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Diagnosis-based subsidies have become an increasingly important regulatory tool in US health in-
surance markets and public insurance programs. Between 2003 and 2014, the number of consumers
enrolled in a market in which an insurer’s payment is based on the consumer’s diagnosed health
conditions increased from almost zero to over 50 million, including enrollees in Medicare, Medi-
caid, and state and federal Health Insurance Exchanges. These diagnosis-based payments to insurers
are known as risk adjustment, and their introduction has been motivated by a broader shift away
from public fee-for-service health insurance programs and towards regulated private markets (Gru-
ber, 2017). By compensating insurers for enrolling high expected-cost consumers, risk adjustment
weakens insurer incentives to engage in cream-skimming—that is, inefficiently distorting insurance
product characteristics to attract lower-cost enrollees as in Rothschild and Stiglitz (1976).1

The intuition underlying risk adjustment is straightforward: diagnoses-based transfer payments
can break the link between the insurer’s expected costs and the insurer’s expected profitability of
enrolling a chronically ill consumer. But the mechanism assumes that a regulator can objectively
measure each consumer’s health state. In practice in health insurance markets, regulators infer an
enrollee’s health state from the diagnoses reported by physicians during their encounters with the
enrollee. This diagnosis information, usually captured in bills sent from the provider to the insurer,
is aggregated into a risk score on which a regulatory transfer to the insurer is based. Higher risk
scores trigger larger transfers. Insurers thus have a strong incentive to “upcode” reported diagnoses
and risk scores, either via direct insurer actions or by influencing physician behavior.? By upcoding,
we mean activities that range from increased provision of diagnostic services that consumers value to
outright fraud committed by the insurer or provider. The extent of such practices is of considerable
policy, industry, and popular interest.®> Nonetheless, little is known about the extent of upcoding or
its implications: The few recent studies examining the distortionary effects of risk adjustment (e.g.,
Brown et al., 2014, Carey, 2014, and Einav et al., 2015) have all taken diagnosis coding as fixed for
a given patient, rather than as an endogenous outcome potentially determined by physician and
insurer strategic behavior. In contrast, in this paper we show that endogenous diagnosis coding is

an empirically important phenomenon that has led to billions in annual overpayments by the federal

IFor example, during our study period, a diagnosis of Diabetes with Acute Complications in Medicare Advantage incre-
mentally increased the payment to the MA insurer by about $3,400 per year. This amount was set by the regulator to equal
the average incremental cost associated with this diagnosis in the traditional fee-for-service Medicare program.

2For example, insurers can pay physicians on the basis of codes assigned, rather than for visits and procedures.

3See, for example, CMS (2010); Government Accountability Office (2013); Kronick and Welch (2014); Schulte (2014).



government, as well as significant distortions to consumer choices.

We begin by constructing a stylized model to assess the effects of upcoding in a setting where
private health plans compete for enrollees against a public option. We use the model to show that
when risk scores (and thus plan payments) are endogenous to the contract details chosen by the
private plans, three types of distortions are introduced. First, a wedge is introduced between the
efficient private contract and the private contract offered in equilibrium, with equilibrium contracts
characterized by levels of coding services (and, in some cases, other healthcare services) that are too
high in the sense that the marginal social cost of the services exceeds the marginal social benefit. Sec-
ond, the higher levels of coding in the private plans increases government subsidies paid to these
plans, increasing the cost of the program to taxpayers. Third, these differential subsidies cause equi-
librium plan prices not to reflect the underlying social resource cost of enrolling a consumer in the
plan, causing consumer choices to be inefficiently tilted toward the plans that code most intensely.
These results hold regardless of the legality of plans” and physicians’ coding-related behaviors and
regardless of whether consumers attach positive value to coding services.

We investigate the empirical importance of upcoding in the context of Medicare. For hospital and
physician coverage, Medicare beneficiaries can choose between a traditional public fee-for-service
(FFS) option and enrolling with a private insurer through Medicare Advantage (MA). In the FFS sys-
tem, most reimbursement is independent of recorded diagnoses. Payments to private MA plans are
capitated with diagnosis-based risk adjustment. As illustrated by our model, although the incentive
for MA plans to code intensely is strong, doing so is not costless and a plan’s response to this in-
centive depends on its ability to influence the providers that assign the codes. Thus, whether and to
what extent coding differs between the MA and FFS segments of the market is an empirical question.

The key challenge in identifying coding intensity differences between FFS and MA, or within
the MA market segment across competing insurers, is that upcoding estimates are potentially con-
founded by adverse selection. An insurer might report an enrollee population with higher-than-
average risk scores either because the consumers who choose the insurer’s plan are in worse health
(selection) or because for the same individuals, the insurer’s coding practices result in higher risk
scores (upcoding). We develop an approach to separately identify selection and coding differences
in equilibrium. The core insight of our research design is that if the same individual would generate

a different risk score under two insurers and if we observe an exogenous shift in the market shares



of the two insurers, then we should also observe changes in the market-level average of reported risk
scores. Such a pattern could not be generated or rationalized by selection, because selection can
affect only the sorting of risk types across insurers within the market, not the overall market-level
distribution of reported risk scores.* A key advantage of our strategy is that the data requirements
are minimal, and it could be easily implemented in future assessments of coding in Health Insurance
Exchanges or state Medicaid programs. Our focus on empirically disentangling upcoding from selec-
tion distinguishes our study from prior, policy-oriented work investigating upcoding in the context
of Medicare (e.g. Kronick and Welch, 2014).°

To identify coding differences, we exploit large and geographically heterogeneous increases in
MA enrollment within county markets that began in 2006 following the Medicare Modernization
Act. We simultaneously exploit an institutional feature of the MA program that causes risk scores to
be based on prior year diagnoses. This yields sharp predictions about the timing of effects relative
to changing market penetration in a difference-in-differences framework. Using the rapid within-
county changes in penetration that occurred over our short panel, we find that a 10 percentage point
increase in MA penetration leads to a 0.64 percentage point increase in the reported average risk
score in a county. This implies that MA plans generate risk scores for their enrollees that are on
average 6.4% larger in the first year of MA enrollment than what those same enrollees would have
generated under FFS. This is a large effect. A 6.4% increase in market-level risk is equivalent to
6% of all consumers in a market becoming paraplegic, 11% developing Parkinson’s disease, or 39%
becoming diabetic. While these effects would be implausibly large if they reflected rapid changes
to actual population health, they are plausible when viewed as reflecting only endogenous coding
behavior. Our results also suggest that the MA coding intensity differential may ratchet up over time,
reaching 8.7% by the second year of MA enrollment.

To complement our main identification strategy at the market level, we also provide individual-

level evidence for a sample of Massachusetts residents. We track risk scores within consumers as

4The idea that changes in a population average outcome can be used to infer marginal impacts is well-known in applied
econometrics, with applications including Gruber, Levine and Staiger (1999), Einav, Finkelstein and Cullen (2010), and
Chetty, Friedman and Rockoff (2014).

S5Kronick and Welch (2014) provide evidence that risk scores have grown more rapidly over time in MA relative to FFS.
Other analyses, including Government Accountability Office (2013), follow a similar strategy. An important difference
from our analysis is that comparing the growth rate of risk scores in the FFS population to the growth rate of risk scores in
the MA population would not be robust to selection on health. Further, by focusing on differences in risk score growth rates
rather than levels, the Kronick and Welch (2014) strategy cannot estimate a parameter of interest here—the difference in
risk scores and implied payments for a consumer choosing MA versus FFS. Nonetheless, it is the strongest prior evidence
that MA codes intensively relative to FFS.



they transition from an employer or individual-market commercial plan to Medicare at the age 65
eligibility threshold. We present event study graphs comparing the groups that eventually choose
MA and FFS. We show that during the years prior to Medicare enrollment when both groups were
enrolled in similar employer and commercial plans, level differences in coding intensity were stable.
Following Medicare enrollment, however, the difference in coding intensity between the MA and FFS
groups spikes upward, providing transparent visual evidence of a coding intensity effect of MA. This
entirely separate identification strategy based on the Medicare eligibility threshold confirms the size
of our estimates from the main analysis and allows us to examine mechanisms and individual-level
heterogeneity underlying the aggregate MA /FFS coding intensity differences.

These empirical findings have specific implications for the Medicare program as well as broader
implications for the regulation of private insurance markets. Medicare is the costliest public health in-
surance program in the world and makes up a significant fraction of US government spending. Even
relative to a literature that has consistently documented phenomena leading to significant overpay-
ments to or gaming by private Medicare plans (e.g., Ho, Hogan and Scott Morton, 2014; Decarolis,
2015; Brown et al., 2014), the size of the overpayment due to manipulable coding is striking.® Absent
a coding correction, our estimates imply excess payments of around $10.2 billion to Medicare Advan-
tage plans annually, or about $650 per MA enrollee per year. In 2010, toward the end of our study
period, the Center for Medicaid and Medicare Services (CMS) began deflating MA risk payments
due to concerns about upcoding, partially counteracting these over}‘)aymen’cs.7 To provide further
context for the size of the effects that we estimate, we draw on estimates of demand response from
the prior literature on MA. These estimates imply that completely removing the hidden subsidy due
to upcoding would reduce the size of the MA market by 17% to 33%, relative to a counterfactual in
which CMS made no adjustment.

