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1 Introduction

Dynamic considerations are key in many decisions made by individuals and firms. For ex-
ample, when choosing how to use their land, farmers face both severe uncertainty (volatile
commodity prices, ever-changing government policies), as well as substantial switching costs
(moving from forest to crop production is costly, if not irreversible). In a wide range of
applied settings, researchers use dynamic discrete choice models with the goal of conduct-
ing positive and normative analyses (most often in the form of counterfactuals).1 However,
dynamic discrete choice models are non-parametrically not identified without “normalizing”
the payoffs of one chosen action at every state (Rust (1994), Magnac and Thesmar (2002)).
Whether the “normalizations” play a fundamental role in the identification of behavior and
welfare in the counterfactuals of interest remains an open question.

In this paper, we fully characterize when counterfactuals are nonparametrically identi-
fied. Specifically, we provide necessary and sufficient conditions for the identification of a
wide range of counterfactuals for models with nonparametric payoffs, as well as for com-
monly used parametric functions, and we obtain both positive and negative results. We show
that access to extra data of asset resale prices (when applicable) resolves non-identifiability
of both payoffs and counterfactuals, while substantially facilitating estimation. We then
demonstrate our theoretical findings in the context of agricultural land use (Scott (2013)).
We provide a dynamic model that allows for unobserved market-level state variables and
establish identification for this set of models. We then construct a unique spatial dataset of
land use choices and land resale prices, estimate the model, and conduct two policy relevant
counterfactuals; the long-run elasticity of land use which is identified and a fertilizer tax,
which is not identified and is found to be substantially affected by the normalization.

The desire for identification of models with as few assumptions as possible, as well as for
clarity regarding the impact of each assumption in shaping identified parameters, has led to
a growing literature on nonparametric identification (e.g. see Matzkin (2007) and references
therein). It is well-known that payoffs in dynamic discrete choice models are not identified
nonparametrically without a priori restrictions such as prespecifying the payoff of one action
in all states (Rust (1994), Magnac and Thesmar (2002)). We call this restriction a “strong
normalization.” A common strong normalization is to make the payoff of one action equal to
zero; we show that alternative payoff restrictions often employed (e.g. exclusion restrictions)
are in fact equivalent to strong normalizations. Unlike static models, strong normalizations
in dynamic models are not without loss, as returns in some states can affect incentives in

1Applications include occupational choice (e.g. Miller (1984)); fertility (e.g. Wolpin (1984)); patent renewal
(e.g. Pakes (1986)); machine replacement (e.g. Rust (1987)); job search (e.g. Wolpin (1987)); firm entry and
exit (e.g. Aguirregabiria, Mira and Roman (2007), Collard-Wexler (2013), Dunne, Klimek, Roberts and
Xu (2013)); agricultural policies (e.g. Rosenzweig and Wolpin (1993), Scott (2013)); environmental policy
regulation (e.g. Ryan (2012)); demand for durable goods (e.g. Hendel and Nevo (2006), Gowrisankaran
and Rysman (2012), Conlon (2010)); learning (e.g. Crawford and Shum (2005)); insurance (e.g. Jeziorski,
Krasnokutskaya and Ceccariniz (2014)); export dynamics (e.g. Das, Roberts and Tybout (2007)); housing
(e.g. Suzuki (2013), Bayer, Murphy, McMillan and Timmins (2011)); health (e.g. Gilleskie (1998), Fang and
Wang (2015), Chan, Hamilton and Papageorge (2015)); retirement decisions (e.g. Rust and Phelan (1997));
schooling (e.g. Eckstein and Wolpin (1999)); education (e.g. Todd and Wolpin (2006), Duflo, Hanna and
Ryan (2012)); labor market participation (e.g. Eckstein and Lifshitz (2011)); incentives to politicians (e.g.
Diermeier, Keane and Merlo (2005)), among others. For recent surveys of this literature see Aguirregabiria
and Mira (2010), Arcidiacono and Ellickson (2011), and Keane, Todd and Wolpin (2011).
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other states. Therefore, if the value of the normalized payoff changes over time or over
states, an important source of misspecification (even in nonparametric settings) may have
been introduced with nontrivial implications on objects of interest such as counterfactuals.

Adopting a novel approach, we characterize the identification of a general class of coun-
terfactuals commonly used in applied work. A counterfactual is defined as a transformation
of payoffs and transition probabilities. We show that counterfactual choice probabilities are
identified if and only if the counterfactual transformation satisfies certain restrictions: its Ja-
cobian needs to lie in a subspace determined by state transitions. In other words, to identify
counterfactual choice probabilities, the counterfactual transformation can only interact with
model primitives in specific ways. Even though the payoff function is not identified without
restrictive assumptions, some common counterfactuals are.2 For instance, counterfactuals in-
volving only lump-sum transfers are identified. However, numerous counterfactuals of interest
are not identified, such as interventions that change payoffs proportionally with different pro-
portions for different actions. Furthermore, we consider counterfactual welfare and show that
welfare changes may not be identified even when counterfactual choice probabilities are. We
illustrate our findings in a numerical exercise based on a simplified version of the bus engine
replacement problem (Rust (1987)).3 In short, to the best of our knowledge, we offer the first
general set of necessary and sufficient conditions to nonparametrically identify counterfactual
behavior and welfare in dynamic discrete choice models.

When a counterfactual of interest is not identified, the researcher can consider additional
restrictions. For example, it is well known that parametric restrictions can aid the identifica-
tion of dynamic models (Magnac and Thesmar (2002), Arcidiacono and Miller (2015)). At the
same time, economic theory, institutional details and computational constraints often justify
them. Here, we show that parametric assumptions also enlarge the set of counterfactuals that
are identified. Indeed, we consider payoff parameterizations that involve two components,
one that is identifiable (e.g. variable profit) and one that is not identified, except under
some strong normalization (e.g. fixed, entry or exit costs). Counterfactual transformations
that affect only the identifiable component of payoffs result in identified counterfactual choice
probabilities. Imposing a strong normalization does not bias results in this case. In contrast,
counterfactuals that affect only the non-identifiable component result in non-identified coun-
terfactuals. We see both types of counterfactuals in applied work; for example, in an entry
model, counterfactuals that affect variable profits are identified, while counterfactuals that
change entry costs are not.

Access to asset resale prices (when applicable) can also be helpful. In applications where
the dynamic optimization problem involves a durable asset (e.g. a farmer and his field), asset
resale prices can provide substantial information about value functions. In fact, in setups
with constant returns to scale and homogeneous buyers and sellers, resale prices are equal
to value functions (Kalouptsidi, 2014a). We show that in this case, resale prices allow for
identification of payoffs without the need for strong normalizations.4

Before turning to our empirical exercise, we consider the case of unobservable market-level
2This is reminiscent of Marschak (1953), who pointed out that the impact of hypothetical policies of interest

may be identified even when the full model is not.
3Aguirregabiria and Suzuki (2014) also present substantial bias in a numerical exercise involving a simple

dynamic entry and exit model.
4Aguirregabiria and Suzuki (2014) consider a more general bargaining model and also show that resale

prices allow for payoff identification.
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state variables. In our land use application, as well as several other settings, the available
observed market states are likely insufficient to capture the perceived market heterogeneity
and its evolution (e.g. changing government policy, unobserved costs). We thus extend the
(non)identification results to settings with partially-observed market states. In summary,
we provide identification theorems for dynamic discrete choice models in four different data
environments: (i) agent actions and states are observed (a strong normalization is necessary);
(ii) agent actions, states and resale prices are observed (a strong normalization is not neces-
sary); (iii) agent actions and part of the state are observed (a strong normalization and extra
restrictions, such as the presence of a renewal or a terminal action, are necessary); (iv) agent
actions, part of the state, and resale prices are observed (a strong normalization and extra
restrictions are not necessary). Although identification in case (i) has long been established
in the literature, to the best of our knowledge, the results for the other three cases are new.
Our identification arguments are constructive and lead naturally to estimators.

Finally, we demonstrate our theoretical findings in the context of agricultural land use.
Field owners decide whether to plant crops or not and face uncertainty regarding commodity
prices, weather shocks, and government interventions. We construct a unique dataset by
spatially merging data from several sources. We employ high-resolution annual land use, ob-
tained from the Cropland Data Layer database (CDL). We merged this dataset with NASA’s
Shuttle Radar Topography Mission database, which provides extremely detailed topographi-
cal information. Land resale transaction data from DataQuick are merged with the above, as
well as fine soil information from GAEZ. Our dataset is the first to allow for such rich field
heterogeneity, combined with land resale prices.

We consider three estimators for our agricultural land use model. The first, which we
call the CCP estimator (after conditional choice probability), is adapted from Scott (2013);
following the tradition of Hotz and Miller (1993), it employs observed choices and states.
The second estimator, which we call the “joint estimator,” considers the moments of the
CCP estimator, plus the moment restrictions obtained from resale prices; all moments are
used jointly to estimate payoffs. Resale prices are bound to affect the model estimates beyond
the strong normalization. To isolate the impact of strong normalizations on counterfactuals,
we consider a third estimator, which we call the “hybrid.” The hybrid estimator employs
the CCP moments plus a number of resale price moments sufficient to obtain payoffs that
otherwise would be strongly normalized.

After estimating the model, we implement two policy counterfactuals: the long-run elas-
ticity (LRE) of land use and an increase in the costs to prepare land to replant crops. The
LRE measures the long-run sensitivity of land use to an (exogenous) change in crop returns;
it is an important input to the analysis of several policy interventions, including agricultural
subsidies and biofuel mandates (Roberts and Schlenker (2013), Scott (2013)). This counter-
factual is identified and the relevant estimators produce the same elasticity. For the second
counterfactual, we increase replanting costs based on the estimated benefits of leaving land
out of crops for a year. Because one such benefit is to allow soil nutrient levels to recover,
it lessens the need for fertilizer inputs after a year of fallow land. This counterfactual can
therefore be interpreted as a fertilizer tax. This is relevant: as the production of nitrogenous
fertilizer involves high levels of greenhouse gas inputs, the cost of fertilizer would probably
increase in response to comprehensive greenhouse gas pricing. Yet, because it is difficult to
know the fertilizer saved by leaving land fallow, we use the estimated switching cost param-
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eters to implement the counterfactual. This counterfactual is not identified and the strong
normalization has a substantial impact on the results, reversing the direction of the change
in cropland.

Related Literature. As already noted, Rust (1994) showed that payoffs in dynamic
discrete choice models are nonparametrically not identified, while Magnac and Thesmar
(2002) characterized the degree of underidentification. There is very little work on the iden-
tification of counterfactuals: Aguirregabiria (2010), Aguiregabiria and Suzuki (2014), Norets
and Tang (2014), and Arcidiacono and Miller (2015) are the exceptions and focus on special
cases. They investigate counterfactuals that add a vector to payoffs or arbitrarily change the
stochastic process for the state variables, and provide sufficient conditions to identify coun-
terfactual choice probabilities. Aguirregabiria (2010) focuses on a finite-horizon binary choice
model; Aguiregabiria and Suzuki (2014) and Norets and Tang (2014), on infinite-horizon bi-
nary choice models; and Arcidiacono and Miller (2015), on both stationary and nonstationary
multinomial choice models with short and long panel data. We consider stationary infinite-
horizon models and multinomial choices, as well as any (nonlinear) differentiable changes in
payoffs. We provide both necessary and sufficient conditions to identify both counterfactual
choice probabilities and welfare evaluations.

The use of asset resale price data to identify the dynamic model builds on the insights of
Kalouptsidi (2014a, 2014b). In a different context, Keane and Wolpin (1997) and Heckman
and Navarro (2007) also make use of extra data to secure identification in finite-horizon
models (in their case, labor outcomes such as future earnings). Finally, despite a significant
literature on individual level heterogeneity (e.g. Kasahara and Shimotsu (2009), Norets
(2009), Arcidiacono and Miller (2011), Hu and Shum (2012), and Connault (2014)), little
work exists relating to the presence of serially correlated unobserved market states in single-
agent (and industry) dynamics.

The paper is organized as follows: In Section 2, we set out the standard dynamic discrete
choice framework; in Section 3, we present identification results for the standard model,
as well as for common parametrizations. Section 4 investigates when counterfactuals are
identified. In Section 5, we discuss the use of resale prices. Section 6 provides identification
results in the presence of unobserved market-level state variables (with and without resale
price data). Section 7 adapts the standard framework to our agricultural land use application,
while in Section 8, we describe the data and provide summary statistics. Section 9 presents
the estimation and counterfactual results. Section 10 concludes.

2 Dynamic Discrete Choice Framework

Time is discrete and indexed by t; the time horizon is infinite. In period t, agent i chooses
an action ait from a finite set of possible actions A = {1, ..., |A|}. The agent’s state is
denoted by sit and follows a controlled Markov process with transition distribution function
F (sit+1|ait, sit). Every period t, the agent observes the state sit and chooses an action ait to
maximize the discounted expected payoff

E

( ∞∑
τ=0

βτπ (ait+τ , sit+τ ) |ait, sit

)
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where π (·) is the current payoff function, and β ∈ (0, 1) is the discount factor.
Let V (sit) be the value function of the dynamic programming problem. By Bellman’s

principle of optimality,5

V (sit) = max
a∈A
{π (a, sit) + βE [V (sit+1) |a, sit]} .

We follow the literature in splitting the state into two components, sit = (xit, εit), that
satisfy the following standard conditions:6

Condition 1 (Additive separability) The current payoff is given by

π (a, xit, εit) = π (a, xit) + σεit (a)

where εit = (εit (1) , ..., εit (|A|)), and σ > 0 is a scale parameter.

Condition 2 (i.i.d. unobservables) The vector εit is i.i.d. across agents and time with
distribution function G that is absolutely continuous with respect to Lebesgue measure in
R|A|.

Condition 3 (Conditional Independence) The transition distribution function for sit = (xit, εit)
factors as

F (xit+1, εit+1|ait, xit, εit) = F (xit+1|ait, xit)G (εit+1) .

Condition 4 (Discrete Support) The support of xit is finite: xit ∈ X =
{
x(1), x(2), ..., x(|X|)

}
,

with |X| <∞.

Given these assumptions, agent i’s Bellman equation becomes:

V (xit, εit) = max
a∈A
{π (a, xit) + σεit (a) + βE [V (xit+1, εit+1) |a, xit]} .

Following the literature, we define the ex ante value function:

V (xit) ≡
∫
V (xit, εit) dG (εit)

and the conditional value function:

va (xit) = π (a, xit) + βE [V (xit+1, εit+1) |a, xit] (1)

so that
V (xit) =

∫
max
a∈A
{va (xit) + σεit (a)} dG (εit) .

The agent’s optimal policy is given by the conditional choice probabilities (CCPs):

pa (xit) =
∫

1 {va (xit) + σεit (a) ≥ vj (xit) + σεit (j) , for all j ∈ A} dG (εit)

5We can allow the set of possible actions A to depend on the state s; i.e. a ∈ A (s).
6Together with the assumptions that agents are expected utility maximizers and have rational expecta-

tions, Conditions 1-4 form a set of maintained assumptions. Maintained assumptions are taken as given (not
questioned nor altered) when investigating model identification (Rust (2014)).
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where 1 {·} is the indicator function. Define the |A|× 1 vector of conditional choice probabil-
ities p (x) = {pa (x) : a ∈ A}, and the corresponding |A| |X| × 1 vector p = {p (x) : x ∈ X}.
It is most often assumed that εit follows the extreme value distribution; in that case, the
conditional choice probabilities are given in closed form as

pa (x) = exp (va (x) /σ)∑
j∈A exp (vj (x) /σ) .

2.1 Value Function and CCP Relationships

The following two results provide relations between key objects of the model and are widely
used in the literature. We make heavy use of them below.

Lemma 5 (Hotz-Miller inversion): Assume Conditions 1-4 hold. For all (a, x) ∈ A × X,
and for some given reference action j,

va (x)− vj (x) = σφaj (p (x))

where φaj (.) are functions mapping the simplex in R|A| onto R and are derived only from G.

