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1 Introduction

The past forty years have seen a rapid rise in top income inequality in the United States

(Piketty and Saez, 2003; Atkinson, Piketty and Saez, 2011). Since Pareto (1896), it is well-

known that the upper tail of the income distribution follows a power law, or equivalently,

that top inequality is “fractal”, and the rise in top income inequality has coincided with a

“fattening” of the right tail of the income distribution. That is, the “super rich” have pulled

ahead relative to the rich. This rise in top inequality requires an understanding of the forces

that have led to a fatter Pareto tail. There is also an ongoing debate about the dynamics of

top wealth inequality.1 To the extent that wealth inequality has also increased, we similarly

need to understand the dynamics of its Pareto tail.

What explains the observed rapid rise in top inequality is an open question. While there is

a large number of existing theories of the Pareto tails of the income and wealth distributions

at a point in time, almost none of these address the fast rise in top inequality observed in

the data, or any fast change for that matter.

The main contributions of this paper are: first, to show that the most common framework

(a simple Gibrat’s law for income or wealth dynamics) cannot explain rapid changes in tail

inequality, and second, to suggest parsimonious deviations from the basic model that can

explain such changes. Our analytical results bear on a large class of economic theories of top

inequality, so that our results shed light on the ultimate drivers of the rise in top inequality

observed in the data.

The first result of our paper is negative: standard random growth models, like those

considered in much of the existing literature, feature extremely slow transition dynamics

and cannot explain the rapid changes that arise empirically. To address this issue, we

consider the following thought experiment: initially at time zero, the economy is in a steady

state with a stationary distribution that has a Pareto tail. At time zero, there is a change

in the underlying economic environment that leads to higher top inequality in the long-run,

say because capital income taxes fall. The question is: what can we say about the speed

of this transition? Will this increase in inequality come about quickly or take a long time?

We present two answers to this question. First, we derive an analytic formula for a measure

of the “average” speed of convergence throughout the distribution. We argue that, when

calibrated to be consistent with microeconomic evidence, the implied half life is an order of

magnitude too high to explain the observed rapid rise in top income inequality. It is also too

1See e.g. Piketty (2014), Saez and Zucman (2014), Bricker et al. (2015) and Kopczuk (2015).
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high to explain even the relatively gradual rise in top wealth inequality suggested by some

empirical analyses. Second, we derive a measure of the speed of convergence for the part of

the distribution we are most interested in, namely its upper tail. We argue that, in standard

theories, transitions are even slower in the tail and, additionally, that our low measure of

the average speed of convergence overestimates the speed of convergence in the upper tail.

We also show that allowing for jumps in the income or wealth process, while useful for

descriptively matching micro-level data, does not help with generating fast transitions.

Given this negative result, we are confronted with a puzzle: what, then, explains the

observed rise in top income and (potentially) wealth inequality? We develop a “generalized

random growth model” that features two parsimonious departures from the canonical model

that do generate fast transitions. The first departure is cross-sectional heterogeneity in mean

growth rates and, in particular, a “high growth regime”.2 For instance, some highly skilled

entrepreneurs or managers may experience much higher average earnings growth rates than

other individuals over short- to medium horizons. We argue analytically and quantitatively

that this first departure can explain the observed fast rise in income inequality. The second

departure consists of deviations from Gibrat’s law (the assumption that the distribution of

income growth rates is independent of their levels), which we also refer to as “superstar

shocks”. These are shocks that disproportionately affect high incomes, e.g. shocks to the

shape production function of talent (e.g. shocks to the “span of control” as in Garicano

and Rossi-Hansberg (2006)).3 This second departure generates infinitely fast transitions in

inequality.

To obtain our analytic formulas for the speed of convergence, we employ tools from er-

godic theory and the theory of partial differential equations. Our measure of the average

speed of convergence is the first non-trivial eigenvalue or “spectral gap” of the differential

operator governing the stochastic process for income or wealth. One of the main contri-

butions of this paper is to derive an analytic formula for this first non-trivial eigenvalue

2Guvenen (2007) argues that heterogeneity in mean growth rates is an important feature of the data on

income dynamics. Luttmer (2011) studies a similar framework applied to firm dynamics and argues that

persistent heterogeneity in mean firm growth rates is needed to account for the relatively young age of very

large firms at a given point in time (a statement about the stationary distribution rather than transition

dynamics as in our paper).
3Technically, the shocks to log income affect it multiplicatively, rather than additively, as in the usual

random growth model. We use the term “deviations from Gibrat’s law” only to refer to these multiplicative

shocks and not to the model with heterogeneous growth rates. Technically, also the latter constitutes such

a deviation, although a local version of Gibrat’s law still holds.
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(i.e. the second eigenvalue) for a large variety of random growth processes. See Hansen and

Scheinkman (2009) for a related application of operator methods in economics. We obtain

our measure of the speed of convergence in the tail of the distribution by making use of

the fact that the solution to the Kolmogorov Forward equation for random growth processes

can be characterized tightly by calculating the Laplace transform of this equation. The use

of Laplace transforms to characterize the transition dynamics of a distribution is another

methodological contribution of our paper.

A large theoretical literature builds on random growth processes to theorize about the

upper tails of income and wealth distributions. Early theories of the income distribution

include Champernowne (1953) and Simon (1955), with more recent contributions by Nirei

(2009), Toda (2012), Kim (2013), Jones and Kim (2014) and Luttmer (2015). Similarly,

random growth theories of the wealth distribution include Wold and Whittle (1957) and

more recently Benhabib, Bisin and Zhu (2011, 2013, 2014), Piketty and Zucman (2014b),

Jones (2015), and Acemoglu and Robinson (2015). All of these papers focus on the income

or wealth distribution at a given point in time by studying stationary distributions, and none

of them analyze transition dynamics. Aoki and Nirei (2015) are a notable exception, who

examine the dynamics of the income distribution and ask whether tax changes can account

for the rise in top income inequality observed in the United States. Our paper differs from

theirs in that we obtain a number of analytic results providing a tight characterization of

transition dynamics in random growth models whereas their analysis of transition dynamics

is purely numerical.4

Our finding that heterogeneity in mean growth rates delivers fast dynamics of top in-

equality is also related to Guvenen (2007), who has argued that an income process with het-

erogeneous income profiles provides a better fit to the micro data than a model in which all

individuals face the same income profile. In our model variant with multiple growth regimes,

we also allow for heterogeneity in the standard deviation of income innovations in different

regimes which is akin to the mixture specification advocated by Guvenen et al. (2015). One

key difference between our model with multiple growth regimes and the standard random

growth model is that, in the standard model, the key determinant for an individual’s place

in the income distribution is her age. In contrast, in a model with multiple growth regimes

4Also related is Luttmer (2012) who studies the speed of convergence of aggregates like GDP in response

to shocks in an economy with a power law firm size distribution. His analysis differs from ours in that it

studies the convergence of aggregates which, in his framework, can be characterized independently of the

cross-sectional distribution.
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another important determinant is the individual’s “growth type” which may represent her

occupation or her talent as an entrepreneur. This is consistent with salient patterns of the

tail of the income distribution in the United States (Guvenen, Kaplan and Song, 2014).5

One of the most ubiquitous regularities in economics and finance is that the empirical

distribution of many variables is well approximated by a power law. For this reason, theories

of random growth are an integral part of many different strands of the literature beside those

studying the distributions of income and wealth. For example, they have been used to study

the distribution of city sizes (Gabaix, 1999) and firm sizes (Luttmer, 2007), the shape of the

production function (Jones, 2005), and in many other contexts (see the review by Gabaix,

2009). The tools and results presented in this paper should therefore also prove useful in

other applications.

The paper is organized as follows. Section 2 states the main motivating facts for our

analysis, and Section 3 reviews random growth theories of the income and wealth distribu-

tions at a point in time. In Section 4, we present our main negative results on the slow

transitions generated by such models and we explore their empirical implications for the

dynamics of income inequality. Section 5 presents two theoretical mechanisms for generating

fast transitions, and shows that these have the potential to account for the fast transitions

observed in the data. Section 6 extends our results to the case of wealth inequality, and

Section 7 concludes.

2 Motivating Facts

In this section, we briefly review some facts regarding the evolution of top income and wealth

inequality in the United States. We return to these in Sections 4 and 5 when comparing

various random growth models and their ability to generate the trends observed in the data.

Panel (a) of Figure 1 displays the evolution of measures of the top 1% income share. Panel

(a) shows the large and rapid increase in the top 1% income share that has been extensively

documented by Piketty and Saez (2003), Atkinson, Piketty and Saez (2011) and others.6 As

already noted, the upper tails of the income and wealth distributions follow power laws, or

equivalently top inequality is fractal in nature. For an exact power law, the top 0.1% are

5Luttmer (2011) makes a similar observation about the relationship between a firm’s age and its place in

the firm size distribution. As Luttmer puts it succinctly: “Gibrat implies 750-year-old firms.”
6The series is from the “World Top Incomes Database.” Here, we plot total income (salaries plus business

income plus capital income) excluding capital gains. The series display a similar trend when we include

capital gains or focus on salaries only (though the levels are different).
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Figure 1: Evolution of Top 1% Income Share and “Fractal Inequality” in U.S.

X times richer on average than the top 1% who are, in turn, X times richer than the top

10%, where X is a fixed number. Equivalently, the top 0.1% income share is a fraction Y

of the top 1% income share, which, in turn, is a fraction Y of the top 10% income share,

and so on. We now explore this fractal pattern in the data using a strategy borrowed from

Jones and Kim (2014). Panel (b) of Figure 1 plots the income share of the top 0.1% relative

to that of the top 1% and the income share of the top 1% relative to that of the top 10%.

As expected, the two lines track each other relatively closely. More importantly, there is an

upward trend in both lines. That is, there has been a relative increase in top income shares.

As we explain in more detail below, this increase in “fractal inequality” implies equivalently

a “fattening” of the Pareto tail of the income distribution.

In Appendix B, we present an analogous exercise for top wealth inequality. As discussed

there in more detail, the facts about the evolution of top wealth inequality are more ambigu-

ous than those for top income inequality. Different data series suggest different conclusions,

and top wealth shares appear to have increased, although it is unclear by how much.

There are two main takeaways from this section. First, top income shares have increased

dramatically since the late 1970s. Second, the Pareto tail of the income distribution has

gotten fatter over time.
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3 Random Growth Theories of Income and Wealth In-

equality

Our starting point is the existing theories that can explain top inequality at a point in

time, meaning that they can generate stationary distributions that have Pareto tails. Many

of these share the same basic mechanism for generating power laws, namely proportional

random growth. In this section, we give a brief overview of such theories. We start with two

concrete examples corresponding to our two main applications: a simple model of income

dynamics and a simple model of wealth accumulation. We then present a unifying framework

that nests these two examples as special cases and that will be the focus of our analysis of

transition dynamics in the next section.

3.1 Income Dynamics

Time is continuous, and there is a continuum of workers. A worker’s wage is given by

wit = ωhit where ω is an exogenous skill price and hit is her human capital or her skills.