We view our results as addressing an important gap in the literature on adverse selection and the
public finance of healthcare. Risk adjustment is the most widely implemented regulatory response to

adverse selection. A few recent studies, including Curto et al. (2014) and Einav and Levin (2014), have

®Decarolis (2015) investigates how Medicare Part D insurers manipulate bids to game payment formulas and drive up
payments; Ho, Hogan and Scott Morton (2014) estimate excess public spending arising from consumers’ inattention to
health plan choice and insurers’ endogenous responses to that inattention; and Brown et al. (2014) estimate the increase in
excess payments to MA plans due to uncompensated favorable selection following the implementation of risk adjustment.
Brown et al. (2014) find the largest public spending impacts, at $317 per enrollee per year.

7In 2010 CMS began deflating MA risk scores via a “coding intensity adjustment” factor. This deflator was set at 3.41%
in 2010; was increased to 4.91% in 2014; and is set to increase again to 5.91% in 2018. Our results indicate that even the
most recent deflation is both too small and fails to account for large coding differences across MA plan types.



begun to recognize the potential importance of upcoding, but the empirical evidence is underdevel-
oped. The most closely related prior work on coding has shown that patients” reported diagnoses
in FFS Medicare vary with the local practice style of physicians (Song et al., 2010) and that coding
responds to changes in how particular codes are reimbursed by FFS Medicare for inpatient hospital
stays (Dafny, 2005; Sacarny, 2014). Ours is the first study to model the welfare implications of differ-
ential coding patterns across insurers and to provide empirical evidence of the size and determinants
of these differences.

Our results also provide a rare insight into the insurer-provider relationship. Because diagnosis
codes ultimately originate from provider visits, insurers face a principal-agent problem in contract-
ing with physicians. We find that coding intensity varies significantly according to the contractual
relationship between the physician and the insurer. Fully vertically integrated (i.e., provider owned)
plans generate 16% higher risk scores for the same patients compared to FFS, nearly triple the ef-
fect of non-integrated plans. This suggests that the cost of aligning physician incentives with in-
surer objectives may be significantly lower in vertically integrated firms. These results connect to
a long literature concerned with the internal organization of firms (Grossman and Hart, 1986) and
the application of these ideas to the healthcare industry (e.g., Gaynor, Rebitzer and Taylor, 2004 and
Frakt, Pizer and Feldman, 2013), as well as to the study of the intrinsic (Kolstad, 2013) and extrinsic
(Clemens and Gottlieb, 2014) motivations of physicians. Our results also represent the first direct
evidence of which we are aware that vertical integration between insurers and providers may facil-
itate the “gaming” of health insurance payment systems. However, these results likewise raise the
possibility that strong insurer-provider contracts may also facilitate other, more socially beneficial,
objectives, including quality improvements through pay-for-performance incentives targeted at the
level of the insurer. This is an issue of significant policy and research interest (e.g., Fisher et al., 2012;
Frakt and Mayes, 2012; Frandsen and Rebitzer, 2014), but as Gaynor, Ho and Town (2015) describe in
their recent review, it is an area in which there is relatively little empirical evidence.

Finally, our results connect more broadly to the economic literature on agency problems in mon-
itoring, reporting, and auditing. Here, insurers are in charge of reporting the critical inputs that will
determine their capitation payments from the regulator. But the outsourcing of regulatory functions
to interested parties is not unique to this setting, with examples in other parts of the healthcare system

(Dafny, 2005), in environmental regulation (Duflo, Greenstone and Ryan, 2013), in financial markets



(Griffin and Tang, 2011), and elsewhere. Our results point to a tradeoff in which the tools used to bet-
ter align regulator and firm incentives in one way (here, risk adjustment to limit cream-skimming)

may cause them to diverge in other ways (as coding intensity is increased to capture subsidies).

2 Background

We begin by outlining how a risk-adjusted payment system functions, though we refer the reader
to van de Ven and Ellis (2000) and Geruso and Layton (2017) for more detailed treatments. We then

briefly discuss how diagnosis codes are assigned in practice.

2.1 Risk Adjustment Background

Individuals who are eligible for Medicare can choose between the FFES public option or coverage
through a private MA plan. All Medicare-eligible consumers in a county face the same menu of MA
plan options at the same prices. Risk adjustment is intended to undo insurer incentives to avoid
sick, high cost patients by tying subsidies to patients” health status. By compensating the insurer
for an enrollee’s expected cost on the basis of their diagnosed health conditions, risk adjustment can
make all potential enrollees—regardless of health status—equally profitable to the insurer on net (in
expectation) even when premiums are not allowed to vary across consumer types. This removes
plan incentives to distort contract features in an effort to attract lower-cost enrollees, as in Rothschild
and Stiglitz (1976) and Glazer and McGuire (2000). Risk adjustment was implemented in Medicare
starting in 2004 and was fully phased-in by 2007.

Formally, plans receive a risk adjustment subsidy, S;, from a regulator for each individual i they
enroll. The risk adjustment subsidy supplements or replaces premiums, p, paid by the enrollee with
total plan revenues given by p 4 S;. In Medicare Advantage, S; is calculated as the product of an
individual’s risk score, r;, multiplied by some base amount, C, set by the regulator: S; = C-ri.8 In
practice in our empirical setting, C is set to be approximately equal to the mean cost of providing FFS
in the local county market for a typical-health beneficiary, or about $10,000 per enrollee per year on

average in 2014.°

8 Across market settings, C can correspond to the average premium paid in the full population of enrollees, as in the
ACA Exchanges, or some statutory amount, as in Medicare Advantage.

Historically, county benchmarks have been set to capture the cost of covering the “national average beneficiary” in the
FFS program in that county, though Congress has made many ad hoc adjustments over time. In practice, benchmarks can



The risk score is determined by multiplying a vector of risk adjusters, x;, by a vector of risk ad-
justment coefficients, A. Subsidies are therefore S; = C - x;A. Risk adjusters, x;, typically consist of a
set of indicators for demographic groups (age-by-sex cells) and a set of indicators for condition cate-
gories, which are based on diagnosis codes contained in health insurance claims. In Medicare, as well
as the federal Health Insurance Exchanges, these indicators are referred to as Hierarchical Condition
Categories (HCCs). Below, we refer to x; as “conditions” for simplicity. The coefficients A capture
the expected incremental impact of each condition on the insurer’s expected costs, as estimated by
the regulator in a regression of total spending on the vector x; in some reference population (in this
case FFS). Coefficients A are normalized by the regulator so that the average risk score is equal to
1.0 in the relevant reference population. In Medicare, risk scores for payment in year ¢ are based on
diagnoses in t — 1. The important implicit assumption underlying the functioning of risk adjustment
is that conditions, x;, do not vary according to the plan in which a consumer is enrolled. In other

words, diagnosed medical conditions are properties of individuals, not individual x plan matches.

2.2 Diagnosis Coding in Practice

Typically, the basis for all valid diagnosis codes is documentation from a face-to-face encounter be-
tween the provider and the patient. During an encounter like an office visit, a physician takes notes,
which are passed to the billing staff in the physician’s office. Billers use the notes to generate a claim,
which includes diagnosis codes, that is sent to the insurer for payment. The insurer pays claims and
over time aggregates all of the diagnoses associated with an enrollee. Diagnoses are then submitted
to the regulator, who generates a risk score on which payments to the insurer are based.

There are many ways for plans and providers to influence the diagnoses that are reported to
the regulator. Although we reserve a more complete description of these mechanisms to Appendix
Section A.2 and Figure A1, we note that insurers can structure contracts with physician groups such
that the payment to the group is a function of the risk-adjusted payment that the insurer itself re-
ceives from the regulator. This directly passes through coding incentives to the physician groups.
Additionally, even after claims and codes are submitted to the insurer for an encounter, the insurer
or its contractor may perform a chart review—automatically or manually reviewing physician notes

and patient charts to add new codes that were not originally translated to the claims submitted by

vary from such historical costs and can also vary somewhat by plan due to a “bidding” process. See Appendix A.1 for full
details.



the submitting physician’s office. Such additions may be known only to the insurer who edits the
reports sent to the regulator, with no feedback regarding the change in diagnosis being sent to the
physician or her patient.

Plans may also directly encourage their enrollees to take actions that result in more intensive
coding, using financial incentives (including, simply, lower copays for evaluation and management
visits) or incentivizing enrollees to complete annual “risk assessments.” These are inexpensive to the
insurer, but can be used to document diagnoses that would otherwise have gone unrecorded in the
claims.! Further, if an insurer observes that an enrollee who has previously received diagnoses for
a code-able condition has not visited a physician in the current plan year (as risk scores are based
on single-year diagnosis reports), the insurer can directly intervene by proactively contacting the
enrollee and sending a physician or nurse to the enrollee’s home. The visit is necessary in order to
code the relevant, reimbursable diagnoses for the current plan year and relatively low cost. As we
discuss in Section 8, this issue is of particular concern to the Medicare regulator, CMS, as these visits,
often performed by third-party contractors, appear to often be unmoored from any follow-up care or
even communication with the patient’s normal physician.

None of the insurer activities targeted at diagnosis coding take place in FFS because providers
under the traditional system are paid directly by the government, and the basis of these payments
outside of hospital settings is procedures, not diagnoses. This difference in incentive structure be-
tween FFS and MA makes Medicare a natural setting for studying the empirical importance of dif-

ferential coding intensity.

3 Model of Risk Adjustment with Endogenous Coding

In this section, we present a stylized model of firm behavior in a competitive insurance market where
payments are risk adjusted. The model illustrates how distortions to public spending, consumers’

plan choices, and insurers’ benefit design can arise if risk scores are endogenous to a plan’s behavior.

10Note that the supply-side tools often advocated for in the context of preventative managed care—such as proactive
health risk assessments and outreach to chronically-ill patients—can serve to inflate risk scores. This is true regardless of
whether such patient management is motivated by increasing risk adjustment revenue or by patient health concerns.



