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Abstract

We study the timing-of-extraction problem facing a decentralized mine owner when
extraction entails environmental damage. As expected, when the environmental dam-
age from mining is known, the socially optimal timing will depend on the magnitude
of the damage relative to these costs in the rest of the world. But when environmen-
tal damage is uncertain, and these costs are revealed over time, a quasi-option value
arises. We show that even if expected environmental costs are identical to those in
the rest of the world, any uncertainty over these costs will cause the social planner
to optimally delay mining until better information arrives. We show conditions under
which it is optimal to postpone the mining decision indefinitely, and conditions when
it is optimal to postpone only for a finite duration. The analysis leverages a crucial
observation that distinguishes the non-renewable resource problem from the traditional
quasi-option value framework. In the traditional framework, the presence of an irre-
versible investment and uncertainty can help nudge the decision maker to preserve
an option, but it by no means implies the decision maker should always preserve the
option. In contrast, for a non-renewable resource model, the arbitrage condition un-
derpinning the Hotelling rule suggests that in the absence of uncertainty, the marginal
mine owner is completely indifferent between mining immediately and at any point
in the future. Thus, for our problem, any uncertainty will convince her to defer the
mining decision.

JEL Classifications: Q32, Q38, Q58, Q52, Q31
Key words: Hotelling’s rule, option value, quasi-option value, mining, environmental
externalities

1 Introduction
A seminal result in environmental economics from the last half century is the identification of
quasi-option value as a potentially important driver to perserve natural environments (Arrow
and Fisher 1974; Henry 1974). The term ‘quasi-option value’ was used by Arrow and Fisher
∗We thank Dan Kaffine, Steve Salant, and Marc Conte for helpful comments on previous versions of this
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(1974) to distinguish it from ‘option value,’ introduced by Weisbrod (1964) to capture the
effect of uncertain demand for natural environments (an apparently closely related concept).
The quasi-option value concept arose in part out of a proposal to dam the Snake River
in Idaho, irreversibly destroying many aspects of the natural environment. Cost-benefit
analysis, even taking into account uncertainty, suggested damming the river yielded positive
expected net benefits. Yet the fact that once dammed, this wild and scenic river would be
lost for centuries seemed to make no difference to the analysis. There seemed to be a cost
associated with taking irreversible actions that was missing.

This paper concerns exhaustible resources and quasi-option value, an application that
has received scant attention (one exception is Hoel (1978)). What makes the case of an ex-
haustible resource interesting and different is that the resource in-situ is expected to increase
in value over time, according to the Hotelling rule; this is not generally true for canonical
applications such as environmental values threatened by a dam or other development. Al-
though the Hotelling rule has many variants, it is fundamentally an intertemporal arbitrage
condition which, at the market level, implies indifference between development now or in
the future for the marginal mine. This intertemporal indifference suggests that even a small
value for the quasi-option value may be enough to tip the optimal development decision of a
marginal mine towards delay. The interaction between this principle and quasi-option value
can generate fundamentally different results on the development of an exhaustible resource
with uncertain, but ultimately knowable, benefits of preservation.

As with many theoretical inquiries in economics, our problem is motivated by a real-world
policy dilemma – the potential development of the Pebble Gold Mine in Alaska.1 Although
we do not take a position on that development, this paper does concern decisions by public
officials about whether to proceed with immediate development of an exhaustible resource or
to postpone development until uncertain environmental costs are better known - the situation
Alaskan officials have found themselves in for the case of the Pebble Mine. Other equally-
compelling contemporary examples include whether to proceed with hydraulic fracturing
(“fracking”) for natural gas, or whether to engage in deep seabed mining for copper, gold, or
rare earth metals. Each of these examples concern real-world policy questions that pit the
benefits of extraction against the uncertain environmental costs of mining. One contribution
of this paper is to show that a simple cost benefit analysis, which compares expected benefits
to expected costs, will often get the wrong answer. After all, deciding to postpone mining
until better information becomes available forfeits none of the resource under ground.

For the remainder of this paper, we remain agnostic about the particular application. We
consider the case of a generic mine owner making a decision on when to develop and exhaust

1A copper, gold and molybdenum mine has been proposed for the Bristol Bay region of Southwest Alaska
- the “Pebble Project” (Parker et al. 2008; Wardropp Engineering 2011). The deposit is one of the largest
and richest of its kind in the world. The area is also home to an important salmon fishery and significant
ecological resource. Although there is significant uncertainty regarding the risk to the fishery and ecosystems
from the mine, the risk was considered significant enough for the US EPA to invoke the Clean Water Act
to significantly restrict the development of the mine (Environmental Protection Agency 2014). As of the
writing of this article, the project now seems to be in serious if not fatal trouble. Nevertheless, the project
is still an excellent example of a mine that appears to be privately profitable but with potentially significant
and highly uncertain social (environmental) costs. See also Narula (2014) for a perspective on the politics
of the project.
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a mine in a context where environmental costs are uncertain,2 though the uncertainty can be
resolved at some point in the future. We contrast the case of a naïve mine owner, who ignores
the fact that information will be obtained in the future, with a sophisticated mine owner
who utilizes all available information. Since environmental costs are usually external costs,
there are two equivalent ways of viewing this problem. One is that the environmental costs
have been internalized by the mine owner and thus she bases her decisions on both private
and external costs. Alternatively, the decision maker could be viewed as a social planner
making a decision about when to permit a mine to open. Mathematically and economically,
these conceptual approaches are identical. If all of the uncertainty is with regard to external
environmental costs, then a “naïve decision” would correspond to the efficient private deci-
sion, excluding social costs. The “sophisticated decision” would correspond to the socially
efficient decision, including uncertain external costs. This maps well to the Pebble Mine
example that motivated this work.