Workers die (retire) at rate δ, in which case they are replaced by a young worker with human

capital hi0. A worker’s human capital evolves as

dhit = g(Iit, hit)dzit

where dzit denotes an ability shock and Iit investment into human capital. We make the

following four assumptions. First, ability shocks are i.i.d. over time and given by dzit =

z̄dt+ σ̃dZit where Zit is a standard Brownian motion.7 Second, the function g has constant

returns. Third, an individual’s investment is proportional to her human capital Iit = θhit.
8

And fourth, initial human capital is the same for everyone hi0 = h̄0. Given these assumptions,

it is easy to show that the resulting wage dynamics are given by

dwit = z̄g(θ, 1)witdt+ σ̃g(θ, 1)witdZit. (1)

A large number of models of the upper tail of the income distribution end up with a similar

reduced form. In some of these models, investment into human capital or skills θ is derived

7That is, income innovations dZit are normally distributed. Approximately, dZit ' εit
√

∆t, εit ∼ N (0, 1),

for a small ∆t.
8Such an investment rule can also be derived from optimizing behavior. Results available upon request.
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from an individual optimization problem, in which case it may depend on labor income (or

other) taxes faced by individuals, that is θ = θ(τ) where τ is a tax rate.9

A large literature estimates reduced-form labor income processes similar to (1) using

panel data.10 In particular, (1) implies that the logarithm of income follows a Brownian

motion which is simply the continuous-time version of a random walk. Hence (1) is the

special case of the widespread “permanent-transitory model” of income dynamics, but with

only a permanent component. As a result, good estimates are available for its parameter

values. The process could easily be extended to feature a transitory component, e.g. by

introducing jumps that are distributed i.i.d. over time and across individuals.11

3.2 Wealth Accumulation

The following simple model captures the main features of a large number of models of

the upper tail of the wealth distribution.12 Time is continuous and there is a continuum of

individuals that are heterogeneous in their wealth w̃it. At the individual level, wealth evolves

as

dw̃it = (1− τ)w̃itdRit + (yt − cit) dt

where τ is the capital income tax rate, dRit is the rate of return on wealth which is stochastic

and yt is labor income, and cit is consumption. To keep things simple, we make the following

assumptions. First, capital income is i.i.d. over time and, in particular, dRit = r̃dt+ ν̃dZit,

where r̃ and ν̃ are parameters, and Zit is a standard Brownian motion, which reflects id-

iosyncratic returns to human capital or to financial capital (this idiosyncratic shock captures

the undiversified ownership of an entrepreneur, for instance).13 Second, we assume that indi-

viduals consume an exogenous fraction θ̃ of their wealth at every point in time, cit = θ̃w̃it.
14

Third, we assume that all individuals earn the same labor income yt, which grows determin-

9See e.g. Champernowne (1953), Simon (1955), Nirei (2009), Toda (2012), Aoki and Nirei (2015) and

Luttmer (2015) for models with similar reduced forms and Kim (2013), Jones and Kim (2014) for such

models that additionally feature taxes.
10See e.g. MaCurdy (1982), Heathcote, Perri and Violante (2010) and Meghir and Pistaferri (2011).
11Results are available upon request.
12See e.g. Wold and Whittle (1957), Benhabib, Bisin and Zhu (2011, 2013, 2014), Piketty and Zucman

(2014b), Jones (2015) and Acemoglu and Robinson (2015).
13Benhabib, Bisin and Luo (2015) argue that, in the data, such uninsured capital income risk is the main

determinant of the wealth distribution’s right tail. In Section 5.3, we additionally consider common shocks.
14A consumption rule with such a constant marginal propensity to consume can also be derived from

optimizing behavior, at least for large wealth levels wit. Results available upon request.
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istically at a rate g, yt = yegt. Given these assumptions, it is easy to show that detrended

wealth wit = w̃ite
−gt follows the stochastic process

dwit = [y + (r − g − θ̃)wit]dt+ σwitdZit (2)

where r = (1− τ)r̃ is the after-tax average rate of return on wealth and σ = (1− τ)ν̃ is the

after-tax wealth volatility. Many other shocks (e.g. demographic shocks or shocks to saving

rates) result in a similar reduced form.

3.3 Unifying Reduced Form Model

Both of these models share a common reduced form. In particular, income or wealth wit

follows a geometric Brownian motion

dwit = γ̄witdt+ σwitdZit. (3)

where γ̄ and σ are parameters (for the moment, we ignore the additive term ydt in (2)). All

theories of top inequality add a “friction” to the random growth process (3) to ensure the

existence of a stationary distribution (Gabaix, 1999). In the absence of such a “friction”,

the cross-sectional variance of wit grows without bound. We consider four such “frictions”:

Friction 1 Death at rate δ together with reinjection at some w0 > 0, normalized to w0 = 1.

Friction 2 A reflecting barrier at w > 0, normalized to w = 1.

Friction 3 The combination of Frictions 1 and 2.

Friction 4 The addition of an additive term ydt to (3) with y > 0.

The simple model of income dynamics (1) is the special case of (3) with γ̄ = z̄g(θ, 1)

and σ = σ̃g(θ, 1) together with the first friction. Similarly, the simple model of wealth

accumulation (2) is the special case of (3) with γ̄ = r − g − θ together with the fourth

friction. For the remainder of the paper’s theoretical analysis, we will focus on the income

application for simplicity, and we will, therefore, refer to wit as “income.” The reader should,

however, keep in mind that all our results apply equally to the case where wit is “wealth”.

In Section 6, we explicitly return to the case of wealth dynamics.

We will later find it useful to conduct much of the analysis in terms of the logarithm of

income wit, which we denote by xit. Applying Ito’s formula to (3), xit = logwit follows

dxit = µdt+ σdWit, where µ = γ̄ − σ2

2
. (4)
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The properties of the stationary distribution of the income process (3) are well understood.

In particular, under certain parameter restrictions, this stationary distribution has a Pareto

tail15

P(wit > w) ∼ Cw−ζ

where C is a constant and ζ > 0 is a simple function of the parameters µ (equivalently γ̄),

σ and the particular friction (see e.g. Gabaix (2009)). With Friction 1 (the relevant friction

for the case of income dynamics)

ζ =
−µ+

√
µ2 + 2σ2δ

σ2
. (5)

The constant ζ is called the “power law exponent”, with a smaller ζ corresponding to a fatter

tail. We also find it useful to refer to the inverse of the power law exponent η = 1/ζ as “top

inequality”. Intuitively, tail inequality is increasing in γ̄ = z̄g(θ, 1) and σ = σ̃g(θ, 1) and

decreasing in the death rate δ. In Appendix C, we provide a complete characterization of the

stationary distributions for all four frictions. It will be useful later to note that, equivalently,

the logarithm of w has an exponential tail, P(xit > x) ∼ Ce−ζx.

To make the connection to the empirical evidence in the introduction, note that if the

distribution of w has a Pareto tail above the pth percentile, then the share of the top p/10th

percentile relative to that of the pth percentile is given by S(p/10)
S(p)

= 10η−1. There is, therefore,

a one-to-one mapping between the relative income shares in panel (b) of Figure 1 and the

top inequality parameter η = 1/ζ.16 Most existing contributions focus on the stationary

distribution of the process (3) and completely ignore the corresponding transition dynamics.

It is unclear whether these theories can explain the observed dynamics of the tail parameter

η. This is what we turn to in the next section.

3.4 Other Theories of Top Income Inequality

This paper studies the dynamics of inequality in theories that can generate power laws, and

we explicitly confine ourselves to studying such theories only. This is because we consider

the fractal feature of top inequality discussed in Section 2 an important empirical regularity

that deserves special attention. Beside random growth theories, there is one other class of

15Here and elsewhere “f(x) ∼ g(x)” for two functions f and g means there are positive constants k, k′

such that kg (x) ≤ f(x) ≤ k′g(x) for x large enough.
16See Jones and Kim (2014) and Jones (2015) for two papers that use this fact extensively.
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theories that can generate power laws, namely those building on “superstar” mechanisms.17

We return to these theories below.

4 The Baseline Random Growth Model Generates Slow

Transitions

Changes in the parameters of the income process (4) lead to changes in the fatness of the

right tail of its stationary distribution. For example, an increase in the standard deviation

of income innovations σ leads to an increase in stationary tail inequality η in (5). But this

leaves the question as to whether this increase in inequality will come about quickly or will

take a long time to manifest itself unanswered. The main message of this section is that the

simple random growth model (4) gives rise to very slow transition dynamics.

Throughout this section, we conduct the following thought experiment. Initially at time

t = 0, the economy is in a Pareto steady state corresponding to some initial parameters

µ0, σ0 and so on. At time t = 0, a parameter changes; for example, the innovation variance

σ2 may increase. Asymptotically as t→∞, the distribution converges to its new stationary

distribution. The question is: what can we say about the speed of this transition? We present

two sets of results corresponding to different notions of the speed of convergence. The first

notion measures an “average” speed of convergence throughout the distribution. The second

notion captures differential speeds of convergence across the distribution, allowing us in

particular to put the spotlight on its upper tail.

Throughout the remainder of the paper, we denote the cross-sectional distribution of the

logarithm of income x at time t by p(x, t), the initial distribution by p0(x) and the stationary

distribution by p∞(x). In order to talk about convergence, we also need a measure of distance

between the distribution at time t and the stationary distribution. Throughout the paper

we use the L1-norm or total variation norm || · || defined as

||p(x, t)− p∞(x)|| :=
∫ ∞
−∞
|p(x, t)− p∞(x)|dx. (6)

For frictions 1 to 3, the cross-sectional distribution p(x, t) satisfies the Kolmogorov Forward

equation

pt = −µpx +
σ2

2
pxx − δp+ δδ0. (7)

17See Rosen (1981), Gabaix and Landier (2008), Tervio (2008) and Geerolf (2014) among others.
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with initial condition p(x, 0) = p0(x), where we use the compact notation pt := ∂p(x,t)
∂t

(similarly for x) and where δ0 denotes the Dirac delta function, i.e. a point mass at x = 0.18

The first two terms on the right hand side capture the evolution of x due to diffusion with drift

µ and variance σ2. The third term captures death and, hence, an outflow of individuals at

rate δ, and the fourth term captures birth, namely that every “dying” individual is replaced

with a newborn at x = 0.19 When there is a reflecting barrier (frictions 2 and 3), p must

additionally satisfy the boundary condition

0 = −µp+
σ2

2
px, at x = 0. (8)

It is often convenient to write this partial differential equation in terms of a differential

operator

pt = A∗p+ δδ0, A∗p = −δp− µpx +
σ2

2
pxx. (9)

This formulation is quite flexible and can be extended in a number of ways. For instance, in

Section 4.4 we extend our framework to include Poisson jumps.

4.1 Average Speed of Convergence

We now state Proposition 1, one of the two main theoretical results of our paper. Before

doing so we make the following assumption.