Naturally, for a = j we have φjj (p (x)) = 0. The Hotz-Miller inversion allows us to
recover the conditional value functions va (x), a 6= j, from the choice probabilities p (x),
given {G, σ, vj (x)}.

Arcidiacono and Miller (2011) obtain an implication of the Hotz-Miller inversion:

Lemma 6 (Arcidiacono-Miller): Assume Conditions 1-4 hold. For any (a, x) ∈ A×X, there
exists a real-valued function ψa (p (x)) such that

V (x)− va (x) = σψa (p (x))

where the functions ψa are derived only from G.

In the case of logit errors, the Hotz-Miller inversion becomes:

φaj (p (x)) = log pa (x)− log pj (x) ,

while the Arcidiacono-Miller lemma becomes:

ψa (p (x)) = log

1 +
∑
j 6=a

pj (x)
pa (x)

+ γ,

where γ is the Euler constant.

2.2 Empirical Model

Before closing this section, we augment our discussion of general dynamic discrete choice
models by a typical empirical treatment; the agricultural land use model presented in Section
7 also fits this empirical framework.
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In numerous applications, the state variable x can be decomposed into x = (k, ω), where
k ∈ K are states whose evolution can be affected by individuals’ choices, and ω ∈ Ω are states
not affected by agent’s choices (e.g., market-level states), with K,Ω finite. In other words, it
is common to assume:7

F
(
x′|a, x

)
= F k

(
k′|a, k

)
Fω

(
ω′|ω

)
. (2)

In addition, we consider the following common separable payoff function

π (a, k, ω) = θ0 (a, k) +R (a, ω)′ θ1 (a, k) , (3)

where R (a, ω) is a known vector-valued function and ′ denotes transpose (often, R (a, ω) = ω).
As the following two examples from the literature indicate, θ0 (a, k) is often interpreted as
fixed costs and R (a, ω), as a measure of returns. In Section 7, we interpret θ0 (a, k) as land
use switching costs, while R (a, ω) measures crop/non-crop returns.

Example: Rust’s Bus Engine Replacement Problem. In Rust (1987), the agent
faces the optimal stopping problem of replacing a bus’s engine, trading-off aging and replace-
ment costs. The agent has two actions: to replace or keep the engine, A = {replace, keep}.
The state variable, k, is the bus mileage which evolves stochastically and is renewed upon
replacement. The payoff is decomposed as in (3): θ0 (replace, k), captures the cost of obtain-
ing a new engine, while θ0 (keep, k) = 0; the second term is a flexible function of mileage and
captures the engine operating costs (see Section 4.4 for a similar model).

Example: Monopolist Entry/Exit Problem. Consider a monopolist deciding whether
to be active in or exit from a market, so that A = {active, exit}. Let kit = ait−1, and let
ω be a vector of market characteristics relevant for the firm’s variable profits π1, fixed costs
FC, scrap values φs, and entry costs φe (more firm-specific states can be added). The firm’s
flow payoff is

π (a, k, ω) =
{

kφs (ω) if a = 0 (exit)
k (π1 (ω)− FC (ω))− (1− k)φe (ω) , if a = 1 (active)

Often, these functions are parametric and linear in the parameters (e.g. π1 (ω) = θπ0 + θπ1ω)
and the above payoff maps into (3).

3 Identification of the Standard Dynamic Discrete Choice Model

A dynamic discrete choice model consists of the primitives b = (π, σ, β,G, F ). We refer
to the set of primitives b as a structure. A structure gives rise to the endogenous objects
{pa, va, V : a ∈ A}. The question of interest is whether we can identify the structure b, or
some feature of b, from the data. A feature ζ is a function of b, such as an element of it (e.g.
ζ (b) = π). We assume throughout this paper that (β,G) are known.

Denote the dataset available to the econometrician by {yit : i = 1, ..., N ; t = 1, ..., Ti},
where Ti is the number of periods over which i is observed. In the standard dynamic discrete
choice dataset, it consists of agents’ actions and states, yit = (ait, xit). We assume the joint

7Many of our results hold if we allow F k to depend on ω as well.
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distribution of yit, Pr (y), is known, which impies the conditional choice probabilities pa (x)
and the transition distribution function F are also known.

It is well known that in static discrete choice models utility functions are identified only
up to positive affine transformations. Without loss, the researcher must fix the location and
scale of the payoff function. Typically, a normalization takes one value of (a, x) for which
π (a, x) is set to zero (location), while the variance of ε is fixed (scale). We call a positive
affine transformation like this a weak normalization.

We base our analysis on the following fundamental relationships between the primitives
and the endogenous objects:

πa = va − βFaV, for a = 1, ..., |A| (4)

va − vj = σφaj , for a = 1, ..., |A| , a 6= j (5)

V = va + σψa, for a = 1, ..., |A| (6)

where πa, va, V, φaj , ψa ∈ R|X|, with πa (x) = π (a, x); Fa is the transition matrix with (m,n)
element equal to Pr (xit+1 = xn|a, xit = xm). Equation (4) restates the definition of the
conditional value function found in (1); (5) restates the Hotz-Miller lemma; and (6), the
Arcidiacono-Miller lemma. Note that using the observed choice probabilities, p, we can com-
pute φaj , as well as ψa, for all a.

The objective is to identify the feature ζ (b) = (π, σ). Equations (4)-(6) form a set of
(3 |A| − 1) |X| linear restrictions in (2 |A|+ 1) |X| + 1 unknowns: the vector [πa, V, va]′ and
the scale parameter σ. To solve this system, assume first that the value of σ is known (fixed
by normalizing the variance of εit, as is done in the literature).

Consider a binary choice for illustration. The system of equations can be written in
matrix form:8 

I 0 βF1 −I 0
0 I βF2 0 −I
0 0 0 I −I
0 0 I −I 0
0 0 I 0 −I




π1
π2
V
v1
v2

 =


0
0

σφ12
σψ1
σψ2

 (7)

Note that the last three block rows of the matrix above are linearly dependent. Therefore,
the above system has no unique solution and π is not identified. The dimension of the set of
solutions is given by the cardinality of the state space: there are |X| free parameters in the
system. This is summarized in the following proposition:

Proposition 7 Assume Conditions 1-4 hold. Suppose the joint distribution of observables
Pr (y), where yit = (ait, xit), is known. Provided the primitives (σ, β,G) are known, the
payoff function πa, for each a 6= J , can be represented without loss of generality as an affine
transformation of πJ :

πa = AaπJ + ba (8)

where
Aa = (I − βFa) (I − βFJ)−1 ,

ba = σ (AaψJ − ψa) .
8I is the |X|×|X| identity matrix and (with some abuse of notation) 0 on the left-hand-side is the |X|×|X|

zero matrix, while 0 in the right-hand-side is the |X| × 1 zero vector.
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Proof. Fix the vector πJ ∈ R|X|. Then,

πa = va − βFaV = V − σψa − βFaV = (I − βFa)V − σψa

where for a = J
V = (I − βFJ)−1 (πJ + σψJ) .

After substituting for V , we have9

πa = (I − βFa) (I − βFJ)−1 (πJ + σψJ)− σψa.

Before discussing Proposition 7, we fix some notation. Assume without loss that J = |A|.
Define π = [π′1, π′2, ..., π′J ]′ ∈ R|X||A|; and π−J =

[
π′1, π

′
2, ..., π

′
J−1

]′
∈ R|X|(|A|−1). Define

also the matrix A−J =
[
A′1, A

′
2, ..., A

′
J−1

]′
∈ R|X|(|A|−1)×|X| and b−J =

[
b′1, b

′
2, ..., b

′
J−1

]′
∈

R|X|(|A|−1). Then, (8) becomes:

π−J = A−JπJ + b−J .

The non-identifiability of current payoffs in dynamic discrete choice has long been estab-
lished in the literature (Rust (1994), Magnac and Thesmar (2002)).10 To obtain a unique
solution to the system, and point identify π, we need to add |X| extra restrictions. Suppose
that the researcher imposes a set of |X| linear restrictions:

Rπ = r (9)

where R ∈ R|X|×(|A||X|), r ∈ R|X|. We can write R = [R−J RJ ] and stack (8) and (9) to
obtain: [

I −A−J
R−J RJ

] [
π−J
πJ

]
=
[
b−J
r

]
. (10)

Define C =
[
I −A−J

R−J RJ

]
and c =

[
b−J
r

]
. The following result is immediate:

Lemma 8 Suppose the conditions of Proposition 7 hold. For any restriction (R, r) such that
rank (C) = |A| |X|, the payoff function π is identified.

Any given restriction (R, r) satisfying this Lemma selects one point in the set of possible
solutions for π. A common solution is to fix, or “normalize”, the payoff of some action for all
states; in which case R = [0 I] and r is fixed at some level. Typically, the payoff of the action
we have least information about is set to zero (usually refered to as the ”outside option”).11

We prefer to call this solution a strong normalization. While a weak normalization requires
fixing, for example, π (a, x) = 0 for a single (a, x) pair, a strong normalization requires

9(I − βFJ) is invertible since FJ is a stochastic matrix.
10Arcidiacono and Miller (2015) provide recent results for nonstationary models; Pesendorfer and Schmidt-

Dengler (2008), for dynamic games.
11In priciple, one we can fix any |X| elements of the vector [π1, π2, V, v1, v2]′ to some prespecified values.

However, it is undesirable to fix instead v1, say, because it is an endogenous object and interpreting π in terms
of this normalization is both difficult and not transferable to counterfactuals.
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π (a, x) = 0 for all x. This is in fact an additional restriction on the model. Different strong
normalizations, although observationally equivalent given data on choices and states, can
result in different expected continuation values, and so in different behavior and welfare in
counterfactual scenarios.

Strong normalization is one type of restriction that leads to identification. In several ap-
plications, researchers use different restrictions; for example, “exclusion restrictions” assume
that some payoffs do not depend on all state variables (for instance, firm entry/exit costs
are often assumed state invariant). It is clear from Proposition 7 and the Lemma, that any
set of extra linear restrictions that suffices to identify π is equivalent to some form of strong
normalization. If the system (10) has a unique solution, π∗, then (8) along with the strong
normalization πJ = π∗J leads to the same solution (the converse also is true).12

Before ending our discussion on the identification of standard discrete choice models,
we discuss two other prevalent empirical practices: parametric payoffs and the use of re-
newal actions. Economic theory and institutional details often justify these practices, while
computational constraints (curse of dimensionality) favors parsimonious specifications. In
the agricultural land use model discussed in Section 7, we assume both a parametric profit
function and the presence of a renewal action. Below, we investigate whether these extra
restrictions help identification of payoffs; when they do, we show in Section 4 that they also
help identifying some types of counterfactual exercises.

3.1 Parametric Payoffs

As the dimension of payoffs |A| × |X| is often large, empirical work usually resorts to pa-
rameterizations (see also Section 2.1), which imposes π (a, x) = π (a, x, θ) with dim (θ) <<
|A| × |X|. We discuss identification of parametric payoffs through the lens of equation (8).
In this case, (8) becomes:

π−J (θ) = A−JπJ (θ) + b−J .

We differentiate with respect to θ:

∂π−J (θ)
∂θ

= A−J
∂πJ (θ)
∂θ

or, more compactly, [
I −A−J

] ∂π (θ)
∂θ

= 0.

If the matrix above has full rank, θ is locally identified.
For example, consider a linear-in-parameters payoff function:

πa (θ) = πaθ.

Then, θ is determined by the linear system of equations:

[π−J −A−JπJ ] θ = b−J (11)

which has a unique solution if [π−J −A−JπJ ] has full rank.
12For instance, an exclusion restriction assuming that πJ (x) does not depend on x, and weakly normalizes

π2 (x′) = c for some x′, is equivalent to a strong normalization that fixes πJ (x) = c for all x.
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Next, consider the empirical model (2)-(3) of Section 2.1. In this case, the matrix in
(11) does not have full rank and thus a form of normalization is needed. Indeed, the next
proposition shows that, although one can identify θ1 (a, k) when there is “sufficient variation”
in ω, θ0 (a, k) is not identified. A strong normalization is required (e.g. θ0 (J, k) needs to
be known or prespecified at all k). For notational simplicity, we focus on binary choice with
A = {a, J} and assume R (a, ω) is scalar. The transition matrix in this case is Fa = Fω⊗F ka ,
where ⊗ is the Kronecker product.13

Proposition 9 Consider the empirical model of Section 2.2. Assume (σ, β,G) are known.
Suppose |Ω| ≥ 3 and there exist ω, ω̃, ω such that the matrix[(

e′ω − e′ω̃
)
DaRa

(
e′
ω̃
− e′ω

)
DJRJ

(e′ω − e′ω)DaRa (e′ω − e′ω)DJRJ

]
(12)

is invertible; where Da =
[
I − β

(
Fω ⊗ F ka

)]−1
, Ra = [Ra(ω1)Ik, ..., Ra(ωΩ)Ik]′ (the same for

RJ), Ik the identity matrix of size K and e′ω = [0, 0, ..., Ik, 0, ...0] with Ik in the ω position.
Then given the joint distribution of observables Pr (y), where yit = (ait, kit, ωit), the param-
eters θ1 (a, k) are identified. The parameters θ0 (a, k) are not identified, unless θ0 (J, k) for
some action J and all k is known or strongly normalized.

Proof. See the Appendix A.
The term e′ωDaRa is the expected discounted present value of Ra given today’s value of

ω when the agent always chooses action a. Existence of the inverse of (12) requires ω to
significantly change the conditional expected values of Ra and RJ .

To see why Proposition 9 holds, note first that (8) can be rewritten as

(I − βFa)−1 πa − (I − βFJ)−1 πJ = (I − βFa)−1 ba.

One can therefore identify the difference between the expected discounted present values of
two sequences of choices not necessarily optimal: always choose a versus always choose J
(Magnac and Thesmar (2002)). In the empirical model of Section 2.2, additive separability
implies

(I − βFa)−1 πa = Daθ0 (a, k) +DaRa (ω)′ θ1 (a, k) .

Since k and ω evolve independently, ω does not help predicting future θ0 (a, k). We can
therefore exploit variation in ω (ensured by the existence of the inverse of (12)) to eliminate
θ0 (a, k) in (8) and identify θ1 (a, k). Because there is no variation in observables that allows
us to separate Daθ0 (a, k) from DJθ0 (J, k), we cannot identify θ0 (a, k), unless we impose a
strong normalization.

Let us briefly revisit the empirical examples of Section 2.2. Rust (1987) adopts an ex-
clusion restriction and a weak normalization: the cost of scrapping and replacing an engine
is invariable over states and the operating cost at zero mileage is zero. In the monopolist’s
entry/exit model, variable profits are often estimated outside of the dynamic problem using
price and quantity data. As shown in Aguirregabira and Suzuki (2014), identifying other
parameters, however, requires strongly normalizing either the scrap value, or both the fixed

13This proposition also holds in the more general case of Fω (ω′|ω, a) and multivariate Ra (ω).
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and entry costs. Indeed, most often in applied work, fixed costs are normalized to zero, while
scrap/entry costs are invariant across states. Whether these restrictions are reasonable will
depend on the application; it is difficult to know a priori, as data on entry/scrap costs are
extremely rare. Kalouptsidi (2014a) using some external information of entry costs and scrap
values (in this case, new ship prices and demolition prices) shows that in the shipping industry
the latter vary dramatically over time. Note that in dynamic games, the presence of potential
entrants provides an extra degree of freedom. Typically, their payoffs are normalized to zero
when they do not enter the market.

3.2 Renewal Action

In several empirical applications, one encounters renewal or terminal actions. Terminal ac-
tions terminate the decision making and impose a finite horizon often facilitating estimation
considerably (e.g. a worker retires, a student drops out of school, a firm does not renew a
patent). Renewal actions also facilitate estimation. Intuitively, action J is a renewal action
when it resets the state variable, so that choosing J at any time after today’s actions leads to
the same distribution of states (e.g., replacing the bus engine (Rust, 1987) or planting crops
(Scott (2013)). Formally:

Definition 10 J is a renewal action if for all a, j ∈ A:

FaFJ = FjFJ (13)

The following lemma shows that renewability simplifies the expressions for identified pay-
offs.

