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1 Introduction 

The	past	two	decades	have	seen	an	enormous	increase	in	patent	filings	worldwide	(Fink	
et	al.,	2013).	There	are	signs	that	the	level	of	patenting	in	certain	sectors	has	become	so	
high	as	to	discourage	innovation	(Federal	Trade	Commission,	2011;	Bessen	and	Meurer,	
2008;	Jaffe	and	Lerner,	2004;	Federal	Trade	Commission,	2003).	The	main	reason	is	that	
companies	 inadvertently	 block	 each	 other’s	 innovations	 because	 of	 multiple	
overlapping	patent	rights	in	so‐called	“patent	thickets”	(Shapiro,	2001).	Patent	thickets	
arise	where	 individual	 products	 draw	on	 innovations	 protected	 by	 hundreds	 or	 even	
thousands	 of	 patents,	 often	 with	 fuzzy	 boundaries.	 These	 patents	 belong	 to	 many	
independent	 and	 usually	 competing	 firms.	 Patent	 thickets	 can	 lead	 to	 hold‐up	 of	
innovations,	 increases	 in	 the	 complexity	 of	 negotiations	 over	 licenses,	 increases	 in	
litigation,	 and	 they	 create	 incentives	 to	 add	 more	 and	 weaker	 patents	 to	 the	 patent	
system	(Allison	et	al.,	2015).	This	increases	transaction	costs,	reduces	profits	that	derive	
from	 the	 commercialization	 of	 innovation,	 and	 ultimately	 may	 reduce	 incentives	 to	
innovate.	

There	 is	 a	 growing	 theoretical	 (Bessen	 and	 Maskin,	 2009;	 Clark	 and	 Konrad,	 2008;	
Farrell	and	Shapiro,	2008;	Fershtman	and	Kamien,	1992)	and	legal	literature	on	patent	
thickets	 (Chien	 and	 Lemley,	 2012;	 Bessen	 et	al.,	 2011).	 Related	work	 analyzes	 firms’	
attempts	to	form	patent	pools	to	reduce	hold‐up	(Joshi	and	Nerkar,	2011;	Lerner	et	al.,	
2007;	Lerner	and	Tirole,	2004)	and	 the	particular	challenges	posed	 in	 this	context	by	
standard	essential	patents	(Lerner	and	Tirole,	2013).		

The	 existing	 empirical	 evidence	on	patent	 thickets	 is	 largely	 concerned	with	 showing	
that	 they	 exist	 and	measuring	 their	 density	 (Graevenitz	 et	al.,	 2011;	 Ziedonis,	 2004).	
There	 is	 less	 evidence	 on	 the	 effects	 patent	 thickets	 have	 for	 firms.	 Cockburn	 and	
MacGarvie	(2011)	demonstrate	that	patenting	levels	affect	product	market	entry	in	the	
software	 industry.	 They	 show	 that	 a	 1	 per	 cent	 increase	 in	 the	 number	 of	 existing	
patents	is	associated	with	a	0.8	per	cent	drop	in	the	number	of	product	market	entrants.	
This	result	echoes	earlier	findings	by	Lerner	(1995)	who	showed	for	a	small	sample	of	
U.S.	biotech	companies	that	first‐time	patenting	in	a	given	technology	is	affected	by	the	
presence	 of	 other	 companies’	 patents.	 Bessen	 and	Meurer	 (2013)	 suggest	 that	 patent	
thickets	 also	 lead	 to	 increased	 litigation	 related	 to	 hold‐up.	 Patent	 thickets	 have	
remained	a	concern	of	antitrust	agencies	and	regulators	in	the	United	States	for	over	a	
decade	 (Federal	Trade	Commission,	 2011,	 2003;	USDoJ	 and	FTC,	 2007).	 Reforms	 that	
address	some	of	the	factors	contributing	to	the	growth	of	patent	thickets	have	recently	
been	introduced	in	the	U.S.	(America	Invents	Act	(AIA)	of	2011)	1	and	by	the	European	
Patent	Office	(EPO).	

																																																								

1	For further information	see http://www.gpo.gov/fdsys/pkg/BILLS-112hr1249enr/pdf/BILLS-112hr1249enr.pdf 
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In	spite	of	the	available	theoretical	and	empirical	evidence,	it	is	frequently	argued	that	
patent	thickets	are	a	feature	of	rapidly	developing	technologies	in	which	technological	
opportunities	abound	(Teece	et	al.,	2014).	Thickets	are	thus	seen	as	a	reflection	of	fast	
technological	 progress	 that	 is	 paired	 with	 increased	 technological	 complexity	 (Lewis	
and	Mott,	2013).	This	suggests	that	a	trade‐off	between	technological	opportunity	and	
growth	on	the	one	hand	and	increased	transaction	costs	due	to	the	emergence	of	patent	
thickets	on	the	other	may	exist.	The	challenge	in	assessing	this	trade‐off	is	to	develop	a	
framework	that	captures	the	main	incentives	that	lead	to	patent	thickets	as	well	as	the	
most	important	effects	of	thickets.	

This	 paper	 contributes	 to	 the	 literature	 by	 analyzing	 the	 effect	 of	 patent	 thickets	 on	
entry	into	new	technology	areas.	Our	focus	on	entry	into	patenting	captures	the	positive	
effects	of	greater	technological	opportunity	and	negative	effects	of	greater	transaction	
costs	imposed	by	a	complex	patent	landscape	characterized	by	thickets.	We	are	able	to	
quantify	both	effects	empirically.		

The	paper	makes	two	contributions:	first,	we	extend	the	theoretical	model	of	patenting	
in	 complex	 technologies	 introduced	 by	 Graevenitz	 et	al.	 (2013)	 to	 free	 entry	 and	 the	
interaction	 between	 incumbents	 and	 entrants.	 Our	 model	 shows	 that	 technological	
complexity	 and	 technological	 opportunity	 increase	 entry	 in	 the	 context	 of	 patent	
thickets,	 while	 potential	 for	 hold‐up	 in	 patent	 thickets	 reduces	 entry.	 Whereas	
complexity	 and	 opportunity	 are	 shown	 to	 have	 countervailing	 effects	 on	 patenting	
incentives	in	Graevenitz	et	al.	(2013),	we	find	that	both	factors	increase	the	incentives	
to	 enter.	 However,	 hold‐up	 potential	 clearly	 reduces	 entry	 incentives.	 These	 findings	
reflect	the	fact	that	patent	thickets	arise	due	to	increased	technological	opportunity	and	
complexity	but	create	a	potential	for	hold‐up.		

The	second	contribution	of	the	paper	consists	of	an	empirical	test	of	these	predictions	
using	firm‐level	data	on	UK	firms	and	their	patenting	in	the	UK	and	Europe.	We	exploit	
patent	 data	 at	 both	 the	 EPO	 and	 the	 USPTO	 in	 order	 to	 construct	 measures	 of	
technological	 opportunity,	 technological	 complexity	 and	 hold‐up	 potential	 and	 relate	
these	to	entry	into	new	technology	areas	by	UK	firms.		

Our	empirical	analysis	confirms	that	entry	increases	in	technology	areas	characterized	
by	greater	technological	opportunity	and	complexity.	However,	we	also	show	that	 the	
hold‐up	potential	of	patent	thickets	has	negative	and	substantive	effects	on	entry	 into	
patenting.	 While	 we	 cannot	 quantify	 the	 overall	 net	 welfare	 effect,	 our	 results	 do	
suggest	that	thickets	raise	entry	costs	for	large	and	small	firms	alike.	To	the	extent	that	
more	original	and	radical	rather	than	incremental	ideas	come	from	new	entrants	rather	
than	 incumbents,	 this	 is	 likely	 to	 have	negative	 long‐run	 consequences	on	 innovation	
and	product	market	competition.	

The	remainder	of	this	paper	is	organized	as	follows.	Section	2	presents	a	model	of	entry	
into	patenting	 in	a	 technology	area	and	derives	several	 testable	predictions.	Section	3	
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describes	 the	data,	 and	 the	 empirical	measurement	 of	 the	 key	 concepts	 in	 the	model.	
Section	4	discusses	our	results	and	Section	5	provides	concluding	remarks.	

2 Theoretical	Model	

This	section	summarizes	the	main	results	of	a	two‐stage	model	of	entry	into	patenting	
and	 of	 subsequent	 patenting	 decisions.	 The	 model	 shows	 how	 complexity	 of	 a	
technology,	 technological	 opportunity	 and	 the	 expectation	 of	 hold‐up	 affect	 firms’	
decisions	 to	 enter	 a	 technology	 area.	 The	 incentives	 to	 patent	 in	 such	 a	 setting	 are	
analyzed	by	Graevenitz	et	al.	 (2013).	We	generalize	 their	model	 to	analyze	 entry	 into	
technology	areas	by	incumbents	and	new	entrants.		

Patent	systems	provide	protection	of	innovations	in	technologies	that	vary	significantly	
in	their	complexity	and	for	which	the	degree	of	technological	opportunity	changes	with	
the	 underlying	 science	 base.	 We	 model	 varying	 complexity	 and	 opportunity	 across	
technology	 areas	 as	 follows:	 each	 technology	 area	 is	 divided	 into	 technological	
opportunities.	 Firms	 invest	 in	R&D	per	 opportunity	 to	 develop	new	products.	Having	
invested,	firms	can	choose	to	protect	their	acquired	knowledge	by	applying	for	patents	
on	 facets	 of	 each	 opportunity.	 Where	 the	 technology	 is	 discrete,	 e.g.	 chemistry,	 an	
opportunity	 consists	 of	 one	 facet.	 Opportunities	 in	 complex	 technologies	 comprise	
multiple	facets.	An	increase	in	technological	opportunity	corresponds	to	an	increase	in	
the	 number	 of	 opportunities	 in	 a	 technology	 area.	 An	 increase	 in	 complexity	
corresponds	to	an	increase	in	the	number	of	facets	per	opportunity.		

