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The average return on equities has been substantially higher than the average return

on risk free bonds over long periods of time. Between 1946 and 2013, the S&P500 earned

62 basis points per month more than 30 days T-bills (i.e. over 7% annualized). Over

the years, many dynamic equilibrium asset pricing models have been proposed in the

literature to understand the nature of risk in equities that require such a large premium

and why the risk free rate is so low. A common feature in most of these models is that the

risk premium on equities does not remain constant over time, but varies in a stochastic

and persistent manner. A large number of academic studies have found support for such

predictable variation in the equity premium both in time series and in cross-section.1

This led Lettau and Ludvigson (2001) to conclude ”it is now widely accepted that excess

returns are predictable by variables such as price-to-dividend ratios.”

Goyal and Welch (2008) argue that variables such as price-to-dividend ratios, although

successful in predicting stock index returns in-sample, fail to predict returns out-of-sample.

The difference between in-sample and out-of-sample prediction is the assumption made on

investors’ information set. Traditional dynamic equilibrium asset pricing models assume

that, while investors’ beliefs about macroeconomic outcomes change over time and drive

the variation in stock index prices and expected returns, they have full knowledge of

parameters describing the economy. For example, these models assume that investors

know the true model and model parameters governing consumption and dividend dy-

namics. However, as Hansen (2007) argues, ”this assumption has been only a matter of

analytical convenience” and is unrealistic in that it requires us to ”burden the investors

with some of the specification problems that challenge the econometrician”. Motivated

by this insight, a recent but growing literature has focused on the role of learning in asset

pricing models.2 In this paper, we provide emprical evidence that investors learn and that

changes in investors’ beliefs about parameters describing the economy is reflected in asset

prices and expected returns. Further, we show that the way asset prices and expected

returns covary with investors’ beliefs provides us insight into investors’ preferences.

The focus of this paper is on learning about dividend dynamics. To study how learning

about dividend dynamics affect asset prices and expected returns, we need a realistic

1See, among others, Fama and French (1988), Campbell and Shiller (1988b), Fama and French (1993),
Jegadeesh and Titman (1993), Lamont (1998), Baker and Wurgler (2000), Lettau and Ludvigson (2001),
Campbell and Vuolteenaho (2004), Lettau and Ludvigson (2005), Polk, Thompson, Vuolteenaho (2006),
Ang and Bekaert (2007), van Binsbergen and Koijen (2010), Kelly and Pruitt (2013), van Binsbergen,
Hueskes, Koijen, and Vrugt (2013), Li, Ng, and Swaminathan (2013), and Da, Jagannathan, and Shen
(2014).

2See, among others, Ju and Miao (2012), Croce, Lettau, and Ludvigson (2014), Johannes, Lochstoer,
and Mou (2014), Dufresne, Johannes, Lochstoer (2014), Giacoletti, Laursen, and Singleton (2014).
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dividend model that is able to capture how investors form expectations about future

dividends. Inspired by Campbell and Shiller (1988b), we propose a model for growth rates

in aggregate dividends that incorporates information in aggregate corporate earnings into

the latent variable model of van Binsbergen and Koijen (2010). Our model successfully

captures serial correlations in annual dividend growth rates up to 5 years. Between 1946

and 2013, our model explains 55.1 percent of the variation in annual dividend growth

rates in-sample and predicts 31.3 percent of the variation in annual dividend growth rates

out-of-sample. We reject the Null hypothesis that expected dividend growth rates are

constant at the 99 percent confidence level.

We document that uncertainties about parameters in the dividend model, especially

the parameter governing the persistence of the latent variable, are high and resolve slowly.

That is, these uncertainties remain substantial even at the end of our 68 years data sample,

suggesting that learning about dividend dynamics is difficult. Further, when our model

is estimated at each point in time based on data avaliable at the time, model parameter

estimates fluctuate, some significantly, over time as more data become avaliable. In

other words, if investors estimate dividend dynamics using our model, we expect their

beliefs about parameters governing the dividend process to vary over time. We show

that these changes in investors’ beliefs can have large effects on their expectations of

future dividend growth rates. Through this channel, changes in investors’ beliefs about

parameters governing the dividend process can contribute significantly to the variation in

discount rates.

We provide evidence that investors behave as if they learn about dividend dynamics

and price the stock index using our model. We define stock yield as the discount rate that

equates the present value of expected future dividends to the current price of the stock

index. From the log-linearized present value relationship of Campbell and Shiller (1988a),

we write stock yields as functions of price-to-dividend ratios and long run dividend growth

expectations, computed assuming that investors learn about dividend dynamics using our

model. We show that, between 1976 and 2013, these stock yields explain 15.2 percent

of the variation in annual stock index returns. In comparison, stock yields, computed

assuming that expected dividend growth rates are constant, explain only 10.2 percent

of the variation in annual stock index returns. We can attribute this improvement in

forecasting performance from 10.2 percent to 15.2 percent to our modeling of learning

about dividend dynamics.

We argue that how asset prices and returns respond to changes in investors’ beliefs
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about dividend dynamics can also provide us insight into investors’ preferences, and

more specifically, their preferences for the timing of resolution of uncertainty. That is,

depending on whether investors prefer early or late resolution of uncertainty, changes in

investors’ beliefs about the persistence of dividend growth rates have different effects on

discount rates. We show that, when investors’ beliefs about the persistence of dividend

growth rates increase, price-to-dividend ratios decrease, stock yields increase, and stock

index returns over the short-horizon decrease after controlling for either price-to-dividend

ratios or stock yields. We argue that these findings lend support to investors’ preference

for early resolution of uncertainty.

We embed our dividend model into an equilibrium asset pricing model that features

Epstein and Zin (1989) preferences and consumption dynamics from the long-run risk

model of Bansal and Yaron (2004). We refer to this model as our long-run risk model. We

find that, between 1976 and 2013, expected returns derived from our long-run risk model,

assuming that investors have to learn about parameters governing the dividend process,

predict 22.8 percent of the variation in annual stock index returns, and learning accounts

for forty-percent of the 22.8 percent. We decompose the variation in price-to-dividend

ratios and find that 27.9 percent of the variation in price-to-dividend ratios is due to

investors’ learning about dividend dynamics.

We follow Cogley and Sargent (2009), Piazzesi and Schneider (2010), Giacoletti,

Laursen, and Singleton (2014), and Johannes, Lochstoer, and Mou (2014), and define

learning based on anticipated utility of Kreps (1998), where agents update using Bayes’

law but optimize myopically in that they do not take into account uncertainties associated

with learning in their decision making process. That is, anticipated utility assumes agents

form expectations not knowing that their beliefs will continue to evolve going forward in

time as the model keeps updating. Given the relative complexity of our asset pricing

model and the multi-dimensional nature of learning, we find that solving our model

with parameter uncertainties as additional risk factors is too computationally prohibitive.

Therefore, we adopt the anticipated utility approach as the more realistic alternative.

The rest of this paper is organized as follows. In Section 1, we introduce our dividend

model and evaluates its performance in capturing dividend dynamics. In Section 2, we

discuss how learning about dividend dynamics affects expectations of future dividends.

In Section 3, we show that learning about dividend dynamics is reflected in prices and

expected returns of the stock index. In Section 4, we argue that the way discount rates

covary with investors beliefs about persistence of dividend growth rates supports investors’
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preference for early resolution of uncertainty. In Section 5, we embed our dividend model

into an equilibrium asset pricing model to quantify how much learning about dividend

dynamics contributes to the variations in price-to-dividend ratios and future stock index

returns. In Section 6, we conclude.

1 The Dividend Model

In this section, we present a model for dividend growth rates that extends the latent

variable model of van Binsbergen and Koijen (2010) by incorporating information in

aggregate corporate earnings. The inclusion of earnings information in explaining dividend

dynamics is inspired by Campbell and Shiller (1988b), who show that cyclical-adjusted

price-to-earnings (CAPE) ratios, defined as the log ratios between real prices and real

earnings averaged over the past decade, can predict future growth rates in dividends.

Let dt be log dividend and ∆dt+1 = dt+1 − dt be its growth rate. The latent variable

model of van Binsbergen and Koijen (2010) is described by the following system of

equations:

∆dt+1 − µd = xt + σdεd,t+1

xt+1 = ρxt + σxεx,t+1(
εd,t+1

εx,t+1

)
∼ i.i.d. N

(
0,

(
1 λdx

λdx 1

))
. (1)

Following van Binsbergen and Koijen (2010), our focus is on modeling the nominal

dividend process. Time t is defined in years to control for potential seasonality in dividend

payments. In this model, expected dividend growth rates follow a stationary AR[1] process

and are functions of the latent variable xt, its unconditional mean µd, and its persistence

coefficient ρ, as follows:

Et [∆dt+s+1] = µd + ρsxt, ∀s ≥ 0. (2)

To introduce earnings information into this model, first define pt as log price of the

stock index, et as log earnings, πt as log consumer price index, and, following Campbell

and Shiller (1988b), run the following vector-autoregression for dividend growth rates, log
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price-to-dividend ratios, and CAPE ratios: ∆dt+1

pt+1 − dt+1

pt+1 − ēt+1

 =

b10

b20

b30

+

b11 b12 b13

b21 b22 b23

b31 b32 b33


 ∆dt

pt − dt
pt − ēt

+

 εd,t+1

ε(p−d),t+1

ε(p−ē),t+1


 εd,t+1

ε(p−d),t+1

ε(p−ē),t+1

 ∼ i.i.d. N

0,

 1 λ12 λ13

λ12 1 λ23

λ13 λ23 1


 . (3)

where, as in Campbell and Shiller (1998b), CAPE ratio is defined as:

pt − ēt = pt −

(
πt +

1

10

10∑
s=1

(et−s+1 − πt−s+1)

)
. (4)

Estimates of b10, b11, b12, and b13 from (3), based on data between 1946 and 2013, are

reported in the first four columns of Table 1.3

Consistent with Campbell and Shiller (1988b), we find that both price-to-dividend

ratios and CAPE ratios have significant effects on future dividend growth rates, but in the

opposite direction. That is, increases in price-to-dividend ratios predict decreases in future

dividend growth rates, but increases in CAPE ratios predict increases in future dividend

growth rates. Moreover, it is clear from these coefficient estimates that b12 + b13 = 0

cannot be statistically rejected. For this reason, we restrict b13 = −b12 and re-estimate

dividend growth rates as:

∆dt+1 = β0 + β1∆dt + β2 (ēt − dt) + εd,t+1. (5)

We report estimated coefficients from (5) in the last three columns of Table 1. Results

show that the β2 estimate is highly statistically significant, suggesting that expected

dividend growth rates respond to the log ratios between historical earnings and dividends.

Intuitively, high earnings relative to dividends implies that firms have been retaining

earnings in the past and are therefore expected to pay more dividends in the future.

