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1 Introduction

Insurgency is typically defined as armed rebellion against a central authority.1 It is one

of the most opaque forms of armed conflict, as intertwining connections with the population

blur the lines between combatants and civilians [Kilcullen, 2009]. The relative strength

and even the identity of potential negotiating counterparts are unclear, and in the words of

Fearon [2008] “there are no clear front lines.”In the post-World War II era, insurgency and

guerrilla conflict have been enormously costly in socioeconomic terms, and they rank among

the most detrimental and perduring forms of internal conflict and political violence [O’Neill,

1990].2 Our paper offers a novel contribution to the empirical analysis of these asymmetric

and irregular wars.

This paper’s focus is the insurgency in Afghanistan. For the U.S. side alone, operations

cost the lives of more than 1, 800 troops between 2001 and 2011, and led to more than $444

billion in military expenses.3 Statistics for Afghan citizens are less certain, but the adverse

effects are obvious. Soon into the operation, the U.S. military acknowledged through a

drastic adjustment in tactics that the Afghan conflict differed substantially from previous

large scale military operations.

Fighting against an alliance between Afghan Taliban insurgents and al-Qaeda, front lines

were uncertain and the unity of the adversary doubtful. Experts disagreed about whether the

Taliban were a unified fighting organization, or rather an umbrella coalition of heterogeneous

forces. Some were skeptical regarding the degree of control Taliban leader Mullah Mohammed

Omar exerted over the powerful Haqqani faction and the Dadullah network.4 Similarly, the

1According to O’Neill [1990] “Insurgency may be defined as a struggle between a nonruling group and
the ruling authorities in which the nonruling group consciously uses political resources (e.g., organizational
expertise, propaganda, and demonstrations) and violence to destroy, reformulate, or sustain the basis of one
or more aspects of politics.”

2For a recent and exhaustive review see Blattman and Miguel [2010].
3Table 1 provides a summary of the US Afghan counterinsurgency timeline.
4For example, the UN report [2013] stated that

Despite what passes for a zonal command structure across Afghanistan, the Taliban have shown
themselves unwilling or unable to monopolize anti-State violence. The persistent presence and
autonomy of the Haqqani Network and the manner in which other, non-Taliban, groupings like
the Lashkar-e-Tayyiba are operating in Afghanistan raises questions about the true extent of
the influence exerted by the Taliban leadership.

Brahimi [2010] reports a statement by Ashraf Ghani, current Afghan president, in a lecture for the Miliband
Programme at LSE indicating “The Taliban are not a unified force - they are not the SPLA in Sudan or the
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Hizb-i Islami faction was considered by many a separate entity from the Taliban proper.5

On the other hand, Dorronsoro [2009] offers the following in an insightful qualitative essay:6

The Taliban are often described as an umbrella movement comprising loosely

connected groups that are essentially local and unorganized. On the contrary,

this report’s analysis of the structure and strategy of the insurgency reveals a

resilient adversary, engaged in strategic planning and coordinated action.

This disagreement is unsettling: understanding the extent of territorial control and popula-

tion support of insurgent groups is essential for military operations. Furthermore, knowledge

of the internal organization and cohesion of rebel groups can be used to prevent selective

violence by insurgents, and ultimately helps with the reconstruction of areas affected by the

conflict.7

This paper shows how data regarding simultaneous violent events can be used to es-

timate the number of different insurgent groups active and their territories, features that

are typically unobservable to the econometrician/analyst. We make use of the fact that

insurgent groups with the ability to launch joint attacks generally appear to do so. Our

analysis thus relies on the conclusions of the existing literature regarding the incentives for

organized groups to launch this sort of attack. Deloughery [2013] provides a recent review of

this literature, and presents systematic evidence of the advantages of simultaneous attacks

for terrorist organizations in terms of media coverage and appeal in the recruitment of new

fighters – incentives that operate within insurgent organizations as well.8 We take these

Maoists in Nepal” while Giustozzi [2009] states that “The Taliban themselves are not fully united and the
insurgency is not limited to the Taliban.”

5Fotini and Semple [2009] state explicitly that “the Taliban is not a unified or monolithic movement”
and Thruelsen [2010] that “the movement should not be seen as a unified hierarchical actor that can be dealt
with as part of a generic approach covering the whole of Afghanistan.”See also Giustozzi [2007].

6In contrast, the Pakistani Taliban are described in the same essay as an umbrella organization that is
clearly non-unitary.

7One example of the importance of understanding insurgent group structures for post-conflict negotiations
comes from Colombia. The recent appearance of the Bandas Criminales Emergentes (BACRIM) in lieu of the
AUC paramilitary combatants has been a central issue in the work of Colombia’s Reconciliation Commission
in deploying resources and rebuilding state institutions and control at the local level.

8From a western perspective, the 9/11 attacks in the United States are the most obvious example of
the salience of such simultaneous violence, but the phenomenon is widespread. For example, in southern
Thailand insurgent movements have adopted similar tacticts: “On April 28, 2004 groups of militants gathered
at mosques in Yala, Pattani, and Songkhla provinces before conducting simultaneous attacks on security
checkpoints, police stations and army bases” [Fernandes, 2008]. The Indian Mujahideen, responsible for
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incentives as given, and assume that an organization with the capability of launching such

attacks will choose to do so. The simultaneous attacks that are observed can thus be used

to analyze the underlying structure of the insurgent groups present.