Assumption 1 The income process (4) has a unique invariant distribution p∞(x) and the

initial and invariant distributions, p0(x) and p∞(x), satisfy∫ ∞
−∞

(p0(x))2

p∞(x)
dx <∞. (10)

Note that (10) is a relatively weak restriction. For instance, assume that both p0 and p∞

have Pareto tails p0(x) ∼ c0e
−αx and p∞(x) ∼ ce−ζx for large x. Then (10) is equivalent to

α > ζ/2. In particular, it is satisfied in all cases where top inequality in the new steady state

is larger than that in the initial steady state, ζ < α, the main application we are interested

in.20

18To be clear, the death rate δ is a number, while δ0 is a (generalized) function.
19More generally, we can allow for the income of newborns to be drawn from an arbitrary (thin-tailed)

distribution ψ(x), in which case the fourth term reads +δψ(x). We consider the special case in which this

distribution is a point mass, ψ(x) = δ0(x), i.e. all newborns have the same income for simplicity.
20Proposition 1 can also be extended to the case where p0 does not decay fast enough, i.e. if α < ζ/2.

In particular, one can bound the speed of convergence, which becomes lower. Results are available upon

request.
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Proposition 1 Consider the income process (4). Under Assumption 1, the cross-sectional

distribution p(x, t) converges to its stationary distribution exponentially in the total variation

norm, that is ||p(x, t)− p∞(x)|| ∼ ke−λt for constants k and λ. The rate of convergence

λ = − lim
t→∞

1

t
log ||p(x, t)− p∞(x)||

depends on whether there is a reflecting barrier at x = 0. Without a reflecting barrier

(Friction 1)

λ = δ. (11)

With a reflecting barrier (Frictions 2 and 3)

λ =
1

2

µ2

σ2
1{µ<0} + δ (12)

where 1{·} is the indicator function.

We shall see that Proposition 1 implies that the traditional canonical model delivers

convergence that is far too slow: λ is too low compared to the empirical estimate.

The proof of the Proposition for the case without a reflecting barrier analyzes directly

the L1-norm (6) by means of a differential equation for |p(x, t)− p∞(x)|. The rough idea of

the proof of the Proposition for the case with a reflecting barrier is as follows. The entire

dynamics of the process for xit are summarized by the operator A∗ defined in (9). This

operator is the appropriate generalization of a transition matrix for a finite-state process

to processes with a continuum of states such as (4), and it can be analyzed in an exactly

analogous way. In particular, the critical property of A∗ governing the speed of convergence

of p is its largest non-trivial eigenvalue. The key contribution of the Proposition and the

main step of the proof is then to obtain an explicit formula for the second eigenvalue of A∗

in the form of (12).21

The intuition for formulas (11) and (12) is as follows. In the case without a reflecting

barrier, the speed is simply given by the death intensity δ. This is intuitive: the higher δ is,

the more churning there is in the cross-sectional distribution and the faster the distribution

settles down to its invariant distribution. In the extreme case where δ →∞, the distribution

jumps to its steady state immediately. Next, consider the case with a reflecting barrier, µ < 0,

21Linetsky (2005) derives a related result for the special case of a reflected Brownian motion with µ < 0

and δ = 0. For the same case one can also derive the formula for the speed of convergence by “brute

force” from the standard formulas for reflected Brownian motion (see e.g. Harrison, 1985). Our results are

considerably more general.
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and no Poisson death, δ = 0 (Friction 2). From (5), stationary tail inequality for this case is

η = 1/ζ = −σ2

2µ
and therefore the speed of convergence can also be written as

λ =
1

8

σ2

η2
. (13)

This expression is again intuitive. It states that the transition is faster the higher is the

standard deviation of growth rates σ and the lower is the tail inequality η; that is, high

inequality goes hand in hand with slow transitions. The interpretation of the formula for

the case with a reflecting barrier and δ > 0 is similar.

In section 4.3 we show that when the parameters µ, σ and δ are calibrated to be consistent

with the micro data and the observed inequality at a point in time, the implied speed of

convergence is an order of magnitude too low to explain the observed increase in inequality

in the data.

4.2 Speed of Convergence in the Tail

In the preceding section we characterized a measure of the average speed of convergence

across the entire distribution. The purpose of this section is to examine the possibility that

different parts of the distribution may converge at different speeds. In particular, we show

that convergence is particularly slow in the upper tail of the distribution. That is, the

formula in Proposition 1 overestimates the speed of convergence of parts of the distribution.

In this section we focus on the case with Poisson death, but without a reflecting barrier

(Friction 1) because it is possible to obtain clean analytic formulas for this case. While clean

formulas are not available if the income process features a reflecting barrier, we show by

means of numerical computations that the general lessons from our analysis carry over to

the other two cases of frictions as well.

4.2.1 An Instructive Special Case: the Steindl Model

To explain the main result of this section in the most accessible way, we first examine the

restrictive but instructive special case where σ = 0 and µ, δ > 0. In this model, originally due

to Steindl (1965), the logarithm of income xit grows at rate µ and gets reset to xi0 = 0 at rate

δ. The Steindl model has recently also been examined by Jones (2015). The distribution

p(x, t) then satisfies the Kolmogorov Forward equation (7) with σ = 0 for x > 0. The

corresponding stationary distribution is a Pareto distribution

p∞(x) = ζe−ζx, with ζ =
δ

µ
.
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For concreteness, consider an economy starting in a steady state with some growth rate µ0

(and death rate δ0). At t = 0 the growth rate changes permanently to µ > µ0 (and death

rate δ). Then, the new steady state distribution is more fat-tailed, ζ < α.

Lemma 1 (Closed form solution for the transition in the Steindl model) The time path of

p(x, t) is the solution to (7) with σ = 0 and initial condition p0(x) = αe−αx, α = δ0/µ0 which

is given by

p(x, t) = ζe−ζx1{x≤µt} + αe−αx+(α−ζ)t1{x>µt} (14)

where 1{·} is the indicator function.

The solution is depicted in Figure 2. Consider, in particular, the local power law exponent
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Figure 2: Transition of Distribution in Steindl Model, σ = 0, µ, δ > 0

ζ(x, t) = −∂ log p(x, t)/∂x. Since the Figure plots the log density, log p(x, t), against log

income x, this local power law exponent is simply the slope of the line in the Figure. The

time path of the distribution features a “traveling discontinuity”. Importantly, the local

power law exponent (the slope of the line) first changes only for low values of x. In contrast,

for high values of x, the distribution shifts out in parallel and the slope of the line does not

move at all. More precisely, for a given point x, the distribution fully converges at time

τ(x) = x/µ, but does not move at all when t < τ(x). In the Steindl model, the convergence

of the distribution is slower the further out in the tail we look. In particular, note from the

Figure that the asymptotic (for large x) power law exponent ζ(t) = − limx→∞ ∂ log p(x, t)/∂x

takes an infinite time to converge to its stationary distribution. In the special case of the
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Steindl model, this slow convergence in the tail is particularly stark in that some parts of

the distribution do not move at all. We show below that, while less stark, the general insight

that convergence is slower in the tail also carries over to the model with σ > 0.

Consider the behavior of top income shares in response to the permanent increase in

µ considered above. Lemma 1 implies that the relative income of the 0.1% vs 1% income

quantiles is constant for a while; it budges only when the “traveling discontinuity” hits the

top 1% quantile. In contrast, the level of the top 1% income quantile and the 0.1% income

quantile increase quickly after the shock (to be more precise, after any time t > 0, they have

moved, in parallel). Hence, the ratio of the 0.1% to 1% share moves slowly (indeed, not at all

for a while), though the top 1% share moves fairly fast. This phenomenon will be confirmed

in the next subsection.

For completeness, we note that it is also possible to characterize the time path of the

distribution for σ > 0 and for more general initial conditions p0(x):

Lemma 2 (Closed form solution for general model without reflecting barrier) In the case

with no reflecting barrier, we have

p (x, t) = p∞ (x) + e−δtE [p0 (x− gt)− p∞ (x− gt)] (15)

where gt := µt+ σZt, and the expectation is taken over the stochastic realizations of gt.

Note that when σ = 0, p (x, t) = p∞ (x)+e−δt [p0 (x− µt)− p∞ (x− µt)], which coincides

with (14) when the initial distribution is p0(x) = αe−αx1{x>0}.

4.2.2 Speed of Convergence in the Tail for the General Model

As noted earlier, the distribution p(x, t) satisfies the Kolmogorov Forward equation (7). As

in the first part of this section, we continue to focus on the case with Poisson death, but

without a reflecting barrier. One can show (see e.g. Gabaix, 2009) that in this case the

stationary distribution is a double Pareto distribution

p∞(x) = cmin{e−ζ−x, e−ζ+x} (16)

where c = −ζ−ζ+/(ζ+ − ζ−) and where ζ− < 0 < ζ+ are the two roots of

0 =
σ2

2
ζ2 + ζµ− δ. (17)

Apart from the stationary distribution, the solution to the Kolmogorov Forward equation is

cumbersome.

16



The key insight of this section is that, for the case without a reflecting barrier, the

entire time path of the solution to the Kolmogorov Forward equation can be characterized

conveniently in terms of the so-called “Laplace transform” of p

p̂ (ξ, t) :=

∫ ∞
−∞

e−ξxp (x, t) dx = E
[
e−ξXt

]
, (18)

where ξ is a real number andXt represents the random variable (log income) with distribution

p (x, t).22 For ξ ≤ 0, the Laplace transform has the natural interpretation of the −ξth
moment of the distribution of income, that is E[w−ξ], where w = eX is income. We show

momentarily that we can obtain a clean analytic formula for the entire time path of this

object for all t. This is useful because a complete characterization of a function’s Laplace

transform is equivalent to a complete characterization of the function itself. This is because

by varying the variable ξ, we can trace out the behavior of different parts of the distribution.

In particular, the more negative ξ is, the more we know about the distribution’s tail behavior.

In a similar vein, our analysis using Laplace transforms will allow us to characterize tightly

the behavior of a weighted version of the L1-norm in (6) :

||p(x, t)− p∞(x)||ξ :=

∫ ∞
−∞
|p(x, t)− p∞(x)|e−ξxdx. (19)

In the special case ξ = 0, this distance measure coincides with the L1-norm defined in (6).

But by taking ξ < 0, (19) puts more weight on the behavior of the distribution’s tail, the

main focus of the current section. Note that the Laplace transform (18) ceases to exist if

ξ is too negative or too positive. To ensure that the Laplace transform exists we impose

the restriction that −ζ+ < ξ < −ζ− where ζ−, ζ+ are the tail parameters of the stationary

distribution (16).23

We apply the Laplace transform to the Kolmogorov Forward equation (7). We use the

usual rules: p̂x = ξp̂, p̂xx = ξ2p̂, and obtain:

∂p̂(ξ, t)

∂t
= −λ(ξ)p̂(ξ, t) + δ where λ(ξ) := µξ − σ2

2
ξ2 + δ (20)

with initial condition p̂(ξ, 0) = p̂0(ξ), the Laplace transform of p0(x). Here, we used that for

any x0, the Laplace transform of the Dirac delta function δx0 is e−ξx0 and hence the Laplace

22Note that we here work with the “bilateral” or “two-sided” Laplace transform which integrates over the

entire real line. This is in contrast to the one-sided Laplace transform defined as
∫∞
0
e−ξxp (x, t) dx.