Our analysis relies fundamentally on the concept of quasi-option value which has its roots
in capital theory with irreversible investment (Arrow 1968; Arrow and Kurz 1970) – if there
is uncertainty about the value of the natural environment and time will help reduce that
uncertainty, then there is a value associated with postponing irreversible development, a
value that should be reflected in decision-making about whether to develop immediately or
not. Over the years there has been some confusion in the literature about the distinction
between option value and quasi-option value. Grappling with the theoretical distinction
was muddied further by the fact that financial economics has yet another concept of option
value, developed for application to natural resource economics by Dixit and Pindyck (1994).
Fortunately, a number of authors, particularly Hanemann (1989), Mensink and Requate
(2005), and Traeger (2014), have provided unifying syntheses of and clarity among these three
distinct concepts. Furthermore, terminology appears to have evolved to distinguish between
the ‘Arrow-Fisher-Henry’ quasi-option value and the ‘Dixit-Pindyck’ option value. For clarity
in this paper, we will use the term ‘Arrow-Fisher-Henry quasi-option value’ interchangeably
with ‘quasi-option value.’

Uncertainty is of fundamental importance to our results. But uncertainty alone is insuffi-
cient; there also must be learning about the uncertainty – information must be acquired. As
clearly pointed out by Hanemann (1989), quasi-option value is the value of the information
ultimately received, conditional on postponing irreversible development. Thus quasi-option
value is related to the value of information, but does not require risk aversion.3

2While we have framed the problem as a decision maker who is uncertain about environmental cost, the
story applies equally to any uncertainty over extraction costs that will be revealed over time.

3Traeger (2014) provides a clear synthesis of option and quasi-option value. He sets up a simple two period
model with learning and distinguishes three types of decision-makers regarding irreversible development: (1)
a sophisticated decision-maker (s) who anticipates learning and may postpone part or all of her decision until
after information is acquired; (2) a less sophisticated decision-maker (p) who makes all decisions ex ante,
before uncertainty is resolved, but allows the possibility to develop in either period; and (3) a pure naïve
decision maker (n) who makes an all or nothing decision in the first period based on expectations (depending
on how the problem is set up, n and p may be equivalent). The difference between the value of development
for s vs. p is the quasi-option value; the difference for p vs n is the simple option value (unrelated to learning);
and the difference for s vs. n is the full value of sophistication (which may be greater than the quasi-option
value, depending on whether the simple option value is non-zero, which depends on the nature of payoffs
and uncertainty).
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In the next section we develop a simple model of the timing of extraction of an exhaustible
resource with uncertain costs where uncertainty can be resolved over time. We assume
external costs have been internalized and contrast naïve decision-making (where we assume
that no information will be acquired at a later date) with sophisticated (i.e. socially optimal)
decision-making, which takes into account the full structure of the problem. In Section 3 we
introduce a mechanism (a tax on extraction) that induces a naïve decision-maker to behave
as a sophisticated decision-maker. We discuss alternative market specifications in Section 4
and conclude in Section 5.

2 Model of Social Decisions
The problem we consider is that of a single mine owned by a small producer, denoted with
subscript A, operating as a price-taker within a global market for the non-renewable resource
produced by the mine. To keep things simple, assume producer A owns a single unit of the
resource and her problem is to determine when to deplete her mine (extraction/depletion
occurs all at once when it does occur). Producer A faces extraction cost cA, which includes
all external costs. Thus any environmental costs are included in costs faced by the producer
(though these costs may be uncertain). The world price at time t is P (t), the interest rate is
r, the current period is t = 0, and extraction of a unit of the resource in the rest of the world
entails cost cw (this is the cost the market sees, which may be the private cost of extraction
or a social cost with internalized external costs). Assuming a competitive global market with
fixed reserves, the price path follows Hotelling’s rule over time:

P (t) = ertP (0)− cw(ert − 1) (1)

If cw = 0, then the global price of the resource rises at the rate of interest, r. But if cw > 0,
then rent rises at the rate of interest and thus the global price of the resource rises more
slowly than the rate of interest.

Equation 1 together with total global reserves R and global demand (assumed to have
a choke price p̄ > cw) will determine the initial price, P (0), the price path, P (t), and the
exhaustion date T , all of which are exogenous to owner A.