3.1 Setup

We consider an insurance market similar to Medicare, where consumers choose between a public
option plan (FFS) and a uniform private plan alternative offered by insurers in a competitive market
(MA). An MA plan consists of two types of services and a price: {6,v;:p} Coding services, J, include
activities like insurer chart review. These services affect the probability that diagnoses are reported.
We also allow them to impact patient utility. All other plan details are rolled up into a composite
healthcare service, . We allow that any healthcare service or plan feature may impact reported
diagnoses. For example, zero-copay specialist visits may alter the probability that a consumer visits
a specialist and thus the probability that a marginal (correct) diagnosis is recorded.! Services § and
7 are measured in the dollars of cost they impose on the MA plan.

Denote the consumer valuations of § and 7y in dollar-metric utility as v(6) and w(+y), respectively.
We assume utility is additively separable in v and w with v’ > 0, w’ > 0,v” < 0,and w” < 0. The FFS
option offers reservation utility of u for the mean consumer. Its price is zero. A taste parameter, o;,
which is uncorrelated with net-of-risk adjustment costs, distinguishes consumers with idiosyncratic
preferences over the MA /FFES choice. The purpose of the assumption of orthogonality between the
taste parameter and costs is to simplify the exposition of the consequences of upcoding. The conclu-
sions we draw from this stylized model do not rely on this assumption.!? Utility of the MA plan is
thus v(6) + w(y) + ;. Using {; to capture mean zero ex ante health risk that differs across consumers,
expected costs in MA are ¢; ya = 0 + 7 + {;.

To narrow focus here on the distortions generated by upcoding even when risk adjustment suc-
ceeds in perfectly in counteracting selection, we make two simplifying assumptions. First, we assume
that consistent with the regulatory intent of risk adjustment, there is no uncompensated selection af-
ter risk adjustment payments are made: Risk adjustment payments net out idiosyncratic health risk

in expectation, allowing us to ignore the mean zero {; term when considering firm incentives, so that

HThe distinguishing characteristic of § versus v is the degree of responsiveness of risk scores to each service type.
We assume coding services have greater marginal impacts on coding (% > g—,’; ) at the levels chosen optimally or in a
competitive equilibrium. An alternative formulation with three services: services affecting coding only; affecting patient
utility only; affecting both utility and coding leads to the same results.

12The primary reason this assumption greatly simplifies exposition is that it allows a single price to sort consumers
efficiently across plans. In a more general setting, no single price can sort consumers efficiently, as in Bundorf, Levin and
Mahoney (2012) and Geruso (2017). Such forms of selection add complexity to describing the choice problem without
providing additional insights into the consequences of coding differences for consumer choices. This assumption also
intentionally rules out phenomena like selection on moral hazard (Einav et al., 2013), which would further complicate
exposition while adding little in terms of insight into the consequences of upcoding.



expected (net) marginal costs are equal to expected (net) average costs and are J 4 -y. Solely to sim-
plify proofs and exposition, we assume further that there is no sorting by health status across plans
in equilibrium. This implies that the mean risk score within the MA plan is 1.1

MA plans charge a premium p and receive a per-enrollee subsidy, S;, that is a function of the
risk score, 7; p4, the plan reports. Following the institutional features of Medicare, S; = C- i MA,
where C is a base payment equal to the cost of providing FFS to the typical health Medicare benefi-
ciary in the local market. Defining p;(d,) = i ma — i rrs as the difference between the risk score
each beneficiary would have generated in MA relative to the risk score she would have generated
in FFS, the average (per capita plan-level) MA subsidy is then C(1 + p(J, 7)) which simplifies to C
when we assume, counter to the empirical facts we document, that risk scores are fixed properties of

individuals and invariant to MA enrollment.

3.2 Planner’s Problem

To illustrate how the competitive equilibrium may yield inefficiencies, consider as a benchmark a
social planner who is designing an MA alternative to FFS, and whose policy instruments include
6, 7, and the supplemental MA premium p. The planner takes as given the cost, zero price, and
reservation utility of the FFS option, though we return to the issue of the social cost of FFS further
below.!* The planner maximizes consumer utility generated by MA plan services, net of the resource

cost of providing them:
maxg;,,[0(0) + w(y) +0i — 6 — 7] (1)
First order conditions with respect to 7y and J yield

o (5%) =1 (2a)

w'(v") = 1. (2b)

13 A weaker assumption—that on net consumers of different costs may systematically sort to MA, but that such sorting
between MA and FFS is compensated as intended by risk adjustment—suffices. However, this alternative formulation
significantly complicates the notation and proofs without enhancing the intuitions generated by the model. See an earlier
version of this paper, available as Geruso and Layton (2015), for this alternative approach.

14WWe set the price of FFS Medicare at zero, as the (small) Part B premiums are paid regardless of the MA /FFS choice. We
also take as given the cost and reservation utility of the FFS Medicare option, but if these were free parameters, the socially
optimal MA plan could be iteratively determined by first determining the optimal level of FFS provision, C.

10



At the optimal provision of healthcare services and the optimal investment in coding, the marginal
consumer utility of v and é equal their marginal costs, which is 1 by construction.

Next consider the price p* that efficiently allocates consumers to the FFS and MA market seg-
ments. In an efficient allocation, consumers choose the MA plan if and only if the social surplus

generated by MA for them exceeds the social surplus generated by FFS. This condition is
o(6)+w(y)+o—6—vy>u—-C €)

A consumer chooses MA only if her valuation of MA minus the premium exceeds her reservation
utility in the FFS option at its zero price. Thus consumers choose MA if and only if v(6) + w(7y) +
0; — p > u. This criterion for a consumer choosing MA matches the efficient allocation condition in
(3) if p =  + v — C. Thus the planner sets the MA /FFS price difference equal to the resource cost
difference of the MA plan relative to FFS. This is the familiar result that (incremental) prices set equal

to (incremental) marginal costs induce efficient allocations.

3.3 Insurer Incentives and Coding in Equilibrium

We next consider an MA insurer who sets {4, y; p} in a competitive equilibrium. Competition will
lead to all insurers offering a contract that maximizes consumer surplus, subject to the zero-profit con-
dition, or else face zero enrollment. Because consumer preferences are identical up to a taste-for-MA
component that is uncorrelated with 6 and -y and is uncorrelated with costs net of risk adjustment,
there is a single MA plan identically offered by all insurers in equilibrium. The zero profit condition
hereis p + S = 6 + . As described above, healthcare utilization as well as spending on coding tech-
nologies can result in higher subsidies because such activities affect reported risk scores, leading to
subsidies 5(6,77) = C- (1+ p(6,7)) under the rules of MA. The insurer’s problem, where we have

substituted for price from the zero profit condition, is then

max§,7[0(5)+w('y) — ((H—'}/—C(l —l—p(&,')/))) } (4)

11



and first-order conditions yield:

o5 =1-C¥ (5a)
i
w(5)=1— c%. (5b)

If risk scores were exogenous to J and -y and fixed at their FFS level, then g—g = g—g = 0 and S would
amount to a lump sum subsidy. In this case service provision would be set to the socially optimal
level in a competitive equilibrium: v/(§) = 1, w'(§) = 1. Additionally, the competitive equilibrium
MA premium would be set equal to the premium that efficiently sorts consumers between MA and
FFS: p = 6 + 7 — C. Efficient plan design would be achieved.

Generally, however, when the subsidy is endogenous to 7y and J, inefficiencies will arise. Given
diminishing marginal utility of § and <y, and assuming that more coding services and more healthcare
services lead to higher risk scores, competition under endogenous risk scores induces MA insurers
to set the levels of both healthcare spending and coding inefficiently high: § > 6* and 4 > 7*. This is
because on the margin, insurers are rewarded via the subsidy for setting service provision above the
level implied by the tradeoff between satisfying consumer preferences and incurring plan costs. The
intuition here is the standard public finance result that taxes or subsidies that are responsive to an
agent’s behaviors induce inefficient behaviors relative to the first best. We show in Appendix Section
A4 that identical distortions arise in the incentives for setting 6 and -y in an imperfectly competitive

market with endogenous coding.'

Given the conditions in (5a, 5b), the competitive equilibrium
premium will be equal to j = (§; + ;) — C(1 4 p(J,7)) because the zero profit condition forces
the additional subsidy to be passed through to the consumer as a lower premium. This lower price

induces inefficient sorting, tilting consumer choices towards MA.

3.4 Welfare

Although our goal in this paper is not to estimate the welfare impacts of upcoding, modeling these

impacts is instructive for understanding the implications of the coding differences we identify. To

151 Appendix Section A.4, we show that the first order conditions for a monopolist produce the same incentives for
setting v and ¢ as in the competitive case. Only premium pricing decisions are affected by imperfect competition, with
prices equal to marginal costs (net of the subsidy) plus a standard absolute markup term related to the inverse of the price
elasticity of demand. The intuition is that if an insurance carrier can pay a chart review contractor $1.00 to mine diagnosis
codes that generate $1.50 in risk adjustment revenues, they should be expected to do so regardless of market structure.
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express welfare, let 014 and 8rrs denote the fraction of the Medicare market enrolled in the MA and
FFS segments, respectively. Let @4 and Prrs tally the per-enrollee social surplus generated by each
option, excepting the idiosyncratic taste component, ¢. Enrollment and surplus in the FFS and MA

segments are:

brrs = F(1—0(6) —w(v)+p(,7)) (62)
Onma = 1 — 0OFrs (6b)
Puma = v(d) +w(y) —d—7 (6¢)
Opps = - C (6d)

Here, 0rrs expresses the fraction of the population for whom idiosyncratic preferences for MA, o ~
F(-), are less than the mean difference in consumer surplus generated by FFS at its zero price relative
to the MA alternative at its price p(J,y).