The basic assumption in our model is that attacks on the same day in different locations

are either the result of random chance, or represent an insurgent group with a presence in

both locations. A simple structural model of attacks is used to distinguish between “random

chance” and organized group behaviour. After estimating the number of different guerrilla

groups and their territorial extent, we assess the main empirical determinants of insurgent

presence, and also produce an analysis of shifts in insurgent presence over time.

The paper thus addresses three broad questions: two methodological and one empirical.

First, when faced with multiple violent incidents in multiple regions, how can one decide

whether the simultaneous incidents observed are isolated idiosyncratic events, as opposed to

organized attacks by coalitions of assailants? Second, how can one identify from incident

data alone how many distinct insurgent groups (if any) are attacking? Third, what are the

socioeconomic determinants driving the diffusion and segmentation of the rebels within a

specific region and across regions?

The estimation method consists of modelling a country experiencing an insurgency as

a set of points at which violent incidents can occur in each period. For the application to

Afghanistan, each point in this set represents the centroid of an administrative district, and

each period is one day. Our main working assumption is that attacks on the same day in two

different districts will occur with greater-than-random frequency if the same insurgent group

is operating in both. Using a variety of assumptions regarding what the “reference” cross-

district covariance in attacks would be in the case where there were no organized groups,

we calculate which sets of districts are more correlated than would be expected. In general,

these districts will be ones that have repeatedly experienced simultaneous attacks. We then

use this information to estimate the set of districts in which each guerrilla group operates.

the 2008 Mumbai attacks, typically carry out simultaneous attacks [Subrahmanian et al., 2013]. Kurdish
nationalists and the Tamil Tigers are known to have adopted simultaneous attacks as a strategy. In Africa,
Boko Haram in northern Nigeria has carried out coordinated attacks on multiple targets such as churches,
and Anderson [1974] describes coordinated attacks in Portuguese colonies. Simultaneous attacks and suicides
have been a trademark of international jihadist organizations and of al-Qaeda in particular, making our
approach particularly well-suited to the Afghan insurgency case.
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We present estimators that allow for a single district to be contested by many guerrilla

groups or by none. The estimators provide the number of guerrilla groups operating, the

geographic area of each of these, and the intensity of each group’s activity in each district. In

order to provide these estimates, the data generating process used to model the occurrence of

violent incidents is somewhat stylized. There is thus some loss of generality, but parsimony is

necessary given the lack of detailed data on the internal organization and planning strategy

of insurgents and counterinsurgency forces.

The main empirical results of the paper are as follows. We conclude that insurgent

activity in Afghanistan is best represented by a single organized group, rather than sev-

eral independent groups, and that the extent of this group is largely determined by ethnic

boundaries. This result is robust to employing only within-month covariance in attacks (i.e.

ignoring between-month variation), to constraining the analysis to districts with a number

of incidents above specific thresholds, and to limiting the analysis to incidents explicitly

claimed by the Taliban. As a verification of our methodology, we conduct an analysis of the

Pakistani Taliban (Tehrik-i-Taliban Pakistan, or TTP), using data from Pakistan. The TTP

are completely separate from their Afghan counterparts and are unanimously considered an

umbrella coalition of diverse violent actors.9 We show that in the case of the TTP, our

methodology finds multiple groups, and is thus consistent with the qualitative literature.

We then consider changes in the extent of the Afghan Taliban between two time peri-

ods: 2004-2007 compared to 2008-2009. We find that insurgents spread largely to districts

adjacent to those where they were already present: this is sometimes described as an “oil

spot” strategy.10 We also find that there has been penetration by the insurgents into areas

traditionally occupied by non-Pashtun ethnic groups. We finish by discussing several case

studies outside of Afghanistan where application of the methodologies we present could be

helpful in assessing the economics of post-conflict reconstruction and power sharing with

former insurgent groups from Latin America, Asia, and Africa.

An increasing amount of attention has been devoted within the fields of development

9Dorronsoro [2009] discusses how“The Pakistani Taliban have different structures, different leaders, and
a different social base [relative to the Afghan Taliban -AN]. They are, in fact, an umbrella movement
comprising loosely connected groups.”

10See Krepinevich [2005] for the relevance of this approach in Iraq by U.S.-led coalition forces.
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economics and political economy to the study of armed conflict within countries, in particular

civil wars and insurgency. Economists have been interested in the analysis of violence and

conflict at least as far back as Schelling [1960] and Tullock [1974], with Hirshleifer [1991,

1995a, 1995b, 2001] and Grossman [1991, 2002] offering more recent theoretical contributions.

Outside of economics the interest is even greater: political scientists have dedicated to the

study of conflict a large part of their work in the field of international relations.

Political science and economics have provided some of the most recent and novel insights

in the study of insurgency.11 As underlined by Blattman and Miguel [2010], a remarkable

characteristic of this recent wave of research has been a strong empirical inclination and

an increasing attention to micro-level (typically incident-level) information. The use of

precisely geocoded micro data in this research is a departure from more established “macro”

empirical approaches, which were based on country level information or aggregate conflict

information.12

This paper is one in the new “micro” style, with a specific emphasis on the analysis

of insurgency and small wars. We do not address conventional warfare. Currently, much

less is known about non-conventional warfare (and its consequences on civilian populations)

than is known about wars between regular armed forces. Economic and statistical evidence

on the role of anti-government guerrilla activities is still sparse, even though such activities

cause substantial damage worldwide and appear from a quantitative perspective to be the

predominant form conflict in civil wars since 1945 [Fearon, 2008; Ghobarah et al., 2003].