Lemma 11 If J is a renewal action, then for all a ∈ A

Aa = I + β (FJ − Fa)

Proof. See the Appendix A.
Even though renewability is a further restriction, it does not aid identification. Indeed,

even if we have a renewal action, we still need to impose a strong normalization.

Conclusion 12 Renewability does not aid identification of payoffs in standard models. But
the retrieved payoffs πa are easier to compute.14

4 Identification of Counterfactuals

Counterfactuals consist of transformations of model primitives, notably payoffs and tran-
sitions. A counterfactual that changes payoffs π to π̃, is described by a known function,
h : R|A||X| → R|A||X| (so that π̃ = h (π), or π̃a = ha (π), a ∈ A). A counterfactual can also
change transitions F to F̃ via a function hF : R|A|×|X|×|X| → R|A|×|X|×|X|. This general
setup allows for counterfactuals in which π̃a (x) is affected by payoffs at all other actions and
states. A typical simplification imposes some form of diagonal structure on h. Indeed, em-
pirical work often employs what we call “action diagonal counterfactuals”, where π̃a depends

14The same conclusion holds for terminal actions.
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solely on πa (i.e. π̃a = ha (πa)), as well as “action-state diagonal counterfactuals”, where
π̃a (x) = ha (πa (x)). In addition, several counterfactuals of interest result in affine functions.

The feature of interest here is the counterfactual CCP vector p̃, i.e. ζ
(
b;h, hF

)
= p̃. We

provide a theorem with necessary and sufficient conditions to identify counterfactual CCPs
for general functions h and hF . We then proceed to the case of affine transformations of
payoffs and the special cases of “action diagonal” and “action-state diagonal” counterfactuals.
In Subsection 4.3 we discuss counterfactual welfare and in Subsection 4.4 we illustrate the
results with a simple numerical example.

Our starting point is relationship (8). It expresses all payoffs πa, a 6= J as a function of πJ ,
the known primitives (F, β, σ,G) and the conditional choice probability vector p ∈ R|A||X|.
This system of equations is useful for counterfactual analysis because it does not involve non-
primitive objects such as continuation values. Rewriting (8) at the counterfactual scenario,
we get

π̃a = ha (π) = ÃahJ (π) + b̃a (p̃)

where Ãa =
(
I − βF̃a

) (
I − βF̃J

)−1
and b̃a (p̃) = σ

(
ÃaψJ (p̃)− ψa (p̃)

)
.15 We stack all

payoff vectors, πa, a 6= J , to obtain:

π̃−J = Ã−J π̃J + b̃−J (p̃) . (14)

The counterfactual CCP p̃ is identified if and only if it does not depend on the free
parameter πJ . To determine whether or not this is the case, we apply the implicit function
theorem to (14). We make use of the following notation: vecbr (C) rearranges the blocks of
matrix C into a block column by stacking the block rows of C; the symbol � denotes the
block Kronecker product; and ∇ represents the differential operator.16

Theorem 13 Assume the conditions of Proposition 7 hold. Suppose h is differentiable. Pro-
vided the matrix

[[
I −Ã−J

]
∇ψ (p)

]
is invertible, the counterfactual conditional choice prob-

ability, p̃, is identified if and only if for all π,

G
(
A, Ã

)
vecbr (∇h (π)) = 0 (15)

where
G
(
A, Ã

)
=
[[
A′−J I

]
� I,

[
A′−J I

]
� Ã−J

]
.

15Note that a unique p̃, is guaranteed from (14): since the Bellman is a contraction mapping, Ṽ is unique;
from (4) so are ṽa and thus so is p̃.

16Suppose the matrix C is partitioned in block form as

C11 ... C1b
...

. . .
...

Cc1 ... Ccb

, where Cij are matrices of the

same size. Then vecbr (C) =
[
C11, · · · C1b, C21, · · · Ccb

]′. The block Kronecker product, �, of two
partitioned matrices B and C is defined by (Koning, Neudecker and Wansbeek (1991)):

B � C =

B ⊗ C11 ... B ⊗ C1b
...

. . .
...

B ⊗ Cc1 ... B ⊗ Ccb

 .
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Proof. The implicit function theorem allows us to locally solve (14) with respect to p̃
provided the matrix

∂

∂p̃

[
h−J (π)− Ã−J π̃J − b̃−J (p̃)

]
= − ∂

∂p̃
b̃−J (p̃) = σ

[
I −Ã−J

]
∇ψ (p̃)

is invertible. Under this condition, p̃ does not depend on the free parameter πJ if and only if
∂

∂πJ

[
ha(π1, π2, ..., πJ−1, πJ)− ÃahJ(π1, π2, ..., πJ−1, πJ)− b̃a (p̃)

]
= 0

for all a 6= J and all π. But, the above yields

∑
l 6=J

∂ha
∂πl

∂πl
∂πJ

+ ∂ha
∂πJ

= Ãa

∑
l 6=J

∂hJ
∂πl

∂πl
∂πJ

+ ∂hJ
∂πJ


or, using (8), ∑

l 6=J

∂ha
∂πl

Al + ∂ha
∂πJ

= Ãa

∑
l 6=J

∂hJ
∂πl

Al + ∂hJ
∂πJ


or, [

∂ha
∂π1

∂ha
∂π2

... ∂ha
∂πJ

] [A−J
I

]
= Ãa

[
∂hJ
∂π1

∂hJ
∂π2

... ∂hJ
∂πJ

] [A−J
I

]
Stacking the above expressions for all a 6= J we obtain

∇h−J (π)
[
A−J
I

]
= Ã−J∇hJ (π)

[
A−J
I

]
Now apply the property vecbr (BCA′) = (A�B) vecbr (C) to obtain:([

A′−J I
]
� I

)
vecbr (∇h−J (π))−

([
A′−J I

]
� Ã−J

)
vecbr (∇hJ (π)) = 0[[

A′−J I
]
� I,

[
A′−J I

]
� Ã−J

] [vecbr (∇h−J (π))
vecbr (∇hJ (π))

]
= 0

which is (15).
Theorem 13 shows that counterfactual choice probabilities p̃ are identified if and only if

the Jabobian matrix of h is restricted to lie in the nullspace of a matrix defined by A−J
and Ã−J , which in turn are determined by the transition matrices F and F̃ . An implication
of Theorem 13 is that, if the Jabobian of G

(
A, Ã

)
vecbr (∇h (π)) has an inverse, the set

of payoffs that satisfy (15) has Lebesgue measure zero and therefore p̃ is not identified for
almost all π. Thus, under the implicit function theorem requirements, non-identification
of counterfactual CCPs is a generic property for nonlinear h. An example of a nonlinear
transformation is a change in the agents’ level of risk aversion.17

Another immediate implication of the theorem is that adding a known vector to π̃ does
not affect the Jacobian matrix of h. Therefore whether the counterfactual CCP is identified
does not depend on this vector. For example, lump-sum transfers (e.g. in the form of taxes
or subsidies) result in identified counterfactual CCPs.

If the counterfactual of interest is “action diagonal”, (15) becomes simpler:
17If

[[
I −Ã−J

]
∇ψ (p)

]
is not invertible, p̃ is not identified even when the full model is.
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Corollary 14 (“Action Diagonal” Counterfactuals) In “action diagonal” counterfactuals,
provided

[[
I −Ã−J

]
∇ψ (p)

]
is invertible, p̃ is identified if and only if for all π and a 6= J

∂ha
∂πa

Aa = Ãa
∂hJ
∂πJ

. (16)

Proof. Since h is action diagonal, ∂ha
∂πl

= 0, l 6= a, and (16) stems directly from (15).
Note that if transitions Fa are transformed by a counterfactual hF , payoffs have to change

appropriately in order to satisfy (15) or (16). Thus, p̃ is nonparametrically not identified for
counterfactuals that only change transitions (e.g. a change in the volatility or long-run mean
of some state); this result is also documented by Aguiregabiria and Suzuki (2014), Norets
and Tang (2014) and Arcidiacono and Miller (2015).

4.1 Affine Counterfactuals

We now consider affine payoff transformations:

π̃ = Hπ + g (17)

where H ∈ R|A||X|×|A||X| and g ∈ R|A||X|. Because ∇h (π) = H, it is clear from Theorem 13
that p̃ is not identified unless H is restricted to lie in the nullspace of G

(
A, Ã

)
.

A special case of affine counterfactuals that are prevalent in applied work consist of “action
diagonal” and “action-state diagonal” payoff transformations and unaffected transitions (i.e.
Fa = F̃a, for all a). “Action diagonal” counterfactuals restrict H to be block-diagonal so that:

π̃a = Haπa + ga

all a, with Ha ∈ R|X|×|X| and ga∈ R|X|.

Lemma 15 (“Action Diagonal” Affine Counterfactuals) In “action diagonal” affine coun-
terfactuals, to identify p̃ it is necessary that all Ha are similar matrices.

Proof. From (16), p̃ is identified if and only if

Ha = AaHJA
−1
a , for all a 6= J. (18)

As an example, consider a counterfactual that sets ga = 0 for all a and scales proportion-
ally the payoff of one action j, so that Hj = λI. To identify p̃, we must have HJ = λI and
thus Ha = λI, for all a, because of (18). In particular if λ = 1 for one action, all matrices Ha

must equal the identity matrix and thus the counterfactual in fact must not change payoffs.
Finally, we turn to “action-state diagonal” affine counterfactuals and fully characterize

them. Such counterfactuals involve diagonal matrices Ha, all a, and essentially implement
percentage changes in the original payoffs, where the percentage terms may differ for different
states x.

15



Lemma 16 (“Action-State Diagonal” Affine Counterfactuals I) In “action-state diagonal”
affine counterfactuals, to identify p̃ it is necessary that Ha = H, for all a and that it satisfies
H = AaHA

−1
a , all a.

Proof. Immediate implication of (18).

Lemma 16 places a strong restriction on Ha: the payoffs of all actions need to be affected
by the counterfactual in the same fashion. For example, if we change the payoff of action a
in state x by λ (x), π̃ (a, x) = λ (x)π (a, x), then we also need to change the payoff of any
other action a in state x by the same proportion λ (x) and check if the transition matrices
Fa are such that H = AaHA

−1
a holds. Otherwise, the counterfactual CCP is not identified.

The next proposition presents restrictions that the transition matrices Fa must satisfy to
obtain identification in “action-state diagonal” affine counterfactuals.

Proposition 17 (“Action-State Diagonal” Affine Counterfactuals II) Suppose Ha = H is a
diagonal matrix with pairwise distinct diagonal entries λ1, λ2, ..., λk and corresponding mul-
tiplicities n1, n2, ..., nk. Let k > 1. We partition Fa, a ∈ A, in block form (Fa)ij where each
(ij) block has size ni × nj. Suppose (18) holds so that p̃ is identified. Then, the transition
matrices are restricted as

F aij = (I − βF aii)
(
I − βF Jii

)−1
F Jij (19)

for i 6= j and
(I − βF aii)

(
I − βF Jii

)−1
1 = 1 (20)

where 1 ∈ Rni consists of ones. Furthermore, the right hand side of (19) must be between
zero and one.

Corollary 18 If Ha = H = λI, p̃ is identified.

Corollary 19 If H is diagonal and has a simple eigenvalue, a necessary condition to identify
p̃ is that the rows of Fa corresponding to the simple eigenvalue have to be equal for all a.

Corollary 20 If H is diagonal with pairwise distinct eigenvalues, p̃ is not identified, unless
the transition probabilities are action invariant.

Proof. See Appendix A.
Proposition 17 and its corollaries show that in general, counterfactual CCPs under “action-

state diagonal” affine transformations are identified only if proper restrictions on the tran-
sition matrices Fa hold. The degree of freedom of these restrictions is controlled by the
number and level of multiplicities of the diagonal matrix H. For example, if all eigenvalues
of H are pairwise distinct, p̃ is not identified unless the state transitions are action invariant.
Action-invariant transition matrices is a clearly uninteresting case for dynamic models.

Let us summarize the key takeaways. Counterfactual CCPs are not identified unless
some stringent conditions are met. As shown also in Aguirregabiria and Suzuki (2014) and
Norets and Tang (2014), one such condition is that π̃a = λπa + ga for all a. There are some
counterfactuals of interest within this category: lump-sum transfers and proportional changes
in payoffs that do not depend on actions and states. In contrast, counterfactual CCPs under
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transformations that change payoffs proportionally with different proportions for different
actions are not identified.18 In addition, unless very stringent conditions on the transition
matrices are satisfied, transformations in which payoffs are distorted differentially for some
states result in nonidentified p̃ even when Ha = H for all a.

4.2 Counterfactuals for Parametric Payoffs

Parametric restrictions can aid identification of some parameters; can they also enlarge the set
of counterfactuals that are identified? We show that they can. Consider again the empirical
model of Section 2.2. As shown in Section 3.1, θ0 (a, k) is not identified, while θ1 (a, k) is
generally identified. Take the vector θ0 (J, k), all k, as the free parameter and represent the
payoffs as

π (a, k, ω; θJ) = θ0 (a, k; θ0 (J)) +Ra (ω)′ θ1 (a, k) .
where θ0 (J) stacks θ0 (J, k) for all k.

Proposition 21 Assume the conditions of Proposition 9 hold. The counterfactual CCP cor-
responding to a counterfactual that only changes the term Ra (ω)′ θ1 (a, k) of π (a, k, ω) is
identified.

Proposition 21 is a direct consequence of Proposition 9; indeed following the proof of the
latter, one immediately sees that θ1 (a, k) are determined independently of θ0 (a, k) and hence
are unaffected by the strong normalization on θ0 (J). For instance, counterfactual CCPs from
transformations that affect variable profits in our monopolist’s entry problem of Example 2.2
are identified regardless of the strong normalization imposed on fixed and entry costs. In
contrast, counterfactuals that proportionally reduce the cost of entry (e.g. entry subsidies)
are not identified and thus the strong normalization may lead to severe bias.

More generally, suppose payoffs can be decomposed into two parts: one that is not iden-
tified (except under some strong normalization) and one that is. Counterfactuals that trans-
form only the second part of the payoff function are identified regardless of the strong nor-
malization imposed on the first part.

4.3 Counterfactual Welfare

Finally, we discuss counterfactual welfare. We show that even when counterfactual CCPs
are identified, counterfactual welfare evaluations may not be. Consider the commonly used
“action diagonal counterfactual” π̃a = ha (πa), and define the value function difference ∆V =
Ṽ − V , where Ṽ is the counterfactual value function corresponding to

(
π̃, F̃

)
. The feature

of interest here is ζ
(
b;h, hF

)
= ∆V .

Proposition 22 Assume the conditions of Theorem 13 hold. The welfare difference ∆V is
not identified unless for all a:

∂ha (πa)
∂πa

=
(
I − βF̃a

)
(I − βFa)−1 . (21)

18Suppose, for example, that one strongly normalizes πJ = 0, when the true πJ is not zero; then a coun-
terfactual of the type π̃a = λaπa and π̃J = λJπJ , with say λa > 0 > λJ , should increase the probability
of choosing a in any state in the true counterfactual (with the true πJ) relatively more than in the strongly
normalized counterfactual (with πJ = 0).
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Proof. Recall from Proposition 7 that for any a, V = (I − βFJ)−1 (πJ + σψa (p)) and
similarly for Ṽ . Since p̃ is identified,

∂∆V
∂πJ

=
(
I − βF̃J

)−1 ∂hJ (πJ)
∂πJ

− (I − βFJ)−1 .

Thus πJ does not affect ∆V if and only if

∂hJ (πJ)
∂πJ

=
(
I − βF̃J

)
(I − βFJ)−1 .

