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1 Introduction

One of the main reasons applied researchers estimate structural econometric models is to
perform counterfactuals, such as policy interventions to the environment under study. Despite
a vast literature on the identification of structural models, we know very little about the
identification of counterfactuals associated with them. This issue is particularly important
when the employed model is not identified, as in the case of dynamic discrete choice (DDC)
models. DDC models have proven useful to analyze public policies in a variety of contexts
(e.g. labor markets, firm dynamics, health choices). However, non-identification may raise
concerns about the robustness of the empirical findings. Typically, there are many different
DDC models consistent with an observed dataset, but it may or may not be the case that
each of these models predicts the same counterfactual behavior and welfare.1

Indeed, are there counterfactuals that are identified even though the model is not? If so,
which counterfactuals are identified and which are not? How can researchers select or design
identified counterfactuals?

In this paper, we provide a full characterization of the identification of a broad class
of counterfactuals in dynamic discrete choice models. Specifically, we provide necessary and
sufficient conditions, which are straightforward to check, to determine whether counterfactual
behavior and welfare are identified. The results apply to virtually all counterfactuals in the
DDC literature, including those involving changes in the choice set and state space, in payoff
functions, and in the transition of state variables. One can apply our results on a case-by-case
basis to investigate the identification of a particular counterfactual of interest.

To aid practitioners, we explicitly consider a number of important classes of counter-
factuals. To give an example, many papers consider hypothetical policy interventions such
as subsidies. We show that if the subsidy changes payoffs additively, the counterfactual is
identified; in contrast, if the subsidy changes payoffs proportionally, the counterfactual is not
identified, except under knife-edge cases.2 Another common counterfactual eliminates one
of the agent’s available actions (e.g. remove social security or welfare programs, or remove
the ability to experiment with prescription drugs); we show that this is identified.3 Further,
many papers assign the primitives of one group of agents to those of another (e.g. assume
preferences of labor market cohorts are equal, or firm entry costs are identical across markets);
we show that this counterfactual is generically not identified.

When a counterfactual of interest is not identified, the researcher can add restrictions to
the model. These extra restrictions may be insufficient to identify the full model but sufficient
to identify the counterfactual. Further, some restrictions may be more plausible than others;

1Rust (1994) first showed that DDC models are not identified in standard settings, and Magnac and
Thesmar (2002) characterized the degree of underidentification. Heckman and Navarro (2007, p. 342) claim
that underidentification “has fostered the widespread belief that dynamic discrete choice models are identified
only by using arbitrary functional form and exclusion restrictions. The entire dynamic discrete choice project
thus appears to be without empirical content.” For recent surveys of the DDC literature, see Aguirregabiria
and Mira (2010), Arcidiacono and Ellickson (2011), and Keane, Todd and Wolpin (2011).

2In the main text, we explain why many counterfactual changes in payoffs cannot be represented as additive
changes. We discuss the few existing results in the literature below.

3Sometimes eliminating an action also eliminates states (e.g. that may reflect past actions). We also
characterize this case and guide the researcher on how to reallocate the probability mass across the remaining
states to obtain identification. Similarly, a counterfactual that adds an action is identified provided the
researcher specifies the payoff of the new action appropriately.
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thus, researchers would like to know which ones might have an impact on counterfactual
behavior. In this paper, we also characterize the minimum number of restrictions on payoffs
that are necessary to identify a given counterfactual and guide researchers on the nature of
these restrictions.

While we present our main theorem and corollaries above in the context of nonparamet-
ric payoffs, we also consider empirically relevant parametric models. Parametric models are
popular in practice not only because they reduce the number of parameters to be estimated
(helping identifying the model) but also because they allow researchers to extrapolate be-
havior to states not visited in the data. We formally establish identification of both payoffs
and counterfactuals for a widely used class of parametric models; both results are novel.
More important, we show how the nature of the parametric restrictions helps identify a set
of counterfactuals of interest. To give an example, a number of papers have implemented a
counterfactual that changes the volatility or long-run mean of market states (i.e. it changes
state transitions). While such counterfactuals are not identified in a nonparametric setting,
we show that most examples of these counterfactuals in the literature are identified given the
parametric setting.

Finally, we consider identification of welfare, which is often the ultimate object of interest
to policy makers (in terms of both sign and magnitude). We fully characterize this case as
well, and show that identification of counterfactual behavior is necessary but not sufficient
for the identification of welfare.

To gain some economic intuition and explore how sensitive (or robust) counterfactuals
can be to model restrictions in practice, we implement both a numerical exercise and an
empirical application. The numerical exercise features a monopoly entry model. To identify
such models, researchers must restrict scrap values, entry costs or fixed costs; this is usually
accomplished through an exclusion restriction (i.e. these costs do not depend on state vari-
ables) and another restriction that fixes some of them to zero. These assumptions, however,
are difficult to verify in practice as data on entry costs and scrap values are extremely rare.4
We implement a number of common counterfactuals (entry cost subsidies, changes in the
transition of the demand shocks, across-market comparisons), and show that when a coun-
terfactual is not identified, it can be highly sensitive to assumptions on the scrap values or
fixed costs. In some cases, the estimated model predicts changes in behavior and welfare in
the wrong direction.

Next, we illustrate the empirical relevance of our results in the context of US agricultural
land use. Following Scott (2013), field owners decide whether to plant crops or not and
face uncertainty regarding commodity prices, weather shocks, and government interventions.
We augment Scott’s estimation strategy using land resale price data. Similar to Kalouptsidi
(2014a), we treat farmland resale transaction prices as a measure of agents’ value functions.
The augmented estimator allows us to test Scott’s identifying restrictions and reject them.5

We consider two counterfactuals within the land use model. The first, a long-run land
use elasticity, measures the sensitivity of land use to a persistent change in crop returns
(Scott (2013)). The second features an increase in the cost of replanting crops and resembles
a fertilizer tax. While the long-run elasticity is identified, the fertilizer tax is not. Thus,

4Kalouptsidi (2014a) using some external information of entry costs and scrap values (in this case, new
ship prices and demolition prices) shows that in the shipping industry the latter vary dramatically over states.

5Heckman and Navarro (2007) also make use of extra data (labor outcomes such as future earnings) to
secure identification in an optimal stopping DDC model.
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a model estimated with our augmented estimator and a model imposing Scott’s restrictions
predict the same long-run elasticity, but predict different responses to the increase in fertilizer
taxes (and even responses in different directions).

As an aside, we also consider DDC models with partially observed market states, which
are relevant in our land use application. Despite a significant literature on individual level
heterogeneity (e.g. Kasahara and Shimotsu (2009), Norets (2009), Arcidiacono and Miller
(2011)), little work exists on serially correlated unobserved market states in dynamic models.
We provide conditions for the identification of payoffs in this context: extra restrictions such
as the presence of a renewal or a terminal action are needed.6

We close this introduction by relating our results to the literature. As previously men-
tioned, very few results exist regarding the identification of counterfactuals. Aguirregabiria
(2010) showed identification of choice probabilities under additive changes on payoffs. Aguir-
regabiria and Suzuki (2014) and Norets and Tang (2014) provided an important extension
by showing nonidentification of behavior under changes in transition probabilities. Arcidi-
acono and Miller (2015) extended their results to nonstationary environments. Our paper
augments the literature by providing the first full set of necessary and sufficient conditions
for identification of both counterfactual behavior and welfare for virtually all counterfactuals
in applied work. Indeed, the previous results in the literature are special cases (and straight-
forward corollaries) of our main theorem. Our paper is the first to characterize important
counterfactuals, such as: (i) proportional changes in flow payoffs (e.g. Das, Roberts and
Tybout (2007), Lin (2015), Igami (2015)); (ii) replacing preference/costs parameters of one
type of agent by parameters of other types (e.g. Keane and Wolpin (2010), Eckstein and
Lifshitz (2011), Ryan (2012), Dunne, Klimek, Roberts and Xu (2013)); (iii) changing the
choice set available to agents (e.g. Rust and Phelan (1997), Gilleskie (1998), Eckstein and
Wolpin (1999), Crawford and Shum (2005), Todd and Wolpin (2006), Gould (2008), Keane
and Merlo (2010)); (iv) changing how the flow payoffs respond to some state or outcome
variables (e.g. Eckstein and Wolpin (1989), Diermeier, Keane and Merlo (2005), Sweeting
(2013)); (v) imposing nonlinear changes on payoffs (e.g. Jeziorski, Krasnokutskaya and Cec-
cariniz (2015)); (vi) other affine changes in payoffs (e.g. Rust (1987)). Ours is also the first
paper to characterize minimal model restrictions that are sufficient to identify counterfactu-
als of interest (specifically, parametric models, as well as linear restrictions on payoffs). It is
also the first to consider identification of welfare, which is often the ultimate object of interest
to policy makers. In a companion paper (Kalouptsidi, Scott, and Souza-Rodrigues (2016)),
we explore the consequences of our identification results in the context of dynamic games.

The paper is organized as follows: Section 2 presents the dynamic discrete choice frame-
work and reconstructs the known results on nonparametric underidentification of standard
DDC models. We also present novel results on the identification of parametric models. Sec-
tion 3 contains our main results on the identification of counterfactuals. Section 4 contains
the numerical illustration of our results. Section 5 extends the framework to include resale
prices and partially observed market states. Finally, Section 6 presents the empirical exercise,
and Section 7 concludes. All proofs are presented in Appendix A. The details of the dataset
and estimates of the empirical application are discussed in Appendix B and C.

6Our results on unobservable market states are closest to Hu and Shum (2012); we relate our results to
theirs in Section 5.2.

3



2 Modeling Framework

In this section, we lay out the standard empirical framework for dynamic discrete choice mod-
els and reconstruct the well-known nonparametric (non)identification results of Rust (1994)
and Magnac and Thesmar (2002). Then we provide some novel insights on the identification
of parametric payoff functions. We revisit the existing results not only for completeness but
also to provide simpler derivations and present a unified treatment of several identification
results in the literature. Importantly, our representation of existing results forms the main
building block of our counterfactual identification results.

In each period t ∈ {1, 2, ...}, agent i chooses one action ait from the finite set A =
{1, ..., A}. The current payoff depends on the state variables (xit, εit), where xit is observed
by the econometrician and εit is not. We assume xit ∈ X = {x1, ..., X}, X < ∞; while
εit = (εit (1) , ..., εit (A)) is i.i.d. across agents and time and has joint distribution G with
continuous support on RA. The transition distribution function for (xit, εit) factors as follows:

F (xit+1, εit+1|ait, xit, εit) = F (xit+1|ait, xit)G (εit+1) ,

and the current payoff function is given by

π (a, xit, εit) = π (a, xit) + σεit (a) ,

where σ > 0 is a scale parameter. Agent i chooses a sequence of actions to maximize the
expected discounted payoff:

E

( ∞∑
τ=0

βτπ (ait+τ , xit+τ , εit+τ ) |xit, εit

)

where β ∈ (0, 1) is the discount factor. We define V (xit, εit) as the expected discounted
stream of payoffs under optimal behavior. By Bellman’s principle of optimality,

V (xit, εit) = max
a∈A
{π (a, xit) + σεit (a) + βE [V (xit+1, εit+1) |a, xit]} .

Following the literature, we define the ex ante value function:

V (xit) ≡
∫
V (xit, εit) dG (εit) ,

and the conditional value function:

va (xit) ≡ π (a, xit) + βE [V (xit+1) |a, xit] .

The agent’s optimal policy is given by the conditional choice probabilities (CCPs):

pa (xit) =
∫

1 {va (xit) + σεit (a) ≥ vj (xit) + σεit (j) , for all j ∈ A} dG (εit)

where 1 {·} is the indicator function. We define the vectors p (x) = [p1 (x) , ..., pA−1 (x)] and
p = [p (x1) , ..., p (X)].

The following results provide relations between key objects of the model and are widely
used in the literature. We make heavy use of them below.
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Lemma 1 (i) Hotz-Miller inversion: For all (a, x) ∈ A×X and a given reference action j,

va (x)− vj (x) = σφaj (p (x)) ,

where φaj (.) are functions mapping the simplex in RA onto R and are derived only from G.
(ii) Arcidiacono-Miller Lemma: For any (a, x) ∈ A×X , there exists a real-valued function

ψa (p (x)) such that
V (x)− va (x) = σψa (p (x)) ,

where the functions ψa are derived only from G. Moreover, ψa (p (x)) = ψj (p (x))−φaj (p (x)),
all a 6= j.7

The second statement is an implication of the Hotz-Miller inversion (Hotz and Miller
(1993)) and was formally shown by Arcidiacono and Miller (2011).8

2.1 Nonparametric Identification of Payoffs

A DDC model consists of the primitives (π, σ, β,G, F ) that generate the endogenous objects
{pa, va, V, a ∈ A}. The question of interest here is whether we can identify (a subset of) the
primitives from the data.

Denote the dataset by {yit : i = 1, ..., N ; t = 1, ..., T}. A standard dataset includes actions
and states: yit = (ait, xit). We assume the joint distribution of yit, Pr (y), is known, which
implies the CCPs pa (x) and the transition distribution function F are also known. Further,
we follow the literature and assume that (σ, β,G) is known as well. For the purposes of this
section, the objective is to identify the payoff function π.9

We base our analysis on the following fundamental relationships between the primitives
and the endogenous objects:

πa = va − βFaV, for a = 1, ..., A (1)

va − vj = σφaj , for a = 1, ..., A, a 6= j (2)

V = va + σψa, for a = 1, ..., A, (3)
7To derive the Arcidiacono-Miller Lemma from the Hotz-Miller inversion, note that

V (x) =
∫

max
j∈A
{vj (x) + σε (j)} dG (ε)

=
∫

max
j∈A
{vj (x)− va (x) + σε (j)} dG (ε) + va (x)

=
∫

max
j∈A
{σφja (p (x)) + σε (j)} dG (ε) + va (x)

and take ψa (p (x)) =
∫

maxj∈A {φja (p (x)) + ε (j)} dG (ε).
8When εit follows the extreme value distribution, then pa (x) = exp (va (x) /σ) /

(∑
j∈A exp (vj (x) /σ)

)
;

φaj (p (x)) = log pa (x)− log pj (x); and ψa (p (x)) = − log pa (x) + γ, where γ is the Euler constant.
9A scale normalization is typically adopted (e.g. σ = 1). However, when we consider data sets involving

measures of the value function or variable profits (i.e., cardinal information), scale normalizations are no longer
innocent and σ needs to be recovered as well.
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where πa, va, V, φaj , ψa ∈ RX , with πa (x) = π (a, x); Fa is the transition matrix with (m,n)
element equal to Pr (xit+1 = xn|a, xit = xm). Equation (1) defines the conditional value func-
tion; (2) restates the Hotz-Miller lemma; and (3), the Arcidiacono-Miller lemma. Note that
using the observed choice probabilities, p, we can compute φaj , as well as ψa, for all a.

Equations (1)-(3) form a set of (3A− 1)X linear restrictions on (2A+ 1)X unknowns,
(πa, va, V ). Because the Arcidiacono-Miller lemma is an implication of the Hotz-Miller in-
version, the equations are not all linearly independent. Consider a binary choice problem
for illustration. The payoff function involves 2X parameters. However, there are only X
linearly independent choice probabilities in the data. Thus, there are X free parameters in
(1)-(3). If we add X linearly independent restrictions, we can solve for a payoff function that
is consistent with the observed data.

Proposition 1 below formalizes this underidentification problem and can be considered a
restatement of Proposition 2 in Magnac and Thesmar (2002). We will make heavy use of it,
and its compact notation, in deriving our counterfactual identification results in Section 3.
All proofs are in Appendix A.

Proposition 1 Let J ∈ A be some reference action. For each a 6= J , the payoff function πa
can be represented as an affine transformation of πJ :

πa = AaπJ + ba, (4)

where Aa = (I − βFa) (I − βFJ)−1 and ba = σ (AaψJ − ψa).

Given Pr (y), one can compute Aa and ba directly from the data for all a 6= J . Proposition
1 therefore explicitly lays out how we might estimate the payoff function if we are willing to
fix the payoffs of one action at all states a priori (e.g. πJ = 0). However, this is not the only
way to obtain identification: we simply need to add X extra restrictions. Other common
possibilities involve reducing the number of payoff function parameters to be estimated using
parametric assumptions and/or exclusions restrictions. As long as the extra assumptions add
X linearly independent restrictions to the (A− 1)X restrictions expressed by (4), π will be
uniquely determined. Further, whichever extra restrictions are imposed, they are equivalent
to stipulating the payoffs of a reference action; i.e. if π∗J is the vector of payoffs for the
reference action identified by some set of restrictions and (4), then that set of restrictions is
equivalent to stipulating πJ = π∗J a priori.

In the remainder of the paper, it will be useful to represent (4) for all actions a 6= J at
once using the compact notation

π−J = A−JπJ + b−J (5)

where π−J =
[
π′1, ..., π

′
J−1, π

′
J+1, ..., π

′
A

]′
∈ R(A−1)X ; A−J =

[
A′1, ..., A

′
J−1, A

′
J+1, ..., A

′
A

]′
∈

R(A−1)X×X and b−J =
[
b′1, ..., b

′
J−1, b

′
J+1, ..., b

′
A

]′
∈ R(A−1)X , where ′ denotes matrix trans-

pose. The underidentification problem is therefore represented by the free parameter πJ .

Remark 1 Magnac and Thesmar (2002) show that the presence of a “terminal action” does
not help identify π. In Appendix A we obtain a similar result for “renewal actions”, which
reset the distribution of states regardless of earlier behavior. However, they do have identifying
power in the presence of unobserved market-level states (Section 5.2), and in non-stationary
environments (Arcidiacono and Miller (2015)).
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2.2 Identification of Parametric Payoffs

More often than not, applied work relies on parametric restrictions. Economic theory and
institutional details often justify parameterizations, while computational constraints favor
parsimonious specifications (as the dimension of payoffs A×X is often large). Moreover, as
counterfactuals often involve extrapolations to states not observed in the data, parametric
restrictions can be important to perform many counterfactuals of interest. We are the first
to formally discuss identification of parametric models; we do so through the lens of equation
(4).10

Most generally, we could consider an arbitrary parametric payoff function π (a, x) =
π (a, x; θ) with dim (θ)≪ A×X. A parametric model is identified if and only if the Jacobian
of equation (4) with respect to θ has full rank. However, we can make more powerful and
informative statements when we consider the sorts of parametric restrictions researchers
typically impose in practice.

Many examples in the literature decompose the state space into two components, x =
(k,w), where k ∈ K = {1, ...,K} are states whose evolution can be affected by individuals’
choices, and w ∈ W = {1, ...,W} are states not affected by agents’ choices (e.g. market-
level states), with K,W finite. Formally, this means the distribution of state transitions is
decomposed as follows:

F
(
x′|a, x

)
= F k

(
k′|a, k

)
Fw

(
w′|w

)
. (6)

Then, the transition matrix Fa is written as Fa = Fw ⊗ F ka , where ⊗ denotes the Kronecker
product. In addition, in such models, it is common to adopt a parametric payoff function
with the following form:

π(a, k, w) = θ0(a, k) +R(a,w)′θ1(a, k) (7)

where R (a,w) is a known function of actions and states w (e.g. observed measure of variable
profits or returns) and θ0 (a, k) is interpreted as a fixed cost component.

Proposition 2 provides sufficient conditions for the identification of parametric models
with the above form. For notational simplicity, we focus on binary choice with A = {a, J} and
assume R (a,w) is scalar. The proposition also holds in the more general case of Fw (w′|w, a)
and multivariate R (a,w).

Proposition 2 Assume (6) and (7) hold. Let

Da =
[
I − β

(
Fw ⊗ F ka

)]−1

Ra = [Ra(w1)Ik, ..., Ra(W )Ik]′

and similarly for DJ and RJ . Ik is the identity matrix of size K and e′w = [0, 0, ..., Ik, 0, ...0]
with Ik in the w position. Suppose W ≥ 3 and there exist w, w̃, w such that the matrix[(

e′w − e′w̃
)
DaRa

(
e′
w̃
− e′w

)
DJRJ

(e′w − e′w)DaRa (e′w − e′w)DJRJ

]
(8)

is invertible. Then the parameters [θ1 (a, k) , θ1 (J, k)] are identified, but [θ0 (a, k) , θ0 (J, k)]
are not identified.

10Although Magnac and Thesmar (2002) and Pesendorfer and Schmidt-Dengler (2008) pointed out that
parametric assumptions may aid identification by reducing the number of parameters, they do not formally
investigate the conditions under which the parameters are identified.
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To see why Proposition 2 holds, note first that the term e′wDaRa is the expected discounted
present value of Ra given w when the agent always chooses action a. Existence of the inverse of
(8) requires w to significantly change the conditional expected values of Ra and RJ (evidently,
it is necessary that Ra 6= RJ). In addition, the additive separability on payoffs implies

(I − βFa)−1 πa (θ) = Daθ0 (a, k) +DaRa (w)′ θ1 (a, k) .