Insurgents’ strategies are generally not well understood, and neither are the subtleties of their

interactions with the noncombatant population [Gutierrez-Sanin, 2008; Kilcullen, 2009]. A

particular incentive for further study is that insurgent activity is also often linked to terrorist

activities, and thus there is a connection with the growing literature on the economics of

terrorism [Bueno de Mesquita and Dickson, 2007; Benmelech, Berrebi, Klor, 2012].

The remainder of this paper is organized as follows. Section 2 develops our methodology

for the estimation of coalition structures among insurgent groups. We describe our data in

11These include Berman [2009], Berman et al. [2011], Condra et al. [2010], Blair et al. [2012], Condra
and Shapiro [2012], Cullen and Wedmnan [2013], and Bueno de Mesquita [2013].

12Notable instances of the “macro” approach include Fearon and Laitin [2003], Boix [2008], Collier and
Hoeffler [2004], and Collier and Rohner [2008], among many others.
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Section 3, particularly the WITS incident-level data for Afghanistan and Pakistan, which

have been generously made publicly available by the Empirical Studies Of Conflict (ESOC)

project. The analysis of the determinants of insurgent group presence is developed in Section

4. Section 5 presents several case studies focused on the economic importance of understand-

ing insurgent organization in conflict and post-conflict environments in developing countries.

Section 6 concludes.

2 Econometric Setup

The objective is to determine whether insurgent activity in Afghanistan features only a

single organized group, or several, and what the extent of these groups are. To allow for

the possibility that there are no organized groups present in a given location even though

attacks occur, the model will include the possibility of random attacks from unorganized

local actors. The number of organized groups that best matches the observed data can then

be estimated.

Let locations be indexed by i, and let there be a total of N locations at which attacks

occur. For the application to the Afghan data, locations will be taken to be administrative

districts. Violent occurrences in i can be of two types: random or organized by insurgent

groups. That is, we suppose that observed attacks may be initiated either by unorganized

local militants or by members of an organized group which operates on that territory. Let

ℓi be the number of unorganized local militants in district i. Let organized insurgent groups

be indexed by j, and let J be the total number of such organized groups. Let αij be the

number of members in district i belonging to organized group j.

Time is discrete and indexed by t. In the Afghan data, the time periods used will be

days. This relatively high frequency attack data is useful because it reduces the number of

attacks that will be simultaneous simply by random chance.

In each time period, the probability that a unorganized local militant launches an attack

is η, which does not change across time. The decision by unorganized militants to attack

is independent of the decision of anyone else (unorganized militant or group member). The

expected number of attacks by local militants in district i at time t is thus ηℓi, and the

variance within district i is η(1− η)ℓi. The covariance in these attacks between two districts
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i and i′ is zero: the attack decisions are made independently, and the probability of an attack

is constant (this assumption is relaxed in what follows).

In contrast to unorganized militants, members of an organized group are more likely to

attack on some particular days than on others. Let ϵjt be the probability that a member of

group j will attack at time t. This probability is the same for all members of group j, and

whether any given member attacks is independent of other attack decisions after conditioning

on the attack probability ϵjt. Across time, the covariance of attacks between two members

of the same group is thus Var(ϵj). We assume that this variance is constant across groups,

and will refer to it as σ2. Assume that for any other group j′, ϵjt is uncorrelated with ϵj′t.

Thus, the covariance of attacks between two members of different groups is zero.

Consider the members of group j. If there are αij members in district i and αi′j members

in district i′, then the covariance in attacks over time between these two districts, due to

the presence of members of group j, is αijαi′jσ
2. Summing over members of all groups,

the covariance in attacks between districts i and i′ will be
∑

j αijαi′jσ
2. Now consider the

variance-covariance matrix Γ for attacks, where the entry in row i and column i′ gives the

covariance in attacks across time for these two districts. This matrix can be decomposed as

Γ = ΓD + ΓH , where ΓD is a diagonal matrix and ΓH is a “hollow” matrix (main diagonal

zero) with the form

(1) ΓH = σ2


0

∑
j α1jα2j∑

j α2jα1j 0

...∑
j αijα1j ...

∑
j αijαi′j

...


This decomposition is considered because the diagonal entries of the covariance matrix do

not provide useful information regarding the group membership of districts: diagonal entries

are a sum of variance from unorganized militants and variance from organized groups, and

there is no intuitive way to distinguish between these two components.13 Thus, for estimating

13The diagonal entries of Γ do not in general have a useful form. For example, even in the very simple
case where there is only one group and ϵ1 is uniformly distributed on [0, b], the ith diagonal entry would

be a non-trivial nonlinear expression b2

12 (
6
b + (αi1 − 4))αi1 + ℓiη(1− η). The covariance matrix is thus used

throughout rather than the correlation matrix. A simpler form for the diagonal entries could be obtained
by using a mixture Poisson approximation, such as the Poisson-Gamma used in Ashford and Hunt [1974].
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group structure, only the off-diagonal entries of the covariance matrix will be used. As a

normalization, we set σ2 = 1.