We	assume	that	all	facets	and	opportunities	are	symmetrical.	Then	firms	can	randomly	
select	 which	 facets	 and	 opportunities	 to	 patent.	 The	 role	 of	 the	 patent	 office	 in	 this	
model	 is	 to	 randomly	 assign	 facets	 to	 firms,	when	multiple	 firms	 apply	 for	 the	 same	
facet.	 Firms	 only	 decide	 how	many	 technological	 opportunities	 to	 invest	 in	 and	 how	
many	facets	in	each	opportunity	to	patent.		

The	value	of	a	firm’s	patent	portfolio	within	a	given	technological	opportunity	depends	
on	the	number	of	facets	of	an	opportunity	that	have	been	patented	overall	and	the	share	
of	those	patents	held	by	the	firm.	In	deciding	how	many	patent	applications	to	submit	
each	firm	takes	into	account	costs	of	researching	an	opportunity,	costs	of	upholding	the	
patent	and	legal	costs	of	exploiting	the	patent	portfolio.		

In	 this	model	 opportunity	 increases	 incentives	 to	 patent	 in	 discrete	 technologies,	 but	
reduces	 these	 incentives	 in	 complex	 technologies.	 Opportunity	 relaxes	 firms’	
competition	 to	 patent	 all	 facets	 per	 opportunity	 in	 complex	 technologies.	 However,	
given	 the	 level	 of	 opportunity,	 greater	 complexity	 leads	 firms	 to	 patent	more	 as	 they	
seek	 to	ensure	 that	 they	 can	exploit	 the	opportunity	 fully	and	as	 they	 seek	 to	protect	
their	bargaining	position	among	firms	holding	patents	on	an	opportunity.	This	leads	to	
countervailing	effects	of	opportunity	and	complexity	on	patenting	incentives	in	complex	
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technologies.	Graevenitz	et	al.	(2013)	provide	evidence	of	this	using	data	on	European	
patenting.	

The	 countervailing	 effects	 of	 complexity	 and	 opportunity	 on	 patenting	 incentives	 in	
complex	 technologies	raise	the	question	how	complexity	and	opportunity	affect	entry.	
We	 show	 below	 that	 complexity	 and	 opportunity	 both	 increase	 incentives	 to	 enter	
complex	technologies.	It	is	perhaps	surprising	that,	conditional	on	the	number	of	firms,	
more	 opportunity	 should	 reduce	 patenting	 incentives,	 while	 increasing	 incentives	 to	
enter	into	patenting.	As	we	show	below	one	effect	is	the	precondition	for	the	other.	
	
Greater	 complexity	 increases	 incentives	 to	 enter	 a	 technology	 area	 as	 firms	 are	 less	
likely	to	compete	for	the	same	patents	within	each	opportunity	when	complexity	rises.	
Complexity	 is	 frequently	 associated	 with	 increased	 potential	 for	 hold‐up.	 Hold‐up	
potential	derives	 to	some	degree	from	the	allocation	of	patents	within	an	opportunity	
that	results	from	firms’	patenting	efforts.	Where	more	than	two	firms	hold	a	substantial	
stake	 on	 an	 opportunity	 the	 complexity	 of	 bargaining	 increases.	 We	 account	 for	 the	
threat	of	hold‐up	separately	and	show	that	increases	in	that	reduce	patenting	and	entry.	
Therefore	we	measure	complexity	and	hold‐up	separately	in	our	empirical	model.		

2.1 Notation	and	Assumptions	

The	 key	 variables	 of	 the	 model	 are	 the	 complexity	 of	 a	 technology	 k,	 measured	 by	

0( )kF  ,	the	degree	of	technological	opportunity,	measured	by	 0( )kO  ,	and	hold‐up	

potential	hk.	The	value	of	all	Fk	patents	in	an	opportunity	is	Vk.	In	the	simplest	discrete	
setting	 this	 is	 the	 value	 of	 the	 one	 patent	 (facet)	 that	 covers	 each	 technological	
opportunity.	 In	more	 complex	 technologies	 this	 is	 the	 value	 of	 controlling	 all	 patents	
(facets)	 on	 a	 technological	 opportunity.	 Firms	 (indexed	 by	 i)	 choose	 the	 number	 of	
opportunities	oi	to	invest	in	and	the	number	of	facets	fi	per	opportunity	to	patent.		

In	 equilibrium	 only	 0 1ˆ(1 (1 ( / ) ))N
k k kF f F    	facets	 are	 patented,	 where	 ˆ

kf 		 is	 the	

equilibrium	number	of	 facets	chosen	by	applicants	and	NO	 is	 the	number	of	 firms	that	

have	chosen	a	specific	opportunity.2	Since	 	may	be	smaller	than	Fk	 the	total	value	of	

patenting	 in	 a	 technology	 is .	 Graevenitz	 et	al.	 (2013)	 assume	 that	 the	

value	 function	 	is	 convex	 in	 covered	 facets.	 In	 Appendix	 C	 we	 show	 that	 this	

assumption	can	be	relaxed.	We	generalize	the	model	by	introducing	a	concave	function	
relating	the	share	of	patents	the	firm	holds	on	an	opportunity	(sik)	to	the	proportion	of	
the	 value	 Vk	 the	 firm	 can	 extract	 through	 licensing	 and	 its	 own	 sales:	 Δ(sik).	 This	
captures	the	benefits	that	a	patent	portfolio	confers	in	the	market	for	technology.		

																																																								

2	The	properties	of	N0	are	summarized	in	Appendix	C.	

kF

( ) ( )k kV F V F

( )k kV F
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In	sum	the	assumptions	we	make	on	the	value	function	and	portfolio	benefits	are:	

	 ( ):   (0) 0,   0
k

V
VF V

F


 

 
	 	 (1)	 	 	

	
2

2

( ) ( )
( ):   (0) 0,   0  and  0ik ik

ik ik

d s d s
PB

ds ds

 
    		 	 (2)	 	

The	model	contains	three	types	of	patenting	costs:	

• Costs	 of	 R&D	 per	 opportunity,	 which	 depend	 on	 overall	 R&D	 activity	 in	 that	

technology	area: .	

• Costs	of	maintaining		each	granted	patent	in	force,	Ca.	

• Costs	of	coordinating	R&D	on	different	technological	opportunities	Cc(oi),	where		

	 0c

i

C

o





		 (3)	

These	assumptions	imply	that	R&D	costs	are	fixed	costs.3	We	allow	for	the	endogenous	
determination	 of	 the	 level	 of	 R&D	 fixed	 costs,	 which	 rise	 as	 more	 opportunities	 are	
researched	simultaneously	by	rival	firms.	This	reflects	competition	for	inputs	into	R&D	
that	are	fixed	in	the	short	run.	Coordinating	different	R&D	projects	also	limits	the	scope	
of	the	firm’s	R&D	operations.	

Where	multiple	firms	own	facets	on	an	opportunity,	their	legal	costs	L(γik,	sik,	hk)	depend	
on	the	absolute	number	of	patented	facets	(γik),	on	the	share	of	patents	per	opportunity	
that	a	 firm	holds	(sik),	and	on	the	extent	to	which	they	face	hold‐up	(hk).	The	first	two	
channels	 capture	 the	 costs	 of	 defending	 a	 patent	 portfolio	 as	 the	 number	 of	 patents	
increases,	while	leaving	scope	for	effects	on	bargaining	costs	that	derive	from	the	share	
of	 patents	 owned:4	The	 hold‐up	 parameter	 captures	 contexts	 in	 which	 several	 firms’	
core	 technologies	 become	 extremely	 closely	 intertwined.	 Then	 each	 firm	 has	 to	
simultaneously	 negotiate	 with	 many	 others	 to	 commercialize	 its	 products,	 which	
significantly	raises	costs.	 		

																																																								
3	It	also	implies	that	there	is	no	technological	uncertainty.	However,	introducing	technological	uncertainty	
into	the	model	does	not	change	the	main	comparative	statics	results.		

4	Graevenitz et al. (2013) analyse	alternative	assumptions	on	legal	costs.	

 0
ON

jj
C o
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2 2

2 2

2 2

( ):   ( , , ),   where  0, 0, 0, 0,

                                              0, 0, 0

ik ik k
ik ik ik ik

k ik k ik k

L L L L
LC L s h

s s

L L L

h h s h


 



   
   

   

  
  

    

	 	(4)	

All	remaining	cross	partial	derivatives	of	the	legal	costs	function	are	zero.		

In	what	follows,	we	use	the	following	definitions:		

( ) ( )
,     ,     ,     ,    and    

( ) ( )
i i k k k k i k

k k k k k
k k k k k k k i

o f F V F s d s f F

O F V F F s ds F f
      

    
  

  
   	.	