Welfare is the social surplus generated for enrollees in each of the MA and FFS market segments
minus the distortionary cost of raising public funds to subsidize (both segments of) the market. Using
N to denote the total number of Medicare beneficiaries, and using tildes to indicate the competitive

equilibrium outcomes with endogenous risk scores, equilibrium social surplus per capita is

W = 0ma®Puma + OppsPrrs + /Fl( cdF(0) —x 'E(gzvm(l +00,7)) +9PPS), (7)

OrFs)

where the integral term accounts for the variable component of surplus generated by idiosyncratic
tastes for MA among those who enroll in MA. The last term captures the distortionary cost of financ-
ing Medicare. It is the government’s expenditure on FFS plus its expenditure on MA, multiplied by
the excess burden of raising public funds, x. Taking per capita FFS costs, C, as given and assuming
that the levels of 6 and <y chosen by the MA plans generate risk scores that exceed the FFS risk scores,
public spending on the Medicare program increases for every consumer choosing MA instead of FFS.
Without differential coding, FFS and MA risk scores are the same (p = 0) and the public funds term
would reduce to « - C, irrespective of the share of beneficiaries choosing MA.

Next consider the welfare loss associated with endogenous coding by comparing the social sur-

plus in (7) to a (possibly infeasible) regime in which risk scores are exogenously determined and
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service levels are optimally set. With W defined as above, let WEX® denote the social surplus per
capita in a competitive equilibrium in which risk scores are exogenous to plan choices, which we
show above replicates the social planner’s solution in the same setting. Using stars to indicate plan
features (6%, v*) and market outcomes (6", ®*) in the case of first best service levels and exogenously

determined subsidies that do not depend on those levels, this difference is

W—WEXO = —K'E(éMA p((g,’?))
(i) excess burden of additional government spending
. ~ . F'(0uma) ~ . -
_(GMA_BMA)(CI)MA_(DFFS)+/1:1(6* ) O'dF(O') _QMA(CDMA_CDMA)- (8)
MA

(iii) inefficient contracts
(ii) inefficient sorting

The expression, derived in Appendix A.5, reveals three sources of inefficiency that arise from linking
the MA subsidy to risk scores that plans can influence: (i) a subsidy “overpayment” to MA plans that
is not balanced by a reduction in FFS spending, thus expanding overall spending on the Medicare
program and the consequent public funds cost; (ii) an allocative inefficiency in which consumers sort
to the wrong FFS vs MA market segment because the MA prices are distorted; and (iii) a resource use
inefficiency in which plans over-invest in services that affect risk scores relative to the value of these
plan features to consumers.

Although we are not able to estimate the necessary parameters for assessing the extent of each
of the three inefficiencies, our estimation recovers p(5~,'7), the differential coding intensity in MA
relative to FFS. We also alternatively examine various p]-(gj, 9;) for subsegments j of MA, such as
provider owned plans and non-profits. This parameter is key in quantifying term (i) in Equation
(8). Because the base payment C and the fraction of the market in MA (f)14) are quantities that
are directly observable, we can calculate term (i) after recovering p(5,4). We do this in Section 8.1.
Note that this quantity reflects the difference between actual MA coding and FFS coding, not the
difference between actual MA coding and optimal MA coding, p(6*, v*), which too could differ from
FFS coding.!

16 Although we motivate the potential overprovision of services that impact risk scores by appealing to insurer first
order conditions, any MA /FFS difference that leads to different risk scores in MA can be interpreted in light of the welfare
expression in (8). For example, suppose that physicians were completely non-responsive to insurer incentives to inflate risk
scores. Differences in consumer cost sharing or physician practice styles between FFS and MA could nonetheless have the
practical effect of generating different risk scores. In this case, term (i) would nonetheless correctly describe the differential
excess burden associated with providing Medicare through MA instead of FFS.
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Term (ii) is a function of how many consumers choose MA in equilibrium relative to the first best:
s — 0a14. In Section 8.2 we combine our estimates of p with parameters from the MA literature to
calculate how different the size of the MA market would be relative to what we observe if the differen-
tial MA subsidy to coding were removed, shedding some light on the size of this distortion. Term (iii)
reveals that even if consumers place positive value on the marginal coding services provided by plans
(i.e., v(8) — v(6*) > 0), there is a welfare loss with endogenous risk scores because the incremental
valuation of the coding services is less than the incremental social cost (U(g) —0(6*) <6 — 5*). In-
surers don’t internalize the full social cost of these services because the subsidy partially compensates
them for coding-related activities at a rate ng.

Because our empirical strategy is not designed to recover consumer preferences over healthcare
services, we cannot estimate term (iii). The term nonetheless provides useful intuitions in interpreting
our results. For example, it implies that inefficiencies may also arise in the provision of non-coding
services such as annual wellness visits and lab tests if these have incidental impacts on the probability
that a diagnosis is captured. In the controversial case of MA home health risk assessments, even
if home visits provide value to enrollees, such valuations are likely to fall below the social cost of
provision and would not have been included in plans if insurers were responding only to consumer
preferences over healthcare services. Likewise, it is possible in principle that consumers get value out
of intensive coding, perhaps because physicians have more information about their conditions and
can thus provide better treatment. The model shows that while improved coding may be valued by
consumers, profit maximization implies that in equilibrium its value will be exceeded by its (social
resource) cost, so the additional coding is still inefficient.

Equation (8) also informs how the government, as an actor, may or may not address the specific
inefficiencies caused by the coding incentive. The primary strategy currently used by regulators to
address the implicit MA overpayment is to deflate private plan risk scores, by some amount 7. If 7 is
set equal to p, then the additional cost of public funds terms can be eliminated.!” However, this does
not eliminate welfare losses due to inefficient sorting (term ii), as the new net-of-subsidy MA price

still does not accurately reflect the differential cost of FFS vs. MA, or due to inefficient contracts (term

iii), as the insurer’s marginal incentives to code intensely are not changed by subtracting a fixed term

7In this case the subsidy to MA plans of the type (5,%) equals « - C (1+ p(5,4) —7) = x - C which is the same as the
corresponding term in WExe, implying that the difference in public spending between W — wExo goes to zero.
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from the subsidy.'®!?

Finally, we note that the welfare analysis here is relative to a first best in a setting with exoge-
nously determined subsidies. It assumes away other distortions in the MA market that affect prices
and the design of plan services. Although our focus is on the specific distortions generated by the
coding incentive, these are just one piece in the broader landscape of efficiency and welfare in the
MA program. A complete second best analysis must account for other simultaneous market failures,
including positive externalities generated by the MA program. Indeed, a popular argument in fa-
vor of MA is that it might create important spillover effects for FFS Medicare. Studies of physician
and hospital behavior in response to the growth of managed care suggest the possibility of positive
externalities in which the existence of managed care plans lowers costs for all local insurers (Baker,
1997; Glied and Zivin, 2002; Glazer and McGuire, 2002; Frank and Zeckhauser, 2000). Any positive
spillovers, such as the role of MA in lowering hospital costs in FFS Medicare (Baicker, Chernew and
Robbins, 2013), should be balanced alongside the additional welfare costs of MA discussed here.20

Such terms, dollar-denominated, could be directly added to Equation (8).

3.5 Upcoding, Complete Coding, and Socially Efficient Coding

Motivated by the model, we define upcoding in MA as the difference between the risk score a con-
sumer would receive if she enrolled in an MA plan and the score she would have received had she
enrolled in FFS: p;(6,7) = i ma — 1i prs- It is simply the differential coding intensity between FFS
and MA, which maps to the first source of inefficiency documented in Equation (8). It is the param-
eter required to measure the excess spending (and, therefore the excess burden) associated with a
consumer choosing MA in place of FFS.

As an alternative benchmark, one could define upcoding as many physicians do: the difference
between a reported risk score and the risk score that would be assigned to an individual if coding

were “complete” in the sense that the individual was objectively examined and all conditions were

18The cost of public funds terms is also largely eliminated in settings such as the ACA Marketplaces where there is no
public option and risk adjustment is “budget neutral” (i.e. the overall level of government subsidies via the risk adjustment
system is zero), but again in equilibrium net-of-subsidy prices will not accurately reflect costs and insurers will offer
contracts with levels of both coding and healthcare services that are too high.

19Even within Medicare Advantage, if our assumption that the cost of coding and healthcare services is the same across
insurers (or, similarly, that consumers’ valuation functions for healthcare and coding services are identical across insurers)
were relaxed, insurers would receive differential subsidies that would cause additional price distortions and lead to further
inefficient sorting.

201t is also plausible that coding intensity could be inefficiently low in the absence of the risk score subsidy if coding
activities are shrouded attributes of plans and so not driven to efficient provision by competitive forces.
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recorded. Even setting aside the practical and conceptual difficulties with such a definition,?! our
model highlights its welfare-irrelevance. A benchmark of complete coding does not consider the
social resource costs of the coding. This highlights an important distinction between the economist’s
and physician’s view of this phenomenon.

A more useful alternative benchmark would be the difference between the equilibrium level of
coding services (5) and the socially efficient level (6*). We cannot observe this, given that our data
contain no information on the marginal costs of providing coding-related services, and given that
our identifying variation is keyed to recovering coding differences rather than recovering consumer
valuations over various healthcare services. We view understanding the socially efficient level of
diagnosis coding as an important avenue for future research. In particular, this would be informative

as to the size of the third source of inefficiency from Equation (8), inefficient contract design.