Let γii′ =
∑

j αijαi′j denote the off-diagonal entry on row i and column i′ of ΓH . Let γ̄ii′

be the corresponding entry of the covariance matrix in the observed sample. Estimation will

be based on Γ̄H , the sample covariance matrix ignoring the diagonal entries.

The model just presented is clearly a stylized model of the attack behavior of insurgent

groups, and the covariance structure imposed is not without loss of generality. A particularly

strong assumption made in the model is that the members of an insurgent group do not

move between districts: a given group j has a certain membership αij in district i, and those

members will either be encouraged to attack in a given period (a high ϵjt), or not (low ϵjt).

A very different model would be one in which members of an insurgent group are mobile,

and in any given period have the choice of attacking in one of many districts. This latter

model implies that organized groups should lead to negative covariances γii′ , as insurgent

group members who attack in district i could not also be attacking in district i′ in the same

period. In contrast, the model presented above suggests γii′ should be positive if the same

insurgent group j has members in both i and i′, as attacks in both i and i′ will be higher

in periods when ϵjt is high and lower in periods when ϵjt is low. In the case of the Afghan

data, the observed covariances γ are systematically positive.14 The qualitative research of

Deloughery [2013] and others, as discussed in Section 1, also suggests that a model without

substantial substitution in attacks across districts appears most appropriate.

The desired estimates are Ĵ , giving the total number of organized insurgent groups, and

an α̂ij for each district i and group j, giving the number of insurgent members of that group

operating in that district. The set of estimates {α̂ij} thus has NĴ elements. J is an integer,

and estimation strategies for this sort of parameter do not typically yield confidence intervals

of the sort that would be obtained for a continuous parameter. While the setup described

above does not appear to correspond exactly to any discussed previously in the literature, it

is close to problems addressed by spectral clustering and non-negative matrix factorization,

A variety of these distributions are discussed in Karlis and Xekalaki [2005]. None of the options available,
however, appear to simplify the diagonal entries enough to be useful from an empirical perspective.

14Permutation tests of the sort discussed later indicate that the mean covariance is positive at any rea-
sonable confidence level.
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and these two approaches can be used to produce estimates Ĵ and {α̂ij}.

An approach based on spectral clustering will be presented first, while non-negative

matrix factorization techniques will be considered in Section 2.2. These two approaches

are largely complementary and rely on different assumptions. This provides a form of cross-

validation for our results, which is important given the novelty of these methodologies within

the field of political economy. It is difficult to determine the properties of the estimator

based on spectral clustering, and the statistical tests available appear to have low power.

The approach based on non-negative matrix factorization, however, includes permutation

tests that occur as a natural part of the estimation procedure. Unfortunately, the threshold

approach used produces only point estimates and not accompanying confidence intervals.

Confidence intervals for {α̂ij} and Ĵ are thus not reported below. We are, however, able to

reject important null hypotheses at reasonable levels of significance.

2.1 A Spectral Clustering Approach

In graph theory, spectral clustering is a technique used to partition nodes of a graph

into clusters. A full review of the methodology and some of its applications in statistics and

computer science is available in Luxburg [2007]. Traditional clustering algorithms such as

k-means are known to perform poorly when used directly on a highly dimensional matrix

such as ΓH . Spectral clustering, on the other hand, is well suited for this sort of data because

dimensionality reduction occurs naturally as a part of the algorithm.

Estimation via spectral clustering requires an additional assumption different from those

needed for the technique of Section 2.2: specifically, for our spectral clustering estimator it

is necessary to assume that the various insurgent groups present do not have overlapping

territories. That is, there is at most one organized group j present in any given district

i. Based on this assumption, reordering the districts i allows ΓH to be written as a block-

diagonal matrix:

(2) ΓH =


Γ1
H 0

0 Γj
H

...
0 ... ΓJ

H
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where there are a total of J organized groups, and each block Γj
H has the form given in

Equation 1. Here ΓH corresponds to the adjacency matrix for a weighted undirected graph,

with the weights given by the off-diagonal matrix entries γii′ being determined by the degree

of group presence in each district.

To perform spectral clustering, a technique following Shi and Malik [2000] will be used.15

This technique is based on a “graph Laplacian” matrix, which is constructed from the adja-

cency matrix ΓH : the graph Laplacian has off-diagonal entries equal to the negative of those

of the adjacency matrix, and diagonal entries such that all rows and columns sum to zero.

The approach is based on examining the eigenvalues of the graph Laplacian. The number of

zero eigenvalues of the graph Laplacian matrix will correspond to the number of connected

components of the weighted undirected graph described by the adjacency matrix ΓH . This

is J , the number of blocks of ΓH .

The intuition for this result is relatively straightforward. Setting the diagonal entries

so that rows and columns sum to zero ensures that the rows (and columns) of the graph

Laplacian corresponding to each Γj
H block are linearly dependent. Γj

H is full rank: each row

of Γj
H is a vector of positive numbers with a single 0 on the diagonal. The transformation

to the graph Laplacian L reduces the rank of each block by one. Thus, the reduction in

rank of the overall graph Laplacian, relative to the initial ΓH will be equal to the number of

blocks of L, which is also the number of blocks of ΓH and the number of organized groups

J . This is equivalent to the number of zero eigenvalues because this is the dimension of the

null-space of L.

