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The average return on equities has been substantially higher than the average return

on risk free bonds over long periods of time. Between 1946 and 2013, the S&P500 earned

62 basis points per month more than 30 days T-bills (i.e. over 7% annualized). Over

the years, many dynamic equilibrium asset pricing models have been proposed in the

literature to understand the nature of risk in equities that require such a large premium

and why the risk free rate is so low. A common feature in most of these models is that the

risk premium on equities does not remain constant over time, but varies in a systematic

and stochastic manner. A large number of academic studies have found support for such

predictable variation in the equity premium.1 This led Lettau and Ludvigson (2001) to

conclude ”it is now widely accepted that excess returns are predictable by variables such

as price-to-dividend ratios.”

Goyal and Welch (2008) argue that variables such as price-to-dividend ratios, although

successful in predicting stock index returns in-sample, fail to predict returns out-of-sample.

The difference between in-sample and out-of-sample prediction is the assumption made on

investors’ information set. Traditional dynamic equilibrium asset pricing models assume

that, while investors’ beliefs about investment opportunities and economic conditions

change over time and drive the variation in stock index prices and expected returns, they

have full knowledge of the parameters describing the economy. For example, these models

assume that investors know the true model and model parameters governing consumption

and dividend dynamics. However, as Hansen (2007) argues, ”this assumption has been

only a matter of analytical convenience” and is unrealistic in that it requires us to ”burden

the investors with some of the specification problems that challenge the econometrician”.

Motivated by this insight, a recent but growing literature has focused on the role of

learning in asset pricing models.2 In this paper, we provide empirical evidence that

investors learn and that changes in investors’ beliefs about the parameters describing

the economy is reflected in stock index prices and returns. Further, we show that the

way stock index prices and returns covary with investors’ beliefs provides us insight into

investors’ preferences.

The focus of this paper is on learning about dividend dynamics. To study how learning

1See, among others, Campbell and Shiller (1988b), Fama and French (1993), Lamont (1998), Baker
and Wurgler (2000), Lettau and Ludvigson (2001), Campbell and Vuolteenaho (2004), Lettau and
Ludvigson (2005), Polk, Thompson, and Vuolteenaho (2006), Ang and Bekaert (2007), van Binsbergen
and Koijen (2010), Kelly and Pruitt (2013), van Binsbergen, Hueskes, Koijen, and Vrugt (2013), Li, Ng,
and Swaminathan (2013), and Da, Jagannathan, and Shen (2014).

2See, among others, Ju and Miao (2012), Croce, Lettau, and Ludvigson (2014), Johannes, Lochstoer,
and Mou (2015), and Johannes, Lochstoer, and Collin-Dufresne (2015).
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about dividend dynamics affect stock index prices and expected returns, we need a realistic

dividend model that is able to capture how investors form expectations about future

dividends. Inspired by Campbell and Shiller (1988b), we propose a model for dividend

growth rates that incorporates information in aggregate corporate earnings into the latent

variable model of van Binsbergen and Koijen (2010). Our model successfully captures

serial correlations in annual dividend growth rates up to 5 years. Further, our model

explains 55.1 percent of the variation in annual dividend growth rates between 1946 and

2013 in-sample and predicts 31.3 percent of the variation in annual dividend growth

rates between 1976 and 2013 out-of-sample. We reject the Null hypothesis that expected

dividend growth rates are constant at the 99 percent confidence level.

We document that uncertainties about parameters in our dividend model, especially

the parameter governing the persistence of the latent variable, are high and resolve slowly.

That is, these uncertainties remain substantial even at the end of our 68 years data sample,

suggesting that learning about dividend dynamics is difficult. Further, when our model

is estimated at each point in time based on data available at the time, model parameter

estimates fluctuate, some significantly, over time as more data become available. In

other words, if investors estimate dividend dynamics using our model, we expect their

beliefs about the parameters governing the dividend process to vary over time. We show

that these changes in investors’ beliefs can have large effects on their expectations of

future dividends. Through this channel, changes in investors’ beliefs about the parameters

governing the dividend process can contribute significantly to the variation in stock prices

and expected returns.

We provide evidence that investors behave as if they learn about dividend dynamics

and price the stock index using our model. We define stock yield as the discount rate that

equates the present value of expected future dividends to the current price of the stock

index. From the log-linearized present value relationship of Campbell and Shiller (1988a),

we write stock yields as functions of price-to-dividend ratios and long run dividend growth

expectations, computed assuming that investors learn about dividend dynamics using

our model. We show that, between 1976 and 2013, these stock yields explain 15.2

percent of the variation in stock index returns over the next year. In comparison, stock

yields, computed assuming that expected dividend growth rates are constant, explain

only 10.2 percent of the same variation. We can attribute this improvement in forecasting

performance from 10.2 percent to 15.2 percent to our modeling of learning about dividend

dynamics.
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We argue that how stock index prices and returns respond to changes in investors’

beliefs about dividend dynamics can also provide us insight into investors’ preferences,

and more specifically, their preferences for the timing of resolution of uncertainty. That

is, depending on whether investors prefer early or late resolution of uncertainty, changes

in investors’ beliefs about the persistence of dividend growth rates have different effects

on discount rates. We show that, when investors’ beliefs about the persistence of dividend

growth rates increase, price-to-dividend ratios decrease, stock yields increase, and stock

index returns over the short-horizon decrease after controlling for either price-to-dividend

ratios or stock yields. We argue that these findings lend support to investors’ preferences

for early resolution of uncertainty.

We embed our dividend model into an dynamic equilibrium asset pricing model that

features Epstein and Zin (1989) preferences, which capture preferences for the timing

of resolution of uncertainty, and consumption dynamics from the long-run risk model of

Bansal and Yaron (2004). We refer to this model as our long-run risk model. We find that,

between 1976 and 2013, expected returns derived from our long-run risk model, assuming

that investors learn about the parameters governing the dividend process, predict 22.9

percent of the variation in annual stock index returns. Learning accounts for forty-percent

of the 22.9 percent. We decompose the variation in price-to-dividend ratios and find that

over forty-percent of the variation is due to investors’ learning about dividend dynamics,

and the rest is due to discount rate variation.

We follow Cogley and Sargent (2008), Piazzesi and Schneider (2010), and Johannes,

Lochstoer, and Mou (2015), and define learning based on the anticipated utility of Kreps

(1998), where agents update using Bayes’ law but optimize myopically in that they do not

take into account uncertainties associated with learning in their decision making process.

That is, anticipated utility assumes agents form expectations not knowing that their

beliefs will continue to evolve going forward in time as the model keeps updating. Given

the relative complexity of our asset pricing model and the multi-dimensional nature of

learning, we find that solving our model with parameter uncertainties as additional risk

factors is too computationally prohibitive.3 Therefore, we adopt the anticipated utility

approach as the more convenient alternative.

The rest of this paper is organized as follows. In Section 1, we introduce our dividend

model and evaluates its performance in capturing dividend dynamics. In Section 2, we

3Johannes, Lochstoer, and Collin-Dufresne (2015) provide the theoretical foundation for studying
uncertainties about model parameters as priced risk factors.
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discuss how learning about dividend dynamics affects expectations of future dividends.

In Section 3, we show that learning about dividend dynamics is reflected in the prices

and returns of the stock index. In Section 4, we argue that the way discount rates covary

with investors’ beliefs about the persistence of dividend growth rates supports investors’

preferences for early resolution of uncertainty. In Section 5, we embed our dividend model

into an equilibrium asset pricing model to quantify how much learning about dividend

dynamics contributes to the variations in price-to-dividend ratios and future stock index

returns. In Section 6, we conclude.

1 The Dividend Model

In this section, we present a model for dividend growth rates that extends the latent

variable model of van Binsbergen and Koijen (2010) by incorporating information in

aggregate corporate earnings. The inclusion of earnings information in explaining dividend

dynamics is inspired by Campbell and Shiller (1988b), who show that cyclical-adjusted

price-to-earnings (CAPE) ratios, defined as the log ratios between real prices and real

earnings averaged over the past decade, can predict future growth rates in dividends.

Let dt be log dividend and ∆dt+1 = dt+1 − dt be its growth rate. The latent variable

model of van Binsbergen and Koijen (2010) is described by the following system of

equations:

∆dt+1 − µd = xt + σdεd,t+1

xt+1 = ρxt + σxεx,t+1(
εd,t+1

εx,t+1

)
∼ i.i.d. N

(
0,

(
1 λdx

λdx 1

))
. (1)

Following van Binsbergen and Koijen (2010), our focus is on modeling the nominal

dividend process.4 To show that our findings are robust, we also provide results on

modeling the real dividend process in the Appendix. Time-t is defined in years to control

for potential seasonality in dividend payments. In this model, expected dividend growth

rates follow a stationary AR[1] process and are functions of the latent variable xt, the

4As shown in Boudoukh, Michaely, Richardson, and Roberts (2007), equity issuance and repurchase
tend to be sporadic and random compared to cash dividends. For this reason, we focus on modeling the
cash dividend process and treat equity issuance and repurchase as unpredictable.
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unconditional mean µd of dividend growth rates, and the persistence coefficient ρ of xt:

Et [∆dt+s+1] = µd + ρsxt, ∀s ≥ 0. (2)

To introduce earnings information into this model, first define pt as log price of the

stock index, et as log earnings, πt as log consumer price index, and, following Campbell

and Shiller (1988b), run the following vector-autoregression for annual dividend growth

rates, log price-to-dividend ratios, and CAPE ratios: ∆dt+1

pt+1 − dt+1

pt+1 − ēt+1

 =

b10

b20

b30

+

b11 b12 b13

b21 b22 b23

b31 b32 b33


 ∆dt

pt − dt
pt − ēt

+

 σdεd,t+1

σ(p−d)ε(p−d),t+1

σ(p−ē)ε(p−ē),t+1

 ,

 εd,t+1

ε(p−d),t+1

ε(p−ē),t+1

 ∼ i.i.d. N

0,

 1 λ12 λ13

λ12 1 λ23

λ13 λ23 1


 . (3)

where, as in Campbell and Shiller (1988b), CAPE ratio is defined as:

pt − ēt = pt −

(
πt +

1

10

10∑
s=1

(et−s+1 − πt−s+1)

)
. (4)

We report estimates of b10, b11, b12, and b13 from (3), based on data between 1946 and 2013,

in the first four columns of Table 1.5 Consistent with Campbell and Shiller (1988b), we

find that both price-to-dividend ratios and CAPE ratios have significant effects on future

dividends, but in the opposite direction. That is, increases in price-to-dividend ratios

predict increases in future dividend growth rates, but increases in CAPE ratios predict

decreases in future dividend growth rates. Interestingly, we see from 1 that b12 + b13 = 0

cannot be statistically rejected. For this reason, we restrict b13 = −b12 and re-estimate

annual dividend growth rates as:

∆dt+1 = β0 + β1∆dt + β2 (ēt − dt) + σdεd,t+1, εd,t+1 ∼ i.i.d N(0, 1). (5)

We note that the stock index price does not appear in (5). We report estimated coefficients

5Throughout this paper, we report results based on overlapping monthly data. That is, in each month,
we fit or predict dividend growth rates and stock index returns over the next 12 months. We report
standard errors, F -statistics, p-values, and Q-statistics adjusted to reflect the dependence introduced by
overlapping monthly data.
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from (5) in the last three columns of Table 1. Results show that the β2 estimate is highly

statistically significant, suggesting that expected dividend growth rates respond to the

log ratios between historical earnings and dividends. Intuitively, high earnings relative to

dividends imply that firms have been retaining earnings in the past and so are expected

to pay more dividends in the future.

b10 b11 b12 b13 β0 β1 β2

-0.058 0.442∗∗∗ 0.103∗∗ -0.096∗∗ -0.033 0.434∗∗∗ 0.098∗∗

(0.066) (0.118) (0.042) (0.041) (0.029) (0.117) (0.041)

Table 1: Campbell and Shiller (1988b) Betas for Predicting Dividend Growth Rates: This
table reports coefficients from estimating dividend growth rates using (3) and (5), based on data between
1946 and 2013. Newey and West (1987) adjusted standard errors are reported in parentice. Estimates
significant at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

We extend (1) based on this insight that earnings contain information about future

dividends. Let ∆et+1 = et+1 − et be log earnings growth rate and qt = et − dt be log

earnings-to-dividend ratio, our dividend model can be described by the following system

of equations:

∆dt+1 − µd = xt + φ(∆et+1 − µd) + ϕ
(
qt − µq

)
+ σdεd,t+1,

xt+1 = ρxt + σxεx,t+1,

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1,εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,

 1 λdx λdq

λdx 1 λxq

λdq λxq 1


 . (6)

In our model, dividend growth rates are linear combinations of four components. First, as

in van Binsbergen and Koijen (2010), they consist of the latent variable xt, which follows

a stationary AR[1] process. Second, they are affected by fluctuations in contemporaneous

earnings growth rates. That is, we expect firms to pay more dividends if their earnings over

the same period are high. Third, they are affected by changes in past earnings-to-dividend

ratios. That is, we expect firms to pay more dividends if they retained more earnings

in the past. Fourth, they consist of white noises εd,t+1. For convenience, we model

earnings-to-dividend ratios as an AR[1] process, and assuming that it is stationary implies

that dividend and earnings growth rates have the same unconditional mean µd. We note
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that, substituting the third equation into the first equation of (6), we can re-write the

first equation of (6) as:

∆dt+1 =
1

1− φ
xt +

ϕ− (1− θ)φ
1− φ

(qt − µq) +
φ

1− φ
σqεq,t+1 +

1

1− φ
σdεd,t+1. (7)

So we can solve for expected dividend growth rates in our model as:

Et[∆dt+s+1] = µd +
ρs

1− φ
xt +

θs(ϕ− (1− θ)φ)

1− φ
(qt − µq), ∀s ≥ 0. (8)

Thus, aside from the two state variables, expected dividend growth rates are functions

of the unconditional means µd and µq of dividend growth rates and earnings-to-dividend

ratios, the persistence ρ and θ of the latent variable xt and earnings-to-dividend ratios,

and coefficients φ and ϕ that connect earnings information to dividend dynamics. We note

that earnings dynamics is not modeled explicitly in (6). However, we can solve for earnings

growth rates from the processes of dividend growth rates and earnings-to-dividend ratios:

∆et+1 = µd +
1

1− φ
xt +

ϕ+ θ − 1

1− φ
(qt − µq) +

1

1− φ
σdεd,t+1 +

1

1− φ
σqεq,t+1. (9)

1.1 Data and Estimation

Due to the lack of reliable historical earnings data on the CRSP value-weighted market

index, we use the S&P500 index as the proxy for the market portfolio. That is, throughout

this study, data on prices, dividends, and earnings are from the S&P500 index. These

data can be found on Prof. Robert Shiller’s website.