We can therefore exploit variation in w (ensured by the existence of the inverse of (8)) to
eliminate θ0 (a, k) in (5) and identify θ1 (a, k). Because there is no variation in observables
that allows us to separate Daθ0 (a, k) from DJθ0 (J, k), we cannot identify [θ0 (a, k) , θ0 (J, k)].
To identify this vector, we have to add K linearly independent restrictions to the model, much
as we have to impose X linearly independent restrictions in the nonparametric setting.

2.3 Examples

We present three illustrative examples to showcase the role of identifying restrictions. We
return to them later to discuss examples of identified and non-identified counterfactuals.

Example 1: Rust’s Bus Engine Replacement Problem. In Rust (1987), the agent
faces the optimal stopping problem of replacing a bus’s engine, trading-off aging and replace-
ment costs. He has two actions: to replace or keep the engine, A = {replace, keep}. The state
variable, x, is the bus mileage which evolves stochastically and is renewed upon replacement.
The payoff function is

π (a, x, θ) =
{
−φ (x, γ1)− c (0, γ2) , if a = 0 (replace)

−c (x, γ2) , if a = 1 (keep)

where φ (x, γ1) is the cost of replacing an engine (net of scrap value); and c (x, γ2) is the
operating cost at mileage x. To identify the model, Rust (1987) adopts an exclusion restriction
(state-invariant replacement cost φ (x, γ1) = φ) and a normalization (operating cost at x = 0
is zero, i.e. c (0, γ2) = 0). This is sufficient to identify payoffs.

Example 2: Monopolist Entry/Exit Problem. Consider a monopolist deciding
whether to be active or exit from a market, so that A = {active, inactive}. Let x = (k,w)
with kit = ait−1, and w a vector of market characteristics relevant for the firm’s variable
profits π (e.g. demand shifters, input prices). The firm’s flow payoff is

π (a, k, w) =
{

kφs if a = 0 (inactive)
k (π (w)− fc)− (1− k)φe, if a = 1 (active) (9)

where φs is the scrap value, fc is the fixed cost, and φe is the entry cost. Note that this model
already imposes that (i) if the firm is inactive at t−1 and decides to not enter at t, it receives
zero and (ii) {fc, φs, φe} are invariant over w. The first restriction seems natural, but the
second is more questionable a priori. It is also difficult to test as data on entry costs and scrap
values are extremely rare (Kalouptsidi (2014a)). With the restrictions, the model falls within
the parametric framework described above, with θ0 (0, 0) = 0, θ0 (1, 0) = −φe, θ0 (0, 1) = φs,
and θ0 (1, 1) = −fc. If variable profits, π (w), are estimated outside of the dynamic problem
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using price and quantity data, one may take R (a,w) = π (w) and θ1 (a, k) = 1; otherwise,
one may assume a reduced form profit function π (w) = w′γ1, in which case R (a,w) = w and
θ1 (a, k) = γ1, with γ1 identified under sufficient variation on w. To complete identification we
need to add K linearly independent restrictions. Since K = 2 here, and we already imposed
θ0 (0, 0) = 0, we have to restrict one of φe, φs or fc. Most commonly, researchers set either
φs = 0 or fc = 0.

Example 3: Agricultural Land Use Model. This example closely follows Scott
(2013). Each year, field owners decide whether to plant crops or not; i.e. A = {crop, no crop}
where “no crop” includes pasture, hay, non-managed land, etc. Let k denote the number of
years since the field was last in crops, and let w be a vector of aggregate states (e.g. input and
output prices, government policies). Per period payoffs are specified as in (7); here, θ0 (a, k)
captures switching costs between land uses and R (a,w) are observable measures of returns.
The slope θ1 (a, k) is identified provided there is sufficient variation on R (a,w). Switching
costs between land uses, θ0 (a, k), on the other hand are not identified; Scott (2013) restricts
θ0 (nocrop, k) = 0 for all k to estimate the model. As is common in applied work, there is
little guidance to specify the particular values that θ0 (a, k) should take.

3 Identification of Counterfactuals

This section presents our main results on the identification of counterfactuals. We begin with
a taxonomy of counterfactuals. We then provide the necessary and sufficient conditions to
identify counterfactual behavior. Next, we investigate several special cases of practical inter-
est, including parametric models, partially restricted (but still not fully identified) models,
and identification of welfare.

3.1 Taxonomy of Counterfactuals

A counterfactual is defined by the tuple
{
Ã, X̃ , h, hs

}
. The sets Ã =

{
1, ..., Ã

}
and X̃ ={

x1, ..., X̃
}

denote the new set of actions and states respectively. The function h : RA×X →

RÃ×X̃ transforms the payoff function π into the counterfactual payoff π̃; counterfactual payoffs
are given by π̃ = h (π), where h (π) ≡ [h1 (π) , ..., h

Ã
(π)], with ha (π) = ha (π1, ..., πA) for each

a ∈ Ã. We allow h to be any differentiable function. Finally, the function hs : RA×X2 →
RÃ×X̃2 transforms the transition probability F into F̃ , representing for instance changes
in the long-run mean or volatility of some market-level variable (e.g. Hendel and Nevo
(2007); Collard-Wexler (2013)), or a change in the transition process for an agent-specific
state variable like health status (e.g. Chan, Hamilton, and Papageorge (2015)).11

11Note that for dynamic games, we can always treat the problem of solving for an individual player’s best
response (holding the opponent’s strategy fixed) as a single-agent problem. Our identification results can
therefore be applied to investigate identification of counterfactual best responses in dynamic games. A full
analysis naturally requires strategic considerations and the possibility of multiplicity of equilibria. For a
discussion of identification of counterfactuals in dynamic games, see Kalouptsidi, Scott, and Souza-Rodrigues
(2016).
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A simple family of counterfactuals are the affine payoff counterfactuals:

π̃ = Hπ + g, (10)

where H ∈ RÃX̃×AX and g is a ÃX̃ × 1 vector. In words, the payoff π̃(a, x) at a certain
action-state pair (a, x) is obtained as the sum of a scalar g (a, x) and a linear combination
of all baseline payoffs at all actions and states. It is helpful to write this in a block matrix
equivalent form that emphasizes actions at the block level:

π̃ =


H11 H12 · · · H1A

...
...

...
...

H
Ã1 H

Ã2 · · · H
ÃA

π + g (11)

where the submatrices Haj have dimension X̃ ×X for each pair a ∈ Ã and j ∈ A.
Counterfactuals encountered in applied work are usually simpler than the above general

setup. When the set of actions and states do not change, we have Ã = A and X̃ = X , which
implies H is a square matrix. When π̃a depends solely on πa, H is block-diagonal and we can
write for all a ∈ A

π̃a = Haπa + ga, (12)

we call these “action diagonal counterfactuals.”
We contrast two simple special cases of (12) that are common in applied work. The first

case, which we call “additive transfers,” takes Ha as the identity matrix for all a (i.e. H = I),
so that π̃a = πa+ ga. Note that “additive transfers” are flexible to the extent that g can vary
across actions and states; yet g is not allowed to depend on π, so that the researcher must
be able to specify g before estimating the model (e.g. Keane and Wolpin (1997), Schiraldi
(2011), Duflo, Hanna and Ryan (2012) and Li and Wei (2014)).12

The second special case of affine counterfactuals, which we call “proportional changes”
counterfactual, sets H to be diagonal and g = 0. It considers counterfactuals that impose
percentage changes on original payoffs, with changes that may differ across actions and states;
i.e. π̃a (x) = λa (x)πa (x) (e.g. Das, Roberts and Tybout (2007), Varela (2013), Lin (2015),
and Igami (2015)).13 In contrast to “additive transfers”, the researcher does not have to
specify the difference π̃ − π before estimating the model.14

Another family of affine counterfactuals replaces the primitives of one observable type of
agents by those of another, where types can be broadly defined to include markets or regions
(e.g. Keane and Wolpin (2010), Eckstein and Lifshitz (2011), Ryan (2012), and Dunne,

12Keane and Wolpin (1997) investigate college tuition subsidies; Schiraldi (2011) and Li and Wei (2014)
study automobile scrappage subsidies; and Duflo, Hanna and Ryan (2012) implement optimal bonus incentives
for teachers in rural India.

13Das, Roberts and Tybout (2007) study firms’ exporting decisions; Varela (2013) studies supermarkets’
entry decisions; Lin (2015) investigates entry and quality investment in the nursing home industry; and Igami
(2015) studies innovation in the hard drive industry. They all implement percentage changes subsidies on
entry/sunk costs.

14Note that because π is unknown/not identified, in practice it is not possible to represent a “proportional
changes” counterfactual by an “additive transfers” (by taking g = (H− I)π).
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Klimek, Roberts and Xu (2013)).15 To represent such a counterfactual we can explicitly
consider time-invariant states s (i.e. observable types), so that the payoff is πa (x, s). For
instance, if there are two types, s ∈ {s1, s2}, a counterfactual in which the payoff of type s1
is replaced by the payoff of type s2 is represented by[

π̃a (x, s1)
π̃a (x, s2)

]
=
[
0 I
0 I

] [
πa (x, s1)
πa (x, s2)

]
.

Note that Ha is not diagonal in this case. We call this a “change in types” counterfactual.
Finally, we consider counterfactuals that change the set of actions available to agents.

Eliminating an action leads to Ã = A− {j}, where j is the action to be eliminated. Then π̃
satisfies (11) with Haa = I and Hak = 0 for a ∈ Ã and k ∈ A, a 6= k. For instance, if A = 3
and we drop action j = 3, (11) becomes

[
π̃1
π̃2

]
=
[
I 0 0
0 I 0

]π1
π2
π3

 .
In some cases, changing the set of actions also changes the set of states (e.g. when xt = at−1
as in our monopolist example) and we allow for this possibility as well. A counterfactual
that only adds a new action can also be represented by (11): take Ã = A ∪ {j}, where
j is the new action and let Haa = I and Hak = 0 for a 6= k, j. Note that, adding an
action also requires specifying its payoff π̃j , the new transition matrix F̃j , the (extended)
joint distribution of unobservables G, and possibly new states (e.g. Rust and Phelan (1997),
Gilleskie (1998), Keane and Wolpin (2010), Crawford and Shum (2005), Keane and Merlo
(2010), and Rosenzweig and Wolpin (1993)).16

For the parametric model (6)-(7) of Section 2.2, in addition to the general transformations,
one may be interested in changes in either θ0 or in R′θ1. The first type of counterfactual is
represented by the function

π̃(a, k, w) = h0 [θ0 (a, k)] +R′ (a,w) θ1 (a, k) ; (13)

while the second type is represented by

π̃(a, k, w) = θ0 (a, k) + h1
[
R′ (a,w) θ1 (a, k)

]
. (14)

These counterfactuals allow for changes in how the flow payoff responds to some state (k,w),
or to the outcome vector R.

Below, we use our three examples to illustrate some of these types of counterfactuals.
15Keane and Wolpin (2010) replace the primitives of minorities by those of white women to investigate

the racial-gap in labor markets. Eckstein and Lifshitz (2011) substitute the preference/costs parameters of
the 1955’s cohort by those of other cohorts to study the evolution of labor market conditions. Ryan (2012)
replaces the after-change (Clean Air Act Amendment) entry cost by the before-change entry cost in the cement
industry. Dunne, Klimek, Roberts and Xu (2013) replace entry costs in HPSA (Health Professional Shortage
Areas) by those in the non-HPSA focusing on dentists and chiropractors.

16Rust and Phelan (1997) eliminate social security in a retirement decision model. Gilleskie (1998) restricts
access to medical care in the first days of illness. Crawford and Shum (2005) do not allow patients to switch
medication after choosing one drug treatment (i.e., they do not allow for experimentation). Keane and Wolpin
(2010) eliminate a welfare program. Keane and Merlo (2010) eliminate the option of private jobs for politicians
who leave congress. Rosenzweig and Wolpin (1993) add an insurance option to farmers’ choice sets.
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Example 1: Rust’s Bus Engine Replacement Problem. A policy maker might
be interested in maintaining low-mileage buses to reduce breakdowns. To this end, she
could offer replacement subsidies. Such subsidies may take the form of “additive transfers”
π̃ (replace, x) = π (replace, x) + g (replace, x). Alternatively, recall that π (replace, x) =
−φ (x) − c (0), where φ (x) is replacement costs (net of scrap values), and c (x) is operating
costs. Then, the policy maker can set π̃ (replace, x) = − (1 + λ (x))φ (x)− c (0), or

π̃ (replace, x) = π (replace, x) + λ (x) (π (replace, x)− π (keep, 0))

Such subsidies could depend on the mileage of the bus, but would not affect π (keep, x) nor
F .17

Example 2: Monopolist Entry/Exit Problem. Subsidizing entry costs can increase
the frequency at which a monopolist’s product is offered in the market and so may increase
social welfare. The policy maker needs to estimate how much more often the firm is active
in the market, and compare the welfare gains to consumers and the monopolist with the
subsidy costs. In our model, a subsidy that decreases entry costs by, say, 10%, can be
represented by a proportional change on θ0 (a, k) for a = 1, k = 0. Another counterfactual of
interest may be how changes in variable profits affect investment decisions. In the monopolist
example, this translates into changes in π (w) (e.g. changes in market size), which can be
represented by changes in the identified part of the profit function, R′θ1. A third possibility
is a counterfactual that changes the volatility of demand shocks to investigate the impact of
uncertainty on investment. This counterfactual takes π̃ = π, F̃ k = F k but F̃w 6= Fw, where
the variance of F̃w is larger than the variance of Fw.

Example 3: Dynamic Land Use Model. Land use is a critical component in the
evaluation of several agricultural policies, including agricultural subsidies and biofuel man-
dates (Roberts and Schlenker (2013), Scott (2013)). Some policies may be reflected in trans-
formations on returns R, while others on conversion costs θ0. In Section 6.3 we consider a
long-run land use elasticity of crop returns and a change in the costs of replanting crops.

3.2 Identification of Counterfactual CCP: The General Case

We now present our main identification theorem. The starting point is equation (4). This
relationship is useful for two reasons. First, it does not involve non-primitive objects such
as continuation values. Second, the CCP vector generated by the primitives (π, σ, β,G, F ) is
the unique vector that satisfies (4).18

17 In the second case, we have π̃ = Hπ, where H is not block-diagonal. More specifically,

π̃ (replace, 0)
...

π̃ (replace,X)
π̃ (keep, 0)

...
π̃ (keep,X)


=



(1 + λ (0)) 0 · · · 0 −λ (0) 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · (1 + λ (X)) −λ (X) 0 · · · 0
0 0 · · · 0 1 0 · · · 0
...

...
. . .

...
...

...
. . . 0

0 0 · · · 0 0 0 · · · 1





π (replace, 0)
...

π (replace,X)
π (keep, 0)

...
π (keep,X)


.

18Note that a unique CPP vector p is indeed guaranteed from (4): since the Bellman is a contraction
mapping, V is unique; from (1) so are va and thus so is p.
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The counterfactual counterpart to (4) for any action a ∈ Ã, with a 6= J , is

π̃a = Ãaπ̃J + b̃a (p̃) , (15)

where Ãa =
(
I − βF̃a

) (
I − βF̃J

)−1
; b̃a (p̃) = σ

(
ÃaψJ (p̃)− ψa (p̃)

)
; p̃ is the counterfactual

CCP; and we take without loss a reference action J that belongs to both A and Ã.
It is clear that p̃ is a function of the free parameter πJ . Because the lack of identification

of the model is represented by this free parameter, the counterfactual CCP p̃ is identified if
and only if it does not depend on πJ . To determine whether or not this is the case, we apply
the implicit function theorem to (15).

Before presenting the general case, we consider a binary choice example to fix ideas. Take
Ã = A, X̃ = X , and assume π̃a is action diagonal so that π̃a = ha (πa). Take J = 2, and
rewrite (15) as

h1 (π1) = Ã1h2 (π2) + b̃1 (p̃) . (16)

The implicit function theorem allows us to locally solve (16) with respect to p̃ provided
the matrix

∂

∂p̃

[
h1 (π1)− Ã1h2 (π2)− b̃1 (p̃)

]
= − ∂

∂p̃
b̃1 (p̃)

is invertible. We prove this matrix is indeed invertible in the general case (see Lemma 2
below). Then, it follows from the implicit function theorem that p̃ does not depend on the
free parameter π2 if and only if

∂

∂π2

[
h1 (π1)− Ã1h2 (π2)− b̃1 (p̃)

]
= 0.

Because π1 = A1π2 + b1(p) from (4), the above equation simplifies to

∂h1 (π1)
∂π1

A1 = Ã1
∂h2 (π2)
∂π2

. (17)

The counterfactual CCP does not depend on π2 if and only if this equality holds. The
equality depends on the (known) counterfactual transformation {h, hs} and on the data, F ,
through A1 and Ã1. So, in practice, one only needs to verify whether (17) holds for the
particular combination {h, hs} of interest.

To facilitate the passage to the general case, rearrange the equality above in matrix form
as follows: [

∂h1 (π1)
∂π1

− Ã1
∂h2 (π2)
∂π2

] [
A1
I

]
= 0

or [
I −Ã1

] [∂h1(π)
∂π1

∂h1(π)
∂π2

∂h2(π)
∂π1

∂h2(π)
∂π2

] [
A1
I

]
= 0

where, in this example, ∂h1(π)
∂π2

= ∂h2(π)
∂π1

= 0. Using the property of the Kronecker product
vec(ABC) = (C ′ ⊗A)vec(B), our condition becomes:([

A′1 I
]
⊗
[
I −Ã1

])
vec (∇h (π)) = 0,
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where ∇h (π) is the matrix with elements ∂ha(π)
∂πj

for a, j = 1, 2. So, to satisfy (17) (and
for counterfactual CCPs to be identified), vec (∇h (π)) must lie in the nullspace of a matrix
determined by A1 and Ã1.

Moving from the binary choice case to the general case, take (15) together with π̃a = ha (π)
and stack all payoff vectors for a 6= J to obtain:

h−J (π) = Ã−JhJ (π) + b̃−J (p̃)

where h−J (π) stacks ha (π) for all a ∈ Ã except for J and matrix Ã−J and vector b̃−J (p̃) are
defined similarly.

Lemma 2 The function b−J (.) is continuously differentiable and its Jacobian is everywhere
invertible.

Lemma 2 implies that the function p̃ (πJ) inherits the differentiability of h (.) and b̃−J (.)
and that we can apply the implicit function theorem to (15).

Next, we state our main theorem, which makes use of the following notation: vecbr (C)
rearranges the blocks of matrix C into a block column by stacking the block rows of C; the
symbol � denotes the block Kronecker product.19

Theorem 1 Consider the counterfactual transformation
{
Ã, X̃ , h, hs

}
and suppose h is dif-

ferentiable. The counterfactual conditional choice probabilities p̃ are identified if and only if
for all π satisfying (5),

Q
(
A, Ã

)
vecbr (∇h (π)) = 0 (18)

where
Q
(
A, Ã

)
=
[[
A′−J I

]
� I, −

[
A′−J I

]
� Ã−J

]
.

The matrix Q
(
A, Ã

)
has dimension

(
Ã− 1

)
X̃X ×

(
ÃX̃

)
(AX), while vecbr (∇h (π)) has

dimension
(
ÃX̃

)
(AX)× 1.

Theorem 1 holds that counterfactual choice probabilities p̃ are identified if and only if the
Jacobian matrix of h is restricted to lie in the nullspace of a matrix defined by A−J and Ã−J ,
which in turn are determined by the transition probabilities F and F̃ .20 So model primitives,
data and counterfactual transformations have to interact with each other in a specific way to
obtain identification of counterfactual CCPs. The only requirement in the theorem is that h
must be differentiable – this is a mild restriction typically satisfied in practice. Restricting
π to satisfy (5) means the theorem applies to all payoffs that can rationalize observed choice
probabilities.

19The block Kronecker product, �, of two partitioned matrices B and C is defined by (Koning, Neudecker
and Wansbeek (1991)):

B � C =

B ⊗ C11 ... B ⊗ C1b
...

. . .
...

B ⊗ Cc1 ... B ⊗ Ccb

 .
Note that at the entry level, Kronecker rather than ordinary products are employed.

20The choice of the reference action J does not affect whether or not (18) is satisfied. If it is satisfied for
one choice of J , it will be satisfied for any choice of J .
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Equation (18) is the minimal set of sufficient conditions that applied researchers need to
verify to secure identification of counterfactual behavior. Note that (18) is computable from
F , F̃ and h.