2.2 Patenting	and	Entry	

Firm	 i’s	 profits	 in	 technology	 k,	 	is	 a	 function	 of	 the	 number	 of	

opportunities	oi	 in	which	 the	 firm	 invests,	 the	number	of	 facets	per	opportunity	 fi	 the	
firm	 seeks	 to	 patent,	 the	 total	 number	 of	 patentable	 facets	 per	 opportunity	 Fk,	 the	
number	 of	 technological	 opportunities	 a	 technology	 offers	 Ok,	 the	 number	 of	 firms	
entering	the	technology	Nk,	and	the	degree	of	hold‐up	in	that	technology	hk.	

In	this	section	we	analyze	the	following	two‐stage	game	G*:	

Stage	1:	Firms	enter	until	 ( , , , , , ) 0ik i i k k k ko f F O N h  ;5	

Stage	2:	Firms	simultaneously	choose	the	number	of	opportunities,	oi,	to	invest	in	and	
the	number	of	facets	per	opportunity,	fi,	to	patent	in	order	to	maximize	profits	πik.	

We	solve	the	game	by	backward	induction	and	derive	local	comparative	statics	results	
for	 the	 symmetric	 extremal	 equilibria	 of	 the	 second	 stage	 game.	 For	 the	 subsequent	
analysis	 it	 is	 important	 to	 note	 that	 all	 equilibria	 of	 this	 second	 stage	 game	 are	
symmetric.	In	case	that	the	second	stage	game	has	multiple	equilibria	we	focus	on	the	
properties	 of	 the	 extremal	 equilibria	 when	 providing	 comparative	 statics	 results	
(Milgrom	 and	 Roberts,	 1994;	 Amir	 and	 Lambson,	 2000;	 Vives,	 2005).	 Equilibrium	
values	of	the	firms’	choices	are	denoted	by	a	superscript	and	we	drop	the	firm	specific	

subscripts	in	what	follows,	e.g.,	 .	

At	stage	two	of	the	game	each	firm	maximizes	the	following	objective	function:	

	  0( , ) ( ) ( ) ( , , ) ( ) ( )ON

ik i i i k ik ik ik k j i k a c ij
o f o V F s L s h C o f p C C o       		 (5)	

																																																								
5	We	treat	Nk	as	a	continuous	variable	here,	which	is	an	abstraction	that	simplifies	our	analysis.	

( , , , , , )ik i i k k k ko f F O N h

k̂
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This	 expression	 shows	 that	 per	 opportunity	k,	 the	 firm	derives	profits	 from	 its	 share	

	of	patented	facets,	while	facing	legal	costs	L	 to	appropriate	those	profits,	

as	well	as	costs	of	R&D	C0,	costs	of	maintaining	its	patent	portfolio	Ca,	and	coordination	
costs	across	opportunities	Cc.	

2.3 Simultaneous	Entry	with	Multiple	Facets	

2.3.1 Comparative	statics	of	patenting	

We	show	that	the	second	stage	of	this	game	is	smooth	supermodular:	

Proposition	1	

The	 second	 stage	patenting	game,	defined	 in	particular	by	assumptions	 (VF,	eq.	2),	 (PB,	
eq.3)	and	(LC,	eq.	5)	is	smooth	supermodular	if	 k ik  	and	if	ownership	of	the	technology	

is	expected	to	be	fragmented.		

This	 result	 generalizes	 Proposition	 1	 derived	 by	 Graevenitz	 et	al.	 (2013).6	Given	 this	
result	we	can	show	that:	

Proposition	2	

The	potential	for	hold‐up	in	complex	technologies	reduces	patenting	incentives.		

In	Appendix	D	we	show	that	the	expected	legal	costs	of	hold‐up	reduce	the	number	of	
opportunities	 that	 firms	 invest	 in.	 In	 addition,	 firms	 with	 larger	 portfolios	 are	 more	
exposed	to	hold‐up	and	benefit	 less	 from	the	share	of	patents	 they	have	patented	per	
opportunity.	Both	effects	combine	to	reduce	the	number	of	facets	each	firm	applies	for.	

2.3.2 Comparative	statics	of	entry	

In	Appendix	C	we	 show	 that	 there	 is	 a	 free	entry	 equilibrium.	 In	 this	 equilibrium	 the	
following	propositions	hold:	

Proposition	4	

Under	free	entry	greater	complexity	of	a	technology	increases	entry.	

In	 the	 model,	 complexity	 has	 countervailing	 effects:	 first	 of	 all	 it	 increases	 profits,	
because	 it	 is	 less	 likely	 that	 duplicative	 R&D	 arises	 making	 each	 opportunity	 more	
valuable,	 this	 clearly	 increases	 incentives	 to	 enter.	 Next,	 given	 the	 level	 of	 patent	

applications	( f̂
k
),	complexity	reduces	the	probability	that	each	facet	is	patented,	which	

reduces	profits	and	entry	 incentives.	Finally,	 complexity	reduces	competition	 for	each	
facet,	which	increases	the	probability	of	patenting	and	increases	innovation	incentives.	
																																																								

6	In	our	version	of	the	model,	it	is	no	longer	the	case	that	the	value	function	has	to	be	increasing	in	the	
number	of	patented	facets	for	supermodularity	of	the	patenting	game.	We	relegate	further	discussion	of	
this	result	to	Appendix	C.	

/ik k i ks p f F 
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Overall	we	show	that	 the	positive	effects	outweigh	the	negative	effects	and	 incentives	
for	entry	rise	with	complexity	of	a	technology.	

To	 derive	 Proposition	 4,	 consider	 how	 equilibrium	 profits	 are	 affected	 by	 the	
complexity	 of	 the	 technology	 Fk,	 the	 degree	 of	 technological	 opportunity	Ok,	 and	 the	
potential	for	hold‐up	hk:	

,,

ˆ ˆˆ ( )( , ) ˆˆˆ ( ) ( ) ( ) 0
ˆ ˆk kk k

k k
p F k k k kF F

k k k k

s so f L
o V F

F F s s

     
   

          


 	 (6)	
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ˆ ˆ ˆ ˆˆ ( )( , ) ˆˆˆ ( ) ( ) ( ) 0
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O k k O O
p N k k k kF N

k k O k k O k

N s s C N oo f L
o V F

O O N s s N o s

     
     

             


 	 (7)	

ˆˆ( , )
ˆ 0

k k

o f L
o

h h

 
  

 
		 	 (8)	

Proposition	4	follows	from	the	Implicit	Function	theorem	once	we	know	the	sign	of	the	
derivative	of	profits	w.r.t.	F.	Under	free	entry	firms’	profits	decrease	with	entry:	

	
k kk

N

F NF

   
 

 
		 (9)	

Therefore,	 the	 Implicit	 Function	 theorem	 implies	 that	 the	 sign	 of	 the	 effect	 of	
complexity	F	on	entry	depends	on	the	sign	of	the	effect	of	complexity	on	profits.	

Equation	(6)	shows	 that	 the	effect	of	complexity	on	profits	depends	on	 the	difference	
between	the	elasticities	 	and .	The	elasticity	 	is	derived	in	Appendix	C.1:	

	 2
,

1 1ˆ 1
2

ˆ1k k

k
O

p F O

k

N
N






 
  

 


		 (10)	

This	elasticity	is	negative	for	 ˆ 1/ 2k  .	The	result	implies	that	the	first	term	in	brackets	

in	equation	(6)	is	positive.	The	second	term	is	positive	when	game	G*	is	supermodular.	

Overall	 this	 implies	 that	 greater	 complexity	 induces	 entry.	 ˆ 1/ 2k  	is	 one	 of	 two	

restrictions	 required	 for	 supermodularity	 of	 game	 G*.	 This	 demonstrates	 that	
complexity	increases	entry	in	settings	in	which	firms	are	playing	a	supermodular	game	
and	in	which	complexity	also	induces	more	patenting.7	

																																																								

7	When	 ˆ 1/ 2k  	we	no	longer	have	the	assumptions	necessary	to	show	supermodularity.	This	situation	

corresponds	to	the	case	where	one	firm	has	more	than	half	the	patents	in	a	particular	technology	
opportunity	within	a	technology	area.	Thus	our	results	may	not	hold	when	a	specific	opportunity	is	highly	

	

,k kF F
  ˆ

k ,kp F
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Proposition	5	

Under	free	entry	greater	technological	opportunity	increases	entry.	

For	 any	 given	 number	 of	 entrants	 an	 increase	 in	 technological	 opportunity	 reduces	
competition	 between	 firms	 for	 patents.	 This	 increases	 firms’	 expected	 profits	 and	
increases	entry.	

Continuing	from	the	proof	of	Proposition	4	above,	by	the	Implicit	Function	theorem	the	
sign	of	the	derivative	of	profits	w.r.t.	technological	opportunity	determines	the	effect	of	
technological	opportunity	on	entry:	

	 	
k kk

N

O NO

   
 

 
	 (11)	

An	increase	in	technological	opportunity	increases	profits	and	entry.	In	Appendix	C	we	
show	 that	 the	 term	 in	 brackets	 in	 Equation	 (7)	 is	 negative	 under	 free	 entry.	 Profits	
increase	 as	 technological	 opportunity	 increases,	 because	 fewer	 firms	 enter	 per	
opportunity.	

Proposition	6		

Under	free	entry	the	potential	for	hold‐up	reduces	entry.	

An	increase	in	the	potential	for	hold‐up	raises	firms’	expected	legal	costs.	This	reduces	
expected	profits	and	lowers	potential	for	entry.	