4 Identifying Upcoding in Selection Markets

The central difficulty of empirically identifying upcoding arises from selection on risk scores. At the
health plan level, average risk scores can differ across plans competing in the same market either
because coding differs for identical patients, or because patients with systematically different health
conditions select into different plans. Our solution to the identification problem is to focus on market-
level, rather than plan-level, reported risk. Whereas the reported risk composition of plans can reflect
both coding differences and selection, risk scores calculated at the market level will not be influenced
by selection—that is, by how consumers sort themselves across plans within the market. Therefore,
changes in risk scores at the market level as consumers shift between plans within the market will
identify differences in coding practices between the plans.

To see this, consider how the mean risk score in a county changes as local Medicare beneficiaries
shift from FFS to MA. As before, define the risk score an individual would have received in FFS
as rirrs = fi. Define the same person’s risk score had they enrolled in MA as r; pja = #; +p + €,
where p is the mean coding intensity difference between MA and FFS across all i and where we allow

for individual-level heterogeneity in the difference between MA and FFS risk scores as captured by

2IFor example, take the case of determining diabetes via an A1C blood test: If a patient’s true A1C level flits back and
forth across a clinical threshold for diabetes over the course of a year, does he have diabetes this year? Further, given that
a reasonable assumption is that the American Diabetes Association will someday revise its guidance over such thresholds,
do we base our objective measure of diabetes today on the current thresholds, or must we be agnostic about the presence
of diabetes today, knowing that medical science will someday change the diagnostic criteria?
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€;. Using 1[MA;] as the indicator function for choosing MA, an individual’s realized risk score is
then r;(1[MA;]) = ?; + 1[MA;](p + €;). Let €(0) be the average value of ¢; for the set of consumers
on the MA /FFS margin when the MA enrollment share equals 6. The county-level mean risk score
as a function of MA enrollment can thus be written as 7(0M4) = 7 + /0 - (p + e(t)> dt, where
7 expresses the unconditional expectation of #;. The integral measures the mean MA/FFS coding
difference among the types choosing MA. In the simple case of no individual heterogeneity in the size
pMA)

of the coding effect, 7( = 7+ poM4 and the derivative of the county-level risk score with respect

to changes in MA share exactly pins down the difference in coding intensity. That is, 97/96M4 = p.
In the more complex case in which there is arbitrary heterogeneity in €;, the slope 97/96M4 identifies
not the mean differential coding intensity across all 7, which is p, but rather the coding difference
(0 + €;) for the marginal consumers generating the change in market share. (See Appendix A.6.)

Figure 1 provides a graphical intuition of this idea for the simple case of a constant additive effect
of MA enrollment on risk scores. We depict two market segments that are intended to align with FFS
and MA, though the intuitions apply to considering coding differences across MA plans within the
MA market segment as well. In the figure, all consumers choose either FFS or MA. The market
share of MA increases along the horizontal axis. The MA segment is assumed to be advantageously
selected on risk scores, so that the risk score of the marginal enrollee is higher than that of the average
enrollee. Thus, the average risk within the MA segment (7M4) is lower at lower levels of 8M4.22 The
top panel shows three curves: the average risk in FFS (%), the average risk in MA (#M4), and the
average risk of all enrollees in the market (7).

In the top panel of Figure 1, we plot the baseline case of no coding differences across plans (o = 0,
€; = 0Vi). Aslong as there is no coding difference between the plans or market segments, the market-
level risk (¥), which is averaged over all enrollees, is constant in 6. This is because reshuffling enrollees
across plan options within a market does not affect the market-level distribution of underlying health
conditions. Nor does it affect risk scores if the mapping from health to recorded diagnoses does
not vary with plan choice (which is by assumption here). In the bottom panel of Figure 1 we add
differential coding. For reference, the dashed line in the figure represents the counterfactual average

risk that MA enrollees would have been assigned under FFS coding intensity, 7,1 5. The key difference

22Note that this figure does not describe selection on costs net of risk adjustment, but rather selection on risk scores.
This is because our goal here is to distinguish between risk score differences due to coding and risk score differences due to
selection. If selection existed only along net costs (and not risk scores), then estimating coding intensity differences would
be trivial. One could directly compare the means of risk scores across plans.
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in the bottom panel is that if coding intensity differs, market-level risk 7 changes as a function of
MA’s market share. This is because even if the population distribution of actual health conditions is
stationary, market-level reported risk scores would change as market shares shift between plans with
higher and lower coding intensity. As the marginal consumer switches from FFS to MA, she increases
0M4 by a small amount and simultaneously increases the average reported risk (7) in the market by a
small amount (by moving to a plan that assigns her a higher score). Thus the slope 07/96M4 identifies
p. We estimate this slope in the empirical exercise that follows.

The core intuition of Figure 1 holds if the data generating process involves multiplicative rather
than additive effects of plans on an individual’s baseline risk.?> The core intuition of Figure 1 also
holds if there is arbitrary consumer heterogeneity in ¢;, though in that case, there is no single coding
difference to identify. When ¢; varies with 6, the slope will also vary with 6. In that case, estimates of
o7 /00MA are “local,” identifying the average coding difference across the set of consumers who are
marginal to the variation in MA penetration used in estimation, analogous to the treatment on the
treated. Given that during our sample period we observe within-county changes in MA penetration
across all empirically relevant penetration ranges (omitting only very high ranges of 6 not observed
in practice) this local approximation is likely to reflect the average coding difference for the set of
beneficiaries enrolled in the MA market during this period.?* Conveniently, this local estimate is
thus also the parameter of interest for determining excess public spending.

Finally, although the bottom panel of Figure 1 depicts the empirically relevant case in which
the advantageously selected market segment is more intensely coded, the same intuition applies
regardless of the presence or pattern of selection. For illustration, in Appendix Figure A2, we depict
a case in which the advantageously selected plan codes less intensely, a case where coding differences

exist absent any selection, and a case in which selection is both nonlinear and non-monotonic.

2BIf the data generating process for MA risk scores were multiplicative as in rlMA = 71+ p), then
_ GMA a,

7(oMA) =7 +/0 (ﬁf’i(t))dt and aeﬁ = p - #;(0), where 7;(6) is the FFS risk score of the consumer type on the
MA /FFS margin. Thus if E[#;(0)] varied with 6 and differed from 1.0, our estimates of 97/06M4 should be adjusted by
dividing by E[?;(0)]. We provide evidence in Appendix A.6 that county-level means of 7; are not strongly correlated with
0, and that E[#;] is very close to one, so that 97 /904 ~ p.

or
JOMA
the change in market share. For larger, discrete changes in 6, such as those we exploit in estimation within counties over
time, the slope we estimate will be (p + €;) averaged over the consumers on the MA /FFS margin in the range of s we
observe. See Appendix A.6 for a full discussion.

24For small changes in 6, the slope identifies differential coding intensity (p + €;) for the marginal type generating

19



5 Setting and Empirical Framework

5.1 Data

Estimating the slope o7 /06M4

requires observing market-level risk scores at varying levels of MA
penetration. We obtained yearly county-level averages of risk scores and MA enrollment by plan
type from CMS for 2006 through 2011.2 MA enrollment is defined as enrollment in any MA plan
type, including managed care plans like Health Maintenance Organizations (HMOs) and Preferred
Provider Organizations (PPOs), private fee-for-service (PFFS) plans, and employer MA plans. In our
main specifications, we consider the Medicare market as divided between the MA and FFS segments
and collapse all MA plan types together. We later estimate heterogeneity in coding within MA, across
its various plan type components.’® MA penetration (§M4) is the fraction of all beneficiary-months
of a county-year spent in an MA plan. Average risk scores within the MA and FFS market segments
are weighted by the fraction of the year each beneficiary was enrolled in the segment.

All analysis of risk scores in the national sample is conducted at the level of market averages,
as the regulator does not generally release individual-specific risk adjustment data for MA plans.”’
We supplement these county-level aggregates with administrative data on demographics for the uni-
verse of Medicare enrollees from the Medicare Master Beneficiary Summary File (MBSF) for 2006-
2011. These data allow us to construct county-level averages of the demographic (age and gender)
component of risk scores, which we use in a falsification test.28

Table 1 displays summary statistics for the balanced panel of 3,128 counties that make up our
analysis sample. The columns compare statistics from the introduction of risk adjustment in 2006
through the last year for which data are available, 2011. These statistics are representative of counties,

not individuals, since our unit of analysis is the county-year. The table shows that risk scores, which

ZThese data come from the CMS Risk Adjustment Processing (RAPS) system. The RAPS dataset includes risk scores
for every Medicare enrollee, both those enrolled in MA and those enrolled in FFS. The FFS risk scores are constructed by
CMS using diagnoses found in FFS claims data. The MA risk scores are constructed by CMS using diagnoses submitted
to the RAPS by individual MA plans. These diagnoses may or may not appear on MA claims data, as some diagnoses are
extracted directly from physician notes instead of from claims. Similar data are unavailable before 2006, since diagnosis-
based risk scores were not previously generated by the regulator.

26We exclude only enrollees in the Program of All-inclusive Care for the Elderly (PACE) plans.

27CMS has not traditionally provided researchers with individual-level risk scores for MA enrollees (two exceptions are
Brown et al. (2014) and Curto et al. (2014)). A strength of our identification strategy, which could easily be applied in other
settings like Medicaid Managed Care and Health Insurance Exchanges, is that it does not require individual-level data.

2The regulator’s algorithm specifies that the demographic components (rlA) and diagnostic components (rf]? *) of in-
dividual risk scores are additively separable, which implies that the county averages are also additively separable:
P X () =7 7P,

icl
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have an overall market mean of approximately 1.0, are lower within MA than within FFS, implying
that MA selects healthier enrollees.” Table 1 also shows the dramatic increase in MA penetration

over our sample period, which comprises one part of our identifying variation.