Example 1: Rust’s Bus Engine Replacement Problem. Rust (1987) investigates
the demand for replacement investment. He varies the level of replacement costs and obtains
the corresponding (long run) replacement choice probabilities. This counterfactual can be
represented by π̃ (replace, x) = − (1 + λ)φ (x)− c (0), for various levels of λ, or

π̃ (replace, x) = π (replace, x) + λ (π (replace, x)− π (keep, 0)) ,

as in Example 1 of Section 3.1. Each λ corresponds to one point along the replacement
demand curve, and can be understood as a not “action-diagonal” counterfactual. In Appendix
A, we show that Theorem 1 implies that Rust’s counterfactual is not identified. Showing this
for a particular specification requires only a simple calculation evaluating equation (18).21

When, in contrast to Rust’s counterfactual, the counterfactual payoffs to an action are
a function only of the baseline payoffs of that action, we say that the counterfactual is
action diagonal, and the conditions for the identification of counterfactual behavior become
substantially simpler:

Corollary 1 (“Nonlinear Action Diagonal” Counterfactual) In “action diagonal” counter-
factuals, π̃a = ha (πa), p̃ is identified if and only if for all π satisfying (5) and all a ∈ Ã,
a 6= J ,

∂ha
∂πa

Aa = Ãa
∂hJ
∂πJ

. (19)

Corollary 1 implies that nonlinear counterfactuals are not identified in general. For coun-
terfactual behavior to be identified, equation (19) must be satisfied for all of the various
payoff functions π which are compatible with the observed CCP data. However, given that
the counterfactual is nonlinear, the values of the derivatives ∂ha

∂πa
and ∂hJ

∂πJ
will be different

for different values of π. The matrices Aa and Ãa have full rank, so changing the value of
these derivatives will change the values of the respective sides of equation (19). Thus, if the
equation is satisfied for some value of π, it will typically not be satisfied for other values of π.
Consequently, the only nonlinear counterfactuals which could be identified would be special
cases in which the nonlinearities in the counterfactual are such that the derivatives ∂ha

∂πa
and

∂hJ
∂πJ

change in the same way when πa and πJ are changed according to equation (5).
21Consider a simple version of Rust’s model in which a = replace and J = keep and where the state space

is simply X = {new, old} with deterministic transitions:

Freplace =
(

1 0
1 0

)
Fkeep =

(
0 1
0 1

)
.

Then A−J = Areplace = (I − βFreplace) (I − βFkeep)−1,

Q
(
A, Ã

)
=
[
Areplace ⊗ I, I ⊗ I, A′replace ⊗Areplace, I ⊗Areplace

]
,

and ∇h (π) is defined in footnote 17. Finally, with β = .99 and λ (x) = 0.1 for all x (representing a 10%
increase in replacement costs), we have

∥∥∥Q(A, Ã) vec (∇h (π))
∥∥∥ = 1.89, where ‖.‖ is the matrix 2-norm.

Equation (18) is violated, implying the counterfactual is not identified.
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3.3 Identification of Counterfactual CCP: Affine Transformations

In the common case of affine counterfactuals, π̃ = Hπ+g, Theorem 1 and Corollary 1 simplify
to:

Corollary 2 (Affine Counterfactual) Assume π̃ = Hπ + g. The counterfactual CCP p̃ is
identified if and only if for all π satisfying (5) and all a ∈ Ã, a 6= J ,∑

l∈A,l 6=J

(
Hal − ÃaHJl

)
Al +HaJ − ÃaHJJ = 0. (20)

When π̃a is “action diagonal,” π̃a = Haπa + ga, the above condition becomes

HaAa = ÃaHJ . (21)

Corollary 2 provides a simple-to-verify set of minimal sufficient conditions to identify p̃.
Indeed, it is possible to test if p̃ is identified by testing (20) given data on F .22

We now turn to some further special cases of interest. First, consider the “additive
transfers” counterfactual: π̃ = π + g. It is obvious from (21) that p̃ is identified in this case:

Corollary 3 (“Additive Transfers” Counterfactual) When Ã = A, X̃ = X , F̃ = F , and
π̃ = π + g, the counterfactual CCP p̃ is identified.

This result was first shown by Aguirregabiria (2010).23 Here, we note that, more generally,
adding a known vector to π̃ does not affect the Jacobian matrix of h, even for nonlinear
functions, and so whether p̃ is identified or not does not depend on this vector.

The next corollary is also immediate:

Corollary 4 (“Action Diagonal” Counterfactual) Suppose Ã = A, X̃ = X , F̃ = F , and
π̃a = Haπa for all a ∈ A. Then:

(i) To identify the counterfactual CCP, it is necessary that Ha, all a, are similar matrices.
(ii) Further, if Ha is diagonal for all a, then to identify p̃ it is necessary that Ha = H,

all a, and that H = AaHA
−1
a .

Corollary 4 places a strong restriction on Ha: they have to be similar matrices. This must
be the case whether or not Ha are diagonal. For instance, a “change in types” counterfactual
that replaces preference parameters of one type of agents by those of another type (in which
case Ha are not diagonal), must satisfy Corollary 4(i) to identify p̃.

For the “proportional changes” counterfactual, we have diagonal Ha and g = 0. In this
case, Corollary 4(ii) states that if we change the payoff of action a in state x by λ (x),

22The matrices Hal are stipulated by the counterfactual; the matrices Aa and Ãa depend on transition
probabilities Fa and F̃a; and F̃ = hs (F ) is known for any known function hs and any F . We can therefore
take the test statistic to be T =

∥∥∥∑l6=J(Hal − ÃaHJl)Al +HaJ − ÃaHJJ
∥∥∥, where ‖.‖ is a matrix norm,

and test if T is sufficiently close to zero. Its asymptotic distribution can be obtained from the asymptotic
distribution of the estimator F̂ combined with the delta method. We leave the investigation of the asymptotic
properties of such a test for future research.

23Aguirregabiria (2010) proved this result for finite-horizon models. Aguirregabiria and Suzuki (2014) and
Norets and Tang (2014) showed the result extends to infinite-horizon models.
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π̃ (a, x) = λ (x)π (a, x), then we also need to change the payoff of any other action a in state
x by exactly the same proportion λ (x). Otherwise, the counterfactual CCP is not identified.
Furthermore, restrictions on the transition matrices Fa are also necessary, as they must satisfy
the equality H = AaHA

−1
a .

Corollary 5 (“Proportional Changes” Counterfactual) Suppose Ã = A, X̃ = X , F̃ = F ,
and π̃a = Hπa for all a ∈ A, with H diagonal.

(i) If H = λI, then p̃ is identified.
(ii) If H has pairwise distinct elements, to identify p̃ it is necessary that the transition

probabilities are action invariant.
(iii) If H has a simple eigenvalue, a necessary condition to identify p̃ is that the row of

each Fa corresponding to the simple eigenvalue has to be invariant across a.

Corollary 5 shows that the “proportional changes” counterfactual is identified only if
proper restrictions on the transition matrices Fa hold. The degree of freedom of these re-
strictions is controlled by the number of distinct elements of the diagonal matrix H. For
example, if all elements of H are pairwise distinct, p̃ is not identified unless Fa are the same
for all actions. Action-invariant transition probabilities, however, effectively imply that the
agent is not facing a dynamic problem.

Another consequence of Corollary 4 is that if a counterfactual leaves πJ and FJ unaffected
(i.e. π̃J = πJ and F̃J = FJ), but imposes π̃a = Haπa, with Ha diagonal for some action a 6= J ,
then, p̃ is identified only if Ha = I. In words, if a counterfactual does not alter one action,
but changes πa proportionally for some other action a, it is not identified.24

3.4 Changes in Transitions and Sets of Actions and States

We now consider counterfactuals that change only transition probabilities, F̃ 6= F , or the set
of actions and states, Ã 6= A, X̃ 6= X .

Corollary 6 (“Change in Transition” Counterfactual) Suppose Ã = A, X̃ = X, and π̃a = πa
for all a ∈ A, but F̃ 6= F . Then p̃ is identified if and only if Aa = Ãa, for all a ∈ Ã, a 6= J .

This result is also documented by Aguirregabiria and Suzuki (2014), Norets and Tang
(2014) and Arcidiacono and Miller (2015). It is an immediate consequence of Corollary 2.
This result says that counterfactuals in which the transition matrices change are typically
not identified except in knife-edge cases. Here we add another non-identification result with
a knife-edge qualification: when both transitions and payoffs change, the two must change
together in a way that satisfies (19) or else counterfactual behavior is not identified.

Next, we consider counterfactuals that only change the set of actions (and possibly of
states too). First we present counterfactuals that eliminate one action; then we turn to
counterfactuals that add a new action. Extensions to eliminating or adding more than one
action are straightforward.

24To see why, recall that identification requires HaAa = ÃaHJ or, since HJ = I, Ha = (I−βF̃a)(I−βFa)−1.
For any two stochastic matrices, (I − βF̃a)(I − βFa)−11 = 1, where 1 is a vector of ones. Let λ be the vector
of diagonal elements of Ha. Then, Ha1 = λ = 1. Therefore, Ha = I.
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Corollary 7 (“Eliminate an Action” Counterfactual) Suppose Ã = A− {j}, where j is the
action to be eliminated. If X̃ = X , F̃a = Fa, and π̃a = πa for all a ∈ Ã, then p̃ is identified.

In other words if a counterfactual just eliminates an action, it is identified. Here, it is key
that transitions do not change; however, elimination of an action often implies elimination of
some states (e.g. the monopolist entry/exit example) which necessarily changes transitions.
In that case, identification depends on how the probability mass is reallocated from X into the
remainder set of states X̃ . In Appendix A, we provide the necessary and sufficient conditions
for identification in this case (see Lemma 8). Below, we consider the special case in which
x = (k,w), with transition probabilities given by (6) and kt = at−1 (similar to the model
presented in Section 2.2, but with no parametric assumptions on π). The counterfactual CCP
is indeed identified in this case.

Proposition 3 (“Eliminate an Action and States” Counterfactual) Suppose Ã = A − {j},
where j is the action to be eliminated. Without loss, let the set of states be X̃ = {1, ..., x}
and X = {1, ..., x, x+ 1, ..., X}. Assume π̃a = Haπa with Ha = [Ix, 0] for all a ∈ Ã. Suppose
x = (w, k) with transition matrix Fa = Fw ⊗ F ka and kt = at−1. Then, the counterfactual
CCP p̃ is identified.

Finally, we consider a counterfactual that only adds an action to A. This case requires
prespecifying π̃j and F̃j for the new action.

Corollary 8 (“Add an Action” Counterfactual) Suppose Ã = A ∪ {j}, where j is the new
action. Assume X̃ = X , F̃a = Fa, π̃a = πa for all a ∈ A and

π̃j =
∑
a∈A

Hjaπa + gj .

Then p̃ is identified if and only if ∑
a∈A

Hja1 = 1,

F̃j =
∑
a∈A

HjaFa + β−1
(
I −

∑
a∈A

Hja

)
,

where 1 is an X × 1 vector of ones.

In other words, to obtain identification it is necessary that the payoff of the new action
j is a “convex combination” of existing payoffs, and the new transition matrix is an “affine”
combination of existing transitions.

3.5 Restrictions in Non-Identified Counterfactuals

So far we have explored whether counterfactual behavior is identified when the researcher
does not impose any extra restriction on the model to identify payoffs. Next, we consider
the following natural question: what is the minimum number and form of payoff restrictions
that one has to impose to secure identification of counterfactual CCPs?

Consider a set of d ≤ X linearly independent payoff restrictions:

Rπ = r (22)
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with R ∈ Rd×AX , or in block-form, R =
[
R−J RJ

]
, e.g. exclusion restrictions. Note that

if d < X, the restrictions are not sufficient to identify π. We can rewrite (22) as:

R−Jπ−J +RJπJ = r (23)

and combine it with out main relationship, π−J = A−JπJ + b−J(p):

(R−JA−J +RJ)πJ = r −R−Jb−J (p) .

This is of the form:
QπJ = q (24)

with Q = R−JAJ +RJ ∈ Rd×X and q = r −R−Jb−J (p) ∈ Rd.
Now consider, for simplicity, an affine counterfactual, π̃ = Hπ + g. As shown in Section

3.3, if equation (20) of Corollary 2 holds, the counterfactual CCPs are identified with no
extra restrictions (R, r). Stack the left hand side of (20) for all a and denote the resulting
matrix by C. For instance, in the case of action-diagonal counterfactuals (assuming J = A),

C ≡

H1 ... 0
...

...
...

0 ... HJ−1

A−J − Ã−JHJ ,

or, more compactly, C = H−JA−J − Ã−JHJ , where C has dimension (A − 1)X × X. So,
if (20) holds, C = 0 and p̃ is identified regardless of extra restrictions (R, r). At the other
extreme, if restrictions (22) are correctly specified with d = X, then the model is identified,
and so is p̃ for any C.

The following proposition and corollary shed light on the form of the linear restrictions
that need to be imposed to obtain identification.

Proposition 4 Given the matrix C formed by a counterfactual transformation H and the
linear restrictions (22), the counterfactual CCP is identified if and only if there exists an
(A− 1)X × d matrix M such that C = MQ.

Corollary 9 If the restrictions are linearly independent (i.e. rank (Q) = d) then the coun-
terfactual CCP is identified if and only if

C
(
I −Q′

(
QQ′

)−1
Q
)

= 0 (25)

and necessarily rank (C) ≤ d.

The above results establish a direct relationship between the counterfactual transforma-
tion H and the restrictions Q. Take a counterfactual H, form the matrix C and compute its
rank. Suppose rank (C) = d. Proposition 4 implies that d provides the minimum number
of linearly independent restrictions needed to secure identification of p̃, even when C 6= 0
and with restrictions that would not identify the model. Second, the results inform us on
the nature of the required restrictions: the proposition tells us that each of these restrictions
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must be a linear combination of the rows of C.25 Finally, Corollary 9 indicates a simple way
to check in practice whether a combination of restrictions and counterfactual transformation
identifies p̃.26

3.6 Identification of Counterfactual CCP for Parametric Models

Parametric restrictions can aid identification of some parameters; can they also enlarge the
set of counterfactuals that are identified? We show that they can. Consider again the model
presented in Section 2.2. Recall that θ0(a, k) is not identified, while θ1(a, k) is identified when
there is “sufficient variation” in w.

As previously mentioned, a counterfactual may change the term θ0(a, k), or the term
R′θ1, or both. We show here that transformations in R′θ1 result in identified counterfactual
CCPs, while transformations in θ0(a, k) may not. This is fairly intuitive. When θ1(a, k) is
identified, a counterfactual that changes R′θ1 resembles an additive transfer, and as shown in
Subsection 3.3, “additive transfers” counterfactuals are always identified. In contrast, since
θ0(a, k) is not identified, one needs to follow our analysis of counterfactuals for nonparametric
payoffs to establish whether a particular counterfactual CCP is identified or not.

To illustrate counterfactuals that change θ0(a, k), we consider the case of affine action-
diagonal counterfactuals as an example. In particular, consider the following transformation:

θ̃0(a) = H0(a)θ0(a) (26)

for a = 1, ..., J , θ0(a) is obtained by stacking θ0(a, k) for all k and H0(a) is a K ×K matrix.
Extending to a more general function of θ0 is straightforward; the only requirement is that
the function is differentiable.

Proposition 5 (Parametric Model, Change in Payoffs Counterfactual) Assume Ã = A,
X̃ = X, and that the conditions of Proposition 2 hold.

(i) The counterfactual CCP corresponding to a counterfactual that only changes the term
R′(a,w)θ1(a, k) of π(a, k, w) is identified.

(ii) The counterfactual CCP corresponding to the transformation (26) is identified if and
only if for all a 6= J

H0(a)Aka = AkaH0(J)

where Aka = (I − βF ka )(I − βF kJ )−1.

Similar results apply to changes in transitions Fa = Fw⊗F ka , as the next corollary states.

Corollary 10 (Parametric Model, Change in Transition Counterfactual) Assume Ã = A,
X̃ = X, and that the conditions of Proposition 2 hold. The counterfactual CCP corresponding

25Indeed, to see this, pick d linearly independent rows of C and place them in the matrix C̃. Then, the set
of allowable restrictions consists of all d × X matrices of the form Q = M̃C̃ where M̃ is a d × d invertible
matrix.

26One can view the results in this section from a different perspective. Suppose that the restrictions
(22) are natural and a researcher considers them to be true. For instance, consider the constraint that
π(exit,not active) = 0 in our monopolist example. Proposition 4 and Corollary 9 then informs us on what
can be attained by relying only on such natural constraints and allows us to explore the range of possibilities
for identifiable counterfactuals.
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to a counterfactual that only changes the transition Fw is identified, but the counterfactual
CCP corresponding to a change in F ka is identified if and only if Aka = Ãka, where Aka is defined
similarly to Aa with F ka in the place of Fa, for all a ∈ Ã.

In a nonparametric setting, changes in the transition process result in non-identified coun-
terfactual behavior. However, Corollary 10 shows that the intuition from the nonparametric
setting does not necessarily carry over to parametric models. When a counterfactual changes
the transition process for state variables that are part of the identified component of the
payoff function, counterfactual behavior is identified. For instance, the response to a change
in the volatility of demand shocks in the monopolist entry/exit example is identified. Even
though Aguirregabiria and Suzuki (2014) and Norets and Tang (2014) have explored changes
in transitions in the nonparametric context, most implementations of these counterfactuals in
practice are done in the parametric context (Hendel and Nevo (2007), Collard-Wexler (2013))
and so these are covered by us.

3.7 Identification of Counterfactual Welfare

Finally, we discuss identification of counterfactual welfare and provide the minimal set of
sufficient conditions to identify the magnitude of welfare changes. For simplicity, we only
consider affine action-diagonal counterfactuals; i.e. Ã = A, X̃ = X, and ha (πa) = Haπa+ga,
all a. Extensions to more general cases are straightforward, but at the cost of substantially
more cumbersome notation. The feature of interest here is the value function difference
∆V = Ṽ − V , where Ṽ is the counterfactual and V is the true value functions, respectively.

Proposition 6 (Welfare) Assume Ã = A, X̃ = X, and ha (πa) = Haπa + ga, all a. The
welfare difference ∆V is identified if, for all a 6= J ,

HaAa − ÃaHJ = 0,

and
HJ =

(
I − βF̃J

)
(I − βFJ)−1 . (27)

Proposition 6 shows that identification of p̃ (which is implied by the proposition’s first
condition) is not sufficient to identify ∆V ; we also need (27). The second condition is satisfied,
for instance, when the counterfactual transformation does not affect option J : HJ = I and
F̃J = FJ . For “proportional changes” counterfactuals the two conditions are satisfied only
when all matrices Ha equal the identity matrix; i.e. π̃ = π, which is equivalent to saying that
∆V is not identified in this case. On a positive note, an immediate implication of Proposition
6 is that the welfare effect of an “additive transfers” counterfactual is identified. “Additive
transfers” counterfactuals are robust to nonidentification of the model primitives: both p̃ and
∆V are identified.

Proposition 6 is an immediate consequence of Lemma 9 in the Appendix. The Lemma
provides the full set of necessary and sufficient conditions to identify ∆V , and shows that
identification of p̃ together with (27) are “almost” necessary to identify welfare.27

27“Almost” here is in the following sense: when at least one of the two conditions does not hold, the nonlinear
system of equations necessary to identify ∆V is generically inconsistent. So, in practice, identification of ∆V
is unlikely when either p̃ is not identified or (27) fails.
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Finally, the next corollary considers identification of ∆V for the parametric model of
Section 2.2. As expected, identification is guaranteed when counterfactuals change R′θ1
and/or Fw.

Corollary 11 (Welfare, Parametric Model) Assume the conditions of Proposition 2 hold.
Suppose Ã = A, X̃ = X, and θ̃0(a) = H0(a)θ0(a). The welfare difference ∆V is identified if,
for all a 6= J ,

H0(a)Aka − ÃkaH0(J) = 0,

and
H0(J) =

(
I − βF̃ kJ

) (
I − βF kJ

)−1
.

Furthermore, if H0(a) = I and F̃ ka = F ka for all a, then ∆V is identified for any counterfactual
transformation on R′(a,w)θ1(a, k) and Fw.

4 Numerical Example: Monopolist Entry and Exit Problem

This section illustrates some of our theoretical results using the monopolist entry/exit prob-
lem of Example 2. We assume that w is observable and captures aggregate demand fluctuating
over time. Variable profits π (wt) are determined by static profit maximization over quan-
tity: the monopolist faces the demand curve Pt = wt − ηQt and has constant marginal cost
c, so that π (wt; η, c) = (wt − c)2 /4η. We assume wt follows a first-order Markov process,
Pr (wt+1|wt); this is the only source of uncertainty in the model. To simplify, we assume that
demand can be high, medium or low: w ∈

{
wH , wM , wL

}
.