We compute the likelihood of our dividend model using Kalman filters (Hamilton

(1994)) and estimate model parameters,

Θ = {µd, φ, ϕ, σd, ρ, σx, µq, θ, σq, λdx, λdq, λxq},

based on maximum-likelihood. See the Appendix for details. Table 2 reports model

parameter estimates based on data between 1946 and 2013. Standard errors are based on

bootstrap simulation. Previous works have suggested a regime shift in dividend dynamics

before and after World War II. Fama and French (1988) note that dividends are more

smoothed in the post-war period. Chen, Da, and Priestley (2012) argue that the lack

of predictability in dividend growth rates by price-to-dividend ratios in the post-war

period is attributable to this dividend smoothing behavior. For this reason, we restrict

our data sample to the post-war era. Consistent with our intuition, both φ and ϕ that
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connect earnings information to dividend dynamics are estimated to be positive and highly

statistically significant. That is, high contemporaneous earnings growth rates imply high

dividend growth rates, and high past earnings-to-dividend ratios imply high dividend

growth rates. The annual persistence of earnings-to-dividend ratios is estimated to be

0.281. The latent variable xt is estimated to be more persistent at 0.528. In summary,

there is a moderate level of persistence in dividend growth rates between 1946 and 2013

based on estimates from our model.

µd φ ϕ σd ρ σx
0.059 0.079 0.184 0.017 0.528 0.041

(0.015) (0.018) (0.028) (0.013) (0.160) (0.009)

µq θ σq λdx λdq λxq
0.713 0.281 0.280 -0.032 -0.157 0.024

(0.047) (0.116) (0.027) (0.131) (0.028) (0.124)

Table 2: Dividend Model Parameters: This table reports estimated parameters from our dividend
model, based on data between 1946 and 2013. Bootstrap simulated standard errors are reported in
parentice. Simulation is based on 100,000 iterations.

In Table 3, we report serial correlations, up to 5 years, for annual dividend growth rates

and dividend growth rate residuals, which we define as the difference between dividend

growth rates and expected growth rates implied by our dividend model. We also report

serial correlations for dividend growth rate residuals implied by either of the dividend

models described in (1) and (3), which we refer to as the baseline models. We then

provide the Ljung and Box (1978) Q-statistics for testing if dividend growth rates and

growth rate residuals are serially correlated. We find that our dividend model is reasonably

successful at matching serial correlations in annual dividend growth rates for up to 5 years.

That is, our model’s dividend growth rate residuals appear to be serially uncorrelated. In

comparison, for the baseline models we find that their growth rate residuals are serially

correlated at the 95 percent confidence level.

In the first column of Table 4, we report the goodness-of-fit for describing dividend

growth rates using our model, based on data between 1946 and 2013. We find that our

model explains 55.0 percent of the variation in annual dividend growth rates. To account

for the fact that at least part of this fit comes from adding more parameters to existing

models and is thus mechanical, we also report the Bayesian information criterion (BIC),
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which penalizes a model based on the number of free parameters in that model.6 We

report BIC statistics in the second column of Table 4. Results confirm that our model

outperforms the baseline models in explaining the variation in dividend growth rates.

Another way to address the concern that our model overfits the data is to assess the

model based on how it forecasts dividend growth rates out-of-sample. That is, instead

of fitting the model based on the full data sample, we predict dividend growth rates at

each point in time based on data available at the time. Forecasting performance is then

evaluated using the out-of-sample R-square value as defined in Goyal and Welch (2008):

R2 = 1−
∑T−1

t=t0
(∆dt+1 − Et[∆dt+1])2∑T−1

t=t0
(∆dt+1 − µ̂d(t))

2
, (10)

where ∆dt is the average of dividend growth rates up to time-t:

µ̂d(t) =
1

t

t−1∑
s=0

∆ds+1, (11)

and we use time-t0 to denote the end of the training period. Due to the relative complexity

of our model, we use the first 30 years of our data sample as the training period so that

out-of-sample prediction is for the period between 1976 and 2013. Throughout this paper,

for predictive analysis, we assume investors have access to earnings information 3 months

after fiscal quarter or year end. The choice of 3 months is based on Securities and Exchange

Commission (SEC) rules since 1934 that require public companies to file 10-Q reports no

later than 45 days after fiscal quarter end and 10-K reports no later than 90 days after

fiscal year end.7 To show that our findings are robust to this assumption, we repeat

the main results of this paper in the Appendix, assuming that earnings information is

known to investors with a lag of 6, 9 and 12 months. We assume that information about

prices and dividends is known to investors in real time.8 In the third and fourth columns

of Table 4, we report the out-of-sample R-square value for predicting annual dividend

growth rates and the corresponding p-value from the adjusted-MSPE statistic of Clark

and West (2007). Results show that our model predicts 31.3 percent of the variation in

annual dividend growth rates, which is a significant improvement over the R-square values

6BIC = log( ˆvar(∆dt+1−Et[∆dt+1]))+m log(T )
T , where m is a model’s number of parameters, excluding

those in the variance-covariance matrix, and T is the number of observations.
7In 2002, these rules were updated to require large firms file 10-Q reports no later than 40 days after

fiscal quarter end and 10-K reports no later than 60 days after fiscal year end.
8Our results are also robust to assuming that dividend information is known with a 3 months lag.
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of 18.5 percent and 13.5 percent from the baseline models. Interestingly, we note that

imposing the restriction that b12 + b13 = 0 in (3) significantly improves the out-of-sample

forecasting performance of the Campbell and Shiller (1988b) model, lending additional

support for our decision to impose this restriction.

∆dt+1 − Et[∆dt+1]

∆dt+1 J&L vB&K C&S

Serial Correlation (Years)

1 0.418 -0.027 0.123 0.156
2 -0.107 -0.128 -0.212 -0.197
3 -0.318 -0.036 -0.249 -0.224
4 -0.280 0.066 -0.153 -0.048
5 -0.139 0.198 -0.031 -0.240

Q-Statistics 32.49 5.263 12.36 12.96
[0.000] [0.385] [0.030] [0.024]

Table 3: Serial Correlations in Dividend Growth Rates and Expected Growth Rates: This
table reports the 1, 2, 3, 4, and 5 years serial correlations for dividend growth rates and growth rate
residuals implied by our dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen
(2010) (i.e. vB&K), or the dividend model in Campbell and Shiller (1988b) (i.e. C&S), based on data
between 1946 and 2013. Also reported are the Ljung-Box (1973) Q-statistics for testing if dividend growth
rates and growth rate residuals are serially correlated. p-values for Q-statistics are reported in square
parentice.

Although results in this section show that our model is successful in capturing the

variation in dividend growth rates both in-sample and out-of-sample, we recognize that

it inevitably simplifies the true process governing dividend dynamics. One can add

additional lags of earnings-to-dividend ratios to the model.9 Also, one can extend our

model by allowing model parameters, such as the persistence ρ of the latent variable xt or

the standard deviation σx of shocks to xt, to be time varying. However, the disadvantage

of incorporating such extensions is that a more complicated model is also more difficult

to estimate with precision in finite sample. For example, one way to assess whether

accounting for the possibilities of time varying model parameters improves our model’s

out-of-sample forecasting performance is to estimate model parameters based on a rolling

window, rather than an expanding window, of past data, so that observations from the

distant past are not used to estimate model parameters. We provide this analysis in the

9For example, Campbell and Shiller (1988b) assume dividend growth rates are affected by earnings
information with up to 10 years of lag.
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Appendix. In summary, we find that our model’s forecasting performance is not improved

by estimating model parameters based on a rolling window of past data.

In-Sample Out-of-Sample

Goodness-of-Fit BIC R2 p-value

J&L 0.551 -5.863 0.313 0.000

vB&K 0.176 -5.509 0.185 0.008

C&S 0.250 -5.683 0.135 0.025

C&S 0.248 -5.680 0.245 0.002
(Restricted)

Table 4: Dividend Growth Rates and Expected Growth Rates. The first column of this table
reports goodness-of-fit for describing dividend growth rates using our dividend model (i.e. J&L), the
dividend model in van Binsbergen and Koijen (2010) (i.e. vB&K), the dividend model in Campbell and
Shiller (1988b) (i.e. C&S), or its restricted version where we set b12+b13 = 0. The second column reports
the Bayesian information criterion. The third and fourth columns report the out-of-sample R-square value
for predicting dividend growth rates and the corresponding p-value from the adjusted-MSPE statistic of
Clark and West (2007). In-sample (out-of-sample) statistics are based on data between 1946 and 2013
(1976 and 2013).

2 Parameter Uncertainty and Learning

The difference between in-sample and out-of-sample prediction is the assumption made

on investors’ information set. Model parameters reported in Table 2 are estimated using

data up to 2013, so they reflect investors’ knowledge of dividend dynamics at the end

of 2013. That is, if investors were to estimate our model in an earlier date, they would

have estimated a set of parameter values different from those reported in Table 2. This

is a result of investors’ knowledge of dividend dynamics evolving as more data become

available. We call this learning. That is, we use learning to refer to investors estimating

model parameters at each point in time based on data available at the time. In this section,

we summarize how learning affects investors’ beliefs about the parameters governing the

dividend process, assuming that investors learn about dividend dynamics using our model.

We then show that learning can have significant asset pricing implications.

In Figure 1, we report estimates of the six model parameters in (8) that affect expected

dividend growth rates, assuming that our model is estimated based on data up to time-τ ,
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for τ between 1976 and 2013. There are several points we take away from Figure 1. First,

there is a gradual upward drift in investors’ beliefs about the unconditional mean µq of

earnings-to-dividend ratios. This suggests that firms have been paying a smaller fraction

of earnings as cash dividends in recent decades. Second, there are gradual downward

drifts in investors’ beliefs about φ and ϕ that connect earnings information to dividend

dynamics. This means that dividends have become more smoothed over time. Third,

a sharp drop in investors’ beliefs about the persistence θ of earnings-to-dividend ratios

towards the end of our data sample is due to the abnormally low earnings reported in

late 2008 and early 2009 as a result of the financial crisis and the strong stock market

recovery that followed.

µd µq φ

ϕ ρ θ

Figure 1: Evolution of Model Parameters. This figure plots estimates of the six dividend model
parameters that affect expected dividend growth rates, assuming that these parameters are estimated
based on data up to time-τ for τ between 1976 and 2013.

It is clear from Figure 1 that the persistence ρ of the latent variable xt is the parameter
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hardest to learn and least stable over time. This observation is consistent with results

reported in Table 2, which show that, of all model parameters, ρ is estimated with the

highest standard error (i.e. 0.160). Investors’ beliefs about ρ fluctuate significantly over

the sample period, especially around three periods during which beliefs about ρ sharply

drop. The first is at the start of dot-com bubble between 1995 and 1998. The second

is during the crash of that bubble in late 2002 and early 2003. The third is during the

financial crisis in late 2008 and early 2009. Further, there is also a long term trend that

sees a gradual decrease in investors’ beliefs about ρ since early 1980s. For example, if

we were to pick a random date between 1976 and 2013 and estimate our model based on

data up to that date, on average we would have estimated a ρ of 0.734.10 This would

be significantly higher than the 0.528 reported in Table 2 that is estimated using the full

data sample.

