and show that 22.4 percent of the variation in annual stock index returns can be

predicted using such a model.

4.1 Return Predictability and Assessing Asset Pricing Models

The criterion we propose to assess an asset pricing model is the deviation of that candidate

model’s expected returns from the expected returns of the true model. The true model

here is defined as the asset pricing model that best describes the behavior of the marginal

investor who prices that asset, here the stock index, in a frictionless and efficient market.

Let Mi be a candidate model, M0 be the unobserved true asset pricing model, Rt be

log return of the stock index, Et[Rt+1|Mi] be the Mi-endowed-investors’ expectation of

stock index returns over the next year, and Et[Rt+1|M0] be expected return under the true

model. The following definition defines a better asset pricing model, i.e. the candidate

model that is closer to the true model, as the model that minimizes the mean squared

difference between its expected returns and the expected returns of the true model.

Definition 1 A candidate asset pricing model Mi is a better approximation of the true

asset pricing model (M0) than model Mj if and only if:

E
[
(Et[Rt+1|M0]− Et[Rt+1|Mi])

2
]
< E

[
(Et[Rt+1|M0]− Et[Rt+1|Mj ])

2
]
.

A clear inconvenience of this definition is that the true asset pricing model M0 is never

observable, and thus Et[Rt+1|M0] is unobservable. To circumvent this issue, we notice

that, assuming markets are frictionless and efficient and investors form rational expecta-

tions, the error term εt+1 = Rt+1 − Et[Rt+1|M0] is orthogonal to any information that is

time-t measurable. This leads to the following proposition.

Proposition 1 A candidate asset pricing modelMi is a better approximation of the true

asset pricing model (M0) than model Mj if and only if:

1−
E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

E
[
(Rt+1 − E[Rt+1])2

] > 1−
E
[
(Rt+1 − Et[Rt+1|Mj ])

2
]

E
[
(Rt+1 − E[Rt+1])2

]
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Proofs are in Appendix A.3. In other words, if we define out-of-sample R-square value:

R2(Mi) = 1−
1

T−T0+1

∑T−1
t=T0

(Rt+1 − Et[Rt+1|Mi])
2

1
T−T0+1

∑T−1
t=T0

(Rt+1 − µ̂r,t)2
, (24)

where µ̂r,t = 1
t

∑t−1
s=0 Rs+1 is the average of stock index returns up to time-t, as the

performance of a candidate model Mi in predicting annual stock index returns, and

assuming we have a sufficiently long data sample, then we can use it to assess how close

the candidate model is to the true model.

4.2 Return Predictability and Learning about Long-Run Risks

We propose a long-run risks model that combines our dividend model, Epstein and Zin

(1989) investor preferences, and persistent consumption growth rates as in Bansal and

Yaron (2004) and show that such a model predicts 22.4 percent of the variation in annual

stock index returns.

Epstein and Zin (1989) has been one of the most widely used expressions for investor

perferences in the literature. Investor preferences are defined recursively as:

Ut =

[
(1− δ)C̃

1−α
ζ

t + δ
(
Et
[
U1−α
t+1

]) 1
ζ

] ζ
1−α

, ζ =
1− α
1− 1

ψ

, (25)

where C̃t is real consumption, ψ is the elasticity of intertemporal substitution (EIS), and

α is the coefficient of risk aversion. We note that, the representative agent prefers early

resolution of uncertainty if ζ < 0 and prefers late resolution of uncertainty if ζ > 0.19 Log

of the intertemporal marginal rate of substitution (IMRS) is:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1) R̃ct+1, (26)

where c̃ = log(C̃) and R̃c
t+1 denotes the real return of the representative agent’s wealth

portfolio. Following Bansal and Yaron (2004), we assume that consumption and divi-

dend growth rates carry the same persistent latent component xt and allow volatility in

consumption growth rates to be time varying.20 That is, we describe real consumption

19Or equivalently, if α > 1, then the representative agent prefers early resolution of uncertainty if ψ > 1
and prefers late resolution of uncertainty if ψ < 1.

20A deviation from Bansal and Yaron (2004) is that the latent variable xt is assumed to be
homoskedastic in our model.
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growth rates using the following system of equations:

∆c̃t+1 − µc =
1

γ
xt + σtεc,t+1

σ2
t+1 − σ2

c = ω
(
σ2
t − σ2

c

)
+ σςες,t+1. (27)

The correlation matrix for shocks to consumption, dividends, and retention ratios can be

written as: 

εc,t+1

εd,t+1

εx,t+1

ες,t+1

εq,t+1

επ,t+1


∼ i.i.d. N


0,



1 0 0 0 0 0

0 1 0 0 λdq 0

0 0 1 0 0 0

0 0 0 1 0 0

0 λdq 0 0 1 0

0 0 0 0 0 1




. (28)

Because we do not use actual consumption data in this paper, the correlations that involve

shocks εc,t or ες,t to the consumption process cannot be identified. So, for convenience, we

set them to zeros. The remaining λdq is estimated as a part of the dividend process.

We note that the unconditional mean of consumption growth rates must equal to that

of dividend growth rates, i,e. µc = µd − µπ, or dividend as a fraction of consumption

will either become negligible or explode. For the remaining parameters in (27), apart

from those concerning the latent variable xt, we adopt the calibration of Bansal and

Yaron (2004), converted to quarterly frequency. They are: σc = 0.0078 · 3 = 0.0234,

ω = 0.9873 = 0.962, σς = 0.000023 · 32 = 0.00021, and γ = 3. The persistence of the

latent variable xt is set to ρ = 0.9793 = 0.938 in Bansal and Yaron (2004). A common

criticism of the long-run risk model has always been that it requires a small but highly

persistent component in consumption and dividend growth rates that is difficult to find

support in the data.21 This criticism serves as the rationale for why we expect learning

to be important. For investor preferences, we choose ψ = 1.5 to be consistent with

preferences for the early resolution of uncertainty, and choose α = 4 and δ = 0.995 so

that the unconditional means of risk free rates and risk premium from our model are

roughly consistent with data between 1946 and 2015.