23To see this, calculate the Laplace transform of (16) p̂∞(ξ) = c
ζ++ξ −

c
ζ−+ξ = ζ−−ζ+

(ζ−+ξ)(ζ++ξ) . We therefore

need −ζ+ < ξ < −ζ−.
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transform of δ0 equals 1. Importantly, note that for fixed ξ, (20) is a simple ordinary

differential equation for p̂ that can be solved analytically.

Proposition 2 (Speed of convergence in the tail) Consider the Laplace transform of the

income distribution p̂(ξ, t) defined in (18) for −ζ+ < ξ < −ζ− where ζ−, ζ+ are the two roots

of (17). Its time path is given by

p̂(ξ, t) = p̂∞(ξ) + (p̂0(ξ)− p̂∞(ξ)) e−λ(ξ)t, (21)

λ(ξ) := µξ − σ2

2
ξ2 + δ, (22)

p̂∞(ξ) :=
δ

µξ − σ2

2
ξ2 + δ

. (23)

Furthermore, the weighted L1-norm defined in (19) converges at rate λ(ξ):

||p(x, t)− p∞(x)||ξ ∼ ke−λ(ξ)t. (24)

Consider first the speed of convergence of the weighted distance measure in (24). For the

special case ξ = 0, we have λ(ξ) = δ; when the weighted L1-norm places no additional weight

on the behavior of the distribution’s tail, we recover our original result from Proposition 1,

as expected. As we take ξ more and more negative, the weighted norm places more and more

weight on the behavior of the distribution’s tail, and the corresponding speed of convergence

is given by λ(ξ). Note that for µ > 0, the speed of convergence λ(ξ) is always lower the

lower ξ is, for all ξ ≤ 0. If µ < 0, the same is true for all ξ less than some critical value.

The formula for λ(ξ) therefore indicates that convergence is slower the more weight we put

on observations in the distribution’s tail.

Next consider (21) which provides a closed form solution for the evolution of the Laplace

transform or equivalently for the evolution of all moments of the cross-sectional income

distribution. These moments converge at the same rate λ(ξ) as the weighted norm in (24).

Hence, the closed form solution for the Laplace transform in (21) shows that high moments

converge more slowly than low moments.

Figure 3 provides a graphical illustration of these theoretical results. As in the Steindl

case of Figure 2, the power law exponent ζ (equivalently top inequality η) does not change

at first and the distribution instead shifts out in parallel.24

24This is more than a numerical result. Defining the local power law exponent ζ(x, t) := −Px(x, t)/P (x, t)

where P is the CDF corresponding to p, one can show using (7) that this local power law exponent does not

move on impact following a shock, ζt(x, t)|t=0 = 0 for all x.
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Figure 3: Slow Convergence in the Tail in Standard Random Growth Model

Finally, consider the expression for the stationary Laplace transform (23). Reassuringly,

one can check that it coincides with the result obtained from directly Laplace-transforming

the stationary distribution p̂∞(ξ).25 Also note that if ξ = −ζ+ or ξ = −ζ− so that µξ− σ2

2
ξ2+

δ = 0, then p̂∞(ξ) ceases to exist. This, in fact, suggests a general strategy for identifying

a distribution’s Pareto tail from knowledge of its Laplace transform only that will be useful

later: the tail parameter is simply the critical value ζ > 0 such that p̂∞(ξ) ceases to exist

for all ξ ≤ −ζ.26

4.3 The Baseline Model Cannot explain the Fast Rise in Income

Inequality

We now revisit Figure 1 from Section 2 and ask: can standard random growth models gener-

ate the observed increase in income inequality? We find that they cannot. In particular, the

transition dynamics generated by the model are too slow relative to the dynamics observed

25We have

p̂∞(ξ) =
c

ζ+ + ξ
− c

ζ− + ξ
=

ζ− − ζ+
(ζ− + ξ)(ζ+ + ξ)

. (25)

From the quadratic for ζ (17), we have that ζ−ζ+ = −δ/(σ2/2), ζ− + ζ+ = −µ/(σ2/2) and hence (ζ− +

ξ)(ζ+ + ξ) = ζ−ζ+ + ξ(ζ− + ζ+) + ξ2 = −δ/(σ2/2)− µξ/(σ2/2) + ξ2. Substituting into (25) we obtain (23).
26In particular, one can show that for any distribution p with a Pareto tail, that is p(x) ∼ ce−ζx x → ∞

for constants c and ζ, the Laplace transform p̂(ξ) ∼ c
ζ+ξ as ξ ↓ −ζ.
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in the data. This confirms, with calibrated data, the theoretical results in the preceding two

sections.

More precisely, we ask whether an increase in the variance of the permanent component

of wages σ2 can explain the increase in income inequality observed in the data. That an

increase in the variance of permanent earnings has contributed to the rise of inequality

observed in the data has been argued by Moffitt and Gottschalk (1995), Kopczuk, Saez and

Song (2010) and DeBacker et al. (2013) (however, Guvenen, Ozkan and Song (2014) examine

administrative data and dispute that there has been such a trend – either way our argument

is that an increase in σ cannot explain the rise in top inequality). The particular experiment

we consider is an increase in the variance of permanent earnings σ2 from 0.01 in 1973 to

0.025 today (implying that the standard deviation σ increases from 0.1 to 0.158 broadly

consistent with evidence in Heathcote, Perri and Violante (2010)).

We calibrate the remaining parameters µ and δ as follows. First, note that our model

is stationary whereas the U.S. economy features long-run growth. Since we normalized the

starting wage of labor force entrants to w0 = 1, µ is the growth rate of individual incomes

over the lifecycle relative to this long-run trend. We set δ = 1/30 corresponding to an

expected work life of thirty years and calibrate µ to match the observed tail inequality

in 1973, η1973 = 0.39 or equivalently ζ1973 = 1/η1973 = 2.56 which yields µ = 0.002, i.e.

individual income growth 0.2% above the economy’s long-run growth rate.27 Note that this

calibration is conservative. In particular, given that convergence rates are increasing in δ, a

longer expected work life would result in even slower transitions.

Since the income process is not subject to a reflecting barrier, Proposition 1 implies

that the average speed of convergence is simply λ = δ and the corresponding half-life is

t1/2 = log(2)/δ = 20.8 years. As shown in Section 4.2, the speed of convergence in the

tail can be much slower. In particular, consider the formula for the speed of convergence

λ(ξ) = µξ − σ2

2
ξ2 + δ from Proposition 2 where the reader should recall that by varying ξ,

we can trace out the speed of convergence of all moments of the distribution and λ(ξ) is the

speed of convergence of the -ξth moment. Equivalently, −ξ is the weight on the tail in the

weighted L1-norm (19), with the maximum admissible weight equal to the tail exponent of

the new stationary distribution which here equals ζ = 1.6.

Figure 4 plots the corresponding half-life t1/2(ξ) = log(2)/λ(ξ) for the parameter values

27We compute η from the relative income shares in panel (b) of Figure 1 as η(p) = logS(p/10)/S(p). We

here use η(1) = S(0.1)/S(1). To understand how µ is calibrated, note that ζ satisfies (17). Therefore, given

σ2 = 0.01 and δ = 1/30, we need µ = δ/ζ − ζσ2/2 = 0.002.
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used in our experiment as a function of the moment under consideration −ξ. Consider first
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Figure 4: Theoretical Speed of Convergence of Different Moments of Income Distribution

the red solid line which plots the half life t1/2(ξ) for σ2 = 0.025, the variance of the permanent

component of wages used in our experiment. For ξ = 0, the speed of convergence is given

by t1/2 = log(2)/δ = 20.8 years as expected. There are two main takeaways from the figure.

First, even for relatively low moments the speed of convergence is considerably lower. For

example, the half-life of convergence of the first moment (ξ = −1) is around 40 years, i.e.

twice as much as the average speed. Second, the speed of convergence becomes slower and

slower the higher the moment under consideration, with half lives of 100 years close to the

highest admissible moment ζ = 1.6. The figure also shows that the speed of convergence is

quite sensitive to the value of the variance σ2, particularly the speed in the tail.

Figure 5 plots the time path for the top 1% income share (panel (a)) and the empir-

ical power law exponent (panel (b)) generated by the baseline random growth model and

compares it to that in the data.28 Not surprisingly given our analytical results, the model

fails spectacularly.29 An increase in the variance in the permanent component of income σ2

is therefore not a promising candidate for explaining the observed increase in top income

inequality. Similarly, consider a simple tax story like that mentioned in Section 3.1 in which

the intensity of investment is affected by taxation θ = θ(τ) where τ is a tax rate, and there-

fore so are the reduced form parameters µ and σ. Because this simple story collapses in a

28We solve the Kolmogorov Forward equation (7) numerically using a finite difference method.
29Note that the power law exponent in panel (b) is completely flat on impact, consistent with Figures 2

and 3, and footnote 24.
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Figure 5: Dynamics of Income Inequality in the Baseline Model

reduced form to a standard random growth model, it cannot generate fast transitions either

(results are available upon request).

4.4 Jumps Cannot Explain the Fast Rise in Inequality Either

The standard random growth model we have studied so far assumes that income innovations

are log-normally distributed as implied by the assumption that the income process is a geo-

metric Brownian motion. Recent research suggests that this is a quite imperfect description

of the data. For instance, Guvenen et al. (2015) using administrative data, document that

earnings innovations are very fat-tailed and much more so than a normally distributed ran-

dom variable. In particular, they show that the distribution of income growth rates itself

has Pareto tails (and not just the income distribution). In our continuous time setup, the

most natural way of generating such kurtosis is by introducing jumps.30

In this section, we ask whether departing from the standard log-normal framework by

introducing jumps can help resolve the puzzle raised in Section 4.3 that random growth

processes cannot explain the fast rise income inequality observed in the data. We find that

30It is not surprising that income innovations will be leptokurtic if the distribution from which jumps are

drawn features kurtosis itself. Interestingly, this is not necessary for income innovations to be leptokurtic:

even normally distributed jumps that arrive with a Poisson arrival rate can generate kurtosis in data ob-

served at discrete time intervals. The same logic is used in the theory of so-called “subordinated stochastic

processes.”
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they cannot: while jumps are useful descriptively for capturing certain features of the data,

they do not increase the speed of convergence of the cross-sectional income distribution.

To introduce jumps, we extend the income process (4) as follows:

dxit = µdt+ σdZit + gitdNit (26)

where dNit is a jump process with intensity φ. That is, there is a jump in [t, t + dt) (i.e.,

dNji = 1) with probability φdt and no jump (i.e., dNit = 0) with probability 1 − φdt. The

innovations git are drawn from an exogenous distribution f . The distribution f can have

arbitrary support and it may be either thin-tailed (e.g. a normal distribution) or thick-tailed

(e.g. a double-Pareto distribution consistent with the evidence in Guvenen et al. (2015)).

With jumps, the Kolmogorov Forward equation (7) becomes

pt = −δp− µpx +
σ2

2
pxx + φE [p (x− g)− p (x)] + δδ0.