Let D be a diagonal matrix with entries such that the rows of L = D− ΓH sum to zero.

If L were known, the the number of organized groups would be equal to the number of zero

eigenvalues of L. However, the data available gives the sample covariances γ̄ii′ rather than

the true γii′ , and thus Γ̄H is observed instead of ΓH . A simple modification of Shi and Malik

[2000] is thus used: use Γ̄H to construct L̄, and then count the “zero” eigenvalues of L̄.

Clustering is thus feasible, because it is based on statistics from the observed sample, and

the estimator using L̄ is a consistent estimator for the clusters that would be obtained using

15Luxburg [2007] provides a summary of this method.
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the true graph Laplacian L. Further details are provided in Appendix A.16

In a finite sample, the eigenvalues calculated from L̄ are subject to finite sample variation.

In particular, random variation will result in positive γ̄ii′ entries in some cases where the true

γii′ is zero, and negative γ̄ii′ entries in some cases where the true γii′ is positive. This random

variation will tend to increase the rank of the L̄ relative to L. This problem is particularly

severe for districts i for which there are few attacks: the data provides little information on

the group structure in these districts, and if one object of interest is J , the total number of

groups, the inclusion of these particularly noisy districts could result in a substantial amount

of additional noise in the estimate Ĵ .

A first step to dealing with this problem is to exclude districts with very few attacks from

estimation: thus, for the analysis of the Afghan data, the spectral clustering approach will

use data only for those districts in which there were 3 or more attacks.17 This approach does

not fully solve the underlying issue, however. Eigenvalues that would be zero asymptotically

will not be zero in a finite sample, because some of the entries that are zero in ΓH will be

positive in the observed Γ̄H . When using a covariance matrix that includes this finite sample

variation, it is thus necessary to account for the fact that eigenvalues that are zero in the

population may not be zero in the sample.

The literature on spectral clustering provides a variety of methods to determine how

reliable an estimate can be obtained by examining eigenvalues. We check the reliability of

our estimated Ĵ by considering “eigengaps” similar to those used by Ng, Jordan, and Weiss

[2002]. This method is based on matrix perturbation theory, and was originally intended for

the case where the true Laplacian L was observed directly. When used with a noisy matrix,

16An estimate of the number of organized groups present, Ĵ , can also be obtained based only on which
matrix entries are zero and which are non-zero. In this case, the sample covariance matrix used would be

(3) Γ̃H =


Γ̃1
H 0

0 Γ̃j
H

...

0 ... Γ̃J
H


where each Γ̃j

H matrix has zeros on the diagonal, and ones in all off-diagonal entries. Γ̃H thus has the form
of an adjacency matrix for an undirected graph: districts correspond to the nodes of this graph, and there
is an edge present between districts i and i′ if the same organized group is active in both districts. One
advantage of the this binary classification is that it emphasizes the relationship between spectral clustering
and graph theory.

17Other cutoffs yield similar results.
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the method still provides an heuristic indication of the reliability of the estimated Ĵ .

Begin by sorting the eigenvalues λ of L in increasing order, such that λ1 is the smallest

and λN the largest.18 The difference λk+1 − λk is defined the kth eigengap. Ng, Jordan, and

Weiss [2002] argue that a large eigengap indicates that perturbation of the eigenvectors of L

would not change the clusters produced by spectral clustering. Luxburg [2007] thus suggests

that the right choice for Ĵ is a number such that λk is “small” for k ≤ Ĵ , and the Ĵth eigengap

is large. The intuition here is that if there truly are Ĵ eigenvalues that are zero, then these

appear to be non-zero in the finite sample only due to random variation. In contrast, the

Ĵ + 1th and larger eigenvalues would be strictly positive even if the true L were used. An

examination of the Ĵth eigengap thus provides a heuristic test of whether the choice of Ĵ was

reliable, or whether small changes due to random variation might result in a different number

of zero eigenvalues. The underlying difficulty here is determining what exactly constitutes

a “zero” eigenvalue, when there is finite sample variation. A large eigengap provides some

confirmation that an appropriate definition of “zero” has been chosen.

After calculating an estimate Ĵ for the number of organized groups, and checking via

the eigengap approach whether this estimate appears to be reliable, a remaining problem

is to determine which insurgent group is present in which district. This problem is quite

close to a classical k-means problem, where k is now known.19 There are thus numerous

possibilities for determining which insurgent group is active in a given district, including

approaches based on eigenvectors, such as are mentioned in Ng, Jordan, and Weiss [2002].

The empirical results below will show that Ĵ = 1, and we thus do not discuss further how

to deal with the case where Ĵ > 1, other than noting that many standard methods are

available.

While it is relatively straightforward to obtain a consistent estimate for J , the total

number of organized insurgent groups, a consistent estimate for {αij} is more challenging.

The main difficulty here is that the spectral clustering literature generally assumes that the

true graph Laplacian L = D − ΓH is observed, whereas the data provides only L̄, a graph

18Here we continue to consider only districts that have a certain minimum number of attacks, but for
simplicity the notation assumes that no districts are excluded on this basis and thus there are still N
districts, and N eigenvalues.