We solve our long-run risk model in Appendix A.4. In solving this model, we closely

follow the steps in Bansal and Yaron (2004). The model consists of four state variables:

latent variables xt and σ2
t , retention ratios, and inflation rates. We can solve for price-to-

21See Beeler and Campbell (2012), Jagannathan and Marakani (2015).
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dividend ratio as a linear function of these four state variables:

pt − dt = Ad,0 +Ad,1xt +Ad,2σ
2
t +Ad,3

(
qt − µq

)
+Ad,4(∆πt − µπ). (29)

We can solve for expected returns over the next year as:

Et[Rt+1] = Ar,0 +Ar,1xt +Ar,2σ
2
t +Ar,4(∆πt − µπ), (30)

where coefficients Ad,· and Ar,·, derived in Appendix A.4, are functions of the parameters

that describe investor preferences, consumption dynamics, and dividend dynamics. We

note that, substituting (29) into (30), we can avoid estimating the latent variable σ2
t

directly and instead write expected returns over the next year as a function state variables

that can be estimated from dividend dynamics and price-to-dividend ratios:

Et [Rt+1] = A0 +A1xt +A2(pt − dt) +A3(qt − µq) +A4(∆πt − µπ),

A0 =
Ar,0Ad,2 −Ar,2Ad,0

Ad,2
, A1 =

Ar,1Ad,2 −Ar,2Ad,1
Ad,2

(31)

A2 =
Ar,2
Ad,2

, A3 = −
Ar,2Ad,3
Ad,2

, A4 =
Ar,4Ad,2 −Ar,2Ad,4

Ad,2
. (32)

We examine how our long-run risks model, assuming learning, i.e. our learning

model, performs in predicting stock index returns.22 Here, learning refers to estimating

dividend model parameters at each point in time based on data available at the time

and substituting these parameters into (31) to compute expected returns. We measure

forecasting performance using (quasi) out-of-sample R-square value defined as:23

R2(L) = 1−
1

T−T0+1

∑T−1
t=T0

(Rt+1 − Et [Rt+1|L])2

1
T−T0+1

∑T−1
t=T0

(
Rt+1 − µ̂r,t

)2 . (33)

We use the first 30 years of the data sample as the training period and compute the

out-of-sample R-square value using data between 1976 and 2015. In the first row o Table

12, we report out-of-sample R-square value for predicting annual stock index returns

using our learning model. We find that, between 1976 and 2015, our long-run risks

model predicts 22.4 percent of the variation in annual stock index returns. This level

22See Figure 7 for a plot of expected returns against returns realized over the next year between 1976
and 2015.

23The term quasi refers to the fact that some of parameters in our long-run risks model cannot be
estimated from data and are calibrated instead.

29



of forecasting performance significantly exceeds what is commonly documented in the

existing literature.

To isolate the incremental contribution of learning to the model’s performance in

predicting annual stock index returns, we compute expected returns in (31) using dividend

model parameters estimated based on the full data sample, i.e. our full information model.

We report out-of-sample R-square value for predicting stock index returns using our full

information model in the second row of Table 10. We see that, assuming full information,

R-square value reduces from 22.4 percent to 6.4 percent. This means that learning acounts

for more than half of the forecasting performance. To examine the significance of this

difference, we report, in the third row of Table 10, incremental R-square value of our

learning model over full information model:

R2
I(L,F) = 1−

1
T−T0+1

∑T−1
t=T0

(Rt+1 − Et[Rt+1|L])2

1
T−T0+1

∑T−1
t=T0

(Rt+1 − Et[Rt+1|F ])2
. (34)

Also, we note that R2
I(L,F), R2(L) and out-of-sample R-square value R2(F) of our full

information model are related through the following equality:

R2
I(L,F) = 1− 1−R2(L)

1−R2(F)
. (35)

Results from Table 10 show that the incremental gain in forecasting performance that is

attributable to modeling investors’ learning about dividend dynamics is significant.

R2 p-value

Learning Model 0.224 0.002

Full Information Model 0.064 0.118

Incremental 0.171 0.009

Table 10: Stock Index Returns and the Long-Run Risks Model. This table reports out-of-sample
R-square value for predicting annual stock index returns over the next year using our long run risks
model, assuming investors either learn, or do not learn, about dividend model parameters, and the
corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported is
incremental out-of-sample R-square value. Dividends are estimated using data since 1946. Statistics are
based on data between 1976 and 2015.
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4.2.1 Forecasting Performance of Long-Run Risks Model over Time

For additional details on how our long-run risk model’s forecasting performance evolves

over time, we follow Goyal and Welch (2008) and define the cumulative sum of squared

errors difference (SSED) between predicting annual stock index return using our learning

model and using the historical mean of returns as:

Dt(L) =
t−1∑
s=T0

(Rs+1 − Et[Rs+1|L])2 −
t−1∑
s=T0

(
Rs+1 − µ̂r,t

)2
. (36)

The SSED is ploted on the left side of Figure 5. If the forecasting performance of our

learning model is stable and robust over time, we should observe a steady but constant

decline in SSED. Instead, if the forecasting performance is especially poor in certain sub-

period of the data, we should see a significant drawback in SSED during that sub-period.

We note that our model’s forecasting performance is positive through the majority of the

data sample. Overall, about one third of the forecasting performance is realized during the

first two decades of the data sample, the remaining two-thirds during the Dot-Com crash.

In contrast, performance has been relatively flat over the last decade. As a baseline, on

the right of Figure 5, we report the SSED between predicting annual stock index returns

using our full information model F and using the historical mean of returns. We see that,

assuming full information, there are clearly periods during which the model performs

poorly, such as during the Dot-Com boom in the late 1990s.