We can infer, from standard errors reported in Table 2, that learning about dividend

dynamics is a slow process. That is, even with 68 years of data, there are still significant

uncertainties surrounding the estimates of some model parameters. For example, the 95

percent confidence interval for the persistence ρ of the latent variable xt is between 0.214

and 0.842. The same confidence interval for the persistence θ of earnings-to-dividend

ratios is between 0.054 and 0.508. To quantify the speed of learning, following Johannes,

Lochstoer, and Mou (2015), for each of the six parameters that affect expected dividend

growth rates, we construct a measure that is the inverse ratio between the bootstrap

simulated standard error assuming that the parameter is estimated based on data up to

2013 and the bootstrap simulated standard error assuming that the parameter is estimated

based on 10 additional years of data (i.e. if the parameter were estimated in 2023). See

the Appendix for details on bootstrap simulation. In other words, this ratio reports how

much an estimated parameter’s standard error would reduce if investors were to have 10

more years of data. So the closer this ratio is to 1, the more difficult it is for investors

to learn about the parameter. In Table 5, we report this ratio for each of the six model

parameters. Overall, 10 years of additional data would only decrease the standard errors

of parameter estimates by between 5 and 8 percent. Further, consistent with results from

Figure 1 and those reported in Table 2, we find that it is more difficult to learn about ρ

than about any of the other five model parameters.

We show that learning about dividend dynamics can have significant asset pricing

implications. Consider the log linearized present value relationship in Campbell and

10To establish a point of reference, Bansal and Yaron (2004) calibrate annualized persistence of expected
dividend growth rate to be 0.97512 = 0.738.
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µd µq φ ϕ ρ θ

0.924 0.924 0.926 0.928 0.951 0.920

Table 5: Speed of Learning about Model Parameters: This table reports the speed of learning for
the six model parameters that affect expected dividend growth rates. Speed of learning is defined as the
inverse ratio between the bootstrap simulated standard error assuming that the parameter is estimated
based on data up to 2013 and the bootstrap simulated standard error assuming that the parameter is
estimated based on 10 additional years of data (i.e. if the parameter were estimated in 2023). Simulation
is based on 100,000 iterations.

Shiller (1988a):

pt − dt =
κ0

1− κ1
+
∞∑
s=0

κs1 (Et[∆dt+s+1]− Et[rt+s+1]) , (12)

where κ0 and κ1 are log-linearizing constants and rt+1 is the stock index’s log return.11

The expression is a mathematical identity that connects price-to-dividend ratios, expected

dividend growth rates, and discount rates (i.e. expected returns). We define stock yield

as the discount rate that equates the present value of expected future dividends to the

current price of the stock index. That is, rearranging (12), we can write stock yield as:

syt ≡ (1− κ1)

∞∑
s=0

κs1Et[∆rt+s+1]

= κ0 − (1− κ1)(pt − dt) + (1− κ1)
∞∑
s=0

κs1Et[∆dt+s+1]. (13)

Define long run dividend growth expectation as:

∂t ≡ (1− κ1)
∞∑
s=0

κs1Et[∆dt+s+1]. (14)

Given that price-to-dividend ratios are observed, there is a one-to-one mapping between

long run dividend growth expectations and stock yields. We note that long run dividend

growth expectations are specific to the dividend model and its parameters. For example,

11To solve for κ0 = log(1 + exp(p− d))− κ1(p− d) and κ1 = exp(p−d)
1+exp(p−d) , we set unconditional mean of

log price-to-dividend ratios p− d to 3.46 to match the data between 1946 and 2013. This gives κ0 = 0.059
and κ1 = 0.970.

14



using our dividend model, we can re-write (14) as:

∂t = (1− κ1)
∞∑
s=0

κs1

(
µd +

ρs

1− φ
xt +

θs(ϕ− (1− θ)φ)

1− φ
(qt − µq)

)
= µd +

1− κ1

1− φ

(
1

1− κ1ρ
xt +

ϕ− (1− θ)φ
1− κ1θ

(qt − µq)
)
. (15)

If a different dividend model is used, long run dividend growth expectations will also

be different. For example, if we assume that dividend growth rates follow a white noise

process centered around µd, we can re-write (14) instead as ∂t = µd. Further, because long

run dividend growth expectations are functions of dividend model parameters, it is also

affected by whether model parameters are estimated once based on the full data sample,

or estimated at each point in time based on data available at the time. The first case

corresponds to investors having full knowledge of the parameters describing the dividend

process, whereas the second case corresponds to investors having to learn about dividend

dynamics. In Figure 2, we plot long run dividend growth expectations, computed using

our model and assuming that investors either have to learn, or do not learn, about model

parameters. We find that learning has a considerable effect on investors’ long run dividend

growth expectations, assuming that investors learn about dividend dynamics using our

model.

In Figure 3, we plot stock yields, computed by substituting (15) into (13):

syt = κ0 − (1− κ1)(pt − dt) + µd +
1− κ1

1− φ

(
1

1− κ1ρ
xt +

ϕ− (1− θ)φ
1− κ1θ

(qt − µq)
)
. (16)

Dividend model parameters are either estimated once based on the full data sample or

estimated at each point in time based on data available at the time. We also plot price-to-

dividend ratios in Figure 3, and scale price-to-dividend ratios to allow for easy comparison

to stock yields. We find that there is almost no noticeable difference between the time

series of price-to-dividend ratios and stock yields, computed assuming that investors do

not learn. This suggests that the variation in long run dividend growth expectations,

assuming that investors do not learn, is minimal relative to the variation in price-to-

dividend ratios, so the latter dominates the variation in stock yields. However, assuming

that investors have to learn, we find significant differences between the time series of

price-to-dividend ratios and stock yields.
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Figure 2: Expected Long Run Dividend Growth Rates. This figure plots long run dividend
growth expectations, computed using our dividend model, for the period between 1976 and 2013. Dividend
model parameters are estimated based on data since 1946. Under full information, model parameters are
estimated once based on the full data sample. Under learning, those parameters are estimated at each
point in time based on data available at the time.

3 Learning about Dividend Dynamics and Investor

Behavior

In the previous section, we show that parameters in our dividend model can be difficult

to estimate with precision in finite sample. As a result, we argue that learning about

model parameters can have significant asset pricing implications. This claim is based on

the assumption that our model captures investors’ expectations about future dividends.

That is, we assume that investors behave as if they learn about dividend dynamics using

our model. In this section, we present evidence that supports this assumption. We show

that stock yields, computed assuming that investors learn about dividend dynamics using

our model (see (16)), predict future stock index returns. To establish a baseline, note

that, if we assume dividend growth rates follow a white noise process centered around µd,

stock yield can be simplified to:

syt = κ0 − (1− κ1)(pt − dt) + µd. (17)

That is, under the white noise assumption, stock yields are just scaled price-to-dividend

ratios. We regress stock index returns over the next year on price-to-dividend ratios,

based on data between 1976 and 2013. We report regression statistics in the first column
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Figure 3: Stock Yields. This figure plots stock yields syt, computed using our dividend model, and
log price-to-dividend ratios (scaled) for the period between 1976 and 2013. Dividend model parameters
are estimated based on data since 1946. Under full information, model parameters are estimated once
based on the full data sample. Under learning, those parameters are estimated at each point in time
based on data available at the time.

of Table 6. Standard errors reported are Newey and West (1987) adjusted.12 Results from

Table 6 show that, between 1976 and 2013, price-to-dividend ratios explain 10.2 percent

of the variation in stock index returns over the next year.

We then regress stock index returns over the next year on stock yields in (16),

computed assuming that investors estimate model parameters at each point in time based

on data available at the time. We report regression statistics in the second column of

Table 6. The R-square value from this regression is 15.2 percent. We note that the

only difference between this regression and the baseline regression is the assumption on

dividend dynamics. That is, we assume that investors learn about dividend dynamics

using our model in this regression, whereas in the baseline regression we assume that

expected dividend growth rates are constant. This means that we can attribute the

increase in the R-square value from 10.2 percent to 15.2 percent to our modeling of

learning about dividend dynamics. We also run a bivariate regression of stock index

returns over the next year on both price-to-dividend ratios and stock yields, computed

assuming that investors learn about dividend dynamics using our model, and report

regression statistics in the third column of Table 6. Results show that stock yields,

computed assuming that investors learn about dividend dynamics using our model, strictly

12Stambaugh (1999) shows that, when variables are highly serially correlated, OLS estimators’ finite-
sample properties can deviate from the standard regression setting.
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dominate price-to-dividend ratios in explaining future stock index returns.

To emphasize the importance of learning, we regress stock index returns over the next

year on stock yields in (16), computed assuming that investors do not learn. That is,

instead of estimating model parameters at each point in time based on data available

at the time, we estimate those parameters once based on the full data sample. So at

every point in time, the same parameter estimates are used to compute stock yields. We

report regression statistics in the fourth column of Table 6. Results show that stock

yields, computed using our model but assuming that investors do not learn, perform

roughly as well as price-to-dividend ratios in predicting future stock index returns. This

is consistent with results from Figure 3, which show that there is almost no noticeable

difference between the time series of price-to-dividend ratios and stock yields, computed

using our model but assuming that investors do not learn.

J&L vB&K C&S

pt − dt -0.116∗∗ 0.016
(0.054) (0.089)

syt 3.964∗∗∗ 4.355∗ 3.000∗∗ 2.741∗∗

(Learning) (1.133) (2.199) (1.390) (1.056)

syt 3.753∗∗

(Full Info.) (1.674)

R2 (Return) 0.102 0.152 0.152 0.105 0.088 0.106

R2 (Excess Return) 0.090 0.140 0.141 0.093 0.075 0.094

Table 6: Stock Index Returns and Stock Yields: This table reports the coefficient estimates and
R-square value from regressing stock index returns over the next year on log price-to-dividend ratios
and stock yields, computed using our dividend model (i.e. J&L), the dividend model in van Binsbergen
and Koijen (2010) (i.e. vB&K), or the dividend model in Campbell and Shiller (1988b) (i.e. C&S), and
assuming investors have to learn (i.e. Learning), or do not learn (i.e. Full Info.), about model parameters.
Regression is based on data between 1976 and 2013. Dividend model parameters are estimated based on
data since 1946. Newey and West (1987) standard errors are reported in parentice. Estimates significant
at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

It is also worth emphasizing that, for learning to be relevant, the dividend model itself

must be used by investors. To illustrate this point, we regress stock index returns over

the next year on stock yields, computed assuming that investors learn about dividend
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dynamics using either of the baseline models. We report regression statistics in the fifth

and sixth columns of Table 6. We find that stock yields, computed assuming that investors

learn using either of the baseline models, also perform roughly as well as price-to-dividend

ratios in explaining future dividend growth rates.

We note that stock index returns combine the risk free rate and risk premium. To

investigate whether the gain in return predictability is for predicting the risk free rate or

the risk premium, in the last row of Table 6, we report the R-square value for predicting

stock index excess returns.13 Results show that the gap in forecasting performance

between stock yields, computed assuming that investors learn about dividend dynamics

using our model, and price-to-dividend ratios is entirely for predicting the risk premium

and is not for predicting the risk free rate.

Recall that there are six model parameters that affect expected dividend growth rates.

These parameters are the unconditional means µd and µq of dividend growth rates and

earnings-to-dividend ratios, the persistence ρ and θ of the latent variable xt and earnings-

to-dividend ratios, and coefficients φ and ϕ that connect earnings information to dividend

dynamics. We analyze learning about which of the six parameters is most important for

asset pricing. We divide the six parameters into one subset that includes the persistence

ρ of the latent variable xt and another subset that includes the other five parameters. We

then shut down learning for one subset of parameters while still allowing investors to learn

about the remaining parameters in our model. That is, parameters not subject to learning

are fixed at their full sample estimated values whereas other parameters are estimated at

each point in time based on data available at the time. We call this partial learning. We

regress stock index returns over the next year on stock yields, computed assuming partial

learning. We report regression statistics in Table 7. Results show that allowing investors

to learn about some, but not all, of the six model parameters reduces the performance

of the resulting stock yields in explaining future stock index returns. If we shut down

learning about ρ, the R-square value is reduced from 15.2 percent to 11.5 percent, but

still higher than the 10.2 percent under full information. If we shut down learning about

the other five parameters, the R-square value is reduced to 12.5 percent. This shows that

investors’ learning is multi-dimensional, and not restricted to a specific parameter or few

parameters. Nevertheless, we find that shutting down learning about ρ adversely affect

13Let r̂t be stock index return forecast and rf,t be the risk free rate. The in-sample R-square value

for predicting stock index returns is ˆvar(rt+1−r̂t+1)
ˆvar(rt+1)

, where ˆvar(·) is the sample variance. The in-sample

R-square value for predicting stock index excess returns is
ˆvar((rt+1−rf,t+1)−(r̂t+1−rf,t+1))

ˆvar(rt+1−rf,t+1)
.
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return predictability more than shutting down learning about the other five parameters

combined. This suggests that learning about ρ has the strongest implications for asset

pricing. This is also consistent with results from the previous sections that show ρ is the

parameter hardest to learn and investors beliefs about ρ fluctuates the most over time.