We extend the latent variable model of van Binsbergen and Koijen (2010) based on this

insight that earnings contain information about future dividends. Let ∆et+1 = et+1−et be

3Throughout this paper, we report results based on overlapping monthly data. That is, in each
month, we fit or predict dividend growth rates and stock index returns over the next 12 months. Because
overlapping monthly data are used, we report standard errors, F -statistics, p-values, and Q-statistics
adjusted to reflect the dependence introduced by overlapping data.
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log earnings growth rate and qt = et + dt be log earnings-to-dividend ratio, our dividend

model can be described by the following system of equations:

∆dt+1 − µd = xt + φ(∆et+1 − µd) + ϕ
(
qt − µq

)
+ σdεd,t+1

xt+1 = ρxt + σxεx,t+1

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,

 1 λdx λdq

λdx 1 λxq

λdq λxq 1


 . (6)

In our model, dividend growth rates are linear combinations of four components. First, as

in van Binsbergen and Koijen (2010), they consist of the latent variable xt, which follows

a stationary AR[1] process. Second, they are affected by fluctuation in contemporaneous

earnings growth rates. That is, we expect firms to pay more dividends if their earnings over

the same period are high. Third, they are affected by changes in past earnings-to-dividend

ratios. That is, we expect firms to pay more dividends if they retained more earnings

in the past. Fourth, they consist of white noises εd,t+1. For convenience, we model

earnings-to-dividend ratios as an AR[1] process, and assuming that it is stationary implies

that dividend and earnings growth rates have the same unconditional mean µd. We note

that earnings dynamics is not modeled explicitly in (6). However, we can solve for earnings

growth rates from the processes of dividend growth rates and earnings-to-dividend ratios:

∆et+1 = µd +
1

1− φ
(
xt + (ϕ+ θ − 1)(qt − µq) + σdεd,t+1 + σqεq,t+1

)
. (7)

In our model, the persistence of dividend growth rates are determined by two parameters:

coefficient ρ which governs the persistence of xt, and coefficient θ which governs the

persistence of earnings-to-dividend ratios. We can solve for expected dividend growth

rates in our model as:

Et[∆dt+s+1] = µd +
1

1− φ
(
ρsxt + θs(ϕ− (1− θ)φ)(qt − µq)

)
, ∀s ≥ 0. (8)

Aside from the two state variables xt and qt and their persistence coefficients ρ and θ,

expected dividend growth rates are also functions of the unconditional means µd and µq,

and coefficients φ and ϕ that connect earnings information to dividend dynamics.
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b10 b11 b12 b13 β0 β1 β2

-0.058 0.378∗∗∗ 0.147∗∗∗ -0.106∗∗∗ -0.043∗∗ 0.397∗∗∗ 0.136∗∗∗

(0.056) (0.075) (0.034) (0.037) (0.019) (0.075) (0.034)

Table 1: Campbell and Shiller (1988b) Betas for Predicting Dividend Growth Rates: This
table reports coefficients from estimating dividend growth rate using regressions in (3) and (5), based on
data between 1946 and 2013. Standard errors are reported in parentice. Estimates significant at 90, 95,
and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

1.1 Data and Estimation

Due to the lack of reliable historical earnings data on the CRSP value-weighted market

index, we use the S&P500 index as its proxy. That is, throughout this study, data on

prices, dividends, and earnings are from the S&P500 index. These data can be found on

Prof. Robert Shiller’s website.

We compute the likelihood of our dividend model using Kalman filters (Hamilton

(1994)) and estimate model parameters

Θ = {µd, φ, ϕ, σd, ρ, σx, µq, θ, σq, λdx, λdq, λxq}

based on maximum-likelihood. See the Appendix for details. Table 2 reports model pa-

rameter estimates based on data between 1946 and 2013. Previous works have suggested a

regime shift in dividend dynamics before and after World War II. Fama and French (1988)

note that dividends are more smoothed in the post-war period. Chen, Da, and Priestley

(2012) argue that the lack of predictability in dividend growth rates by price-to-dividend

ratios in the post-war period is attributable to this dividend smoothing behavior. For this

reason, we restrict our data sample to the post-war era. Consistent with our intuition,

both φ and ϕ that connect earnings information to dividend dynamics are estimated to

be positive and highly statistically significant. That is, high contemporaneous earnings

growth rates imply high dividend growth rates, and high past earnings-to-dividend ratios

imply high dividend growth rates. The annual persistence of earnings-to-dividend ratios is

estimated to be 0.281. The latent variable xt is estimated to be more presistent at 0.528.

In summary, there is a moderate level of persistence in dividend growth rates between

1946 and 2013 based on estimates from our model.

In Table 3, we report serial correlations, up to 5 years, for annual dividend growth rates

and dividend growth rate residuals, which we define as the difference between dividend

growth rates and expected growth rates implied by our dividend model. We also report
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µd φ ϕ σd ρ σx
0.059 0.079 0.184 0.017 0.528 0.041

(0.015) (0.018) (0.028) (0.013) (0.160) (0.009)

µq θ σq λdx λdq λxq
0.713 0.281 0.280 -0.032 -0.157 0.024

(0.047) (0.116) (0.027) (0.131) (0.028) (0.124)

Table 2: Dividend Model Parameters: This table reports estimated parameters from our dividend
model, based on data between 1946 and 2013. Simulated standard errors are reported in parentice.

serial correlations for dividend growth rate residuals implied by either of the dividend

models described in (1) and (3), which we refer to as the baseline models. We then

provide the Ljung and Box (1978) Q-statistics for testing if dividend growth rates and

growth rate residuals are serially correlated. We find that our dividend model is reasonably

successful at matching serial correlations in annual dividend growth rates for up to 5 years.

That is, our model’s dividend growth rate residuals appear to be serially uncorrelated. In

comparison, for the baseline models we find that their growth rate residuals are serially

correlated at the 95 percent confidence level.

In the first column of Table 4, we report the goodness-of-fit for describing dividend

growth rates using our model, based on data between 1946 and 2013. We find that our

model explains 55.0 percent of the variation in annual dividend growth rates. To account

for the fact that at least part of this fit comes from adding more parameters to existing

models and is thus mechanical, we also report the Bayesian information criterion (BIC),

which penalizes a model based on the number of free parameters in that model.4 We

report BIC statistics in the second column of Table 4. Results confirm that our model

outperforms the baseline models in explaining the variation in dividend growth rates.

Another way to address the concern that our model overfits the data is to assess the

model based on how it forecasts dividend growth rates out-of-sample. That is, instead of

fitting the model based on the full data sample, we predict dividend growth rates at each

point in time based on data avaliable at the time. The model’s forecasting performance

4BIC = log( ˆvar(∆dt+1−Et[∆dt+1]))+m log(T )
T , where m is a model’s number of parameters, excluding

those in the variance-covariance matrix, and T is the number of observations (in years).
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is then evaluated using the out-of-sample R-square value defined as:

R2(∆dt+1) = 1−
∑T−1

t=T0
(∆dt+1 − Et[∆dt+1])2∑T−1

t=T0
(∆dt+1 −∆dt)

2
. (9)

where ∆dt = 1
t

∑t−1
s=0 ∆ds+1 is the historical average of dividend growth rates, T denotes

the end of the data sample, and T0 denotes the end of the training period. Given the

relative complexity of our model, we use the first 30 years of our data sample as the

training period so that out-of-sample prediction is for the period between 1976 and 2013.

Throughout this paper, for predictive analysis, we assume investors have access to earnings

information 3 months after fiscal quarter or year end. The choice of 3 months is based

on Securities and Exchange Commission rules since 1934 that require public companies

to file 10-Q reports no later than 45 days after fiscal quarter end and 10-K reports no

later than 90 days after fiscal year end.5 To show that our findings are robust to this

assumption, we repeat the main results of this paper in the Appendix, assuming that

earnings information is known to investors with a lag of 6, 9 and 12 months. We assume

that information about prices and dividends is known to investors in real time.6 In the

third and fourth columns of Table 4, we report the out-of-sample R-square value for

predicting annual dividend growth rates and the corresponding p-value from the F -test

for model significance. Results show that our model predicts 31.3 percent of the variation

in annual dividend growth rates, which represent a significant improvement over the 18.5

percent and 13.5 percent from the baseline models.

Although results in this section show that our model is successful in capturing the

variation in dividend growth rates both in-sample and out-of-sample, we recognize that it

inevitably simplifies the true process governing dividend dynamics. For example, one can

add additional lags of earnings-to-dividend ratios to the model.7 Also, one can extend our

model by allowing model parameters, such as the persistence ρ of the latent variable xt or

the standard deviation σx of shocks to xt, to be time varying. However, the disadvantage

of incoporating such extensions is that a more complicated model is also more difficult

to estimate with precision in finite sample. For example, one way to assess whether

accounting for the possibilities of time varying model parameters improves our model’s

out-of-sample forecasting performance is to estimate model parameters using a rolling

5In 2002, these rules were updated to require large firms file 10-Q reports no later than 40 days after
fiscal quarter end and 10-K reports no later than 60 days after fiscal year end.

6Our results are also robust to assuming that dividend information is known with a 3 months lag.
7For example, Campbell and Shiller (1988b) assume dividend growth rates are affected by earnings

information with up to 10 years of lag.
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∆dt+1 − Et[∆dt+1]

∆dt+1 J&L vB&K C&S

Serial Correlation (Years)

1 0.418 -0.027 0.123 0.156
2 -0.107 -0.128 -0.212 -0.197
3 -0.318 -0.036 -0.249 -0.224
4 -0.280 0.066 -0.153 -0.048
5 -0.139 0.198 -0.031 -0.240

Q-Statistics 32.49 5.263 12.36 12.96
[0.000] [0.385] [0.030] [0.024]

Table 3: Summary Statistics on Dividend Growth Rates and Expected Rates: This table
reports the 1, 2, 3, 4, and 5 years serial correlations for dividend growth rates and growth rate residuals
based on our dividend model (J&L), the dividend model in van Binsbergen and Koijen (2012) and the
dividend model in Campbell and Shiller (1988b). Also reported are the Ljung-Box (1973) Q-statistics for
testing if dividend growth rates and growth rate residuals are serially correlated. Estimating dividend
dynamics is based on data between 1946 and 2013. p-values for Q-statistics are reported in square
parentice.

window, rather than an expanding window, of past data, so that observations from the

distant past are not used to estimate model parameters. We provide this analysis in the

Appendix. In summary, we find that our model’s forecasting performance is highest when

model parameters are estimated using an expanding window, not a rolling window, of

past data.

2 Parameter Uncertainty and Learning

The difference between in-sample and out-of-sample prediction is the assumption made

on investors’ information set. Model parameters reported in Table 2 are estimated using

data up to 2013, so they reflect investors’ knowledge of dividend dynamics at the end of

2013. That is, if an investor were to estimate our model in an earlier date, she would

have estimated a set of parameter values different from those reported in Table 2. This

is a result of investors’ knowledge of dividend dynamics evolving as more data become

available. We call this learning. That is, we use learning to refer to investors estimating

model parameters at each point in time based on data avaliable at the time. In this

section, we summarize how learning affects investors’ beliefs about parameters governing

the dividend process, assuming that investors learn about dividend dynamics using our

10



In-Sample Out-of-Sample

Goodness-of-Fit BIC R2 p-value

J&L 0.551 -5.863 0.313 0.000

vB&K 0.176 -5.509 0.185 0.008

C&S 0.248 -5.683 0.135 0.025

Table 4: Dividend Growth Rates and Model Implied Expected Growth Rates. The first
column of this table reports goodness-of-fit for describing dividend growth rates using our dividend
model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. vB&K), or the dividend
model in Campbell and Shiller (1988b) (i.e. C&S). The second column reports the Bayesian information
criterion. The third and fourth columns report the out-of-sample R-square for predicting dividend growth
rates and the corresponding p-value from the F -test for model significance. In-sample (out-of-sample)
statistics are based on data between 1946 and 2013 (1976 and 2013).

model. We then show that learning can have significant asset pricing implications.

In Figure 1, we report estimates of the six model parameters in (8) that affect expected

dividend growth rates, assuming that our model is estimated based on data up to time-τ ,

for τ between 1976 and 2013. There are several points we take away from Figure 1. First,

there is a gradual upward drift in investors’ beliefs about the unconditional mean µq of

earnings-to-dividend ratios. This suggests that firms have been paying a smaller fraction

of earnings as cash dividends in recent decades. Second, there are gradual downward

drifts in investors’ beliefs about φ and ϕ that connect earnings information to dividend

dynamics. This means that dividends have become more smoothed over time. Third,

a sharp drop in investors’ beliefs about the persistence θ of earnings-to-dividend ratios

towards the end of our data sample is due to the abnormally low earnings reported in

late 2008 and early 2009 as a result of the financial crisis and the strong stock market

recovery that followed.

It is clear from Figure 1 that the persistence ρ of the latent variable xt is the parameter

hardest to learn and least stable over time. This observation is consistent with results

reported in Table 2, which show that, of all model parameters, ρ is estimated with the

highest standard error (i.e. 0.160). Investors’ beliefs about ρ flunctuate significantly over

the sample period, especially around three periods during which beliefs about ρ sharply

drop. The first is at the start of dot-com bubble between 1995 and 1998. The second

is during the crash of that bubble in late 2002 and early 2003. The third is during the

financial crisis in late 2008 and early 2009. Further, there is also a long term trend that

11



µd µq φ

ϕ ρ θ

Figure 1: Evolution of Model Parameters Estimated Out-of-Sample. This figure plots estimates
of the six model parameters in (8) that affect expected dividend growth rates, assuming that our dividend
model is estimated based on data up to time-τ for τ between 1976 and 2013.
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sees a gradual decrease in investors’ beliefs about ρ since early 1980s. For example, if

we were to pick a random date between 1976 and 2013 and estimate our model based on

data prior to that date, on average we would have estimated a ρ of 0.734.8 This would

be significantly higher than the 0.528 reported in Table 2 that is estimated using the full

data sample.