Since (16) must be satisfied, we obtain (21).19

For example, consider the case of an affine counterfactual that sets ga = 0 for all a and
does not affect transitions. The above proposition implies that ∆V is not identified unless
the counterfactual does not change payoffs either. Indeed, note that in this case (21) becomes
∂ha(πa)
∂πa

= I; in the linear case, this occurs when Ha = I for all a, since by Proposition 17,
Ha are similar. In contrast, if the counterfactual involves only lump-sum transfers, both p̃
and ∆V are identified.

In conclusion, imposing strong normalizations may lead to over/underestimation of wel-
fare changes. Suppose for instance that the true πJ > 0, that (21) does not hold and rather
∂∆V
∂πJ

> 0. Then the true change in welfare ∆V (with the true πJ) is larger for every state x
than the strongly normalized one (with πJ = 0).

4.4 Numerical Example: A Simplified Bus Engine Replacement Problem

We illustrate the main results of this section with a simple numerical exercise. We perform
four counterfactuals using both the true and strongly normalized model. We employ a sim-
plified version of example 2.2 (Rust (1987)), so that A = {replace,keep} and x is the bus
mileage. We assume the following payoff function

π (a, x, θ) =
{
−θ0 + φ (x, θ1) , if a = 1 (replace)
−c (x, θ2) , if a = 2 (keep)

where θ0 is the fixed cost of installing a new engine; φ (x, θ1) is the scrap value of the old
engine which depends on x and c (x, θ2) is the operating cost at mileage x. We consider a
deterministic mileage accumulation rule: if the engine is replaced (a = 1), xt+1 = 0, while if
the engine is kept (a = 2), xt+1 = min {xt + 1, x}, with x = 2.

First, we solve the true model and obtain the baseline CCPs and value functions. Then
we assume the econometrician knows (or estimates) the true CCP, imposes the strong nor-
malization π1 = 0 and identifies the payoff function π2 from (8).20

The first counterfactual is a lump-sum tax the agent pays if he opts for keeping the old
engine (i.e. we subtract g2 = (1, 1, 1)′ from π2). This counterfactual does not affect the

19When p̃ is identified, the equality ∂ha
∂πa

Aa = Ãa
∂hJ
∂πJ

is satisfied, or, ∂ha
∂πa

= Ãa
∂hJ
∂πJ

A−1
a . So, ∂hJ (πJ )

∂πJ
=(

I − βF̃J
)

(I − βFJ)−1 implies ∂ha
∂πa

=
(
I − βF̃a

)
(I − βFa)−1; the converse also is true.

20We assume that φ (x, θ1) = θ10 + θ11x and c (x, θ2) = θ20 + θ21x+ θ22x
2. We take θ0 = 8, φ (x, θ1) = 6 +x,

and c (x, θ2) = 1+x+0.1x2, so that π1 = (−2,−1, 0)′ and π2 = (−1,−2.1,−3.4)′. When we strongly normalize
π1 = 0, we obtain π2 = (1.95, 0.8,−1.5)′. To simplify the exercise, we ignore sampling variation and assume
the econometrician estimates the CCPs perfectly.
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counterfactual CCPs, nor welfare changes. The second counterfactual is a proportional tax
of 20% regardless of actions and states (i.e. we multiply both π1 and π2 by H = 1.2 × I,
noting that the true π is negative). This does not affect CCPs, but biases the welfare
change. The third counterfactual is another proportional tax of 20% for both actions, but
is charged only when x = 1 (i.e. we multiply both π1 and π2 by a diagonal matrix with
diagonal (1, 1.2, 1)). Finally, the fourth counterfactual is yet another proportional tax of
20% charged only when the agent decides to keep the old engine at x = 1 (i.e. we multiply
only π2 by the same diagonal matrix). The strong normalization must bias both the third
and fourth counterfactual CCP and welfare change because the payoff functions are changed
proportionally with proportions that differ across states and actions.

Table 1 presents the results. As expected the true and the strongly normalized counter-
factuals are identical in the first case. In the second case, the counterfactual CCP is identical
in the true model and in the normalized model, but the welfare change is different and has
the opposite sign. Cases three and four exhibit the bias created by the strong normalization:
the CCP bias can be substantial and different across counterfactuals, while the bias in welfare
changes can produce the wrong sign for all values of state variables.

Table 1: Numerical Example – True vs. Strongly Normalized Counterfactuals
Baseline True Str. Normalized True Str. Normalized

Counterfactual Counterfactual Counterfactual Counterfactual

CF1: π̃1 = π1, π̃2 = π2 + g2 CF2: π̃1 = λπ1, π̃2 = λπ2
CCP: Pr (a = 1|x)
x = 0 25.0% 40.5% 40.5% 21.1% 21.1%
x = 1 61.3% 73.6% 73.6% 61.8% 61.8%
x = 2 94.0% 96.5% 96.5% 96.2% 96.2%

Welfare: Ṽ − V
x = 0 - -9.662 -9.662 -4.607 3.393
x = 1 - -9.362 -9.362 -4.585 3.215
x = 2 - -9.205 -9.205 -4.399 3.200

CF3: π̃1 = Hπ1, π̃2 = Hπ2 CF4: π̃1 = π1, π̃2 = H2π2
CCP: Pr (a = 1|x)
x = 0 25.0% 27.6% 24.4% 26.3% 24.4%
x = 1 61.3% 64.0% 58.0% 69.5% 58.0%
x = 2 94.0% 93.4% 94.2% 93.7% 94.2%

Welfare: Ṽ − V
x = 0 - -2.011 0.461 -1.049 0.461
x = 1 - -2.155 0.493 -1.123 0.493
x = 2 - -1.904 0.436 -0.993 0.436

19



5 Identification using Resale Market Data

When a counterfactual of interest is not identified, the researcher is often faced with a sig-
nificant challenge. In this section we show that data on resale markets can substantially
aid identification and estimation of dynamic models (Kalouptsidi, 2014a). Suppose we can
relate agent i with an asset so that the value of the asset i in state xit is given by V (xit).
Sometimes, one can obtain data on asset prices, such as firm acquisition prices (e.g. price
of ships in the bulk shipping industry), or real estate values from transactions or appraisals.
The asset prices contain information about value functions V (xit). In particular, in a world
with a large number of homogeneous agents, a resale transaction price must equal the value
of the asset. As agents have the same valuation for the asset, V (xit), a seller is willing to sell
it at price pRSit only if pRSit ≥ V (xit); similarly, a buyer is willing to buy if pRSit ≤ V (xit). In
this setup, the equilibrium resale price of asset i in state xit must equal its value and agents
are always indifferent between selling the asset or holding on to it:

pRSit = V (xit) . (22)

In other words, in a world with a large number of homogeneous buyers, resale prices can be
treated as observations of the value function. As such, they provide direct, raw information
on the main dynamic object of interest. Indeed, inspecting (22) in combination with the
agent’s Bellman equation (1), one can easily see that value functions immediately inform us
on payoffs and their shape; in fact, they deliver payoffs nonparametrically (see Kalouptsidi
(2014a) and (2014b) for an implementation). In addition, as shown below, we can avoid strong
normalizations. It is of course crucial that a rich set of asset characteristics are observed and
that we are in a world of thick resale markets where the owner and asset heterogeneity do not
interact much.21 This is the simplest model allowing the use of resale prices; Aguirregabiria
and Suzuki (2014) consider a more general bargaining model with resale costs and show that
our result below generalizes to that case. Further generalizations are also possible.

The dataset now includes resale prices, pRSit , so that yit =
(
ait, xit, p

RS
it

)
. Using (22) we

can estimate V (xit) by (nonparametrically) regressing pRSit on xit:

pRSit = V (xit) + ηit (23)

where ηit is measurement error. We therefore assume for identification purposes that V is
known (in addition to pa and F ). When V is known, the identification of flow payoffs follows
almost immediately; the only difficulty is that the variance of the idiosyncratic shocks σ needs
to be determined, and then equations (4), (5) and (6) have a unique solution.

Proposition 23 Assume Conditions 1-4 hold. Given the joint distribution of observables
Pr (y), where yit =

(
ait, xit, p

RS
it

)
, the flow payoffs πa are identified provided the primitives

(β,G) are known and (i) σ is known, or (ii) the (cardinal) payoff πa (x) is known for some
(a, x); or (iii) the expected payoff for one action is known.

21One way to relax homogeneity is to assume a competitive resale market with a large number of potential
buyers drawn from a finite type space. In this case, the only buyers active in the market for the asset are the
ones with the highest valuation, and the resale price will be equal to their valuation.
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Proof. Case (i): Substitute V in (6) into (4):

πa = (I − βFa)V − σψa. (24)

Case (ii): Fix an element of the vector πJ at the state x, then solve for σ:

σ = 1
ψJ (x)

V (x)− β
∑
x′∈X

Pr
(
x′|J, x

)
V
(
x′
)
− πJ (x)


provided the right hand side is positive.

Case (iii): Fix E [πJ (x)], where the expectation is taken over x. Then,

σ = 1
E [ψJ (x)]

E [V (x)]− βE

∑
x′∈X

Pr
(
x′|J, x

)
V
(
x′
)− E [πJ (x)]


provided the right hand side is positive.

The use of resale prices reduces the indeterminacy of the system and does not require a
strong normalization.22 Because V is measured with respect to a specific scale (e.g. dollars),
a normalization on σ is no longer innocent. In other words, we are working with cardinal
measurements of the value function; thus we need to measure the payoff function in the same
units. Fortunately, with little information on payoffs for any one action in any state, we can
identify σ. Alternatively, measures of average payoffs can be used, as the latter are readily
available in a variety of settings (e.g. below we use public data on costs and returns for
agriculture).

6 Identification with Unobservable Market-level States

With our agricultural land use application in mind, we extend the identification results to
the case where the state variables contain unobservable components. Here, we explicitly
assume that there are m = 1, ...,M markets. In addition, we borrow the state decomposition
ximt = (kimt, ωmt), as well as a state transition similar but slightly more general to (2)
from Section 2.2: the transition function of k is F k (kimt+1|a, kimt, ωmt). Importantly, the
aggregate state ωmt is not fully observed; but it does have an observed component wmt.23

Note the transition of kimt can be recovered from the data even though ωmt is not fully
observed. Indeed, one can estimate F kmt (kimt+1|a, kimt) = F k (kimt+1|a, kimt, ωmt) for each
time period in each market with a rich cross section of agents. In contrast, Fω (ωmt+1|ωmt)
cannot be estimated.

We add the following two assumptions:

Condition 24 (Additive Separability II) Per period payoffs are expressed as follows:

π (a, kimt, ωmt) = π (a, kimt, wmt) + ξ (a, kimt, ωmt)
22In addition, if the payoff function is also known for another conbination (j, x̃), it is possible to identify

the discount factor β.
23We assume kimt is finite, as in the case of fully observed states. We allow ωmt to be continuous. Neither

assumption is important and our results apply to both discrete and continuous states.
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Condition 25 (Instrumental Variables) There exist instruments at the time-t information
set, zmt, such that

E [ξ (a, k, ωmt) |zmt] = 0,
for all a, k; and that for all functions q (wmt), E [q (wmt) |zmt] = 0 implies q (wmt) = 0.

Condition 24 restricts the unobserved aggregate state to enter payoffs in an additively
separable fashion. The unobservable ξ (a, k, ω) may reflect mismeasured profits or unobserv-
able costs. It is important to stress that ξ is not a state variable, but a function of the state
variables. On its own, ξ need not evolve according to a first order Markov process although
ω does. Note that ξ may be serially correlated, unlike the idiosyncratic shocks ε. In addition,
π and ξ are likely correlated because they may depend on the same state variables. For this
reason, we need to make use of instrumental variables to obtain identification. Condition 25
assumes access to valid instruments and imposes the completeness condition. If it is reason-
able to assume that π and ξ are not correlated, one can take observed state variables wmt as
instruments. In other cases, it may be reasonable to use (sufficiently) lagged wmt.

The available dataset now is y = {(aimt, kimt, wmt, zmt) : i = 1, ..., N ;m = 1, ...,M ; t =
1, ..., Ti}. Identification with partially observed states cannot make direct use of the main
equations (4)-(6), since the transition matrix is unknown. Our identification results are
instead based on the following expression which replaces (4)-(6):

π (a, kimt, ωmt) + βεV (a, kimt, ωmt, ωmt+1)
= V (kimt, ωmt)− β

∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, kimt, ωmt

)
− σψa (kimt, ωmt) (25)

where εV (·) is an “expectational error” according to the following definition:

Definition 26 (Expectational error) For any function ζ (k, ω) and particular realization ω∗ ∈
Ω,

εζ
(
k′, ω, ω∗

)
≡ Eω′|ω

[
ζ
(
k′, ω′

)
|ω
]
− ζ

(
k′, ω∗

)
,

εζ (a, k, ω, ω∗) ≡
∑
k′

εζ
(
k′, ω, ω∗

)
F k
(
k′|a, k, ω

)
.

To derive (25) note that E [V (kimt+1, ωmt+1) |a, kimt, ωmt] is given by:∑
k′

∫
ω′
V
(
k′, ω′

)
dFω

(
ω′|ωmt

)
F k
(
k′|a, kimt, ωmt

)
=

∑
k′

(
Eω′|ωmt

[
V
(
k′, ω′

)
|ωmt

])
F k
(
k′|a, kimt, ωmt

)
=

∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, kimt, ωmt

)
+ εV (a, kimt, ωmt, ωmt+1) (26)

The first term of the right hand side of (26) is the expected ex ante value function at time
t + 1 for agent i in state kimt who selected action a at time t for the actual realization of
ωmt+1 (the conditional expectation is taken over k′). The use of expectational errors allow
us to rewrite (4) as follows: for a = 1, ..., J

π (a, kimt, ωmt) = va (kimt, ωmt)− β
∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, kimt, ωmt

)
−βεV (a, kimt, ωmt, ωmt+1) . (27)
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which in turn leads to (25). Importantly, the expectational error is mean independent of all
past state variables (k, ω) (see Lemma 30 in Appendix A).

Before turning to identification, we note that even though ωmt is not fully observed, we can
still recover the conditional choice probabilities pa (k, ωmt). Like F k they can be estimated
separately for each market m in each t (or with flexible market and time dummies). Of course
we need a large number of agents i in each m and t to obtain accurate estimates. For our
results regarding the identification of π in settings with unobserved states, we treat pa (.),
F k (.) and ψa (.) as known objects.24

Next, we simplify the notation and use (m, t) subscripts to denote functions that depend
on ωmt. We rewrite payoffs as πmt (a, kimt) = π (a, kimt, ωmt), while Vmt (kimt), pamt (kimt)
and ψamt (kimt) are similarly defined. Therefore, (25) in matrix form becomes:

πamt + βεVam,t,t+1 = Vmt − βF kamtVmt+1 − σψamt (28)

for all a, where εVam,t,t+1 stacks εVmt,t+1 (a, k) for all k.
We now turn to our identification results. In contrast to the case of fully observed states,

the value function enters (28) in a recursive fashion at ωmt and ωmt+1. Repeated substitution
of Vmτ , all τ , in (28) leads to an expression that includes VmT as well as all expectational
errors. Although we can average out the latter, we are still left with the unobserved VmT –
this is a barrier to identification. As we show formally in Proposition 27, when states are
partially observed, fixing payoffs of an action for all states is not sufficient for identification
(as in the case of fully observed states). To obtain identification we must impose extra
restrictions. Renewability is a natural candidate; we take action J to be a renewal action.
Adapting Definition 10 in Section 2 for partially observed states, the condition states that
for all t, τ and all a, j:

F kamtF
k
Jmτ = F kjmtF

k
Jmτ . (29)

For any a and j, we then have

πamt − πjmt + β
(
εVam,t,t+1 − εVjm,t,t+1

)
+ σ (ψamt − ψjmt)

= β
(
F kamt − F kjmt

) (
πJmt+1 + εVJm,t+1,t+2 + σψJmt+1

)
(30)

because the Vt+2 portions of the value function cancel conditional on the renewal action being
used in period t+ 1. Thus the effect of the terminal value VmT has been eliminated and (30)
forms our base equation for identification.25

24Formally, ωmt is a market-level shock affecting all agents i in m at t. If the data {aimt, kimt : i = 1, ..., N}
is i.i.d. conditional on the market level shock ωmt, then, by the law of large numbers for exchangeable random
variables (see, e.g., Hall and Heyde, 1980),

p̂amt (k) =
∑N

i=1 1 {aimt = a, kimt = k}∑N

i=1 1 {kimt = k}
p→ E [aimt = a|kimt = k, ωmt] = pa (k, ωmt)

as N → ∞. The result extends to non-i.i.d. data, provided the cross-section dependence dies out with
the distance across the agents. It is clear that depending on the realization of ωmt, p̂amt (k) converges in
probability to the realization of pa (k, ωmt). The same argument applies to the estimator of F k (.).