Shutting Down Learning about Φ

Φ = {µd, µq, φ, ϕ, θ} Φ = {ρ}

syt 3.806∗∗∗ 3.854∗∗∗

(Learning) (1.483) (1.502)

R2 (Return) 0.125 0.115

R2 (Excess Return) 0.113 0.103

Table 7: Stock Index Returns and Stock Yields (Partial Learning): This table reports the
coefficient estimates and R-square value from regressing stock index returns over the next year on log
price-to-dividend ratios and stock yields, computed using our dividend model and assuming investor
learn about some model parameters but not others. Regression is based on data between 1976 and 2013.
Dividend model parameters are estimated based on data since 1946. Newey and West (1987) standard
errors are reported in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are
highlighted using ∗, ∗∗, and ∗ ∗ ∗.

4 Evidence on Preference for Early Resolution of

Uncertainty

A large part of modern asset pricing is built on the assumption, first formalized by Kreps

and Porteus (1978), Epstein and Zin (1989), and Weil (1989), and then elaborated by

Bansal and Yaron (2004) and others, that investors prefer early resolution of uncertainty.

Under this assumption, long run expected growth risk requires additional compensation

over short run expected growth risk. In this section, we provide evidence on investors’

preference for early resolution of uncertainty. Because results from Table 6 suggest that

investors learn about dividend dynamics based on data available at the time, investors’

beliefs about the persistence of dividend growth rates vary over time as more data become

available. We can examine how discount rates covary with investors’ beliefs about the

persistence of dividend growth rates and, from this relationship, infer whether investors

have a preference for early or late resolution of uncertainty.
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In our model, the persistence of dividend growth rates is jointly determined by the

persistence ρ of the latent variable xt and the persistence θ of earnings-to-dividend ratios.

To derive a unified measure of persistence, note that, assuming that investors learn about

dividend dynamics using our model, one standard deviation shocks to both the latent

variable xt and earnings-to-dividend ratios increase long run dividend growth expectations

in (15) by:14

∂t|(εx,t+1 = 1, εq,t+1 = 1)− ∂t|(εx,t+1 = 0, εq,t+1 = 0)

= (1− κ1)
∞∑
s=0

κs1
1− φ

(ρsσx + θs(ϕ− (1− θ)φ)σq)

=
(1− κ1)σx

1− φ
1

1− κ1ρ
+

(1− κ1)(ϕ− (1− θ)φ)σq
1− φ

1

1− κ1θ
. (18)

The same shocks’ effect on dividend growth rates over the next year is:

∆dt+1|(εx,t+1 = 1, εq,t+1 = 1)−∆dt+1|(εx,t+1 = 0, εq,t+1 = 0)

=
1

1− φ
(σx + (ϕ− (1− θ)φ)σq) . (19)

The ratio between the short run and the long run effects on dividend growth rates of one

standard deviation shocks to both xt and earnings-to-dividend ratios is:

∆dt+1|(εx,t+1 = 1, εq,t+1 = 1)−∆dt+1|(εx,t+1 = 0, εq,t+1 = 0)

∂t+1|(εx,t+1 = 1, εq,t+1 = 1)− ∂t+1|(εx,t+1 = 0, εq,t+1 = 0)

=
σx + (ϕ− (1− θ)φ)σq

(1−κ1)σx
1−κ1ρ + (1−κ1)(ϕ−(1−θ)φ)σq

1−κ1θ

. (20)

This ratio is increasing in the speed at which shocks to dividend growth rates die out over

time. That is, if shocks to dividends have stronger effects on long run dividend growth

expectations, this ratio is lower. Thus, we define the persistence of dividend growth rates

(i.e. ω) as minus this ratio, scaled so that ω is between −1 and 1:15

ω =
1

κ1

− (1− κ1)

κ1

· ∆dt+1|(εx,t+1 = 1, εq,t+1 = 1)−∆dt+1|(εx,t+1 = 0, εq,t+1 = 0)

∂t+1|(εx,t+1 = 1, εq,t+1 = 1)− ∂t+1|(εx,t+1 = 0, εq,t+1 = 0)

=

1− σx+(ϕ−(1−θ)φ)σq
σx

1−κ1ρ
+

(ϕ−(1−θ)φ)σq
1−κ1θ

κ1

. (21)

14We denote ∂t|(εx,t+1 = 1, εq,t+1 = 1) ≡ (1− κ1)
∑∞
s=0 κ1Et[∆dt+s+1|(εx,t+1 = 1, εq,t+1 = 1)].

15We only use investors’ beliefs about ω in regressions, so the scaling does not affect the statistical
significance of any of our results.
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To model investors’ learning about the persistence ω of dividend growth rates, we

estimate our dividend model at each point in time based on data available at the time.

That is, denote ω(t) as ω, computed using model parameters estimated based on data

up to time-t. We use ω(t) as a proxy for investors’ time-t belief about ω. In Figure 4,

we plot ω(t) between 1976 and 2013. We note that investors’ beliefs about ω fluctuates

significantly over time.

Figure 4: Investors’ Beliefs about the Persistence of Dividend Growth Rates. This figure
plots investors’ beliefs about the persistence of dividend growth rates for the period between 1976 and
2013. Dividend model parameters are estimated based on data since 1946.

4.1 A Thought Experiment

We argue that, if investors prefer early resolution of uncertainty, we expect future divi-

dends to be more heavily discounted when investors believe dividend growth rates to be

more persistent. On the other hand, if investors prefer late resolution of uncertainty, we

expect discount rates to be lower when investors believe dividend growth rates to be more

persistent.

To fix ideas, we consider the simplest equilibrium asset pricing model that features 1)

investors’ preferences for early or late resolution of uncertainty, and 2) persistent dividend

growth rates. In this thought experiment, we assume there is a representative agent who
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has Epstein and Zin (1989) preferences, defined recursively as:

Ut =

[
(1− δ)C̃

1−α
ζ

t + δ
(
Et
[
U1−α
t+1

]) 1
ζ

] ζ
1−α

, ζ =
1− α
1− 1

ψ

, (22)

where C̃t is real consumption, ψ is the elasticity of intertemporal substitution (EIS), and

α is the coefficient of risk aversion. We note that, the representative agent prefers early

resolution of uncertainty if ζ < 0 and prefers late resolution of uncertainty if ζ > 0.16 Log

of the intertemporal marginal rate of substitution (IMRS) is:

mt+1 = −ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1) s̃t+1, (23)

where s̃t+1 denotes real return of the representative agent’s wealth portfolio.

Only for the purpose of this thought experiment, suppose dividend growth rates follow

the AR[1] process:17

∆dt+1 − µd = ω (∆dt − µd) + σdεd,t+1, εd,t+1 ∼ i.i.d N(0, 1), (24)

and suppose that dividend is the representative agent’s only source of consumption.

Further, to keep the setup as simple as possible, we assume away inflation. That is,

let c̃t = log(C̃t) be log real consumption and ∆c̃t+1 = c̃t+1 − c̃t be its growth rate, we can

write:

∆c̃t+1 = ∆dt+1. (25)

We assume the representative agent price the stock index using the Kreps (1998)

anticipated utility. Assuming anticipated utility implies that investors maximize utility

at each point in time assuming the current model parameter estimates are the true

parameters, but then revise estimates as new data arrive. This means that investors

do not account for the fact that estimates will continue to be revised in the future in their

decisions. In other words, parameter uncertainty itself is not a priced risk factor in this

framework. In Kreps’s view, anticipated utility captures how investors compute utility

when it is too computationally prohibitive to account for the fact that model parameter

estimates will be revised in the future. Currently, this is often used in the macroeconomics

16Or equivalently, if α > 1, then the representative agent prefers early resolution of uncertainty if ψ > 1
and prefers late resolution of uncertainty if ψ < 1.

17The AR[1] assumption is adopted because it is the simplest way to model persistent dividend growth
rates.
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and asset pricing literature for dealing with parameter uncertainty in a dynamic setup.

Given the representative agent’s preferences in (22), consumption dynamics in (25),

and dividend dynamics in (24), we solve for equilibrium price-to-dividend ratios and

expected returns in the Appendix. In solving this model, we closely follow the steps in

Bansal and Yaron (2004). We note that, given the setup of this thought experiment, the

unconditional mean µr of stock index returns is:

µr = E [rt+1] = − log(δ) +
µd
ψ
− ζκ2

1A
2σ2

d

2
.

A =
1− 1

ψ

1− κ1ω
. (26)

where E [·] denotes unconditional expectation and κ0 and κ1 are log-linearizing constants.

We note that −ζA2 is increasing in beliefs about ω if ζ < 0, and, although changes in

µr affect κ0 and κ1 and feedback into µr, these effects on µr through the log-linearizing

constants and vice versa are relatively small and not of first order importance. Therefore,

if the representative agent has preferences for early resolution of uncertainty, ζ < 0, and

µr is increasing in beliefs about ω. On the other hand, if the representative agent prefers

late resolution of uncertainty, µr is decreasing in beliefs about ω. Intuitively, this is

because, if investors prefer early resolution of uncertainty, persistent shocks to dividend

growth rates carry a positive risk premium, and the more persistent the shocks the higher

that premium. On the other hand, if investors prefer late resolution of uncertainty, the

premium carried by persistent shocks to dividend growth rates is negative.

4.2 Empirical Results

We derive two ways to evaluate the relationship between investors’ beliefs about the

persistence ω of dividend growth rates and the unconditional mean µr of stock index

returns. First, we note that as µr increases, price-to-dividend ratios on average decrease

and stock yields on average increase. To see why, we note from (12) and (13) that:

E [pt − dt] =
κ0 + µd − µr

1− κ1

,

E [syt] = µr. (27)

Thus, if investors prefer early resolution of uncertainty, we expect price-to-dividend ratios

to be lower and stock yields to be higher when investors believe dividend growth rates to
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be more persistent.18 On the other hand, if investors prefer late resolution of uncertainty,

we expect the exact opposite effects. To test this, we regress price-to-dividend ratios

and stock yields, computed assuming that investors learn about dividend dynamics using

our model, on investors’ beliefs about ω and report regression statistics in the first and

second columns of Table 8. Consistent with the assumption that investors prefer early

resolution of uncertainty, we find higher investors’ beliefs about ω are associated with lower

price-to-dividend ratios and higher stock yields, and vice versa. Between 1976 and 2013,

investors’ beliefs about ω explain 25.3 percent of the variation in price-to-dividend ratios

and 15.7 percent of the variation in stock yields. It is possible that the covariance between

investors’ beliefs about ω and either price-to-dividend ratios or stock yields is driven by the

covariance between investors’ beliefs about ω and long run dividend growth expectations.

To rule out this possibility, we regress long run dividend growth expectations, computed

assuming that investors learn about dividend dynamics using our model, on investors’

beliefs about ω, and report regression statistics in the third column of Table 8. We find

that investors’ beliefs about ω do not explain long run dividend growth expectations and

affect price-to-dividend ratios and stock yields only through the discount rate channel.

syt
pt − dt (Learning) ∂t

ω(t) -2.112∗∗∗ 0.060∗∗ -0.003
(0.647) (0.025) (0.015)

R2 0.253 0.157 0.001

Table 8: Stock Index Prices and Investors’ Beliefs about the Persistence of Dividend Growth
Rates. This table reports the coefficient estimates and the R-square value from regressing log price-to-
dividend ratios, stock yields, or long run dividend growth expectations, computed assuming that investors
learn about dividend dynamics using our dividend model, on investors’ beliefs about the persistence ω of
dividend growth rates. Regression is based on overlapping annual data between 1976 and 2013. Dividend
model parameters are estimated based on data since 1946. Newey and West (1987) standard errors are
reported in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are highlighted
using ∗, ∗∗, and ∗ ∗ ∗.

Next, we note that investors’ preferences for the timing of resolution of uncertainty

also have a direct effect on the term structure of expected returns. If investors prefer

18Although changes in µr affect both κ0 and κ1, these effects are relatively small and not of first order
importance.
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early resolution of uncertainty, then after controlling for price-to-dividend ratios or stock

yields, we expect stock index returns over the short-horizon to be lower when investors

believe dividend growth rates to be more persistent, and vice versa. That is, if we observe

the same price-to-dividend ratios on two separate dates, but know that investors’ beliefs

about the persistence ω of dividend growth rates are different on these two dates, then

we expect stock index returns over the short-horizon to be lower for the date on which

investors believe dividend growth rates to be more persistent. To see why, suppose that

expected returns follow a stationary AR[1] process as in van Binsbergen and Koijen (2010):

Et+1[rt+2]− µr = γ (Et[rt+1]− µr) + σrεr,t+1. (28)

Substituting (28) into the log-linearizing present value relationship of Campbell and Shiller

(1988a), we can write expected returns over the short-horizon as:

Et[rt+1] = −(1− κ1γ)(pt − dt) +
1− κ1γ

1− κ1

∂t +
(1− κ1γ)κ0 − κ1(1− γ)µr

1− κ1

(29)

Or equivalently, we can write:

Et[rt+1] =
1− κ1γ

1− κ1

syt −
κ1(1− γ)µr

1− κ1

. (30)

Although changes in µr affect both κ0 and κ1, these effects are relatively small and not of

first order importance. Thus, we note from (29) and (30) that, after controlling for price-

to-dividend ratios or stock yields, expected stock index returns over the short-horizon are

decreasing in µr, and thus decreasing in investors’ beliefs about ω. Intuitively, this is

because, when µr increases, in order to justify the same price-to-dividend ratio or stock

yield, expected returns over the short-horizon must decrease sufficiently to compensate

for the effect of an increase in µr on expected returns over the long-horizon. To confirm

this relationship, we run bivariate regressions of stock index returns over the next year

on investors’ beliefs about ω and either price-to-dividend ratios or stock yields, computed

assuming that investors learn about dividend dynamics using our model. We report

regression statistics in Table 9. Results confirm that, after controlling for either price-to-

dividend ratios or stock yields, higher investors’ beliefs about ω predict lower stock index

returns over the short-horizon, and vice versa. We find that, between 1976 and 2013,

price-to-dividend ratios (stock yields) and investors’ beliefs about ω together explain

as much as 23.5 (26.5) percent of the variation in stock index returns over the next

26



year. Further, comparing results reported in Table 9 to those reported in Table 6, we

find that, not only is investors’ beliefs about ω an effective predictor of future stock

index returns, including them as an additional regressor also strengthens the individual

predictive performance of price-to-dividend ratios and stock yields.