Relative to (7), the new term is the expectation E [p (x− g)− p (x)], which is taken over the

random jump g and is multiplied by φ, the arrival rate of jumps. Note that this term can

also be written as

E [p (x− g)− p (x)] =

∫ ∞
−∞

[p(x− g)− p(x)]f(g)dg = (p ∗ f) (x)− p (x)

where ∗ is the convolution operator. Our analysis of transition dynamics using Laplace

transforms in Section 4.2 can easily be extended to the case of jumps because integral trans-

forms like the Laplace transform are the ideal tool for handling convolutions. In particular,

the Laplace transform of a convolution of two functions is the product of the Laplace trans-

forms of the two functions: (̂p ∗ f)(ξ) = p̂(ξ)f̂(ξ). Using this fact, Proposition 2 extends

immediately to the case of jumps.

Proposition 3 (Speed of convergence when there are jumps in the growth rate) Consider

the Laplace transform of the cross-sectional income distribution p̂(ξ, t) defined in (18), where

jumps are allowed. Its time path is still given by (21), but now with rate of convergence

λ(ξ, φ) := ξµ− ξ2σ
2

2
+ δ − φ(f̂(ξ)− 1), (27)

f̂(ξ) :=

∫ ∞
−∞

e−ξgf(g)dg, (28)

the Laplace transform of the distribution of jumps f(g) which satisfies f̂(0) = 1 and f̂(ξ) > 1

for all ξ < 0. The weighted L1-norm converges at rate λ(ξ, φ):

||p(x, t)− p∞(x)||ξ ∼ ke−λ(ξ,φ)t.
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In particular, the average speed of convergence as measured by the unweighted L1-norm equals

λ(0, φ) = δ for all φ, i.e. it is entirely unaffected by the presence of jumps. With ξ < 0, jumps

make the speed of convergence lower than in the absence of jumps: λ(ξ, φ) < λ(ξ, 0), φ > 0.

It is worth reemphasizing the last part of the Proposition: if we confine attention to

the average speed of convergence ||p(x, t) − p∞(x)|| jumps have no effect whatsoever. If

instead, we put more weight on observations in the distribution’s tail, ξ < 0, then the rate

of convergence becomes worse, not better. This follows from (27) and the fact that f̂(ξ) > 1

for ξ < 0. Furthermore for ξ < 0, λ(ξ, φ) is decreasing in φ, that is the higher is the jump

intensity, the lower is the rate of convergence. We conclude that jump processes, though

very useful for the purpose of capturing salient features of the data, are not helpful in terms

of providing a theory of fast transitions.

5 Models that Generate Fast Transitions

Given the negative results of the preceding section, it is natural to ask: what then explains

the observed fast rise in top income inequality? We argue that fast transitions require

very specific departures from the standard random growth model. We extend the standard

random growth model along two dimensions. First, we allow for heterogeneity in mean

growth rates, in particular a “high growth regime.” Second, we consider deviations from

Gibrat’s law, a feature which we argue arises naturally in “superstar theories”. We discuss

the role of these two additions in turn in Sections 5.2 and 5.3. In Section 5.4, we then

revisit the rise in income inequality and argue that our generalized random growth model

can generate transitions that are as fast as those observed in the data.

5.1 The Augmented Random Growth Model

In its most general form, we consider a random growth model with distinct “growth regimes”

indexed by j = 1, ..., J , deviations from Gibrat’s law captured by a process St, and jumps

denoted by dNjit. In particular, the dynamics of income xit of individual i in regime j are

given by

xit = ebjStyit,

dyit = µjdt+ σjdZit + gjitdNjit + Injection−Death,
(29)

where dNjit is a Poisson process with intensity φj and gjit is a random variable with dis-

tribution fj. As before, we assume that workers retire at rate δ and get replaced by labor
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entrants with x = 0. We assume that a fraction θj of labor force entrants are born in regime

j and workers switch from regime j to regime k at rate φj,k. Different “growth regimes”

differ in the mean growth rate µj and the standard deviation of income changes σj. Guve-

nen (2007) has argued that an income process with heterogeneous income profiles provides

a better fit of the micro data than a model in which all individuals face the same income

profile, and he finds large heterogeneity in the slope of income profiles. The model above

also allows for heterogeneity in the standard deviation of income innovations σj. This has a

similar flavor to the mixture specification advocated by Guvenen et al. (2015). We build on

Luttmer (2011), who studies a related framework applied to firm dynamics and argues that

persistent heterogeneity in mean firm growth rates is needed to account for the relatively

young age of very large firms at a given point in time (a statement about the stationary

distribution rather than transition dynamics as in our paper). Aoki and Nirei (2015) present

a related and more complex economic model with entrepreneurs and workers that are subject

to different income growth rates, and Jones and Kim (2014) examine a model with different

types of entrepreneurs.

Deviations from Gibrat’s law are captured by St, which is an arbitrary stochastic process

satisfying limt→∞ E[St] <∞. To see this, note that (29) can be written as

dxit = µ̃jtdt+ σ̃jtdZit + bjxitdSt + gjitdÑjit + Injection−Death (30)

where µ̃jt = µje
bjSt , σ̃jt = σje

bjSt and dÑjit = dNjite
bjSt . If bjdSt > 0, the growth rate of

income xit is increasing in income, constituting a deviation from Gibrat’s law.31 Our baseline

model analyzed in section 4 is the special case in which J = 1 and dSt = dNjit = 0.

5.2 The Role of Heterogeneity in Mean Growth Rates

First, consider the special case of (29) with multiple distinct “growth regimes”, but without

deviations from Gibrat’s law or jumps dSt = dNit = 0. Here we focus on a simple case with

two regimes, a high-growth regime and a low-growth regime, but our results can be extended

to three or more regimes.

Denote the density of individuals who are currently in the high and low growth states by

pH(x, t) and pL(x, t) and the cross-sectional wage distribution by p(x, t) = pH(x, t)+pL(x, t).

We assume that a fraction θ of individuals start their career in the high-growth regime and

31Also note that Zit is an idiosyncratic stochastic process whereas St is an aggregate or common shock

that hits all individuals simultaneously.
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the remainder in the low-growth regime, that individuals switch from high to low growth

with intensity ψ and that low growth is an absorbing state that is only left upon retirement.

Then, the densities satisfy the following system of Kolmogorov Forward equations

pHt = −µHpHx +
σ2
H

2
pHxx − ψpH − δpH + βHδ0,

pLt = −µLpLx +
σ2
L

2
pLxx + ψpH − δpL + βLδ0,

(31)

with initial conditions pH(x, 0) = pH0 (x), pL(x, 0) = pL0 (x) and where βH = θδ and βL =

(1− θ)δ are the birth rates in the two regimes.32

While we are not aware of an analytic solution method for the system of partial differential

equations (31), this system can be conveniently analyzed by means of Laplace transforms as

in Section 4.2. In particular, p̂H(ξ, t) and p̂L(ξ, t) satisfy

p̂Ht (ξ, t) = −λH(ξ)p̂H(ξ, t) + βH , λH(ξ) := ξµH − ξ2
σ2
H

2
+ ψ + δ, (32)

p̂Lt (ξ, t) = −λL(ξ)p̂L(ξ, t) + ψp̂H(ξ, t) + βL, λL(ξ) := ξµL − ξ2
σ2
L

2
+ δ, (33)

with initial conditions p̂H(ξ, 0) = p̂H0 (ξ), p̂L(ξ, 0) = p̂L0 (ξ). Importantly, for fixed ξ, this is

again simply a system of ordinary (rather than partial) differential equations and it can be

solved analytically. In particular, note that the system is triangular so that one can first

solve the equation for p̂H(ξ, t) and then the one for p̂L(ξ, t).33

Proposition 4 (Speed of convergence with heterogeneity in mean growth rates) Consider

the cross-sectional distribution p(x, t) := pH(x, t) + pL(x, t). The stationary distribution

p∞(x) = pH∞(x)+pL∞(x) has a Pareto tail for large x with tail exponent ζ = min{ζL, ζH} where

ζH is the positive root of 0 = ζ2
σ2
H

2
+ζµH−ψ−δ and ζL is the positive root of 0 = ζ2

σ2
L

2
+ζµL−δ.

Next consider the Laplace transforms of pH(x, t) and p(x, t) := pH(x, t)+pL(x, t). Their time

32Assuming that the fraction of individuals in the high-growth regime is stationary, it equals θδ/(ψ + δ).
33Proposition 4 can easily be extended to the case where the system is not triangular, i.e. if the low

state is not an absorbing state and low types can switch to being high types. This is achieved by writing

the analogue of (32) in matrix form. The speed of convergence is then governed by the eigenvalues of that

matrix. In the triangular case, these eigenvalues are simply −λL(ξ) and −λH(ξ). The triangularity simplifies

the analysis but it is by no means a crucial assumption. Results for the general case are available on request.
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paths are given by

p̂H(ξ, t)− p̂H∞(ξ) = e−λH(ξ)t(p̂H0 (ξ)− p̂H∞(ξ)), (34)

p̂(ξ, t)− p̂∞(ξ) = cH(ξ)e−λH(ξ)t + cL(ξ)e−λL(ξ)t, (35)

λH(ξ) := ξµH − ξ2
σ2
H

2
+ ψ + δ, (36)

λL(ξ) := ξµL − ξ2
σ2
L

2
+ δ, (37)

where p̂H∞(ξ) and p̂∞(ξ) are the Laplace transforms of the stationary distributions and cH(ξ)

and cL(ξ) are constants of integration.34 Finally, the weighted L1-norm of the distribution

of individuals in the high-growth regime satisfies ||pH(x, t)− pH∞(x)||ξ ∼ ke−λH(ξ)t.

The transition dynamics of the income distribution therefore take place on two different

time scales: part of the transition happens at rate λH(ξ) and another part at rate λL(ξ). The

model therefore has the theoretical potential to explain fast short-run dynamics – something

we explore quantitatively in Section 5.4.

A natural assumption is that the rate of switching from the high- to the low-growth

regime ψ is large enough to swamp any differences between the µ’s and σ’s in the two states

and so λH(ξ) > λL(ξ) in (36) and (37). Consider now a change in parameter values that

triggers transition dynamics. In contrast to the baseline random growth model of section 4,

these now take place on two different time scales: part of the transition happens quickly at

rate λH(ξ), but the other part of the transition happens at a much slower pace λL(ξ). In

the short-run, the dynamics governed by λH(ξ) dominate whereas in the long-run the slower

dynamics due to λL(ξ) determine the dynamics of the income distribution. We argue in

the next section that such a model has the potential to explain the observed rise in income

inequality.