19For a standard reference here, see Hastie, Tibshirani, and Friedman [2009].
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Laplacian that includes noise due to random variation in the attack data. However, in the

case where the number of districts, N , is large, there is a computationally trivial approximate

estimator for αij.

Specifically, suppose that each organized group that is present has members in a large

number of districts, and that no single district has a particularly large αij. Let Ij be the

set of districts that have members of organized group J . Then, since an assumption of the

spectral clustering model was that the organized groups do not overlap, an estimate of αij for

i ∈ Ij can be produced via the following approximation, using Γ̄j
H , the relevant block of Γ̄H .

Specifically, note that a sum across the row of Γj
H corresponding to district i is

∑
i′ ̸=i αijαi′j.

If there are a large number of districts with members of j, then it is reasonable to use the

approximation ∑
i′ ̸=i

αijαi′j ≃
∑
i′

αijαi′j(4)

= αij

∑
i′

αi′j

= αijaj

where aj =
∑

i′ αi′j is the same for any choice of district i within Ij. The sums of the rows of

each block Γj
H thus give the relative prevalence of organized group members in each district

in Ij. This approximation is particularly interesting in the case where there is only one group:

in this case the sums of the rows of ΓH give the relative of prevalence of group members across

districts in the whole country. This approximate estimator becomes increasingly correct as

the number of districts that each organized group has members in grows. While it would

be possible to use non-linear programming or other techniques to develop an estimator with

more desirable properties, the approximate estimator has at least two advantages. First,

the estimator has an intuitive interpretation: ΓH is a covariance matrix, and the sum across

the off-diagonal entries of a row of ΓH thus gives an indication (in a heuristic sense) of how

closely linked attacks in a given district are with attacks in other districts. Second, if in

the data a given district i experiences only a small number of attacks, then the off-diagonal

entries γ̄ii′ will be relatively small for that district, and thus i will not introduce substantial

noise into estimates α̂i′j for other districts i′. Developing an unbiased estimator that also
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possesses such properties appears to be a non-trivial undertaking.

To summarize, in spectral clustering the specific estimator used is the following. A

graph Laplacian L̄ is calculated based on the observed attack covariance matrix Γ̄H . The

eigenvalues of L̄ are examined, considering only those districts that have a certain minimum

number of attacks (three in the Afghan data actually used). The estimate Ĵ for the number

of organized groups is equal to the number of L̄’s eigenvalues that are “zero”. Eigengaps are

then examined to determine how reliable this estimate appears to be.

Two potential problems with this approach based on spectral clustering can be addressed

using an alternate technique. First, the actual group structure may be overlapping, with

multiple groups present in a single district. Second, hypothesis tests are difficult to per-

form: the distribution of eigenvalues resulting from random variation in finite samples is

not obvious, and the existing literature mostly assumes that the observations to be clus-

tered are observed without noise. These issues can be addressed using an approach based

on non-negative matrix factorization.

2.2 A Non-Negative Matrix Factorization Approach

Begin by supposing that the number of organized groups J is known, and consider an

estimator that chooses α̂ij for each district i and group j to satisfy, to the extent possible,

the set of restrictions

γ̄ii′ =
∑
j

α̂ijα̂i′j

If there are N districts, there are N(N − 1)/2 restrictions: one for each off-diagonal element

in one half of the symmetric covariance matrix. If there are J groups, there are N × J

parameters to be estimated: one α̂ij for each district i and group j.20 A necessary condition

for identification is thus that (N − 1)/2 ≥ J .21 In the data used the number of districts is

large relative to plausible numbers of groups, and thus this inequality holds strictly and a

20Ignoring the diagonal entries of Γ̄ means that the non-negative matrix factorization problem considered
in this paper is not the same as that considered in Ding, He, and Simon [2005], where the authors show an
equivalence between NNMF and spectral clustering.

21The identities of the groups are never identified: the predicted elements of the covariance matrix are
identical if α̂ij and α̂ij′ are interchanged for all districts. However, labeling groups becomes possible employ-
ing very basic additional information. For instance, our group 1 is obviously the Taliban and any activity in
the Uzbek areas could be possibly associated with the Islamic Movement of Uzbekistan insurgent faction.
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penalty function is required. The estimator used for {αij} will be:

argmin
α̂ij≥0

||Γ̄H − Γ̂H ||2

where the off-diagonal entry of Γ̂H in row i and column i′ is
∑

j α̂ijα̂i′j, and the diagonal

entries are all zero.

From a numerical perspective, the easiest norm to use is the element-wise norm. With

this norm, the estimator can also be expressed as

(5) argmin
α̂ij≥0

∑
i

∑
i′ ̸=i

(
γ̄ii′ −

∑
j

α̂ijα̂i′j

)2

The major difficulty with implementing this estimator is that N is large. Thus, even

when considering only a small number of groups J , the number of parameters that must be

estimated is large. Recent optimization algorithms such as Birgin, Martinez, and Raudan

[2000] appear to be computationally feasible so long as there are only about one thousand

variables.22 Thus, with N ≃ 250, a direct approach based on method of moments is feasible

so long as J ≤ 5. This will turn out to be the case in the data used, and would also likely

be the case for many other data sets of interest.