ω(t) -0.644∗∗ -0.562∗∗

[0.184] [0.129]

pt − dt -0.193∗∗∗

[0.052]

syt 5.448∗∗∗

(Learning) [0.897]

R2 (Return) 0.235 0.265

R2 (Excess Return) 0.224 0.255

Table 9: Stock Index Returns, Stock Yields, and Investors’ Beliefs about the Persistence
of Dividend Growth Rates. This table reports the coefficient estimates and R-square value from
regressing stock index returns over the next year on investors’ beliefs about the persistence ω of dividend
growth rate, log price-to-dividend ratios, and stock yields, computed assuming that investors learn about
dividend dynamics using our dividend model. Regression is based on data between 1976 and 2013.
Dividend model parameters are estimated based on data since 1946. Newey and West (1987) standard
errors are reported in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are
highlighted using ∗, ∗∗, and ∗ ∗ ∗.

5 Learning about Dividend Dynamics in an

Equilibrium Asset Pricing Model

Results from the previous sections show that investors’ learning about dividend dynamics

is reflected in stock index prices and returns. In this section, we embed learning about div-

idend dynamics into a realistic equilibrium asset pricing model to quantitatively capture

these features of the data.
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5.1 Preferences and Consumption Dynamics

Aside from proposing a dividend model, building an equilibrium asset pricing model

requires us to specify investors’ preferences and consumption dynamics. Because results

in previous sections show that investors prefer early resolution of uncertainty, a natural

choice is to combine our dividend model with Epstein and Zin (1989) preferences in

(22). Our choice of preference parameters reflect common standards set by the existing

literature. That is, we set the coefficients of risk aversion α to 5, the intertemporal

elasticity of substitution (EIS) ψ to 1.5, and the annual time discount factor δ to 0.98.

The choice of an EIS that is greater than one reflect preferences for early resolution of

uncertainty.

We also needs to specify a consumption process. To stress that our results do not rely

on a specific model of consumption, we consider two different specifications of consumption

dynamics.

5.1.1 First Specification

We adopt the consumption model in Bansal and Yaron (2004) as our first specification

of consumption dynamics. That is, we assume that the expected growth rates in real

consumption follow an AR[1] process and allow volatility in consumption growth rates to

be time varying. In other words, we describe real consumption growth rates using the

following system of equations:

∆c̃t+1 − µc =
1

γ(1− φ)
xt + σtεc,t+1

σ2
t+1 − σ2

c = %
(
σ2
t − σ2

c

)
+ σςες,t+1. (31)

The correlation matrix for shocks to dividend and real consumption dynamics can be

written as: 
εc,t+1

εd,t+1

εx,t+1

ες,t+1

εq,t+1

 ∼ i.i.d. N

0,


1 0 0 0 0

0 1 λdx 0 λdq

0 λdx 1 0 λxq

0 0 0 1 0

0 λdq λxq 0 1



 . (32)
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Because we do not use actual consumption data in this paper, the correlations that

involve shocks εc,t+1 or ες,t+1 to the real consumption process cannot be identified. So, for

convenience, we set them to zeros. The rest of the correlation matrix can be estimated

from dividend and earnings data.

We note that the unconditional mean of real consumption growth rates must equal to

the unconditional mean of dividend growth rates minus inflation rates, or else dividend

as a fraction of consumption will either become negligible or explode. To convert between

nominal and real rates, we set expected inflation rates to a constant µπ = 0.036, and so

µc = µd−µπ.19 We assume that the latent variable xt in real consumption growth rates is

the same as the latent variable in dividend growth rates. We recall that dividend growth

rates in our model have the functional form:

∆dt+1 =
1

1− φ
xt +

ϕ− (1− θ)φ
1− φ

(
qt − µq

)
+

φ

1− φ
σqεd,t+1 +

1

1− φ
σdεd,t+1. (33)

So γ is the dividend leverage parameter. We set it to 5. The primary effect of this

parameter is on the unconditional mean of the equity premium. In Bansal and Yaron

(2004), the persistence ρ of the latent variable xt is set to 0.975 at the monthly frequency.

A common criticism of the long-run risk model has always been that it requires a small but

highly persistent component in consumption and dividend growth rates that is difficult

to find support in the data.20 This criticism serves as the rationale for why we expect

learning to be important. To calibrate the dynamics of consumption volatility, we follow

Bansal and Yaron (2004), who set σc to 0.0078, % to 0.987, and σς to 0.23 · 10−5 at the

monthly frequency. We convert these to their annual equivalents. We note that our long

run risk model differs from the setup in Bansal and Yaron (2004) in that we shut down

heteroskedastic volatility in the dividend process. We do this in order to incorporate our

dividend model, which is estimated under homoskedasticity.

We solve this specification of our long-run risk model in the Appendix. In solving this

model, we closely follow the steps in Bansal and Yaron (2004). The model consists of three

state variables: 1) the latent variable xt, 2) the latent variable σ2
t , and 3) earnings-to-

dividend ratios. We can solve for price-to-dividend ratio in this model as a linear function

19The choice of 0.036 is to match the average inflation rate between 1946 and 2013. We also modeled
inflation as an AR[1] process, and our conclusions do not change. These results can be made available
upon request.

20See Beeler and Campbell (2012), Marakani (2009).
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of the three state variables:

pt − dt = Ad,0 + Ad,1xt + Ad,2σ
2
t + Ad,3

(
qt − µq

)
. (34)

We can solve for expected return over the short-horizon as:

Et[rt+1] = Ar,0 + Ar,1xt + Ar,2σ
2
t , (35)

where coefficients Ad,· and Ar,·, derived in the Appendix, are functions of the parameters

governing investors’ preferences, consumption dynamics, and dividend dynamics. We

note that, substituting (34) into (35), we can avoid estimating time varying consumption

volatility directly and instead write expected return over the short horizon as a function

state variables that can be estimated from dividend dynamics and price-to-dividend ratio:

Et [rt+1] =
Ar,0Ad,2 − Ar,2Ad,0

Ad,2
+
Ar,0Ad,2 − Ar,2Ad,0

Ad,2
xt−

Ar,2Ad,3
Ad,2

(
qt − µq

)
+
Ar,2
Ad,2

(pt − dt) .

(36)

5.1.2 Second Specification

In our second specification of consumption dynamics, we assume consumption volatility

to be constant over time. We note that in our first specification, time varying volatility in

real consumption growth rates serves as an additional state variable, so to make up for the

lost state variable, we assume the correlation between shocks εc,t+1 to real consumption

growth rates and shocks εq,t+1 to earnings-to-dividend ratios to be time varying.21 In

other words, this specification allows for the conditional covariance of real consumption

and dividend growth rates to vary over time. We note that this conditional covariance

can be negative in some states of the world, i.e. dividends can be hedges against shocks

to consumption. This gives us our second specification of consumption dynamics, which

can be described by the following system of equations:

∆c̃t+1 − µc =
1

γ(1− φ)
xt + σcεc,t+1

λt+1 − µλ = % (λt − µλ) + σλελ,t+1, (37)

21We note that this additional state variable that cannot be estimated from dividend dynamics alone
is necessary for the model to fit both the time series of dividends and price-to-dividend ratios.
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where λt is the correlation between εc,t+1 in (37) and εq,t+1 in (6) and serves as the addi-

tional state variable in this specification of consumption dynamics. Thus, the correlation

matrix for shocks to dividend and real consumption dynamics can be written as:
εc,t+1

εd,t+1

εx,t+1

ελ,t+1

εq,t+1

 ∼ i.i.d. N

0,


1 0 0 0 λt

0 1 λdx 0 λdq

0 λdx 1 0 λxq

0 0 0 1 0

λt λdq λxq 0 1



 . (38)

We set the consumption dynamics parameters σc and % to be the same as those in the

first specification. We assume the unconditional mean µλ of the latent variable λt to be

0 and the standard deviation of shocks to λt to be 0.033 at the monthly frequency.22

Because this specification of consumption dynamics has not been adopted in the existing

literature, our choice of σλ can appear arbitrary. However, we note that our results are

not sensitive to setting σλ to 0.033.23 We solve this specification of our long run risk

model in the Appendix. In solving this model, we closely follow the steps in Bansal and

Yaron (2004). The model consists of three state variables: 1) the latent variable xt, 2) the

latent variable λt, and 3) earnings-to-dividend ratios. We can solve for price-to-dividend

ratio in this model as a linear function of the three state variables:

pt − dt = Ad,0 + Ad,1xt + Ad,2λt + Ad,3
(
qt − µq

)
. (39)

We can solve for expected return over the short-horizon as:

Et[rt+1] = Ar,0 + Ar,1xt + Ar,2λt, (40)

where coefficients Ad,· and Ar,·, derived in the Appendix, are functions of the parameters

governing investors’ preferences, consumption dynamics, and dividend dynamics. We note

that, substituting (39) into (40), we can avoid estimating time varying correlation between

shocks to real consumption growth rates and shocks to earnings-to-dividend ratios directly

and instead write expected return over the short horizon as a function state variables that

22Because, following Bansal and Yaron (2004), calibrations of σc and % are reported in monthly
frequency, we report our parameter choices for µλ and σλ in monthly frequency as well for ease of
comparison. In solving our model, we convert them to their annual equivalents.

23We also tried setting σλ to other values between 0.01 and 0.10 and find our results to be relatively
unchanged.
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can be estimated from dividend dynamics and price-to-dividend ratio:

Et [rt+1] =
Ar,0Ad,2 − Ar,2Ad,0

Ad,2
+
Ar,0Ad,2 − Ar,2Ad,0

Ad,2
xt−

Ar,2Ad,3
Ad,2

(
qt − µq

)
+
Ar,2
Ad,2

(pt − dt) .

(41)

5.2 Empirical Results

5.2.1 Time Variation in Stock Index Returns

We examine how the two specifications of our long-run risk model performs in predicting

stock index returns. We measure forecasting performance using the quasi out-of-sample

R-square value as defined in Goyal and Welch (2008):

R2 = 1−
∑T−1

t=t0
(rt+1 − Et[rt+1])2∑T−1

t=t0
(rt+1 − µ̂r(t))

2
. (42)

where µ̂r(t) is the average of stock index returns up to time-t:

µ̂r(t) =
1

t

t−1∑
s=0

rs+1, (43)

and we use time-t0 to denote the end of the training period. We use the first 30 years

of the data sample as the training period and compute the quasi out-of-sample R-square

value using data between 1976 and 2013. We use the term quasi to refer to the fact that,

although parameters in our dividend model are estimated at each point in time based on

data available at the time, parameters governing preferences and consumption dynamics

are fixed and can be forward looking.24 In Table 10, we report the quasi out-of-sample

R-square value for predicting annual stock index returns using expected returns, computed

assuming investors learn about dividend dynamics using our long-run risk model. That

is, we estimate dividend model parameters at each point in time based on data available

at the time and substitute these parameters into either (36) or (41) to compute model

implied expected returns. We find that, between 1976 and 2013, our long-run risk model

predicts up to 22.9 percent of the variation in annual stock index returns.

To see why the expected returns derived from our long run risk model is able to capture

the variation in future stock index returns, we regress model implied expected returns,

24For example, under the first specification, these parameters include α, ψ, and δ describing investors’
preferences and γ, σc, %, σς describing the consumption process.
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First Specification Second Specification

R2 p-value R2 p-value

0.224 0.003 0.229 0.003

Table 10: Stock Index Returns and Expected Returns. This table reports the out-of-sample
R-square value for predicting stock index returns using expected returns derived from our long-run risk
model, assuming that investors learn about dividend dynamics. Also reported is the corresponding p-value
from the adjusted-MSPE statistics of Clark and West (2007). Statistics are based on data between 1976
and 2013. Dividend model parameters are estimated based on data since 1946.

computed assuming investors learn about dividend dynamics, on price-to-dividend ratios,

long run dividend growth expectations, and investors’ beliefs about the persistence ω of

dividend growth rates, and report regression statistics in Table 11. Results show that

price-to-dividend ratios, long run dividend growth expectations, and investors’ beliefs

about ω together contribute up to 93.1 percent of the variation in model implied expected

returns. That is, expected returns derived from our long run risk model, computed

assuming investors learn about dividend dynamics, captures three key relationships that

drive to our long run risk model’s forecasting performance. First, increases in price-

to-dividend ratios are associated with decreases in future stock index returns. Second,

increases in long run dividend growth expectations are associated with increases in future

stock index returns. Third, increases in investors’ beliefs about ω are associated with

decreases in future stock index returns.