2.1 Known cost, cA
We begin with the simplest case in which A’s cost, cA, is known and ask: When will owner
A extract her resource? Since the price path P (t) is exogenous to owner A, she can take it
as given. If she decides to mine at date s, her present value profit is:

πA(s) = e−rs [P (s)− cA] = P (0)− cw + e−rs(cw − cA) (2)
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This function is increasing in s if cA > cw and decreasing in s if cA < cw. So the optimal
mining-time for owner A, t∗A, is given by:

t∗A =



0 if cA < cw

any t ∈ [0, T ] if cA = cw

T if cw < cA ≤ p̄)
Never if cA > p̄

(3)

When A’s cost is known, the intuition behind her timing decision is as follows: When the
cost in region A is small relative to the rest of the world, it pays to extract immediately
because the rent in region A is rising slower than the rate of interest. When the cost in region
A is large but less than the choke price, the opposite holds: although extraction would be
optimal, rent is rising faster than the rate of interest so it is optimal to defer extraction
until the last moment, which is T . And when the cost is sufficiently large, so that even the
highest price possible (p̄) would not justify the cost, the resource should be left in the ground
indefinitely. We next analyze how uncertainty over A’s cost affects her timing decisions.

2.2 Uncertain cost, cA
Suppose instead that cA is uncertain and its probability distribution is given by f(cA).
Denote the expected value of cA by c̄A ≡ E[cA] =

∫∞
−∞ cAf(cA)dcA (the support of f could

be finite or infinite). Following the quasi option value literature, we assume information
revealing the true value of cA will become available at some point in the future. We consider
two types of decision makers: A naïve decision maker makes her timing decision ignoring
the fact that information will be acquired in the future, and a sophisticated decision maker
takes into account the knowledge that new information will arrive in the future. Another
interpretation is that the naïve owner ignores environmental externalities (and so, even
though new information on environmental costs will arrive, she will not make use of it) and
a sophisticated owner fully accounts for all information regarding environmental externalities.
We calculate the optimal time to mine (and associated expected payoff) for a naïve and a
sophisticated owner A.

When owner A is naïve she ignores new information so the distribution over A will remain
f(cA) forever.4 In this case, owner A’s expected payoff from a decision to mine at date s is
given by:

E[π(s)] =
∫ ∞
−∞

(
P (0)− cw + (cw − cA)e−rs

)
f(cA)dcA (4)

= P (0)− cw + e−rs(cw − c̄A) (5)

Equation 5 bears a striking resemblance to the deterministic payoff in Equation 2. In this
case, uncertainty plays only a trivial role - the optimal mining decision depends on the
expected value of cA, but not on any other features of the distribution of cA. In this case,

4Equivalently, we could assume that owner A learns the true value of A only after mining has occurred.
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the optimal mining-time for owner A is given by:

t∗A =



0 if c̄A < cw

any t ∈ [0, T ] if c̄A = cw

T if cw < c̄A ≤ p̄)
Never if c̄A > p̄

(6)

So the optimal timing decision under uncertainty (but without learning) is identical to the
optimal timing decision under certainty. One simply replaces cA (in the certainty case)
with its expectation c̄A (in the uncertainty case). Indeed, this seems to be how many real-
world policy makers think about mining decisions on public lands: Do the expected benefits
outweigh the expected costs?

But the naïve approach above is incomplete because such an owner ignores potentially
useful information. We now add learning to the optimal mining timing under uncertainty.
While many forms of learning are possible, we adopt a simple version where owner A learns
her true cost parameter either upon mining or at some future date τ < T , whichever occurs
first. That she would learn her costs upon mining is not too far-fetched. For example, if
the uncertain component of costs are the environmental costs, then those costs would be
revealed after mining has taken place.5 If she chooses to defer mining until after date τ , we
assume that her costs will be revealed, with certainty, at date τ . This is meant as a heuristic
that captures the idea that over time, exogenous information may be revealed that would
help owner A identify her true costs. Again, following the environmental example, scientific
information may accrue over time that narrows owner A’s uncertainty over the true external
cost.

The prospect of learning the true cost cA prior to mining is an enticing one. If deferring
the mining decision is not too costly, and provided that A might learn something useful (i.e.
something that might change her mine-time), then she may wish to defer, at least until date
τ . Whether this is the case depends on an interplay among (1) the expected cost, c̄A, (2)
others’ costs, cw, (3) the date of information revelation τ , and (4) the shape of distribution
f(cA). In this section we solve for this relationship and highlight its key features that affect
the optimal timing decision. The optimal timing decision turns out to hinge on how A’s
expected cost compares to the actual cost of others (c̄A ≶ cw) and the choke price. We
examine each case in turn.