To	 derive	 this	 prediction,	 note	 that	 by	 the	 Implicit	 Function	 theorem	 the	 sign	 of	 the	
derivative	of	profits	w.r.t.	the	level	of	hold‐up	in	a	technology	area	determines	the	effect	
of	hold‐up	on	entry:	

	
k kk

N

h Nh

   
 

 
		 (12)	

Hence,	equation	(8)	shows	that	the	effect	of	hold‐up	on	entry	derives	from	the	increased	
legal	costs	that	the	possibility	of	hold‐up	imposes	on	affected	firms.	

2.4 Entry and Incumbency 

The	previous	section	sets	out	a	model	 in	which	all	 firms	entered	and	then	 invested	 in	
patents.	At	both	stages	firms’	decisions	were	simultaneous.	In	Appendix	D.5	we	extend	

the	model	to	a	setting	in	which	some	firms,	the	incumbents,	 face	lower	costs	( ,	

where	 )	 of	 entering	 opportunities.	 This	 captures	 the	 fact	 that	 incumbents	 have	

																																																																																																																																																																												

concentrated.	In	general	this	will	not	be	the	case,	especially	at	our	level	of	empirical	analysis,	but	it	would	
be	interesting	to	explore	this	possibility	in	future	work.	

OC 

0 
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previous	 experience	 of	 doing	 R&D	 in	 a	 technology	 area.	 We	 demonstrate	 that	 our	
results	are	robust	to	this	extension	of	the	model.	

2.5 Predictions of the Model 

Our	model	predicts	how	the	probability	of	entry	into	patenting	depends	on	opportunity,	
complexity,	 hold‐up	 potential	 and	 incumbents’	 experience.	 Here	we	 summarize	 these	
predictions,	which	are	tested	empirically	below:8	

Prediction	1	

Greater	technological	opportunity	increases	the	probability	of	entry.	

Greater	 technological	 opportunity	 reduces	 competition	 for	 facets	 per	 opportunity,	
which	raises	expected	profits	and	thereby	attracts	entry.		

Prediction	2	

Greater	complexity	of	a	technology	increases	the	probability	of	entry.	

Greater	complexity	has	countervailing	effects:	 it	reduces	competition	per	facet	as	well	
as	 duplicative	 R&D,	 attracting	 entry.	 It	 also	 increases	 the	 likelihood	 that	 some	 of	 a	
technology	remains	unpatented,	reducing	its	overall	value	and	entry.	Our	model	shows	
that	overall	complexity	increases	entry.		

Prediction	3	

Greater	potential	for	hold‐up	reduces	the	probability	of	entry.	

Hold‐up	potential	increases	expected	costs	of	entry,	reducing	it.	

Prediction	4	

More	experienced	incumbents	are	more	likely	to	enter	technological	opportunities	new	to	
them.	

We	 show	 that	 incumbency	 advantage	 raises	 the	 number	 of	 opportunities	 that	
incumbents	enter.	This	implies	that	they	also	enter	new	opportunities,	which	they	have	
not	 previously	been	 active	 in.	 This	 expansion	 of	 activity	 by	 incumbents	 crowds	 out	
entry	by	new	entrants.	

3 Data	and	Empirical	Model	

This	 section	 of	 the	 paper	 describes	 the	 data	 we	 use	 in	 the	 empirical	 test	 of	 our	
theoretical	predictions.	In	particular,	we	discuss	how	we	measure	entry,	how	the	set	of	
potential	entrants	is	identified,	and	which	measures	and	covariates	are	used.	
																																																								

8	Graevenitz	et	al.	(2013)	tested	predictions	from	a	more	restrictive	version	of	the	model	on	the	level	of	
patent	applications	using	data	from	the	European	Patent	Office.		
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Our	empirical	model	is	a	hazard	rate	model	of	firm	entry	into	patenting	in	a	technology	
area	 as	 a	 function	 of	 technological	 opportunity,	 technological	 complexity,	 hold‐up	
potential	that	characterize	a	technology	area.	We	test	the	predictions	set	out	at	the	end	
of	the	previous	section	for	these	variables	and	for	the	effect	of	a	firm’s	prior	experience	
in	 patenting.	 Additional	 firm	 level	 covariates	 include	 the	 age	 and	 size	 of	 firms.	 The	
models	we	estimate	are	stratified	at	the	industry	 level.	That	is,	the	unit	of	observation	
for	 each	 entry	hazard	 is	 a	 firm‐technology	 area,	 but	 the	hazard	 shapes	 and	 levels	 are	
allowed	 to	 vary	 by	 the	 industry	 that	 the	 firm	 is	 in.	 This	 approach	 recognizes	 that	
patenting	propensities	vary	across	industries	for	reasons	that	may	not	be	technological	
(e.g.,	strategic	reasons,	or	reasons	arising	from	the	historical	development	of	the	sector).		

We	use	a	combination	of	firm	level	data	for	the	entire	population	of	UK	firms	registered	
with	Companies	House	and	data	on	patenting	at	the	European	Patent	Office	and	at	the	
Intellectual	 Property	 Office	 for	 the	 UK.	 The	 firm	 data	 comes	 from	 the	 data	 held	 at	
Companies	 House	 provided	 by	 Bureau	 van	 Dijk	 in	 their	 FAME	 database.	 European	
patent	 registers	 do	 not	 include	 reference	 numbers	 from	 company	 registers,	 nor	 does	
Bureau	 van	Dijk	 provide	 the	 identification	 numbers	 used	 by	 patent	 offices	 in	Europe.	
Linking	 the	 data	 from	 patent	 registers	 to	 firm	 register	 data	 requires	 matching	 of	
applicant	 names	 in	 patent	 documents	 and	 firm	 names	 in	 firm	 registers.	 In	 our	 work	
both	a	firm’s	current	and	previous	name(s)	were	used	for	matching	in	order	to	account	
for	changes	 in	 firm	names.	For	more	details	on	 the	matching	of	 firm‐	and	patent‐level	
data	see	Appendix	A.	

Economic	 studies	of	 entry	 are	 frequently	hampered	by	 the	problem	of	 identifying	 the	
correct	set	of	potential	entrants	(Bresnahan	and	Reiss,	1991;	Berry,	1992).	In	our	case	
this	 problem	 is	 slightly	 mitigated	 by	 the	 fact	 that	 one	 set	 of	 potential	 entrants	 into	
patenting	in	a	specific	technology	area	consists	of	all	those	firms	that	currently	patent	in	
other	 technology	 areas.	We	 complement	 this	 group	of	 firms	with	 a	 set	 of	 comparable	
firms	from	the	population	of	UK	firms	that	have	not	patented	previously.		

To	construct	 the	sample	we	deleted	all	 firms	 from	the	data	 for	which	we	have	no	size	
measure,	because	of	missing	data	on	assets.	We	select	previously	non‐patenting	 firms	
from	 the	 population	 of	 all	 UK	 firms	 in	 two	 steps:	 1)	we	 delete	 all	 firms	 in	 industrial	
sectors	with	little	patenting	(amounting	to	less	than	2	per	cent	of	all	patenting);	and	2)	
we	choose	a	sample	of	non‐patenting	firms	that	matches	our	sample	of	patenting	firms	
by	 industry,	 size	 class,	 and	 age	 class.	 In	 principle,	 this	 approach	 will	 result	 in	 an	
endogenous	 (choice‐based)	 sample.	However	our	 focus	 is	 on	 industry	 and	 technology	
area	level	effects	rather	than	firm‐level	effects.	Therefore	we	do	not	expect	the	sampling	
approach	 we	 adopt	 to	 introduce	 systematic	 biases	 into	 the	 estimates	 we	 report.	 We	
provide	 a	 number	 of	 robustness	 checks	 to	 ensure	 that	 our	 results	 are	 stable.	 These	
reveal	 that	 sample	 composition	 does	 not	 affect	 the	 key	 results	we	 present	 below.	 All	
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estimates	are	based	on	data	weighted	by	the	probability	that	a	firm	is	in	our	sample.9	

The	 sample	 that	 results	 from	our	 selection	 criteria	 is	 a	 set	 of	 firms	with	non‐missing	
assets	 in	 manufacturing,	 oil	 and	 gas	 extraction	 and	 quarrying,	 construction,	 utilities,	
trade,	 and	 selected	 business	 services	 including	 financial	 services	 that	 includes	 all	
(approximately	 10,000)	 firms	 applying	 for	 a	 patent	 at	 the	 EPO	 or	 UKIPO	 during	 the	
2001‐2009	period	and	another	10,000	firms	that	did	not	apply	for	a	patent.	

The	definition	of	technology	areas	that	we	use	is	based	on	the	2008	version	of	the	ISI‐
OST‐INPI	technology	classification	(denoted	TF34	classes).	The	list	is	shown	in	Table	1,	
along	with	the	number	of	EPO	and	UKIPO	patents	applied	for	by	UK	firms	with	priority	
dates	between	2002	and	2009.	A	comparison	of	the	frequency	distribution	of	patenting	
across	the	technology	areas	from	the	two	patent	offices	shows	that	firms	are	more	likely	
to	 apply	 for	 patents	 in	 Chemicals	 at	 the	 EPO,	 while	 Electrical	 and	 Mechanical	
Engineering	predominate	in	the	national	patent	data	(see	the	bottom	panel	in	Table	1).	