To isolate the contribution of learning to our long run risk model’s forecasting per-

formance, we regress stock index returns over the next year on model implied expected

returns, computed assuming investors either have to learn, or do not learn, about dividend

dynamics. That is, assuming investors learn, we estimate dividend model parameters at

each point in time based on data available at the time and substitute these parameters

into either (36) or (41) to compute model implied expected returns. On the other hand,

assuming investors do not learn, we estimate model parameters once using the full data

sample and apply these same parameter estimates to compute model implied expected

returns on different dates. We report regression statistics in Table 12. We note that

accounting for learning about dividend dynamics is responsible for over forty-percent of

the predictability in stock index returns.

To examine the robustness of our long-run risk model’s forecasting performance, we

follow Goyal and Welch (2008) and define the cumulative sum of squared errors difference
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First Specification Second Specification

pt − dt -0.159∗∗∗ -0.159∗∗∗

(0.013) (0.013)

∂t 5.971∗∗∗ 6.056∗∗∗

(Learning) (0.694) (0.700)

ω(t) -0.423∗∗∗ -0.425∗∗∗

(0.060) (0.062)

R2 0.931 0.929

Table 11: Decomposition of Model Implied Expected Returns. This table reports the coefficient
estimates and R-square value from regressing model implied expected returns on log price-to-dividend
ratios, long run dividend growth expectations, and investors’ beliefs about the persistence ω of dividend
growth rates. Regression is based on data between 1976 and 2013. Dividend model parameters are
estimated based on data since 1946. Newey and West (1987) standard errors are reported in parentice.
Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

(SSED) as:

SSEDt =
t−1∑
s=t0

(
(rs+1 − Et[rs+1])2 − (rs+1 − µ̂r(t))

2
)
. (44)

We plot SSED in Figure 5. We note that if the forecasting performance of our long-run

risk model is stable and robust, we should observe a steady but constant decline in SSED.

Instead, if the forecasting performance is especially poor in certain sub-period of the data,

we should see a significant drawback in SSED during that sub-period. Figure 5 shows that

our model’s forecasting performance is relatively stable and robust between 1976 and 2013,

except for right before the Dot-Com crash and during the recent financial crisis, when

our long run risk model slightly underperform.Henkel, Martin, and Nardari (2011) and

Golez and Koudijs (2014) argue that almost all of price-to-dividend ratios’ performance

in forecasting future stock index returns is realized during recessions. However, we note

that, once we account for learning about dividend dynamics, our model’s forecasting

performance is roughly as strong during National Bureau of Economic Research (NBER)

expansions as during recessions.
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First Specification Second Specification

Learning Full Info. Learning Full Info.

Est. 0.863∗∗∗ 0.694∗∗ 0.897∗∗∗ 0.695∗∗

(0.137) (0.294) (0.137) (0.295)

R2 0.214 0.116 0.218 0.116

Table 12: Stock Index Returns and Expected Returns (Learning vs Full Info.). This table
reports the coefficient estimates and R-square value from regressing stock index returns over the next
year on model implied expected returns, computed assuming that investors either have to learn, or do
not learn, about parameters in the dividend model. Statistics are based on data between 1975 and 2013.
Dividend model parameters are estimated based on data since 1946. Newey and West (1987) standard
errors are reported in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are
highlighted using ∗, ∗∗, and ∗ ∗ ∗.

5.2.2 Time Variation in Price-to-Dividend Ratios

It is a common wisdom in the asset pricing literature that the variation in price-to-

dividend ratios is primarily driven by the variation in discount rates, and not cash flow

expectations. For example, Cochrane (2011) states that ”the variance of dividend yields

or price-dividend ratios corresponds entirely to discount-rate variation”. To analyze

this statement in light of our findings, we perform a decomposition of price-to-dividend

ratios. That is, assuming that investors learn about dividend dynamics using the first

specification of our long-run risk model, we can label (34) as:

pt − dt = Ad,0(t)︸ ︷︷ ︸
1)

+Ad,1(t) · xt︸ ︷︷ ︸
2)

+Ad,2(t) · σ2
t︸ ︷︷ ︸

3)

+Ad,3(t) ·
(
qt − µq(t)

)︸ ︷︷ ︸
4)

, (45)

where Ad,·(t) denotes Ad,· computed using model parameters estimated based on data

avaliable at time-t. This means that the variation in price-to-dividend ratios is at-

tributable to 1) the variation in investors’ beliefs about parameters in the dividend model,

2) the variation in the latent variable xt, 3) the variation in the latent variable σ2
t , or 4)

the variation in earnings-to-dividend ratios. Thus, we can decompose the sample variance
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First Specification Second Specification

Figure 5: Stock Index Returns and Model Implied Expected Returns (Cumulative SSE
Difference). This figure plots the cumulative sum of squared errors difference for the period between
1976 and 2013. Dividend model parameters are estimated based on data since 1946.

of price-to-dividend ratios into:

ˆvar (pt − dt) = ˆcov (pt − dt, Ad,0(t))︸ ︷︷ ︸
1)

+ ˆcov (pt − dt, Ad,1(t) · xt)︸ ︷︷ ︸
2)

+ ˆcov
(
pt − dt, Ad,2(t) · σ2

t

)︸ ︷︷ ︸
3)

+ ˆcov
(
pt − dt, Ad,3(t) ·

(
qt − µq(t)

))︸ ︷︷ ︸
4)

. (46)

where ˆvar(·) denotes sample variance and ˆcov(·) denotes sample covariance.

We perform the same decomposition assuming investors price the stock index using

the second specification of our long run risk model. We report the decomposition results

in Table 13. Results show that about half of the variation in price-to-dividend ratios is

driven by the variation in the latent variable σ2
t in the first specification or λt in the second

specification, which affects discount rates but not cash flow expectations. The other half

of the variation in price-to-dividend ratios can be attributed to learning about dividend

dynamics, primarily changes in investors’ beliefs about the parameters governing the

dividend process. These results challenge the common wisdom in the literature that price-

to-dividend ratios do not incorporate information about future dividend expectations.
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Learning xt σ2
t or λt qt

First Specification 0.443 0.002 0.533 0.022

Second Specification 0.416 0.008 0.491 0.085

Table 13: Decomposing the Variation in Price-to-Dividend Ratios. This table reports the
fraction of the variation in price-to-dividend ratios that in attributable to the variation in investors
beliefs about dividend model parameters, the variation in the latent variable xt, the variation in the
latent variable σ2

t in the first specification or λt in the second specification, and the variation in earnings-
to-dividend ratios qt. Statistics are based on data between 1976 and 2013. Dividend model parameters
are estimated based on data since 1946.

5.3 Discussion

We discuss three features of our work in this section that can potentially motivate future

research. First, we draw attention to the differences between the two specifications of

our long run risk model. We recall that in our first specification, we use heteroskedastic

volatility in real consumption growth rates as the additional state variable of our model,

and in our second specification, we use the time varying correlation between shocks to real

consumption growth rates and earnings-to-dividend ratios as the additional state variable.

Nevertheless, as Tables 10, 11, 12, 13, and Figure 5 reveal, despite this difference, so far the

asset pricing implications of the two specifications of our long run risk model are almost

identical. In Figure 6, we plot the expected returns derived from the two specifications

of our long run risk model, computed assuming investors learn about dividend dynamics,

as well as the actual stock index returns over the next year, for the period between 1976

and 2013. Figure 6 confirms that the time series of expected returns under the two

specifications almost completely overlap.

We then decompose expected returns derived from each of the two specifications of our

long run risk model into model implied risk free rate and model implied risk premium.25

In Figure 7, we plot risk free rate and risk premium derived from the two specifications

of our long run risk model, as well as the actual risk free rate and risk premium over the

next year, for the period between 1976 and 2013. Interestingly, Figure 7 shows that the

two specifications have completely different implications on the decomposition of expected

returns into risk free rate and risk premium. That is, according to the first specification

of consumption dynamics, almost all of the variation in expected returns is attributable

25We derive the risk free rate as a function of state variables and preference, consumption and dividend
model parameters in the Appendix.
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Figure 6: Model Implied Expected Returns. This figure plots expected returns derived from the
two specifications of our long run risk model, as well as the actual stock index returns over the next year,
for the period between 1975 and 2013. Dividend model parameters are estimated based on data since
1946.

to the variation in the risk free rate, whereas the risk premium hardly changes over time.

To the contrary, according to the second specification of consumption dynamics, almost

all of the variation in expected returns is attributable to the variation in risk premium,

whereas the risk free rate hardly changes over time.

Clearly, we know from the data that the risk free rate is relatively constant over time.

Thus, we can infer that, of the two specifications, the second specification of consumption

dynamics is the more realistic one. In other words, because different models of the

consumption process can have different implications for the decomposition of expected

returns into risk premium and risk free rate, we can use this decomposition to shed light

on consumption dynamics. However, modeling consumption is not the focus of this paper,

so we leave this to potential future research.

Second, we note that, according to both specifications of our long run risk model,

expected returns during the Dot-Com crash are negative. We recall that, in our long run

risk model, expected return is a linear function of state variables. For example, under the

second specification, expected return can be written as:

Et [rt+1] = Ar,0 + Ar,1xt + Ar,2λt. (47)

where coefficients Ar,· are always positive. So in states of the world where state variables

xt and λt are significantly negative, expected returns can be negative. However, our model
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Risk Free Rate Risk Premium

Figure 7: Model Implied Risk Free Rate and Risk Premium. This figure plots risk free rate and
risk premium derived from the two specifications of our long run risk model, as well as the actual risk
free rate and excess returns over the next year, for the period between 1975 and 2013. Dividend model
parameters are estimated based on data since 1946.

does not shed any light on the deeper economic intuition behind why we estimate negative

expected returns during the Dot-Com crash.

Third, we compare our estmation method to that of van Binsbergen and Koijen

(2010). In that paper, the processes of dividends and price-to-dividend ratios are jointly

estimated.26 The rationale for jointly estimating these processes is that price-to-dividend

ratios contain information about dividend dynamics that the econometrician cannot cap-

ture using a time series model of dividends. In other words, jointly estimating dividend

and price-to-dividend ratio dynamics is the efficient approach under the assumption

that investors and the econometrician have different information sets regarding dividend

dynamics, so the econometrician can learn about dividend model parameters and state

variables from price-to-dividend ratios. In this paper, we operate under the assumption

that investors and the econometrician have the same information set regarding dividend

dynamics. That is, we assume investors learn about dividend dynamics using the same

model and the same data as the econometrician does. Thus, under this assumption,

price-to-dividend ratios do not contain additional information that cannot be revealed by

estimating our dividend model, and thus jointly estimating the processes of dividends and

price-to-dividend ratios is not necessary and no more efficient than estimating dividend

26In van Binsbergen and Koijen (2010), both expected dividend growth rates and discount rates are
modeled as stationary AR[1] processes.
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model parameters and state variables using our dividend model alone. However, if

investors and the econometrician’s information sets regarding dividend dynamics are

not exactly identical, we imagine three ways through which our estimation method can

potentially be improved. First, as in van Binsbergen and Koijen (2010), one can estimate

dividend and price-to-dividend ratio dynamics jointly. Second, one can estimate dividend

and consumption dynamics jointly, if one is confident in a model of consumption.27 Third,

one can estimate the dividend model parameters using non-flat priors. We leave these to

potential future research.

6 Conclusion

We propose a model for the dynamics of dividend growth rates that incorporates earnings

information into the latent variable model of van Binsbergen and Koijen (2010). We show

that the model performs well in capturing the variation in dividend growth rates, both

in-sample and out-of-sample. We show that some parameters in our dividend model can

be difficult to estimate with precision in finite sample. We argue that, as a result, learning

about model parameters can have significant asset pricing implications.

We provide evidence that investors behave as if they learn about dividend dynamics

using our model. First, we show that incorporating learning about dividend dynamics

helps to forecast future stock index returns. Second, we find that changes in investors’

beliefs about the persistence of dividend growth rates help to explain the variation in

both long run discount rates and the term structure of discount rates. We show that the

way discount rates respond to investors’ beliefs about the persistence of dividend growth

rates is consistent with investors’ preferences for early resolution of uncertainty.

We embed learning about dividend dynamics into an equilibrium asset pricing model

that features Epstein and Zin (1989) preferences and consumption dynamics from the

long-run risks model of Bansal and Yaron (2004). We find that, between 1976 and 2013,

our long-run risk model predicts 22.9 percent the variation in annual stock index returns.