25Formally, use (28) for J in t+ 1 to solve for Vmt+1 and replace the latter in (28) for any a in t:

πamt + βεVam,t,t+1 = Vmt − σψamt
−βF kamt

[
πJmt+1 + βεVJmt+1,t+2 + βF kJmt+1Vmt+2 + σψJmt+1

]
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Proposition 27 Assume the Conditions 1-4 and 24-25 hold. Suppose (σ, β,G) are known.
Given the joint distribution of observables Pr (y), where yimt = (aimt, kimt, wmt, zmt), the flow
payoffs π (a, kimt, wmt) are identified provided the market level stochastic process (zmt, ωmt)
is stationary and:

(a) Finite T : (i) the terminal value VmT is known and π (j, kimt, wmt) is known or prespec-
ified for some j and all (k,w); or (ii) there is a renewal action J with known or prespecified
flow payoff for all (k,w); and the spatial correlation between (zmt, ωmt) and (zm′t, ωm′t) dies
out as M →∞.

(b) Large T : there is a renewal action J , the flow payoff of some action j (not necessarily
action J) is known or prespecified for all (k,w) and the serial correlation between (zmt, ωmt)
and (zmt′ , ωmt′) dies out as T →∞.

Proof. See Appendix A.
Proposition 27 shows that, when market-level states are partially observed, identification

requires a strong normalization on payoffs, like Proposition 7, as well as an extra restriction:
the presence of a renewal action. In related work, Arcidiacono and Miller (2015) consider
non-stationary settings with fully observed states, where strong normalizations fixing the
payoff of the renewal action in the last period observed is needed.

6.1 Identification with Resale Prices and Unobservable Market-level States

Simple inspection of (28) shows that payoffs can be identified with resale prices: the right
hand side is essentially observed. Because the expectational errors and the unobservable ξ
have zero mean given the instrumental variables, we can treat the model as a (non-parametric)
regression model. There is no need to impose a strong normalization nor renewability.

Proposition 28 Assume the Conditions 1-4 and 24-25 hold. Suppose the primitives (β,G)
are known and either (i) σ is known, or (ii) the (cardinal) payoff π (a, kimt, wmt) is known for
one combination of (a, k, w). Given the joint distribution of observables Pr (y), where yimt =(
aimt, kimt, wmt, zmt, p

RS
imt

)
, π (a, kimt, wmt) is identified provided (zmt, ωmt) is stationary and

the spatial and/or serial correlation between (zmt, ωmt) and (zm′t′ , ωm′t′) dies out as M →∞
and/or T →∞.

Proof. See Appendix A.

7 Agricultural Land Use Model

Our model of agricultural land use closely follows Scott (2013) and is a special case of the
empirical model of Section 6. Each year, field owners decide whether to plant crops or not;
i.e. A = {c, nc}, where c stands for “crops” and nc stands for “no crops” (e.g. pasture,
hay, grassland, forests, and other forms of non-managed land). Fields are indexed by i and
counties are indexed by m. We partition the state ximt into:

1. time-invariant field and county characteristics, ζim, e.g. slope, soil composition;

Next, evaluate the above at a and j and subtract to obtain (30) using the renewability property (29).
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2. number of years since field was last in crops, kimt ∈ K =
{

0, 1, . . . , k
}

; and26

3. aggregate state, ωmt (e.g. input and output prices, government policies) with an ob-
served component wmt.

Per period payoffs are specified as follows:

π (a, kimt, ωmt, ζim, εimt) = θ0 (a, kimt, ζim)+R (a,wmt, ζim)+ξ (a, kimt, ωmt, ζim)+σεimt (31)

where R (a,w, ζ) and ξ (a, k, ω, ζ) are observable and unobservable measures of returns, while
θ0 (a, k, ζ) captures switching costs between land uses. We construct returns R using county-
year information (expected prices and realized yields for major US crops, as well as USDA
cost estimates) as in Scott (2013).27 Due to data limitations we only allow R to depend on
(a,wmt), so that we have Ramt ≡ R (a,wmt).

The dependence of θ0 on k is what creates dynamic incentives for landowners. The action
of “no crops” leaves the land idle, slowly reverting it to natural vegetation, rough terrain, etc.
The farmer needs to clear the land in order to convert to crop and start planting. The costs
of switching to crop may be rising as the terrain gets rougher. At the same time, however,
there may be benefits to switching, e.g. planting crops may be more profitable after the land
is left fallow for a year. In summary, we expect θ0 (a, k, ζ) to differ across k.

To complete the specification of this model, we determine state transitions. We follow the
decomposition (2), which implies that farmers are small and that there are no externalities
across fields. The transition rule of k is:

k′ (a, k) =
{

0, if a = c

min
{
k + 1, k

}
, if a = nc

(32)

for all (k, ω, ζ). If “no crops” is chosen, the number of years since last crop increases by one,
until k. If “crops” is chosen, the number of years since last crop is reset to zero. Planting
crops is therefore a renewal action.

7.1 Estimators for the Land Use Model

The parameters of interest are σ and θ0 (a, k, ζ), all a, k, ζ. We present and compare three
estimators. First, we employ Scott (2013)’s method which relies on data for actions and states.
It differs from the nested fixed-point (Rust (1987)) and the 2-step estimator of Hotz and Miller
(1993) as it allows for partially-observed market states and is in regression form. We call this
estimator, the “CCP estimator.” It requires a strong normalization on θ0 (a, k, ζ). The second
estimator, which we call the “joint estimator,” considers the moments of the CCP estimator,
plus the moment restrictions obtained from resale prices; all moments are used jointly to
estimate payoffs. Finally, because resale prices are bound to affect the model estimates
beyond the strong normalization, we consider a third estimator. The third estimator, named
the “hybrid estimator,” is based on the CCP estimator and only uses the resale prices to drop

26Ideally, kimt would include detailed information on past land use. We consider the years since the field
was in crop (bounded by k) for computational tractability and due to data limitations.

27We refer the interested reader there for details. One important difference from Scott (2013) is that we
have field level characteristics ζ and they affect land use switching costs.
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the strong normalization on θ0 (a, k, ζ). All three estimators require first stage estimates of
the conditional choice probabilities, pmt (a, k, ζ), while the joint and the hybrid also require
estimating the value function Vmt (k, ζ) (from resale prices). The details of the first stage are
presented in Appendix C.

The “CCP estimator” Scott (2013) derives a regression estimator using the renewability
of action “crops”. Indeed, adapting (30) to the land use model, we obtain:

σY b
mt (k, ζ) = θ̃0 (k, ζ) + (Rcmt −Rncmt) + ξ̃mt (k, ζ) + ε̃Vmt (k, ζ) (33)

for all k, ζ, where

Y b
mt (k, ζ) ≡ ln

(
pmt (c, k, ζ)
pmt (nc, k, ζ)

)
+ β ln

(
pmt+1 (c, k′ (c, k) , ζ)
pmt+1 (c, k′ (nc, k) , ζ)

)
,

θ̃0 (k, ζ) = θ0 (nc, k, ζ)− θ0 (c, k, ζ) + β
[
θ0
(
c, k′ (c, k) , ζ

)
− θ0

(
c, k′ (nc, k) , ζ

)]
, (34)

ξ̃mt (k, ζ) = ξmt (nc, k, ζ)−ξmt (c, k, ζ)−βE
[
ξmt+1

(
c, k′ (c, k) , ζ

)]
+βE

[
ξmt+1

(
c, k′ (nc, k) , ζ

)]
,

with the expectations taken over ωmt+1; ε̃Vmt (k, ζ) is defined similarly to ξ̃mt (k, ζ).28

As shown in Section 3.1, we cannot identify all θ0 (a, k, ζ) when only actions and states
are observed. Following Scott (2013), we strongly normalize θ0 (nc, k, ζ) = 0 for all k, ζ. It
is important to note that this specification has already (weakly) normalized scale, as Ramt is
measured in dollars; therefore, we can estimate σ.29 Note also that the profit function has
the same functional form as (3) in Subsection 2.2.

We estimate (33) in two steps: first, we estimate σ alone via instrumental variables (IV)
regression on first differences of (33); then we obtain θ0 (a, k, ζ) by averaging the residuals.
As discussed in Section 6, one should expect (Rncmt −Rcmt) and ξ̃mt (k, ζ) to be correlated.
Thus, for the regression estimating σ, we need instruments. Following Scott (2013) again, we
employ lagged returns and caloric yields to instrument for the first difference of (Rncmt −Rcmt).
Once σ is estimated, we move to θ0 (a, k, ζ). We obtain the residuals and take their average
over time in order to remove ξ (k, ζ). Finally, having normalized the intercepts for “no crops,”
we invert (34) to obtain θ0 (c, k, ζ).

The “Joint Estimator” Assuming V is known, (25) can be added as follows:

Y v
mt (a, k, ζ) = θ0 (a, k, ζ) +Ramt + σψmt (a, k, ζ) + ξmt (a, k, ζ) + βεVmt+1 (a, k) , (35)

where
Y v
mt (a, k, ζ) ≡ Vmt (k, ζ)− βVmt+1

(
k′ (a, k) , ζ

)
,

which can be calculated using the first stage estimate of Vmt (k, ζ). For our first stage estimate
of the value function, we use a polynomial approximation in (k, ζ) for each (m, t). We employ

28We refer the interested reader to Scott (2013) for the detailed derivation. Remember that (i) F kamt evolves
deterministically, (ii) pmt (a, k) = p (a, k, ωmt), and that (iii) for the binary choice model with logit shocks,
ψa (p (x)) = − log (pa (x)) + γ.

29To see this, divide both sides of (31) by σ and observe that now 1/σ transforms the scale of Ramt (dollars)
into “utils”. Scott (2013) adopts an equivalent approach: the profit specification is π (a, k, ω) = θ0 (a, k) +
θ1R

a
mt + ξ (a, k, ω) and he estimates θ1 = 1/σ.
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the Generalized Method of Moments (GMM) to obtain σ from the first differences of (33)
and (35). Since ψmt is likely correlated with ξamt, we employ lagged values of ψmt, as well as
caloric yields as instrument for moments (35). We then follow the same procedure as above
to obtain θ0 (a, k, ζ), all a, k, ζ from the residuals.

The “Hybrid Estimator” To isolate the impact of strong normalizations on counterfac-
tuals, we consider a third estimator, which we call the “hybrid.” The hybrid estimator uses
(33) alone to estimate σ (following the CCP estimator) and only uses (35) to recover the
intercepts θ0 (a, k, ζ) (following the joint estimator). The idea here is to force resale prices
to provide information only on θ0 (a, k, ζ); i.e. resale prices allow us to only avoid the strong
normalization.

Note that the CCP and hybrid estimators follow identical strategies to estimate σ. Con-
ditional on an estimate of σ, the hybrid and joint estimators follow identical strategies to
recover the intercepts θ0.

8 Data

We performed a spatial merge of a number of datasets to create a uniquely rich database
on land use. First, we employ high-resolution (30-56m) annual land use data, obtained
from the Cropland Data Layer database. The CDL covers the entire contiguous United
States since 2008. We merged this dataset with NASA’s Shuttle Radar Topography Mission
database which provides detailed topographical information. The raw data consist of high-
resolution (approx. 30m) altitudes, from which we calculated slope and aspect, all important
determinants of how land is used. To augment our detailed field characteristics, we use soil
categories from the Global Agro-Ecological Zones database and information on protected land
from the World Database on Protected Areas. Next, we merge the above with an extensive
database of land transactions in the United States obtained from DataQuick. DataQuick
collects transaction data from about 85% of US counties and reports the associated price,
acreage, parties involved, field address and other characteristics. Finally, we use various
public databases on agricultural production from the USDA. All spatial merges were done
using nearest neighbor interpolation. The final dataset goes from 2010 to 2013 for 515 counties
and from 2008 to 2013 for 132 counties.

Our dataset is the first to allow for such rich field heterogeneity; indeed, ζim includes slope,
altitude, soil type, as well as latitude and longitude. A field’s slope affects the difficulty of
preparing it for crops. Altitude and soil type are crucial for its planting productivity. Latitude
and longitude capture the field’s location precisely. We also compute each field’s distance
to close urban centers, as well as its nearby commercial property values (specifically, the
land value of nearby restaurants). These characteristics shape the field’s options for future
development, a potentially important determinant of both land use and land values.

Table 2 presents some summary statistics. The average proportion of cropland in the
sample is 15%. Land use exhibits substantial persistence: the probability of keeping the land
in crop is about 85%, while the probability of switching to crops (i.e. the probability of
planting crops after two years as noncrop) is quite small, at 1.6%. Although not presented
in the table, the proportion of fields that switch back to crops after one year as noncrop
is significant (ranging from 27% to 43% on average depending on the year), which suggests
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Table 2: Summary Statistics

Statistics Mean Std Dev Min Max
In Cropland 0.147 0.354 0 1
Switch to Crops 0.0162 0.126 0 1
Keep Crops 0.849 0.358 0 1
Crop Returns ($) 228 112 43 701
Slope (grade) 0.049 0.063 0 0.702
Altitude (m) 371 497 −6 3514
Distance to Urban Center (km) 79.8 63.7 1.22 362
Nearest commercial land value ($/acre) 159000 792000 738 73369656
Land value ($/acre) 7940 9720 5.23 50000
A slope of 1 refers to a perfect incline and a slope of 0 refers to perfectly horizontal land.

Figure 1: Prevalence of Cropland for Counties in Sample, 2013
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some farmers enjoy benefits from leaving land fallow for a year. Measurable crop returns are
$214 per acre on average, while measurable non-crop returns are $13 per acre (not shown).
Crop returns are based on information on yields, prices received, and operating expenditures;
non-crop returns are based on much more sparse information on pasture land rental rates.

A total of 91, 198 farms were transacted between 2008 to 2013 based on DataQuick.
However, after applying the selection criteria (i.e., dropping non-standard transactions and
outliers) there remained 24, 643 observations. See Appendix C.2 for details.

Figure 1 presents the spatial distribution of land use pattern in the US using the CDL
fields for the counties in our sample.

28



9 Results

We now turn to our empirical results. We provide a brief discussion on the first stage (choice
probabilities and value function) and then turn to the main object of interest: fieldowner
payoffs. The details of the first stage can be found in Appendix C.

First Stage: Choice Probabilities and Value Function. To obtain an estimate of
conditional choice probabilities, we implement a semiparametric strategy, estimating condi-
tional choice probabilities separately for each county, field state, and year. We use slope as
a covariate, which proves to be a powerful predictor of land use patterns.

Next, we estimate the value function from resale prices following (23). We regress resale
price per acre on field characteristics (k, slope, altitude, distance to urban centers, nearby
commercial values), year and county dummies, as well as higher order terms and interactions
of these covariates.

We view that our resale market assumptions are not overly restrictive in the context of
rural land which features a large number of small agents. As discussed in Section 8, the
land resale market is arguably thick, with a large number of transactions taking place every
year.30 Moreover, we are able to control for a rich set of field characteristics. One may worry
that transacted fields are selected. In Table 6 of Appendix B we compare the transacted
fields (in DataQuick) to all US fields (in the CDL). Overall, the two sets of fields look similar.
In addition, the probability of keeping (switching to) crops is very similar across the two
datasets. Finally, we explore whether land use changes upon resale and find no such evidence
(see Table 7 in Appendix B).