We	 treat	 entry	 into	each	 technology	area	as	a	 separate	decision	made	by	 firms.	More	
than	half	of	 firms	we	observe	patent	 in	more	than	one	area	and	10	per	cent	patent	 in	
more	 than	 four.	 From	 the	20,000	 firms	observed,	 each	of	which	 can	potentially	 enter	
into	each	one	of	the	34	technology	areas,	we	obtain	about	700,000	observations	at	risk.	
We	 cluster	 the	 standard	 errors	 by	 firm,	 so	 our	 models	 are	 effectively	 firm	 random	
effects	 models	 for	 entry	 into	 34	 technology	 areas.	 Allowing	 firm	 choices	 to	 vary	 by	
technology	 area	 is	 sensible	 under	 the	 assumption	 that	 firms’	 patenting	 strategies	 are	
contingent	upon	technology	and	industry	level	factors	and	are	not	homogeneous	across	
technology	areas.	We	confirmed	the	validity	of	this	assumption	through	interviews	with	
leading	UK	patent	attorneys.	

There	 are	 some	 technology‐industry	 combinations	 that	 do	not	 occur,	 e.g.	 audio‐visual	
technology	 and	 the	 paper	 industry,	 telecommunications	 technology	 and	 the	
pharmaceutical	 industry.	 In	 order	 to	 reduce	 the	 size	 of	 the	 sample,	 we	 drop	 all	
technology‐industry	combinations	for	which	Lybbert	and	Zolas	(2014)	find	no	patenting	
in	 their	 data	 and	 for	which	 there	was	 no	patenting	by	 any	UK	 firm	 from	 the	 relevant	
industry	 in	the	corresponding	technology	category.	This	removes	about	30	per	cent	of	
observations	 from	 the	 data.	 We	 provide	 a	 robustness	 check	 for	 this	 procedure	 in	
Appendix	B.		

[Table	1	here]	

																																																								

9	To	check	this,	we	estimated	the	model	with	and	without	weights	based	on	our	sampling	methodology	
and	find	little	difference	in	the	results.		
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3.1 Variables	

Dependent	Variable	‐	Entry	

The	 dependent	 variable	 is	 a	 dichotomous	 variable	 taking	 the	 value	 one	 if	 a	 firm	 has	
entered	 a	 technology	 area	 k	 at	 time	 t	 and	 otherwise	 the	 value	 zero.	 Entry	 into	 a	
technology	area	is	measured	by	the	first	time	a	firm	applies	for	a	patent	that	is	classified	
in	that	technology	area,	dated	by	the	priority	year	of	the	patent.	

Technological	opportunity	

Our	 first	 prediction	 from	 the	 theoretical	 model	 is	 that	 there	 will	 be	 more	 entry	 in	
technology	 areas	 with	 greater	 technological	 opportunity.	 Additional	 reasons	 that	 a	
sector	 may	 have	 more	 or	 less	 patenting	 include	 sector	 “size”	 or	 “breadth”	 and	 the	
propensity	of	firms	to	patent	in	particular	technologies	for	strategic	reasons	or	because	
of	 varying	 patent	 effectiveness	 in	 protecting	 inventions.	 To	 control	 for	 both	
technological	 opportunity	 and	 these	 other	 factors,	 we	 include	 the	 logarithm	 of	 the	
aggregate	EPO	patent	applications	in	the	technology	sector	during	the	year.	To	capture	
opportunity	more	 specifically	we	also	 include	 the	past	5‐year	growth	 rate	 in	 the	non‐
patent	(scientific	publication)	references	cited	in	patents	in	that	technology	class	at	the	
EPO.10	We	have	found	that	the	growth	rate	in	non‐patent	references	is	a	better	predictor	
of	 entry	 than	 the	 level	 of	 non‐patent	 references,	 which	 has	 been	 used	 previously.	
Presumably	 the	growth	 rate	 is	 a	better	 indicator	because	 it	 capture	new	or	expanded	
technological	opportunity.	

Technology	complexity	

The	 second	 prediction	 of	 the	 theoretical	 model	 is	 that	 technological	 complexity	
increases	 entry,	 other	 things	 equal.	Our	 interpretation	of	 complexity	 is	 that	 it	 implies	
many	interconnections	between	inventions	 in	a	particular	 field,	rather	than	a	series	of	
fairly	isolated	inventions	that	do	not	connect	to	each	other.	To	construct	such	a	measure,	
we	use	 the	concept	of	network	density	applied	 to	citations	among	all	 the	patents	 that	
have	 issued	 in	 the	particular	 technology	area	during	 the	10	years	prior	 to	 the	date	of	
potential	entry.	We	use	citations	at	the	U.S.	patent	office,	both	because	these	are	richer	
(averaging	7	or	so	cites	per	patent	during	this	period	versus	3	for	the	EPO)	and	also	to	
minimize	correlation	with	the	thickets	measure,	which	is	based	on	EPO	data.11		

The	network	density	measure	is	computed	as	follows:	in	any	year	t,	there	are	Nkt	patents	
that	have	been	applied	for	in	technology	area	k	between	1975	and	year	t.	Each	of	these	
patents	can	cite	any	of	the	patents	that	were	applied	for	earlier,	which	implies	that	the	

																																																								

10	See	Graevenitz	et	al.	(2013)	for	a	more	extensive	discussion	of	this	variable	in	the	literature.	

11	It	is	important	to	emphasize	that	although	patent	offices	cooperate	and	share	search	reports	citations	
listed	on	U.S.	patents	are	largely	proposed	by	the	applicant,	whilst	the	citations	listed	on	EPO	and	IPO	
patents	are	inserted	by	the	examiner.	This	explains	why	the	two	measures	are	not	highly	correlated.	
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maximum	number	of	 citations	within	 the	 technology	area	 is	given	by	Nkt(Nkt‐1)/2.	We	
count	the	actual	number	of	citations	made	and	normalize	them	by	this	quantity,	scaling	
the	measure	by	one	million	for	visibility,	given	its	small	size.	

Patent	Thickets	

The	third	prediction	of	our	model	is	that	greater	potential	for	hold‐up	reduces	entry.	We	
measure	the	potential	for	hold‐up	in	patent	thickets	using	the	triples	count	proposed	by	
von	Graevenitz	et	al.	 (2011).	This	 is	a	narrower	interpretation	of	this	measure	than	 in	
several	 previous	 papers,	 where	 it	 has	 been	 used	 as	 a	 proxy	 for	 complexity	 of	 a	
technology.	 In	 those	papers	complexity	and	hold‐up	potential	have	 the	same	effect.	 In	
contrast,	 our	 model	 provides	 opposite	 predictions	 for	 the	 effects	 of	 complexity	 of	 a	
technology	and	potential	for	hold‐up.	

The	triples	measure	corresponds	to	a	count	of	the	number	of	fully	connected	triads	on	
the	set	of	firms’	critical	patent	citations.	At	time	t	each	unidirectional	link	between	two	
firms	A	and	B	corresponds	to	one	or	more	critical	references	to	firm	A’s	patents	in	the	
set	of	patents	applied	for	by	firm	B	in	the	years	t,	t‐1	and	t‐2.	We	use	the	same	measure	
of	triples	as	Harhoff	et	al.	(2015),	which	contains	all	triples	in	each	technology	area.	The	
citation	data	 used	 is	 extracted	 from	PATSTAT	 (October	 2011	 edition).12	We	normalize	
the	count	of	triples	by	aggregate	patenting	in	the	same	sector,	so	that	the	triples	variable	
represents	 the	 intensity	 with	 which	 firms	 potentially	 hold	 blocking	 patents	 on	 each	
other	relative	to	aggregate	patenting	activity	in	the	technology.	

The	 triples	measure	 has	 been	 used	 in	 a	 number	 of	 papers	 since	 it	was	 suggested	 by	
Graevenitz	 et	 al.	 (2011).	 They	 show	 that	 counts	 of	 triples	 by	 technical	 area	 are	
significantly	 higher	 for	 technologies	 classified	 as	 complex	 than	 for	 areas	 classified	 as	
discrete	 by	 Cohen	 et	 al.	 (2000).	 Fischer	 and	 Henkel	 (2012)	 find	 that	 the	 measure	
predicts	patent	acquisitions	by	Non‐Practicing	Entities.	Graevenitz	et	al.	(2013)	use	the	
measure	to	study	patenting	incentives	in	patent	thickets	and	Harhoff	et	al.	(2015)	show	
that	opposition	to	patent	applications	falls	in	patent	thickets,	particularly	for	patents	of	
those	firms	that	are	caught	up	in	the	thickets.		

As	a	robustness	check,	we	have	also	explored	the	use	of	duples,	i.e.	the	count	of	mutual	
blocking	relationships,	to	measure	hold‐up	potential.	Combining	both	measures	in	one	
regression	 leads	 to	 thorny	 problems	 of	 interpretation.	 Taken	 alone	 the	measure	 has	
similar	effects	as	the	triples	measure	in	this	context.	

	[Table	2	here]	

																																																								

12	Triples	data	was	kindly	provided	by	Harhoff	et	al.	(2015).	
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Covariates	

It	is	well	known	that	firm	size	and	industry	are	important	predictors	of	whether	a	firm	
patents	 at	 all	 (Bound	 et	al.	 1984	 for	 U.S.	 data).	 Hall	 et	al.	 (2013)	 show	 this	 for	 UK	
patenting	during	the	period	studied	here.	Therefore,	in	all	of	our	regressions	we	control	
for	firm	size,	industrial	sector,	and	year	of	observation.	We	include	the	logarithm	of	the	
firm’s	reported	assets	and	a	set	of	year	dummies	in	all	the	regressions.13	To	control	for	
industrial	sector,	we	stratify	by	industry,	which	effectively	means	that	each	industry	has	
its	own	hazard	function,	which	is	shifted	up	or	down	by	the	other	regressors.		