We show that, according to our model, learning about dividend dynamics contributes

substantially to the variation in price-to-dividend ratios.

27There is also a debate on who is the marginal investor and correspondingly whose consumption should
be relevant for pricing the stock index. For this, see the literature on intermediary asset pricing.
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A Appendix

A.1 Derivation of Price-Dividend Ratios and Expected Returns

A.1.1 A Thought Experiment

We derive price-to-dividend ratios and expected returns implied by the equilibrium asset

pricing model proposed in our thought experiment, which features dividend dynamics in

(24), consumption dynamics in (25), and investors’ preferences in (22). Our derivation

closely follows the steps in Bansal and Yaron (2004). The log stochastic discount factor

is:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)s̃t+1. (48)

Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,

log real return of the representative agent’s wealth portfolio can be written as:

s̃t+1 = κ0 + κ1zc,t+1 − zc,t + ∆c̃t+1. (49)

The log-linearizing constants are:

κ0 = log(1 + exp(z̄c))− κ1(z̄c) and κ1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt. (50)

We can write:

Et[mt+1 + s̃t+1] = ζ log(δ) +

(
ζ − ζ

ψ

)
(µd + xt) + ζκ0 + ζ(κ1 − 1)A0 + ζ (κ1ω − 1)A1,

vart (mt+1 + s̃t+1) = ζ2κ2
1A

2
1σ

2
d. (51)

Using the condition Et[exp(mt+1 + s̃t+1)] = 1, we can solve for coefficients A0 and A1 as:

A0 =
1

1− κ1

(
log(δ) +

(
1− 1

ψ

)
µd + κ0 +

ζ

2
κ2

1A
2
1σ

2
d

)
,

A1 =
1− 1

ψ

1− κ1ρ
. (52)
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Unconditonal mean of expected returns on wealth is:

E[s̃t+1] = κ0 + (κ1 − 1)A0 + µd. (53)

Because dividend and consumption dynamics are identical, the unconditional mean µr of

expected stock index returns is:

µr = E[s̃t+1] = − log(δ) +
µd
ψ
− ζ

2
κ2

1A
2
1σ

2
d. (54)

A.1.2 Full Model (First Specification)

We derive price-to-dividend ratios and expected returns implied by our long-run risk

model, which features dividend dynamics in (6), consumption dynamics in (31), and

investors preferences in (22). Our derivation closely follows the steps in Bansal and Yaron

(2004). The log stochastic discount factor is given as:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)s̃t+1. (55)

Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,

log real return of the representative agent’s wealth portfolio can be written as:

s̃t+1 = g0 + g1zc,t+1 − zc,t + ∆c̃t+1. (56)

The log-linearizing constants are:

g0 = log(1 + exp(z̄c))− g1(z̄c) and g1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt +Ac,2σ
2
t . (57)

Let µc = µd − µπ. We can write:

Et [mt+1 + s̃t+1] =ζ log(δ) +

(
ζ − ζ

ψ

)
(µc + γxt) + ζg0 + ζ (g1 − 1)Ac,0 + ζ (g1ρ− 1)xt

+ ζ (g1%− 1)Ac,2σ
2
t + ζg1 (1− %)Ac,2σ

2
c ,

vart (mt+1 + s̃t+1) = ζ2

(
1− 1

ψ

)2

σ2
t + ζ2 (g1Ac,1σx)2 + ζ2 (g1Ac,2σς)

2 . (58)
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Using the condition Et[exp(mt+1 + s̃t+1)] = 1, we can solve for coefficients Ac,0, Ac,1, and

Ac,2 as:

Ac,0 =
log(δ) + (1− 1

ψ )(µd − µπ) + g0 + g1Ac,2(1− %)σ2
c + 1

2ζg
2
1(A2

c,1σ
2
x +A2

c,2σ
2
ς )

1− g1
,

Ac,1 =

(
1− 1

ψ

)
γ

1− g1ρ
, Ac,2 =

ζ(1− 1
ψ )2

2(1− g1%)
. (59)

Next, let zd,t be log price-to-dividend ratio of the stock index, rt+1 be log return of the

stock index and r̃t+1 be log real return. Then, by first order Taylor series approximation,

we can write:

rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1,

r̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1. (60)

where ∆d̃t+1 is real dividend growth rate. Assume that log price-to-dividend ratio is of

the form:

zd,t = Ad,0 +Ad,1xt +Ad,2σ
2
t +Ad,3(qt − µq). (61)

Then note that:

Et [mt+1 + r̃t+1] =ζ log(δ) + (ζ − 1) (g1 − 1)Ac,0 + (ζ − 1) (g1ρ− 1)Ac,1xt + (ζ − 1) (g1%− 1)Ac,2σ
2
t

+ g1 (1− %)Ad,2σ
2
c +

(
ζ − ζ

ψ
− 1

)
(µc + γxt) + (ζ − 1) g0 + κ0 + (κ1 − 1)A0

+ (κ1ρ− 1)Ad,1xt + (κ1%− 1)Ad,2σ
2
t + κ1(1− %)Ad,2σ

2
c

+ (κ1θ − 1)Ad,3
(
qt − µq

)
+ µc +

1

1− φ
xt +

ϕ− (1− θ)φ
1− φ

(
qt − µq

)
.

vart (mt+1 + r̃t+1) =

(
ζ − 1− ζ

ψ

)2

σ2
t +

(
1

1− φ

)2

σ2
d + ((ζ − 1)g1Ac,1 + κ1Ad,1)2 σ2

x

+ ((ζ − 1)g1Ac,2 + κ1Ad,2)2 σ2
ς +

(
κ1Ad,3 +

φ

1− φ

)2

σ2
q

+ 2 ((ζ − 1)g1Ac,1 + κ1Ad,1)

(
κ1Ad,3 +

φ

1− φ

)
λxqσxσq

+
2

1− φ

(
κ1Ad,3 +

φ

1− φ

)
λdqσdσq +

2

1− φ
((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx.

(62)
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Using the condition Et[exp(mt+1 + r̃t+1)] = 1, we can solve for Ad,0, Ad,1, Ad,2, and Ad,3

as:

Ad,0 =



ζ log(δ) + (ζ − 1)g0 + (ζ − 1)Ac,0(g1 − 1) + ((ζ − 1)g1Ac,2 + κ1Ad,2)(1− %)σ2
c

+
(
ζ − ζ

ψ − 1
)
µc + κ0 + µc + 1

2( 1
1−φ)2σ2

d + 1
2((ζ − 1)g1Ac,1 + κ1Ad,1)2σ2

x

+1
2((ζ − 1)g1Ac,2 + κ1Ad,2)2σ2

ς + 1
2(κ1Ad,3 + φ

1−φ)2σ2
q

+ ((ζ − 1)g1Ac,1 + κ1Ad,1)
(
κ1Ad,3 + φ

1−φ

)
λxqσxσq

+ 1
1−φ

(
κ1Ad,3 + φ

1−φ

)
λdqσdσq + 1

1−φ ((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx


1− κ1

,

Ad,1 =

(
ζ − 1− ζ

ψ

)
γ + (ζ − 1)Ac,1(g1ρ− 1) + 1

1−φ

1− κ1ρ
,

Ad,2 =
(ζ − 1)(g1%− 1)Ac,2 + 1

2

(
ζ − 1− ζ

ψ

)2

1− κ1%
, Ad,3 =

ψ − (1− θ)φ
(1− κ1θ)(1− φ)

. (63)

Substituting the expression for zd,t into rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1 leads:

Et[rt+1] = Ar,0 +Ar,1xt +Ar,2σ
2
t +Ar,3(qt − µq), (64)

where:

Ar,0 = κ0 − (1− κ1)Ad,0 + µd + κ1(1− %)Ad,2σ
2
c , Ar,1 =

1

1− φ
− (1− κ1ρ)Ad,1,

Ar,2 = −(1− κ1%)Ad,2, Ar,3 =
ϕ− (1− θ)φ

1− φ
− (1− κ1θ)Ad,3 = 0. (65)

Expected return over the next τ period is:

τ−1∑
s=0

rt+s+1 = sAr,0 +

(
τ−1∑
s=1

Ar,1ρ
s

)
xt +

(
τ−1∑
s=1

Ar,2%
s

)
σ2
t +

(
τ−1∑
s=1

Ar,2(1− %s)

)
σ2
c . (66)

Finally, the risk free rate can be written as:

rf,t+1 = Af,0 + Af,1xt + Af,2σ
2
t , (67)
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where:

Af,0 = −ζ log(δ)− (ζ − 1− ζ

ψ
)µc − (ζ − 1)(g0 + (g1 − 1)C0 + g1(1− %)C2σ

2
c

− 1

2
((ζ − 1)g1C1)2 σ2

x −
1

2
((ζ − 1)g1C2σς)

2 .

Af,1 = −(ζ − 1− ζ

ψ
)γ + (ζ − 1)(1− g1ρ)C1, Af,2 = (ζ − 1)(1− g1%)C2 −

1

2
(ζ − 1− ζ

ψ
)2. (68)

A.1.3 Full Model (Second Specification)

We derive price-to-dividend ratios and expected returns implied by our long-run risk

model, which features dividend dynamics in (6), consumption dynamics in (37), and

investors preferences in (22). Our derivation closely follows the steps in Bansal and Yaron

(2004). The log stochastic discount factor is given as:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)s̃t+1. (69)

Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,

log real return of the representative agent’s wealth portfolio can be written as:

s̃t+1 = g0 + g1zc,t+1 − zc,t + ∆c̃t+1. (70)

The log-linearizing constants are:

g0 = log(1 + exp(z̄c))− g1(z̄c) and g1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt. (71)

Let µc = µd − µπ. We can write:

Et [mt+1 + s̃t+1] =ζ log(δ) +

(
ζ − ζ

ψ

)
(µc + γxt) + ζg0 + ζ (g1 − 1)Ac,0 + ζ (g1ρ− 1)xt,

vart (mt+1 + s̃t+1) = ζ2

(
1− 1

ψ

)2

σ2
c + ζ2 (g1Ac,1σx)2 . (72)
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Using Et[exp(mt+1 + s̃t+1)] = 1, we can solve for coefficients Ac,0, Ac,1, and Ac,2 as:

Ac,0 =
log(δ) + (1− 1

ψ )µc + g0 + 1
2ζ(1− 1

ψ )2σ2
c + 1

2ζg
2
1(A2

c,1σ
2
x +A2

c,2σ
2
ς )

1− g1
,

Ac,1 =

(
1− 1

ψ

)
γ

1− g1ρ
. (73)

Next, let zd,t be log price-to-dividend ratio of the stock index, rt+1 be log return of the

stock index and r̃t+1 be log real return. Then, by first order Taylor series approximation,

we can write:

rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1,

r̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1. (74)

where ∆d̃t+1 is real dividend growth rate. Assume that log price-to-dividend ratio is of

the form:

zd,t = Ad,0 +Ad,1xt +Ad,2λt +Ad,3(qt − µq). (75)

Then note that:

Et [mt+1 + r̃t+1] =ζ log(δ) + (ζ − 1) (g1 − 1)Ac,0 + (ζ − 1) (g1ρ− 1)Ac,1xt + µc

+

(
ζ − ζ

ψ
− 1

)
(µc + γxt) + (ζ − 1) g0 + κ0 + (κ1 − 1)A0 + (κ1ρ− 1)Ad,1xt

+ (κ1%− 1)Ad,2λt + (κ1θ − 1)Ad,3
(
qt − µq

)
+

1

1− φ
xt +

ϕ− (1− θ)φ
1− φ

(
qt − µq

)
.

vart (mt+1 + r̃t+1) =

(
ζ − 1− ζ

ψ

)2

σ2
c +

(
1

1− φ

)2

σ2
d + ((ζ − 1)g1Ac,1 + κ1Ad,1)2 σ2

x

+ (κ1A2)2 σ2
ς +

(
κ1Ad,3 +

φ

1− φ

)2

σ2
q + 2

(
κ1Ad,3 +

φ

1− φ

)(
ζ − 1− ζ

ψ

)
σxσqλt

+ 2 ((ζ − 1)g1Ac,1 + κ1Ad,1)

(
κ1Ad,3 +

φ

1− φ

)
λxqσxσq

+
2

1− φ

(
κ1Ad,3 +

φ

1− φ

)
λdqσdσq +

2

1− φ
((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx.