To isolate the incremental contribution of learning to SSED, we plot, in Figure 6, the

incremental SSED defined as the difference in SED between our learning model and our

full information model:

Dt(L)−Dt(F) =
t−1∑
s=T0

(Rs+1 − Et[Rs+1|L])2 −
t−1∑
s=T0

(Rs+1 − Et[Rs+1|F ])2 . (37)

We note that the incremental gain in forecasting performance from learning is positive

and consistent throughout most of the data sample, except during the 2008-2009 financial

crisis. We conjecture one possible explanation for this finding is that the finanical crisis

represent a rare regime change. As a consequence, investors no longer learn from much of

the historical dividend data, realized under a different regime, as they become irrelevant

under the new regime, leading to our learning model becoming misspecified during that

sub-period.
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Learning Full Info.

Figure 5: Cumulative Sum of Squared Errors Difference. This figure plots the cumulative
sum of squared errors difference, assuming investors either learn, or do not learn, about dividend model
parameters, for the period between 1976 and 2015. Dividend model parameters are estimated based on
data since 1946.
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Figure 6: Incremental Contribution of Learning to Cumulative Sum of Squared Errors
Difference. This figure plots the incremental cumulative sum of squared errors difference, attributable
to learning about dividend dynamics, for the period between 1976 and 2015. Dividend model parameters
are estimated based on data since 1946.

4.2.2 The Dot-Com Crash

Figure 5 suggests that the Dot-Com crash plays an especially important role in the return

predictability results. To emphasize that our learning model’s forecasting performance and

the incremental contribution of learning to this performance is not exclusively restricted

to the few years surrounding the Dot-Com crash, we recalculate R-squared value and

incremental R-squared value separately for using our learning model to predict annual

stock index returns, but for the Dot-Com crash alone, defined as between March 2000

and October 2002, and for the sub-period even after excluding the Dot-Com crash. Results

are reported in Table 11. We find that the forecasting performance of our learning model

is significant excluding the Dot-Com crash, and so is the incremental contribution of

learning to this predictive performance.

4.2.3 Long-Run Risks Model and the Term-Structure of Discount Rates

Earlier in Table 9, we have shown that the effect of learning on the variation in annual

stock index returns is not fully captured by its effect on stock yields. We also know

from comparing results in Table 8 and Table 11 that, assuming learning, our long-run
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Dot-Com Crash Rest of the Sample

R2 p-value R2 p-value

Learning Model 0.725 0.287 0.090 0.074

Full Information Model 0.762 0.251 -0.123 1.000

Incremental -0.153 1.000 0.189 0.007

Table 11: Stock Index Returns and the Long-Run Risks Model (Dot-Com Crash). This table
reports out-of-sample R-square value for predicting stock index returns over the next year using our long
run risks model, assuming investors either learn, or do not learn, about dividend model parameters, and
the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported is
incremental out-of-sample R-square value. Dividends are estimated using data since 1946. Statistics are
based on two subsamples of the data: 1) the Dot-Com crash between March 2000 and October 2002 and
2) excluding the Dot-Com crash.

risks model does a significantly better job than stock yields in predicting the variation in

annual stock index returns. This outperformance may be because our model is able to

capture the full effect of learning on the variation in annual stock index returns. To see

this, we run bi-variate regressions of stock index returns over the next year on expected

returns of our learning model and investors beliefs about one of the nine dividend model

parameters. For example, for parameter ρ, let ρ̂t denote the estimate of ρ based on data

up to time-t, we run the bi-variate regression:

Rt+1 = α + β · Et [Rt+1|L] + γ · ρ̂t + εt+1 (38)

where Et [Rt+1|L] stands for expected return of our learning model. Estimated coefficients

are reported in Table 12. If our learning model is able to fully capture the effect of learning

on the variation in annual stock index returns, then in contrast to results in Table 9, we

should expect none of the γ estimates to be different from zero. Results show that this is

indeed the case.

4.3 The Role of Epstein and Zin (1989) Preferences

To show that Epstein and Zin (1989) preferences is critical to our long-run risks model’s

performance in predicting annual stock index returns, we replace Epstein and Zin (1989)

preferences in our model with Constant Relative Risk Aversion (CRRA) preferences:
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µd φ σd

β 0.801∗∗∗ 0.802∗∗∗ 0.810∗∗∗

(0.106) (0.101) (0.097)

γ 0.491 0.284 0.804
(1.859) (0.308) (1.717)

R2

Return 0.223 0.235 0.224
Exc. Return 0.216 0.229 0.218

ρ σx µq

β 0.834∗∗∗ 0.823∗∗ 0.783∗∗∗

(0.100) (0.097) (0.108)

γ 0.047 -0.702 -0.748
(0.097) (1.427) (1.040)

R2

Return 0.224 0.224 0.234
Exc. Return 0.218 0.218 0.228

θ σq λdq

β 0.811∗∗∗ 0.820∗∗∗ 0.785∗∗∗

(0.110) (0.095) (0.104)

γ 0.002 -0.140 0.043
(0.127) (0.170) (0.078)

R2

Return 0.222 0.225 0.224
Exc. Return 0.216 0.218 0.217

Table 12: Stock Index Returns, the Long-Run Risks Model, and Investors’ Beliefs about
Dividend Model Parameters: This table reports the coefficient estimates and R-square value from
regressing stock index returns over the next year on expected returns of our learning model and investors
beliefs about one of our dividend model parameters, estimated using our dividend model at each point
in time based on only data avaliable at the time. Regression is based on data between 1976 and 2015.
Dividend model parameters are estimated based on data since 1946. Newey and West (1987) standard
errors are reported in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are
highlighted using ∗, ∗∗, and ∗ ∗ ∗.
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Ut =
∞∑
t=0

δt
C̃1−α
t

1− α
(39)

where we set preference parameters α and δ so that the model’s risk free rates and risk

premium can roughly match the data between 1946 and 2015. We then report, in Table 13,

R-square value for predicting annual stock index returns using the CRRA model, either

assuming learning or assuming full information. We see that, assuming investors learn

about dividend dynamics, R-square value for predicting stock index returns reduces from

22.4 percent for Epstein and Zin (1989) preferences to 11.1 percent for CRRA preferences,

and the incremental contribution of learning to R-square value reduces from 17.1 percent

to 6.6 percent. It is clear from these results that CRRA preferences cannot fully capture

the effect of learning about dividend dynamics on the variation in annual stock index

returns.