2.2.1 “Typical” expected cost: c̄A = cw

We begin with the most natural starting point in which A’s expected cost is equal to others’
costs, so c̄A = cw. Inspecting the result in Equation 6, it is tempting to think that if A’s
cost is expected to be the same as everyone else’s costs, then A would be indifferent about
when to mine. This initial logic is incorrect, which leads to our main result:

Proposition 1. For uncertain cost, cA, if c̄A = cw, then it is always optimal to postpone
mining until at least date τ .

5For example, tailings from the Pebble Mine either do, or do not, compromise salmon populations and
fracking either does, or does not, pollute drinking water.
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Proof. Formal proofs reside in the Appendix.

While the formal proof requires detailed analysis, the intuition behind this result is
straightforward. The basic idea is to compare the expected payoff from mining prior to τ
(which we call V1) with the expected payoff from postponing until at least date τ (which
we call V2). If we commit to mining prior to τ , we obtain the expected payoff of the naïve
mine owner (because no new information becomes available prior to τ). But the naïve mine
owner obtains the same expected payoff regardless of when she mines (see Equation 6). So
V1 is identical to the expected payoff obtained when the mine owner commits to mining at
date τ . And V2 is the expected payoff from waiting until date τ and then deciding when
(and whether) to mine. Naturally, when viewed this way, it is obviously better to maintain
flexibility; i.e. to delay mining until at least date τ .

The flexibility is valuable for two separate reasons. First, if cA turns out to be large, but
not too large (this is revealed at date τ), then it will be optimal to mine at T > τ , in which
case V2 > V1. Second, if cA turns out to be very large, then it will be optimal to never mine,
in which case V2 > V1. The third possibility is that it is revealed, at date τ , that costs are
low (in which case it would have been optimal to mine at date 0). But ex ante, committing
to mine at date 0 has a payoff identical to committing to mine at date τ , so the two payoffs
are equal in that case. Taken together, when c̄A = cw it is always optimal to postpone the
mining decision until at least date τ . This simple, yet dramatic result seems to suggest that
when A’s expected cost is “typical,” uncertainty over cost will always persuade her to delay
the mining decision.

2.2.2 “High” expected cost: c̄A > cw

When expected cost is higher than cw, the result is strengthened further. As expected cost is
raised, there is an incentive to push those costs farther into the future, which implies mining
at a later date. Indeed, even a naïve mine owner chooses to postpone mining (until at least
date τ) in this case (see Equation 6). The result is summarized as follows:

Proposition 2. For uncertain cost, cA, if c̄A > cw, then it is always optimal to postpone
mining until at least date τ .

The logic underlying the proof is similar to that in Proposition 1. Here, the ex ante
expected payoff from mining prior to τ is lower than the expected payoff from committing
to mine at date τ . And the expected payoff from postponing the decision until date τ is
strictly greater than the expected payoff of committing to mine at date τ . So postponing
the decision until date τ is always preferred to mining prior to τ .

2.2.3 “Low” expected cost: c̄A < cw

Propositions 1 and 2 reveal that provided A’s expected cost is equal to or greater than the
costs experienced by other mine owners, it is always optimal to postpone the mining decision
until better information arrives. But what if A’s expected cost is lower than others’ costs?
In that case, an interesting tension arises. When c̄A is low, there is an incentive for the mine
owner to extract immediately (see Equation 6); this implies that delaying until τ would
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require her to sacrifice some expected returns. Whether this force is sufficient to overcome
the benefit of preserving flexibility turns out to depend in interesting ways on features of
the problem. Our main result here is that even though a simple naïve cost benefit analysis
suggests that it is optimal to mine immediately, it is often optimal, instead, to postpone
mining until at least date τ . This result is summarized below:

Proposition 3. For uncertain cost, cA, if c̄A < cw, then it may be optimal to postpone
mining until at least date τ .

The proof relies on carefully disentangling the tension between two factors and leveraging
the observation that the mine owner would never want to mine in the open interval (0, τ).
On the one hand, the fact that expected cost is low suggests that mining should commence
immediately because the rent generated is more valuable as a standard investment (earning
rate r) than it is in the ground. But on the other hand, there is a benefit to postponing
the decision until at least date τ when the true cost cA is revealed. Under this setup there
is no benefit to postponing to some date s < τ because nothing can be learned, and the ex
ante expected payoff is lower than it would be if mining took place at time 0. The benefit
of postponing mining until at least τ should be clear: the true cost cA might be relatively
high, in which case it would be optimal to mine at date T , or it might be very high, in which
case it will be optimal to never mine the resource. Neither of these options is available if A
mines at date 0.

While Proposition 3 shows that it might be optimal to postpone mining until at least
date τ , we would like to shed light on the factors that make this result more likely. This
result is summarized as follows:

Corollary 1. Under the conditions of Proposition 3, the payoff from postponing the mining
decision (until τ) is increasing: (a) as τ becomes smaller and (b) with increasing uncertainty
over f(cA).6

These both accord with straightforward economic intuition. As the learning time (τ)
is smaller, so is the cost of delay, so the relative payoff from postponing gets larger. And
as the distribution over environmental cost (f(cA)) becomes more spread, the possibility of
learning something very useful is increased, so this also increases the value of delay.