We assume the econometrician knows (or estimates): (i) the true CCP, Pr (active|k,w);
(ii) the transition probabilities for demand shocks, Pr (wt+1|wt); and (iii) the variable profits
π (w), estimated outside of the dynamic problem using price and quantity data.28

First, we solve the true model and obtain the baseline CCPs and value functions. Then,
we recover π using Proposition 1 and imposing two different identifying restrictions: the first
fixes the scrap value to zero, φs = 0, so that π (inactive, k, w) = 0 for all (k,w); identification
of π follows directly from (4). The second restriction assumes the fixed cost is zero, fc = 0. As
π (active, 1, w) = π (w) is assumed known, this is sufficient to recover the remaining elements
of π.

Table 1 presents the true and the two estimated payoff functions. Note that under
the first restriction (φs = 0) entry costs change sign. This is because if we wrongly fix
π (inactive, k, w) = 0, then π (active, k, w) must capture all desired data patterns, which can
turn a true positive number (entry costs) into an “identified” negative number. If there is no
scrap value, entering the market becomes less attractive and entry costs must become low
(in fact, negative) to capture the observed entry patterns.

28We ignore sampling variation for simplicity and set: c = 11, η = 1.5, w = (20, 17, 12) , β = 0.95, fc =
5.5, φs = 10, φe = 9, while the transition matrix for w is

F
(
w′|w

)
=

[ 0.4 0.35 0.25
0.3 0.4 0.3
0.2 0.2 0.6

]
.
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Table 1: Numerical Example – True vs. Estimated Profits
States: (k,w) True Profit Estimated Profit Estimated Profit

scrap value = 0 fixed cost = 0

a = inactive
π (a, k = 0, wH) = 0 0 0 0
π (a, k = 0, wM ) = 0 0 0 0
π (a, k = 0, wL) = 0 0 0 0
π (a, k = 1, wH) = φs 10 0 120
π (a, k = 1, wM ) = φs 10 0 120
π (a, k = 1, wL) = φs 10 0 120

a = active
π (a, k = 0, wH) = −φe -9 0.5 -113.5
π (a, k = 0, wM ) = −φe -9 0.5 -113.5
π (a, k = 0, wL) = −φe -9 0.5 -113.5
π (a, k = 1, wH) = π (wH ; η, c)− fc 8 7.5 13.5
π (a, k = 1, wM ) = π (wM ; η, c)− fc 0.5 0 6
π (a, k = 1, wL) = π (wL; η, c)− fc -5.33 -5.83 0.167

Under the second restriction (fc = 0), there is no change in the sign of payoffs, but both
entry costs and scrap values are considerably larger in magnitude than their true values. To
see why, consider first the case in which the firm is already in the market (k = 1). For a
given probability of being active observed in the data, fixing fc = 0 implies higher profits
when active, which gives incentives to stay more often in the market. To match the observed
CCP, scrap values must increase to provide incentives to exit. Similarly, when the firm is out
(k = 0), increasing profits when active increases incentives to enter. Entry costs must then
increase to compensate for this incentive.

Given the recovered payoffs, we implement four counterfactuals and compare the true
and the inferred counterfactual CCPs and welfare. In the first two, the government provides
subsidies to encourage entry. Counterfactual 1 is an additive subsidy that reduces entry
costs: π̃ (active, 0, w) = π (active, 0, w)+g. Counterfactual 2 is a proportional entry subsidy:
π̃ (active, 0, w) = Hπ (active, 0, w). In both cases we leave π (inactive, k, w) and F unchanged
and we choose the additive and proportional subsides so that the true counterfactual CCP
and welfare are the same.29 As shown in Section 3, while the counterfactual CCPs and welfare
are identified in the first scenario, they are not identified in the second scenario.

Table 2 presents the results for both counterfactuals 1 and 2 for the true model and
the two estimated models. In both scenarios, the true counterfactual probability of entering
increases compared to the baseline because of the subsidy; and the probability of staying
in the market decreases because it is cheaper to re-enter in the future. So, the monopolist
enters and exits more often than the baseline case. In counterfactual 1 (additive subsidy),
as expected, the counterfactual CCPs and welfare are identical in the true model and under
both restricted models.

29As π (active, 0, w) = −φe, and we choose the true φe = 9, we opt for the additive transfer g = 0.9,
and the proportional change H = 0.9, so that in both cases the true counterfactual entry cost becomes
π̃ (active, 0, w) = −8.1.
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Table 2: Counterfactuals 1 and 2 – Additive and Prop Entry Subsidies
States: (k,w) Baseline True CF Estimated CF Estimated CF

scrap value = 0 fixed cost = 0

CF1: π̃0 = π0, π̃1 = π1 + g
CCP: Pr (active|x)
(k = 0, wH) 93.61% 94.95% 94.95% 94.95%
(k = 0, wM ) 87.48% 90.27% 90.27% 90.27%
(k = 0, wL) 72.99% 80.33% 80.33% 80.33%
(k = 1, wH) 99.99% 99.99% 99.99% 99.99%
(k = 1, wM ) 80.91% 69.59% 69.59% 69.59%
(k = 1, wL) 0.48% 0.29% 0.29% 0.29%

Welfare: Ṽ − V
(k = 0, wH) - 5.420 5.420 5.420
(k = 0, wM ) - 5.445 5.445 5.445
(k = 0, wL) - 5.539 5.539 5.539
(k = 1, wH) - 4.535 4.535 4.535
(k = 1, wM ) - 4.727 4.727 4.727
(k = 1, wL) - 5.219 5.219 5.219

CF2: π̃0 = π0, π̃1 = Hπ1

CCP: Pr (active|x)
(k = 0, wH) 93.61% 94.95% 93.53% 99.87%
(k = 0, dM ) 87.48% 90.27% 87.31% 99.84%
(k = 0, dL) 72.99% 80.33% 72.53% 99.81%
(k = 1, dH) 99.99% 99.99% 99.99% 90.59%
(k = 1, wM ) 80.91% 69.59% 81.44% 0.44%
(k = 1, wL) 0.48% 0.29% 0.49% 0.00%

Welfare: Ṽ − V
(k = 0, wH) - 5.420 -0.289 88.255
(k = 0, wM ) - 5.445 -0.290 88.829
(k = 0, wL) - 5.539 -0.295 89.756
(k = 1, wH) - 4.535 -0.239 77.068
(k = 1, wM ) - 4.727 -0.248 82.836
(k = 1, wL) - 5.219 -0.278 84.802
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Counterfactual 2 (proportional entry subsidy) results in very different outcomes under the
two restrictions. In the first restriction, φs = 0, the changes in the CCPs are all in the wrong
direction: while the true probability of entering increases relative to the baseline, the predicted
counterfactual probability of entering decreases. Similarly, the counterfactual probability of
exiting decreases in the true model while it increases in the estimated model. Welfare also has
the wrong sign in all states. This is a direct consequence of the fact that the identified entry
cost under this restriction has the wrong sign: in the true model, multiplying π (active, 0, w)
by H represents a subsidy, but in the estimated model, it becomes a tax. This illustrates
the importance of the identifying restrictions in driving conclusions, especially when the
researcher does not know the sign of the true parameter.30

Under the second identifying restrictions (fc = 0), both entry costs and scrap values have
the correct sign, but are magnified. As a result, it is profitable to enter and exit the market
repeatedly when the entry cost is reduced by 10% in the counterfactual scenario. Predicted
turnover is therefore excessive and predicted welfare is also exaggerated.

Counterfactual 3 changes the transition process Pr (wt+1|wt). Because π (w) is known,
the counterfactual behavior and welfare are identified (Proposition 5 and Corollaries 10 and
11).31 Top panel of Table 3 confirms the results.32

Finally, counterfactual 4 implements a “change in types” counterfactual. We add a second
market with different parameter values: market 2 is more profitable than market 1 both
through lower entry costs and higher variable profit. We identify the parameters for market
2 as before and perform a counterfactual that substitutes the entry cost of market 1 by the
estimated entry cost of market 2.33

The bottom panel of Table 4 presents the results. Similar to counterfactuals 1 and 2,
turnover increases in the true counterfactual compared to the baseline; and again, the two
identifying restrictions generate very different outcomes. This is expected since the matrices
Ha are not similar; so by Corollary 4(i), counterfactual behavior is not identified.

Under the first restriction (φs = 0), counterfactual CCPs and welfare are all in the right
direction, even though entry costs have the wrong sign in both markets. This happens
because replacing the market 1 entry cost by the market 2 entry cost amounts to an increase
in entry costs in the restricted model. Even though the CCP moves in the right direction,
the magnitude is bound to be wrong and turnover under this restriction is not as large as the
true counterfactual turnover.

Under the second identifying restrictions (fc = 0), turnover and welfare are again exag-
30Even though a subsidy implemented on the estimated model generates a counterfactual CCP that can

also be obtained with some subsidy implemented on the true model, the researcher cannot possibly know the
value of such a subsidy unless she knows the true payoff function.

31Aguirregabiria and Suzuki (2014) also implement a change in transitions in a similar model. But they
consider a change in F ka , i.e., a change in the transition of states that enter the nonidentified part of payoffs.
As expected, this counterfactual is not identified.

32We set P̃r (w′|w) = 1/3, for all (w′, w). The qualitative results hold for other transformations on the
transition process Pr (w′|w). We also implemented a counterfactual that reduces the marginal cost of pro-
duction, c, by 10% (not shown in the paper). Again, because π (w) is known, this counterfactual is identified
(Proposition 5 and 11).

33Market 1 is the same as before. For market 2, we set: c2 = 9, η2 = 1.7, w2 = (18, 15, 11) , fc2 = 3, φs2 =
8, φe2 = 6. The discount factor and transition matrix in market 2 is the same as in market 1. The estimated
profit under the first restriction (φs2 = 0) is: φe2 = 1.6, π2 (active, 1, w) = (8.52, 1.89,−2.82); and under the
second restriction (fc2 = 0) is: φe2 = −63, φs2 = 68, π2 (active, 1, w) = (11.91, 5.29, 0.59).
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Table 3: Counterfactuals 3 and 4 – Change in F(w’/w) and Change Markets’ Entry Costs
States: (k,w) Baseline True CF Estimated CF Estimated CF

scrap value = 0 fixed cost = 0

CF3: π̃0 = π0, π̃1 = π1, F̃
w 6= Fw

CCP: Pr (active|x)
(k = 0, wH) 93.61% 86.97% 86.97% 86.97%
(k = 0, wM ) 87.48% 86.97% 86.97% 86.97%
(k = 0, wL) 72.99% 86.97% 86.97% 86.97%
(k = 1, wH) 99.99% 99.99% 99.99% 99.99%
(k = 1, wM ) 80.91% 80.19% 80.19% 80.19%
(k = 1, wL) 0.48% 1.17% 1.17% 1.17%

Welfare: Ṽ − V
(k = 0, wH) - 0.542 0.542 0.542
(k = 0, wM ) - 1.347 1.347 1.347
(k = 0, wL) - 2.530 2.530 2.530
(k = 1, wH) - 0.468 0.468 0.468
(k = 1, wM ) - 1.350 1.350 1.350
(k = 1, wL) - 1.808 1.808 1.808

CF4: π̃1
0 = π2

0 , π̃
1
1 = π1

1

CCP: Pr (active|x)
(k = 0, wH) 93.61% 97.28% 95.22% 100.00%
(k = 0, wM ) 87.48% 95.08% 90.83% 100.00%
(k = 0, wL) 72.99% 91.44% 81.74% 100.00%
(k = 1, wH) 99.99% 99.95% 99.99% 0%
(k = 1, wM ) 80.91% 36.86% 66.67% 0%
(k = 1, wL) 0.48% 0.09% 0.02% 0%

Welfare: Ṽ − V
(k = 0, wH) - 19.778 6.684 482.861
(k = 0, wM ) - 19.883 6.715 483.667
(k = 0, wL) - 20.198 6.831 484.849
(k = 1, wH) - 16.816 5.602 449.773
(k = 1, wM ) - 17.752 5.846 457.934
(k = 1, wL) - 19.044 6.438 459.999
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gerated, to the point that counterfactual choice probabilities are either zero or one.

5 Extensions

With our agricultural land use application in mind, we present two extensions to the frame-
work. The first extension incorporates extra data on resale markets that, under some con-
ditions, can help identify payoff functions and counterfactuals. The second extension allows
for unobserved market-level state variables and we discuss identification of payoffs in this
context.

5.1 Identification of Payoffs using Resale Market Data

The sensitivity of certain counterfactuals to identifying restrictions on payoffs calls out for
some means to assess the accuracy of these restrictions. In this section, we consider how
adding data on resale prices can allow us to bypass identifying restrictions. Suppose that
the agent’s dynamic problem involves a durable asset whose value in state xit is given by
V (xit). Sometimes, one can obtain data on asset prices, such as firm acquisition prices
(e.g. price of ships in the bulk shipping industry), or real estate values from transactions or
appraisals. Such asset prices plausibly contain information about the expected discounted
sum of future returns associated with that asset (i.e. V (xit)). Because value functions are
the key unobserved object that makes dynamic models difficult to estimate, value function
measurement is very powerful.34

There are numerous ways to model resale markets, and different models may imply differ-
ent mappings between transaction prices and agents’ value function. Here, we consider the
simplest possible setting: in a world with a large number of homogeneous agents, a resale
transaction price must equal the value of the asset. As agents have the same valuation for
the asset, V (xit), a seller is willing to sell it at price pRSit only if pRSit ≥ V (xit); similarly, a
buyer is willing to buy if pRSit ≤ V (xit). In this setup, the equilibrium resale price of asset i
in state xit must equal its value and agents are always indifferent between selling the asset
or holding on to it:

pRSit = V (xit) . (28)

Combining (28) with the system (1)-(3), one can see that value functions immediately
inform us on payoffs and their shape; in fact, they deliver payoffs nonparametrically (see
Kalouptsidi (2014a) and (2014b) for an implementation in the context of shipping). Using
(28) we can estimate V (xit) by (nonparametrically) regressing pRSit on xit. The only difficulty
is that, because V is measured with respect to a specific scale (e.g. dollars), a restriction on
the scale parameter σ is no longer innocent. Fortunately, as shown in Proposition 7 below,
with little information on payoffs for one action in any state (or on average), we can identify
σ.

Proposition 7 Given the joint distribution of observables Pr (y), where yit =
(
ait, xit, p

RS
it

)
,

the flow payoffs πa are identified provided the primitives (β,G) are known and (i) σ is known,
34In a different context, Heckman and Navarro (2007) make use of extra data on labor outcomes, such as

future earnings, to obtain identification.
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or (ii) the (cardinal) payoff πa (x) is known for some (a, x); or (iii) the expected payoff for
one action is known.

We close this subsection by noting that it is crucial that a rich set of asset characteristics
are observed and that we are in a world of thick resale markets where the owner and asset
heterogeneity do not interact much – we provide evidence for these in our land use appli-
cation (see Appendix B and C). Aguirregabiria and Suzuki (2014) consider a more general
bargaining model with resale costs and show that our result below generalizes to that case.
Further generalizations incorporating other frictions on resale markets are also possible, but
are beyond the scope of this paper.

5.2 Identification of Payoffs with Unobservable Market-level States

In this section, we consider the identification of models when there are unobservable market-
level state variables. This setting is relevant for many applications, such as when the available
observed market states are insufficient to capture the agents’ full information set, or where it
is difficult to capture the evolution of market states adequately, or when the dimensionality
of the state space is large. This is the case for our land use application in Section 6.35

We assume that there are m = 1, ...,M markets. In addition, we maintain the state
decomposition ximt = (kimt, ωmt) from Section 2.2. Importantly, the aggregate state ωmt
is not fully observed; but it does have an observed component wmt. Note the transition of
kimt can be recovered from the data even though ωmt is not fully observed. Indeed, one can
estimate F kmt (kimt+1|a, kimt) = F k (kimt+1|a, kimt, ωmt) for each time period in each market
with a rich cross section of agents.36

We add two new assumptions here. First, we restrict the unobserved aggregate state to
enter payoffs in an additively separable fashion:

π (a, kimt, ωmt) = π (a, kimt, wmt) + ξ (a, kimt, ωmt) , (29)

where ξ (a, k, ω) has zero mean. The unobservable ξ (a, k, ω) may capture mismeasured profits
or unobservable costs. It is important to stress that ξ is a function of state variables, not a
state variable itself. On its own, ξ need not evolve according to a first-order Markov process
although ω does. Note that ξ may be serially correlated, unlike the idiosyncratic shocks ε. In
addition, π and ξ are likely correlated because they may depend on the same state variables.
For this reason, we need to make use of instrumental variables to obtain identification.

35Hu and Shum (2012) also consider identification under unobserved states. Our results are neither a special
case of nor more general than theirs. Hu and Shum suggest the following indirect approach: (i) identify and
estimate state transitions, then (ii) use a nested fixed-point maximum likelihood (as in Rust (1987)), or a
two-step estimator (as in Hotz-Miller (1993)) to estimate payoffs. Their focus thus is on (i). Their results rely
on the following assumptions: (i) the unobserved state is scalar; (ii) the unobserved state is realized before the
observed state; (iii) in the case of continuous unobserved states, actions are continuous as well; (iv) certain
invertibility conditions are required, which are not a priori testable and checking them involves nontrivial
computations. In contrast, our proposed method does not need these restrictions and takes a direct approach:
it deals with the identification and estimation of payoffs directly. However, we need to impose additively
separable payoffs (see below), and we are not able to recover individual level unobserved heterogeneity in our
theorem (although that is possible in practice). We view our results as complements rather than substitutes.

36We assume kimt is finite, as in the case of fully observed states. We allow ωmt to be continuous. Neither
assumption is important and our results apply to both discrete and continuous states.
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Access to valid instrumental variables is our second new assumption. Formally, we assume
there exist instruments at the time-t information set, zmt, such that (i)

E [ξ (a, k, ωmt) |zmt] = 0,

for all a, k; and that (ii) for all functions q (wmt), E [q (wmt) |zmt] = 0 implies q (wmt) = 0 (the
completeness condition). If it is reasonable to assume that π and ξ are not correlated, one
can take observed state variables wmt as instruments. In other cases, it may be reasonable
to use (sufficiently) lagged wmt.

The available dataset now is y = {(aimt, kimt, wmt, zmt) : i = 1, ..., N ;m = 1, ...,M ; t =
1, ..., T}. Identification with partially observed states cannot make direct use of the main
equations (1)-(3). Our identification results are instead based on the following expression
which replaces (1)-(3):

π (a, kimt, ωmt) + βεV (a, kimt, ωmt, ωmt+1)
= V (kimt, ωmt)− β

∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, kimt, ωmt

)
− σψa (kimt, ωmt) (30)

where εV (·) is an “expectational error” according to the following definition:

Definition 1 (Expectational error) For any function ζ (k, ω) and particular realization ω∗ ∈
Ω,

εζ
(
k′, ω, ω∗

)
≡ Eω′|ω

[
ζ
(
k′, ω′

)
|ω
]
− ζ

(
k′, ω∗

)
,

εζ (a, k, ω, ω∗) ≡
∑
k′

εζ
(
k′, ω, ω∗

)
F k
(
k′|a, k, ω

)
.

To derive (30) note that E [V (kimt+1, ωmt+1) |a, kimt, ωmt] is given by:∑
k′

∫
ω′
V
(
k′, ω′

)
dFω

(
ω′|ωmt

)
F k
(
k′|a, kimt, ωmt

)
=

∑
k′

(
Eω′|ωmt

[
V
(
k′, ω′

)
|ωmt

])
F k
(
k′|a, kimt, ωmt

)
=

∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, kimt, ωmt

)
+ εV (a, kimt, ωmt, ωmt+1) (31)

The first term of the right hand side of (31) is the expected ex ante value function at time
t + 1 for agent i in state kimt who selected action a at time t for the actual realization of
ωmt+1 (the conditional expectation is taken over k′). The use of expectational errors allow
us to rewrite (1) as follows: for a = 1, ..., J

π (a, kimt, ωmt) = va (kimt, ωmt)− β
∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, kimt, ωmt

)
−βεV (a, kimt, ωmt, ωmt+1) . (32)

which in turn leads to (30). Importantly, the expectational error is mean independent of all
past state variables (k, ω) (see Lemma 10 in Appendix A).