(76)
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Using Et[exp(mt+1 + r̃t+1)] = 1, we can solve for Ad,0, Ad,1, Ad,2, and Ad,3 as:

Ad,0 =



ζ log(δ) + (ζ − 1)g0 + (ζ − 1)Ac,0(g1 − 1)

+
(
ζ − ζ

ψ − 1
)
µc + κ0 + µc + 1

2( 1
1−φ)2σ2

d + 1
2((ζ − 1)g1Ac,1 + κ1Ad,1)2σ2

x

+1
2(κ1Ad,2)2σ2

λ + 1
2(κ1Ad,3 + φ

1−φ)2σ2
q

+ ((ζ − 1)g1Ac,1 + κ1Ad,1)
(
κ1Ad,3 + φ

1−φ

)
λxqσxσq

+ 1
1−φ

(
κ1Ad,3 + φ

1−φ

)
λdqσdσq + 1

1−φ ((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx


1− κ1

,

Ad,1 =

(
ζ − 1− ζ

ψ

)
γ + (ζ − 1)Ac,1(g1ρ− 1) + 1

1−φ

1− κ1ρ
,

Ad,2 =

1
1−φ

(
ζ − 1− ζ

ψ

)
σcσd

1− κ1%
, Ad,3 =

ψ − (1− θ)φ
(1− κ1θ)(1− φ)

. (77)

Substituting the expression for zd,t into rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1 leads:

Et[rt+1] = Ar,0 +Ar,1xt +Ar,2λt +Ar,3(qt − µq), (78)

where:

Ar,0 = κ0 − (1− κ1)Ad,0 + µd, Ar,1 =
1

1− φ
− (1− κ1ρ)Ad,1,

Ar,2 = −(1− κ1%)Ad,2, Ar,3 =
ϕ− (1− θ)φ

1− φ
− (1− κ1θ)Ad,3 = 0. (79)

Expected return over the next τ period is:

τ−1∑
s=0

rt+s+1 = sAr,0 +

(
τ−1∑
s=1

Ar,1ρ
s

)
xt +

(
τ−1∑
s=1

Ar,2%
s

)
λt +

(
τ−1∑
s=1

Ar,2(1− %s)

)
µλ. (80)

Finally, the risk free rate can be written as:

rf,t+1 = Af,0 + Af,1xt, (81)

where:

Af,0 = −ζ log(δ)− (ζ − 1− ζ

ψ
)µc − (ζ − 1)(g0 + (g1 − 1)C0 −

1

2

(
ζ − 1− ζ

ψ

)2

σ2
c −

1

2
((ζ − 1)g1C1)2 σ2

x.

Af,1 = −(ζ − 1− ζ

ψ
)γ + (ζ − 1)(1− g1ρ)C1. (82)
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A.2 Kalman Filter

We describe the Kalman filtering process for estimating the system of equations in (6).

First, note the last equation in (6) can be estimated separately from other equations in

(6) using time series regression. To estimate the first two equations, define x′t = xt−1 and

ε′x,t+1 = εx,t, and re-write the remaining system of equations as:

∆dt+1 = µd + x′t+1 + φ(∆et+1 − µd) + ϕ
(
qt − µq

)
+ σdεd,t+1

x′t+1 = ρx′t + σxε
′
x,t+1(

εd,t+1

ε′x,t+1

)
∼ i.i.d. N

(
0,

(
1 0

0 1

))
. (83)

To apply the Kalman filter, let x′t|s denote the time-s expectation of the latent variable

x′t and P ′t|s denote the variance of x′t conditioning on information in time-s. Set initial

conditions x′0|0 = 0 and P ′0|0 = σ2
x

1−ρ2 . We can then iterate the following system of equations:

x′t+1|t = ρx′t|t, P ′t+1|t = ρ2P ′t|t + σ2
x,

et+1 = ∆dt+1 − µd − φ(∆et+1 − µd)− ϕ
(
qt − µq

)
,

x′t+1|t+1 = x′t+1|t +
P ′t+1|t

P ′t+1|t + σ2
d

et+1, P ′t+1|t+1 = P ′t+1|t −
P 2
t+1|t

Pt+1|t + σ2
d

. (84)

To estimate dividend model parameters using data up to time-τ , define the log likelihood

function:

L = −
τ−1∑
t=0

(
log
(
P ′t+1|t + σ2

d

)
+

e2
t+1

P ′t+1|t + σ2
d

)
,

We note in our implementation of Kalman filter that, because we use overlapping

monthly data, we obtain twelve log likelihoods, one for the 12 month periods that begin

in January, one for the 12 month periods that begin in February, etc. We choose model

parameters by maximizing the average of the twelve log likelihood.
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A.3 Bootstrap Simulation

Simulation is based on 100,000 iterations. First we simulate innovations to dividend

growth rates and earnings-to-dividend ratios:εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,

 1 λdx λdq

λdx 1 λxq

λdq λxq 1


 . (85)

Dividend model parameters used for simulations are those reported in Table 2, which are

estimated based on the full data sample between 1946 and 2013. From these innovations, we

can simulate the latent variable xt and earnings-to-dividend ratios iteratively as:

xt+1 = ρxt + σxεx,t+1

qt+1 = µq + θ
(
qt − µq

)
+ σqεq,t+1. (86)

Given the simulated time series of xt and earnings-to-dividend ratios, we can simulate

dividend and earnings growth rates iteratively as:

∆dt+1 = µd +
1

1− φ
(
xt + φ(∆qt+1 − µq) + (ϕ− φ)

(
qt − µq

)
+ φσqεq,t+1 + σdεd,t+1

)
∆et+1 = qt+1 − qt + ∆dt+1. (87)

A.4 Modeling Real Dividend Growth Rates

We report estimated coefficients from Campbell and Shiller (1988b) regressions in (3) and

(5), but replacing nominal dividend growth rates using real dividend grwoth rates instead.

We report regression statistics in Table 14. We find that, as is the case with nominal rates,

real dividend growth rates over the next year increase with price-to-dividend ratios, and

decrease with CAPE ratios. Further, we cannot statistically reject b2 = −b3. Setting

b2 + b3 = 0, we find that earnings-to-dividend ratios have a significant positive effect

on future real dividend growth rates. These results are consistent with results based on

nominal dividend growth rates.

We then apply our dividend model in (6) to the real dividend growth rate process, and

compare the model’s performance in fitting annual real dividend growth rates in-sample

and predicting these rates out-of-sample to the performance of the baseline models. Based

on data between 1976 and 2013, we find that, as is the case with nominal rates, our

model clearly outperforms its baseline models in explaining real dividend growth rates
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b10 b11 b12 b13 β0 β1 β2

-0.118∗ 0.496∗∗∗ 0.098∗∗ -0.077∗ -0.046 0.509∗∗∗ 0.083∗∗

(0.063) (0.118) (0.041) (0.039) (0.029) (0.119) (0.040)

Table 14: Campbell and Shiller (1988b) Betas for Predicting Dividend Growth Rates (Real
Rates): This table reports coefficients from estimating dividend growth rates using (3) and (5), based on
data between 1946 and 2013. Newey and West (1987) adjusted standard errors are reported in parentice.
Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

and predicting these rates out-of-sample, between 1976 and 2013.

In-Sample Out-of-Sample

Goodness-of-Fit BIC R2 p-value

J&L 0.482 -5.974 0.275 0.001

vB&K 0.203 -5.544 0.166 0.012

C&S 0.271 -5.737 0.135 0.025

C&S 0.251 -5.709 0.198 0.006
(Restricted)

Table 15: Dividend Growth Rates and Expected Growth Rates (Real Rates). The first
column of this table reports goodness-of-fit for describing dividend growth rates using our dividend
model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. vB&K), the dividend
model in Campbell and Shiller (1988b) (i.e. C&S), or its restricted version where we set b12 + b13 = 0.
The second column reports the Bayesian information criterion. The third and fourth columns report the
out-of-sample R-square value for predicting dividend growth rates and the corresponding p-value from
the adjusted-MSPE statistic of Clark and West (2007). In-sample (out-of-sample) statistics are based on
data between 1946 and 2013 (1976 and 2013).

A.5 Timing of Investors Receiving Earnings Information

Throughout this paper, we assume that investors receive earnings information 3 months

after fiscal quarter or year end. To show that our findings are robust to this assumption,

we repeat results in Tables 6 and 9, assuming that investors instead receive earnings

information 6, 9, or 12 months after fiscal quarter or year end. We report these results in

Tables 16 and 17. We note that changing this assumption can affect our results through its

effect on long run dividend growth expectations and investors’ beliefs about the persistence
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ω of dividend growth rates, both computed using dividend model parameters estimated

at each point in time based on data available at the time. Nevertheless, results show

that the significance of our findings that investors’ learning about dividend dynamics is

reflected in the returns of the stock index is robust to changes in this assumption on when

investors receive earnings information.

3 Months Lag 6 Months Lag 9 Months Lag 12 Months Lag

syt 3.964∗∗∗ 3.771∗∗∗ 3.603∗∗∗ 3.554∗∗∗

(Learning) (1.133) (1.114) (1.110) (1.103)

R2 0.152 0.145 0.138 0.137

Table 16: Stock Index Returns and Stock Yields (Timing of Investors Receiving Earnings
Information): This table reports coefficient estimates and R-square value from regressing stock index
returns over the next year on stock yields, computed assuming investors learn about dividend dynamics
using our dividend model. Regression is based on data between 1976 and 2013. Dividend model
parameters are estimated based on data since 1946. To estimate dividend dynamics, we assume that
investors receive earnings information 3, 6, 9, or 12 months after fiscal quarter or year end. Newey and
West (1987) standard errors are reported in parentice. Estimates significant at 90, 95, and 99 percent
confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

A.6 Estimating Dividend Dynamics using a Rolling Window of

Dividend Data

We show that estimating dividend model parameters based on an expanding window of

past dividend data performs better than estimating those parameters based on a rolling

window of past data, for the purposes of forecasting both future dividends and stock index

returns. We note that expanding window refers to estimating model parameters based on

all past data since 1946, and rolling window refers to estimating those parameters based

on only the last h years of past data. We set h to 10, 20, or 30 years. In Table 19, we

report the out-of-sample R2 value for predicting annual dividend rates using expected

dividend growth rates implied by our model, with model parameters estimated using a

rolling window of h years of past data. Results confirm that the out-of-sample R-square

value for predicting dividend growth rates is highest when model parameters are estimated

based on an expanding window of past data. In absolute terms, however, the out-of-sample

R-square value is still 27.0 (28.6) percent when parameters are estimated based on a rolling
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3 Months Lag 6 Months Lag 9 Months Lag 12 Months Lag

ω(t) -0.562∗∗ -0.501∗∗ -0.436∗∗∗ -0.371∗∗

(0.129) (0.135) (0.149) (0.166)

syt 5.545∗∗∗ 5.002∗∗∗ 4.551∗∗∗ 4.301∗∗∗

(Learning) (0.897) (0.856) (0.908) (0.972)

R2 0.265 0.236 0.205 0.186

Table 17: Stock Index Returns, Stock Yields, and Investors’ Beliefs about Persistence of
Dividend Growth Rates (Timing of Investors Receiving Earnings Information). This table
reports the coefficient estimates and R-square value from regressing stock index returns over the next
year on investors’ beliefs about the persistence ω of dividend growth rates and stock yields, computed
assuming investors learn about dividend dynamics using our model. Regression is based on data between
1976 and 2013. Dividend model parameters are estimated based on data since 1946. To estimate dividend
dynamics, we assume that investors receive earnings information 3, 6, 9, or 12 months after fiscal quarter
or year end. Newey and West (1987) standard errors are reported in parentice. Estimates significant at
90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

window of 20 (30) years of past data. This shows that our model’s success in forecasting

dividend growth rates is robust to how we set the training period.

We then show that estimating model parameters using an expanding window, rather

than a rolling window, of past data also best captures investors’ learning behavior. In

Table 18, we repeat key results in Tables 6 and 9, but compute long run dividend growth

expectations and the persistence ω of dividend growth rates using model parameters

estimated at each point in time based on a rolling window of h years of past data. Results

confirm that investor’s learning behavior is best captured when those parameters are

estimated based on an expanding window of past data.

10 Years 20 Years 30 Years

R2 0.083 0.270 0.286
[0.085] [0.001] [0.001]

Table 18: Dividend Growth Rates and Expected Growth Rates (Rolling Window): This table
reports the out-of-sample R-square value for predicting dividend growth rates using our dividend model.
Also reported in square parentice is the corresponding p-value from the adjusted-MSPE statistics of Clark
and West (2007). Statistics are based on data between 1975 and 2013. Dividend model parameters are
estimated based on a rolling window of past 10, 20, or 30 years of data.
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10 Years 20 Years 30 Years

ω(t) -0.081 -0.150 -0.414∗∗∗

(0.084) (0.091) (0.136)

syt 1.159 1.089 2.579∗∗∗ 2.444∗∗∗ 3.209∗∗∗ 3.811∗∗∗

(Learning) (0.764) (0.731) (0.613) (0.514) (0.954) (0.632)

R2 0.048 0.060 0.164 0.184 0.135 0.206

Table 19: Stock Index Returns, Stock Yields, and Investors’ Beliefs about the Persistence of
Dividend Growth Rates (Rolling Window): This table reports coefficient estimates and R-square
value from regressing stock index returns over the next year on investors’ beliefs about the persistence ω
of dividend growth rates and stock yields, computed assuming investors learn about dividend dynamics
using our model. Regression is based on data between 1976 and 2013. Dividend model parameters are
estimated based on a rolling window of past 10, 20, or 30 years of data. Newey and West (1987) standard
errors are reported in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are
highlighted using ∗, ∗∗, and ∗ ∗ ∗.
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