3 A Mining Tax to Correct Naive Behavior
The analysis thus far uses the no arbitrage result of Hotelling to show that it may typically
be the case that a social planner would find it optimal to delay mining a non-renewable
resource until the environmental consequences of doing so have been revealed. Yet a myopic
owner who either ignores environmental costs altogether, or at least ignores the possibility of
learning about those costs, may wish to mine immediately. Here we examine a mechanism to
induce efficient mining by a naïve owner. Hanemann (1989) re-formulates the quasi option
value model in an intriguing manner. He shows that the quasi-option value can be thought

6We induce “increasing uncertainty” by following the definition of “increasing risk” (though not necessarily
“increasing variance”) by Rothschild and Stiglitz (1970).
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of as an additional “tax” on development - if this tax were included as a cost in the first
period, then a simple naïve cost benefit analysis would yield the efficient solution. Borrowing
from Hanemann’s insights, the purpose of this section is to derive the “mining tax,” which
we will denote by Q, imposed on extraction in the current period, that would give rise to
efficient (socially optimal) mining activity, even from a naïve owner.

It is important to underscore that this is not a tax in the conventional sense. If all of
the costs are internalized to the firm then we cannot know if the firm will be myopic or
sophisticated. Perhaps the more appropriate situation is where there are external social
costs (such as environmental damages) and the goal is to internalize those costs to the firm.
If only the expected damages are internalized (i.e., a naïve approach is taken to the external
costs), then there is a need for an additional tax to take into account the quasi-option value.
And that additional tax – necessary to correct naïve behavior – is what is developed here.

Suppose the naïve small mine owner analyzed above faces a tax, Q, that must be paid to
mine prior to date τ . The goal is to derive the value of Q that, if included as a cost of mining
prior to τ , would give rise to the optimal mining time. Thus, we must carefully attend to
the incentives of the naïve mine owner. In order to nudge such an owner to delay mining,
when she would otherwise would find it desirable to mine, we must impose a sufficiently
high penalty on premature mining. On the other hand, this penalty cannot be too large,
or she will delay even when it is socially optimal to mine immediately. Let V ∗(s) be the
expected present value (i.e., at date 0) of the deposit, to a naïve mine owner, who commits
to postponing the mining decision until at least date s; define V ∗(0) as the expected value to
a naïve mine owner of making the mining decision at date 0. We are interested in whether
a naïve owner would prefer to mine at date 0 or delay until at least date τ . This decision
simply depends on V ∗(0) ≶ V ∗(τ). Thus, if we always wanted to encourage such an owner
to delay mining, imposing a tax on extraction prior to τ of at least V ∗(0)− V ∗(τ) would do
the job.

However, we do not always want her to delay mining. We only want her to delay mining
in cases in which it is efficient to delay mining. Let V̂ (s) be the expected present value return,
to a sophisticated mine owner, who commits to postponing until at least date s; define V̂ (0)
as the expected value of mining at date 0. Then, the efficient decision about whether to
mine at date 0 or delay until at least τ will depend on V̂ (0) ≶ V̂ (τ). We only want the naïve
mine owner to delay mining in cases in which V̂ (0) < V̂ (τ). Making use of the insights from
Hanemann (1989), define the following tax:

Q = (V ∗(0)− V ∗(τ))−
(
V̂ (0)− V̂ (τ)

)
(7)

If this tax is imposed on the naïve mine owner should she mine prior to τ , then such an
owner would compare V ∗(0) − Q ≶ V ∗(τ), and would postpone to date τ if and only if
V ∗(0)−Q < V ∗(τ), which is equivalent to

V ∗(τ) + V̂ (0)− V̂ (τ) < V ∗(τ) (8)

Simplifying reveals that the decision boils down to postponing mining if V̂ (0) < V̂ (τ),
precisely the condition we had hoped to replicate. Thus the tax in Equation (7) “corrects”
the naïvete of the non-learning decision maker. Imposing the tax Q on the naïve mine owner
if she mines before τ will precisely align incentives - after incorporating the tax, she mines

9



immediately if and only if it is socially efficient to do so. Note also that V ∗(0) = V̂ (0) because
whether one learns or not, the decision to mine immediately returns the same expected payoff.
Thus, we can represent the optimal mining tax explicitly as a function of the underlying
parameters of the problem specified above, as is summarized by the following proposition:

Proposition 4. Define a “mining tax” as

Q = V̂ (τ)− V ∗(τ) (9)

Where:

V ∗(τ) = P (0)− cw + e−rτ (cw − c̄A)

V̂ (τ) =
∫ cw

−∞

[
P (0)− cw + (cw − cA)e−rτ

]
f(cA)dcA +

∫ p̄

cw

[
P (0)− cw + (cw − cA)e−rT

]
f(cA)dcA

Such a mining tax, imposed on early extraction by a naïve mine owner, induces the econom-
ically efficient mine timing.