Payoffs. Table 3 presents the estimated parameters using the three proposed estimators.
For brevity we only present the average θ0 (a, k, ζ) across field types ζ. Due to data limita-
tions, we set k = 2.31

The mean switching cost parameters from the CCP estimator are all negative and increase
in magnitude with k. One may interpret this as follows: when k = 0, crop was planted in
the previous year. According to the estimates, preparing the land to replant crops costs on
average $722/acre. When k = 1, the land was not used to produce crop in the previous
year. In this case, it costs more to plant crops than when k = 0 (i.e., when the land was
in crops the previous year). Conversion costs when k = 2 are even larger. Of course such
interpretation hinges on the assumption that θ0 (nocrop, k) = 0 for all k. As is typical in
switching cost models, estimated switching costs are somewhat large in order to explain the
observed persistence in choices; unobserved heterogeneity – which is beyond the scope of this
paper – can alleviate this (see Scott (2013)).

The estimated parameters of the hybrid estimator do not normalize θ0 (nocrop, k) = 0.
When k = 0, switching out of crops is now expensive (not zero anymore). Furthermore, the
absolute value of the estimated θ0 (crop, 0) is now larger than the absolute value of θ0 (crop, 1),

30The USDA releases information about agricultural land sales in Wisconsin, but seemingly not for other
states. There are approximately 100 thousand acres transacted per year (about 1000 transactions), and about
14.5 million acres of farmland in Wisconsin, so there are roughly a little less than 1% of land transacted per
year. We obtain slightly larger numbers (between 1.4% and 2% depending on the year) when we compare the
number of transacted properties in DataQuick with the number of fields in the CDL data.

31We weight observations as in Scott (2013) and cluster standard errors by year.
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Table 3: Empirical Results

Estimator: CCP Hybrid Joint
θ̄0 (crop, 0) -721.93 -1228.9 -802.93

(800) (80.9) (741)
θ̄0 (crop, 1) -2584.4 -1119.4 -281.16

(3738) (74.7) (683)
θ̄0 (crop, 2) -5070.8 -4530.4 -2938.9

(7670) (136) (1240)
θ̄0 (nocrop, 0) 0 -2380.3 -1896.6

(1900) (17421)
θ̄0 (nocrop, 1) 0 470.05 830.39

(2510) (22939)
θ̄0 (nocrop, 2) 0 -454.58 -228.46

(1210) (11103)
σ 734.08 734.08 472

(191.98) (191.98) (243.1)
θ0 values are means across all fields in the sample.

Standard errors in parentheses.

which reflects the benefits of leaving land fallow for one year. This potential benefit is not
apparent when we strongly normalize θ0 (nocrop, k). Given that the probability of planting
crops after one year of fallow is lower than the probability of planting crops after crops
(in most places), in order to rationalize the choice probabilities, the strongly normalized
model must assign higher costs to crops after fallow than after crops. We view this as an
appealing feature of the hybrid and joint models – it is arguably not plausible that leaving
land out of crops for one year would increase the costs of planting crops in the following year
dramatically.32

Although the numbers differ, the results for the joint estimator are qualitatively similar
to the hybrid estimator.33

9.1 Policy Counterfactuals

We consider two policy relevant counterfactuals: the long-run elasticity (LRE) of land use
and a fertilizer tax.

The LRE measures the long-run sensitivity of land use to an (exogenous) change in crop
returns, Rc. To calculate it, we first compute the long run steady-state acreage distribution
holding returns (R) fixed at their average recent levels. Then, the steady-state acreage

32One could also argue that it is not plausible that staying out of crops for only two years would lead to
dramatically higher costs of planting crops. However, we observe very few fields in the data with field state
k = 2 which have not been out of crops for longer than two years; i.e., field which have been out of crops for
at least two years have typically been out of crops for a long time.

33In practice, we found that not employing the non-crop vale function moments led to more stable results,
likely because Rnc is somewhat poorly measured.
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distribution is obtained with Rc held fixed at 10% higher levels. The LRE is defined as the
arc elasticity between the total acreages in the two steady states.34

As shown in Table 4, the LRE varies little across the different estimators. In fact, the
CCP and hybrid estimators give exactly the same LRE. This is no coincidence. Note that
the rescaled (by σ) profit function in (31) is composed of the intercept and Ra multiplied
by the coefficient 1/σ (plus errors). Since σ is identified, any counterfactual that transforms
the identified part of the profit is also identified, as discussed in Subsection 4.2. Therefore,
the LRE is not affected by strong normalizations, and the only difference between the CCP
estimator and the hybrid estimator is that the latter relies on land values to identify the
profit function while the former makes a strong normalization. The joint estimator results in
a higher LRE than the CCP or hybrid because it results in a different estimate for σ.

The second counterfactual makes the following change to the profit function:

θ̃ (crop, 0) = θ (crop, 0) + 0.1 (θ (crop, 1)− θ (crop, 0)) .

The difference θ (crop, 1) − θ (crop, 0) captures the benefits of leaving land out of crops for
a year. One such benefit is to allow soil nutrient levels to recover, reducing the need for
fertilizer inputs after a year of fallow land. Because it is difficult to measure the fertilizer
saved by leaving land fallow, we use the estimated switching cost parameters to implement
the counterfactual. The increased costs to replant crops therefore resembles a fertilizer tax.
Higher cost of fertilizers is a likely result of pricing greenhouse gas emissions.35

As shown in Table 4, the strong normalization does matter when it comes to this counter-
factual. Indeed, the fertilizer tax counterfactual is not identified, since it involves a propor-
tional transformation of the unidentified part of profits. The CCP estimator leads to a 32%
increase in cropland as a result of this tax. In contrast, the hybrid and the joint estimators
predict a decrease in cropland, as expected. Behind the difference in results is the fact that
the CCP estimator does not predict benefits from leaving land fallow (on average), as dis-
cussed previously. In contrast, the hybrid and joint estimators capture the desired qualitative
effect, since the fertilizer tax represents an increase in the costs of planting crops after crops.

To summarize, when we only relax the strong normalization (i.e., moving from the CCP
to the hybrid estimator), the LRE does not change, as it involves only a transformation of
the identified component of the profit function. However, the fertilizer tax, which involves
a transformation of the non-identified part of payoffs, is altered when we relax the strong
normalization. If we add moments that change our estimates of the identified part of payoffs
(moving to the joint estimator), then either type of counterfactual will be affected.

10 Conclusions

This paper studies the identification of counterfactuals and payoffs in dynamic discrete choice
models. In Marschak’s (1953) spirit, we ask (i) whether counterfactuals are identified even

34See Scott (2013) for a formal definition and further discussion. The LREs estimated here are somewhat
higher than those found in Scott (2013) (although not significantly so). We find that this is largely due to
our smaller set of counties combined with the absence of unobserved heterogeneity: when Scott’s estimation
strategy is applied to our sample of counties ignoring unoberseved heterogeneity, one finds LREs very similar
to those presented here.

35As with the LRE, we fix Rc and Rnc at their mean level for each county.
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Table 4: Policy Counterfactuals

Estimator: CCP Hybrid Joint
Long-run elasticity 0.57 0.57 0.86
Fertilizer tax 0.32 -0.16 -0.31
Fertilizer tax statistic is percentage change in long-run cropland.

Long-run elasticity is a 10 percent arc elasticity.

when the model parameters are not; and if so, (ii) which set of counterfactuals are or are not
identified; and in the latter case, (iii) whether and how identification can be restored. Our
results provide a positive message with qualifications: the behavioral and welfare impacts
of some counterfactuals can be identified even when the full set of structural parameters is
not. For cases in which the counterfactual impacts are not identified, extra restrictions are
necessary. We provide conditions that must be verified to situate a particular counterfactual
in one case or another; and we help clarify the role that some of the extra assumptions have
in determining what we can learn from data. Finally, since this paper was the result of our
interest in policy relevant counterfactuals in the context of agricultural land use, we explore
the impact of strong normalizations in long-run land use elasticities and increases in the cost
of replanting crops, finding that the former is identified (robust to strong normalizations)
while the latter is not.

References

[1] Aguirregabiria, V. (2010). “Another look at the identification of dynamic discrete deci-
sion processes: an application to retirement behavior,” Journal of Business & Economic
Statistics, 28(2), 201–218.

[2] Aguirregabiria, V., P. Mira, and H. Roman (2007). “An Estimable Dynamic Model of
Entry, Exit and Growth in Oligopoly Retail Markets,” American Economic Review, 97
(2), 449-454.

[3] Aguirregabiria, V. and J. Suzuki (2014). “Identification and Counterfactuals in Dynamic
Models of Market Entry and Exit,” Quantitative Marketing and Economics, 12(3), 267-
304.

[4] Arcidiacono, P. and P. B. Ellickson (2011). “Practical Methods for Estimation of Dy-
namic Discrete Choice Models,” Annual Review of Economics, vol. 3, 363-394.

[5] Arcidiacono, P. and R. Miller (2011). “CCP Estimation of Dynamic Discrete Choice
Models with Unobserved Heterogeneity,” Econometrica, 79, 1823-1867.

[6] Arcidiacono, P. and R. Miller (2015). “Identifying Dynamic Discrete Choice Models off
Short Panels,” Mimeo.

[7] Bayer, P., A. Murphy, R. McMillan, and C. Timmins (2011). “A Dynamic Model of
Demand for Houses and Neighborhoods,” NBER Working Paper 17250.

32



[8] Chan, T. Y., B. H. Hamilton and N. Papageorge (2015). “Health, Risky Behavior and
the Value of Medical Innovation for Infectious Diseases,” Working Paper, Johns Hopkins
University.

[9] Collard-Wexler, A. (2013). “Demand fluctuations in the ready-mix concrete industry,”
Econometrica, 81(3), 1003–1007.

[10] Connault, B. (2014). “Hidden Rust Models,” Working Paper, Princeton University.

[11] Conlon, C. T. (2010). “A dynamic model of costs and margins in the lcd tv industry,”
Unpublished manuscript, Columbia University.

[12] Crawford, G. S. and M. Shum (2005). “Uncertainty and Learning in Pharmaceutical
Demand,” Econometrica, 73, 4, 1137-1173.

[13] Das, S., M.J. Roberts, and J.R Tybout. (2007). “Market entry costs, producer hetero-
geneity, and export dynamics,” Econometrica, 75(3), 837–873.

[14] Diermeier, D., M. Keane, and A. Merlo (2005). “A Political Economy Model of Congres-
sional Careers,” American Economic Review, 95, 347–373.

[15] Duflo, E., R. Hanna, and S. P. Ryan (2012). “Incentives Work: Getting Teachers to
Come to School,” The American Economic Review, 102, 1241–1278.

[16] Dunne, T., S. Klimek, M. Roberts, and Y. Xu (2013). “Entry and Exit and the Deter-
minants of Market Structure,” The RAND Journal of Economics, 44 (3), 462–487.

[17] Eckstein, Z., and K. I. Wolpin (1999). “Why youths drop out of high school: the impact
of preferences, opportunities, and abilities,” Econometrica, 67 (6), 1295–1339.

[18] Eckstein, Z. and O. Lifshitz (2011). “Dynamic Female Labor Supply,” Econometrica,
79(6), 1675–1726.

[19] Fang, H. and Y. Wang (2015). “Estimating Dynamic Discrete Choice Models with Hy-
perbolic Discounting, with an Application to Mammography Decisions,” International
Economic Review, 56, 2, 565–596.

[20] Firth D. (1993). “Bias Reduction of Maximum Likelihood Estimates,” Biometrika, 80:27–
38.

[21] Gilleskie, D. (1998). “A Dynamic Stochastic Model of Medical Care Use and Work
Absence,” Econometrica, 66, 1-45.

[22] Gowrisankaran, G., and M. Rysman (2012). “Dynamics of Consumer Demand for New
Durable Goods,” Journal of Political Economy, 120, 1173-1219.

[23] Hall, P. and Heyde, C. C. (1980). Martingale limit theory and its application. Academic
Press, New York-London.

[24] Heckman, J., and S. Navarro. (2007), “Dynamic Discrete Choice and Dynamic Treatment
Effects,” Journal of Econometrics, 136, 341–396.

33



[25] Hendel, I., and A. Nevo (2006). “Measuring the Implications of Sales and Consumer
Inventory Behavior,” Econometrica, 74(6), 1637-1674.

[26] Hotz, V. J., and R. A. Miller (1993). “Conditional Choice Probabilities and the Estima-
tion of Dynamic Models”. Review of Economic Studies, 60 (3) , 497-529.

[27] Hu, Y., and M. Shum (2012). “Nonparametric Identification of Dynamic Models with
Unobserved State Variables,” Journal of Econometrics, 171, 32–44.

[28] Jeziorski, P, E. Krasnokutskayay, and O. Ceccariniz (2014). “Adverse Selection and
Moral Hazard in the Dynamic Model of Auto Insurance,” Mimeo.

[29] Kalouptsidi, M. (2014a). “Time to Build and Fluctuations in Bulk Shipping,” American
Economic Review, 104(2): 564-608.

[30] Kalouptsidi, M. (2014b). “Detection and Impact of Industrial Subsidies: The Case of
World Shipbuilding,” NBER Working Paper 20119.

[31] Kasahara, H. and K. Shimotsu (2009). “Nonparametric Identification of Finite Mixture
Models of Dynamic Discrete Choices,” Econometrica, 77(1), 135–175.

[32] Keane, M. P., and Wolpin, K. I. (1997). “The career decisions of young men,” Journal
of Political Economy, 105 (3), 473–522.

[33] Keane, M. P., P. E. Todd, and K. I. Wolpin (2011). “The Structural Estimation of
Behavioral Models: Discrete Choice Dynamic Programming Methods and Applications,”
in Handbook of Labor Economics, volume 4, chapter 4, Elsevier, 331-461.

[34] Koning, R. H., H. Neudecker and T. Wansbeek. (1991). “Block Kronecker Products and
the vecb Operator”. Linear Algebra and Its Applications. 165-184.

[35] Magnac, T. and D. Thesmar (2002). “Identifying dynamic discrete decision processes,”
Econometrica, 70(2), 801–816.

[36] Marschak, J. (1953). “Economic Measurements for Policy and Prediction,” in Studies in
Econometric Method, eds.W. Hood and T. Koopmans, New York: Wiley.

[37] Matzkin, R.L. (2007). “Nonparametric Identification,” Chapter 73 in Handbook of Econo-
metrics, Vol. 6b, edited by J.J. Heckman and E.E. Leamer, Elsevier B.V., 5307-5368.

[38] Miller, R.A. (1984). “Job matching and occupational choice,” Journal of Political Econ-
omy, 92, 1086–1120.

[39] Norets, A. (2009). “Inference in Dynamic Discrete Choice Models With Serially Corre-
lated Unobserved State Variables,” Econometrica, 77, 1665–1682.

[40] Norets, A. and X. Tang (2014). “Semiparametric Inference in Dynamic Binary Choice
Models,” Review of Economic Studies, 81(3), 1229-1262.

[41] Pakes, A. (1986). “Patents as options: some estimates of the value of holding European
patent stocks,” Econometrica, 54, 755–784.

34



[42] Pesendorfer, M. and Schmidt-Dengler (2008). “Asymptotic Least Square Estimators for
Dynamic Games,” Review of Economic Studies, 75, 901–908.

[43] Phillips, P. C. B. and H. Moon (1999). “Linear Regression Limit Theory for Nonstation-
ary Panel Data,” Econometrica, 67 (5), 1057-1111.

[44] Roberts, M. J. and W. Schlenker (2013). “Identifying Supply and Demand Elasticities
of Agricultural Commodities: Implications for the US Ethanol Mandate,” American
Economic Review, 103(6), 2265-2295.