Before turning to identification, we note that even though ωmt is not fully observed, we can
still recover the conditional choice probabilities pa (k, ωmt). Like F k they can be estimated
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separately for each market m in each t (or with flexible market and time dummies). Of course
we need a large number of agents i in each m and t to obtain accurate estimates. For our
results regarding the identification of π in settings with unobserved states, we treat pat (.),
F kt (.) and ψat (.) as known objects.37

Next, we simplify the notation and use (m, t) subscripts to denote functions that depend
on ωmt. We rewrite payoffs as πmt (a, kimt) = π (a, kimt, ωmt), while Vmt (kimt), pamt (kimt)
and ψamt (kimt) are similarly defined. Therefore, (30) in matrix form becomes:

πamt + βεVam,t,t+1 = Vmt − βF kamtVmt+1 − σψamt (33)

for all a, where εVam,t,t+1 stacks εVmt,t+1 (a, k) for all k.
We now turn to our identification results. In the case of the fully observed states, Vmt

and Vmt+1 represented the same vector V , and we could solve for V after inverting the(
I − βF kamt

)
matrix. Now, Vmt and Vmt+1 differ because of the unobservable state ω, and we

cannot solve for V in the same way. Consequently, obtaining identification is more difficult
here and we must impose more restrictions than in a setting with fully observable states.

Terminal or renewal actions are natural candidates. Terminal actions terminate the de-
cision making and impose a finite horizon often facilitating estimation considerably (e.g. a
worker retires, a mortgage owner defaults). Renewal actions also facilitate estimation. For-
mally, if action J is a renewal action, then for all t, τ and all a, j:

F kamtF
k
Jmτ = F kjmtF

k
Jmτ . (34)

Intuitively, choosing J at any time after today’s actions leads to the same distribution of
states (e.g. replacing the bus engine (Rust (1987)) or planting crops (Scott (2013)).

We now return to (33) and exploit the fact that J is a renewal action. For any a and j,
we then have

πamt − πjmt + β
(
εVam,t,t+1 − εVjm,t,t+1

)
+ σ (ψamt − ψjmt)

= β
(
F kamt − F kjmt

) (
πJmt+1 + εVJm,t+1,t+2 + σψJmt+1

)
(35)

because the Vt+2 portions of the value function cancel conditional on the renewal action being
used in period t+ 1. Thus the effect of the terminal value VmT has been eliminated and (35)
forms our base equation for identification.38

37Formally, ωmt is a market-level shock affecting all agents i in m at t. If the data {aimt, kimt : i = 1, ..., N}
is i.i.d. conditional on the market level shock ωmt, then, by the law of large numbers for exchangeable random
variables (see, e.g., Hall and Heyde, 1980),

p̂amt (k) =
∑N

i=1 1 {aimt = a, kimt = k}∑N

i=1 1 {kimt = k}
p→ E [aimt = a|kimt = k, ωmt] = pa (k, ωmt)

as N →∞. The same argument applies to the estimator of F k (.).
38Formally, use (33) for J in t+ 1 to solve for Vmt+1 and replace the latter in (33) for any a in t:

πamt + βεVam,t,t+1 = Vmt − σψamt
−βF kamt

[
πJmt+1 + βεVJmt+1,t+2 + βF kJmt+1Vmt+2 + σψJmt+1

]
.

Next, evaluate the above at a and j and subtract to obtain (35) using the renewability property (34).
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Proposition 8 Suppose (σ, β,G) are known. Given the joint distribution of observables
Pr (y), where yimt = (aimt, kimt, wmt, zmt), the flow payoff π (a, kimt, wmt) is identified pro-
vided the following conditions hold:

(a) For finite T : either (i) the terminal value VmT is known and the payoff π (j, k, w) is
known for some j and all (k,w); or (ii) there is a renewal action J with known flow payoff
for all (k,w).

(b) For large T : there is a renewal action J , and the flow payoff of some action j (not
necessarily action J) is known for all (k,w).

Proposition 8 shows that, when market-level states are partially observed, identification
requires restrictions on payoffs as discussed in Section 2.1, as well as an extra restriction: the
presence of a renewal action.

Finally, simple inspection of (33) shows that payoffs can be identified with resale prices:
the right hand side can be recovered from the data. Because the expectational errors and the
unobservable ξ have zero mean given the instrumental variables, we can treat the model as a
(nonparametric) regression model. There is no need to impose extra identifying restrictions
nor renewability.

Proposition 9 Suppose the primitives (β,G) are known and either (i) σ is known, or (ii)
the (cardinal) payoff π (a, kimt, wmt) is known for one combination of (a, k, w). Given the
joint distribution of observables Pr (y), where yimt =

(
aimt, kimt, wmt, zmt, p

RS
imt

)
, the payoff

function π (a, kimt, wmt) is identified.

6 Application: Agricultural Land Use Model

The empirical application is based on our dynamic land use problem of Example 3. Here,
we add market-level unobservables as in Scott (2013); our model is therefore a special case
of the model presented in Section 5.2. We also make use of land resale prices to empirically
investigate the impact of identifying restrictions on counterfactual behavior.

Recall that in each period field owners decide whether to plant crops or not; i.e. A =
{c, nc}, where c stands for “crop” and nc stands for “no crop.” Fields are indexed by i and
counties are indexed by m. We partition the state ximt into:

1. time-invariant field and county characteristics, sim, e.g. slope, soil composition;

2. number of years since field was last in crops, kimt ∈ K = {0, 1, . . . ,K}; and39

3. aggregate state, ωmt (e.g. input and output prices, government policies) with an ob-
served component wmt.

The payoff combines (7), with θ1 (a, k) = 1, and (29), so that:

π (a, kimt, ωmt, sim, εimt) = θ0 (a, kimt, sim) +R (a,wmt) + ξ (a, kimt, ωmt, sim) + σεimt (36)
39Ideally, kimt would include detailed information on past land use. We consider the years since the field

was in crop (bounded by K) for computational tractability and due to data limitations.
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where R (a,w) and ξ (a, k, ω, s) are observable and unobservable measures of returns. We con-
struct returns Ramt ≡ R (a,wmt) using county-year information (expected prices and realized
yields for major US crops, as well as USDA cost estimates) as in Scott (2013).40

The transition of state variables follows the decomposition (6), which implies that farmers
are small (price takers) and that there are no externalities across fields. The transition rule
of k is: k′ (a, k) = 0 if a = crop, and k′ (a, k) = min {k + 1,K} if a = no crop. I.e. if “no
crop” is chosen, the number of years since last crop increases by one, until K. If “crop” is
chosen, the number of years since last crop is reset to zero. Planting crops is therefore a
renewal action.

Data. We performed a spatial merge of a number of datasets to create a uniquely rich
database. First, we collected high-resolution annual land use data in the United States
obtained from the Cropland Data Layer (CDL) database. The CDL was merged with an
extensive dataset of land transactions obtained from DataQuick (which includes information
on price, acreage, field address and other characteristics). Then, we incorporated detailed
data from NASA’s Shuttle Radar Topography Mission database (with fine topographical in-
formation on altitude, slope and aspect); the Global Agro-Ecological Zones dataset (with
information on soil categories and on protected land); and various public databases on agri-
cultural production and costs from the USDA. The final dataset goes from 2010 to 2013 for
515 counties and from 2008 to 2013 for 132 counties.

Our dataset is the first to allow for such rich field heterogeneity; sim includes slope,
altitude, soil type, as well as latitude and longitude. A field’s slope affects the difficulty of
preparing it for crops. Altitude and soil type are crucial for its planting productivity. The
field’s distance to close urban centers, as well as its nearby commercial property values impact
both land use and land values.

Further details about the construction of the dataset, as well as some summary statistics,
are presented in Appendix B. Here we only emphasize that land use exhibits substantial
persistence. The average proportion of cropland in the sample is 15%; the probability of
keeping the land in crop is about 85%, while the probability of switching to crops after two
years as non-crop is quite small: 1.6%. Finally, the proportion of fields that switch back to
crops after one year as noncrop ranges from 27% to 43% on average depending on the year,
which suggests some farmers enjoy benefits from leaving land fallow for a year.41

6.1 Estimators for the Land Use Model

The parameters of interest are σ and θ0 (a, k, s), all a, k, s. We present and compare two
estimators. First, we employ Scott (2013)’s method which relies on data for actions and states.
It is similar in spirit, but differs from the nested fixed-point (Rust (1987)) and the two-step
estimator of Hotz and Miller (1993) as it allows for unobservable market states and can be
estimated using a linear regression. We call this estimator, the “CCP estimator.” It requires

40We refer the interested reader there for details. Due to data limitations, we restrict R to depend only on
(a,wmt). One important difference from Scott (2013) is that we have field level observable characteristics sim
and they affect land use switching costs.

41One may worry that transacted fields are selected. In Table 8 of Appendix B we compare the transacted
fields (in DataQuick) to all US fields (in the CDL). Overall, the two sets of fields look similar. Finally, we
explore whether land use changes upon resale and find no such evidence (see Table 10 in Appendix C).
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restrictions on θ0 (a, k, s). The second estimator, which we call the “V-CCP estimator”, makes
use of resale prices to avoid the restrictions on θ0 (a, k, s). Both estimators require first stage
estimates of the conditional choice probabilities, pmt (a, k, s), while the V-CCP estimator also
requires estimating the value function Vmt (k, s) from resale prices.

The CCP estimator. Scott (2013) derives a regression estimator using the feature that
planting crops is a renewal action. Indeed, adapting (35) to the land use model, we obtain:

Y b
mt (k, s) = θ∗0 (k, s) + 1

σ
(Rcmt −Rncmt) + ξ∗mt (k, s) + ε∗Vmt (k, s) (37)

for all k, s, where42

Y b
mt (k, s) ≡ ln

(
pmt (c, k, s)
pmt (nc, k, s)

)
+ β ln

(
pmt+1 (c, k′ (c, k) , s)
pmt+1 (c, k′ (nc, k) , s)

)
,

θ∗0 (k, s) = 1
σ

[
θ0 (c, k, s)− θ0 (nc, k, s) + β

[
θ0
(
c, k′ (c, k) , s

)
− θ0

(
c, k′ (nc, k) , s

)]]
. (38)

We estimate the parameters in two steps. First, we estimate σ alone via instrumental
variables (IV) regression on first differences of (37). As discussed in Section 5.2, one should
expect (Rncmt −Rcmt) and ξ∗mt (k, s) to be correlated. Following Scott (2013), we employ lagged
returns and caloric yields to instrument for the first difference of (Rncmt −Rcmt). Once σ is
estimated, we move to θ0 (a, k, s). We obtain the residuals of (37) and take their average over
time in order to remove ξ∗mt (k, s) and ε∗Vmt (k, s). Then we use (38) to obtain the switching
costs parameters. As shown in Section 2.2, we cannot identify all θ0 (a, k, s) when only actions
and states are observed. We follow Scott (2013) again and restrict θ0 (nc, k, s) = 0 for all k, s
to recover θ0 (c, k, s).

The V-CCP Estimator. To isolate the impact of identifying restrictions on counterfac-
tuals, we consider a second estimator. The V-CCP estimator uses (37) alone to estimate σ
(following the CCP estimator) and only uses resale price data to recover θ0 (a, k, s). This
estimator is designed so that the only role of the resale price data is to avoid the identifying
restrictions θ0 (nc, k, s) = 0 for all k, s.

To obtain θ0 (a, k, s), we first adapt (30) to the present model:

Y v
mt (a, k, s) = θ0 (a, k, s) +Ramt + ξmt (a, k, s) + βεVmt+1 (a, k) , (39)

where
Y v
mt (a, k, s) ≡ Vmt (k, s)− βVmt+1

(
k′ (a, k) , s

)
− σψmt (a, k, s) .

Similar to the CCP estimator, given σ we obtain the residuals of (39) and take their average
over time in order to remove ξmt and εVmt+1. We can obtain both θ0 (c, k, s) and θ0 (nc, k, s) in

42We refer the interested reader to Scott (2013) for the detailed derivation. Remember that (i) F kamt evolves
deterministically, (ii) pmt (a, k) = p (a, k, ωmt), and that (iii) for the binary choice model with logit shocks,
ψa (p (x)) = − log (pa (x)) + γ. The term ξ∗mt (k, s) is given by

ξ∗mt (k, s) = 1
σ

[
ξmt (c, k, s)− ξmt (nc, k, s)− βE

[
ξmt+1

(
c, k′ (c, k) , s

)]
+ βE

[
ξmt+1

(
c, k′ (nc, k) , s

)]]
,

with the expectations taken over ωmt+1; and ε∗Vmt (k, s) is defined similarly to ξ∗mt (k, s).
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this fashion. However, in practice, we found that not employing the “no crop” value function
moments led to more stable results, likely because Rnc is somewhat poorly measured (see
Appendix B). So, we recover θ0 (c, k, s) from (39), and given θ0 (c, k, s) we recover θ0 (nc, k, s)
from (38).

Note that we could also use (39) to estimate σ. We opted not to do so because the
finite sample differences in the estimates of σ from (39) would prevent us from isolating the
impact of the identifying restrictions on θ0 (a, k, s) on counterfactual land use patterns.43 The
only difference between the CCP and V-CCP estimators is in how they recover estimates of
θ0 (a, k, s). The CCP estimator relies on the restriction θ0 (nc, k, s) = 0 to derive θ0 (c, k, s)
from estimates of θ∗0 (k, s). The V-CCP estimator relies on direct estimates of θ0 (c, k, s) to
derive θ0 (nc, k, s) from estimates of θ∗0 (k, s).

6.2 Results

We now turn to our results. We focus on the parameters of interest σ and θ0 (a, k, s) and
give the details of the first stage estimates in Appendix C. Table 4 presents the estimated
parameters using the CCP and V-CCP estimators. For brevity we only present the average
σθ0 (a, k, s) across field types s (we multiply by σ so that the parameters can be interpreted
in dollars per acre). We set K = 2 due to data limitations and because after 2 years out of
crops there are very few conversions back to crops in the data.44

The mean switching cost parameters from the CCP estimator are all negative and increase
in magnitude with k. One may interpret this as follows: when k = 0, crop was planted in
the previous year. According to the estimates, preparing the land to replant crops costs on
average $722/acre. When k = 1, the land was not used to produce crop in the previous year.
In this case, it costs more to plant crops than when k = 0. Conversion costs when k = 2 are
even larger. Of course such interpretation hinges on the assumption that θ0 (nocrop, k) = 0
for all k. As is typical in switching cost models, estimated switching costs are somewhat large
in order to explain the observed persistence in choices; unobserved heterogeneity – which is
beyond the scope of this paper – can alleviate this (see Scott (2013)).

The estimated parameters of the V-CCP estimator do not impose θ0 (nocrop, k) = 0.
When k = 0, switching out of crops is now expensive on average (not zero anymore). In fact,
we reject the null hypothesis of θ (nocrop, k) = 0, for all k. This is reasonable because the
“no crop” option incorporates, in addition to fallow land, pasture, hay, and other land uses.
While staying out of crops for one year may be the result of the decision to leave land fallow,
staying out of crops for longer periods reflects other land usages (since land will likely not
stay idle forever) with their associated preparation costs. Furthermore, the absolute value of
the estimated θ0 (crop, 0) is now larger than the absolute value of θ0 (crop, 1). This reflects
the benefits of leaving land fallow for one year (i.e. smaller replanting costs). This potential
benefit is not apparent when we restrict θ0 (nocrop, k). Given that the probability of planting

43In particular, we can use moments involving resale price data for all values of θ0 (a, k, s) and also equation
(39) jointly with the CCP estimator to estimate σ. This estimator adds more moments from the resale data
than are needed to avoid identifying restrictions, and it produces a different estimate of σ than the CCP
estimator. However, our main findings on the impact of the identifying restrictions on counterfactual behavior
are qualitatively robust to the use of this third estimator.

44We weight observations as in Scott (2013) and cluster standard errors by year. We construct the confidence
intervals for σθ0 (a, k) by sampling from the estimated asymptotic distribution of (σ̂, θ̂0).
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Table 4: Empirical Results

Estimator: CCP V-CCP
σθ̄0 (crop, 0) -721.93 -1228.9

(-1150,-562) (-2250,-852)

σθ̄0 (crop, 1) -2584.4 -1119.4
(-4610,-1840) (-3130,-379)

σθ̄0 (crop, 2) -5070.8 -4530.4
(-9220,-3541) (-8340,-3120)

σθ̄0 (nocrop, 0) 0 -2380.3
(-3540,-1950)

σθ̄0 (nocrop, 1) 0 470.05
(-393,788)

σθ̄0 (nocrop, 2) 0 -454.58
(-996,-255)

σ 734.08 734.08
(418,1050) (418,1050)

θ0 values are means across all fields in the sample.

90% confidence intervals in parentheses.
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crops after one year of fallow is lower than the probability of planting crops after crops in the
data (in most markets), in order to rationalize the choice probabilities, the restricted model
(imposing θ0 (nocrop, k) = 0) must assign higher costs to crops after fallow than after crops.
We view this as an appealing feature of the V-CCP model – it is arguably not plausible
that leaving land out of crops for one year would increase the costs of planting crops in the
following year dramatically.45

6.3 Policy Counterfactuals

We consider the two counterfactuals discussed in Example 3 of Section 3.1: the long-run
elasticity (LRE) of land use and an increase in the costs of replanting crops.

The LRE measures the long-run sensitivity of land use to an (exogenous) change in crop
returns, Rc. To calculate it, we compare the steady-state acreage distribution in the data
obtained when Rc is held fixed at their average recent levels and when Rc is held fixed at
10% higher levels. The LRE is defined as the arc elasticity between the total acreage in the
two steady states.46

As shown in Table 5, the CCP and V-CCP estimators give exactly the same LRE. This
is no coincidence. Rescale payoffs (36) by dividing by 1/σ (i.e. θ0/σ + Ramt/σ plus errors);
then, by Proposition 2 σ is identified and by Proposition 5(i), a counterfactual that changes
only the identified part of payoffs is also identified. Therefore, the LRE is not affected by
identifying restrictions on θ0, and the only difference between the CCP estimator and the
V-CCP estimator is that the latter relies on land values to identify the profit function while
the former relies on a priori restrictions.

The second counterfactual increases the crop replanting costs as

θ̃ (crop, 0) = θ (crop, 0) + λ (θ (crop, 1)− θ (crop, 0)) .

The difference θ (crop, 1) − θ (crop, 0) captures the benefits of leaving land out of crops for
a year. One such benefit is to allow soil nutrient levels to recover, reducing the need for
fertilizer inputs. When it is difficult to measure the fertilizer saved by leaving land fallow,
one can use the switching cost parameters to implement a counterfactual that resembles a
fertilizer tax. A motivation for this type of counterfactual is that higher fertilizer prices would
be a likely consequence of pricing greenhouse gas emissions, as fertilizer production is very
fossil-fuel intensive. Here we impose λ = 0.1. So, this exercise changes the costs of replanting
crops in a way that reflects 10% of the benefits of leaving land out of crops for one year.47

Formally, θ0 (a) is a 3 × 1 vector, and we take θ̃0 (a) = H0 (a) θ0 (a), with H0 (nocrop) = I,
45One could also argue that it is not plausible that staying out of crops for only two years would lead to

dramatically higher costs of planting crops. However, as mentioned previously, we observe very few fields in
the data with field state k = 2 which have not been out of crops for longer than two years; i.e., fields which
have been out of crops for at least two years have typically been out of crops for a long time.

46See Scott (2013) for a formal definition and further discussion. The LREs estimated here are somewhat
higher than those found in Scott (2013) (although not significantly so). We find that this is largely due to our
different sample combined with the absence of unobserved heterogeneity: when Scott’s estimation strategy is
applied to our sample of counties ignoring unoberseved heterogeneity, LREs are very similar to those presented
here.

47As with the LRE, we fix Rc and Rnc at their mean level for each county.
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Table 5: Policy Counterfactuals

Estimator: CCP V-CCP
Long-run elasticity 0.57 0.57
Fertilizer tax 0.32 -0.16
Fertilizer tax statistic is percentage change in long-run cropland.

Long-run elasticity is a 10 percent arc elasticity.

and

H0 (crop) =

1− λ λ 0
0 1 0
0 0 1

 .
Because H0 (nocrop) is diagonal but H0 (crop) is not, these are not similar matrices. By
Corollary 4(i) and Proposition 5(ii), the counterfactual choice probability is not identified.

Indeed, as shown in Table 5, the identifying restrictions do matter when it comes to this
counterfactual. The CCP estimator leads to a 32% increase in cropland, while the V-CCP
estimator predicts a decrease in cropland, as expected. In other words, the CCP estimator
errs in predicting not just the magnitude, but also the sign of the change in crop acreage.
The reason behind this is that the CCP estimator cannot capture the benefits from leaving
land fallow (on average) and thus interprets this counterfactual as a subsidy rather than a
tax.

To summarize, when we only relax the identifying restrictions (i.e. moving from the CCP
to the V-CCP estimator), the LRE does not change, as it involves only a transformation
of the identified component of the profit function. However, the land use pattern in the
second counterfactual, which involves a transformation of the non-identified part of payoffs,
is substantially altered when we relax the identifying restrictions.

7 Conclusions

This paper studies the identification of counterfactuals in dynamic discrete choice models.
We ask (i) whether counterfactual behavior and welfare can be identified when the model
parameters are not; and if so, (ii) precisely which counterfactuals are identified and which are
not. We provide a minimal set of sufficient conditions that determine whether a counterfactual
is identified and that are straightforward to verify in practice.