This core result defines an “information hurdle” that must be cleared in order to proceed
with mining immediately. For instance, if a mine is currently viable based on private costs,
but there are uncertain external costs to be learned in the future (e.g., environmental costs),
then Equation (9) provides a way of determining the extra payoff necessary for a privately
desirable mine to be socially desirable.

While useful for correcting behavior, the tax, Q, is only one possible tax from a family
of taxes that would all convert a naïve decision-maker into a sophisticated decision-maker.
To see this, consider the simple case in which the sophisticated decision-maker is barely in
favor of mining now rather than delay, with V̂ (0) = V̂ (τ) + ε, for small ε. It follows that
V ∗(0) > V ∗(τ).7 In that case, the naïve decision-maker will make the sophisticated decision
absent the tax, yet the tax, Q, can be substantial.8 In this case, the naïve mine owner is
made to pay a large mining tax even though the tax has no desired, or actual, behavioral
effects.

To get around this problem, we derive an alternative tax, which we call the “minimum
corrective tax,” that is the smallest possible tax that just corrects the naïve mining behavior.
The minimum corrective tax is given by:

Z =

V
∗(0)− V ∗(τ) if V̂ (τ) > V̂ (0) > V ∗(τ)

0 otherwise
(10)

In the example provided above (where V̂ (0) = V̂ (τ) + ε), no tax would be levied. In the
numerical example that follows, we will calculate and compare the mining taxes Q and Z.

7If a sophisticated decision maker is in favor of mining immediately, then a naïve decision maker is even
more strongly in favor of mining immediately.

8The tax would be Q = V ∗(0)− V ∗(τ).

10



3.1 Illustrative example
We now illustrate the results of this analysis and provide a concrete example of the corrective
mining taxes derived above. Let the initial market reserves be given by R0, and let market
demand be a linear function of quantity extracted: p(q) = α−βq. Global marginal extraction
cost is cw = 100. We selected a set of parameters loosely chosen to reflect the global market
for gold.9 Using these parameters, backward induction reveals a time to exhaustion of T = 31
years and a resulting initial price of p(0) =$1,234. Now consider a deposit with an uncertain
cost of extraction, cA. In particular, let the probability density function over true deposit
extraction cost cA be given by f(cA) ∼ N(µ, σ2), and assume that the true cost will be
revealed in τ = 10 years. We compare naïve and sophisticated decisions in this context
parametrically, letting µ and σ vary.

In this setting, if µ ≥ 100 (i.e. if expected cost in A is greater than or equal to the cost in
the rest of the world), then it is socially optimal to postpone mining, even for a naïve mine
owner. But if µ < 100, the naïve mine owner will mine immediately. In some such cases, it
would, rather, be optimal to postpone mining until date τ = 10 when the true environmental
costs will be revealed. Implementing either mining tax Q or Z induces the optimal behavior
from such an owner. This is illustrated in Figure 1, where the horizontal axis shows expected
cost (µ) and the vertical axis shows standard deviation of cost (σ). Three regions are shown
in the figure, delineated by the yellow lines. Note first that it is optimal for both naïve and
sophisticated owners to delay mining for all points to the right of the vertical yellow line (i.e.
for µ > 100); and it is optimal for both naïve and sophisticated owners to mine immediately
for all points to the left of the slanted yellow line (i.e. for low values of µ). The information
externality arises in the wedge between these two lines where it is optimal for a sophisticated
owner to delay but the naïve owner finds it optimal to mine immediately. The various colors
in the figure show the magnitude of the mining tax Q, which is sufficient to correct behavior
of the naïve mine owner. Clearly Q is increasing in both µ and σ. Note that on the far left
(when expected cost is very low), it is optimal for both owners to mine immediately, so Q
is paid by the naïve owner, but doing so does not change her behavior. On the far right
(when expected cost is very high), it is optimal for both owners to delay, so again Q does not
change behavior. But for a band in the middle, Q causes the naïve mine owner, who would
have found it optimal to mine immediately, to delay mining until at least date τ . Notice
that for any level of µ, the size of this region is increasing in σ (Corollary 1b).

We have already argued that Q, based on the quasi-option value, may be unnecessarily
large to induce desired behavior. This is illustrated in Figure 1, where there are positive
values of Q in all three regions of the figure, yet only in the middle wedge does there need
to be a positive Q since it is only in this region that there is a divergence between naïve
and sophisticated decision-making. But even if we only charged Q in the wedge between the
vertical and slanted lines, it would still be excessive. This was the logic that underpinned
our derivation of Z in Section 3. Figure 2 shows the minimum corrective tax, Z, necessary
to correct naïve behavior. It is clearly non-zero only in the wedge, the only place where
behavior needs correcting.

9The parameters are: α = 5e3, β = 5e3/2.5e8, cw = 100, r = .05, R0 = 3.5e9.
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Figure 1: Mining tax, Q, calculated from Equation 9.