[45] Rosenzweig, M. R., and K. I. Wolpin (1993). “Credit Market Constraints, Consumption
Smoothing, and the Accumulation of Durable Production Assets in Low-Income Coun-
tries: Investments in Bullocks in India,” Journal of Political Economy, 101(2), 223-244.

[46] Rust, J. (1987). “Optimal Replacement of GMC Bus Engines: An Empirical Model of
Harold Zurcher,” Econometrica, 55, 999-1033.

[47] Rust, J. (1994). “Structural estimation of Markov decision processes,” In: Engle, R.,
McFadden, D. (Eds.), Handbook of Econometrics. North-Holland, New York, pp. 3081-
3143.

[48] Rust, J. (2014). “The Limits of Inference with Theory: A Review of Wolpin (2013),”
Journal of Economic Literature, 52(3). 820-50.

[49] Rust, J., and C. Phelan (1997). “How Social Security and Medicare Affect Retirement
Behavior in a World of Incomplete Markets,” Econometrica, 65, 781-832.

[50] Ryan, S. P. (2012). “The Costs of Environmental Regulation in a Concentrated Industry,”
Econometrica, 80. 1019-1061.

[51] Scott, P. T. (2013). “Dynamic Discrete Choice Estimation of Agricultural Land Use,”
Working Paper, Toulouse School of Economics.

[52] Suzuki, J. (2013). “Land Use Regulation as a Barrier to Entry: Evidence from the Texas
Lodging Industry,” International Economic Review, 54 (2), 495-523.

[53] Todd, P. and K. I. Wolpin (2006). “Assessing the Impact of a School Subsidy Program
in Mexico.” American Economic Review, 96 (5), 1384-1417.

[54] Wolpin, K. I. (1984). “A dynamic stochastic model of fertility and child mortality,”
Journal of Political Economy, 92, 852–874.

[55] Wolpin, K. I. (1987). “Estimating a Structural Search Model: The Transition from
Schooling to Work,” Econometrica, 55, 801-818.

35



A Appendix: Proofs of Propositions

A.1 Identification of the Dynamic Discrete Choice Model

A.1.1 Proof of Proposition 9

Under the state decomposition, the transition matrix can be written as the Kronecker product
Fa = Fω⊗F ka . We make use of the following Lemma:

Lemma 29 Let Da =
[
I − β

(
Fω ⊗ F ka

)]−1
and 1 the block vector:

1 = [Ik, Ik, ...Ik]′

Then
Da1 = 1

(
I − βF ka

)−1

That is, the sum of entries on each block-row of Da is constant for all block-rows.

Proof. Let q′ωa be the ω-block row of Da. Then q′ωa = e′ωDa, or q′ωaD
−1
a = e′ω, or

q′ωa

(
I − β

(
Fω ⊗ F ka

))
= e′ω, which implies q′ωa − βq′ωa

(
Fω ⊗ F ka

)
= e′ω. We form the sum

of the entries of q′ωa by multiplying with 1:

q′ωa1− βq′ωa
(
Fω ⊗ F ka

)
1 = e′ω1

Now, (
Fω ⊗ F ka

)
1 =

F
ω
11F

k
a Fω12F

k
a ... Fω1ΩF

k
a

...
...

...
...

FωΩ1F
k
a FωΩ2F

k
a ... FωΩΩF

k
a


Ik...
Ik

 =

F
k
a
...
F ka

 = 1F ka

where Fωij is the (i, j) element of Fω, and
∑
ω′ F

ω
ωω′ = 1. So that

q′ωa1− β
(
q′ωa1

)
F ka = Ik

or
q′ωa1

(
I − βF ka

)
= Ik

We now provide the proof of Proposition 9; we focus on the binary choice {a, J} for nota-
tional simplicity, the general case is obtained in the same fashion. Let θ =

[
θa0
′, θJ0

′, θa1
′, θJ1

′
]′

be the vector of 4K unknown parameters (e.g. θa0 = [θ0(a, k1), ..., θ0(a, kK)]′). The paramet-
ric form of interest is linear in the parameters; stacking the payoffs for a given ω and all k
we have:

πa (ω) = [Ik, 0k, Ra(ω)Ik, 0k] θ

and
πJ (ω) = [0k, Ik, 0k, RJ (ω) Ik] θ
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Collecting πa (ω) for all ω, we get πa = πaθ, where

πa =

Ik 0k Ra(ω1)Ik 0k
...

...
...

...
Ik 0k Ra(ωΩ)Ik 0k

 (36)

and similarly for πJ . In the main text (see (11)), we showed that identification hinges on the
matrix (πa −AaπJ). This matrix equals:

πa −AaπJ =


Ik...
Ik

 , −Aa
Ik...
Ik

 , Ra, −AaRJ

 (37)

where Ra = [Ra(ω1)Ik, ..., Ra(ωΩ)Ik]′ (the same for RJ). Note that

Aa

Ik...
Ik

 =
(
I − β

(
Fω ⊗ F ka

)) (
I − β

(
Fω ⊗ F kJ

))−1

Ik...
Ik



=
(
I − β

(
Fω ⊗ F ka

))

(
I − βF kJ

)−1

...(
I − βF kJ

)−1



=


(
I − βF kJ

)−1

...(
I − βF kJ

)−1

− β

F ka

(
I − βF kJ

)−1

...
F ka

(
I − βF kJ

)−1

 =

Q
−1
a QJ

...
Q−1
a QJ



where Qa =
(
I − βF ka

)−1
and likewise for J ; to go from the first to the second line we use

Lemma 29, while the third line employs the Kronecker product definition as well as the fact
that Fω is a stochastic matrix whose rows sum to 1. It follows that the first two block
columns of (37) consist of identical blocks each (the first block column has elements Ik, and
the second, Q−1

a QJ). As a consequence, the respective block parameters θa0 , θJ0 , are not
identified unless a strong normalization is imposed.36 The remaining parameters, θa1 , θJ1 , are
identified as follows.

Consider equation (11), which in the binary case becomes (πa −AaπJ) θ = ba, or using
(37):Ik...

Ik

 θa0 −
Q
−1
a QJ

...
Q−1
a QJ

 θJ0 +Raθ
a
1 −

[
I − β

(
Fω ⊗ F ka

)] [
I − β

(
Fω ⊗ F kJ

)]−1
RJθ

J
1 = ba.

36In the multiple choice one block column is a linear combination of the remaining (J − 1) corresponding
to θ0; therefore we need to fix θJ0 for one action J to identify θ−J0 .
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Left-multiplying both sides by Da =
[
I − β

(
Fω ⊗ F ka

)]−1
and using Lemma 29, we obtain:37

Qa...
Qa

 θa0 −
QJ...
QJ

 θJ0 +DaRaθ
a
1 −DJRJθ

J
1 = Daba.

Take the ω block row of the above:

Qaθ
a
0 −QJθJ0 + e′ωDaRaθ

a
1 − e′ωDJRJθ

J
1 = e′ωDaba

Since |Ω| ≥ 3, take two other distinct block rows corresponding to ω̃, ω and difference both
from the above to obtain:[(

e′ω − e′ω̃
)
DaRa

(
e′
ω̃
− e′ω

)
DJRJ

(e′ω − e′ω)DaRa (e′ω − e′ω)DJRJ

] [
θa1
θJ1

]
=
[(
e′ω − e′ω̃

)
Daba

(e′ω − e′ω)Daba

]

which proves the Proposition.

A.1.2 Proof of Lemma 11

Using the definition of Aa from Proposition 7,

Aa ≡ (I − βFa) (I − βFJ)−1 = (I − βFa)
∞∑
t=0

βtF tJ

=
∞∑
t=0

βtF tJ − βFa −
∞∑
t=1

βt+1FaFJF
t−1
J .

Given the renewal action property, FaFJ = F 2
J , we have

Aa =
∞∑
t=0

βtFJ − βFa −
∞∑
t=1

βt+1F t+1
J = I + β (FJ − Fa) .

A.2 Identification of Counterfactuals

A.2.1 Proof of Proposition 17

H has the form
H = diag {λ1In1 , ..., λkInk}

We write Aa in partitioned form Aa = (Aa)ij so that it conforms with the decomposition of
H. Then the corresponding off-diagonal blocks of AaH −HAa satisfy

(λi − λj) (Aa)ij = 0
37To see this note that:

Da

Q
−1
a QJ

...
Q−1
a QJ

 θJ0 = Da

Ik...
Ik

Q−1
a QJθ

J
0 =

Qa...
Qa

Q−1
a QJθ

J
0 =

Ik...
Ik

QJθJ0 .
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for i 6= j. Therefore, (Aa)ij = 0, for i 6= j and Aa is block diagonal:
Aa = diag {Aa1, ..., Aak}

Then the definition of Aa implies:
I − βFa = Aa (I − βFJ)

or
1
β

(I −Aa) = Fa −AaFJ

The left hand side is block diagonal. Therefore, the off-diagonal blocks satisfy
F aij −Aai F Jij = 0 (38)

while for the diagonal blocks we have
1
β

(I −Aai ) = F aii −Aai F Jii (39)

Equations (38) and (39) summarize the restrictions placed on transition probabilities. We
can isolate Aai from (39) and substitute into (38) to obtain

Aai = (I − βF aii)
(
I − βF Jii

)−1

and (19).
Note that (19) implies that, given F J and F aii, all remaining blocks of F a are uniquely

determined. We must still guarantee, however, that F a are stochastic matrices so that their
rows add to 1 and all elements are between 0 and 1. Indeed, consider the first block row of
F a:

[F a11, F
a
12, ..., F

a
1k]

Then each row belonging to this block row must add to 1:
F a111 + F a121 + ...+ F a1k = 1

where, abusing notation slightly, the vectors 1 above have varying length. Using (38) and
the fact that the rows of F J add to one, we get

F a111 +Aa1

(
1− F J111

)
= 1

or, using (39) as well,

Aa11− 1 = Aa1F
J
111− 1

β
(I −Aa1) 1−Aa1F J11

we obtain (20).
Proof of Corollaries: The case of H = λI follows from (18). Next, suppose that one of

the eigenvalues of H, say λ1, is simple, that is n1 = 1 and k > 1 (this case includes pairwise
distinct eigenvalues). Then, equations (38) and (39) give

F aij = Aa1F
J
1j , j = 1, 2, ..., k

1
β

(1−Aa1) = F a11 −Aa1F J11

Summing over j and taking into account that row elements of Fa and FJ sum to one, we
have that F a11 = Aa1F

J
11 and 1

β (1−Aa1) = 0. Therefore, Aa1 = 1 and the corresponding rows
of Fa and FJ are equal.
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A.3 Identification with Unobservable Market-level States

In order to prove Propositions 27 and 28, we make use of the following Lemmas.

Lemma 30 For any action a, the expectational error term εζ (a, k, ω, ω∗) is mean indepen-
dent of k, ω: E

[
εζ (a, k, ω, ω∗) |k, ω

]
= 0 .

Proof. From the definition of εζ (a, k, ω, ω∗),

E
[
εζ (a, k, ω, ω∗) |k, ω

]
= E

[∑
k′

εζ
(
k′, ω, ω∗

)
F k
(
k′|a, k, ω

)
|k, ω

]

= E

[∑
k′

(∫
ω′
ζ
(
k′, ω′

)
dFω

(
ω′|ω

)
− ζ

(
k′, ω∗

))
F k
(
k′|a, k, ω

)
|k, ω

]

=
∑
k′

∫
ω′
ζ
(
k′, ω′

)
dFω

(
ω′|ω

)
F k
(
k′|a, k, ω

)
−
∑
k′

∫
ω∗
ζ
(
k′, ω∗

)
dFω (ω∗|ω)F k

(
k′|a, k, ω

)
= 0.

Note that the expectational error is also mean independent of all past (k, ω) (immediate
consequence of the law of iterated expectations).

Lemma 31 Consider the functions g (kimt, ωmt) and F (k′|kimt, ωmt). Assume wmt is an
observable subvector of ωmt and consider the data set {(kimt, wmt, zmt) : i = 1, ..., N ;m =
1, ...,M ; t = 1, ..., T}. Assume that for each m and t, one can obtain the estimators ĝNmt (k) p→
g (k, ωmt) and F̂Nmt (k′, k) p→ F (k′|k, ωmt) as N → ∞.38 For any function h (k, zmt), define
the estimators

1
MT

MT∑
m,t=1

[
h (k, zmt) ĝNmt (k)

]
, and

1
M (T − 1)

M(T−1)∑
m,t=1

[
h (k, zmt) ĝNmt+1 (k) F̂Nmt

(
k′, k

)]
.

Assume the following uniform conditions hold: (i)

lim sup
M,T,N

 1
MT

MT∑
m,t=1

E
∥∥∥h (k, zmt) ĝNmt

(
k′
)∥∥∥
 <∞,

lim sup
M,T,N

 1
M (T − 1)

M(T−1)∑
m,t=1

E
∥∥∥h (k, zmt) ĝNmt+1

(
k′
)
F̂Nmt

(
k′, k

)∥∥∥
 <∞; (40)

and (ii)

lim sup
M,T,N

 1
MT

MT∑
m,t=1

∥∥∥E [h (k, zmt)
(
ĝNmt

(
k′
)
− g

(
k′, ωmt

))]∥∥∥
 = 0

38Note that the asymptotic results ĝNmt (k) p→ g (k, ωmt) and F̂Nmt (k′, k) p→ F (k′|k, ωmt) as N → ∞ can be
obtained using the law of large numbers for exchangeable random variables (see, e.g., Hall and Heyde, 1980),
provided the observations i = 1, ..N for each index (m, t) are i.i.d. conditional on ωmt.
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lim sup
M,T,N

 1
M (T − 1)

M(T−1)∑
m,t=1

∥∥∥∥∥E
[
h (k, zmt)

(
ĝNmt+1 (k′) F̂Nmt (k′, k)

−g (k′, ωmt+1)F (k′|k, ωmt)

)]∥∥∥∥∥
 = 0 (41)

If (zmt, ωmt) is i.i.d. across (m, t), or if the correlation of (zmt, ωmt) and (zm′t′ , ωm′t′)
dies out as the distance between (m, t) and (m′, t′) increases, and if

E
∥∥h (k, zmt) g

(
k′, ωmt+1

)∥∥ <∞,
E
∥∥h (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)∥∥ <∞,
then,

1
MT

MT∑
m,t=1

[
h (k, zmt) ĝNmt (k)

]
p→ E [h (k, zmt) g (k, ωmt)] , and

1
M (T − 1)

M(T−1)∑
m,t=1

[
h (k, zmt) ĝNmt+1

(
k′
)
F̂Nmt

(
k′, k

)] p→ E
[
h (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)]
as (N,M, T )→∞; or as (N,M)→∞ (if T is fixed); or as (N,T )→∞ (if M is fixed).

Proof. We only consider the second estimator; the first estimator is handled similarly. The
proof makes use of sequential convergence as a way to obtain joint convergence (e.g. Phillips
and Moon, 1999, Lemma 6 and Theorem 1). The sequential limit can be obtained directly
from two facts: (i) ĝNmt (k) p→ g (k, ωmt) and F̂Nmt (k′, k) p→ F (k′|k, ωmt) as N →∞ implies

1
M (T − 1)

M(T−1)∑
m,t=1

[
h (k, zmt) ĝNmt+1

(
k′
)
F̂Nmt

(
k′, k

)]
p→ 1
M (T − 1)

M(T−1)∑
m,t=1

[
h (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)]
as N → ∞ for all (M,T ). And (ii) provided (zmt, ωmt) is i.i.d. across (m, t), or if the
correlation of (zmt, ωmt) and (zm′t′ , ωm′t′) dies out as the distance between (m, t) and (m′, t′)
increases, and provided

E
∥∥h (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)∥∥ <∞,
then, by the Weak Law of Large Numbers,

1
M (T − 1)

M(T−1)∑
m,t=1

[
h (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)] p→ E
[
h (k, zmt) g

(
k′, ωmt+1

)
F
(
k′|k, ωmt

)]
as (M,T )→∞.