5.2 Identifying Variation

We exploit the large and geographically heterogeneous increases in MA penetration that followed
implementation of the Medicare Modernization Act of 2003. The Act introduced Medicare Part D,
which was implemented in 2006 and added a valuable new prescription drug benefit to Medicare.
Because Part D was available solely through private insurers and because insurers could combine
Part D drug benefits and MA insurance under a single contract, this drug benefit was highly comple-
mentary to enrollment in MA. Additionally, MA plans were able to “buy-down” the Part D premium
paid by all Part D enrollees. This, along with increases in MA benchmark payments in some counties,
led to fast growth in the MA market segment (Gold, 2009). In the top panel of Figure 2, we put this
timing in historical context. Following a period of decline, MA penetration doubled nationally be-
tween 2005 and 2011. The bottom panel of the figure shows that within-county penetration changes
were almost always positive, though the size of these changes varied widely. A map of changes by
county, presented in Figure A3, shows that this MA penetration growth was not limited to certain
regions or to urban or rural areas.

Our main identification strategy relies on year-to-year variation in penetration within geographic
markets to trace the slope of the market average risk curve, d7/90M4. The identifying assumption in
our difference-in-differences framework is that year-to-year growth in MA enrollment within coun-
ties did not track year-to-year variation in the county’s actual population-level health. The assump-
tion is plausible because the incidence of the types of chronic conditions used in risk scoring (such as
diabetes and cancer) is unlikely to change sharply year-to-year. In contrast, reported risk can change
sharply due to coding differences when a large fraction of the local Medicare population moves to
MA. In support of the identifying assumption, we show that there is no correlation between within-
county changes in M4 and within-county changes in a variety of demographic, morbidity, and mor-

tality outcomes that could in principle signal health-motivated demand shifts.

2For estimation, we normalize the national average to be exactly 1.0 in each year, so that coefficients can be read as
exact percentage changes. The normalization implies that changes in county-level risk scores are identified only relative to
yearly national means. The normalization aids interpretation, but has essentially no impact on the coefficients of interest.
See Appendix Table A1 for versions of the main results using non-normalized risk scores.
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We also exploit an institutional feature of how risk scores are calculated in MA to more narrowly
isolate the identifying variation. Under Medicare rules, the risk scores that are assigned to beneficia-
ries and used as a basis for payment in calendar year t are based on diagnoses derived from service
provision in calendar year t — 1. This implies, for example, that if an individual moves to MA from
FFS during open enrollment in January of a given year, the risk score for her entire first year in MA
will be based on diagnoses she received while in FFS during the prior calendar year. Only after the
tirst year of MA enrollment will the risk score of the switcher include diagnoses she received while
enrolled with her MA plan. The timing is more complex for newly-eligible Medicare beneficiaries.
In order for an MA enrollee to be assigned a diagnosis-based risk score, CMS requires the enrollee to
have accumulated a full calendar year of diagnoses. This implies that changes in 6 driven by newly-
eligible enrollees should show up in reported risk scores with up to a two year lag. In all cases,
changes in risk scores due to upcoding should not occur in the same year as the identifying shift in

enrollment. We test this.

5.3 Econometric Framework

We estimate difference-in-differences models of the form:

Tset = Yet+ 7t + Z ,BT : gé\ff +f(Xsct) + €sct, (9)

TeT

where 7 is the average market-level risk in county c of state s at time ¢, and M4 denotes MA
penetration, which ranges from zero to one. County and year fixed effects are captured by <. and
7t, so that effects B are identified within counties across time. County fixed effects control for any
unobserved constant local factors that could simultaneously affect population health and MA enroll-
ment, such as physician practice style differences documented by Song et al. (2010) and Finkelstein,
Gentzkow and Williams (2016), as well as differences in medical infrastructure or consumer health
behaviors. Year fixed effects are included to capture any changes in the composition of Medicare at
the national level. X is a vector of time-varying county characteristics described in more detail be-

low. The subscript T in the summation indicates the timing of the penetration variable, 0, relative to

30Many individuals first enroll in MA soon after their 65th birthday (rather than January 1%t), and so will have incomplete
diagnosis records even at the start of the second calendar year of MA enrollment. In this interval, enrollees are given a
demographics-based risk score that ignores diagnoses. These facts imply that changes in 6 due to the choices of newly-
eligible beneficiaries should affect reported risk scores with up to a two-year lag. See Figure A4.
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the timing of the reported risk score. This specification allows flexibility in identifying the timing of
effects. Coefficients B multiply contemporaneous MA penetration (T = t), leads of MA penetration
(T > t), and lags of MA penetration (T < t). Contemporaneous and leading Bs serve as placebo tests,
revealing whether counties were differentially trending in the dependent variable prior to when risk
scores could have plausibly been affected by upcoding

The coefficients of interest are B;_1 and B;—» because of the institutional feature described above
in which risk scores are calculated based on the prior full year’s medical history, so that upcoding
could plausibly affect risk scores only after the first year of MA enrollment for prior FFS enrollees
and after the second year of MA enrollment for newly-eligible beneficiaries. A positive coefficient on

lagged penetration indicates more intensive coding in MA relative to FFS.

6 Results

6.1 Main Results

Table 2 reports our main results. The coefficient of interest is on lagged MA penetration. In column
1, we present estimates of the baseline model controlling for only county and year fixed effects. The
difference-in-differences coefficient indicates that the market-level average risk score in a county in-
creases by about 0.07—approximately one standard deviation—as lagged MA penetration increases
from 0% to 100%. Because risk scores are scaled to have a mean of one, this implies that an indi-
vidual’s risk score in MA is about 7% higher than it would have been under fee-for-service (FFS)
Medicare. In column 2, we add linear state time trends, and in column 3, we add time-varying con-
trols for county demographics.’! Across specifications, the coefficient on lagged MA penetration is
stable.®

An alternative interpretation of these results is that, contrary to our identifying assumption, the
estimates reflect changes in underlying health in the local market. Although we cannot rule out

this possibility entirely, the coefficient estimates for the contemporaneous MA penetration variable,

31These controls consist of 18 variables that capture the fraction of Medicare beneficiaries in the county-year in five-year
age bins from 0 to 85 and 85+.

32In Appendix Table A2, we show that the results are not sensitive to the inclusion of additional time varying county-
level controls, including the share of the Medicare population that is dually-eligible for Medicaid, the share of the Medicare
population that is under-65, and other county-level indicators of health status, such as SNP enrollment and ESRD preva-
lence. In Appendix Table A3 we show that the results are not sensitive to trimming off the smallest and largest 1%, 5%, and
10% of counties by Medicare population size.
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reported in the first row of Table 2, constitute a kind of placebo test. If there were a contemporaneous
correlation between MA penetration changes and changes in risk scores, it would suggest that the
health of the population was drifting in a way that was spuriously correlated with the identifying
variation. Contrary to this, the placebo coefficients are very close to zero and insignificant across all
specifications. Effects appear only with a lag, consistent with the institutions described above.>?

As discussed above, switchers from FFS to MA carry forward their old FFS risk scores for their
tirst MA plan year, but newly-eligible consumers aging into Medicare at 65 and choosing MA may not
have diagnosis-based risk scores assigned to them until after two calendar years of MA enrollment.
To investigate, in column 4 of Table 2 we include a second lag of 6 in the regression. Each coefficient
represents an independent effect, so that point estimates in column 4 indicate a cumulative upcoding
effect of 8.7% (=4.1+4.6) after two years. This is consistent with a data generating process that causes
a two year lag in MA-driven diagnoses entering the risk scores for newly-eligible beneficiaries. But
it is also consistent with the possibility that even among switchers, for whom effects could begin
to be seen after a one year lag, coding intensity differentials ratchet up over the time a beneficiary
stays with an MA plan (Kronick and Welch, 2014). This is plausible, as some insurer strategies for
increasing coding intensity, such as prepopulating physician notes with past years’ diagnoses, require
a history of contact with the patient. We cannot distinguish between these phenomenon in these
aggregated data. However, in Section 7, we investigate this issue using a smaller individual-level
dataset. There we show how coding differences unfold over the first three years of MA enrollment.

To put the size of our main estimate in context, a 6.4% increase in market-level risk (Table 2, col-
umn 3) would be associated with 6% of all consumers in a market becoming paraplegic, 11% devel-
oping Parkinson’s disease, or 39% becoming diabetic. The effects we estimate would be implausibly
large if they reflected true (high frequency) changes in underlying population health. However, if the
estimates reflect instead differential coding as we claim, then these magnitudes are closely consistent
with widely held beliefs about coding in MA. The Government Accountability Office has expressed

concerns that coding differences between MA and FFS are in the range of 5% to 7% (Government

33In principle, we could extend the placebo test of our main regressions by examining leads in addition to the contem-
poraneous effect. In practice, we are somewhat limited by our short panel, which becomes shorter as more leads or lags
are included in the regression. Due to the length of time diagnosis-based risk adjustment has existed in Medicare, the data
extend back only to 2006. The most recent data year available to us is 2011. Therefore, including two leads and one lag of
penetration restricts our five year panel to just the three years: 2007 to 2009. Nonetheless, we report on an extended set of
leads and lags in Appendix Table A4. The table supports the robustness of our findings in Table 2, though sample size and
power are reduced in specifications with more leads and lags.
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Accountability Office, 2013). However, as we show next, the mean MA /FFS coding difference masks

important heterogeneity not previously considered by regulators.