4 Alternative Market Specifications
To sharpen our contribution, we have assumed a relatively simple market in which all mine
owners (with the possible exception of owner A) share the same marginal cost of extrac-
tion. There are other competitive assumptions which could be adopted regarding the overall
resource market: existence of a backstop technology; non-existence of a choke price; heteroge-
neous world market consisting of mines with constant but differing marginal extraction costs
and reserves; and production with uncertain aggregate reserves and reserve additions oc-
curring simultaneously with production; production and exploration with uncertainty about
future reserves and/or future demand (Pindyck 1980).

Our results are qualitatively robust to these different competitive market specifications.
All of these models result in a global price path, typically with rents rising at the rate of
interest. Now introduce a small mine owner A who holds a single unit of the resource and
can produce it for cost cA. If cA is known, A can perfectly “slot” herself into the queue -
there is an optimal time t∗A at which A should mine in order to maximize return. Suppose
instead that cA is uncertain, has the same mean as the cost that gave rise to t∗A, and will
be revealed at date τ > t∗A. It is straightforward to show in this model (in a manner similar
to the analysis of Proposition 3 and Corollary 1 above) that conditions exist under which
A will want to postpone the decision until date τ . It is also straightforward to show that
owner A will never postpone to a date in the open interval: (t∗A, τ), nor will she ever mine
at a date prior to t∗A. Thus, in a manner similar to the dynamics above, adding uncertainty
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Figure 2: Minimum Corrective Mining tax, Z, calculated from Equation 10.

to cA may cause owner A to defer mining to a later date, or possibly defer it indefinitely.
The existence of a backstop technology is equivalent to demand having a choke price,

at which demand drops to zero. Without a choke price, the terminal time T may become
infinite but that does not change the analysis of the quasi-option value.

5 Discussion
The main result of this paper is that any uncertainty about the environmental cost of mining
can optimally cause the sophisticated mine owner to postpone extraction, even when the
expected environmental costs suggest that it is optimal to mine immediately. This does not
necessarily imply that the mine will never be exploited. As information on environmental
costs are revealed, they give rise to new optimal decisions. We showed that if the cost is
learned to be relatively low (or even as “expected”) then it will be optimal to mine once
that information is revealed. On the other hand, if cost is revealed to be large (but not too
large), then it will be optimal to mine at a later date. In extreme cases in which the revealed
cost turns out to be very large, it will be optimal to postpone indefinitely.

A typical application is when all uncertainty regards external costs, such as environmen-
tal costs. Furthermore, internalization of those costs is manifest in a regulatory authority
granting or denying permission to mine at any particular point. If the regulatory authority
does a standard cost-benefit analysis, based on expected external costs, then it is acting
naïvely. We showed that an additional cost, equal to the mining tax, must be added in order
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for the naïve regulatory authority to behave efficiently.
An extension of this model, which we do not analyze here, occurs when the regulatory

authority is subject to political pressure. In that case it may be in the mine’s interest to
lobby the regulatory authority to allow mining early before uncertainty is resolved. The
framework introduced in this paper would allow us to compute how much it would be worth
to the mine to obtain early approval rather than wait until uncertainty is resolved and run
the risk that external costs end up being high, resulting in a denial of permission to mine.

Our simple theoretical treatment sheds light on a rich array of empirically and policy
relevant contemporary problems involving the extraction of non-renewable resources with
uncertainty about the associated environmental costs. In such real world applications, envi-
ronmental costs are often pitted against extraction benefits. This analysis reveals that this
is a false tradeoff: The question is not whether we should ever mine, but rather whether we
should mine today or postpone the decision until better information on environmental costs
is revealed. After all, a decision to delay mining forfeits none of the natural resource - it just
saves it for the future when a more insightful decision can be made.

Appendix of Proofs

Proof to Proposition 1
Proof. Let V1 be the expected payoff from mining prior to τ and let V2 be the expected value
of waiting until τ , learning the true value of cA, and then deciding when to mine. To obtain
V1, because c̄A = cw, Equation 6 reveals that the non-learning mine owner is indifferent
between mining at any date t ∈ [0, T ]; in other words, she obtains the same expected payoff
from extracting at any date in that closed interval. Sice the mining date is irrelevant, we
will use date τ for convenience.

V1 =
∫ ∞
−∞

[
P (0)− cw + (cw − cA)e−rτ

]
f(cA)dcA (11)

which we split into the relevant regions of the realization of cA:

V1 =
∫ cw

−∞

[
P (0)− cw + (cw − cA)e−rτ

]
f(cA)dcA

+
∫ p̄

cw

[
P (0)− cw + (cw − cA)e−rτ

]
f(cA)dcA

+
∫ ∞
p̄

[
P (0)− cw + (cw − cA)e−rτ

]
f(cA)dcA

(12)

V2 can be decomposed in a similar manner, though the timing of mining will depend on
the realized value of cA. We have

V2 =
∫ cw

−∞

[
P (0)− cw + (cw − cA)e−rτ

]
f(cA)dcA

+
∫ p̄

cw

[
P (0)− cw + (cw − cA)e−rT

]
f(cA)dcA

+ 0

(13)