We	 also	 expect	 the	 likelihood	 that	 a	 firm	 will	 enter	 a	 particular	 technology	 area	 to	
depend	 on	 its	 prior	 patenting	 experience	 overall,	 as	well	 as	 its	 age.	 Long‐established	
firms	are	less	likely	to	be	exploring	new	technology	areas	in	which	to	compete.	Thus	we	
include	the	logarithm	of	firm	age	and	the	logarithm	of	the	stock	of	prior	patents	applied	
for	 in	any	technology	by	the	firm,	 lagged	one	year	to	avoid	any	endogeneity	concerns.	
The	variables	on	firm	size	and	patent	stock	also	allow	us	to	test	Prediction	4	about	the	
effect	of	incumbency	advantage	on	entry.		

3.2 Descriptive	Statistics	

Our	 estimation	 sample	 contains	 about	 20,000	 firms	 and	 700,000	 firm‐TF34	 sector	
combinations.	 During	 the	 2002‐2009	 period	 there	 are	 about	 10,000	 entries	 into	
patenting	 for	 the	 first	 time	 in	 a	 technology	 area	 by	 these	 firms.	 Table	 A‐2	 shows	 the	
distribution	of	the	number	of	entries	per	firm:	2,531	enter	one	class,	and	the	rest	enter	
more	than	one.	Table	A‐2	shows	the	population	of	UK	firms	obtained	from	FAME	in	our	
industries,	 together	 with	 the	 shares	 in	 each	 industry	 that	 have	 applied	 for	 a	 UK	 or	
European	 patent	 during	 the	 2001‐2009	period.	 These	 shares	 range	 from	over	 10	 per	
cent	in	Pharmaceuticals	and	R&D	Services	to	less	than	0.1	per	cent	in	Construction,	Oil	
and	Gas	Services,	Real	Estate,	Law,	and	Accounting.	

Empirical	Model	

We	use	hazard	models	to	estimate	the	probability	of	entry	into	a	technology	area.	The	
models	 express	 the	 probability	 that	 a	 firm	 enters	 into	 patenting	 in	 a	 certain	 area	
conditional	on	not	having	entered	yet	as	a	function	of	the	firm’s	characteristics	and	the	
time	 since	 the	 firm	was	 “at	 risk,”	which	 is	 the	 time	 since	 the	 founding	 of	 the	 firm.	 In	
some	cases,	our	data	do	not	go	back	as	far	as	the	founding	date	of	the	firm,	and	in	these	
cases	the	data	are	“left‐censored.”	When	we	do	not	observe	the	entry	of	the	firm	into	a	
particular	 technology	 sector	 by	 the	 last	 year	 (2009),	 the	 data	 is	 referred	 to	 as	 “right‐
censored.”	

In	Appendix	B,	we	discuss	 the	 choice	 of	 the	 survival	models	 that	we	use	 for	 analysis,	
																																																								

13	The	choice	of	assets	as	a	size	measure	reflects	the	fact	that	it	is	the	only	size	variable	available	for	the	
majority	of	the	firms	in	the	FAME	dataset.	
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how	 to	 interpret	 the	 results,	 and	 present	 some	 robustness	 checks.	 We	 estimate	 two	
classes	of	failure	or	survival	models:	1)	proportional	hazard,	where	the	hazard	of	failure	
over	 time	has	 the	 same	 shape	 for	 all	 firms,	 but	 the	 overall	 level	 is	 proportional	 to	 an	
index	 that	depends	on	 firm	characteristics;	and	2)	 accelerated	 failure	 time,	where	 the	
survival	rate	is	accelerated	or	decelerated	by	the	characteristics	of	the	firm.	In	the	body	
of	the	paper	we	present	results	using	the	well‐known	Cox	proportional	hazards	model	
stratified	by	industry.	Results	from	the	accelerated	failure	time	models	were	similar	but	
the	estimated	effects	are	somewhat	larger	(shown	in	Appendix	B).	 

As	 indicated	 earlier,	 our	 data	 for	 estimation	 are	 for	 the	 2002‐2009	 period,	 but	many	
firms	have	been	at	risk	of	patenting	for	many	years	prior	to	that.	The	oldest	firm	in	our	
dataset	was	founded	in	1856	and	the	average	founding	year	was	1992.	Because	the	EPO	
was	only	founded	in	1978,	we	chose	to	use	that	year	as	the	earliest	date	any	of	our	firms	
is	at	risk	of	entering	into	patenting.	That	is,	we	defined	the	initial	year	as	the	maximum	
of	 the	 founding	 year	 and	 1978.	 Table	 B‐2	 in	 the	 appendix	 presents	 estimates	 of	 our	
model	using	1900	instead	of	1978	as	the	earliest	at	risk	year	and	finds	little	difference	
in	 the	 estimates.14	We	 conclude	 that	 the	 precise	 assumption	 of	 the	 initial	 period	 is	
innocuous.	Our	assumption	amounts	to	assuming	that	the	shape	of	the	hazard	for	firms	
founded	between	1856	and	1978	but	otherwise	identical	is	the	same	during	the	2002‐
2009	period.		

Appendix	Table	B‐1	shows	exploratory	regressions	made	using	various	survival	models.	
None	 of	 the	 choices	made	 large	 differences	 to	 the	 coefficients	 of	 interest,	 so	 that	we	
focus	 here	 on	 the	 results	 from	 the	 Cox	 proportional	 hazards	 model,	 estimated	 with	
stratification	by	two‐digit	industry.	The	effect	of	the	stratification	is	that	we	allow	firms	
in	 each	 of	 the	 industries	 to	 have	 a	 different	 distribution	 of	 the	 time	 until	 entry	 into	
patenting	conditional	on	the	regressors.	That	is,	each	industry	has	its	own	“failure”	time	
distribution,	where	 failure	 is	defined	as	entry	 into	patenting	 in	a	 technology	area,	but	
the	 level	of	 this	distribution	 is	also	modified	by	 the	 firm’s	size,	aggregate	patenting	 in	
the	technology,	network	density,	and	the	triples	density.	

4 Results	

Our	 estimates	 of	 the	 model	 for	 entry	 into	 patenting	 are	 shown	 in	 Table	 3.	 All	
regressions	control	for	size,	age,	and	industry.	Both	size	and	age	are	strongly	positively	
associated	 with	 entry	 into	 patenting	 in	 a	 new	 technological	 area.	 Our	 indicator	 of	
technological	 opportunity	 and	 technology	 class	 size,	 the	 log	 of	 current	 patent	
																																																								

14	The	main	difference	is	in	the	firm	age	coefficient.	Because	the	models	are	nonlinear,	this	coefficient	is	
identified	even	in	the	presence	of	year	dummies	and	vintage/cohort	(which	is	implied	by	the	survival	
model	formulation).	However	it	will	be	highly	sensitive	to	the	assumptions	about	vintage	due	to	the	age‐
year‐cohort	identity.		
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applications	 in	 the	 technology	 class,	 is	 also	 positively	 associated	with	 entry	 into	 that	
class,	as	predicted	by	our	model.		

Column	3	of	Table	3	 contains	 the	basic	 result	 from	our	data	and	estimation,	which	 is	
fully	consistent	with	the	predictions	of	our	model:	greater	complexity	as	measured	by	
citation	 network	 density	 increases	 the	 probability	 of	 entry	 into	 a	 technology	 area,	 as	
does	 technological	 opportunity,	measured	both	 as	 prior	 patenting	 in	 the	 class	 and	 as	
growth	in	the	relevant	science	literature.	Controlling	for	both	technological	opportunity	
and	complexity,	 firms	are	discouraged	 from	entry	 into	areas	with	a	greater	density	of	
triple	relationships	among	existing	firms.	We	interpret	this	latter	result	as	an	indicator	
of	 the	 discouraging	 effect	 of	 holdup	 possibilities	 or	 the	 legal	 costs	 associated	 with	
negotiation	of	rights	or	defense	in	the	case	of	litigation.	

We	were	concerned	that	our	network	density	(complexity)	and	triples	density	(hold‐up	
potential)	measures	might	be	too	closely	related	to	convey	separate	information,	but	we	
found	that	the	raw	correlation	between	these	two	variables	was	‐0.001.	To	check	for	the	
impact	of	potential	correlation	conditional	on	year,	industry,	and	the	other	variables,	in	
columns	 1	 and	 2	 of	 Table	 3	 we	 included	 these	 two	measures	 of	 complexity/thickets	
separately	and	found	that	although	the	coefficients	were	very	slightly	lower	in	absolute	
value,	the	results	still	hold,	although	it	is	clear	that	the	aggregate	class	size	is	correlated	
negatively	 with	 the	 triples	 density	 via	 the	 denominator	 of	 the	 density	 (compare	 the	
change	in	the	log	(patents	in	class)	coefficient	between	columns	1	and	2).	

As	we	show	in	Appendix	B,	the	estimated	coefficients	in	the	table	are	estimates	of	the	
elasticity	of	the	yearly	hazard	rate	with	respect	to	the	variable,	and	do	not	depend	on	
the	industry	specific	proportional	hazard.	A	one	standard	deviation	increase	in	the	log	
of	 network	 density	 is	 associated	 with	 a	 32	 percent	 increase	 in	 the	 hazard	 of	 entry	
(0.13*2.78),	while	 a	 one	 standard	 deviation	 in	 the	 log	 of	 triples	 density	 is	 associated	
with	 a	 20	 percent	 decrease	 in	 the	 hazard	 of	 entry	 (0.14*1.44).	 Thus	 the	 differences	
across	 these	 technology	areas	 in	 the	willingness	of	 firms	 to	enter	 them	 is	 substantial,	
bearing	in	mind	that	the	average	probability	of	entry	is	only	about	1.5	per	cent	in	this	
sample.		