We can infer, from standard errors reported in Table 2, that learning about dividend

dynamics is a slow process. That is, even with 68 years of data, there are still significant

uncertainties surrounding the estimates of some model parameters. For example, the 95

percent confidence interval for the persistence ρ of the latent variable xt is between 0.214

and 0.842. The same confidence interval for the persistence θ of earnings-to-dividend

ratios is between 0.054 and 0.508. To quanitfy the speed of learning, following Johannes,

Lochstoer and Mou (2014), for each of the six parameters that affect expected dividend

growth rates, we construct a measure that is the inverse ratio between the simulated

standard error assuming that the parameter is estimated based on data up to 2013 and the

simulated standard error assuming that the parameter is estimated based on 10 additional

years of data (i.e. if the parameter were estimated in 2023). See the Appendix for details

on simulation. In other words, this ratio reports how much an estimated parameter’s

standard error would reduce if investors were to have 10 more years of data. So the closer

this ratio is to 1, the more difficult it is for investors to learn about the parameter. In

Table 5, we report this ratio for each of the six model parameters. Overall, 10 years

of additional data would only decrease the standard errors of parameter estimates by

between 5 and 8 percent. Further, consistent with results from Figure 1 and reported in

Table 2, we find that it is significantly more difficult to learn about ρ than about any of

the other five model parameters.

µd µq φ ϕ ρ θ

0.924 0.924 0.926 0.928 0.951 0.920

Table 5: Speed of Learning about Model Parameters: This table reports the speed of learning
for the six model parameters that affect expected dividend growth rates. Speed of learning is defined as
the inverse ratio between the simulated standard error assuming that the parameter is estimated based
on data up to 2013 and the simulated standard error assuming that the parameter is estimated based on
10 additional years of data (i.e. if the parameter were estimated in 2023).

8To establish a point of reference, Bansal and Yaron (2004) calibrates annualized persistence of
expected dividend growth rate to be 0.97512 = 0.738.
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We show that learning about dividend dynamics can have important asset pricing

implications. Consider the log linearized present value relationship in Campbell and

Shiller (1998a):

pt − dt =
κ0

1− κ1
+
∞∑
s=0

κs1 (Et[∆dt+s+1]− Et[rt+s+1]) , (10)

where κ0 and κ1 are log-linearizing constants and rt+1 is the stock index’s log return.9

The expression is a mathematical identity that connects price-to-dividend ratios, expected

dividend growth rates, and discount rates (i.e. expected returns). We define stock yield

as the discount rate that equates the present value of expected future dividends to the

current price of the stock index. That is, rearranging (10), we can compute stock yields

as:

syt ≡ (1− κ1)
∞∑
s=0

κs1Et[∆rt+s+1]

= κ0 − (1− κ1)(pt − dt) + (1− κ1)
∞∑
s=0

κs1Et[∆dt+s+1]. (11)

Define long run dividend growth expectation as:

∂t ≡ (1− κ1)
∞∑
s=0

κs1Et[∆dt+s+1]. (12)

Given that price-to-dividend ratios are observed, there is a one-to-one mapping between

long run dividend growth expectations and stock yields. We note that long run dividend

growth expectations are specific to the dividend model and its parameters. For example,

using our dividend model, we can re-write (12) as:

∂t = (1− κ1)
∞∑
s=0

κs1

(
µd +

1

1− φ
(
ρsxt + θs(ϕ− (1− θ)φ)(qt − µq)

))
= µd +

1− κ1

1− φ

(
1

1− κ1ρ
xt +

ϕ− (1− θ)φ
1− κ1θ

(qt − µq)
)
. (13)

If a different dividend model is used instead, long run dividend growth expectations will

also be different. Further, because long run dividend growth expectations are functions of

dividend model parameters, it is also affected by whether model parameters are estimated

9Throughout this paper, to solve for κ0 = log(1 + exp(p− d)) − κ1(p− d) and κ1 = exp(p−d)
1+exp(p−d) , we

set unconditional mean of log price-to-dividend ratios p− d to 3.46 to match the data between 1946 and
2013. This gives κ0 = 0.059 and κ1 = 0.970.
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once based on the full data sample, or estimated at each point in time based on data

avaliable at the time. In Figure 3, we plot long run dividend growth expectations,

computed using our model and assuming that investors either have to learn, or do

not learn, about model parameters. We find that learning has a considerable effect on

investors’ long run dividend growth expectations, asuming that investors learn about

dividend dynamics using our model.

Figure 2: Expected Long Run Dividend Growth Rates. This figure plots long run dividend
growth rate expectations ∂t ≡ (1 − κ1)

∑∞
s=0 κ

s
1Et[∆dt+s+1], computed using our dividend model, for

the period between 1976 and 2013. Dividend model parameters are estimated based on data since 1946.
Under full information, model parameters are estimated based on the full data sample. Under learning,
parameters are estimated at each point in time based on data avaliable at the time.

In Figure 3, we plot stock yields, computed using our model and assuming that model

parameters are either estimated once based on the full data sample or estimated at each

point in time based on data avaliable at the time:

syt = κ0 − (1− κ1)(pt − dt) + µd +
1− κ1

1− φ

(
1

1− κ1ρ
xt +

ϕ− (1− θ)φ
1− κ1θ

(qt − µq)
)
. (14)

We also plot price-to-dividend ratios in Figure 3, and scale price-to-dividend ratios to

allow for easy comparison to stock yields. We find that there are only minor differences

between the time series of price-to-dividend ratios and stock yields, computed assuming

that investors do not learn. This suggests that the variation in long run dividend growth

rate expectations, assuming that investors do not learn, is minimal relative to the variation

in price-to-dividend ratios, so the latter dominates the variation in stock yields. However,

assuming that investors have to learn, we find significant differences between the time

series of price-to-dividend ratios and stock yields.
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Figure 3: Stock Yields. This figure plots stock yields syt, computed using our dividend model, and
log price-to-dividend ratios (scaled) for the period between 1976 and 2013. Dividend model parameters
are estimated based on data since 1946. Under full information, model parameters are estimated based
on the full data sample. Under learning, parameters are estimated at each point in time based on data
avaliable at the time.

3 Learning about Dividend Dynamics and Investor

Behavior

In the previous section, we show that parameters in our dividend model can be difficult

to estimate with precision in finite sample. As a result, we argue that learning about

model parameters can have significant asset pricing implications. This claim is based on

the assumption that our model captures investors’ expectations about future dividends.

That is, we assume that investors behave as if they learn about dividend dynamics using

our model. In this section, we present evidence that supports this assumption. First, we

show that stock yields, computed assuming that investors learn about dividend dynamics

using our model (see (12)), predict future stock index returns. To establish a baseline,

note that, if we assume dividend growth rates follow a white noise process centered around

µd, stock yield can be simplified to:

syt = κ0 + (1− κ1)µd − (1− κ1)(pt − dt). (15)

That is, under the white noise assumption, stock yields are just scaled price-to-dividend

ratios. We regress stock index returns over the next year on price-to-dividend ratios,

based on data between 1976 and 2013. We report regression statistics in the first column of

Table 6. Stambaugh (1999) shows that, when variables are highly serially correlated, OLS

estimators’ finite-sample properties can significantly deviate from the standard regression

setting. To address this issue, we report simulated p-values of coefficient estimates that
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take into account the effect of serial correlations in finite sample. See the Appendix for

details on simulation. Results from Table 6 show that price-to-dividend ratios explain

10.2 percent of the variation in stock index returns over the next year. However, the

coefficient estimate is only weakly significant.

We then regress stock index returns over the next year on stock yields in (14),

computed assuming that investors estimate model parameters at each point in time based

on data avaliable at the time. We report regression statistics in the second column of

Table 6. The R-square value from this regression is 15.2 percent. We note that the

only difference between this regression and the baseline regression is the assumption on

dividend dynamics. That is, we assume that investors learn about dividend dynamics

using our model in this regression, whereas in the baseline regression dividend growth

rates are assumed to be white noises. This means that we can attribute the increase in

the R-square value from 10.2 percent to 15.2 percent to our modeling of learning about

dividend dynamics. We also run a bivariate regression of stock index returns over next year

on both price-to-dividend ratios and stock yields, and report regression statistics in the

third column of Table 6. Results show that stock yields strictly dominate price-to-dividend

ratios in explaining future stock index returns.

To emphasize the importance of learning, we regress stock index returns over the

next year on stock yields in (14), computed assuming that investors do not learn. That

is, instead of computing long run dividend growth expectations by estimating model

parameters at each point in time based on data avaliable at the time, we estimate model

parameters once based on the full data sample. We report regression statistics in the

fourth column of Table 6. Results show that stock yields, computed using our model but

assuming that investors do not learn, perform roughly as well as price-to-dividend ratios

in predicting future stock index returns. This is consistent with results from Figure 3,

which show that there are almost no differences between the time series of stock yields,

computed using our model but assuming that investors do not learn, and price-to-dividend

ratios.

It is also worth emphasizing that, for learning to be relevant, the dividend model itself

must be used by investors. To illustrate this point, we regress stock index returns over

the next year on stock yields, computed assuming that investors learn about dividend

dynamics using either of the baseline models. We report regression statistics in the fifth

and sixth columns of Table 6. We find that stock yields, computed assuming that investors

learn using either of the baseline models, are unable to outperform price-to-dividend ratios
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J&L vB&B C&S

pt − dt -0.116∗ 0.016
[0.051] [0.668]

syt 3.964∗∗ 4.355∗∗ 3.000∗ 2.741∗∗

(Learning) [0.013] [0.036] [0.055] [0.028]

syt 3.753∗∗

(Full Info.) [0.034]

R2 (Returns) 0.102 0.152 0.152 0.105 0.088 0.106

R2 (Excess Returns) 0.090 0.140 0.141 0.093 0.075 0.094

Table 6: Predicting Stock Index Returns using Stock Yields: This table reports the coefficient
estimates and R-square values from regressing stock index returns over the next year on log price-to-
dividend ratios and stock yields, computed using our dividend model (i.e. J&L), the dividend model in
van Binsbergen and Koijen (2012) (i.e. vB&K), or the dividend model in Campbell and Shiller (1988b)
(i.e. C&S), and assuming investors have to learn (i.e. Learning), or do not learn (i.e. Full Info.), about
model parameters. Regressions are based on data between 1976 and 2013. Dividend model parameters
are estimated based on data since 1946. Simulated p-values are reported in square parentice. Estimates
significant at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

in explaining the variation in future stock index returns.

Stock index returns combine the risk free rate and risk premium. We also report, in

Table 6, the R-square values for predicting stock index excess returns.10 Results show that

the performance gap between stock yields, computed assuming that investors learn about

dividend dynamics using our model, and price-to-dividend ratios is entirely for predicting

the risk premium and not the risk free rate,

Recall that there are six model parameters that affect expected dividend growth rates.

These parameters are the unconditional means µd and µq of dividend growth rates and

earnings-to-dividend ratios, the persistence ρ and θ of the latent variable xt and earnings-

to-dividend ratios, and coefficients φ and ϕ that connect earnings information to dividend

dynamics. We analyze learning about which of the six parameters is most important for

asset pricing. We divide the six model parameters into one subset that includes persistence

10Let r̂t be stock index return forecast and rf,t be the risk free rate. The in-sample R-square value

for predicting stock index returns is ˆvar(rt+1−r̂t+1)
ˆvar(rt+1)

, where ˆvar(·) is the sample variance. The in-sample

R-square value for predicting stock index excess returns is
ˆvar((rt+1−rf,t+1)−(r̂t+1−rf,t+1))

ˆvar(rt+1−rf,t+1)
.
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ρ of the latent variable xt and another subset that includes the other five parameters. We

then shut down learning for one subset of parameters while still allowing investors to learn

about remaining parameters in our model. That is, parameters not subject to learning

is fixed at their full sample estimated values whereas other parameters are estimated at

each point in time based on data avaliable at the time. We call this partial learning. We

regress stock index returns over the next year on stock yields, computed assuming parital

learning. We report regression statistics in Table 7. Results show that allowing investors

to learn about some, but not all, of the six model parameters reduces the performance

of the resulting stock yields in explaining future stock index returns. This shows that

investors’ learning is multi-dimensional, and not restricted to a specific parameter or few

parameters. Nevertheless, we find, based on the R-square values, that shutting down

learning about ρ adversely affect return predictability more than shutting down learning

about the other five parameters combined. This suggests that learning about ρ has the

strongest implications for asset pricing. This is also consistent with results from the

previous sections that show ρ is the model parameter that is hardest to learn and investors

beliefs about ρ fluctuates the most over time.