For the applied examples of a monopolist’s entry/exit decisions and a farmer’s land use
decisions, we explore relevant counterfactuals. The results call for caution while leaving room
for optimism: although counterfactual behavior and welfare can be sensitive to identifying
restrictions imposed on the model, counterfactuals can often be designed in a way that makes
them robust to such restrictions.
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A Appendix: Proofs of Propositions

A.1 Identification of the Dynamic Discrete Choice Model

A.1.1 Proof of Proposition 1

Fix the vector πJ ∈ RX . Then,

πa = va − βFaV = V − σψa − βFaV = (I − βFa)V − σψa

where for a = J
V = (I − βFJ)−1 (πJ + σψJ) .

After substituting for V , we have48

πa = (I − βFa) (I − βFJ)−1 (πJ + σψJ)− σψa.

A.1.2 Proof of Remark 1

Action J is a renewal action if for all a, j ∈ A

FaFJ = FjFJ . (40)

Lemma 3 If J is a renewal action, then for all a ∈ A

Aa = I + β (FJ − Fa) .

Proof. Using the definition of Aa from Proposition 1,

Aa ≡ (I − βFa) (I − βFJ)−1 = (I − βFa)
∞∑
t=0

βtF tJ

=
∞∑
t=0

βtF tJ − βFa −
∞∑
t=1

βt+1FaFJF
t−1
J .

48(I − βFJ) is invertible because FJ is a stochastic matrix and hence the largest eigenvalue is equal or
smaller than one. The eigenvalues of (I − βFJ) are given by 1 − βλ, where λ are the eigenvalues of FJ .
Because β < 1 and λ ≤ 1, we have 1− βλ > 0.
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Given the renewal action property, FaFJ = F 2
J , we have

Aa =
∞∑
t=0

βtFJ − βFa −
∞∑
t=1

βt+1F t+1
J = I + β (FJ − Fa) .

We conclude that, even though renewability is a further restriction, it does not aid iden-
tification. It only simplifies the expression for Aa, a 6= J .

A.1.3 Proof of Proposition 2

We make use of two lemmas.

Lemma 4 If π (a, x; θ) satisfies

π(a, x; θ) = πa (x) θ, (41)

θ is identified provided rank [π−J −A−JπJ ] = dim (θ), where π−J = [π1, ..., πJ−1, πJ+1, ..., πA].

Proof. Assume π−J = π−Jθ. Then (5) becomes [π−J −A−JπJ ] θ = b−J . So, if the rank of
the matrix [π−J −A−JπJ ] equals dim (θ), then

θ =
[
(π−J −A−JπJ)′ (π−J −A−JπJ)

]−1
(π−J −A−JπJ)′ b−J .

Lemma 5 Let Da = [I − β(Fw ⊗F ka )]−1, where I is the identity matrix of size KW ×KW .

Let Ik be the identity matrix of size K, and 1 be the block vector 1 =

Ik...
Ik

 of size KW ×K.

Finally, let Aka =
(
Ik − βF ka

) (
Ik − βF kJ

)−1
. The following properties hold

(i) D−1
a 1 =

(
I − β(Fw ⊗ F ka )

)
1= 1(Ik − βF ka ).

(ii) Da1 =
(
I − β(Fw ⊗ F ka )

)
−11 = 1(Ik − βF ka )−1.

(iii) Aa1 = 1Aka.
Statements (ii) and (iii) state that the sum of block entries on each block row of Da and

Aa is constant for all block rows.

Proof. (i) Since Fw is a stochastic matrix, its rows sum to 1:
∑
j f

w
ij = 1, where fwij is the

(i, j)− th element of Fw. By the definition of the Kronecker product,

(Fw ⊗ F ka )1 =

 f
w
11F

k
a fw12F

k
a ... fw1WF

k
a

...
... ...

...
fwW1F

k
a fwW2F

k
a ... fwWWF

k
a


Ik...
Ik

 =


(∑

j f
w
1j

)
IkF

k
a

...(∑
j f

w
Wj

)
IkF

k
a

 = 1F ka

Thus, (I − β(Fw ⊗ F ka ))1 = 1(Ik − βF ka ).
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(ii) Let n be a non-negative integer. Then, (Fw)n is a stochastic matrix with rows
summing to 1. Therefore,

(Fw ⊗ F ka )n = (Fw)n ⊗ (F ka )n

and following the proof of (i), we obtain (Fw ⊗ F ka )n1 = 1(F ka )n. Now,

Da1 =
∞∑
n=0

βn(Fw ⊗ F ka )n1 = 1
∞∑
n=0

βn(F ka )n = 1(Ik − βF ka )−1.

(iii) The proof is a direct consequence of (i) and (ii). Indeed,

Aa1 = (I−β(Fw⊗F ka ))DJ1 = (I−β(Fw⊗F ka ))1(Ik−βF kJ )−1 = 1(Ik−βF ka )(Ik−βF kJ )−1 = 1Aka.

We now provide the proof of Proposition 2; we focus on the binary choice {a, J} for
notational simplicity, but the general case is obtained in the same fashion. Let θ be the
vector of 4K unknown parameters (e.g. θa0 = [θ0(a, k1), ..., θ0(a, kK)]′),

θ =


θa0
θJ0
θa1
θJ1

 .
The parametric form of interest is linear in the parameters; stacking the payoffs for a

given w and all k we have:

πa (w) = [Ik, 0k, Ra(w)Ik, 0k] θ

and
πJ (w) = [0k, Ik, 0k, RJ (w) Ik] θ

Collecting πa (w) for all w, we get πa = πaθ, where

πa =

Ik 0k Ra(w1)Ik 0k
...

...
...

...
Ik 0k Ra(W )Ik 0k

 (42)

and similarly for πJ . In Lemma 4, we showed that identification hinges on the matrix
(πa −AaπJ). This matrix equals:

πa −AaπJ =


Ik...
Ik

 , −Aa
Ik...
Ik

 , Ra, −AaRJ

 (43)

where Ra = [Ra(w1)Ik, ..., Ra(wW )Ik]′ (the same for RJ).
It follows from Lemma 5 that the first two block columns of (43) consist of identical blocks

each (the first block column has elements Ik, and the second, −Aka). As a consequence, the
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respective block parameters θa0 , θJ0 , are not identified unless extra restrictions are imposed.49

The remaining parameters, θa1 , θJ1 , are identified as follows.
Consider (πa −AaπJ) θ = ba, or using (43):Ik...

Ik

 θa0 −
A

k
a

...
Aka

 θJ0 +Raθ
a
1 −

[
I − β

(
Fw ⊗ F ka

)] [
I − β

(
Fw ⊗ F kJ

)]−1
RJθ

J
1 = ba.

Left-multiplying both sides by Da =
[
I − β

(
Fw ⊗ F ka

)]−1
and using Lemma 5, we obtain:

(
Ik − βF ka

)−1

...(
Ik − βF ka

)−1

 θa0 −

(
Ik − βF kJ

)−1

...(
Ik − βF kJ

)−1

 θJ0 +DaRaθ
a
1 −DJRJθ

J
1 = Daba.

Take the w block row of the above:(
Ik − βF ka

)−1
θa0 −

(
Ik − βF kJ

)−1
θJ0 + e′wDaRaθ

a
1 − e′wDJRJθ

J
1 = e′wDaba (44)

where e′w = [0, 0, ..., Ik, 0, ...0] with Ik in the w position. Since W ≥ 3, take two other distinct
block rows corresponding to w̃, w and difference both from the above to obtain:[(

e′w − e′w̃
)
DaRa

(
e′
w̃
− e′w

)
DJRJ

(e′w − e′w)DaRa (e′w − e′w)DJRJ

] [
θa1
θJ1

]
=
[(
e′w − e′w̃

)
Daba

(e′w − e′w)Daba

]
which proves the Proposition.

A.2 Identification of Counterfactuals

A.2.1 Proof of Lemma 2

Assume without loss that J = A. To prove Lemma 2, we first make use of Lemma 6 below.
Define

∂φ−J
∂p

=


Φ11 Φ12 · · · Φ1,A−1
Φ21 Φ22 · · · Φ2,A−1

...
...

...
...

ΦA−1,1 ΦA−1,2 ... ΦA−1,A−1

 ≡ Φ

where Φij are the X × X matrices with elements ∂φiJ (p(x))
∂pj(x′) , with x, x′ ∈ X for each i, j =

1, ..., A − 1. Note that Φij is diagonal because ∂φiJ (p(x))
∂pj(x′) = 0 when x 6= x′. Next, define the

diagonal matrices

Pa =


pa (x1) 0 · · · 0

0 pa (x2) · · · 0
...

... . . . ...
0 0 · · · pa (X)


for a = 1, ..., A− 1; and let P = [P1, P2, ..., PA−1]. Lemma 6 follows.

49In the multiple choice one block column is a linear combination of the remaining (J − 1) corresponding
to θ0; therefore we need to fix θJ0 for one action J to identify θ−J0 .
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Lemma 6 The Arcidiacono-Miller function ψJ (p) is continuously differentiable with deriva-
tive:

∂ψJ
∂p

= PΦ.

Proof. Recall that

ψJ (p (x)) =
∫

max
k∈A
{φkJ (p (x)) + εk} dG (ε) .

Because φjJ (p (x)) is a continuously differentiable function, as shown by Hotz and Miller
(1993), so is ψJ (p (x)). For x 6= x′, ∂ψJ (p(x))

∂pa(x′) = 0 for all a, because ∂φkJ (p(x))
∂pa(x′) = 0 for all k.

For x = x′, apply the Chain Rule and obtain

∂ψJ (p (x))
∂pa (x) =

∫
∂

∂pa (x)

[
max
k∈A
{φkJ (p (x)) + εk}

]
dG (ε)

=
J−1∑
j=1

∫
1
{
j = arg max

k∈A
{φkJ (p (x)) + εk}

}
dG (ε) ∂φjJ (p (x))

∂pa (x)

=
J−1∑
j=1

pj (x) ∂φjJ (p (x))
∂pa (x)

= p′ (x)


∂φ1J (p(x))
∂pa(x)

...
∂φJ−1,J (p(x))

∂pa(x)


where p′ (x) = [p1 (x) , ..., pJ−1 (x)]. Note that

∂ψJ
∂p

= [Ψ1, ...,ΨJ−1]

where Ψa is the X × X diagonal matrix with elements ∂ψJ (p(x))
∂pa(x) , x ∈ X , for a = 1, ...J − 1.

Hence,
∂ψJ
∂p

= [P1, P2, ..., PJ−1] Φ.

Recall the definition of b−J(p) : R(A−1)X → R(A−1)X in Section 2 (here we ignore σ for
simplicity). Because ψa = ψJ − φaJ , we have

b−J (p) =

 A1 − I
...

AJ−1 − I

ψJ (p) + φ−J (p) ,

where ψJ(p) is a column vector with entries ψJ(p(x)), x ∈ X , and φ−J(p) is an (A − 1)X-
valued function with elements φaJ (p (x)). Because both functions ψJ (p) and φ−J (p) are
differentiable, by Lemma 6 we have

∂b−J
∂p

= A∂ψJ
∂p

+ ∂φ−J
∂p

= [AP + I] Φ,
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where A =

 A1 − I
...

AJ−1 − I

 has dimension (A− 1)X ×X.

Note that, by the Hotz-Miller inversion (Hotz and Miller (1993)), all block-matrices Φij

of Φ are invertible. Further, the blocks are all linearly independent, so Φ is invertible as well.
Thus

[
∂b−J (p)
∂p

]
will be invertible if [AP + I] is. Using the identity det(I+AB) = det(I+BA)

and the property
∑
a Pa = I, we obtain

det (AP + I) = det

(
I +

J−1∑
a=1

Pa (Aa − I)
)

= det

(
PJ +

J−1∑
a=1

PaAa

)

But Aa = (I − βFa)(I − βFJ)−1 and therefore

det (AP + I) = det

(
PJ +

J−1∑
a=1

Pa(I − βFa)(I − βFJ)−1
)

= det

(
PJ(I − βFJ)−1 +

J−1∑
a=1

Pa(I − βFa)
)
det

(
(I − βFJ)−1

)

= det

(
J∑
a=1

Pa(I − βFa)
)
det

(
(I − βFJ)−1

)

= det

(
I − β

J∑
a=1

PaFa

)
det

(
(I − βFJ)−1

)
Note that

∑J
a=1 PaFa is a stochastic matrix, since all its elements are non-negative and(∑J

a=1 PaFa
)

1 =
∑J
a=1 Pa1 =

(∑J
a=1 Pa

)
1 = 1, where 1 is a X × 1 vector of ones. Thus,

det
(
I − β

∑J
a=1 PaFa

)
is nonzero and det (AP + I) 6= 0.

A.2.2 Proof of Proposition 1

Assume without loss that action A belongs to both sets A and Ã, and take J = A. The
implicit function theorem allows us to locally solve (16) with respect to p̃ provided the matrix

∂

∂p̃

[
h−J (π)− Ã−J π̃J − b̃−J (p̃)

]
= − ∂

∂p̃
b̃−J (p̃)

is invertible; this is proved in Lemma 2. The vector p̃ does not depend on the free parameter
πJ if and only if

∂

∂πJ

[
ha (π1, π2..., πJ)− ÃahJ (π1, π2..., πJ)− b̃a (p̃)

]
= 0

for all a ∈ Ã, with a 6= J and all π. But, the above yields

∑
l∈A,l 6=J

∂ha
∂πl

∂πl
∂πJ

+ ∂ha
∂πJ

= Ãa

 ∑
l∈A,l 6=J

∂hJ
∂πl

∂πl
∂πJ

+ ∂hJ
∂πJ
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where, for each a ∈ Ã and l ∈ A, the matrix
[
∂ha
∂πl

]
has dimension X̃ × X; while Ãa is an

X̃ × X̃ matrix. Using (4),

∑
l∈A,l 6=J

∂ha
∂πl

Al + ∂ha
∂πJ

= Ãa

 ∑
l∈A,l 6=J

∂hJ
∂πl

Al + ∂hJ
∂πJ

 (45)

or, [
∂ha
∂π1

∂ha
∂π2

... ∂ha
∂πJ

] [A−J
I

]
= Ãa

[
∂hJ
∂π1

∂hJ
∂π2

... ∂hJ
∂πJ

] [A−J
I

]

For a ∈ Ã, define the X̃ ×AX matrix (recall J = A)

∇ha (π) =
[
∂ha
∂π1

∂ha
∂π2

... ∂ha
∂πJ

]
.

Then, stacking the above expressions for all a ∈ Ã, with a 6= J , we obtain

∇h−J (π)
[
A−J
I

]
= Ã−J∇hJ (π)

[
A−J
I

]
.

Now apply the property vecbr (BCA′) = (A�B) vecbr (C) to obtain:([
A′−J I

]
� I

)
vecbr (∇h−J (π))−

([
A′−J I

]
� Ã−J

)
vecbr (∇hJ (π)) = 0

[[
A′−J I

]
� I, −

[
A′−J I

]
� Ã−J

]
︸ ︷︷ ︸(

Ã−1
)
X̃X×

(
ÃX̃
)
(AX)

[
vecbr (∇h−J (π))
vecbr (∇hJ (π))

]
︸ ︷︷ ︸(

ÃX̃
)
(AX)×1

= 0,

which is (18). Note that
[
A′−J I

]
is an X × AX matrix, while

([
A′−J I

]
� I

)
is an(

Ã− 1
)
X̃X ×

(
Ã− 1

)
AX̃X matrix.50 Similarly,

([
A′−J I

]
� Ã−J

)
is an

(
Ã− 1

)
X̃X ×

AX̃X matrix, and Ã−J is an
(
Ã− 1

)
X̃ × X̃ matrix.

A.2.3 Proof of Example 1, Section 3.2

Let a = 1 if replace, and a = 2 if keep. Then

π̃ =
[
H11 H12
H21 H22

]
π

where H11 = (1 + λ) I, H21 = 0, H22 = I, and H12 = −λ [1, 0], where 1 is a vector of ones
and 0 is a matrix with zeros (see footnote 17). Let J = 2. By Corollary 2, p̃ is identified if
and only if (

H11 − Ã1H21
)
A1 +H12 − Ã1H22 = 0

50With abuse of notation, the identity matrix in
[
A′−J I

]
is an X ×X matrix, while the identity matrix

after � in
([
A′−J I

]
� I
)

is
(
Ã− 1

)
X̃ ×

(
Ã− 1

)
X̃.
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or
(1 + λ) IA1 − λ [1, 0]−A1I = 0

which implies
λA1 = λ [1, 0] .

This implies A1 is non-invertible, which is a contradiction.

A.2.4 Proof of Corollary 1

Since h is action diagonal, ∂ha
∂πl

= 0, l 6= a, and (19) stems directly from (18).

A.2.5 Proof of Corollary 2

Because ∂ha
∂πl

= Hal, equation (45) in the proof of Theorem 1 becomes

∑
l 6=J

HalAl +HaJ = Ãa

∑
l 6=J

HJlAl +HJJ

 .
In the “action diagonal” case, Hal = HJl = 0 for all a, J 6= l.

A.2.6 Proof of Corollary 3

Equation (21) is trivially satisfied since Ha = I and Aa = Ãa for all a.

A.2.7 Proof of Corollary 4

(i) Equation (21) becomes Ha = AaHJA
−1
a , for all a 6= J . (ii) Diagonal similar matrices are

equal to each other, so Ha = H, which implies H = AaHA
−1
a , for all a.

A.2.8 Proof of Corollary 5

We make use of the following Lemma:

Lemma 7 Suppose Ã = A, X̃ = X , F̃a = Fa, and π̃a = Hπa for all a ∈ A. Assume H is
diagonal with k pairwise distinct diagonal entries λ1, ..., λk and corresponding multiplicities
n1, ..., nk. Assume also H = AaHA

−1
a for all a. We partition Fa and FJ in blocks F aij and

F Jij of size ni×nj (corresponding to the multiplicities). To identify p̃, it is necessary that the
matrices Fa, a 6= J , have diagonal blocks F aii given by

(I − βF aii)
(
I − βF Jii

)−1
1 = 1, (46)

where 1 is a ni × 1 vector of ones; and off-diagonal blocks F aij, i 6= j, given by

F aij = (I − βF aii)(I − βF Jii )−1F Jij . (47)

Furthermore, the right hand side of (47) must be between zero and one.
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Proof. Suppose AaH = HAa for all a, and H has the form

H = diag {λ1In1 , ..., λkInk} .

We write Aa in partitioned form, (Aa)ij , so that it conforms with the decomposition of H.
Then the corresponding off-diagonal blocks of AaH −HAa satisfy

(λi − λj) (Aa)ij = 0

for i 6= j. Therefore, (Aa)ij = 0, for i 6= j and Aa must be block diagonal:

Aa = diag {Aa1, ..., Aak}

Then the definition of Aa implies:

I − βFa = Aa (I − βFJ)

or
β−1 (I −Aa) = Fa −AaFJ

The left hand side is block diagonal. Therefore, the off-diagonal blocks satisfy

F aij −Aai F Jij = 0 (48)

For the diagonal blocks we have

β−1 (I −Aai ) = F aii −Aai F Jii (49)

We can isolate Aai from (49) to obtain

Aai = (I − βF aii)
(
I − βF Jii

)−1
.

Substitute this into (48) and get (47). Note that (47) implies that, given F J and F aii, all
remaining blocks of F a are uniquely determined.

Because Fa are stochastic matrices so that their rows add to 1 and all elements are between
0 and 1, there are further restrictions that the blocks of Fa must satisfy. Indeed, consider
without loss the first block row of Fa:

[F a11, F
a
12, ..., F

a
1k] .

Then each row belonging to this block row must add to 1. Let 1 be a vector of ones. Then

F a111 + F a121 + ...+ F a1k1 = 1

where, abusing notation slightly, the vectors 1 above have varying length. Using (48) and
the fact that the rows of FJ add to one, we get

F a111 +Aa1

(
1− F J111

)
= 1.

Using (49) as well,
Aa11− 1 = Aa1F

J
111− β−1 (I −Aa1) 1−Aa1F J111
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which only holds if
Aa11=1

So,
(I − βF aii)

(
I − βF Jii

)−1
1 = 1.

Next, we return to Corollary 5. (i) The case of H = λI follows immediately from AaH =
HAa for all a. (ii) Next, suppose that one of the elements of H, say λ1, is simple, that is
n1 = 1 and k > 1:

H = diag {λ1, λ2In2 , ..., λkInk} .