The sequential limit is obtained by first passing the limit N → ∞ and then the limit
(M,T )→∞. Provided conditions (40) and (41) hold, by Phillips and Moon’s (1999) Lemma
6 and Theorem 1, the sequential limit equals the simultaneous limit as (N,M, T )→∞.39

39In general, the order of the limits can be misleading in cases in which all indices (N,M, T ) pass to infinity
simultaneously. We make use of the joint convergence because it holds under a wider range of circumstances
than the sequential convergence.
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A.3.1 Proof of Proposition 27

(a) Finite T . Suppose first that the terminal value VmT is known. Replace Vmt+1 in (28) for
a specific action j to get:

πamt+βεVam,t,t+1 = Vmt−βF kamt
[
πjmt+1 + βεVjm,t+1,t+2 + σψjmt+1 + βF kjmt+1Vmt+2

]
−σψamt

all a. Repeated substitution of Vmt+τ above leads to:

πamt + βεVam,t,t+1 = Vmt − βF kamt

[
T−1∑
τ=1

βτ−1Λjm,t,τ
(
πjmt+τ + βεVjm,t+τ,t+τ+1 + σψjmt+τ

)]
−βTF kamtΛjm,t,TVmT − σψamt (42)

where the matrices Λjm,t,τ are defined recursively:

Λjm,t,τ = I, for τ = 1
Λjm,t,τ = Λjm,t,τ−1F

k
jmt+τ−1, for τ ≥ 2.

Next, evaluate (42) for a = j and subtract it to obtain:

πamt − πjmt + β
(
εVam,t,t+1 − εVjm,t,t+1

)
= βT

(
F kjmt − F kamt

)
Λjm,t,TVmT − σ (ψamt − ψjmt) +

+ β (Fjmt − Famt)
[
T−1∑
τ=1

βτ−1Λjm,t,τ
(
πjmt+τ + βεVjm,t+τ,t+τ+1 + σψjmt+τ

)]
. (43)

For any known vector function h (zmt), with elements h (k, zmt), apply the Hadamard multipli-
cation on both sides of (43) and take expectation. We eliminate the error terms, εVam,t+τ,t+τ+1
and ξakmt+τ , because zmt is in the time-t information set. Then,

E [h (zmt) ◦ πamt] = E [h (zmt) ◦ (πjmt − σ (ψamt − ψjmt))] +

+βE
[
h (zmt) ◦ (Fjmt − Famt)

[
T−1∑
τ=1

βτ−1Λjm,t,τ (πjmt+τ + σψjmt+τ )
]]

+βTE
[
h (zmt) ◦

(
F kjmt − F kamt

)
Λjm,t,TVmT

]
. (44)

where ◦ denotes the Hadamard product, and the expectations are taken over (zmt, ωmt, ..., ωmT ).
If the payoff π (j, kimt, wmt), the scale parameter σ and the terminal value function VmT

are known, then the RHS of (44) can be recovered from the data (using the results of Lemma
31). Because the RHS of (44) is known, for any two structures b and b′, with corresponding
payoffs π and π′, we have

E
[
h (zmt) ◦

(
πamt − π′amt

)]
= 0

for any function h. By the completeness condition (Condition 25), the equality above implies
πamt − π′amt = 0 almost everywhere.

Next, consider the case of a renewal action J . Take (30), multiply both sides by h (zmt)
and take expectations:

E
[
h (zmt) ◦

(
πamt − πjmt − β

(
F kamt − F kjmt

)
πJmt+1

)]
= σE

[
h (zmt) ◦

(
β
(
F kamt − F kjmt

)
ψJmt+1 − (ψamt − ψjmt)

)]
.
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Similar to the previous case, the RHS can be recovered from data (using Lemma 31).
Then, for any two structures b and b′ with corresponding payoffs π and π′,

E
[
h (zmt) ◦

(
πamt − πjmt − β

(
F kamt − F kjmt

)
πJmt+1

)]
= E

[
h (zmt) ◦

(
π′amt − π′jmt − β

(
F kamt − F kjmt

)
π′Jmt+1

)]
.

By the completeness condition (Condition 25),

πamt − πjmt − β
(
F kamt − F kjmt

)
πJmt+1 = π′amt − π′jmt − β

(
F kamt − F kjmt

)
π′Jmt+1 (45)

for almost all (wmt, wmt+1). Consider (45) for j = J . Because πJ (k,w) is known or prespec-
ified for all observed states (k,w), we conclude that πamt − π′amt = 0 almost everywhere.

(b) Large T . Suppose again J is the renewal action. We do not necessarily assume that
the flow payoffs of the renewal action πJ is known. Instead we now assume πj is known
(or strongly normalized) for some action j for all k and w. This implies πj = π′j . Take the
equation (45) above. Then, for almost all (wmt, wmt+1),

πamt − π′amt = β(Famt − Fjmt)(πJmt+1 − π′Jmt+1)

It suffices to show that πJmt − π′Jmt = 0, since then πamt = π′amt, all a. Set a = J in the
above equation and evaluate recursively for any t,

πJmτ − π′Jmτ = βT
T∏
t=τ

(FJmt − Fjmt)(πJmT − π′JmT ) (46)

Because of the renewal property, we have:

T∏
t=τ

(FJt − Fjt) = (Fjτ − FJτ )
T∏
t=τ

Fjt,

and note that ‖FJt − Fjt‖ ≤ 2 for any t. Because the product of stochastic matrices is
stochastic, ∥∥∥∥∥

[
T∏
t=τ

Fjt

]∥∥∥∥∥ = 1.

Putting the claims together,∥∥∥∥∥(Fjτ − FJτ )
[
T∏
t=τ

Fjt

]∥∥∥∥∥ ≤ ‖Fjτ − FJτ‖
∥∥∥∥∥
[
T∏
t=τ

Fjt

]∥∥∥∥∥ ≤ 2.

Since β < 1 the sequence in the right hand side of (46) converges to zero provided the
flow payoffs πJ (k,w) and π′J (k,w) are bounded for almost all (k,w).
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Table 5: Data Sources

Dataset Description Source
Cropland Data Layer Land cover http://nassgeodata.gmu.edu/CropScape/
DataQuick Real estate transactions, assessments DataQuick
US Counties County boundaries http://www.census.gov/cgi-bin/geo/shapefiles2010/layers.cgi

GAEZ Database Protected land, soil types http://www.gaez.iiasa.ac.at/
SRTM Topographical – altitutude and slope http://dds.cr.usgs.gov/srtm/
NASS Quick Stats Yields, prices, pasture rental rates http://www.nass.usda.gov/Quick Stats/
ERS Operating costs http://www.ers.usda.gov/data-products/commodity-costs-and-returns.aspx

NOOA Urban Centers Urban center locations and populations http://www.nws.noaa.gov/geodata/catalog/national/html/urban.htm

A.3.2 Proof of Proposition 28

The proof is similar to that of Proposition 27. Suppose first that σ is known. Multiply both
sides of (25) by a known function h (k, zmt) and take expectations:

E [h (k, zmt)π (a, k, wmt)] = E [h (k, zmt) (V (k, ωmt)− σψ (a, k, ωmt))]

−βE
[
h (k, zmt)

∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, k, wmt

)]
(47)

where the expectations are taken over (zmt, ωmt, ωmt+1). The RHS can be recovered from
data (using Lemma 31). Then, for any two structures b and b′ with corresponding payoffs π
and π′,

E
[
h (k, zmt)

(
π (a, k, wmt)− π′ (a, k, wmt)

)]
= 0.

By the completeness condition (Condition 25), π (a, k, wmt)−π′ (a, k, wmt) = 0 almost every-
where.

Next, suppose σ is not known, but π (a, k, w) is known (or prespecified) for one combina-
tion of (a, k, w). Take (47) for the known π (a, k, w):

σE [h (k, zmt)ψ (a, k, ωmt)] = E [h (k, zmt)V (k, ωmt)]

−βE
[
h (k, zmt)

∑
k′

V
(
k′, ωmt+1

)
F k
(
k′|a, k, w

)]
− E [h (k, zmt)π (a, k, w)] .

The RHS is known, which implies for any two σ and σ′,(
σ − σ′

)
E [h (k, zmt)ψ (a, k, ωmt)] = 0,

and so σ = σ′.

B Appendix: Data (for online publication)

Table 5 lists the data sources. All are publicly available for download save DataQuick’s land
value data.

The Cropland Data Layer (CDL) rasters were processed to select an 840m subgrid of the
original data, and then points in this grid were matched across years to form a land use panel.
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Table 6: Dataquick vs CDL Data – Time Invariant Characteristics

Mean by dataset DataQuick CDL
In Cropland 0.147 0.136
Switch to Crops 0.0162 0.0123
Keep Crops 0.849 0.824
Crop Returns ($) 228 241
Slope (grade) 0.049 0.078
Altitude (m) 371 688
Distance to Urban Center (km) 79.8 103
Nearest commercial land value ($/acre) 159000 168000

The grid scale was chosen for two reasons. First, it provides comprehensive coverage (i.e.,
most agricultural fields are sampled) without providing too many repeated points within any
given parcel. Second, the CDL data changed from a 56m to a 30m grid, and the 840 grid size
allows us to match points across years where the grid size changed while matching centers
of pixels within 1m of each other. The CDL features crop-level land cover information. See
Scott (2013) for how “crop” and “non-crops” are defined. When we refer to a “field,” this can
mean two things in terms of our data. For analysis based on land use data only (not including
land value data), a field refers to one of these points in the CDL grid. For empirical models
that include land values, a field refers to a transacted parcel in the Dataquick database.

We know the coordinates of the centroids of transacted parcels in the DataQuick database.
To assign transacted parcels a land use, we associate a parcel with the nearest point in the
CDL grid. Similarly, slopes and soil categories are assigned to fields/parcels using nearest
neighbor interpolation.

From the GAEZ database, we take soil categories and protected status. Protected lands
were dropped from all analyses. The SRTM data provides altitudes at a 30m grid scale which
are used to calculate slopes.

To derive a measure of nearby developed property values, we find the five restaurants near-
est to a field, and we average their appraised property values. For each field, we also compute
the distance to the nearest urban center with a population of at least 100,000. Location of
urban centers were obtained from the National Oceanic and Atmospheric Administration
(NOAA).

Table 6 compares the transacted fields (in DataQuick) to all US fields (in the CDL). To
investigate whether land use changes upon resale, we used a linear probability model and
found no such evidence (see Table 7). We regress the land use decision on dummy variables
for whether the field was sold in the current, previous, or following year as well as various
control variables. In regressions within each cross section, ten of the eleven coefficients on
the land transaction dummy variables are statistically insignificant, and the estimated effect
on the probability of crops is always less than 1%. We have tried alternative specifications
such as modifying the definition of the year to span the planting year rather than calendar
year, and yet we have found no evidence indicating that there is an important connection
between land transactions and land use decisions.
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Table 7: Land use and transactions

(1) (2) (3) (4)
VARIABLES incrops2010 incrops2011 incrops2012 incrops2013

soldin2009 0.000647
(0.00604)

soldin2010 0.000116 0.00364
(0.00326) (0.00334)

soldin2011 -0.00117 0.000629 -0.00159
(0.00316) (0.00324) (0.00330)

soldin2012 -0.000620 -0.00472 0.00411
(0.00306) (0.00313) (0.00265)

soldin2013 -0.00962*** -0.000445
(0.00306) (0.00256)

Observations 23,492 23,492 23,492 23,492
R-squared 0.666 0.698 0.717 0.757

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Linear probability model. Omitted covariates include current returns, field state, US state,

slope, local commercial land value, distance to nearest urban center, and interactions.

C Appendix: Estimation (for online publication)

C.1 Conditional Choice Probabilities

We estimate conditional choice probabilities using a semiparametric logit regression. We
perform a separate regression for each county, field state, and year. In a regression, fields
in nearby counties are given weights which are proportional to the inverse square difference
between the centroids of the two counties. The sample of fields included in a given county’s
regression are all other fields within the same state, and potentially some neighboring states.

The logit regression for county m, field state k, and year t maximizes the following log
likelihood function:

max
θckt

∑
m′∈Sm

∑
i∈Im′

wm,m′I [kimt = k]
{

I [aimt = c] log (pmt (c, k, ζim; θckt))
+I [aimt = nc] log (1− pmt (c, k, ζim; θckt))

}

where Sm is the set of counties in the same state as m, Im is the set of fields in county m,
wm,m′ is the inverse squared distance between counties m and m′. The conditional choice
probability pmt (c, k, ζim; θckt) is parameterized as follows:

pmt (c, k, ζim; θckt) = exp (θ0ckt + θscktslopeim)
1 + exp (θ0ckt + θscktslopeim)

where slopeim is field i’s slope. Slope proves to be a powerful predictor of agricultural land
use decisions. Note that without the slope covariate, this regression would amount to taking

46



frequency estimates for each county, field state, and year (interacted), with some smoothing
across counties. Including slope allows for some within-county heterogeneity.

The set of counties in Sm only includes counties which appear in our sample – that is,
counties appearing in the DataQuick database. For some states, the database includes a small
number of counties (see Figure 1), so in these cases we group two or three states together.
For example, only one county in North Dakota appears in our sample, and it is a county on
the eastern border of North Dakota, so we combine North Dakota and Minnesota. Thus, for
each county m in North Dakota or Minnesota, Sm represents all counties in both states in
our sample.40

In a few instances, the semiparametric logit regressions converge very slowly or not at
all. After twenty maximum likelihood iterations, we switch to a penalized logistic regression
(i.e., “firthlogit” in STATA, where large values of coefficients are penalized).41

C.2 Resale Price Hedonics

Before estimating a hedonic model of land prices, we drop many transactions in the DataQuick
database in which the transaction price is not plausibly a reflection of the parcel’s value.
First, because we are interested in the agricultural value of land (not residential value),
we only consider transactions of parcels for which the municipal assessment assigned zero
value to buildings and structures. Additionally, we drop transactions featuring multi-parcels,
transactions between family members, properties held in trust, and properties owned by
companies. Finally, we drop transactions with extreme prices: those with value per acre
greater than $50,000, total transaction price greater than $10,000,000, or total transaction
price less than $60; these are considered measurement error.

As our transaction data is much more sparse than our choice data, we adopt a more
restrictive (parametric) form for modeling land values. We estimate the following hedonic
regression equation:

lnVit = X ′itθV + ηit

where Vit is a transaction price (in dollars per acre), and Xit is a vector of characteristics for
the corresponding field.42 The covariates Xit include all variables in Table 2, year dummies,
returns interacted with year dummies, field state dummies interacted with year dummies,
and county dummies. Table 8 presents the estimated coefficients.

40In particular, we form a number of groups for such cases: Delaware and Maryland; North Dakota and
Minnesota; Idaho and Montana; Arkansas, Louisiana, and Mississippi; Kentucky and Ohio; Illinois, Indiana,
and Wisconsin; Nebraska and Iowa; Oregon and Washington; Colorado and Wyoming.

41The “firthlogit” (Firth (1993)), adds to the loglikelihood function the penalization term 1
2 log |I (θ)|, where

I (θ) is the information matrix evaluated at θ. The penalization term avoids the “separation” problem: in
finite samples, the maximum likelihood estimate may not exist because at least one parameter estimate may
be infinite (even when the true parameter is not). This situation can occur when the dependent variable can
be perfectly predicted by a single regressor or by a non-trivial linear combination of regressors.

42Field acreage is available only in the DataQuick dataset; therefore when merging with the CDL and
remaining datasets we lose this information. This implies, for example, that acreage cannot be a covariate in
the choice probabilities. Therefore, we choose a specification for the value function that regresses price per
acre on covariates.
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Table 8: Hedonic Regression

(1)
VARIABLES log(land value)

log(distance to urban center) -0.471***
(0.0297)

commercial land value 0.102***
(0.00930)

slope -1.654***
(0.160)

alt -0.000226**
(9.00e-05)

Observations 24,643
R-squared 0.318
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Ommitted: soil, county, year, and field state dummies

as well as interactions with returns.
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