Shutting Down Learning about Υ

Υ = {µd, µq, φ, ϕ, θ} Υ = {ρ}

syt 3.806∗∗ 3.854∗∗

(Learning) [0.014] [0.028]

R2 0.125 0.115

Table 7: Predicting Stock Index Returns using Stock Yields (Partial Learning): This table
reports the coefficient estimates and R-square values from regressing stock index returns over the next
year on log price-to-dividend ratios and stock yields, computed using our dividend model (i.e. J&L) and
assuming investor learn about some model parameters but not others. Regressions are based on data
between 1976 and 2013. Dividend model parameters are estimated based on data since 1946. Simulated
p-values are reported in square parentice. Estimates significant at 90, 95, and 99 percent confidence levels
are highlighted using ∗, ∗∗, and ∗ ∗ ∗.
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4 Evidence on Preference for Early Resolution of Un-

certainty

A large part of modern asset pricing is built on the assumption, first formalized by Kreps

and Porteus (1978), Epstein and Zin (1989), and Weil (1989), and then elaborated by

Bansal and Yaron (2004) and others, that investors prefer early resolution of uncertainty.

Under this assumption, long run expected growth risk requires additional compensation

over short run expected growth risk. In this section, we provide evidence on investors’

preference for early resolution of uncertainty. Because results from Table 6 suggest that

investors learn about dividend dynamics based on data avaliable at the time, investors’

beliefs about the persistence of dividend growth rates vary over time as more data become

avaliable. We can examine how discount rates covary with investors’ beliefs about the

persistence of dividend growth rates and, from this relationship, infer whether investors

have a preference for early or late resolution of uncertainty.

In our model, the persistence of dividend growth rates is jointly determined by the

persistence ρ of the latent variabe xt and the persistence θ of earnings-to-dividend ratios.

To derive a unified measure of persistence, note that, following (8), one standard deviation

shocks to both xt and earnings-to-dividend ratios increase long run dividend growth

expectations, defined in (11), by:11

∂t|(εx,t+1 = 1, εq,t+1 = 1)− ∂t|(εx,t+1 = 0, εq,t+1 = 0)

= (1− κ1)
∞∑
s=0

κs1
1− φ

(ρsσx + θs(ϕ− (1− θ)φ)σq)

=
(1− κ1)σx

1− φ
1

1− κ1ρ
+

(1− κ1)(ϕ− (1− θ)φ)σq
1− φ

1

1− κ1θ
. (16)

The same shocks’ effect on dividend growth rates over the next year is:

∆dt+1|(εx,t+1 = 1, εq,t+1 = 1)−∆dt+1|(εx,t+1 = 0, εq,t+1 = 0)

=
1

1− φ
(σx + (ϕ− (1− θ)φ)σq) . (17)

The ratio between the short run and the long run effects on dividend growth rates of one

11We denote ∂t|(εx,t+1 = 1, εq,t+1 = 1) ≡ (1− κ1)
∑∞

s=0 κ1Et[∆dt+s+1|(εx,t+1 = 1, εq,t+1 = 1)].
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standard deviation shocks to both xt and earnings-to-dividend ratios is:

∆dt+1|(εx,t+1 = 1, εq,t+1 = 1)−∆dt+1|(εx,t+1 = 0, εq,t+1 = 0)

∂t+1|(εx,t+1 = 1, εq,t+1 = 1)− ∂t+1|(εx,t+1 = 0, εq,t+1 = 0)

=
σx + (ϕ− (1− θ)φ)σq

(1−κ1)σx
1−κ1ρ + (1−κ1)(ϕ−(1−θ)φ)σq

1−κ1θ

. (18)

This ratio is decreasing in the persistence of dividend growth rates. That is, if dividend

growth rates are more persistent, shocks to dividends have stronger effects on long run

dividend growth expectations, and so this ratio is lower. Thus, we define the persistence

of dividend growth rates (i.e. ω) as minus this ratio, scaled so that ω is between −1 and

1:12

ω =
1

κ1

− (1− κ1)

κ1

· ∆dt+1|(εx,t+1 = 1, εq,t+1 = 1)−∆dt+1|(εx,t+1 = 0, εq,t+1 = 0)

∂t+1|(εx,t+1 = 1, εq,t+1 = 1)− ∂t+1|(εx,t+1 = 0, εq,t+1 = 0)

=

1− σx+(ϕ−(1−θ)φ)σq
σx

1−κ1ρ
+

(ϕ−(1−θ)φ)σq
1−κ1θ

κ1

. (19)

To model investors’ learning about the persistence ω of dividend growth rates, we

estimate our dividend model at each point in time using data avaliable at the time.

Denote ω(t) as ω estimated using data up to time-t. We use ω(t) as a estimate for

investors’ time-t belief about ω.

4.1 A Thought Experiment

We argue that, if investors prefer early resolution of uncertainty, we expect future divi-

dends to be more heavily discounted when investors believe dividend growth rates to be

more persistent. On the other hand, if investors prefer late resolution of uncertainty, we

expect discount rates to be lower when investors believe dividend growth rates to be more

peristent.

To fix ideas, we consider the simplest equilibrium asset pricing model that features 1)

investors’ preferences for early or late resolution of uncertainty, and 2) persistent dividend

growth rates. In this thought experiment, we assume there is a representative agent who

12We only use investors’ beliefs about ω in regressions, so the scaling does not affect the statistical
significance of any of our estimates.
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has Epstein and Zin (1989) preferences, defined recursively as:

Ut =

[
(1− δ)C̃

1−α
ζ

t + δ
(
Et
[
U1−α
t+1

]) 1
ζ

] ζ
1−α

, ζ =
1− α
1− 1

ψ

, (20)

where C̃t is real consumption, ψ is the elasticity of intertemporal substitution (EIS), and

α is the coefficient of risk aversion. We note that, the representative agent prefers early

resolution of uncertainty if ζ < 0 and prefers late resolution of uncertainty if ζ > 0. Log

of the intertemporal marginal rate of substitution (IMRS) is then:

mt+1 = −ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1) s̃t+1, (21)

where s̃t+1 denotes real return of the representative agent’s wealth portfolio.

Only for the purpose of this thought experiment, suppose expected dividend growth

rates follow the AR[1] process:

∆dt+1 − µd = yt + σdεd,t+1

yt+1 = ωyt + σyεy,t+1(
εd,t+1

εy,t+1

)
∼ i.i.d. N

(
0,

(
1 0

0 1

))
. (22)

and suppose that dividend is the representative agent’s only source of consumption.

Further, to keep the setup as simple as possible, we assume away inflation. That is,

let c̃t = log(C̃t) be log real consumption and ∆c̃t+1 = c̃t+1 − c̃t be its growth rate, we can

write:

∆c̃t+1 = ∆dt+1 = yt + σdεd,t+1. (23)

We assume investors price the stock index using the Kreps (1988) anticipated utility.

Assuming anticipated uility implies that investors maximize utility at each point in time

assuming the current model parameter estimates are the true parameters, but then revises

estimates as new data arrive. This means that investors do not account for the fact that

estimates will continue to be revised in the future in their decisions. In other words,

parameter uncertainty itself is not a price risk factor in this framework. In Kreps’s view,

anticipated utility captures how investors compute utility when it is too computationally

prohibitive to account for the fact that model parameter estimates will be revised in the
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future.13 Currently, this is often used in the macroeconomics and asset pricing literature

for dealing with parameter uncertainty in a dynamic setup.

Given the representative agent’s preferences in (20), consumption dynamics in (23),

and dividend dynamics in (22), we solve for equilibrium price-to-dividend ratios and

expected returns in the Appendix. In solving this model, we closely follow the steps in

Bansal and Yaron (2004). We note that, given the setup of this thought experiment,

unconditional mean µr of stock index returns is:

µr = E [rt+1] = − log(δ) +
µd
ψ
−
ζ
(
ψ2 − 1

)2
σ2
d

2ψ2 − ζκ2
1A

2σ2
x

2
.

A =
1− 1

ψ

1− κ1ω
. (24)

where κ0 and κ1 are log-linearizing constants.14 We note that −ζA2 is increasing in

beliefs about ω if ζ < 0, and, although changes in beliefs about ω also affect µr through

κ0 and κ1, effects on µr through the log-linearizing constants are relatively small and not

of first order importance. Therefore, if the representative agent has preferences for early

resolution of uncertainty, ζ < 0, and µr is increasing in beliefs about ω. On the other hand,

if the representative agent prefers late resolution of uncertainty, µr is decreasing in beliefs

about ω. Intuitively, this is because, if investors prefer early resolution of uncertainty,

persistent shocks to dividend growth rates carry a positive risk premium, and the more

persistent the shocks the higher that premium. On the other hand, if investors prefer late

resolution of uncertainty, the premium carried by persistent shocks to dividend growth

rates is negative.

4.2 Empirical Results

We derive two ways to evaluate the relationship between investors’ beliefs about the

persistence ω of dividend growth rates and the unconditional mean µr of expected returns.

First, we note that as µr increases, price-to-dividend ratios on average decrease and stock

13Collin-Dufresne, Johannes, and Lochstoer (2015) show that parameter uncertainties can introduce
new factors with significant associated risk premiums if investors are fully Bayesians.

14κ0 = log(1 + exp(p− d))− κ1(p− d) and κ1 = exp(p−d)
1+exp(p−d) .
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yields on average increase. To see why, we note from (10) and (11) that:

E [pt − dt] =
κ0 + µd − µr

1− κ1

,

E [syt] = µr. (25)

where E [·] denotes unconditional expectation. Thus, if investors prefer early resolution of

uncertainty, we expect price-to-dividend ratios to be lower and stock yields to be higher

when investors believe dividend growth rates to be more persistent. On the other hand,

if investors prefer late resolution of uncertainty, we expect the exact opposite effects. To

test this, we regress price-to-dividend ratios and stock yields on investors’ beliefs about

ω and report regression statistics in the first and second columns of Table 8. Consistent

with the assumption that investors prefer early resolution of uncertainty, we find higher

investors’ beliefs about ω are associated with lower price-to-dividend ratios and higher

stock yields, and vice versa. Between 1976 and 2013, investors’ beliefs about ω explain

25.3 percent of the variation in price-to-dividend ratios and 15.7 percent of the variation

in stock yields. It is possible that the covariance between investors’ beliefs about ω and

either price-to-dividend ratios or stock yields is driven by the covariance between investors’

beliefs about ω and long run dividend growth expectations. To rule out this possibility,

we regress long run dividend growth expectations on investors’ beliefs about ω, and report

regression statistics in the third column of Table 8. We find that investors’ beliefs about

ω do not explain long run dividend growth expectations. This confirms that investors’

beliefs about ω affect price-to-dividend ratios and stock yields through the discount rate

channel.