Then, the corresponding elements (Aa)1j for j = 1, 2, ..., k, are all scalars. Because (Aa)ij = 0,
for i 6= j and Aa11=1, it is obvious that Aa1 = 1. From equations (48) and (49),

F a1j = Aa1F
J
1j , j = 2, ..., k,

β−1 (1−Aa1) = F a11 −Aa1F J11,

we conclude the corresponding rows of Fa and FJ are equal. (iii) Finally, when all elements
of H are pairwise distinct, all rows of Fa and FJ must be equal.

A.2.9 Proof of Corollary 6

Because Ha = I for all a, equation (21) is satisfied if and only if Aa = Ãa.

A.2.10 Proof of Corollary 7

If X̃ = X , F̃a = Fa, and π̃a = πa for all a ∈ Ã, then Haa = I and Hak = 0 for a ∈ Ã and
k ∈ A, a 6= k, and so (20) becomes Aa = Ãa for all a ∈ Ã, which is satisfied because F̃a = Fa
for all a.

A.2.11 Proof of Proposition 3

We make use of Lemma 8 below, which holds in the general case. Suppose that A =
{1, 2, ..., A}. Without loss, take the reference action to be J = 1 and suppose action a = A is
eliminated, so that Ã = {1, 2, ..., A− 1}. Also without loss, adjust the set of states accord-
ingly: X = {1, ..., x, x+ 1, ..., X} and X̃ = {1, ..., x}.

The counterfactual payoff for action a is the x× 1 vector:

π̃a =
[
Ix 0

]
πa. (50)

If some states are deleted, we need to adjust the state transitions. Indeed, the transition is
written as follows:

Fa =
[
F̂a fa
ga qa

]
(51)

where F̂a is the x × x top left submatrix of Fa, corresponding to the maintained states; fa
has dimension x× (X − x); ga is (X − x)× x; and qa is (X − x)× (X − x).
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We consider transition counterfactuals that are based on transitions of the maintained
states, F̂a, adjusted additively by the eliminated transitions. More precisely, set for each
a ∈ Ã the new transition matrices

F̃a = F̂a + far
′
a (52)

where ra is a k× (X − x) matrix such that r′a1 = 1. The adjustment far′a guarantees that F̃a
is a stochastic matrix (indeed, F̃a1 = F̂a1 + far

′1 = F̂a1 + fa1 = Fa1 = 1). More specifically,
the term far

′
a specifies how the probability mass in fa is redistributed among the remaining

states.

Lemma 8 The counterfactual CCP defined by (50), (51) and (52) is identified if and only if
the following restrictions hold for all a ∈ Ã:

(I − βF̂a)−1fa = (I − βF̂J)−1fJ (53)

and
far
′
a = fa

[(
I − βr′a

(
I − βF̂J

)−1
fJ

)(
I − βr′J

(
I − βF̂J

)−1
fJ

)−1
]
r′J . (54)

Proof. The counterfactual identification condition given in Corollary 2 becomes:[
Ix 0

]
Aa = Ãa

[
Ix 0

]
(55)

for a = 1, ..., A− 1 since Haj = 0, a 6= j. First, focus on the RHS of 55. Note that

Aa = (I − βFa) (I − βF1)−1 =
[
I − βF̂a −βfa
−βga 1− βqa

]
(I − βF1)−1

And so [
Ix 0

]
Aa =

[
I − βF̂a −βfa

]
(I − βF1)−1

Next, note that

(I − βF1)−1 =
[
I − βF̂1 −βf1
−βg1 I − βq1

]−1

=


(
I − βF̂1

)−1
+ β2

(
I − βF̂1

)−1
f1E

−1g1
(
I − βF̂1

)−1
β
(
I − βF̂1

)−1
f1E

−1

βE−1g1
(
I − βF̂1

)−1
E−1


where E = (I − βq1)− β2g1

(
I − βF̂1

)−1
f1.51 Therefore, the first term of

[
Ix 0

]
Aa is

(
I − βF̂a

) (
I − βF̂1

)−1
+β2

(
I − βF̂a

) (
I − βF̂1

)−1
f1E

−1g1
(
I − βF̂1

)−1
−β2faE

−1g1
(
I − βF̂1

)−1
,

51We use the following property:[
A B
C D

]−1

=
[
A−1 +A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

]
with E = D − CA−1B.
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while the second term is

β
(
I − βF̂a

) (
I − βF̂1

)−1
f1E

−1 − βfaE−1.

Next, we turn to the RHS of (55):

Ãa
[
Ix 0

]
=
[
Ãa 0

]
=
[(
I − βF̃a

) (
I − βF̃1

)−1
0
]

Define Âa = (I − βF̂a)(I − βF̂1)−1. Then (55) is satisfied if and only if the following two
conditions hold:

Âa + β2Âaf1E
−1g1

(
I − βF̂1

)−1
− β2faE

−1g1
(
I − βF̂1

)−1
= Ãa

and
β
[
Âaf1 − fa

]
E−1 = 0.

The latter becomes
Âaf1 = fa

Next, we substitute the latter into the former.

Âa + β2faE
−1g1

(
I − βF̂1

)−1
− β2faE

−1g1
(
I − βF̂1

)−1
= Ãa

which implies Âa = Ãa. Finally, note that Ãa is given by:

Ãa =
(
I − βF̂a − βfar′a

) (
I − βF̂1 − βf1r

′
1

)−1

Using the property (A−BC)−1 = A−1 +A−1B(I − CA−1B)−1CA−1, we get

Ãa =
(
I − βF̂a − βfar′a

)
×
[(
I − βF̂1

)−1
+
(
I − βF̂1

)−1
βf1

(
I − r′1

(
I − βF̂1

)−1
βf1

)−1
r′1

(
I − βF̂1

)−1
]

=
(
I − βF̂a − βfar′a

) (
I − βF̂1

)−1

+
(
I − βF̂a − βfar′a

) (
I − βF̂1

)−1
βf1

(
I − r′1

(
I − βF̂1

)−1
βf1

)−1
r′1

(
I − βF̂1

)−1

If we replace Âaf1 = fa, we get

Ãa = Âa − βfar′a
(
I − βF̂1

)−1

+βfa
(
I − r′1

(
I − βF̂1

)−1
βf1

)−1
r′1

(
I − βF̂1

)−1

−βfar′a
(
I − βF̂1

)−1
βf1

(
I − r′1

(
I − βF̂1

)−1
βf1

)−1
r′1

(
I − βF̂1

)−1
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So, to satisfy Âa = Ãa, we need the sum of the last three terms to be zero. This implies

far
′
a = fa

[(
I − βr′a

(
I − βF̂1

)−1
f1

)(
I − βr′1

(
I − βF̂1

)−1
f1

)−1
]
r′1.

Next, we return to Corollary 3. Assume x = (k,w), then

Fa = F ka ⊗ Fw =

 f
a
11F

w fa12F
w ... fa1KF

w

...
... ...

...
faK1F

w faK2F
w ... faKKF

w


where faij = Pr (k′ = j|k = i, a) are the elements of F ka . Because kt = at−1, Fa is a matrix
with zeros except in the a − th column. The a − th column is a block-vector with blocks
Fw. If action a = A is eliminated from A = {1, 2, ..., A}, then for all a 6= A, we have fa = 0,
where fa is defined in (51). Because fJ = 0 as well, conditions (53) and (54) in Lemma 8 are
trivially satisfied and the counterfactual CCP is identified.

A.2.12 Proof of Corollary 8

Suppose that A = {1, 2, ..., A}. Without loss, take the reference action to be J = 1 and
suppose action j = A+ 1 is new, so that Ã = {1, 2, ..., A+ 1}. Assume X̃ = X , F̃a = Fa, and
π̃ = Hπ + g, with π̃a = πa for all a ∈ A, and

π̃j =
A∑
a=1

Hjaπa + gj

The identification condition (20) becomes:

Aa = Ãa, for a = 2, ..., A

and

Hj1 +
A∑
a=2

HjaAa = Ãj , (56)

since Hal = 0 and Ha = I for all a, l 6= j. The first set of restrictions are satisfied, since
transitions are unaffected. Now, post-multiply (56) by (I − βF1) =

(
I − βF̃1

)
to obtain

(recall that the reference action is J = 1):

Hj1(I − βF1) +
A∑
a=2

Hja(I − βFa) = I − βF̃j

or
A∑
a=1

Hja (I − βFa) = I − βF̃j

or

F̃j =
A∑
a=1

HjaFa + β−1
(
I −

A∑
a=1

Hja

)
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Since transitions are stochastic matrices, we have that F̃j1 = 1, where 1 is a vector of ones,
so that

1 =
A∑
a=1

Hja1 + β−1
(

1−
A∑
a=1

Hja1
)

or
A∑
a=1

Hja1 = 1.

A.2.13 Proof of Proposition 4

To prove Proposition 4, first note that for affine counterfactuals, p̃ is a function of πJ through
an equation of the form:

CπJ + c0 = b (p̃)

where C is an (A − 1)X ×X matrix and c0 an (A − 1)X × 1 vector that do not depend on
πJ or p̃.52

The counterfactual CCP is identified under the set of linear restrictions (24), if for all
πJ 6= π̂J such that QπJ = Qπ̂J = q, it holds p̃(πJ) = p̃(π̂J). Proposition 4 is a direct
consequence of the following proposition:

Proposition 10 Given the matrix C formed by a counterfactual transformation H and the
linear restrictions (22), the counterfactual CCP is identified if and only if any of the following
equivalent statements hold:

1. For all πJ 6= π̂J such that QπJ = Qπ̂J = q, it holds C (πJ − π̂J) = 0.

2. N (Q) ⊆ N (C), where N(Q) denotes the nullspace of Q.

3. There is an (A− 1)X × d matrix M such that C = MQ.

Proof. For the first statement, take πJ 6= π̂J such that QπJ = Qπ̂J = q. Then p̃(πJ) =
p̃(π̂J) implies b−1 (CπJ + c0) = b−1 (Cπ̂J + c0), or CπJ+c0 = Cπ̂J+c0 or⇔⇔ C (πJ − π̂J) =
0. It is clear that this argument holds in reverse as well.
For the second statement, take u ∈ N(Q) and π∗J a particular solution of QπJ = q. Set

52To see this, following the binary example in Section 3.2, we obtain:(∑
â6=J

(
Haâ − ÃaHJâ

)
Aâ +HaJ − ÃaHJJ

)
πJ = ÃagJ − g̃

a
+ ba(p̃)−

∑
â 6=J

(
Haâ − ÃaHJâ

)
ba(p)

so that

C =

(∑
â6=J

(
Haâ − ÃaHJâ

)
Aâ +HaJ − ÃaHJJ

)
and

c0 = ÃagJ − g̃
a
−
∑
â6=J

(
Haâ − ÃaHJâ

)
ba(p).
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π̂J = π∗J + u and note that π̂J is also a solution (since Qπ̂J = Qu+Qπ∗J and Qu = 0 since u
is in the null-space of Q). Thus,

C (π̂J − π∗J) = C (π∗J + u− π∗J) = Cu = 0

For the converse, suppose that there exist πJ 6= π̂J such that QπJ = Qπ̂J = q, but
C (πJ − π̂J) 6= 0. Then, Q (πJ − π̂J) = q − q = 0. Thus, πJ − π̂J ∈ N(Q) ⊆ N(C) and
thus C (πJ − π̂J) = 0, contradiction.
We now show that 2 and 3 are equivalent. We rely on the known fact that N(Q) = [col(Q′)]⊥,
where [X]⊥ is the orthogonal complement of X. Hence, N(Q) = [row(Q)]⊥. It is easy to
show that A ⊆ B if and only if [B]⊥ ⊆ [A]⊥. Therefore,

N (Q) ⊆ N (C)⇔ [row(Q)]⊥ ⊆ [row(C)]⊥ ⇔ row(C) ⊆ row(Q) (57)

But (57) states that every row of C is a linear combination of the rows of Q. The coefficients
in this linear combination form the matrix M . For the converse, take a row of C; from 3, it
is a linear combination of the rows of Q and thus belongs to row(Q). Therefore, since all the
rows of C belong to row(Q), so does their linear span.

A.2.14 Proof of Corollary 9

Take C = MQ or CQ′ = MQQ′, or CQ′(QQ′−1 = M . Hence, C = CQ′(QQ′−1Q, or
⇒ C

(
I −Q′ (QQ′)−1Q

)
= 0. For the converse, from (25) we have C = CQ′ (QQ′)−1Q.

Take M = CQ′(QQ′−1 to obtain C = MQ. Finally, note that rankC = X − dim(N(C)) ≤
X − dim(N(Q)) = rankQ = d.

A.2.15 Proof of Proposition 5

(i) Consider the counterfactual payoff π̃(a, k, w) = θ0(a, k) + h1 [R′(a,w)θ1(a, k)]. Since the
term R′(a,w)θ1(a, k) is known for all (a, k, w), we can write this as an “additive transfers”
as follows: π̃(a, k, w) = π(a, k, w) + g, where g = h1 [R′(a,w)θ1(a, k)] − R′(a,w)θ1(a, k) is
known.

(ii) Consider the counterfactual

π̃(a,w) = H0 (a) θ0 (a) +R′ (a,w) θ1 (a)

for a = 1, ..., J , where we stack θ0(a, k) and θ1 (a, k) for all k and H0(a) is a K ×K matrix.
From the proof of Proposition 2, equation (44), we know that for any w, the w block row of
(4) is (

Ik − βF ka
)−1

θa0 −
(
Ik − βF kJ

)−1
θJ0 + e′wDaRaθ

a
1 − e′wDJRJθ

J
1 = e′wDaba (p) .

The corresponding w block row for the counterfactual scenario is(
Ik − βF ka

)−1
H0 (a) θa0 −

(
Ik − βF kJ

)−1
H0 (J) θJ0 + e′wDaRaθ

a
1 − e′wDJRJθ

J
1 = e′wDaba (p̃) .

Lack of identification of θ0 is represented by the free parameter θJ0 . So, applying the
implicit function theorem with respect to θJ0 in the equation above, and using (44), we prove
the claim.
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A.2.16 Proof of Corollary 10

Assume π̃a = πa, all a, then H0 (a) = H0 (J) = I. From Proposition 5, it is clear that p̃ is
identified if and only if for all a 6= J , Aka = Ãka. When F̃w 6= Fw and F̃ ka = F ka , the equality
Aka = Ãka trivially holds.

A.2.17 Proof of Proposition 6

Proposition 6 is a direct consequence of Lemma 9 below.

Lemma 9 Assume Ã = A, X̃ = X, and let ha (πa) = Haπa + ga, all a. Define the matrices

C =
[
H−JA−J − Ã−JHJ

]
D =

[(
I − βF̃J

)
(I − βFJ)−1 −HJ

]
.

Then ∆V is identified if and only if

P̃
[
σC − ÃD

]
= D. (58)

where the matrices Ã and P̃ are defined as in Lemma 2 (but based on Ãa and p̃). Furthermore,
the following holds:

1. If C = 0, D = 0, then ∆V is identified.

2. If C = 0, D 6= 0, then ∆V is not identified.

3. If C 6= 0, D = 0, then, provided there is no combination of actions a and j such that
p̃a (x) = p̃j (x) for some state x, ∆V is not identified.

4. If C 6= 0, D 6= 0, then ∆V is generically not identified.

Proof. We know that
V = (I − βFJ)−1 (πJ + σψJ (p))

and similarly for Ṽ
Ṽ =

(
I − βF̃J

)−1
(hJ (πJ) + σψJ (p̃)) .

Then,
∂∆V
∂πJ

=
(
I − βF̃J

)−1
(
HJ + σ

∂ψJ (p̃)
∂p̃

∂p̃

∂πJ

)
− (I − βFJ)−1 .

Therefore, ∂∆V
∂πJ

= 0 if and only if

σ
∂ψJ (p̃)
∂p̃

∂p̃

∂πJ
= D (59)

From Lemma 6, we know that
∂ψJ
∂p̃

= P̃ Φ̃,
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where P̃ and Φ̃ are the counterfactual counterpart of P and Φ defined in Lemma 6. By the
Implicit Function Theorem, we know that

∂p̃

∂πJ
=
[
∂b̃−J (p̃)
∂p̃

]−1 (
H−JA−J − Ã−JHJ

)
.

and, by Lemma 2, [
∂b̃−J (p̃)
∂p̃

]−1

= Φ̃−1
(
ÃP̃ + I

)−1
,

Thus (59) becomes:
σP̃

(
ÃP̃ + I

)−1
C = D (60)

Note that53 (
ÃP̃ + I

)−1
= I − Ã

(
I + P̃ Ã

)−1
P̃ .

Define M =
(
I + P̃ Ã

)
. Then,

P̃
(
ÃP̃ + I

)−1
= P̃ − P̃ ÃM−1P̃ = P̃ − (M − I)M−1P̃ = M−1P̃

Then, (60) becomes:
σM−1P̃C = D

or
σP̃C = MD =

(
I + P̃ Ã

)
D

or
P̃ (σC − ÃD) = D

Next, we examine the four mutually exclusive possibilities. Statement 1 is obvious. State-
ment 2 follows from (60). Statement 3 amounts to P̃C = 0. Recall P̃ is X × (A− 1)X and
C is (A− 1)X ×X. If there are no two actions a and j such that p̃a (x) = p̃j (x) for some x,
then P̃ is full rank (recall p̃a (x) > 0 for all a, x, by the large support assumption on G (ε)).
This implies the matrix

(
P̃ ′P̃

)−1
exists, and so C = 0. But this is impossible since C 6= 0

by assumption.
Finally, for statement 4, suppose C 6= 0, D 6= 0. Recall that p̃ as a function of πJ is the

unique solution of
b̃−J (p̃) = Cπ−J +HJb (p)

The solution set is X-dimensional. Thus, (58) contains X2 equations and X unknowns (πJ).
By Sard’s Theorem, the system has generically no solution.

A.2.18 Proof of Corollary 11

Lack of identification of θ0 is represented by the free parameter θJ0 . So, applying the same
argument as in Lemma 9, but differentiating ∆V with respect to θJ0 , we prove the claim.

53The equality makes use of the identity (I −BA)−1 = I +B (I −AB)−1 A.
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A.3 Extensions

A.3.1 Identification of Payoffs with Resale Prices

Case (i): Substitute V in (3) into (1):

πa = (I − βFa)V − σψa. (61)

Case (ii): Fix an element of the vector πJ at the state x, then solve for σ:

σ = 1
ψJ (x)

V (x)− β
∑
x′∈X

Pr
(
x′|J, x

)
V
(
x′
)
− πJ (x)


provided the right hand side is positive.

Case (iii): Fix E [πJ (x)], where the expectation is taken over x. Then,

σ = 1
E [ψJ (x)]

E [V (x)]− βE

∑
x′∈X

Pr
(
x′|J, x

)
V
(
x′
)− E [πJ (x)]


provided the right hand side is positive.

A.3.2 Identification of Payoffs with Unobservable Market-level States

In order to prove Propositions 8 and 9, we make use of the following Lemmas.

Lemma 10 For any action a, the expectational error term εζ (a, k, ω, ω∗) is mean indepen-
dent of k, ω: E

[
εζ (a, k, ω, ω∗) |k, ω

]
= 0 .

Proof. From the definition of εζ (a, k, ω, ω∗),

E
[
εζ (a, k, ω, ω∗) |k, ω

]
= E

[∑
k′

εζ
(
k′, ω, ω∗

)
F k
(
k′|a, k, ω

)
|k, ω

]

= E

[∑
k′

(∫
ω′
ζ
(
k′, ω′

)
dFω

(
ω′|ω

)
− ζ

(
k′, ω∗

))
F k
(
k′|a, k, ω

)
|k, ω

]

=
∑
k′

∫
ω′
ζ
(
k′, ω′

)
dFω

(
ω′|ω

)
F k
(
k′|a, k, ω

)
−
∑
k′

∫
ω∗
ζ
(
k′, ω∗

)
dFω (ω∗|ω)F k

(
k′|a, k, ω

)
= 0.

Note that the expectational error is also mean independent of all past (k, ω) (immediate
consequence of the law of iterated expectations).

Lemma 11 Consider the functions g (kimt, ωmt) and F (k′|kimt, ωmt). Assume wmt is an
observable subvector of ωmt and consider the data set {(kimt, wmt, zmt) : i = 1, ..., N ;m =
1, ...,M ; t = 1, ..., T}. Assume that for each m and t, one can obtain the estimators ĝNmt (k) p→
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g (k, ωmt) and F̂Nmt (k′, k) p→ F (k′|k, ωmt) as N → ∞.54 For any function q (k, zmt), define
the estimators

1
MT

MT∑
m,t=1

[
q (k, zmt) ĝNmt (k)

]
, and

1
M (T − 1)

M(T−1)∑
m,t=1

[
q (k, zmt) ĝNmt+1 (k) F̂Nmt

(
k′, k

)]
.