34These are given by

p̂H∞(ξ) =
βH
λH(ξ)

, p̂∞(ξ) =
βH
λH(ξ)

+
βL
λL(ξ)

+ ψ
βH

λL(ξ)λH(ξ)

cH(ξ) :=
λH(ξ)− λL(ξ)− ψ
λH(ξ)− λL(ξ)

(p̂H0 (ξ)− p̂H∞(ξ))

cL(ξ) := (p̂L0 (ξ)− p̂L∞(ξ)) +
ψ

λH(ξ)− λL(ξ)
(p̂H0 (ξ)− p̂H∞(ξ)).
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5.3 Superstar Shocks: Deviations from Gibrat’s Law

Next consider the special case of (29) with deviations from Gibrat’s law St 6= 0, but without

jumps dNit = 0. We call the shocks St “aggregate shocks to high incomes” or “superstar

shocks”: the reason is that they affect high incomes more than low incomes and more than

proportionately so. We explain why a model with such “superstar shocks” has the potential

to generate fast transition dynamics like those observed in the data. We then provide an

economic interpretation of such “superstar shocks”.

The model with superstars generates fast transitions Indeed, suppose that the

process for the underlying process yit does not change, but St varies. Given that xit = eStyit,

we have:

ζxt = e−Stζyt

instantaneously. Suppose that the distribution of yit is constant over time (so ζyt is constant).

The power law of x changes immediately when there is a shock to St. Hence, the process is

extremely fast – it features instantaneous transitions in the power law exponent, and if St

has a secular trend the power law exponent inherits this trend.

Proposition 5 (Infinitely fast adjustment in models with aggregate shocks to high incomes,

aka “superstar shocks”) Consider the process (29), reproduced here as: xit = eStyit, where yit

is assumed to have a constant law of motion (and distribution) and St is an aggregate shock

to high incomes. This process has an infinitely fast speed of adjustment: λ =∞. Indeed, we

have ζxt = e−Stζy, where ζxt , ζy are the power law exponent of incomes xit and yit.

Proof. The mechanism is so basic that the proof is very simple: if P (yit > z) = Ke−ζ
yz,

P (xit > x) = P
(
eStyit > x

)
= P

(
yit > e−Stx

)
= Ke−ζ

ye−Stx ⇒ ζxt = e−Stζyt . �

Hence, those processes are promising, as they do generate a fast transition.

Those fast transitions are empirically relevant at high frequencies There is

supportive evidence for the aggregate shocks to high incomes (29) in Parker and Vissing-

Jorgensen (2010). They find that in good (respectively bad) times, the incomes of top

earners increase (respectively decrease), in a manner consistent with (29) : the sensitivity to

the shock at time t is proportional to xit, as in

dxit = xitdSt + µdt+ σdZit.
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Note that the shock xitdSt to log income is multiplicative in log income, as opposed to

additive as in traditional random growth model. This finding appears to have been amplified

and broadly confirmed by Guvenen (2015, p.40).

We conclude that those aggregate shocks to high incomes are an empirically grounded

source of fast transitions. Next, we present an illustrative model than gives them a concrete

theoretical interpretation.

A microfoundation for “superstar shocks” We here provide a microfoundation

for the eSt term in equation (29). Here we adopt the model of Gabaix and Landier (GL,

2008), which is a tractable, calibratable version of the “superstars economics” ideas of Rosen

(1981). There is a continuum of firms of different size and a continuum of managers with

different talent. A CEO of talent T , matched with firm S, produces an improvement in

firm value CTSγ, where C is a constant. We use the term “CEO” but it could correspond

to top lawyers, financiers, etc. Since talented CEOs are more valuable in larger firms, the

nth most talented manager is matched with the nth largest firm in competitive equilibrium,

and earns the following competitive equilibrium pay (really n is a quantile, so that a low n

means a high talent or firm size). We assume a Pareto firm size distribution with exponent

1/α so that a firm of rank n has size: S (n) = An−α. A manager of talent rank n has talent

T (n) = Tmax − B
β
nβ. Hence, the value added of the manager is

(
Tmax − BC

β
nβ
)
Aγn−αγ.

GL (summarized in the appendix) derive that for a CEO of upper quantile n, the market

equilibrium pay is:

w (n) = eatn−χt ,

where n is the rank (quantile) of that CEO’s talent, and we define:

χt = αtγt − βt. (38)

Denoting the log wage by xit = logwit and the log quantile by yit = − log nit, we have

xit = χtyit + at. (39)

Note that χt and at depend on economy-wide forces, while xit, yit are specific to each CEO.

CEO i’s talent yit evolves stochastically as dyit = µtdt+ σtdZit with death rate δt.
35 Hence,

this generates a process exactly like (29) with eSt := χt.

35By construction, the quantile nit = e−yit has a uniform distribution. Therefore yit must have an

exponential distribution with exponent 1 which imposes the restriction µt + 1
2σ

2
t − δt = 0.
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A natural variant is one with two growth regimes corresponding to two groups of indi-

viduals: high types who have the chance of becoming CEOs, and for whom bH = 1, and

low types who never become CEOs and who are, therefore, also not affected by “superstar

shocks,” bL = 0.

A shock to χt can be a shock to αt, βt, γt. We find it simplest to think about a shock

to βt or γt, i.e. to the (perceived) importance of talent in the production function.36 In

the baseline GL calibration, βt ' 2/3 and γt ' 1. When γt is higher or βt is lower, the

marginal impact of talent, CT ′ (n)S (n) = AγBCn1−χt is higher. Increases in χt correspond

to increases in the “span of control” or “scales managed by talent”, somewhat as in Garicano

and Rossi-Hansberg (2006).

5.4 Quantitative Exploration: Fast Transitions in the Augmented

Model

We now use the framework of this section to revisit the rise in income inequality. We

argued in section 4.3 that the standard random growth model fails spectacularly in terms

of explaining the rise in top income inequality in the United States. We now argue that,

in contrast, the model with heterogeneity in mean growth rates presented in the preceding

sections has the potential to explain the observed rise in top income inequality.

We conduct an analogous exercise to that in Section 4.3. The shock we consider in the

present exercise is an increase in the mean growth rate of individuals in the high growth

regime µH (while µL is unchanged). This is motivated in part by casual evidence of very

rapid income growth rates since the 1980s, for instance for Bill Gates, Mark Zuckerberg,

hedge fund managers and the like – their growth is very high for a while, then tails off. This

impression is confirmed by Jones and Kim (2014), who find that there has been a substantial

increase in the average growth rate in the upper tail of the growth rate distribution since

the late 1970s.37 We follow a similar calibration strategy as in Section 4.3. First, note from

36Indeed, 1/αt is the tail exponent of the firm size distribution, so it is closely pinned to αt = 1 (Zipf’s

law).
37Jones and Kim (2014) proxy µH with the median of the upper decile, i.e. the 95th percentile, of the

distribution of income growth rates. Combining evidence from the IRS public use panel of tax returns and

from Guvenen, Ozkan and Song (2014), they show that this measure of µH has increased substantially from

1979-81 to 1988-90, and then again from 1988-90 to 1995-96. Jones and Kim note that this evidence should

be viewed as suggestive due to limited sample sizes in the IRS data and comparability of the IRS and the

Social Security Administration data used by Guvenen, Ozkan and Song (2014). Below we discuss ongoing

work and directions for future work that could improve on these estimates. In the meantime, Jones and Kim
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Proposition 2 that, if µH is sufficiently bigger than µL, the Pareto tail of the stationary

income distribution is determined only by the dynamics in the high regime and given by

ζ = min{ζL, ζH} =
−µH +

√
µ2
H + 2σ2

H(δ + ψ)

σ2
H

, (40)

and the parameters σL and µL do not matter for top inequality in either the initial or terminal

steady state. As before, we set δ = 1/30 and impose that the economy is initially in a Pareto

steady state with ζ1973 = 2.56. We set σH = 0.15, which is a conservative estimate.38 We

do not have precise estimates for ψ, the rate of switching from the high- to the low-growth

regime. For our baseline results, we set ψ = 1/6, corresponding to an expected duration of

the high-growth regime of 6 years, and we report results under alternative parameter values.

Given values for σH , δ and ψ, we calibrate the initial µH so that (40) yields ζ1973 = 2.56. In

the initial steady state, the difference in mean growth rates between high- and low growth

types is µH − µL = 0.06.

Our baseline exercise considers a once-and-for-all increase in µH by 8 percentage points.

This increase in µH is smaller in total size than the increase documented by Jones and

Kim (2014), but also much more abrupt. The resulting gap of µH − µL = 0.14 is broadly

consistent with empirical evidence in Guvenen, Kaplan and Song (2014).39 Figure 6 plots

the corresponding results. The difference to the earlier experiment in Figure 5 is striking.

The model with heterogeneity in mean growth rates can generate transition dynamics that

can replicate the rapid rise in income inequality observed in the United States.

The key parameters that govern the speed of transition are µH and ψ, the growth rate in

the high-growth regime and the probability of leaving it. Since we do not have precise esti-

mates of these two parameters, we have explored a number of alternative parameterizations.

In particular, we have computed results for both higher and lower switching rates ψ = 1/3

and ψ = 1/12. In each case, we use (40) to recalibrate the initial µH so as to match the tail

inequality observed in the data. As expected given our theoretical results, transitions are

provide the best available evidence documenting potential drivers of the increase in top income inequality.
38Larger values of σH lead to even faster transition dynamics. We set σL = 0.1 based on the evidence

discussed in Section 4.3. We view σH = 0.15 as conservative because the growth rates of parts of the

population may be much more volatile (think of startups).
39Guvenen, Kaplan and Song (2014) document differences in average growth rates of different population

groups as large as 0.23 log points per year. See in particular their Figure 7 which presents the age-earnings

profiles of three groups: the top 0.1%, the next 0.9% and the bottom 99% of lifetime earnings. Over a ten

year period (ages 25 to 35), the earnings of the top 0.1% grow by 2.3 log points (0.23 per year), those of the

next 0.9% by 1.4 log points (0.14 per year) and those of the bottom 99% by 0.5 log points (0.05 per year).
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Figure 6: Transition Dynamics in Model with Heterogeneity in Mean Growth Rates

fastest when ψ and µH are high, i.e. when individuals can experience very short-lived, very

high-growth spurts, what one may call “live-fast-die-young dynamics”.40 In their ongoing

work using a very similar model, Jones and Kim (2014) propose such a “live-fast-die-young”

calibration with very low ψ and high µH .41 Second, we have also conducted experiments

in which we feed in a gradual increase in µH rather than a once-and-for-all increase. We

find that in this case a higher switching rate ψ is needed than the one used in our baseline

experiment.42

In summary, the model with heterogeneity in mean growth rates is capable of generating

fast transition dynamics of top inequality for a number of alternative parameterizations that

are broadly consistent with the micro data. The common feature of these parameterizations

is a combination of relatively high growth rates for part of the population (high enough

µH) over relatively short time horizons (high enough ψ). In the absence of better micro

estimates of these critical parameter values, the quantitative explorations in this section

40On the other hand, the speed of convergence becomes close to that in the benchmark model as ψ and

µH become small. Indeed, as ψ → 0 the model collapses to the one-regime model of Section 4.3. This is

because in this case we need µH → µL so as to still match data on the tail exponent ζ (see (40)).
41We have computed transition dynamics using their proposed calibration and confirm that it can generate

fast transitions, as also expected given our theoretical results. Results available upon request.
42A parameter combination that generates time paths quite similar to those in Figure 6 is a gradual

increase over a time period of 20 years (1973 to 1993) of µH by 11%, together with ψ = 1/4. This is still

more conservative than the calibration of Jones and Kim who feature a larger increase of µH and higher ψ.
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should be viewed as suggestive. An advantage of our tractable theoretical approach is that

it pinpoints clearly the important parameters. Better empirical evidence is a clear priority for

future research. For instance, it would be extremely valuable to extend the work of Guvenen,

Kaplan and Song (2014) and Guvenen et al. (2015), who use administrative data from the

Social Security Administration to document the drivers of the increase in top inequality.