Next, we note that investors’ preferences for the timing of resolution of uncertainty

also have a direct effect on the term structure of expected returns. If investors prefer

early resolution of uncertainty, then after controlling for price-to-dividend ratios or stock

yields, we expect stock index returns over the short-horizon to be lower when investors

believe dividend growth rates to be more persistent, and vice versa. That is, if we observe

the same price-to-dividend ratios on two separate dates, but know that investors’ beliefs

about the persistence ω of dividend growth rates are different on these two dates, then

we expect stock index returns over the short-horizon to be lower for the date on which

investors believe dividend growth rates to be more persistent. To see why, suppose that

expected returns follow a stationary AR[1] process as in van Binsbergen and Koijen (2010):

Et+1[rt+2]− µr = γ (Et[rt+1]− µr) + σrεr,t+1. (26)
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syt
pt − dt (Learning) ∂t

ω(t) -2.112∗∗∗ 0.060∗∗ -0.003
[0.010] [0.047] [0.322]

R2 0.253 0.157 0.001

Table 8: Stock Index Prices and Investors’ Beliefs about Persistence of Dividend
Growth Rates. This table reports the coefficient estimates and R-square values from regressing log
price-to-dividend ratios, stock yields, and long run dividend growth expectations on investors’ belief about
persistence ω of dividend growth rates. Regressions are based on overlapping annual data between 1976
and 2013. Estimating dividend dynamics is based on data since 1946. Simulated p-values are reported in
square parentice. Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using
∗, ∗∗, and ∗ ∗ ∗.

Substituting (26) into the log-linearizing present value relationship of Campbell and Shiller

(1988a), we can write expected returns over the short-horizon as:

Et[rt+1] = −(1− κ1γ)(pt − dt) +
1− κ1γ

1− κ1

∂t +
(1− κ1γ)κ0 − κ1(1− γ)µr

1− κ1

,

Et[rt+1] =
1− κ1γ

1− κ1

syt −
κ1(1− γ)µr

1− κ1

. (27)

Although κ1 and κ2 are functions of µr, the effects of changes in µr on these log-linearizing

constants are relatively small and not of first order importance. Thus, we note from

(27) that, after controlling for price-to-dividend ratios or stock yields, expected stock

index returns over the short-horizon are decreasing in µr. Intuitively, this is because,

when µr increases, in order to justify the same stock yield, expected returns over the

short-horizon must decrease sufficiently to compensate for the effect of an increase in µr

on expected returns over the long-horizon. To confirm this relationship, we run bivariate

regressions of stock index returns over the next year on investors’ beliefs about ω and

either price-to-dividend ratios or stock yields. We report regression statistics in Table 9.

Results confirm that, after controlling for either price-to-dividend ratios or stock yields,

higher investors’ beliefs about ω predict lower stock index returns over the short-horizon,

and vice versa. We find that, between 1976 and 2013, stock yields and investors’ beliefs

about ω together explain as much as 26.5 percent of the variation in stock index returns

over the next year. Further, comparing results reported in Table 9 to those reported

in Table 6, we find that including investors beliefs about ω as an additional regressor
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strengthens the predictive performance of price-to-dividend ratios (stock yields) from

statistical significance at the 90 (95) percent confidence level to statistical significance at

the 99 (99) percent confidence level. We also report the R-square values for predicting

excess returns and find those to be comparable.

ω(t) -0.644∗∗ -0.562∗∗

[0.014] [0.027]

pt − dt -0.193∗∗∗

[0.002]

syt 5.448∗∗∗

(Learning) [0.002]

R2 (Returns) 0.235 0.265

R2 (Excess Returns) 0.224 0.255

Table 9: Stock Index Returns and Investors’ Beliefs about Persistence of Dividend Growth
Rates. This table reports the coefficient estimates and R-square values from regressing stock index
returns on investors’ belief about persistence ω of dividend growth rate, log price-to-dividend ratios, and
stock yields. Regressions are based on overlapping annual data between 1976 and 2013. Estimating
dividend dynamics is based on data since 1946. Simulated p-values are reported in square parentice.
Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

5 Learning about Dividend Dynamics in an Equilib-

rium Asset Pricing Model

Results from the previous sections show that investors’ learning about dividend dynamics

is reflected in stock index prices and expected returns. In this section, we embed learning

about dividend dynamics into a realistic equilibrium asset pricing model to quantitatively

capture these features of the data.

5.1 Preferences and Consumption Dynamics

Aside from proposing a dividend model, building an equilibrium asset pricing model

requires us to specify investors’ preferences and consumption dynamics. Because results
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in previous sections show that investors prefer early resolution of uncertainty, a natural

choice is to combine our dividend model with Epstein and Zin (1989) preferences and

consumption dynamics from the long-run risk model of Bansal and Yaron (2004). We

assume there is a representative agent who has Epstein and Zin (1989) preferences, which

is defined in (20). Following Bansal and Yaron (2004), we set δ to 0.99812, α to 10, and

ψ to 1.5.15

We assume dividend dynamics are described by our dividend model, given in (6). As in

Bansal and Yaron (2004), we assume expected growth rates in real consumption follow an

AR[1] process and allow volatility in consumption growth rates to be time varying. That

is, we describe real consumption growth rates using the following system of equations:

∆c̃t+1 − µc = γxt + σtεc,t+1

σ2
t+1 − µς = %

(
σ2
t − µς

)
+ σςες,t+1.

The correlation matrix for shocks to dividend and consumption dynamics can be written

as: 

εc,t+1

εd,t+1

εx,t+1

ες,t+1

εq,t+1


∼ i.i.d. N


0,



1 0 0 0 0

0 1 λdx 0 λdq

0 λdx 1 0 λxq

0 0 0 1 0

0 λdq λxq 0 1




. (28)

Because we do not use consumption data in this paper, the correlations that involve shocks

εc,t+1 or ες,t+1 to the real consumption process cannot be identified. So, for convenience,

we set them to zeros. The rest of the correlation matrix can be estimated from dividend

and earnings data. We note that the unconditional mean of real consumption growth rates

must equal to the unconditional mean of dividend growth rates minus inflation rates, or

else dividend as a fraction of consumption will either become negligible or explode. To

convert between nominal and real rates, we set expected inflation rates to a constant

µπ = 0.036.16 We assume that the latent variable xt in real consumption growth rates is

the same as the latent variable in dividend growth rates. To set γ, we note that, in Bansal

and Yaron (2004), the unconditional standard deviation of expected real consumption

growth rates is 12·0.044·0.0078. To match this, γ must be set to σx (12 · 0.044 · 0.0078)−1.

In Bansal and Yaron (2004), the persistence ρ of xt is set to 0.97512. One common criticism

15The original Bansal and Yaron (2004) calibration is based on monthly observations, so whenever
necessary we convert them to their annualized equivalents.

16The choice of 0.036 is to match the average inflation rate between 1946 and 2013.
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of the long-run risk model has always been that it requires a small but highly persistent

component in consumption and dividend growth rates that is diffcult to find support in

the data.17 By estimating ρ and other model parameters in real time from dividend data,

our approach is not subject to this criticism. In fact, to the contrary, this criticism serves

as the rationale for why we expect learning to be important. Finally, we follow Bansal

and Yaron (2004) and set µς to 12 · 0.00782, % to 0.98712, and σς to 122 · 0.23 · 10−5. We

solve our long-run risk model in the Appendix. In solving this model, we closely follow

the steps in Bansal and Yaron (2004). The model consists of three state variables: 1)

the latent variable xt, 2) the latent variable σ2
t , and 3) earnings-to-dividend ratios. We

can solve for price-to-dividend ratio in this model as a linear function of the three state

variables:

pt − dt = Ad,0 +Ad,1xt +Ad,2σ
2
t +Ad,3

(
qt − µq

)
. (29)

We can solve for expected return over the short-horizon as:

Et[rt+1] = Ar,0 +Ar,1xt +Ar,2σ
2
t , (30)

where coefficients Ad,· and Ar,·, derived in the Appendix, are functions of parameters

governing investors’ preferences, consumption dynamics, and dividend dynamics.

5.2 Estimation

We describe how investors, whose preferences and consumption dynamics are governed by

(20) and (28), learn about dividend dynamics. Our approach is similar to van Binsbergen

and Koijen (2010) in that we estimate dividend and discount rate processes jointly. We

assume that, at each time-τ , investors observe the entire history of dividend growth rates

and price-to-dividend ratios.

∆dt+1 − µd(τ) = xt + φ(τ) · (∆et+1 − µd) + ϕ(τ) ·
(
qt − µq(τ)

)
+ σd(τ) · εd,t+1

pt − dt = Ad,0(t) +Ad,1(t) · xt +Ad,2(t) · σ2
t +Ad,3(t) ·

(
qt − µq(t)

)
, (31)

where µd(τ) is investors’ time-τ belief about the unconditional mean µd of dividend growth

rates. That is, µd(τ) denotes µd estimated based on data up to time-τ . The same notation

applies to other dividend model parameters. Similarly, coefficients Ad,·(τ) are functions

of dividend model parameters estimated based on data up to time-τ . We call (31) the

measurement equations. The measurement equations are functions of the three state

variables: two latent (i.e. xt and σ2
t ) and one observed (i.e. qt). Transition equations for

17See Beeler and Campbell (2012), Marakani (2009).
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the two latent variables xt and σ2
t are:

xt+1 = ρ(τ) · xt + σx(τ) · εx,t+1

σ2
t+1 − µς(τ) = %(τ) ·

(
σ2
t − µς(τ)

)
+ σς(τ) · ες,t+1. (32)

Transition equation for the observed state variable is:

qt+1 − µq(τ) = θ(τ) ·
(
qt − µq(τ)

)
+ σq(τ) · εq,t+1. (33)

Because the second equation in (31) has no error term, we can substitute it into the second

equation in (32). This means that we can reduce the system of equations in (31), (32),

and (33) into:

∆dt+1 − µd(τ) = xt + φ(τ) · (∆et+1 − µd(τ)) + ϕ(τ) ·
(
qt − µq(τ)

)
+ σd(τ) · εd,t+1

(pt+1 − dt+1)−Ad,0(t+ 1) +Ad,1(t+ 1) · xt+1 +Ad,3(t+ 1) ·
(
qt+1 − µq(t+ 1)

)
Ad,2(t+ 1)

− µς

= %

(
(pt − dt)−Ad,0(t) +Ad,1(t) · xt +Ad,3(t) ·

(
qt − µq(t)

)
Ad,2(t)

− µς

)
+ σς · ες,t+1

xt+1 = ρ(τ) · xt + σx(τ) · εx,t+1

qt+1 − µq(τ) = θ(τ) ·
(
qt − µq(τ)

)
+ σq(τ) · εq,t+1. (34)

We compute the likelihood of the asset pricing model using Kalman filters (Hamilton

(1994)) and estimate dividend model paremeters

Θ = {µd, φ, ϕ, σd, ρ, σx, µq, θ, σq, λdx, λdq, λxq}

based on maximum-likelihood. See the Appendix for details. In estimating our model,

we closely follow the steps in van Binsbergen and Koijen (2010). We note that, although

stock index returns do not enter into this system of equations, expected returns can be

computed by substituting model parameter estimates into (30).

5.3 Empirical Results

5.3.1 Time Variation in Expected Returns

We examine how our long-run risk model performs in predicting stock index returns.

Following Goyal and Welch (2008), we measure performance using the quasi out-of-sample

R-square value, defined as:
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R2(rt+1) = 1−
∑T−1

t=T0
(rt+1 − Et[rt+1])2∑T−1

t=T0
(rt+1 − rt)

2
. (35)

where rt = 1
t

∑t−1
s=0 rs+1 is the historical average of stock index returns, T denotes the

end of the data sample, and T0 denotes the end of the training period. We use the first

30 years of the data sample as the training period and compute the quasi out-of-sample

R-square value using data between 1976 and 2013. We use the term quasi to refer to the

fact that, although parameters of our dividend model are estimated at each point in time

based on data avaliable at the time, parameters governing preferences and consumption

dynamics are fixed and can be forward looking. In the first and second columns of Table

10, we report the quasi out-of-sample R-square value for predicting annual stock index

returns using expected returns in (30), computed assuming investors learn about dividend

dynamics based on the system of equations in (34), and the corresponding p-value from

the F -test for model significance. We find that, between 1976 and 2013, our long-run

risk model predicts 22.8 percent of the variation in annual stock index returns. We also

report the quasi out-of-sample R-square value for predicting excess returns and find it to

be comparable.

Learning Full Info.

R2 p-value R2 p-value

Returns 0.228 0.003 0.131 0.038

Excess Returns 0.221 0.004 0.126 0.044

Table 10: Stock Index Returns and Model Implied Expected Returns. This table reports
the out-of-sample R-square value from predicting stock index returns or excess returns using expected
returns implied by the asset pricing model, assuming investors either learn, or do not learn, about dividend
dynamics. Also reported is the corresponding p-value from the F -test for model significance. Statistics
are based on data between 1976 and 2013. Estimating the asset pricing model is based on data since
1946.