The above assumed that J was known, but this is of course not the case. A heuristic

technique from the clustering literature will again be applied to deal with this problem.

Tibshirani, Walther, and Hastie [2001] propose the “gap statistic” as a means of determining

the number of clusters to use with a clustering algorithm. Following Mohajer, Englmeier,

and Schmid [2010], this can be expressed as

(6) Gap(k) = E∗[Wk]−Wk

Here Wk is the variation that is not explained by the k clusters: for this paper, this is

taken to be the squared residuals in Equation 5. E∗ is the expectation taken with respect

to a “reference distribution” chosen to correspond to no cluster structure. This distribution

22A very different approach would be to attempt to use the fact that the set of completely positive matrices
is convex. Unfortunately, there is no barrier function available for optimization over this set. Vasiloglou,
Gray, and Anderson [2009] present some options for various relaxation-based approaches. The “brute force”
approach used in this paper, however, appears to yield much better results for the type of data considered:
relaxations would presumably perform better if the data were of much higher dimension.
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is generated via Monte Carlo permutations of the actually observed attacks, and different

choices of the sort of permutation used allow for robustness checks with respect to some of the

assumptions made in the structural model. Good [2005] provides an accessible introduction

to permutation tests.

First, suppose that the structural model presented above is correct. In this case, the

distribution of the number of attacks by disorganized militants in district i is the same

for all periods, with expected value ηℓi. Thus, under the null hypothesis that there is no

group structure, the observed attack data is weakly exchangeable: within a given district,

permuting the time indices does not change the joint distribution of the attacks.23 The

total number of such permutations is huge, and thus rather than perform calculations using

the entire set we consider only a random subset of these permutations. By construction,

the permutated data exhibits no group structure: all the off-diagonal entries of the sample

covariance matrix will be zero asymptotically. To construct the desired reference distribution,

we treat each of these permutations as if it were the observed data, and estimate a group

structure for each of J = {1, 2, 3, 4, 5}. We then calculate the residual variation not explained

by this estimated group structure. The average of this residual variation gives E∗[Wk] for

k = {1, 2, 3, 4, 5}. This is the amount of residual variation we would expect to result from

our estimator, if the null hypothesis were true and there was no group structure.

Now, suppose that the structural model assumed is not exactly correct, and there is some

cross-time variation in the expected number of attacks by disorganized militants within a

district. Specifically, suppose that the probability that a disorganized militant launches an

attack is not a constant η, but rather varies across months. The expected number of attacks

on a given day in month m is then ηimℓi, and will differ by month. In this case, the observed

attack data is still weakly exchangeable, but only within a given district and a given month.

We can thus still construct a reference distribution, provided that observations are permuted

only within each month for each district. In this case, the covariance matrices may not have

all off-diagonal entries zero asymptotically: it could be that ηim and ηi′m are positively

correlated, for example. In this case, the gap statistic in Equation 6 will be positive if a

23The intuition here can be provided by an example. Suppose there are three periods. If there is no group
structure, then the probability of observing {x1, x2, x3} in a given district must be equal to the probability
of observing {x1, x3, x2}, because the number of attacks is i.i.d. across time within a given district.
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group structure with k groups, when applied to the actual data, leaves less residual variance

Wk than would be expected if the data were the outcome of disorganized militants attacking

with different probabilities in different months.

Finally, suppose that the expected number of attacks by disorganized militants varies at

the daily level, rather than the monthly level. The general case, with ηitℓi attacks expected

in district i at time t, is so general that it does not appear to allow for any permutations.

However, suppose that the number of expected attacks is instead ηtℓi, where ηt now does

not differ across districts.24 This might be the case, for example, if there were particular

days that, for whatever reason, generated large amounts of random violence. In this case,

observations are “approximately” weakly exchangeable via the following sort of permutation,

inspired by Good [2002]. Find a pair of districts i and i′, and a pair of times t and t′, such

that the following two conditions hold: there were the same number of attacks x in district

i at time t and in district i′ at time t′, and there were the same number of attacks x′ in

district i at time t′ and in district i′ at time t. Permute the data by swapping x and x′ in

these four entries.25 These permutations are attractive from an intuitive perspective, as they

retain not only the same number of total attacks in each district, but also the same number

of total attacks on each day. In the Afghan data, there are relatively few attacks on any

given day and thus an enormous number of possible permutations of this sort. A random

sample of these permutations is used. The gap statistic in this case describes the degree to

which adding organized groups better explains the observed covariance matrix, compared to

random attack covariance matrices of the sort that would be generated by per-day variation

in random violence.

24This gives the disorganized militants the same structure an additional organized group. The test against
the null hypothesis in this case is thus related to whether there is an organized group present that is active
in some districts but not others. Under the null hypothesis, the off-diagonal entries of the sample covariance
matrix should be directly proportional to the total number of attacks in the districts in question.