Better statistical methods could also help. For example, our model with multiple growth

regimes suggests estimating a version of Hamilton’s (1989) regime-switching model using

labor income panel data.

6 The Dynamics of Wealth Inequality

We now show how our theoretical results can be extended to the simple model of top wealth

inequality in Section 3.2. We then ask whether an increase in r − g, the gap between the

after-tax average rate of return and the growth rate, can explain the increase in top wealth

inequality observed in some datasets as suggested by Piketty (2014).

6.1 Stationary Wealth Inequality

The properties of the stationary wealth distribution are again well understood. Applying

the standard results in Appendix C, one can show that the stationary wealth distribution

has a Pareto tail with tail inequality

η =
1

ζ
=

σ2/2

σ2/2− (r − g − θ)
(41)

provided that r − g − θ − σ2/2 < 0. Intuitively, tail inequality is increasing in the gap

between the after-tax rate of return to wealth and the growth rate r − g. Similarly, tail

inequality is higher the lower the marginal propensity to consume θ and the higher the after-

tax wealth volatility σ are. Given that r = (1− τ)r̃ and σ = (1− τ)σ̃, top wealth inequality

is also decreasing in the capital income tax rate τ . Intuitively, a higher gap between r and

g works as an “amplifier mechanism” for wealth inequality: for a given structure of shocks

(σ), the long-run magnitude of wealth inequality will tend to be magnified if the gap r− g is

higher (Piketty and Zucman, 2014b). However, this leaves unanswered the question whether

increases in top wealth inequality triggered by an increase in r − g will come about quickly

or take many hundreds of years to materialize.
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6.2 Dynamics of Wealth Inequality: Theoretical Results

We now show how our theoretical results can be extended to the case of wealth dynamics.

Individual wealth satisfies (2) or, equivalently, (3) in combination with an additive income

term ydt (friction 4). From Ito’s formula, the logarithm of wealth xit = logwit satisfies

dxit = (ye−xit + µ)dt+ σdZit (42)

where the reader should recall that y denotes labor income. The addition of this labor income

term y introduces some difficulties for extending Proposition 1. However, note that for large

wealth levels this term becomes negligible, which makes it possible to derive a tight upper

bound on the speed of convergence of the cross-sectional distribution.

Proposition 6 (Speed of convergence for wealth dynamics (friction 4)) Consider the wealth

process (42). Under Assumption 1, and if µ < 0, the cross-sectional distribution p(x, t)

converges to its stationary distribution exponentially in the total variation norm, that is

||p(x, t)− p∞(x)|| ∼ ke−λt for constants k and λ. The rate of convergence satisfies

λ ≤ 1

2

µ2

σ2
+ δ

where 1{·} is the indicator function, and with equality for |µ| below a threshold |µ∗|.

We conjecture that with µ > 0, λ = δ, as in Proposition 1.

In the case of friction 4, it is not possible to obtain an exact formula for the speed of

convergence. However, the speed of convergence is bounded above and, in particular, is

equal to or less than the speed with a reflecting barrier from Proposition 1. For the case of

the process (42), it is also no longer possible to characterize the corresponding Kolmogorov

Forward equation by using Laplace transforms (due to the presence of the term ye−xt).

Numerical experiments nevertheless confirm our results from section 4.2 that the speed of

convergence in the tail can be substantially lower than the average speed of convergence

characterized in Proposition 6.

6.3 Wealth Inequality and Capital Taxes

In this section, we ask whether an increase in r− g, the gap between the (average) after-tax

rate of return on wealth and the economy’s growth rate, can explain the increase in wealth

inequality observed in some data sets, as suggested by Piketty (2014). To do so, we first
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construct a measure of the time series of r − g. This requires three data inputs: on the

average pre-tax rate of return, on capital income taxes, and on a measure of the economy’s

growth rate. We use data on the average before-tax rate of return from Piketty and Zucman

(2014a), the series of top marginal capital income tax rates from Auerbach and Hassett

(2015) and data on the growth rate of per capita GDP of the United States from the Penn

World Tables. Panel (a) of Figure 7 plots our time series for r−g, displaying a strong upward

trend starting in the late 1970s, which coincides with the time when top wealth inequality

started to increase (Figure 1).43 The Figure therefore suggests that, a priori, the theory that

variations in r − g are a potential candidate for explaining increasing wealth inequality.
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Figure 7: Dynamics of Wealth Inequality in the Baseline Model

We now ask whether the simple model of wealth accumulation from Section 3 has the

potential to explain the different data series for wealth inequality in Figure 1. To this end,

recall equation (2) and note that the dynamics of this parsimonious model are described by

two parameter combinations only, r− g − θ, where θ is the marginal propensity to consume

out of wealth, and the cross-sectional standard deviation of the return to capital σ. Our

exercise proceeds in three steps. First, we obtain an estimate for σ. We use σ = 0.3, which

is on the upper end of values estimated or used in the existing literature.44 Second, given σ

43We have tried a number of alternative exercises with different data series for the return on capital and

taxes, e.g. we set the pre-tax r equal to the yields of 10-year government bonds as in Auerbach and Hassett

(2015) and Piketty and Zucman (2014b). Results are very similar and available upon request.
44Overall, good estimates of σ are quite hard to come by and relatively dispersed. Campbell (2001) provide

the only estimates for an exactly analogous parameter using Swedish wealth tax statistics on asset returns.
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and our data for r − g in 1970, we calibrate the marginal propensity to consume θ so as to

match the amount of tail inequality observed in the data in 1970, η = 0.6. Third, we feed

the time path for r − g from panel (a) of Figure 7 into the calibrated model.

Before comparing the model’s prediction to the evolution of top wealth inequality in the

data, we make use of our analytic formulas from section 4 to calculate measures of the speed

of convergence. To this end, revisit the average speed of convergence in Proposition 1, and

in particular the formula in terms of inequality (13). To operationalize this formula, we use

the tail exponent observed in 2010 in the SCF of η = 0.65 together with our other parameter

values.45 With these numbers in hand we obtain a half life of

t1/2 ≥
log(2)× 8× η2

σ2
=

log(2)× 8× (0.65)2

0.32
≈ 26 years.

That is, on average, the distribution takes 26 years to cover half the distance to the new

steady state. Panel (b) of Figure 7 displays the results of our experiment using the parameter

values just discussed. The main takeaway is that the baseline random growth model cannot

even explain the gradual rise in top wealth inequality found in the SCF. It fails even more

obviously in explaining the rise in top wealth inequality found by Saez and Zucman (2014).

6.4 Fast Dynamics of Wealth Inequality

What, then, explains the dynamics of wealth inequality observed in the data? The lessons

of Section 5 still apply. In particular, processes of the form (29) that feature heterogeneity

in mean growth rates or deviations from Gibrat’s law have the potential to deliver fast

transitions. We view both as potentially relevant for the case of wealth dynamics. First,

average growth rates may differ across individuals if some individuals have higher average

returns, e.g. because they can afford better investment advice, and the rates of return of

“superstar investors” relative to those of others may have increased over time, e.g. because

their effective capital income taxes have decreased. Second, there may be deviations from

Gibrat’s law, for example, because the saving rates of the super wealthy relative to those of

the wealthy may change over time (Saez and Zucman, 2014).46

They estimate an average σ of 0.18. Moskowitz and Vissing-Jorgensen (2002) argue for σ of 0.3.
45Ideally one would use an estimate of tail inequality in the new stationary distribution η. Since λ is

decreasing in inequality, we use the tail exponent observed in 2010 in the SCF of η = 0.65, which provides

an upper bound on the speed of convergence λ. Since inequality in the new stationary distribution may be

even higher, true convergence may be even slower.
46Finally, it is natural to ask whether the extension to multiple distinct growth regimes of Section 5.2 can

generate fast transition dynamics in response to the increase in r−g from Section 6.3. Numerical experiments
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7 Conclusion

This paper makes two contributions. First, it finds that the standard random growth models

cannot explain rapid changes in tail inequality, for robust analytical reasons. This required

developing new tools to analyze transition dynamics, as most previous literature could an-

alyze only separate steady states, without being able to assess analytically the speed of

transition between them and without identifying the above-mentioned important defect of

the standard model. Second, it suggests two parsimonious deviations from the basic model

that can explain such fast changes: (i) heterogeneity in mean growth rates and (ii) “superstar

shocks” that disproportionately affect top earners (in the sense that the shock to log income

is multiplicative in log income, as opposited to additive as in traditional model). We view

them as promising, because they have some support in the data (as we argued above, see

especially Jones and Kim (2014), Parker and Vissing-Jorgensen (2010) and Guvenen (2015)).

We hope that future research explores the importance of heterogeneity in mean growth rates

in more detail. The forces we have analyzed in this paper may serve to guide future empirical

and theoretical work on the determinants of fast changes in inequality.

Appendix

A Proof of Proposition 1

Proposition 1 is concerned with two different cases. The first case involves models with death

and reinjection where the dynamics without those terms are not ergodic. The second one

concerns ergodic models (with or without insertion and killing). The strategy of the proof

in both cases is different and we therefore present the two cases separately. In the first case

(“non-ergodic case”), the rate of convergence is obtained by directly analyzing the dynamics

of the L1 norm (6) of the cross-sectional distribution. In the second case (“ergodic case”),

the convergence is to a real invariant measure and the rate of convergence is obtained by a

spectral analysis (in particular it is given by the so-called “spectral gap”).

A.1 Proof of Proposition 1: Case without a reflecting barrier

We here study the case without the reflecting barrier, starting with a generally useful lemma.

suggest that the answer is no.
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Lemma 3 Suppose that a function q (x, t) solves qt = Aq with Aq = a (x, t) q + b(x, t)qx +

c(x, t)qxx with c(x, t) ≥ 0 for all x. Then |q(x, t)| is a “subsolution” of the same equation,

that is

|q|t ≤ A |q| . (43)

Proof of Lemma 3: The key is that |q| is a convex function of q. Assume ϕ is a C2 convex

function and set z = ϕ(q). Then zt = ϕ′(q)qt, zx = ϕ′(q)qx, zxx = ϕ′′(q)q2x + ϕ′(q)qxx, so:

zt −Az = ϕ′(q) [qt − bqx − cqxx]︸ ︷︷ ︸
=aq

−az − c ϕ′′(q)︸ ︷︷ ︸
≥0

q2x︸︷︷︸
≥0

≤ a (ϕ′ (q) q − ϕ (q)) .