As a point of comparison, we also report the R-square values for predicting stock

index returns and excess returns using expected returns in (30), computed assuming that

investors do not learn. That is, instead of estimating dividend model parameters at

each point in time based on data avaliable at the time, we estimate model parameters

once based on the full data sample. We find that the R-square value for predicting annual

stock index returns drops to 13.1 percent without learning. Thus, learning about dividend

dynamics accounts for over forty-percent of the 22.8 R-square value.
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To examine the robustness of this forecasting performance in sub-samples of the

data, following Goyal and Welch (2008), we define the cumulative sum of squared errors

difference (SSED) as:

SSEDt =
t−1∑
s=T0

(
(rs+1 − Et[rs+1])2 − (rs+1 − rs)

2
)
. (36)

We plot SSED in Figure 4. We note that if the forecasting performance of the model

implied expected returns is stable and robust, we should observe a steady but constant

decline in SSED. Instead, if the forecasting performance is especially poor in certain

sub-sample of the data, we should see a significant drawback in SSED in that sub-sample.

Figure 4 shows that our long-run risk model’s forecasting performance is relatively stable

and robust between 1976 and 2013. However, consistent with Nardari (2011) and Golez

and Koudijs (2015), we find that most of the forecasting performance is realized during

the NBER recessions.

Figure 4: Stock Index Returns and Model Implied Expected Returns (Cumulative SSE
Difference). This figure plots the cumulative sum of squared errors difference for the period between
1976 and 2013. Estimating the asset pricing model is based on data since 1946.

5.3.2 Time Variation in Price-to-Dividend Ratios

It is a common wisdom in the asset pricing literature that the variation in price-to-

dividend ratios is primarily driven by the variation in discount rates, and not cash flow

expectations. For example, Cochrane (2012) states that ”the variance of dividend yields

or price-dividend ratios corresponds entirely to discount-rate variation”. To analyze this

statement in light of our findings, we perform a decomposition of price-to-dividend ratios.
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That is, we can label (29) as:

pt − dt = Ad,0(t)︸ ︷︷ ︸
1)

+Ad,1(t) · xt︸ ︷︷ ︸
2)

+Ad,2(t) · σ2
t︸ ︷︷ ︸

3)

+Ad,3(t) ·
(
qt − µq(t)

)︸ ︷︷ ︸
4)

. (37)

So the variation in price-to-dividend ratios is attributable to 1) the variation in investors

beliefs about parameters in the dividend model, 2) the variation in the latent variable

xt, 3) the variation in the latent variable σ2
t , or 4) the variation in earnings-to-dividend

ratios. This means that we can decompose the sample variance of price-to-dividend ratios

into:

ˆvar (pt − dt) = ˆcov (pt − dt, Ad,0(t))︸ ︷︷ ︸
1)

+ ˆcov (pt − dt, Ad,1(t) · xt)︸ ︷︷ ︸
2)

+ ˆcov
(
pt − dt, Ad,2(t) · σ2

t

)︸ ︷︷ ︸
3)

+ ˆcov
(
pt − dt, Ad,3(t) ·

(
qt − µq(t)

))︸ ︷︷ ︸
4)

. (38)

where ˆvar(·) denotes sample variance and ˆcov(·) denotes sample covariance.

We report the decomposition results in Table 11. Results show that 72.1 percent

the variation in price-to-dividend ratios is driven by the variation in σ2
t , which affects

discount rates but not cash flow expectations. This is consistent with what has been

documented in the existing literature. Nevertheless, we find that a substantial 23.5

percent of the variation in price-to-dividend ratios can be attributed to changes in beliefs

about parameters governing the dividend process, and the remaining 4.4 percent is due

to changes in state variables that directly affect expected dividend growth rates. In other

words, we find 27.9 percent of the variation in price-to-dividend ratios is due to learning

about dividend dynamics.

Learning xt σ2
t qt

0.235 0.032 0.721 0.012

Table 11: Decomposing the Variation in Price-to-Dividend Ratios. This figure reports the
fraction of the variation in price-to-dividend ratios that in attributable to the variation in investors
beliefs about dividend model parameters, the variation in xt, the variation in σ2

t , and the variation in qt.
Statistics are based on data between 1976 and 2013. Estimating the dividend and discount rate processes
is based on data since 1946.
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6 Conclusion

We propose a model for the dynamics of dividend growth rates that incorporates earnings

information into the latent variable model of van Binsbergen and Koijen (2010). We show

that the model performs well in capturing the variation in dividend growth rates, both

in-sample and out-of-sample. We show that some parameters in our dividend model can

be difficult to estimate with precision in finite sample. We argue that, as a result, learning

about model parameters can have significant asset pricing implications.

We provide evidence that investors behave as if they learn about dividend dynamics

using our model. First, we show that incorporating learning about dividend dynamics

helps to forecast future stock index returns. Second, we find that changes in investors’

beliefs about persistence of dividend growth rates help to explain the variation in both

long run discount rates and the term structure of discount rates. We show that the way

discount rates respond to investors’ beliefs about persistence of dividend growth rates is

consistent with investors’ preference for early resolution of uncertainty.

We embed learning about dividend dynamics into an equilibrium asset pricing model

that features Epstein and Zin (1989) preferences and consumption dynamics from the

long-run risks model of Bansal and Yaron (2004). We find that our long-run risk model

predicts 22.8 percent the variation in annual stock index returns. We show that, according

to our model, learning about dividend dynamics contributes substantially to the variation

in price-to-dividend ratios.

Bansal and Yaron (2004) Campbell and Cochrane (1999) Epstein and Zin (1989) Kelly

and Pruitt (2013) Li, Ng, and Swaminathan (2013) van Binsbergen and Koijen (2012),

van Binsbergen and Koijen (2010), Koijen, Lustig, van Nieuwerburgh, and Verdelhan

(2010), Bansal, Kiku, and Yaron (2012), Bansal, Kiku, and Yaron (2010), Lettau and

Ludvigson (2001), Jagannathan and Srikant (2011), Beeler and Campbell (2012), Alvarez

and Jermann (2005), Campbell and Shiller (1988b), Cochrane (2008), Campbell and

Thompson (2008), Fama and French (1988), Goffe, Ferrier, and Rogers (1994), Hansen,

Heaton, and Li (2008), Lettau and Ludvigson (2005), Lettau and Ludvigson (2008),

Lewellen (2004), Chen, Da, and Priestley (2012), Cochrane (2011), Ang and Bekaert

(2007), Gabaix (2012), Goyal and Welch (2008), Beeler and Campbell (2012), Lamont

(1998), Baker and Wurgler (2000), Campbell and Vuolteenaho (2004), Wachter (2005),

Polk, Thompson, and Vuolteenaho (2006), Lettau and van Nieuwerburgh (2008), Bree-

den (1979), Hamilton (1994), Da, Jagannathan, and Shen (2014), Croce, Lettau, and

Ludvigson (2014), Collin-Dufresne, Johannes, and Lochstoer (2013), Dew-Becker (2014).

33



34



References

Alvarez, F., and U. J. Jermann (2005): “Using Asset Prices to Measure the

Persistence of the Marginal Utility of Wealth,” Econometrica, 73, 1977–2016.

Ang, A., and G. Bekaert (2007): “Stock Return Predictability: Is It There?,” Review

of Financial Studies, 20, 651–707.

Baker, M., and J. Wurgler (2000): “The Equity Share in New Issues and Aggregate

Stock Returns,” Journal of Finance, 55, 2219–2257.

Bansal, R., D. Kiku, and A. Yaron (2010): “Long Run Risks, the Macroeconomy,

and Asset Prices,” American Economic Review, 100, 542–546.

(2012): “An Empirical Evaluation of the Long-Run Risks Model for Asset

Prices,” Critical Finance Review, 1, 183–221.

Bansal, R., and A. Yaron (2004): “Risks for the Long Run: A Potential Resolution

of Asset Pricing Puzzles,” Journal of Finance, 59, 1481–1509.

Beeler, J., and J. Y. Campbell (2012): “The Long Run Risks Model and Aggregate

Asset Prices: An Empirical Assessment,” Critical Finance Review, 1, 141–182.

Breeden, D. T. (1979): “An Intertemporal Asset Pricing Model with Stochastic

Consumption and Investment Opportunities,” Journal of Financial Economics, 7,

265–296.

Campbell, J. Y., and J. H. Cochrane (1999): “By Force of Habit: A Consumption-

Based Explanation of Aggregate Stock Market Behavior,” Journal of Political Economy,

107, 205–255.

Campbell, J. Y., and R. J. Shiller (1988b): “The Dividend-Price Ratio and

Expectations of Future Dividends and Discount Factors,” Review of Financial Studies,

1, 195–227.

Campbell, J. Y., and S. B. Thompson (2008): “Predicting Excess Stock Returns Out

of Sample: Can Anything Beat the Historical Average?,” Review of Financial Studies,

22, 1509–1531.

Campbell, J. Y., and T. Vuolteenaho (2004): “Bad Beta, Good Beta,” Journal of

Finance, 55, 2219–2257.

35



Chen, L., Z. Da, and R. Priestley (2012): “Dividend Smoothing and Predictability,”

Management Science, 58, 1834–1853.

Cochrane, J. H. (2008): “The Dog That Did Not Bark: A Defense of Return

Predictability,” Review of Financial Studies, 21, 1533–1575.

(2011): “Presidential Address: Discount Rates,” Journal of Finance, 66, 1047–

1108.

Collin-Dufresne, P., M. Johannes, and L. A. Lochstoer (2013): “Parameter

Learning in General Equilibrium: The Asset Pricing Implications,” Working Paper.

Croce, M. M., M. Lettau, and S. C. Ludvigson (2014): “Investor Information,

Long-Run Risk, and the Term Structure of Equity,” Working Paper.

Da, Z., R. Jagannathan, and J. Shen (2014): “Growth Expectations, Dividend

Yields, and Future Stock Returns,” Working Paper.

Dew-Becker, I. (2014): “Long Run Risk is the Worst-Case Scenario,” Working Paper.

Epstein, L. G., and S. E. Zin (1989): “Substitution, Risk Aversion, and the In-

tertemporal Behavior of Consumption and Asset Returns: A Theoretical Framework,”

Econometrica, 57, 937–969.

Fama, E. F., and K. R. French (1988): “Dividend Yield and Expected Stock

Returns,” Journal of Financial Economics, 22, 3–25.

Gabaix, X. (2012): “Variable Rare Disasters: An Eactly Solved Framework for Ten

Puzzles in Macro-Finance,” Quarterly Journal of Economics, 127, 645–700.

Goffe, W. L., G. D. Ferrier, and J. Rogers (1994): “Global Optimization of

Statistical Functions with Simulated Annealing,” Journal of Econometrics, 60, 65–99.

Goyal, A., and I. Welch (2008): “A Comprehensive Look at the Empirical Perfor-

mance of Equity Premium Prediction,” Review of Financial Studies, 21, 1455–1508.

Hamilton, J. D. (1994): Time Series Analysis. Princeton University Press.

Hansen, L. P., J. C. Heaton, and N. Li (2008): “Consumption Strikes Back?

Measuring Long-Run Risk,” Journal of Political Economy, 116, 260–302.

36



Jagannathan, R., and M. Srikant (2011): “Price Dividend Ratio Factors: Proxies

for Long Run Risk,” Working Paper.

Kelly, B., and S. Pruitt (2013): “Market Expectations in the Cross-Section of Present

Values,” Journal of Finance, 68, 1721–1756.

Koijen, R. S., H. Lustig, S. van Nieuwerburgh, and A. Verdelhan (2010):

“Long Run Risk, the Wealth-Consumption Ratio, and the Temporal Pricing of Risk,”

American Economic Review, 100, 552–556.

Lamont, O. (1998): “Earnings and Expected Returns,” Journal of Finance, 53, 1563–

1587.

Lettau, M., and S. Ludvigson (2001): “Consumption, Aggregate Wealth, and

Expected Stock Returns,” Journal of Finance, 56, 815–849.

Lettau, M., and S. C. Ludvigson (2005): “Expected Returns and Expected Dividend

Growth,” Journal of Financial Economics, 76, 583–626.