6.2 Falsification Tests

As further support of the identifying assumption, in Table 3 we conduct a series of falsification tests
intended to uncover any correlation between changes in MA penetration and changes in other time-
varying county characteristics not plausibly affected by upcoding. Each column in the table replicates
specifications from Table 2, but with alternative dependent variables. In columns 1 and 2, the depen-
dent variable is the demographic portion of the risk score. The demographic portion of the risk score
is based only on age and gender, which, unlike diagnoses, are not manipulable by the insurer. CMS
retrieves demographic data from the Social Security Administration. Both the lagged and contempo-
raneous coefficients are near zero and insignificant, showing no correlation between MA penetration
and the portion of the risk score that is exogenous to insurer and provider actions.>*

In columns 3 through 6 of Table 3, we test whether changes in MA penetration are correlated with
independent (non-insurer reported) measures of mortality and morbidity. Mortality is independently
reported by vital statistics. For morbidity, finding data that is not potentially contaminated by the
insurers’ coding behavior is challenging. The typical sources of morbidity data are the medical claims
reported by insurers. Here we rely on cancer incidence data from the Surveillance, Epidemiology,
and End Results (SEER) Program of the National Cancer Institute, which operates an independent
data collection enterprise to determine diagnoses. Cancer data is limited to the subset of counties
monitored by SEER, which accounted for 27% of the US population in 2011 and 25% of the population
over 65. In columns 3 and 4, the dependent variable is the county X year mortality rate among
residents age 65 and older. In columns 5 and 6, it is the SEER-reported cancer incidence in the county
X year among residents age 65 and older. Across all of the outcomes in Table 3, coefficients on
contemporaneous and lagged MA penetration are consistently close to zero. In Table A5 we show
that similar results hold when the dependent variables are various measures of the Medicare age
structure in the county x year. Each falsification test supports the assumption that actual county

population health was not changing in a way that was correlated with our identifying variation.

34 An additional implication of the results in Table 3 (also consistent with our identifying assumption) is that conditional
on county fixed effects, MA plans were not differentially entering counties in which the population structure was shifting
to older ages, which are more generously reimbursed in the risk adjustment formula.
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6.3 Heterogeneity and Provider Integration

Because diagnoses originate with providers rather than insurers, insurers face an agency problem
regarding coding. Plans that are provider-owned, selectively contract with physician networks, or
follow managed care models (i.e., HMOs and PPOs) may have more tools available for influencing
provider coding patterns. For example, our conversations with MA insurers and physician groups
indicated that vertically integrated plans often pay their physicians (or physician groups) partly or
wholly as a function of the risk score that physicians” diagnoses generate. Within large physician
groups, leadership may further transmit this incentive to individuals by placing pressure on low-
scoring physicians to bring their average risk scores into line with the group. Integration, broadly
defined as the strength of the contract between insurers and providers, could therefore influence a
plan’s capacity to affect coding.

To investigate this possibility, in Table 4 we separate the effects of market share increases among
HMO, PPO, and private fee-for-service (PFFS) plans. HMOs may be the most likely to exhibit integra-
tion, followed by PPOs. PFFS plans are fundamentally different. During most of our sample period,
PFFS plans did not have provider networks. Instead, PFFS plans reimbursed Medicare providers
based on procedure codes (not diagnoses) at standard Medicare rates. Thus, PFFS plans had access
to only a subset of the tools available to managed care plans to influence diagnoses recorded within
the physician’s practice. In particular, PFFS insurers could not arrange a contract with providers that
directly financially rewarded intensive coding. PFFS plans could, nonetheless, set lower copays for
routine and specialist visits than beneficiaries faced under FFS, which may have increased contact
with providers. PFFS plans could also utilize home visits and perform chart reviews.

As in the main analysis, the coefficients of interest in Table 4 are on lagged penetration.35 Point
estimates in the table show that the strongest coding intensity is associated with managed care plans
generally, and HMOs in particular. Risk scores in HMO plans are around 10% higher than they would
have been for the same Medicare beneficiaries enrolled in FFS. PPO coding intensity is around 7%
higher than FFS. PFFS and employer MA plans, while intensely coded relative to FFS, exhibit rela-
tively smaller effects. Because today, PFFS comprises a very small (<1%) fraction of MA enrollment,

estimates of upcoding based on changes in the HMO/PPO shares (row 1 of columns 1 and 2) are

% These regressions also separately control for penetration by the remaining specialized plan types, which served a small
share of the Medicare market. These include Cost Plans, Special Needs Plans, and other temporary CMS demonstration
plans. Contemporaneous (year t) effects are entered as controls in the table but the coefficients on these are not displayed.
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likely to be more informative of typical MA coding intensity differences today. Estimates inclusive of
PFFS (as in Table 2) are informative of the overall budgetary impact of MA during our study period.

In the last column of Table 4, we report on a complementary analysis that classifies MA plans
according to whether the plan was provider-owned, using data collected by Frakt, Pizer and Feldman
(2013). We describe these data in Appendix Section A.8. The analysis uses provider ownership as an
alternative definition of insurer-provider integration. These results indicate that provider-owned
MA plans display coding intensity that is larger than the overall mean among MA plans. Provider
ownership is associated with risk scores that are about 16% higher than in FFS Medicare, while the
average among all other MA plans is a 6% coding difference.

The results in Table 4 show that the overall average difference in coding intensity masks signif-
icant heterogeneity across plan types.’® This evidence suggests that the costs of aligning physician
and insurer incentives may decline significantly with vertical integration. The issue of vertical rela-
tionships in healthcare markets is a topic of considerable research interest (e.g., Gaynor, Rebitzer and
Taylor, 2004) and practical importance, but as Gaynor, Ho and Town (2015) describe in their recent
review, examination of vertical integration has generally suffered from “a paucity of empirical evi-
dence.” With the caveat that we cannot rule out the possibility that integrated plans produce different
risk scores for reasons unrelated to the closeness of the physician who assigns diagnoses and the plan
whose payment depends on it, we view these results as the first (even suggestive) evidence that ver-
tical integration facilitates gaming of the regulatory system. Although the coding phenomenon of
interest here is a socially inefficient behavior, our findings regarding integration also hint that strong
insurer-provider contracts could be important to the success of programs that target financial in-
centives at the level of insurers or large provider organizations but that are ultimately intended to
influence provider behavior. These include, for example, quality bonuses paid to insurers but based
on provider-influenced metrics.

Although the internal organization of the MA plan strongly predicts coding intensity, local adop-
tion of electronic health records (EHRs) appears not to play a significant role. We investigated this
possibility using data on adoption of EHR by office-based physicians available from the Office of the

National Coordinator for Health Information Technology in the Department of Health and Human

36Qur results are also likely to mask richer heterogeneity across individual plans with respect to coding intensity. Some
plans might even code less intensely than FFS because they have a strategy based on reduced utilization. We observe only
the mean overall effect (Table 2) or the mean effects by plan type (Table 4), so our results do not rule out the possibility that
some MA plans are less intensely coded than FFS.
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Services. The exercise is described in detail in Appendix Section A.9, and the results are displayed in
Table A6. Interactions between lagged penetration and an indicator for high EHR adoption by physi-
cian offices in the local market yield coefficients very close to zero, though the standard errors do not
rule out small effects. We also investigated heterogeneity in coding intensity along for-profit/not-
for-profit status of plans but found no significant differences. (See Appendix A.10 and Table A7.)
Finally, in Appendix Table A8, we examine effect heterogeneity along several margins of cross-
county differences, including the starting level of MA penetration, the change in MA penetration
over the sample period, the change in market concentration over the sample period, and the Medi-
care population size. Among these characteristics, there is some evidence that the coding impacts
of MA expansions are larger in county markets that began the sample period with lower MA pene-
tration, though we lack the statistical power to estimate this heterogeneity precisely. A larger effect
in counties with lower MA shares in 2007 could be consistent with favorable (compensated) selec-
tion into MA,*” combined with larger upcoding effects for relatively healthier consumers, though
the evidence is mixed: We investigate heterogeneity in coding across beneficiaries of different health

statuses in our individual-level analysis in the next section.

7 Individual-Level Evidence

We next turn to a smaller, individual-level dataset. In these data, we can exploit the within-person
change in insurance status that occurs when 64-year-olds age into Medicare at 65 and choose ei-
ther FFS or MA. This allows us to (i) demonstrate the robustness of our key empirical results to an
entirely different identification strategy, (ii) investigate the margins along which upcoding occurs,
and (iii) generate estimates that fully capture any practice-style spillovers into FFS in the longer-run

equilibrium.

7.1 Data: Massachusetts All-Payer Claims

We use the 2010-2013 Massachusetts All-Payer Claims Dataset (APCD) to track how reported diag-
noses for a person change when the person enrolls in MA. The APCD includes an individual identi-

fier that allows us to follow consumers across years and health plans as they change insurance status.

37 Advantageous selection into MA implies that the marginal MA enrollee is healthier in low-penetration markets, all
else equal.
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These data cover all private insurer claims data, including Medicare Advantage, Medigap, employer,
and individual-market commercial insurers. Therefore, we can observe a consumer in her employer
plan at age 64 and then again in her private MA plan at age 65.