R2 p-value

Learning Model 0.111 0.037

Full Information Model 0.049 0.174

Incremental 0.066 0.115

Table 13: Stock Index Returns and the Long-Run Risks Model (CRRA Preferences). This
table reports out-of-sample R-square value for predicting stock index returns over the next year using our
long run risks model, assuming investors either learn, or do not learn, about dividend model parameters,
and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported
is incremental out-of-sample R-square value. Dividends are estimated using data since 1946. Statistics
are based on data between 1976 and 2015.

4.4 Robustness: An Alternative Long-Run Risks Model

To show that our findings are not restricted to one specification of the long-run risks

model, we propose an alternative long-run risks model and examine its performance in

predicting annual stock index returns. In contrast to our default model, where stochastic

volatility of consumption growth rates serve as one of the model’s state variables, we

assume consumption volatility to be constant over time in this alternative model. To

make up for the lost state variable, we assume instead that the correlations between shocks

εc,t+1 to consumption growth rates and shocks εd,t+1 and εe,t+1 to dividend and earnings
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growth rates are equal and time varying, i.e. λ(εc,t+1, εd,t+1) = λ(εc,t+1, εe,t+1) = λt.
24 In

other words, consumption growth rates and the variance-covariance matrix of shocks to

consumption, dividends, and retention ratios can together be summarized by the following

system of equations:

∆c̃t+1 − µc =
1

γ
xt + σcεc,t+1

εc,t+1

εd,t+1

εx,t+1

ελ,t+1

εq,t+1

επ,t+1


∼ i.i.d. N


0,



1 λt 0 0

√
σ2
d+σ2

q+2σdσqλdq−σd
σq

λt 0

λt 1 0 0 λdq 0

0 0 1 0 0 0

0 0 0 1 0 0√
σ2
d+σ2

q+2σdσqλdq−σd
σq

λt λdq 0 0 1 0

0 0 0 0 0 1




λt+1 = ωλt + σλελ,t+1, (40)

where λt is the time varying correlation between εc,t+1 and both εd,t+1 and εe,t+1 . Our

calibration of parameters in this alternative model is: σc = 0.0234, ω = 0.962, and γ = 3.

In choosing how we calibrate these parameters, we try to minimize our deviations from

the default model. We solve this alternative model in Appendix A.4. In solving this

model, we closely follow the steps in Bansal and Yaron (2004). The model consists of four

state variables: latent variables xt and λt, retention ratios, and inflation rates. We can

solve for price-to-dividend ratio as a linear function of these four state variables:

pt − dt = Ad,0 +Ad,1xt +Ad,2λt +Ad,3
(
qt − µq

)
+Ad,4 (∆πt − µπ) . (41)

We can solve for expected returns over the next year as:

Et[Rt+1] = Ar,0 +Ar,1xt +Ar,2λt +Ar,4 (∆πt − µπ) , (42)

where coefficients Ad,· and Ar,·, derived in Appendix A.4, are functions of the parameters

governing investors’ preferences, consumption dynamics, and dividend dynamics. We note

that, substituting (41) into (42), we can avoid estimating λt directly and instead write

expected returns over the next year as a function state variables that can be estimated

24It can be derived that the correlation between εc,t+1 and εq,t+1 is then

√
σ2
d+σ

2
q+2σdσqλdq−σd

σq
λt.
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from dividend dynamics and price-to-dividend ratios:

Et [Rt+1] = A0 +A1xt +A2(pt − dt) +A3(qt − µq) +A4(∆πt − µπ),

A0 =
Ar,0Ad,2 −Ar,2Ad,0

Ad,2
, A1 =

Ar,1Ad,2 −Ar,2Ad,1
Ad,2

, (43)

A2 =
Ar,2
Ad,2

, A3 = −
Ar,2Ad,3
Ad,2

, A4 =
Ar,4Ad,2 −Ar,2Ad,4

Ad,2
. (44)

In Table 14, we report out-of-sample R-square value for predicting stock index returns

using this alternative model, asuming learning. These results are very similar to those

reported using the default model. Between 1976 and 2013, this alternative learning model

predicts as much as 22.6 percent of the variation in annual stock index returns. Learning

accounts for over half of this 22.6 percent.

R2 p-value

Learning Model 0.226 0.002

Full Information Model 0.065 0.117

Incremental 0.171 0.009

Table 14: Stock Index Returns and the Long-Run Risks Model (Alternative Specification).
This table reports out-of-sample R-square value for predicting stock index returns over the next year
using our long run risks model, assuming investors either learn, or do not learn, about dividend model
parameters, and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007).
Also reported is incremental out-of-sample R-square value. Dividends are estimated using data since
1946. Statistics are based on data between 1976 and 2015.

We proceed to discuss the differences between the default and the alternative long-run

risks models. In Figure 7, we plot the time series of expected returns of the two models, as

well as stock index returns realized over the next year, between 1976 and 2015. As Figure

7 shows, expected returns of the two models are virtually identical across the sample

period. Instead, the two models differ in how expected returns are decomposed into risk

premium and risk free rates. To show this, we decompose expected returns of each of

the two models into model implied risk free rates and model implied risk premium. The

derivation of risk free rates and risk premium as a function of state variables and model

parameters are detailed in Appendix A.4
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Figure 7: Long-Run Risks Model Implied Expected Returns. This figure plots expected returns
of the stock index implied by each of the two long run risks models specified, as well as the actual stock
index returns realized over the next year, for the period between 1976 and 2015. Dividends are estimated
using data since 1946.