14



where the third term is 0 because no mining takes place in the event that cA > p̄.
We would like to prove that V2 > V1. Taking the difference, we see:

V2 − V1 =
∫ p̄

cw

(cw − cA)(e−rT − e−rτ )f(cA)dcA︸ ︷︷ ︸
Term1

−
∫ ∞
p̄

[
P (0)− cw + (cw − cA)e−rτ

]
f(cA)dcA︸ ︷︷ ︸

Term2
(14)

The first term on the RHS is unambiguously positive (this is the benefit of mining at T
rather than τ when the true cost is in [cw, p̄]). The second term is unambiguously negative
(it is the cost of mining at τ when the cost is extremely high (cA > p̄). Thus, V2 > V1, which
concludes the proof.

Proof to Proposition 2
Proof. Let V1 be the expected payoff of committing to mine at some date s < τ and let V2
be the expected payoff from postponing the decision until at least date τ . Finally, let VT
be the expected value of committing to mine at date T . By Equation 6, VT > V1 (when
cw < c̄A < p̄ the non-learning mine operator maximizes payoff by mining at date T ). We
will show that V2 > VT , which implies that V2 > V1. We have:

V1 < VT =
∫ cw

−∞

[
P (0)− cw + (cw − cA)e−rT

]
f(cA)dcA

+
∫ p̄

cw

[
P (0)− cw + (cw − cA)e−rT

]
f(cA)dcA

+
∫ ∞
p̄

[
P (0)− cw + (cw − cA)e−rT

]
f(cA)dcA

(15)

And V2 is given in Equation 13. The difference is given by:

V2 − VT =
∫ cw

−∞
(cw − cA)(e−rτ − e−rT )f(cA)dcA︸ ︷︷ ︸

Term 1

−
∫ ∞
p̄

[
P (0)− cw + (cw − cA)e−rT

]
f(cA)dcA︸ ︷︷ ︸

Term 2
(16)

Term 1 is clearly positive and Term 2 is clearly negative, so V2 > VT > V1, and V2 > V1
which proves the result.

Proof to Proposition 3
Proof. If c̄A < cw and A commits to mining prior to τ , she should mine at date 0 (see
Equation 6). Let V1 be the expected payoff from doing so. Let V2 be the expected payoff
from delaying the decision until date τ . We have:

V1 =
∫ cw

−∞
[P (0)− cA] f(cA)dcA +

∫ p̄

cw

[P (0)− cA] f(cA)dcA +
∫ ∞
p̄

[P (0)− cA] f(cA)dcA (17)
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And V2 is given in Equation 13. The difference is given by:

V2 − V1 =
∫ cw

−∞
(cw − cA)(e−rτ − 1)f(cA)dcA︸ ︷︷ ︸

Term 1

+
∫ p̄

cw

(cw − cA)(e−rT − 1)f(cA)dcA︸ ︷︷ ︸
Term 2

+
∫ ∞
p̄

[cA − P (0)] f(cA)dcA︸ ︷︷ ︸
Term 3

(18)

Term 1 is negative, and Terms 2 and 3 are positive. Proving that conditions exist under
which it is optimal to postpone the decision until τ requires showing conditions under which
V2 > V1; we use the following sufficient condition. Take the limit of 18 as τ → 0. Doing so
only affects Term 1, and has no effect on Terms 2 or 3. Clearly limτ→0 Term 1 = 0, while
Terms 2 and 3 are strictly positive. Thus, small τ provides a sufficient condition for the
result to hold.

Proof to Corollary 1
Proof. Corollary 1(a): Let ∆ ≡ V2 − V1 from Equation 18. Taking the derivative gives:

d∆
dτ

=
∫ cw

−∞
−r(cw − cA)e−rτf(cA)dcA < 0 (19)

which concludes the proof.
Corollary 1(b): Define Φ(cA) as the difference in payoffs between postponing the decision
until τ and mining prior to τ , when the true value of A’s cost parameter is cA. First note
that ∆ ≡ V2 − V1 is the integral of Φ(cA), weighted by the probability density, f(cA), as
follows.

∆ = V2 − V1 =
∫ ∞
−∞

Φ(cA)f(cA)dcA (20)

To prove that ∆ is increasing in the “risk” of f(cA) (colloquially, in the “spread” of f(cA)),
we rely on the main result of Rothschild and Stiglitz (1970), implying it is sufficient to show
that Φ(cA) is a convex function of cA. The function Φ(cA) is given as follows:

Φ(cA) =


(cw − cA)(e−rτ − 1) if cA < cw

(cw − cA)(e−rT − 1) if cw ≤ cA ≤ p̄

cA − P (0) if cA > p̄

(21)

Thus, Φ(cA) is a continuous, piecewise linear, increasing function of cA, where each line
segment has a higher slope, thus, Φ(cA) is convex and the result is proven.
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