(2008): “Reconciling the Return Predictability Evidence,” Review of Financial

Studies, 21, 1607–1652.

Lettau, M., and S. van Nieuwerburgh (2008): “Reconciling the Return Predictabil-

ity Evidence,” Review of Financial Studies, 21, 1607–1652.

Lewellen, J. (2004): “Predicting Returns with Financial Ratios,” Journal of Financial

Economics, 74, 209–235.

Li, Y., D. T. Ng, and B. Swaminathan (2013): “Predicting Market Returns Using

Aggregate Implied Cost of Capital,” Journal of Financial Economics, 110, 419–436.

Polk, C., S. Thompson, and T. Vuolteenaho (2006): “Cross-Sectional Forecasts

of the Equity Premium,” Journal of Finance, 55, 2219–2257.

van Binsbergen, J. H., and R. S. Koijen (2010): “Predictive Regression: A Present-

Value Approach,” Journal of Finance, 65, 1439–1471.

(2012): “On the Timing and Pricing of Dividends,” American Economic Review,

102, 1596–1618.

Wachter, J. A. (2005): “Solving Models with External Habit,” Finance Research

Letters, 2, 210–226.

37



A Appendix

A.1 Derivation of Price-Dividend Ratios and Expected Returns

A.1.1 A Thought Experiment

We derive price-to-dividend ratios and expected returns implied by the equilibrium asset

pricing model proposed in our thought experiment, which features dividend dynamics in

(22), consumption dynamics in (23), and investors’ preferences in (20). Our derivation

closely follows the steps in Bansal and Yaron (2004). The log stochastic discount factor

is:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)s̃t+1. (39)

Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,

log real return of the representative agent’s wealth portfolio can be written as:

s̃t+1 = κ0 + κ1zc,t+1 − zc,t + ∆c̃t+1. (40)

The log-linearizing constants are:

κ0 = log(1 + exp(z̄c))− κ1(z̄c) and κ1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt. (41)

We can write:

Et[mt+1 + s̃t+1] = ζ log(δ) +

(
ζ − ζ

ψ

)
(µd + xt) + ζκ0 + ζ(κ1 − 1)A0 + ζ (κ1ω − 1)A1,

vart (mt+1 + s̃t+1) =

(
ζ − ζ

ψ

)2

σ2
d + ζ2κ2

1A
2
1σ

2
x. (42)

Since mt+1 is the stochastic discount factor, Et[exp(mt+1 + s̃t+1)] = 1. This means that:

log (Et[exp(mt+1 + s̃t+1)]) = Et[mt+1 + s̃t+1] +
1

2
vart(mt+1 + s̃t+1) = 0. (43)
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So, we can solve for coefficients A0 and A1 as:

A0 =
1

1− κ1

(
log(δ) +

(
1− 1

ψ

)
µd + κ0 +

ζ

2

(
1− 1

ψ

)
σ2
d +

ζ

2
κ2

1A
2
1σ

2
x

)
,

A1 =
1− 1

ψ

1− κ1ρ
. (44)

Unconditonal mean of expected returns on wealth is:

E[s̃t+1] = κ0 + (κ1 − 1)A0 + µd. (45)

Because dividend and consumption dynamics are identical, the unconditional mean µr of

expected stock index returns is:

µr = E[s̃t+1] = − log(δ) +
1

ψ
µd −

ζ

2

(
1− 1

ψ

)
σ2
d −

ζ

2
κ2

1A
2
1σ

2
x. (46)

A.1.2 Full Model

We derive price-to-dividend ratios and expected returns implied by our long-run risk

model, which features dividend dynamics in (6), consumption dynamics in (28), and

investors preferences in (20). Our derivation closely follows the steps in Bansal and Yaron

(2004). The log stochastic discount factor is given as:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)s̃t+1. (47)

Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,

log real return of the representative agent’s wealth portfolio can be written as:

s̃t+1 = g0 + g1zc,t+1 − zc,t + ∆c̃t+1. (48)

The log-linearizing constants are:

g0 = log(1 + exp(z̄c))− g1(z̄c) and g1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt +Ac,2σ
2
t (49)
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Define µc = µd − µπ. We can write:

Et [mt+1 + s̃t+1] =ζ log(δ) +

(
ζ − ζ

ψ

)
(µc + γxt) + ζg0 + ζ (g1 − 1)Ac,0

+ ζ (g1ρ− 1)xt + ζ (g1%− 1)Ac,2σ
2
t + ζg1 (1− %)Ac,2µς ,

vart (mt+1 + s̃t+1) = ζ2

(
1− 1

ψ

)2

σ2
t + ζ2 (g1Ac,1σx)2 + ζ2 (g1Ac,2σς)

2 . (50)

Since mt+1 is the stochastic discount factor, Et[exp(mt+1 + s̃t+1)] = 1. This means that:

log (Et[exp(mt+1 + s̃t+1)]) = Et[mt+1 + s̃t+1] +
1

2
vart(mt+1 + s̃t+1) = 0. (51)

So, we can solve for coefficients Ac,0, Ac,1, and Ac,2 as:

Ac,0 =
log(δ) + (1− 1

ψ )(µd − µπ) + g0 + g1Ac,2(1− %)µς + 1
2ζg

2
1(A2

c,1σ
2
x +A2

c,2σ
2
ς )

1− g1
,

Ac,1 =

(
1− 1

ψ

)
γ

1− g1ρ
, Ac,2 =

ζ(1− 1
ψ )2

2(1− g1%)
. (52)

Next, let zd,t be log price-to-dividend ratio of the stock index, rt+1 be log return of the

stock index and r̃t+1 be log real return. Then, by first order Taylor series approximation,

we can write:

rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1,

r̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1. (53)

where ∆d̃t+1 is real dividend growth rate. Assume that log price-to-dividend ratio is of

the form:

zd,t = Ad,0 +Ad,1xt +Ad,2σ
2
t +Ad,3(qt − µq) (54)

Then note that:

Et [mt+1 + r̃t+1] = ζ log(δ) + (ζ − 1) (g1 − 1)Ac,0 + (ζ − 1) (g1ρ− 1)Ac,1xt

+ (ζ − 1) (g1%− 1)Ac,2σ
2
t + g1 (1− %)Ad,2µς +

(
ζ − ζ

ψ
− 1

)
(µc + γxt)

+ (ζ − 1) g0 + κ0 + (κ1 − 1)A0 + (κ1ρ− 1)Ad,1xt + (κ1%− 1)Ad,2σ
2
t

+ κ1(1− %)Ad,2µς + (κ1θ − 1)Ad,3
(
qt − µq

)
+ (κ1ϑ− 1)Ad,4 (∆πt − µπ) + µc +

1

1− φ
xt +

ϕ− (1− θ)φ
1− φ

(
qt − µq

)
.
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vart (mt+1 + r̃t+1) =

(
ζ − 1− ζ

ψ

)2

σ2
t +

(
1

1− φ

)2

σ2
d + ((ζ − 1)g1Ac,1 + κ1Ad,1)2 σ2

x

+ ((ζ − 1)g1Ac,2 + κ1Ad,2)2 σ2
ς +

(
κ1Ad,3 +

φ

1− φ

)2

σ2
q

+ 2 ((ζ − 1)g1Ac,1 + κ1Ad,1)

(
κ1Ad,3 +

φ

1− φ

)
λxqσxσq

+
2

1− φ

(
κ1Ad,3 +

φ

1− φ

)
λdqσdσq +

2

1− φ
((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx.

(55)

Using the condition Et[exp(mt+1 + r̃t+1)] = 1, we can solve for Ad,0, Ad,1, Ad,2, and Ad,3

as:

Ad,0 =



ζ log(δ) + (ζ − 1)g0 + (ζ − 1)Ac,0(g1 − 1) + ((ζ − 1)g1Ac,2 + κ1Ad,2)(1− %)µς

+
(
ζ − ζ

ψ − 1
)

(µc + γxt) + κ0 + µc + 1
2( 1

1−φ)2σ2
d + 1

2((ζ − 1)g1Ac,1 + κ1Ad,1)2σ2
x

+1
2((ζ − 1)g1Ac,2 + κ1Ad,2)2σ2

ς + 1
2(κ1Ad,3 + φ

1−φ)2σ2
q

+ ((ζ − 1)g1Ac,1 + κ1Ad,1)
(
κ1Ad,3 + φ

1−φ

)
λxqσxσq

+ 1
1−φ

(
κ1Ad,3 + φ

1−φ

)
λdqσdσq + 1

1−φ ((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx


1− κ1

,

Ad,1 =

(
ζ − 1− ζ

ψ

)
γ + (ζ − 1)Ac,1(g1ρ− 1) + 1

1−φ

1− κ1ρ
,

Ad,2 =
(ζ − 1)(g1%− 1)Ac,2 + 1

2

(
ζ − 1− ζ

ψ

)2

1− κ1%
, Ad,3 =

ψ − (1− θ)φ
(1− κ1θ)(1− φ)

. (56)

Substituting the expression for zd,t into rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1 gives:

Et[rt+1] = Ar,0 +Ar,1xt +Ar,2σ
2
t +Ar,3(qt − µq), (57)

where:

Ar,0 = κ0 − (1− κ1)Ad,0 + µd + κ1(1− %)Ad,2µς , Ar,1 =
1

1− φ
− (1− κ1ρ)Ad,1,

Ar,2 = −(1− κ1%)Ad,2, Ar,3 =
ϕ− (1− θ)φ

1− φ
− (1− κ1θ)Ad,3 = 0. (58)
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A.2 Kalman Filter

A.2.1 Estimating Model Parameters using Dividend Dynamics

We describe the Kalman filtering process for estimating the system of equations in (6).

First, note the last equation in (6) can be estimated separately from other equations in

(6) using time series regression. To estimate the first two equations, define x′t = xt−1 and

ε′x,t+1 = εx,t, and re-write the remaining system of equations as:

∆dt+1 = µd + x′t+1 + φ(∆et+1 − µd) + ϕ
(
qt − µq

)
+ σdεd,t+1

x′t+1 = ρx′t + σxε
′
x,t+1(

εd,t+1

ε′x,t+1

)
∼ i.i.d. N

(
0,

(
1 0

0 1

))
. (59)

To apply the Kalman filter, let x′t|s denote the time-s expectation of the latent variable

x′t and P ′t|s denote the variance of x′t conditioning on information in time-s. Set initial

conditions x′0|0 = 0 and P ′0|0 = σ2
x

1−ρ2 . We can then iterate the following system of equations:

x′t+1|t = ρx′t|t, P ′t+1|t = ρ2P ′t|t + σ2
x,

et+1 = ∆dt+1 − µd − φ(∆et+1 − µd)− ϕ
(
qt − µq

)
,

x′t+1|t+1 = x′t+1|t +
P ′t+1|t

P ′t+1|t + σ2
d

et+1, P ′t+1|t+1 = P ′t+1|t −
P 2
t+1|t

Pt+1|t + σ2
d

. (60)

To estimate dividend model parameters using data up to time τ , define the log likelihood

function L = Lx + Lq, where:

Lx = −
τ−1∑
t=0

(
log
(
P ′t+1|t + σ2

d

)
+

e2
t+1

P ′t+1|t + σ2
d

)
,

Lq = −
τ−1∑
t=0

(
log(σ2

q) +

(
qt+1 − θqt − (1− θ)µq

σq

)2
)
. (61)

That is, Lx is the log likelihood function for {xt+1}τ−1
t=0 and Lq is for {qt+1}τ−1

t=0 .