In Figure 8, we plot risk free rates and risk premium of each of the two models,

as well as actual risk free rates and excess returns realized over the next year, for the

period between 1976 and 2015. Interestingly, Figure 8 shows that the two models have

completely different implications on the decomposition of expected returns into risk free

rates and risk premium. That is, according to consumption dynamics in our default

model, almost all of the variation in expected returns is attributable to the variation in

risk free rates, whereas the risk premium hardly changes over time. To the contrary,

according to consumption dynamics in the alternative model, almost all of the variation

in expected returns is attributable to the variation in risk premium, whereas risk free rates

hardly change over time. Clearly, we know from the data that risk free rates are relatively

constant over time. Thus, we can infer that, consumption dynamics in the alternative

model is the more realistic one of the two. In other words, because different models of the

consumption process can have different implications for the decomposition of expected

returns into risk premium and risk free rates, we can use this decomposition to shed light

on the true consumption dynamics. However, because modeling consumption is not the

focus of this paper, we leave this to potential future research.
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Risk Free Rate Risk Premium

Figure 8: Long-Run Risks Model Implied Risk Free Rates and Risk Premium. This figure
plots risk free rate and risk premium derived from the two specifications of our long run risk model, as
well as the actual risk free rate and excess returns over the next year, for the period between 1976 and
2015. Dividend model parameters are estimated based on data since 1946.

5 Conclusion

In this paper, we develop a time series model for stock index dividend growth rates that

is inspired by both the latent variable model of Cochrane (2008), van Binsbergen and

Koijen (2010), and others and the vector-autoregressive model of Campbell and Shiller

(1988b). The model shows strong performance in predicting dividend growth rates. We

find that some parameters in our dividend model are difficult to estimate with precision in

finite sample. As a consequence, learning about dividend model parameters significantly

changes investors beliefs about future dividends and the nature of the long run risks in

the economy.

We show how to evaluate the economic and statistical significance of learning about

parameters in the dividend process in determining asset prices and returns. We argue

that a better asset pricing model should forecast returns better. We find that a long run

risks model that incorporates learning about dividend dynamics is surprisingly successful

in forecasting stock index returns. While the long run risks model, assuming learning,

explains 22.4 percent of the variation in annual stock index returns, shutting down learning

reduces the R-square value to 6.4 percent. This drop in R-square value is statistically

significant. Our findings highlight the joint importance of investors aversion to long run

risks and investors learning about these risks for understanding asset prices.
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A Appendix

A.1 Estimation of Parameters in Our Dividend Model

We estimate parameters of the following system of equations that jointly describe the

dividend, earnings, and inflation processes (see (6), (9), and (15)).

∆dt+1 − µd = xt + φ
(
qt − µq

)
+ σdεd,t+1,

∆et+1 − µd = xt + (θ + φ− 1)(qt − µq) + σdεd,t+1 + σqεq,t+1,

xt+1 = ρxt + σxεx,t+1,

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1,

∆πt+1 − µπ = θ (∆πt − µπ) + σπεπ,t+1,
εd,t+1

εx,t+1

εq,t+1

επ,t+1

 ∼ i.i.d. N

0,


1 0 λdq 0

0 1 0 0

λdq 0 1 0

0 0 0 1


 . (45)

For parameters in the fourth equation of (45), we run an autoregression on retention

ratios:

qt+1 − α1 = b1 (qt − α1) + νq,t+1, νq,t+1 ∼ N(0, ςq). (46)

For parameters in the fifth equation of (45), we run an autoregression on inflation rates:

∆πt+1 − α2 = b2 (∆πt − α2) + νπ,t+1, νq,t+1 ∼ N(0, ςq). (47)

For the remaining parameters in the first to third equations and the correlation matrix of

(45), we note that dividend growth rates are affected by contemporaneous earnings and

vice versa. So we estimate the cointegrated process of dividends and earnings through

the following system of equations:

∆dt+1 − α3 = yt+1 + b3(∆et+1 − α3) + b4 (qt − α̂1) + νd,t+1

yt+1 = b5yt + νy,t+1(
vd,t+1

vy,t+1

)
∼ i.i.d. N

(
0,

(
ςd 0

0 ςy

))
. (48)

To apply the Kalman filter, let ŷt|s denote the time-s expectation of the latent variable

yt and Pt|s denote the variance of yt conditioning on information in time-s. Set initial
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conditions ŷ0|0 = 0 and P0|0 =
σ2
y

1−b25
. We can then iterate the following system of equations:

ŷt+1|t = b5 · ŷt|t, Pt+1|t = b25 · Pt|t + ς2
y,

εt+1 = ∆dt+1 − α3 − ŷt+1|t − b3(∆et+1 − α3)− b4 (qt − α1) ,

ŷt+1|t+1 = ŷt+1|t +
Pt+1|t

Pt+1|t + ς2
d

· εt+1, Pt+1|t+1 = Pt+1|t −
P 2
t+1|t

Pt+1|t + ς2
d

. (49)

To estimate parameters in (48) using data up to time-τ , define the log likelihood function:

log(L) = −
τ−1∑
t=0

(
log
(
Pt+1|t + ς2

d

)
+

ε2t+1

Pt+1|t + ς2
d

)
. (50)

In our implementation of Kalman filter that, because we use overlapping monthly data,

we obtain twelve log likelihoods, one for the 12 month periods that begin in January, one

for the 12 month periods that begin in February, etc. We choose model parameters by

maximizing the sum of the twelve log likelihood.

Based on estimates from (46), (47), and (48), we compute residual estimates:

ν̂d,t+1 = ∆dt+1 − α̂3 − ŷt+1|t − b̂3(∆et+1 − α̂1)− b̂4(qt − α̂2),

ν̂y,t+1 = ŷt+1|t − b̂5ŷt|t−1,

ν̂q,t+1 = (qt+1 − α̂1)− b̂1(qt − α̂1),

ν̂π,t+1 = (∆πt+1 − α̂2)− b̂2(∆πt − α̂2). (51)

and use these estimated residuals to estimate covariances among νd,t+1, νx,t+1, νq,t+1, and

νπ,t+1. Last, we note that (47) is our inflation model and we can map (46) and (48) to our

dividend model as follows. We can map (46) to the fourth equation of our dividend model.