[Table	3	here]	

There	are	fixed	costs	to	patenting,	and	a	firm	may	be	more	likely	to	enter	into	patenting	
in	a	new	area	if	it	already	patents	in	another	area.	To	test	this	idea,	in	the	fourth	column	
of	 Table	 3,	we	 add	 the	 logarithm	 of	 past	 patenting	 by	 the	 firm.	 Firms	with	 a	 greater	
prior	 patenting	 history	 are	 indeed	 more	 likely	 to	 enter	 a	 new	 technology	 area	 –	
doubling	a	firm’s	past	patents	leads	to	an	almost	100%	higher	hazard	of	entry.		

In	 the	 last	 column	 we	 interact	 the	 log	 of	 assets	 with	 the	 log	 of	 patents,	 the	 log	 of	
network	density,	 the	growth	of	non‐patent	 literature,	and	 the	 log	of	 triples	density	 to	
see	whether	these	effects	vary	by	firm	size.	The	results	show	that	the	network	density	
and	technological	opportunity	effects	decline	slightly	with	firm	size.	The	triples	density	
effect	does	not	show	any	size	relationship,	suggesting	that	hold‐up	concerns	affect	firms	
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of	 all	 sizes	 proportionately.	We	 show	 this	 graphically	 in	 Figure	 1,	which	 overlays	 the	
coefficients	as	a	function	of	firm	size	on	the	actual	size	distribution	of	our	firms.	From	
the	graph	one	can	see	that	 the	 impact	of	aggregate	patenting	in	a	sector	 is	higher	and	
more	variable	than	the	impact	of	the	network	density,	and	that	both	fall	to	zero	for	the	
largest	 firms.	Growth	 in	non‐patent	 literature	 is	positively	associated	with	 technology	
entry	 for	small	 firms,	but	negatively	 for	 large	 firms,	 suggesting	 the	role	played	by	 the	
smaller	 firms	 in	 newer	 technologies	 based	 on	 science.	 Large	 firms	 seem	not	 to	 be	 as	
active	 in	 these	 areas.	 Controlling	 for	 all	 these	 features	 of	 a	 technology,	 the	 impact	 of	
triples	density	 is	uniformly	negative	across	 firm	size,	which	 contradicts	 the	view	 that	
the	potential	for	hold‐up	discourages	entry	by	smaller	firms	more	than	by	larger	firms.		

4.1 Robustness	

Table	B‐2	in	the	appendix	explores	some	variations	of	the	sample	used	for	estimation	in	
Table	3.	Column	1	of	Table	B‐2	is	the	same	as	column	4	of	Table	3	for	comparison.	The	
first	 change	 (column	 2)	 was	 to	 add	 back	 all	 the	 technology‐industry	 combinations	
where	Lybbert	and	Zolas	(2012)	find	no	patenting	in	their	data	and	where	there	was	no	
entry	by	any	UK	 firm	 from	the	 relevant	 industry	 into	 that	 technology	category.	These	
observations	 are	 about	 20	 per	 cent	 of	 the	 sample.	 The	 impact	 of	 network	 density	 on	
entry	 is	 weaker,	 but	 the	 impact	 of	 triples	 density	 and	 the	 technological	 opportunity	
variables	is	considerably	stronger.	That	is,	technology	area‐industry	combinations	with	
no	 patenting	 are	 also	 those	 where	 the	 technology	 area	 displays	 low	 technological	
opportunity.		

Next	we	removed	all	 the	 firms	with	assets	greater	 than	12.5	million	pounds,	 to	 check	
whether	large	firms	were	responsible	for	our	findings.15	This	removed	about	2	per	cent	
of	the	20,000	firms.	Column	3	of	Table	B‐2	shows	that	the	results	do	not	change	a	great	
deal,	 although	 they	 are	 somewhat	 stronger.	 In	 column	 4,	 we	 removed	 the	
telecommunications	 technology	 sector	 from	 the	 estimation,	 because	 it	 is	 such	 a	 large	
triples	outlier.	Once	again,	there	was	 little	change	to	the	estimates.	The	last	column	of	
Table	 B‐2	 shows	 the	 results	 of	 defining	 the	 minimum	 entry	 year	 as	 1900.	 With	 the	
exception	of	 firm	age,	 the	coefficients	are	nearly	 identical	 to	 those	 in	column	1	of	 the	
table.		

																																																								

15	12.5	million	pounds	is	a	cutoff	based	on	the	definition	of	Small	and	Medium‐sized	Enterprises	(SMEs)	
as	firms	with	fewer	than	250	employees.	We	do	not	have	employment	for	all	our	firms,	so	we	assume	that	
assets	are	approximately	50	thousand	pounds	per	employee	in	order	to	compute	this	measure.	For	small	
firms	only,	this	yields	an	assets	cutoff	of	2.5	million	pounds.		
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5 Conclusion	

Patent	thickets	arise	for	a	multitude	of	reasons;	they	are	mainly	driven	by	an	increase	in	
the	number	of	patent	filings	and	concomitant	reductions	 in	patent	quality	(that	 is,	 the	
extent	 to	 which	 the	 patent	 satisfies	 the	 requirements	 of	 patentability)	 as	 well	 as	
increased	technological	complexity	and	interdependence	of	technological	components.	
The	theoretical	analysis	of	patent	thickets	(Shapiro,	2001)	and	the	qualitative	evidence	
provided	 by	 the	 FTC	 in	 a	 number	 of	 reports	 (FTC,	 2003;	 2011)	 suggest	 that	 thickets	
impose	 significant	 costs	on	 some	 firms.	The	 subsequent	 literature	has	 focused	on	 the	
measurement	 of	 thickets	 (e.g.	 Graevenitz	 et	al.	 2011;	 Ziedonis,	 2004)	 and	 has	 linked	
thickets	to	changes	in	firms’	IP	strategies	in	a	number	of	dimensions.	There	is	still	a	lack	
of	evidence	on	the	effect	of	patent	thickets	as	well	as	their	welfare	 implications	at	 the	
aggregate	level.	

The	 empirical	 analysis	 of	 the	 effects	 of	 patent	 thickets	 must	 contend	 with	 two	
challenges:	 first,	patent	 thickets	have	 to	be	measured	and	secondly,	effects	of	 thickets	
must	be	separated	from	effects	of	other	factors	that	are	correlated	with	the	growth	of	
thickets,	in	particular	technological	complexity.		

This	 paper	 confronts	 both	 challenges.	 We	 show	 that	 our	 empirical	 measure	 for	 the	
density	of	thickets	captures	effects	of	patent	thickets	predicted	by	theory.	This	supports	
results	by	von	Graevenitz	et	al.	(2011,	2013)	and	Harhoff	et	al.	(2015)	showing	that	the	
coefficients	 on	 the	 triples	 measure	 capture	 predicted	 effects	 of	 patent	 thickets	 on	
patenting	 and	 opposition.	 The	 paper	 also	 separates	 the	 impact	 of	 patent	 thickets	 on	
entry	from	effects	of	technological	opportunity	and	complexity	and	shows	that	the	hold‐
up	 potential	 created	 by	 thickets	 reduces	 entry	 into	 patenting.	 Controlling	 for	
technological	opportunity	and	complexity	is	important	because	both	are	correlated	with	
entry	into	patenting	and	the	presence	of	thickets.	It	is	also	worth	emphasizing	that	our	
measure	of	thickets	is	purged	of	effects	that	are	driven	by	patenting	trends	in	particular	
technologies.	That	is,	our	results	are	not	due	to	the	level	of	invention	and	technological	
progress	within	a	technology	field.		

Our	 results	 demonstrate	 that	 patent	 thickets	 significantly	 reduce	 entry	 into	 those	
technology	 areas	 in	which	 growing	 complexity	 and	 growing	 opportunity	 increase	 the	
underlying	 demand	 for	 patent	 protection.	 These	 are	 the	 technology	 areas,	 which	 are	
associated	 most	 with	 productivity	 growth	 in	 the	 knowledge	 economy.	 However,	 the	
welfare	 consequences	 of	 our	 finding	 are	 unclear.	 Reduced	 entry	 into	 new	 technology	
areas	 could	 be	welfare‐enhancing:	 As	 is	well	 known	 from	 the	 industrial	 organization	
literature,	entry	 into	a	market	may	be	excessive	 if	entry	creates	negative	externalities	
for	 active	 firms,	 for	 instance	 due	 to	 business	 stealing.	 This	 is	 likely	 to	 be	 true	 of	
patenting	too.	Furthermore,	Arora	et	al.	(2008)	show	that	the	patent	premium	does	not	
cover	the	costs	of	patenting	for	the	average	patent	(except	for	pharmaceuticals).	These	
and	related	facts	might	lead	one	to	conclude	that	lower	entry	into	patenting	is	likely	to	
increase	welfare	and	that	thickets	raise	welfare	by	reducing	entry.		
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In	contrast,	reduced	entry	into	patenting	in	new	technology	areas	may	also	be	welfare‐
reducing,	for	at	least	two	reasons.	First,	there	is	the	obvious	argument	that	the	benefits	
from	 more	 innovation	 may	 exceed	 any	 business	 stealing	 costs	 (as	 has	 been	 shown	
empirically	 in	 the	 past	 by	 others,	 e.g.,	 Bloom	 et	 al.	 2013),	 so	 that	 some	 desirable	
innovation	may	be	deterred	by	high	entry	costs.	Even	if	this	were	not	true,	there	is	no	
reason	to	believe	that	firms	that	do	not	enter	into	patenting	due	to	thickets	are	those	we	
wish	to	deter.	Given	the	incumbency	advantage,	it	is	likely	that	the	failure	to	enter	into	
patenting	 in	 these	areas	 reflects	 less	 innovation	by	 those	who	bring	 the	most	original	
ideas,	that	is,	by	those	who	are	inventing	“outside	the	box.”	
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Appendix A: Data 

Our	analysis	relies	on	an	updated	version	of	the	Oxford‐Firm‐Level‐Database,	which	
combines	information	on	patents	(UK	and	EPO)	with	firm‐level	information	obtained	
from	Bureau	van	Dijk’s	Financial	Analysis	Made	Easy	(FAME)	database	(for	more	details	
see	Helmers	et	al.	(2011)	from	which	the	data	description	in	this	section	draws).	