Take ϕ (q) = ϕ(ε)(q) =
√
ε2 + q2 for some ε > 0 and z(ε) = ϕ(ε)(q). Then ϕ′(q)q − ϕ (q) =

q2√
ε2+q2

−
√
ε2 + q2 = −ε2√

ε2+q2
∈ [−ε, 0], so z

(ε)
t −Az(ε) ≤ |a (x, t)| ε. As ε→ 0, z(ε) → |q|, so

this inequality becomes: |q|t −A |q| ≤ 0. �

We next apply Lemma 3 to q (x, t) := p (x, t) − p∞ (x) to prove a useful inequality. We

note that since pt = A∗p and 0 = A∗p∞, we have qt = A∗q = −µqx + σ2

2
qxx − δq.

Lemma 4 The decay rate of the L1 norm m (t) := ‖q (·, t)‖ is at least δ: λ ≥ δ.

Proof of Lemma 4: We have m (t) := ‖q (·, t)‖ =
∫
|q (x, t)| dx and hence

m′ (t) =

∫
|q (x, t)|t dx ≤

∫ (
−δ |q| − µ |q|x +

σ2

2
|q|xx

)
dx = −δ

∫
|q| dx

where the inequality follows from Lemma 3 and the last equality from the boundary con-

ditions corresponding to p. Hence m′ (t) ≤ −δ
∫
|q| dx = −δm (t) and therefore m (t) ≤

e−δtm (0) by Grönwall’s lemma. �

Lemma 5 The decay rate of the L1 norm m (t) := ‖q (·, t)‖ is at most δ: λ ≤ δ.

Proof of Lemma 5: Define r(x, t) by q(x, t) = e−δtr(x, t). Therefore
∫ +∞
−∞ |q(x, t)|dx =

e−δt
∫ +∞
−∞ |r(x, t)|dx, i.e. r(x, t) captures the extra rate of decay additional to δ (if any). The

remainder of the proof shows that this extra rate is zero. To see this note that r satisfies

rt = −µrx +
σ2

2
rxx (44)

Note further that ∫ +∞

−∞
|r(x, t)|dx =

∫ +∞

−∞
|r̃(x, t)|dx (45)
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where r̃(x, t) = r(x + µt, t). Note that this works only because the limits of integration are

±∞ and hence one can simply “translate everything” by µt, i.e. it does not work in the case

with a reflecting barrier. From (44), and using that r̃t = rt +µrx, r̃ solves the standard heat

equation

r̃t =
σ2

2
r̃xx. (46)

It is well-appreciated in the theory of partial differential equations that the solution to the

heat equation does not decay exponentially. For completeness, we provide a proof of this

fact (the difficulty being only that r̃ (x, t) could change sign). Suppose by contradiction that∫ ∞
−∞
|r̃ (x, t)| dx ≤ Ce−γt

for some constant C, and some γ > 0. Then, for all β ∈ (0, γ), we have
∫∞
−∞ e

βt |r̃ (x, t)| dx ≤
Ce−(γ−β)t, so that∫ ∞

t=0

∫ ∞
x=−∞

eβt |r̃ (x, t)| dxdt ≤
∫ ∞
t=0

Ce−(γ−β)tdt =
C

γ − β
<∞

i.e. eβtr̃ (x, t) ∈ L1 (R+ × R). Hence R (x) :=
∫∞
0
eβtr̃ (x, t) dt is defined and R (·) ∈ L1.

Using the heat equation (46) (normalizing without loss of generality σ2 = 2), we have

R′′ (x) =

∫ ∞
0

eβtr̃xx (x, t) dt =

∫ ∞
0

eβtr̃t (x, t) dt =
[
eβtr̃ (x, t)

]∞
0
−
∫ ∞
0

βeβtr̃ (x, t) dt

= −r̃ (0, x)− βR (x) = −r̃0 (x)− βR (x)

i.e. R′′ + βR = −r̃0. Hence, taking the Fourier transform (R̂ (ξ) :=
∫
e−iξxR (x) dx),

R̂ (ξ)
(
− |ξ|2 + β

)
= −̂̃r0 (ξ) . (47)

This implies that ̂̃r0 (ξ) = 0 for ξ = β1/2 (we just plug the value ξ = β1/2 in (47)).

But the argument worked for any β ∈ (0, γ). Hence, ̂̃r0 (ξ) = 0 for any ξ ∈
(
0, γ1/2

)
.

We assume that |r̃0 (x)| ≤ Ae−kx for a constant A, k > 0 (see also Assumption 1), which

guarantees that ̂̃r0 is analytic. Given that ̂̃r0 is analytic and equal to 0 on a segment, we

have ̂̃r0 (ξ) = 0 for all ξ, and r̃0 = 0. We have reached a contradiction. �

Gathering the arguments. Putting together Lemmas 4 and 5, we obtain that λ = δ.

A.2 Proof of Proposition 1: Case with a reflecting barrier

We next study the “ergodic case”: there is a reflecting barrier and additionally µ < 0. Then

the process (4) is ergodic even with δ = 0. In this case, the cross-sectional distribution
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satisfies (9) with boundary condition (8). The key insight is that the speed of convergence

of p is governed by the second eigenvalue of the operator A∗, and the key step is to obtain

an analytic formula for this second eigenvalue given by |λ2| = 1
2
µ2

σ2 + δ. Before proceeding

with the proof, we review some mathematical concepts that will be useful.

A.2.1 Mathematical Preliminaries

The following definitions are useful. First, the inner product of two continuous functions

u and v is < u, v >=
∫∞
−∞ u(x)v(x)dx. Second, for an operator A, the adjoint of A is

the operator A∗ satisfying < Au, p >=< u,A∗p >. Third, an operator B is self-adjoint if

B∗ = B.47 The following theorem is standard.

Theorem A.1: All eigenvalues of a self-adjoint operator are real.

Finally, the infinitesimal generator of a Brownian motion reflected at x = 0 and with

death at Poisson rate δ is the operator A defined by

Au = µ
∂

∂x
u+

σ2

2

∂2

∂x2
u− δu (48)

∂u(0, t)

∂x
= 0. (49)

Lemma 6 The Kolmogorov Forward operator A∗ in (9) with boundary condition (8) is the

adjoint of the infinitesimal generator A in (48) with boundary condition (49).

Proof of Lemma 6: Using Definition 2, we have

< Au, p > =

∫ ∞
0

(
σ2

2

∂2u

∂x2
+ µ

∂u

∂x
− δu

)
pdx =

σ2

2

∫ ∞
0

∂2u

∂x2
pdx+ µ

∫ ∞
0

∂u

∂x
pdx− δ

∫ ∞
0

updx

=
σ2

2

∂u

∂x
p
∣∣∣∞
0
− σ2

2
u
∂p

∂x

∣∣∣∞
0

+ µup
∣∣∣∞
0

+

∫ ∞
0

u

(
σ2

2

∂2p

∂x2
− µ∂p

∂x

)
dx− δ

∫ ∞
0

updx

=

∫ ∞
0

u

(
σ2

2

∂2p

∂x2
− µ∂p

∂x
− δp

)
dx =< u,A∗p >

where the fourth equality follows from the boundary conditions (8) and (49).

A.2.2 Main Proof

With these preliminaries in hand, we proceed with the proof of the Proposition. We present

here only the proof for the case δ = 0 (friction 2). The extension to the case δ > 0 is

47Note that the adjoint is the infinite-dimensional analogue of a matrix transpose.
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straightforward. The goal is to analyze the eigenvalues of the infinitesimal generator A or

equivalently its adjoint A∗. The difficulty is that A is not self-adjoint, A∗ 6= A, and therefore

its eigenvalues could, in principle, be anywhere in the complex plane. We therefore construct

a self-adjoint transformation B of A as follows.

Lemma 7 Consider u satisfying ut = Au and the corresponding stationary distribution,

p∞ = e(2µ/σ
2)x. Then v = up

1/2
∞ = ue(µ/σ

2)x satisfies

vt = Bv, B =
σ2

2

∂2

∂x2
− 1

2

µ2

σ2
(50)

with boundary condition ∂v(0,t)
∂x

= µ
σ2v(0, t). Furthermore, B is self-adjoint.

Proof: (50) follows from differentiating v = ue(µ/σ
2)x. To see that B is self-adjoint, inte-

grate by parts as in Lemma 6 to conclude that for any u, p, < Bu, p >=< u,Bp >.

Lemma 8 The first eigenvalue of B is λ1 = 0 and the second eigenvalue is λ2 = −1
2
µ2

σ2 . All

remaining eigenvalues satisfy |λ| > |λ2|. Hence the spectral gap of B equals |λ2| = 1
2
µ2

σ2 .

Proof of Lemma 8 Consider the eigenvalue problem Bϕ = λϕ or equivalently

σ2

2
ϕ′′(x)− 1

2

µ2

σ2
ϕ(x) = λϕ(x), (51)

ϕ′(0) =
µ

σ2
ϕ(0). (52)

We are looking for non-positive eigenvalues λ and the question is: for what values of λ ≤ 0

does (51) have a solution ϕ(x) that satisfies the boundary condition (52) and is in the domain

of B. The domain of B here is the set of C∞ functions φ : [0,∞) → C such that φ and all

its derivatives have at most polynomial growth: for all integers n ≥ 0, there is a Kn and a

kn > 0 such that
∣∣φ(n) (x)

∣∣ ≤ Kn

(
1 + xkn

)
for all x ≥ 0.

To answer this question, note that for a given λ ≤ 0, the general solution to (51) is

ϕ(x) = c1e
ax + c2e

−ax where a satisfies

σ2

2
a2 =

1

2

µ2

σ2
+ λ. (53)

Consider four different cases:

1. λ = 0. In this case the solution to (53) is a = µ
σ2 , i.e. ϕ(x) = e

µ

σ2
x which satisfies (52)

and stays bounded as x→∞ (since µ < 0). Hence λ = 0 is an eigenvalue of B.
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2. −1
2
µ2

σ2 < λ < 0. In this case, a solving (53) is real and positive. We therefore need

c1 = 0 so that ϕ stays bounded as x → ∞. But then (52) becomes −a = µ
σ2 which is

a contradiction. Hence B has no eigenvalues in the interval
(
−1

2
µ2

σ2 , 0
)

.

3. λ = −1
2
µ2

σ2 . In this case, (51) becomes ϕ′′(x) = 0 and (52) implies ϕ(x) = x+ σ2

µ
which

has polynomial growth. Hence λ = −1
2
µ2

σ2 is an eigenvalue of B.

4. λ < −1
2
µ2

σ2 . In this case, a solving (53) is a purely imaginary number. We have

eix = cosx + i sinx, so ϕ(x) = c1e
ax + c2e

−ax oscillates but stays bounded as x→∞.

We can therefore choose c1, c2 6= 0 to satisfy (52). Hence any λ < −1
2
µ2

σ2 is also an

eigenvalue of B.

Summarizing, B has an isolated eigenvalue λ1 = 0, the second highest eigenvalue (in

absolute value) is λ2 = −1
2
µ2

σ2 , and all remaining eigenvalues satisfy |λ| > |λ2|.�
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