Assume the following uniform conditions hold: (i)

lim sup
M,T,N

 1
MT

MT∑
m,t=1

E
∥∥∥q (k, zmt) ĝNmt

(
k′
)∥∥∥
 <∞,

lim sup
M,T,N

 1
M (T − 1)

M(T−1)∑
m,t=1

E
∥∥∥q (k, zmt) ĝNmt+1

(
k′
)
F̂Nmt

(
k′, k

)∥∥∥
 <∞; (62)

and (ii)

lim sup
M,T,N

 1
MT

MT∑
m,t=1

∥∥∥E [q (k, zmt)
(
ĝNmt

(
k′
)
− g

(
k′, ωmt

))]∥∥∥
 = 0

lim sup
M,T,N

 1
M (T − 1)

M(T−1)∑
m,t=1

∥∥∥∥∥E
[
q (k, zmt)

(
ĝNmt+1 (k′) F̂Nmt (k′, k)

−g (k′, ωmt+1)F (k′|k, ωmt)

)]∥∥∥∥∥
 = 0. (63)

If (zmt, ωmt) is i.i.d. across (m, t), or it is weakly dependent (in both indices t and m),
and if

E
∥∥q (k, zmt) g

(
k′, ωmt+1

)∥∥ <∞,
E
∥∥q (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)∥∥ <∞,
then,

1
MT

MT∑
m,t=1

[
q (k, zmt) ĝNmt (k)

]
p→ E [q (k, zmt) g (k, ωmt)] , and

1
M (T − 1)

M(T−1)∑
m,t=1

[
q (k, zmt) ĝNmt+1

(
k′
)
F̂Nmt

(
k′, k

)] p→ E
[
q (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)]
as (N,M, T )→∞; or as (N,M)→∞ (if T is fixed); or as (N,T )→∞ (if M is fixed).

Proof. We only consider the second estimator; the first estimator is handled similarly. The
proof makes use of sequential convergence as a way to obtain joint convergence (e.g. Phillips

54Note that the asymptotic results ĝNmt (k) p→ g (k, ωmt) and F̂Nmt (k′, k) p→ F (k′|k, ωmt) as N → ∞ can be
obtained using the law of large numbers for exchangeable random variables (see, e.g., Hall and Heyde, 1980),
provided the observations i = 1, ..N for each index (m, t) are i.i.d. conditional on ωmt.
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and Moon, 1999, Lemma 6 and Theorem 1). The sequential limit can be obtained directly
from two facts: (i) ĝNmt (k) p→ g (k, ωmt) and F̂Nmt (k′, k) p→ F (k′|k, ωmt) as N →∞ implies

1
M (T − 1)

M(T−1)∑
m,t=1

[
q (k, zmt) ĝNmt+1

(
k′
)
F̂Nmt

(
k′, k

)]
p→ 1
M (T − 1)

M(T−1)∑
m,t=1

[
q (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)]
as N → ∞ for all (M,T ). And (ii) provided (zmt, ωmt) is i.i.d. across (m, t), or if the
correlation of (zmt, ωmt) and (zm′t′ , ωm′t′) dies out as the distance between (m, t) and (m′, t′)
increases, and provided

E
∥∥q (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)∥∥ <∞,
then, by the Weak Law of Large Numbers,

1
M (T − 1)

M(T−1)∑
m,t=1

[
q (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)] p→ E
[
q (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)]
as (M,T )→∞.

The sequential limit is obtained by first passing the limit N → ∞ and then the limit
(M,T )→∞. Provided conditions (62) and (63) hold, by Phillips and Moon’s (1999) Lemma
6 and Theorem 1, the sequential limit equals the simultaneous limit as (N,M, T )→∞.55

A.3.3 Proof of Proposition 8

Let b denote the primitives of the model: b = (π, σ, β,G, F ).
(a) Finite T . Suppose first that the terminal value VmT is known. Replace Vmt+1 in (33)

for a specific action j to get:

πamt+βεVam,t,t+1 = Vmt−βF kamt
[
πjmt+1 + βεVjm,t+1,t+2 + σψjmt+1 + βF kjmt+1Vmt+2

]
−σψamt

all a. Repeated substitution of Vmt+τ above leads to:

πamt + βεVam,t,t+1 = Vmt − βF kamt

[
T−1∑
τ=1

βτ−1Λjm,t,τ
(
πjmt+τ + βεVjm,t+τ,t+τ+1 + σψjmt+τ

)]
−βTF kamtΛjm,t,TVmT − σψamt (64)

where the matrices Λjm,t,τ are defined recursively:

Λjm,t,τ = I, for τ = 1
Λjm,t,τ = Λjm,t,τ−1F

k
jmt+τ−1, for τ ≥ 2.

55In general, the order of the limits can be misleading in cases in which all indices (N,M, T ) pass to infinity
simultaneously. We make use of the joint convergence because it holds under a wider range of circumstances
than the sequential convergence.
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Next, evaluate (64) for a = j and subtract it to obtain:

πamt − πjmt + β
(
εVam,t,t+1 − εVjm,t,t+1

)
= βT

(
F kjmt − F kamt

)
Λjm,t,TVmT − σ (ψamt − ψjmt) +

+ β (Fjmt − Famt)
[
T−1∑
τ=1

βτ−1Λjm,t,τ
(
πjmt+τ + βεVjm,t+τ,t+τ+1 + σψjmt+τ

)]
. (65)

For any known vector function q (zmt), with elements q (k, zmt), apply the Hadamard multipli-
cation on both sides of (65) and take expectation. We eliminate the error terms, εVam,t+τ,t+τ+1
and ξakmt+τ , because zmt is in the time-t information set. Then,

E [q (zmt) ◦ πamt] = E [q (zmt) ◦ (πjmt − σ (ψamt − ψjmt))] +

+βE
[
q (zmt) ◦ (Fjmt − Famt)

[
T−1∑
τ=1

βτ−1Λjm,t,τ (πjmt+τ + σψjmt+τ )
]]

+βTE
[
q (zmt) ◦

(
F kjmt − F kamt

)
Λjm,t,TVmT

]
. (66)

where ◦ denotes the Hadamard product, and the expectations are taken over (zmt, ωmt, ..., ωmT ).
If the payoff π (j, kimt, wmt), the scale parameter σ and the terminal value function VmT

are known, then the RHS of (66) can be recovered from the data (using the results of Lemma
11). Because the RHS of (66) is known, for any two structures b and b′, with corresponding
payoffs π and π′, we have

E
[
q (zmt) ◦

(
πamt − π′amt

)]
= 0

for any function q. By the completeness condition, the equality above implies πamt−π′amt = 0
almost everywhere.

Next, consider the case of a renewal action J . Take (35), multiply both sides by q (zmt)
and take expectations:

E
[
q (zmt) ◦

(
πamt − πjmt − β

(
F kamt − F kjmt

)
πJmt+1

)]
= σE

[
q (zmt) ◦

(
β
(
F kamt − F kjmt

)
ψJmt+1 − (ψamt − ψjmt)

)]
.

Similar to the previous case, the RHS can be recovered from data (using Lemma 11).
Then, for any two structures b and b′ with corresponding payoffs π and π′,

E
[
q (zmt) ◦

(
πamt − πjmt − β

(
F kamt − F kjmt

)
πJmt+1

)]
= E

[
q (zmt) ◦

(
π′amt − π′jmt − β

(
F kamt − F kjmt

)
π′Jmt+1

)]
.

By the completeness condition,

πamt − πjmt − β
(
F kamt − F kjmt

)
πJmt+1 = π′amt − π′jmt − β

(
F kamt − F kjmt

)
π′Jmt+1 (67)

for almost all (wmt, wmt+1). Consider (67) for j = J . Because πJ (k,w) is known for all
observed states (k,w), we conclude that πamt − π′amt = 0 almost everywhere.

(b) Large T . Suppose again J is the renewal action. We do not necessarily assume that
the flow payoffs of the renewal action πJ is known. Instead we now assume πj is known for
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some action j for all k and w. This implies πj = π′j . Take the equation (67) above. Then,
for almost all (wmt, wmt+1),

πamt − π′amt = β(Famt − Fjmt)(πJmt+1 − π′Jmt+1)

It suffices to show that πJmt − π′Jmt = 0, since then πamt = π′amt, all a. Set a = J in the
above equation and evaluate recursively for any t,

πJmτ − π′Jmτ = βT
T∏
t=τ

(FJmt − Fjmt)(πJmT − π′JmT ) (68)

Because of the renewal property, we have:

T∏
t=τ

(FJt − Fjt) = (Fjτ − FJτ )
T∏
t=τ

Fjt,

and note that ‖FJt − Fjt‖ ≤ 2 for any t. Because the product of stochastic matrices is
stochastic, ∥∥∥∥∥

[
T∏
t=τ

Fjt

]∥∥∥∥∥ = 1.

Putting the claims together,∥∥∥∥∥(Fjτ − FJτ )
[
T∏
t=τ

Fjt

]∥∥∥∥∥ ≤ ‖Fjτ − FJτ‖
∥∥∥∥∥
[
T∏
t=τ

Fjt

]∥∥∥∥∥ ≤ 2.

Since β < 1 the sequence in the right hand side of (68) converges to zero provided the
flow payoffs πJ (k,w) and π′J (k,w) are bounded for almost all (k,w).

A.3.4 Proof of Proposition 9

The proof is similar to that of Proposition 8. Suppose first that σ is known. Multiply both
sides of (30) by a known function q (k, zmt) and take expectations:

E [q (k, zmt)π (a, k, wmt)] = E [q (k, zmt) (V (k, ωmt)− σψ (a, k, ωmt))]

−βE
[
q (k, zmt)

∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, k, wmt

)]
(69)

where the expectations are taken over (zmt, ωmt, ωmt+1). The RHS can be recovered from
data (using Lemma 11). Then, for any two structures b and b′ with corresponding payoffs π
and π′,

E
[
q (k, zmt)

(
π (a, k, wmt)− π′ (a, k, wmt)

)]
= 0.

By the completeness condition, π (a, k, wmt)− π′ (a, k, wmt) = 0 almost everywhere.
Next, suppose σ is not known, but π (a, k, w) is known for one combination of (a, k, w).

Take (69) for the known π (a, k, w):

σE [q (k, zmt)ψ (a, k, ωmt)] = E [h (k, zmt)V (k, ωmt)]

−βE
[
q (k, zmt)

∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, k, w

)]
− E [q (k, zmt)π (a, k, w)] .
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Table 6: Data Sources

Dataset Description Source
Cropland Data Layer Land cover http://nassgeodata.gmu.edu/CropScape/
DataQuick Real estate transactions, assessments DataQuick
US Counties County boundaries http://www.census.gov/cgi-bin/geo/shapefiles2010/layers.cgi

GAEZ Database Protected land, soil types http://www.gaez.iiasa.ac.at/
SRTM Topographical – altitutude and slope http://dds.cr.usgs.gov/srtm/
NASS Quick Stats Yields, prices, pasture rental rates http://www.nass.usda.gov/Quick Stats/
ERS Operating costs http://www.ers.usda.gov/data-products/commodity-costs-and-returns.aspx

NOOA Urban Centers Urban center locations and populations http://www.nws.noaa.gov/geodata/catalog/national/html/urban.htm

The RHS is known, which implies for any two σ and σ′,(
σ − σ′

)
E [q (k, zmt)ψ (a, k, ωmt)] = 0,

and so σ = σ′.

B Appendix: Data (for online publication)

Table 6 lists our data sources. All are publicly available for download save DataQuick’s land
value data. The Cropland Data Layer (CDL) is a high-resolution (30-56m) annual land-use
data that covers the entire contiguous United States since 2008.56

Next, we merge the above with an extensive database of land transactions in the United
States obtained from DataQuick. DataQuick collects transaction data from about 85% of US
counties and reports the associated price, acreage, parties involved, field address and other
characteristics. The coordinates of the centroids of transacted parcels in the DataQuick
database are known. To assign transacted parcels a land use, we associate a parcel with the
nearest point in the CDL grid.

A total of 91, 198 farms were transacted between 2008 to 2013 based on DataQuick.
However, we dropped non-standard transactions and outliers from the data. First, because
we are interested in the agricultural value of land (not residential value), we only consider
transactions of parcels for which the municipal assessment assigned zero value to buildings and
structures. Additionally, we drop transactions featuring multi-parcels, transactions between
family members, properties held in trust, and properties owned by companies. Finally, we
drop transactions with extreme prices: those with value per acre greater than $50,000, total
transaction price greater than $10,000,000, or total transaction price less than $60; these are
considered measurement error. After applying the selection criteria, there remained 24, 643
observations in DataQuick.

56The CDL rasters were processed to select an 840m subgrid of the original data, and then points in this
grid were matched across years to form a land use panel. The grid scale was chosen for two reasons. First,
it provides comprehensive coverage (i.e., most agricultural fields are sampled) without providing too many
repeated points within any given parcel. Second, the CDL data changed from a 56m to a 30m grid, and the
840 grid size allows us to match points across years where the grid size changed while matching centers of
pixels within 1m of each other. The CDL features crop-level land cover information. See Scott (2013) for how
“crops” and “non-crops” are defined.
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Table 7: Summary Statistics

Statistics Mean Std Dev Min Max
In Cropland 0.147 0.354 0 1
Switch to Crops 0.0162 0.126 0 1
Keep Crops 0.849 0.358 0 1
Crop Returns ($) 228 112 43 701
Slope (grade) 0.049 0.063 0 0.702
Altitude (m) 371 497 −6 3514
Distance to Urban Center (km) 79.8 63.7 1.22 362
Nearest commercial land value ($/acre) 159000 792000 738 73369656
Land value ($/acre) 7940 9720 5.23 50000
A slope of 1 refers to a perfect incline and a slope of 0 refers to perfectly horizontal land.

To obtain a rich set of field characteristics, we use soil categories from the Global Agro-
Ecological Zones database and information on protected land from the World Database on
Protected Areas. Protected land was dropped from all analyses. The NASA’s Shuttle Radar
Topography Mission (SRTM) database provides detailed topographical information. The raw
data consist of high-resolution (approx. 30m) altitudes, from which we calculated slope and
aspect, all important determinants of how land is used. Characteristics such as slopes and
soil categories are assigned to fields/parcels using nearest neighbor interpolation.

To derive a measure of nearby developed property values, we find the five restaurants near-
est to a field, and we average their appraised property values. For each field, we also compute
the distance to the nearest urban center with a population of at least 100,000. Location of
urban centers were obtained from the National Oceanic and Atmospheric Administration
(NOAA).

Finally, we use various public databases on agricultural production and costs from the
USDA. The final dataset goes from 2010 to 2013 for 515 counties and from 2008 to 2013 for
132 counties. Crop returns are based on information on yields, prices received, and operating
expenditures; non-crop returns are based on much more sparse information on pasture land
rental rates (see Scott (2013)).

Table 7 presents some summary statistics. Table 8 compares the transacted fields (in
DataQuick) to all US fields (in the CDL). Overall, the two sets of fields look similar. In
particular, the probability of keeping (switching to) crops is very similar across the two
datasets.

C Appendix: Estimation (for online publication)

C.1 Conditional Choice Probabilities

We estimate conditional choice probabilities using a semiparametric logit regression. We
are fully flexible over field states and year, but smooth across counties. In particular, we
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Table 8: Dataquick vs CDL Data – Time Invariant Characteristics

Mean by dataset DataQuick CDL
In Cropland 0.147 0.136
Switch to Crops 0.0162 0.0123
Keep Crops 0.849 0.824
Crop Returns ($) 228 241
Slope (grade) 0.049 0.078
Altitude (m) 371 688
Distance to Urban Center (km) 79.8 103
Nearest commercial land value ($/acre) 159000 168000

maximize the following log likelihood function:

max
θckt

∑
m′∈Sm

∑
i∈Im′

wm,m′I [kimt = k]
{

I [aimt = c] log (pmt (c, k, sim; θckt))
+I [aimt = nc] log (1− pmt (c, k, sim; θckt))

}

where Sm is the set of counties in the same US state as m, Im is the set of fields in county
m, wm,m′ is the inverse squared distance between counties m and m′. The conditional choice
probability is parameterized as follows:

pmt (c, k, sim; θckt) = exp (s′imθckt)
1 + exp (s′imθckt)

.

Note that without fields’ observable characteristics, this regression would amount to taking
frequency estimates for each county, field state, and year, with some smoothing across coun-
ties. Including covariates allows for within-field heterogeneity. The final specification for the
conditional choice probabilities only uses slopeim among regressors because it proved to be
the most powerful predictor of agricultural land use decisions (within counties).

The set of counties in Sm only includes counties which also appear in the DataQuick
database. For some states, the database includes a small number of counties, so in these
cases we group two or three states together. For example, only one county in North Dakota
appears in our sample, and it is a county on the eastern border of North Dakota, so we combine
North Dakota and Minnesota. Thus, for each county m in North Dakota or Minnesota, Sm
represents all counties in both states in our sample.57

C.2 Resale Price Regression

Next, we estimate the value function from resale prices. We view that our resale market
assumptions are not overly restrictive in the context of rural land which features a large
number of small agents. The land resale market is arguably thick, with a large number of

57In particular, we form a number of groups for such cases: Delaware and Maryland; North Dakota and
Minnesota; Idaho and Montana; Arkansas, Louisiana, and Mississippi; Kentucky and Ohio; Illinois, Indiana,
and Wisconsin; Nebraska and Iowa; Oregon and Washington; Colorado and Wyoming.
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transactions taking place every year.58 Moreover, we are able to control for a rich set of field
characteristics. Finally, we did not find evidence of selection on land use changes upon resale,
as discussed below.

As our transaction data is much more sparse than our choice data, we adopt a more
restrictive (parametric) form for modeling land values. We estimate the following regression
equation:

ln pRSit = X ′itθV + ηit

where pRSit is a transaction price (in dollars per acre), and Xit is a vector of characteristics
for the corresponding field. The covariates Xit include all variables in Table 7 (i.e. k,
slope, altitude, distance to urban centers, nearby commercial values). They also include year
dummies, returns interacted with year dummies, field state dummies interacted with year
dummies, and county dummies.

Table 9 presents the estimated coefficients. Although not shown in the table, the estimated
coefficients of k are significant and have the expected signs (the large number of interactions
makes it difficult to add them all in the table). This is important for the second stage
estimation, as k is the main state variable included in the switching cost parameters θ0 (a, k).

Finally, we note that, because field acreage is available only in the DataQuick dataset,
when merging with the CDL and remaining datasets we lose this information. This implies,
for example, that acreage cannot be a covariate in the choice probabilities. For this reason,
we choose a specification for the value function that regresses price per acre on covariates.
The value of our R2 in our regression is a direct consequence of this fact. When we use total
land prices as the dependent variable and include acres on the covariates we obtain R2 as
high as 0.8.

Finally, we briefly discuss the possibility of selection on transacted fields. As shown pre-
viously in Table 8 of Appendix B, the characteristics of the transacted fields (in DataQuick)
look similar to all US fields (in the CDL). Furthermore, we investigate whether land use
changes upon resale. Using a linear probability model we find no such evidence (see Table
10). We regress the land use decision on dummy variables for whether the field was sold in the
current, previous, or following year as well as various control variables. In regressions within
each cross section, ten of the eleven coefficients on the land transaction dummy variables
are statistically insignificant, and the estimated effect on the probability of crops is always
less than 1%. We have tried alternative specifications such as modifying the definition of the
year to span the planting year rather than calendar year, and yet we have found no evidence
indicating that there is an important connection between land transactions and land use
decisions.

58Comparing DataQuick with the CDL data we see that 1.4-2% of fields are resold every year. Moreover, the
USDA reports that in Wisconsin there are approximately 100 thousand acres transacted every year (about 1000
transnactions) out of 14.5 million acres of farmland (seemingly information on other states is not available).
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Table 9: Hedonic Regression

(1)
VARIABLES log(land value)

log(distance to urban center) -0.471***
(0.0297)

commercial land value 0.102***
(0.00930)

slope -1.654***
(0.160)

alt -0.000226**
(9.00e-05)

Observations 24,643
R-squared 0.318
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Ommitted: soil, county, year, and field state dummies

as well as interactions with returns.

Table 10: Land use and transactions

(1) (2) (3) (4)
VARIABLES incrops2010 incrops2011 incrops2012 incrops2013

soldin2009 0.000647
(0.00604)

soldin2010 0.000116 0.00364
(0.00326) (0.00334)

soldin2011 -0.00117 0.000629 -0.00159
(0.00316) (0.00324) (0.00330)

soldin2012 -0.000620 -0.00472 0.00411
(0.00306) (0.00313) (0.00265)

soldin2013 -0.00962*** -0.000445
(0.00306) (0.00256)

Observations 23,492 23,492 23,492 23,492
R-squared 0.666 0.698 0.717 0.757

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Linear probability model. Omitted covariates include current returns, field state, US state,

slope, local commercial land value, distance to nearest urban center, and interactions.
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