FFS claims to Medicare are not directly captured as they are exempted from the Massachusetts
regulator’s reporting requirements. To indirectly identify claims belonging to FFS enrollees, we fol-
low an approach developed by Wallace and Song (2016), and use data from private Medigap plans.
For FFS enrollees with supplemental Medigap coverage, Medigap pays some fraction of almost ev-
ery FFS claim, creating a duplicate record of the information in the FFS claim sent to Medicare in the
form of a Medigap claim we can observe.*® Conditional on the FFS enrollee having a Medigap plan,
we observe a complete record of all the diagnosis information needed to construct a risk score. To
the extent that our sample of observable FFS enrollees is a good proxy for the full FFS population in
Massachusetts with respect to changes in coding at age 65, we can estimate the differential change in
diagnoses at 65 among MA enrollees relative to FFS enrollees.*

We focus on two groups of consumers in the data: all individuals who join an MA plan within
one year of their 65th birthday and all individuals who join a Medigap plan within one year of their
65th birthday. We divide enrollment spells into 6-month blocks and limit the sample to individuals
with at least six months of data before and after joining MA or Medigap. These 6-month periods
include different calendar months x years for different individuals. For example, for an individual
who enrolled in Medicare in March 2010, period -1 is September 2009 through February 2010, period
0 is March 2010 through August 2010, period 1 is September 2010 through February 2011, and so
on. For the pre-Medicare period we include all 6-month periods during which the individual was
continuously enrolled in some form of health insurance. For the post-Medicare period, we include
all 6-month periods during which the individual was continuously enrolled in either MA or Medigap.
Our final sample includes 34,901 Medigap enrollees and 10,337 MA enrollees. The mean number of
6-month periods prior to Medicare enrollment that we observe is 4.6 (just over 2 years), and the mean

number of 6-month periods after Medicare enrollment is 4.4. Additional details regarding the sample

38Nationally, about 31% of 65-year-old FFS enrollees have a supplemental Medigap policy. The only claims that Medigap
does not pay any part of are hospital readmissions and lab claims (paid in full by FFS). Our analysis assumes these types
of claims contain no relevant diagnoses that are not also recorded on another claim for the beneficiary. For hospital read-
missions, it is unlikely that the new admission will include relevant diagnoses of a chronic condition that did not appear
in a prior admission. Differential treatment of lab claims is irrelevant for the calculation of risk scores because the CMS
algorithm that generates HCCs from claims ignores diagnoses recorded on lab claims.

%Note that this requirement is weaker than requiring that levels of risk scores are similar between FFS enrollees with and
without Medigap.
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construction are included in Appendix Section A.11.

We use diagnoses from the claims data to generate risk scores for each individual based on di-
agnosed conditions during each 6-month period in the individual’s enrollment panel. Risk scores
are calculated according to the same Medicare Advantage HCC model regardless of the plan type in
which the consumer is enrolled (i.e., employer, individual market, FFS, or MA). These risk scores do
not share the lagged property of the scores from the administrative data used in Sections 5 and 6 as
we calculate the scores ourselves based on current-year diagnoses. We normalize these risk scores by

dividing by the pre-Medicare enrollment mean of the 6-month risk score.

7.2 Risk Scores across the Age 65 Threshold

To recover the effect of entering MA relative to entering FFS on an individual’s risk score, we estimate

the following difference-in-differences regression:

Timt = Po + P1MA; + BoMA; x Posty + ay + Iy + €t (10)

where 7, represents i’s risk score during 6-month period t, MA; is an indicator equal to one in
all periods for anyone who will eventually elect to join MA, Post; is an indicator equal to one for
periods of post-Medicare enrollment, «; represents fixed effects for each 6-month period relative to
initial Medicare enrollment, and I';, controls for a full set of month x year of Medicare entry fixed
effects (e.g., joined Medicare in June 2012). B, is the difference-in-differences coefficient of interest. It
measures the differential change in risk scores between the pre- and post-Medicare periods for indi-
viduals enrolling in MA vs. individuals enrolling in FFS. We also estimate versions of this regression
where we include individual fixed effects or match on pre-enrollment characteristics.

We begin in Figure 3A by plotting the coefficients from an event study version of Equation (10)
where we interact MA; with each of the period fixed effects (a;) instead of a single Post indicator.
This specification makes it simple to assess the existence of differential pre-trends, which here would
indicate that people who would eventually choose MA were already on a path to higher risk scores
prior to their actual Medicare enrollment. Each plotted coefficient represents the difference in the
differences of risk scores of people entering MA vs. FES in the indicated period relative to the period

just before Medicare enrollment (period —1). The dashed vertical line indicates Medicare enrollment

30



(the start of period 0). The figure shows that during the 36 months prior to Medicare enrollment, the
risk scores for the MA and FFS groups were not differentially trending. Post-Medicare enrollment,
however, there is a clear divergence, with risk scores for the MA group increasing much more rapidly
than risk scores for the FFS group. By the sixth 6-month period (3 years after Medicare enrollment),
normalized risk scores for the MA group were higher by 0.1, or about 10% of the pre-period mean,
relative to the FFS group. The apparent growth in the MA coding effect from time zero to 36 months
is consistent with the ratcheting-up interpretation of results from column 4 of Table 2 (in the national
sample and main identification strategy). These showed that effects were larger (8.7%) by the second
year following a shift in 6. Figures 3B and 3C present similar event studies where the dependent
variable is the number of HCCs and the probability of having any HCC during the 6-month period,
respectively. These figures show similar patterns.

Table 5 presents regression estimates in which all 6-month periods are grouped as either pre- or
post-Medicare enrollment spells, as in Equation (10). Column 1 presents results without individual
fixed effects, while column 2 includes individual fixed effects, which subsume the MA indicator.
The negative coefficient on M A; in the first row of column 1 indicates that during the pre-Medicare
periods, people who would eventually select into MA had lower risk scores than people who would
eventually select FFS, consistent with previous evidence that MA is advantageously selected (e.g.,
Curto et al., 2014). The coefficients of interest on MA; x Post; indicate that risk scores for the MA
group grew more rapidly in the post-Medicare periods relative to the FFS group: The risk score of
an individual enrolling in MA increased by 4.7 to 5.8% more than the risk score of an individual
enrolling in FFS between the pre- and post-Medicare periods. This magnitude is consistent with the
visual evidence in Figure 3, if one took the mean over the entire post period.

The results are robust to alternative ways of controlling for MA/FFES selection. In columns 3
through 6 of Table 5, we estimate versions of the regression in column 1 in which we match individ-
uals on pre-period observable characteristics: gender, county of residence, pre-Medicare risk scores,
and pre-Medicare count of HCCs. For these regressions, we generate propensity scores on com-
binations of these variables, then weight the difference-in-differences regressions using these scores,
dropping observations for which there is no common support. This matching procedure significantly
reduces the coefficient that reflects selection: the coefficient on MA; reduces from —0.112 to —0.028.

But even as the selection estimate is reduced, estimates of the difference-in-differences effect of in-
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terest (the effect of MA enrollment on risk scores in the post period) are stable, remaining similar in
size to the main specifications in columns 1 and 2. In Appendix Table A9, we estimate versions of
Equation (10) that include interactions between Post; and a full set of fixed effects for an individual’s
pre-Medicare plan. Effects are identified off of consumers in the same pre-65 employer or individual
market plan who make a different MA /FFS choice at 65. In all robustness exercises, the results are
consistent with columns 1 though 6 of Table 5.

These results support and complement the findings of our main analysis, though it is important
to understand the limitations of the individual-level analysis. Specifically, the analysis here is limited
to just the subset of FFS enrollees who enroll in Medigap. It is also limited to individuals who live in
Massachusetts. And the nature of the identification exercise here means that these effects are identi-
tied for 65- (but not 85-) year-olds. We also note that point estimates derived from individual claims
data are likely to somewhat underestimate effects because claims data do not capture all diagnoses
submitted by MA plans to the regulator for risk score purposes. In particular, claims data do not
reflect diagnoses added via chart review programs.?’. Our main, national analysis in Section 6 faces
none of these limitations. Nonetheless, these individual data have distinct advantages for consid-
ering the mechanisms behind the differential coding in MA. They also allow us to observe coding

differences in a setting where MA penetration is stable. We turn to each of this issues next.

7.3 Mechanisms

In addition to the estimates of the coding effects, the richer data in the APCD allows us to investigate
some of the mechanisms behind the differential coding increases we observe in MA. Of particular
interest is who is upcoded: relatively healthy or relatively sick enrollees? Enrollees who, if not for
MA, would not have made contact with the medical system in a given period, or enrollees with
regular healthcare utilization regardless of the MA /FFS enrollment choice? Understanding such
questions is useful in forming future regulatory frameworks that are less susceptible to manipulable
diagnosis coding.

In columns 7 through 10 of Table 5, we investigate MA coding effects along the extensive and

40A subset of diagnoses typically come from physicians’ notes and are often extracted by third parties or insurer in-
house chart review programs. These are submitted to CMS but never recorded on the claims themselves. The omission
of these additional diagnoses (which one large insurer suggested to us make up about 20% of all submitted diagnoses)
would cause these estimates to be smaller than the estimates from Section 6, which are based on the actual risk scores in
the administrative data and so include submitted diagnoses not present on claims.
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intensive margins. In columns 7 and 8, we replace the dependent variable with an indicator for hav-
ing at least one HCC in a 6-month period. Individuals in the MA group have a lower probability of
having an HCC during the pre-Medicare period, but their probability of having any HCC increases
more in the post-Medicare periods relative to the FFS group. Columns 9 and 10 investigate the inten-
sive margin. The dependent variable in these columns is the number of HCCs during the 6-month
period, restricted to person-period observations with at least one HCC. Here the results with and
without individual fixed effects have different interpretations. Without fixed effects, the results in-
dicate that the average number of HCCs among person-period observations with at least one HCC
increases more quickly after Medicare enrollment for the MA group vs. the FFS group. With fixed
effects, the results indicate that within a person the average number of HCCs during periods with at
least one HCC increases more after Medicare enrollment for the MA group vs. the FFS group. These
resul