The	integrated	database	consists	of	two	components:	a	firm‐level	data	set	and	IP	data.	
The	firm‐level	data	is	the	FAME	database	that	covers	the	entire	population	of	registered	
UK	firms.16	The	original	version	of	the	database,	which	formed	the	basis	for	the	update	
carried	out	by	the	UKIPO,	relied	on	two	versions	of	the	FAME	database:	FAME	October	
2005	and	March	2009.	The	main	motivation	for	using	two	different	versions	of	FAME	is	
that	FAME	keeps	details	of	“inactive”	firms	(see	below)	for	a	period	of	four	years.	If	only	
the	2009	version	of	FAME	were	used,	intellectual	property	could	not	be	allocated	to	any	
firm	that	has	exited	the	market	before	2005,	which	would	bias	the	matching	results.	
FAME	is	available	since	2000,	which	defines	the	earliest	year	for	which	the	integrated	
data	set	can	be	constructed	consistently.	The	update	undertaken	by	the	UKIPO	used	the	
April	2011	version	of	FAME.	However,	since	there	are	significant	reporting	delays	by	
companies,	even	using	the	FAME	2011	version	means	that	the	latest	year	for	which	
firm‐level	data	can	be	used	reliably	is	2009.	

FAME	contains	basic	information	on	all	firms,	such	as	name,	registered	address,	firm	
type,	industry	code,	as	well	as	entry	and	exit	dates.	Availability	of	financial	information	
varies	substantially	across	firms.	In	the	UK,	the	smallest	firms	are	legally	required	to	
report	only	very	basic	balance	sheet	information	(shareholders'	funds	and	total	assets).	
The	largest	firms	provide	a	much	broader	range	of	profit	and	loss	information,	as	well	
as	detailed	balance	sheet	data	including	overseas	turnover.	Lack	of	these	kinds	of	data	
for	small	and	medium‐sized	firms	means	that	our	study	focuses	on	total	assets	as	a	
measure	of	firm	size	and	growth.		

The	patent	data	come	from	the	EPO	Worldwide	Patent	Statistical	Database	(PATSTAT).	
Data	on	UK	and	EPO	patent	publications	by	British	entities	were	downloaded	from	
PATSTAT	version	April	2011.	Due	to	the	average	18	months	delay	between	the	filing	
and	publication	date	of	a	patent,	using	the	April	2011	version	means	that	the	patent	
data	are	presumably	only	complete	up	to	the	third	quarter	in	2009.	This	effectively	
means	that	we	can	use	the	patent	data	only	up	to	2009	under	the	caveat	that	it	might	be	
somewhat	incomplete	for	2009.	Patent	data	are	allocated	to	firms	by	the	year	in	which	a	
firm	applied	for	the	patent.	

																																																								

16	FAME	downloads	data	from	Companies	House	records	where	all	limited	companies	in	the	UK	are	
registered.	
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Since	patent	records	do	not	include	any	kind	of	registered	number	of	a	company,	it	is	
not	possible	to	merge	data	sets	using	a	unique	firm	identifier;	instead,	applicant	names	
in	the	IP	documents	and	firm	names	in	FAME	have	to	be	matched.	Both	a	firm's	current	
and	previous	name(s)	were	used	for	matching	in	order	to	account	for	changes	in	firm	
names.	Matching	on	the	basis	of	company	names	requires	names	in	both	data	sets	to	be	
`standardized'	prior	to	the	matching	process	in	order	to	ensure	that	small	(but	often	
systematic)	differences	in	the	way	names	are	recorded	in	the	two	data	sets	do	not	
impede	the	correct	matching.	For	more	details	on	the	matching	see	Helmers	et	al.	
(2011).	

[Tables	A‐1,	A‐2,	and	A‐3	here]	
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Appendix B: Estimating survival models 

This	appendix	gives	some	further	information	about	the	various	survival	models	we	
estimated	and	the	robustness	checks	that	were	performed.	We	estimated	two	general	
classes	of	failure	or	survival	models:	1)	proportional	hazard,	where	the	hazard	of	failure	
over	time	has	the	same	shape	for	all	firms,	but	the	overall	level	is	proportional	to	an	
index	that	depends	on	firm	characteristics;	and	2)	accelerated	failure	time,	where	the	
survival	rate	is	accelerated	or	decelerated	by	the	characteristics	of	the	firm.	We	
transform	(2)	to	a	hazard	rate	model	for	comparison	with	(1),	using	the	usual	identity	
between	the	probability	of	survival	to	time	t	and	the	probability	of	failure	at	t	given	
survival	to	t‐1.		

The	first	model	has	the	following	form:	

  first patents in  at  has no patents in  ,  | iPr i j t i j s t X  	

 ( ),  ( , ) i ih X t h t exp X  	

where	i	denotes	a	firm,	j	denotes	a	technology	sector,	and	t	denotes	the	time	since	entry	
into	the	sample.	h(t)	is	the	baseline	hazard,	which	is	either	a	non‐parametric	or	a	
parametric	function	of	time	since	entry	into	the	sample.	The	impact	of	any	characteristic	
x	on	the	hazard	can	be	computed	as	follows:	

       
 

, , 1
  ,   or  

,
i i

i
i i i

h X t h X t
h t exp X

x x X t
  

 
 

 
	

Thus	if	x	is	measured	in	logs,	β	measures	the	elasticity	of	the	hazard	rate	with	respect	to	
x.	Note	that	this	quantity	does	not	depend	on	the	baseline	hazard	h(t),	but	is	the	same	
for	any	t.	We	use	two	choices	for	h(t):	the	semi‐parametric	Cox	estimate	and	the	Weibull	
distribution	ptp‐1.	By	allowing	the	Cox	h(t)	or	p	to	vary	freely	across	the	industrial	
sectors,	we	can	allow	the	shape	of	the	hazard	function	to	be	different	for	different	
industries	while	retaining	the	proportionality	assumption.		

In	order	to	allow	even	more	flexibility	across	the	different	industrial	sectors,	we	also	
use	two	accelerated	failure	time	models,	the	log‐normal	model	and	the	log‐logistic	
model.	These	have	the	following	basic	form:		

log( )
log-normal:  ( ) 1 i

j

t
S t




 
  

  
	

11/log-logistic:  ( ) 1 ( ) j

iS t t 


    	

where	S(t)	is	the	survival	function	and	λi	=	exp(Xiβ).	We	allow	the	parameters	σ	(log‐
normal)	or	γ	(log‐logistic)	to	vary	freely	across	industries	(j).	That	is,	for	these	models,	
both	the	mean	and	the	variance	of	the	survival	distribution	are	specific	to	the	2‐digit	
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industry.	In	the	case	of	these	two	models,	the	elasticity	of	the	hazard	with	respect	to	a	
characteristic	x	depends	on	time	and	on	the	industry‐specific	parameter	(σ	or	γ),	
yielding	a	more	flexible	model.	For	example,	the	hazard	rate	for	the	log‐logistic	model	is	
given	by	the	following	expression:	

 
1/ 1 1/

1/

log ( )
( )

1 ( )

j j
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j i

td S t
h t
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From	this	we	can	derive	the	elasticity	of	the	hazard	rate	with	respect	to	a	regressor	x:17	
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i i
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One	implication	of	this	model	is	therefore	that	both	the	hazard	and	the	elasticity	of	the	
hazard	with	respect	to	the	regressors	depend	on	t,	the	time	since	the	firm	was	at	risk	of	
patenting.	We	sample	the	firms	during	a	single	decade,	the	2000s,	but	some	of	the	firms	
have	been	in	existence	since	the	19th	century.	This	fact	creates	a	bit	of	a	problem	for	
estimation,	because	there	is	no	reason	to	think	that	the	patenting	environment	has	
remained	stable	during	that	period.	We	explored	variations	in	the	assumed	first	date	at	
risk	in	Table	B‐2,	finding	that	the	choice	made	little	difference.	Accordingly,	we	have	
used	a	minimum	at	risk	year	of	1978	for	estimation	in	the	main	table	in	the	text.		

[Tables	B‐1	and	B‐2	here]	

	

	

 

																																																								

17	We	assume	that	x	is	in	logarithms,	as	is	true	for	our	key	variables,	so	this	can	be	interepreted	as	an	
elasticity.	