Also, by substituting ∆et+1 = qt+1− qt+ ∆dt+1 and (46) into (48), we can re-arrange (48)

into a format consistent with the first and second equations of our dividend model:

∆dt+1 − α3 = xt +
b3(b1 − 1) + b4

1− b3
(qt − α̂1) +

b3
1− b3

νq,t+1 +
1

1− b3
νd,t+1

xt+1 = b5xt + νx,t+1(
vd,t+1

vx,t

)
∼ i.i.d. N

(
0,

(
ςd 0

0 1
1−b3 ςy

))
. (52)

where yt
1−b3 . So we can convert estimates in (46), (48), (49), and covariance estimates to
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estimates of parameters in our dividend model:

µ̂d = α̂3, µ̂q = α̂1, φ̂ =
b̂3(b̂1 − 1) + b̂2

1− b̂3
, ρ̂ = b̂5, θ̂ = b̂1, η̂ = b̂2,

σ̂x =
1

1− b̂3
ς̂y, σ̂d =

√√√√( b̂3

1− b̂3

)2

ς̂2
q +

(
1

1− b̂3

)2

ς̂2
d +

2b̂3

(1− b̂3)2
cov(ν̂d, ν̂q), σ̂q = ς̂q, σ̂π = ς̂π,

λ̂dπ =
1

σ̂dσ̂π

(
b̂3

1− b̂3
cov(ν̂q,t+1, ν̂π,t+1) +

1

1− b̂3
cov(ν̂d,t+1, ν̂π,t+1)

)
,

λ̂dx =
1

σ̂xσ̂d

 b̂3

(1− b̂3)2
cov(ν̂y,t, ν̂q,t+1) +

(
b̂3

1− b̂3

)2

cov(ν̂y,t, ν̂d,t+1)

 ,

λ̂xπ =
1

σ̂xσ̂π

1

1− b̂1
cov(ν̂y,t, ν̂π,t+1), λ̂qπ =

1

σ̂qσ̂π
cov(ν̂q,t+1, ν̂π,t+1),

λ̂dq =
1

σ̂dσ̂q

(
b̂3

1− b̂3
ς2
q +

1

1− b̂3
cov(ν̂d,t+1, ν̂q,t+1)

)
, λ̂qx =

1

σ̂qσ̂y

b̂3

1− b̂3
cov(ν̂q,t+1, ν̂y,t). (53)

A.2 Bootstrap Simulation

Each simulation is based on 100,000 iterations. First, we simulate innovations to dividend

growth rates and retention ratios:εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,

 1 0 λdq

0 1 0

λdq 0 1


 . (54)

Dividend model parameters used for simulations are those reported in Table 2, which are

estimated based on the full data sample between 1946 and 2015. From these innovations, we

can simulate the latent variable xt and retention ratios iteratively as:

xt+1 = ρxt + σxεx,t+1,

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1. (55)

Given the simulated time series of the latent variable xt and retention ratios, we can

simulate dividend growth rates iteratively as:

∆dt+1 − µd = xt + φ
(
qt − µq

)
+ σdεd,t+1,

∆et+1 = qt+1 − qt + ∆dt+1. (56)
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A.3 Proof of Proposition 1

Let M0 be the true asset pricing model and let Mi and Mj be two candidate models.

Define εt+1 = Rt+1 − Et[Rt+1|M0]. We can write:

E
[
(Et[Rt+1|M0]− Et[Rt+1|Mi])

2
]

= E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

+ E
[
ε2t+1

]
− 2 · E [(Rt+1 − Et[Rt+1|Mi]) εt+1]

= E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

+ E
[
ε2t+1

]
+ 2 · E [(Et[Rt+1|Mi]εt+1]− 2 · E [Rt+1εt+1]

= E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

+ E
[
ε2t+1

]
− 2 · E [Rt+1εt+1] .

Last equality assumes frictionless and efficient market and investors having rational expec-

tations. As a result, marginal investor’s investment decisions are based on all information

available and so εt+1 is orthogonal to any variable that is time-t measurable. E
[
ε2t+1

]
and

E [Rt+1εt+1] are independent of the model Mi and so:

E
[
(Et[Rt+1|M0]− Et[Rt+1|Mi])

2
]
< E

[
(Et[Rt+1|M0]− Et[Rt+1|Mj ])

2
]

⇔ E
[
(Rt+1 − Et[Rt+1|Mi])

2
]
< E

[
(Rt+1 − Et[Rt+1|Mj ])

2
]

⇔ 1−
E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

E
[
(Rt+1 − E [Rt+1])2

] > 1−
E
[
(Rt+1 − Et[Rt+1|Mj ])

2
]

E
[
(Rt+1 − E [Rt+1])2

] .

A.4 Derivation of Price-Dividend Ratios and Expected Returns

in Long-Run Risks Models

A.4.1 The Default Model

We derive price-to-dividend ratios and expected returns implied by our long-run risk

model, which features dividend dynamics in (3), consumption dynamics in (27) and (28),

and investors preferences in (25). Our derivation closely follows the steps in Bansal and

Yaron (2004). The log stochastic discount factor is given as:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)R̃ct+1. (57)

where ζ = 1−α
1− 1

ψ

, α is risk aversion, and ψ is the elasticity of intertemporal substitution.

Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,
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log real return of the representative agent’s wealth portfolio can be written as:

R̃ct+1 = g0 + g1zc,t+1 − zc,t + ∆c̃t+1. (58)

The log-linearizing constants are:

g0 = log(1 + exp(z̄c))− g1(z̄c) and g1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt +Ac,2σ
2
t . (59)

Let µc = µd − µπ. Then we can write:

Et

[
mt+1 + R̃ct+1

]
=ζ log(δ) +

(
ζ − ζ

ψ

)(
µc +

1

γ
xt

)
+ ζg0 + ζ (g1 − 1)Ac,0 + ζ (g1ρ− 1)Ac,1xt

+ ζ (g1ω − 1)Ac,2σ
2
t + ζg1 (1− ω)Ac,2σ

2
c ,

vart

(
mt+1 + R̃ct+1

)
= ζ2

(
1− 1

ψ

)2

σ2
t + ζ2 (g1Ac,1σx)2 + ζ2 (g1Ac,2σς)

2 . (60)

Based on the condition Et[exp(mt+1 + R̃c
t+1)] = 1, we can solve for Ac,0, Ac,1, and Ac,2 as:

Ac,0 =
log(δ) + (1− 1

ψ )(µd − µπ) + g0 + g1Ac,2(1− ω)σ2
c + 1

2ζg
2
1(A2

c,1σ
2
x +A2

c,2σ
2
ς )

1− g1
,

Ac,1 =

(
1− 1

ψ

)
1
γ

1− g1ρ
, Ac,2 =

ζ(1− 1
ψ )2

2(1− g1ω)
. (61)

Next, let zd,t be log price-to-dividend ratio of the stock index and R̃t+1 be log stock index

real return. Then, by first order Taylor series approximation, we can write:

R̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1. (62)

where ∆d̃t+1 is real dividend growth rate.