A caveat in our implementation of Kalman filter is that, because we use overlapping

monthly data, we obtain twelve log likelihoods, one for the 12 month periods that begin

in January, one for the 12 month periods that begin in February, etc. We choose

model parameters by maximizing the average of the twelve log likelihood. Because, for

convenience, this approach ignores the MA(11) structure of the residuals, we refer to this
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approach as a quasi maximum-likelihood approach,

A.2.2 Estimating Model Parameters using Both Dividend and Discount Rate

Dynamics (Full Information)

We now impose the pricing restriction given in (20) while estimating dividend model

parameters. It is important to note that how the pricing restriction should be imposed

depends on whether investors learn about dividend dynamics. First, consider the senario

where investors have full information of model parameters and do not have to learn. Under

this senario, we can re-write price-to-dividend ratio in (29) as:

pt − dt = Ad,0 +Ad,1xt +Ad,2σ
2
t +Ad,3(qt − µq). (62)

Note that under full information, µq and coefficients Ad,· are no longer functions of time

because investors price assets every period based on the same set of dividend model

parameters. So rearranging (29) and substitute it into the second equation of (32) gives:

(pt+1 − dt+1)−Ad,0 −Ad,1xt+1 −Ad,3(qt+1 − µq)
Ad,2

− µc

= %

(
(pt − dt)−Ad,0 −Ad,1xt −Ad,3(qt − µq)

Ad,2
− µc

)
+ σςες,t+1. (63)

Let ẑd,t =
(pt−dt)−Ad,0

Ad,2
− µς and q̂t = qt − µq, we can re-write (63) as:

ẑd,t+1 =
Ad,1
Ad,2

xt+1 +
Ad,3
Ad,2

q̂t+1 − %
(
ẑd,t +

Ad,1
Ad,2

xt +
Ad,3
Ad,2

q̂t

)
+ σςες,t+1

= %ẑd,t +
Ad,1
Ad,2

(ρ− %)xt +
Ad,3
Ad,2

(θ − %) q̂t +
Ad,1
Ad,2

σxεx,t+1 +
Ad,3
Ad,2

σqεq,t+1 + σςες,t+1 (64)

Let ∆d̂t = ∆dt − µd, we can substitute ∆et+1 − µd = qt+1 − qt + ∆d̂t+1 into the first

equation in (29) and write:

∆d̂t+1 =
1

1− φ
xt +

ϕ− (1− θ)φ
1− φ

q̂t +
1

1− φ
σdεd,t+1 +

φ

1− φ
σqεq,t+1. (65)
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Following the steps in van Binsbergen and Koijen (2010), define the expanded state vector:

Xt =



xt−1

εx,t

εq,t

ες,t

εd,t


. (66)

We note that the expanded state vector satisfies: Xt+1 = FXt + ΓUt+1, where:

F =



1 σx 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0


, Γ =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


, Ut =


εx,t

εq,t

ες,t

εd,t

 . (67)

Define the vector of observables:

Yt =

 ẑd,t

∆d̂t

q̂t

 , (68)

then the measurement equation can be expressed as:

Yt+1 = GYt + HXt+1. (69)

where:

G =


% 0

Ad,3
Ad,2

(θ − %)

0 0 ϕ−(1−θ)φ
1−φ

0 0 θ

 ,

H =


Ad,1
Ad,2

(ρ− %)
Ad,1
Ad,2

σx
Ad,3
Ad,2

σq σς 0

1
1−φ 0 φ

1−φσq 0 1
1−φσd

0 0 σq 0 0

 . (70)

Define Σ = var(U). Set the initial conditions:

X0|0 = 0, P0|0 =

(
σ2
x

1−ρ2 0

0 Σ

)
. (71)
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We can then iterate the following system of equations:

Xt+1|t = FXt|t, Pt+1|t = FPt|tF
T + ΓΣΓT,

εt+1 = Yt+1 −GYt −HXt+1|t, St+1 = HPt+1|tH
T,

Kt+1 = Pt+1|tH
TS−1t+1,

Xt+1|t+1 = Xt+1|t + Kt+1εt+1, Pt+1|t+1 = (I−Kt+1H) Pt+1|t. (72)

The log likelihood function is:

L = −
τ−1∑
t=0

(
log(det(St+1)) + εTt+1S−1t+1εt+1

)
. (73)

A.2.3 Estimating Model Parameters using Both Dividend and Discount Rate

Dynamics (Learning)

Next, consider the senario where investors have to learn about model parameters from

past data. Recall that, under this senario, price-to-dividend ratio is given in (29) as:

pt − dt = Ad,0 +Ad,1(t) · xt +Ad,2(t) · σ2
t +Ad,3(t) · (qt − µq(t)), t ∈ {0, .., τ}. (74)

Assuming investors have to learn about dividend dynamics, µq(t) and coefficients Ad,·(t)

are functions of time because investors price the stock index in time t using dividend

model parameters estimated based on data up to time t. In other words, only the price-to-

dividend ratio in time τ is a function of model parameters estimated using data up to time

τ . This means that only the price-to-dividend ratios in time τ helps the econometrician

estimate model parameters using data up to time τ . Rearranging (29) gives:

σ2
τ =

(pτ − dτ )−Ad,0(τ)−Ad,1(τ)−Ad,3(τ)(qτ − µq(τ))

Ad,2(τ)
. (75)

where A = Ad,·(τ) are functions model parameters estimated based on data up to time

τ . Because σ2
τ is normally distributed with mean µς and standard deviation

σ2
ς

1−%2 , where

µς , %, and σς are set exogenously based on the calibration of Bansal and Yaron (2004),

we can write the log likelihood function for estimating model parameters based on data

up to time τ as L = Lx + Lq + Lσ, where Lx and Lq are given in (61) and:

Lσ = −
(1− %2)(στ − µς)

σ2
ς

. (76)
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A.3 Simulation

The Null hypothesis, which we reject throughout this paper, is that discount rates are

unpredictable (i.e. expected returns are constant). To simulate stock index data under

this Null, first simulate innovations to dividend growth rates and earnings-to-dividend

ratios: εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,

 1 λdx λdq

λdx 1 λxq

λdq λxq 1


 . (77)

Dividend model parameters used for simulation are those reported in Table 2, which are esti-

mated based on the full data sample between 1946 and 2013. From these innovations, we can

simulate the latent variable xt and earnings-to-dividend ratios iteratively as:

xt+1 = ρxt + σxεx,t+1

qt+1 = µq + θ
(
qt − µq

)
+ σqεq,t+1. (78)

Given the simulated time series of xt and earnings-to-dividend ratios, we can simulate

dividend and earnings growth rates iteratively as:

∆dt+1 = µd +
1

1− φ
(
xt + φ(∆qt+1 − µq) + (ϕ− φ)

(
qt − µq

)
+ σdεd,t+1

)
∆et+1 = qt+1 − qt + ∆dt+1. (79)

To simulate price-to-dividend ratios, recall the Campbell and Shiller (1988a) log-linearized

present value relationship:

pt − dt =
κ0

1− κ1
+
∞∑
s=0

κs1 (Et[∆dt+s+1]− Et[rt+s+1]) . (80)

Let µr be the constant expected returns of the stock index under the Null that expected

returns are constant, the present value relationship can be simplied to:

pt − dt =
κ0 + µr
1− κ1

+
∞∑
s=0

κs1Et[∆dt+s+1]

=
κ0 − µr + µd

1− κ1
+

1

1− φ

(
1

1− κ1ρ
xt +

ϕ− (1− θ)φ
1− κ1θ

(qt − µq)
)
. (81)
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We set µr = 0.105 to match average annual stock index return between 1946 and 2013.

Finally, we simulate stock index returns from:

rt+1 = κ0 + κ1(pt+1 − dt+1)− (pt − dt) + ∆dt+1. (82)

A.4 On When Investors Receive Earnings Information

In this paper, we assume that investors receive earnings information 3 months after fiscal

quarter or year end. To show that our findings are robust to this assumption, we repeat

results in Tables 6 and 9, assuming that investors instead receive earnings information

6, 9, or 12 months after fiscal quarter or year end. We report these results in Tables

12 and 13. Note that changing this assumption can affect our results through its effect

on long run dividend growth expectations and investors’ beliefs about persistence ω of

dividend growth rates. Nevertheless, results show that the significance of our findings

that investors’ learning about dividend dynamics is reflected in the expected returns of

the stock index is robust to changes in this assumption.

3 Months Lag 6 Months Lag 9 Months Lag 12 Months Lag

syt 4.543∗∗ 4.327∗∗ 4.128∗∗ 4.052∗∗

(Learning) [0.012] [0.016] [0.019] [0.022]

R2 0.151 0.146 0.139 0.137

Table 12: Predicting Stock Index Return using Stock Yield (Additional Lags to Earnings
Information): This table reports coefficient estimates and R-square values from regressing stock index
return over the year on stock yield, computed from long run dividend growth expectations implied by our
dividend model and assuming investors learn about model parameters. Regressions are based on data
between 1976 and 2013. Estimating dividend dynamics is based on data since 1946. When estimating
dividend dynamics, we assume that investors receive earnings information 6,9, or 12 months after fiscal
quarter or year end. Simulated p-values are reported in square parentice. Estimates significant at 90, 95,
and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

A.5 Estimating Dividend Dynamics using a Rolling Window of

Dividend Data

We show that estimating dividend model parameters out-of-sample using an expanding

window of dividend data performs better than using a rolling window of data, for the
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3 Months Lag 6 Months Lag 9 Months Lag 12 Months Lag

ω(t) -0.644∗∗ -0.624∗∗ -0.576∗∗ -0.501∗∗

[0.014] [0.017] [0.025] [0.042]

pt − dt -0.193∗∗∗ -0.191∗∗∗ -0.184∗∗∗ -0.173∗∗∗

[0.002] [0.002] [0.003] [0.006]

R2 0.235 0.220 0.202 0.179

Table 13: Stock Index Returns and Investors’ Beliefs about Persistence of Dividend Growth
Rates (Additional Lags to Earnings Information). This table reports the coefficient estimates
and R-square values from regressing stock index returns over the next year on investors’ belief about
persistence ω of dividend growth rate and log price-to-dividend ratios. Regressions are based on data
between 1976 and 2013. Estimating dividend dynamics is based on data since 1946. When estimating
dividend dynamics, we assume that investors receive earnings information 6,9, or 12 months after fiscal
quarter or year end. Simulated p-values are reported in square parentice. Estimates significant at 90, 95,
and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

purposes of both forecasting future dividends and stock index returns. In Table 15, we

report the out-of-sample R2 values for predicting annual dividend growth rates using

expected growth rates implied by our model, with model parameters estimated using a

rolling window of past 10, 20, or 30 years of data. Results confirm that the R2 value for

predicting dividend growth rates is highest when model parameters are estimated using

an expanding window. In absolute terms, however, out-of-sample R2 value is still 27.0

(28.6) percent when parameters are estimated using a rolling window of 20 (30) years.

This shows that our model’s superior performance in forecasting dividend growth rates is

robust to how we set the training period.

We then show that estimating model parameters using an expanding window, rather

than a rolling window, of past data best captures investors’ learning behavior. In Table

14, we repeat key results in Tables 6 and 9, but use a rolling window of past 10, 20, or 30

years, instead of an expanding window, when estimating dividend dynamics out-of-sample.

Results confirm that investor’s learning behavior is best captured when model parameters

are estimated using an expanding window of past data.
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10 Years 20 Years 30 Years
R2 p-value R2 p-value R2 p-value

0.083 0.085 0.270 0.001 0.286 0.001

Table 14: Predicting Dividend Growth Rates using Model Implied Expected Growth Rates
(Rolling Window Estimation): This table reports the out-of-sample R-square for predicting dividend
growth rates using expected growth rates implied by our model and the corresponding p-value from the
F -test for model significance.Statistics are based on data between 1975 and 2013. Estimating dividend
dynamics is based on a rolling window of past 10, 20, or 30 years of data.

10 Years 20 Years 30 Years

syt 1.231 2.579∗∗∗ 3.209∗∗

(Learning) [0.201] [0.005] [0.018]

ω(t) -0.111 -0.222 -0.682∗∗

[0.350] [0.221] [0.010]

pt − dt -0.054 -0.118∗∗ -0.201∗∗∗

[0.204] [0.037] [0.001]

R2 0.053 0.107 0.164 0.144 0.135 0.253

Table 15: Stock Index Returns, Stock Yields, and Investors’ Beliefs about Persistence of
Dividend Growth Rates (Rolling Window Estimation): This table reports coefficient estimates
and R-square values from regressing stock index return over the next year on stock yield, log price-to-
dividend ratios, and investors’ beliefs about persistence ω of dividend growth rates. Regressions are based
on data between 1976 and 2013. Estimating dividend dynamics is based on a rolling window of past 10,
20, or 30 years of data. Simulated p-values are reported in square parentice. Estimates significant at 90,
95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.
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