Assume that log price-to-dividend ratio is of the form:

zd,t = Ad,0 +Ad,1xt +Ad,2σ
2
t +Ad,3(qt − µq) +Ad,4(∆πt − µπ). (63)
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Then note that:

Et

[
mt+1 + R̃t+1

]
= ζ log(δ) + (ζ − 1) (g1 − 1)Ac,0 + (ζ − 1) (g1ρ− 1)Ac,1xt + (ζ − 1) (g1ω − 1)Ac,2σ

2
t

+ (ζ − 1)g1 (1− ω)Ad,2σ
2
c +

(
ζ − ζ

ψ
− 1

)(
µc +

1

γ
xt

)
+ (ζ − 1) g0 + κ0 + (κ1 − 1)Ad,0

+ (κ1ρ− 1)Ad,1xt + (κ1ω − 1)Ad,2σ
2
t + κ1(1− ω)Ad,2σ

2
c + (κ1θ − 1)Ad,3

(
qt − µq

)
+ (κ1η − 1)Ad,4 (∆πt − µπ) + µc + xt + φ

(
qt − µq

)
− η(∆πt − µπ),

vart

(
mt+1 + R̃t+1

)
=

(
ζ − 1− ζ

ψ

)2

σ2
t + σ2

d + ((ζ − 1)g1Ac,1 + κ1Ad,1)2 σ2
x

+ ((ζ − 1)g1Ac,2 + κ1Ad,2)2 σ2
ς + (κ1Ad,3)2σ2

q

+ (κ1Ad,4 − 1)2σ2
π + 2(κ1Ad,3)σdσqλdq. (64)

Based on the condition Et[exp(mt+1 + R̃t+1)] = 1, we can solve for Ad,0, Ad,1, Ad,2, and

Ad,3 as:

Ad,0 =


ζ log(δ) + (ζ − 1)g0 + (ζ − 1)(g1 − 1)Ac,0 + ((ζ − 1)g1Ac,2 + κ1Ad,2)(1− ω)σ2

c

+
(
ζ − ζ

ψ − 1
)
µc + κ0 + µc

+1
2((ζ − 1)g1Ac,1 + κ1Ad,1)2σ2

x + 1
2((ζ − 1)g1Ac,2 + κ1Ad,2)2σ2

ς + 1
2σ

2
d

+1
2(κ1A3)2σ2

qσ
2
π + (κ1A3,d)σdσqλdq


1− κ1

,

Ad,1 =

(
ζ − 1− ζ

ψ

)
1
γ + (ζ − 1)(g1ρ− 1)Ac,1 + 1

1− κ1ρ
,

Ad,2 =
(ζ − 1)(g1ω − 1)Ac,2 + 1

2

(
ζ − 1− ζ

ψ

)2

1− κ1ω
, Ad,3 =

φ

1− κ1θ
, Ad,4 =

−η
1− κ1η

(65)

Substituting the expression for zd,t into R̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1 leads:

Et[R̃t+1] = Ar,0 +Ar,1xt +Ar,2σ
2
t +Ar,3(qt − µq) +Ar,4(∆πt − µπ), (66)

where:

Ar,0 = κ0 − (1− κ1)Ad,0 + (µc + µπ) + κ1(1− ω)Ad,2σ
2
c , Ar,1 = 1− (1− κ1ρ)Ad,1,

Ar,2 = −(1− κ1ω)Ad,2, Ar,3 = φ− (1− κ1θ)Ad,3, Ar,4 = −η − (1− κ1η)Ad,4. (67)
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Expected real return over the next τ period is:

τ−1∑
s=0

R̃t+s+1 = τAr,0 +

(
τ−1∑
s=0

Ar,1ρ
s

)
xt +

(
τ−1∑
s=0

Ar,2ω
s

)
σ2
t +

(
τ−1∑
s=0

Ar,2(1− ωs)

)
σ2
c

+

(
τ−1∑
s=0

Ar,3θ
s

)(
qt − µq

)
+

(
τ−1∑
s=0

Ar,4η
s

)
(∆πt − µπ) . (68)

For nominal returns, add expected inflation. Finally, the real risk free rate can be

written as:

Rf,t+1 = Af,0 + Af,1xt + Af,2σ
2
t , (69)

where:

Af,0 = −ζ log(δ)− (ζ − 1− ζ

ψ
)µc − (ζ − 1)

(
g0 + (g1 − 1)Ac,0 + g1(1− ω)Ac,2σ

2
c

)
− 1

2
((ζ − 1)g1Ac,1)2 σ2

x −
1

2
((ζ − 1)g1Ac,2σς)

2 .

Af,1 = −(ζ − 1− ζ

ψ
)
1

γ
+ (ζ − 1)(1− g1ρ)Ac,1, Af,2 = (ζ − 1)(1− g1ω)Ac,2 −

1

2
(ζ − 1− ζ

ψ
)2.

(70)

A.4.2 The Alternative Model

We derive price-to-dividend ratios and expected returns implied by our long-run risk

model, which features dividend dynamics in (3), consumption dynamics in (40), and

investors preferences in (25). The difference between the alternative model from the

default model is that, while the default model assumes consumption growth rates to

have stochastic volatility, the alternative model assumes consumption volatility to be

constant. Instead, the alternative model assumes that the correlation between shocks

to consumption and shocks to dividend and earnings growth rates are time varying.

Nevertheless, our derivation closely follows the steps in Bansal and Yaron (2004). The

log stochastic discount factor is given as:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)R̃ct+1. (71)
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Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,

log real return of the representative agent’s wealth portfolio can be written as:

R̃ct+1 = g0 + g1zc,t+1 − zc,t + ∆c̃t+1. (72)

The log-linearizing constants are:

g0 = log(1 + exp(z̄c))− g1(z̄c) and g1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt. (73)

Let µc = µd − µπ. Then we can write:

Et

[
mt+1 + R̃ct+1

]
= ζ log(δ) +

(
ζ − ζ

ψ

)(
µc +

1

γ
xt

)
+ ζg0 + ζ (g1 − 1)Ac,0 + ζ (g1ρ− 1)Ac,1xt,

vart

(
mt+1 + R̃ct+1

)
= ζ2

(
1− 1

ψ

)2

σ2
c + ζ2 (g1Ac,1)2 σ2

x. (74)

Based on Et[exp(mt+1 + R̃c
t+1)] = 1, we can solve for coefficients Ac,0, Ac,1, and Ac,2 as:

Ac,0 =
log(δ) + (1− 1

ψ )µc + g0 + 1
2ζ(1− 1

ψ )2σ2
c + 1

2ζ(g1Ac,1)2σ2
x

1− g1
,

Ac,1 =

(
1− 1

ψ

)
1
γ

1− g1ρ
. (75)

Next, let zd,t be log price-to-dividend ratio of the stock index and R̃t+1 be log real stock

index return. Then, by first order Taylor series approximation, we can write:

R̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1. (76)

where ∆d̃t+1 is real dividend growth rate.

Assume that log price-to-dividend ratio is of the form:

zd,t = Ad,0 +Ad,1xt +Ad,2λt +Ad,3(qt − µq) +Ad,4(∆πt − µπ). (77)
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Then note that:

Et

[
mt+1 + R̃t+1

]
= ζ log(δ) + (ζ − 1) (g1 − 1)Ac,0 + (ζ − 1) (g1ρ− 1)Ac,1xt

+

(
ζ − ζ

ψ
− 1

)
(µc + γxt) + (ζ − 1) g0 + κ0 + (κ1 − 1)Ad,0 + (κ1ρ− 1)Ad,1xt

+ (κ1ω − 1)Ad,2λt + (κ1θ − 1)Ad,3
(
qt − µq

)
+ (κ1η − 1)Ad,4 (∆πt − µπ)

+ µc + xt + φ
(
qt − µq

)
− η(∆πt − µπ).

vart

(
mt+1 + R̃t+1

)
=

(
ζ − 1− ζ

ψ

)2

σ2
c + σ2

d + ((ζ − 1)g1Ac,1 + κ1Ad,1)2 σ2
x

+ (κ1Ad,2)2 σ2
λ + (κ1Ad,3)2 σ2

q + (κ1Ad,4 − 1)2σ2
π

+ 2

(
ζ − 1− ζ

ψ

)
σcσdλt + 2 (κ1Ad,3)σdσqλdq

+ 2

(
ζ − 1− ζ

ψ

)
(κ1Ad,3)

(√
σ2
d + σ2

q + 2σdσqλdq − σd
)
σcλt. (78)

Based on Et[exp(mt+1 + R̃t+1)] = 1, we can solve for Ad,0, Ad,1, Ad,2, Ad,3, and Ad,4 as:

Ad,0 =


ζ log(δ) + (ζ − 1)g0 + (ζ − 1)(g1 − 1)Ac,0

+
(
ζ − ζ

ψ − 1
)
µc + κ0 + µc + 1

2σ
2
d + 1

2((ζ − 1)g1Ac,1 + κ1Ad,1)2σ2
x

+1
2(κ1Ad,2)2σ2

λ + 1
2(κ1Ad,3)2σ2

q + 1
2(κ1Ad,4 − 1)2σ2

π

+1
2

(
ζ − ζ − ζ

ψ

)2
σ2
c + (κ1Ad,3)σdσqλdq


1− κ1

,

Ad,1 =

(
ζ − 1− ζ

ψ

)
1
γ + (ζ − 1)(g1ρ− 1)Ac,1 + 1

1− κ1ρ
,

Ad,2 =

(
ζ − 1− ζ

ψ

)(
(κ1Ad,3)

(√
σ2
d + σ2

q + 2σdσqλdq − σd
)

+ σd

)
σc

1− κ1ω
,

Ad,3 =
φ

1− κ1θ
, Ad,4 =

−η
1− κ1η

. (79)

Substituting the expression for zd,t into R̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1 leads:

Et[R̃t+1] = Ar,0 +Ar,1xt +Ar,2λt +Ar,3(qt − µq) +Ar,4(∆πt − µπ), (80)

where:

Ar,0 = κ0 − (1− κ1)Ad,0 + µd, Ar,1 = 1− (1− κ1ρ)Ad,1,

Ar,2 = −(1− κ1ω)Ad,2, Ar,3 = φ− (1− κ1θ)Ad,3, Ar,4 = −η − (1− κ1η)Ad,4. (81)
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Expected real return over the next τ period is:

τ−1∑
s=0

R̃t+s+1 = τAr,0 +

(
τ−1∑
s=0

Ar,1ρ
s

)
xt +

(
τ−1∑
s=0

Ar,2ω
s

)
λt +

(
τ−1∑
s=0

Ar,3θ
s

)(
qt − µq

)
+

(
τ−1∑
s=0

Ar,4η
s

)
(∆πt − µπ) (82)

For nominal returns, add expected inflation. Finally, real risk free rates can be written

as:

R̃f,t+1 = Af,0 + Af,1xt, (83)

where:

Af,0 = −ζ log(δ)− (ζ − 1− ζ

ψ
)µc − (ζ − 1) (g0 + (g1 − 1)Ac,0)− 1

2

(
ζ − 1− ζ

ψ

)2

σ2
c

− 1

2
((ζ − 1)g1Ac,1)2 σ2

x.

Af,1 = −(ζ − 1− ζ

ψ
)
1

γ
+ (ζ − 1)(1− g1ρ)Ac,1. (84)
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