25To see why this weak exchangeability holds “approximately”, note that the distribution of attacks is
binomial. Approximate the binomial with a Poisson distribution with expectation ηtℓi. Then for observations
of the type just described

Pr(x|ηtℓi)Pr(x′|ηt′ℓi)Pr(x′|ηtℓi′)Pr(x|ηt′ℓi′) =
(ηtℓi)

x

x!
e−ηtℓi

(ηt′ℓi)
x′

x′!
e−ηt′ ℓi

(ηtℓi′)
x′

x′!
e−ηtℓi′

(ηt′ℓi′)
x

x!
e−ηt′ℓi′

= Pr(x′|ηtℓi)Pr(x|ηt′ℓi)Pr(x|ηtℓi′)Pr(x′|ηt′ℓi′)

by rearranging terms. The canonical reference for multivariate permutations appears to be Pesarin [2001],
although this specific type of permutation is not described.
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In Equation 6, Gap(k) quantifies an intuitive definition of the fit of a k−cluster structure

to the observed data: the fit is “good” only to the extent that it is better than the fit to

randomly generated data with no group structure at all. Following Tibshirani, Walther, and

Hastie [2001], the estimated number of clusters Ĵ is selected to be the smallest k such that:

(7) Gap(k) ≥ Gap(k + 1)− sk+1

where sk+1 is the estimated standard error for the objective function, obtained by randomly

drawing a large number of covariance matrices from the reference distribution, and then

calculating Wk+1 for each of these matrices. The intuition for this technique is that adding

an additional cluster will always improve the fit to the observed covariance matrix, and thus

an appropriate estimate Ĵ must balance this against the risk of overfitting the data. This

is done by comparing the improvement in fit in the actual data to the case with randomly

generated data that is known not to have any group structure. Consistency of this estimator

is discussed in Appendix B.

2.3 Robustness: potentially changing district environments

Both the spectral clustering approach and the non-negative matrix factorization approach

just described assume that the covariance in attacks by group members across districts

remains the same even across long periods of time. In the observed data, however, it could

be the case that in earlier years certain districts are the focus of many attacks, while in later

years activity shifts to other districts. These sorts of long term changes can be accounted for

by considering only the covariance in attacks across districts within shorter time windows.

Let Γ̄Hm be calculated the same as Γ̄H from Equation 1, but using only daily attack data

from month m. As the number of days of data used to calculate Γ̄Hm does not increase

asymptotically for any given month m, estimation based on a single Γ̄Hm would be incon-

sistent. Aggregating across months, however, results in a consistent estimator that is robust

to changes in attack probabilities between districts at the month level.

Specifically, assume that the probability of an attack in district i in month m, either from

unorganized militants or an organized group, now changes with a parameter ζim. That is,

the probability of an attack from a unorganized militant is now ζimη, and the probability
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of an attack from member of organized group j is now ζimϵjt. Let D(·) indicate a diagonal

matrix with the given entries on the diagonal. If ζ were known, the standardized matrix

Γ̃Hm = D( 1
ζm
)ΓHmD( 1

ζm
) could be summed to create Γ̃H = D(

∑
m ζm)Γ̃HmD(

∑
m ζm). Γ̃H

could then be used to estimate {αij}. In reality, ζ is unobserved; however, dividing by the

observed number of attacks creates a feasible estimator, with α identified up to scale. This

approach can be used with both estimation based on spectral clustering and that based on

non-negative matrix factorization.

3 Data

Afghanistan is covered by the Empirical Studies Of Conflict project (ESOC) at Princeton

University, which “identifies, compiles, and analyzes micro-level conflict data and informa-

tion on insurgency, civil war, and other sources of politically motivated violence worldwide.”26

The ESOC data currently reports a location, date, and type for violent incidents from the

beginning of 2003 to the end of 2009. This data is based on the Worldwide Incidents Track-

ing System (WITS), a declassified U.S. government military database.27 The following two

examples illustrate the typical form of incident descriptions:

“On 27 March 2005, in Laghman, Afghanistan, assailants fired rockets at the

Governor House, killing four Afghan soldiers and causing minor damage. The

Taliban claimed responsibility for the attack.”

“On 19 February 2006, in Nangarhar, Afghanistan, a suicide bomber detonated

an improvised explosive device (IED) prematurely near a road used by govern-

ment and military personnel, causing no injuries or damage. No group claimed

responsibility.”

The violent incidents cataloged in the ESOC data are episodes of violence initiated by

insurgents, or acts of random violence. The data does not include violence directly connected

to military counterinsurgency operations, such as for instance a U.S. military attack on a

Taliban safe house or the bombing of a fortified compound.

26See https://esoc.princeton.edu/
27”Worldwide Incidents Tracking System.” National Counterterrorism Center (wits.nctc.gov).
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According to the data, there are some days where as many as 64 different districts are

affected by simultaneous insurgent attacks. However, there are also 123 districts with no

reported incidents over the entire 2004-2009 time period. It is apparent to even the most

casual observer that attacks are concentrated in certain areas of the country.

The location reported for an attack in ESOC is given as latitude and longitude coordi-

nates. This would seem to suggest that attacks could be analyzed as some sort of spatial

point process. Closer inspection, however, reveals that the latitude and longitude coordi-

nates reported are not those of the actual location of the attack, but rather the coordinates

of a prominent nearby geographic feature. Sometimes this is a city or village, but for the

vast majority of incidents the location given is that of the centroid of the district in which

the incident occurred. In Afghanistan, the “district” is the lowest-level political unit and the

unit of geographic location in our model. We also note that a few districts have been split

in recent years: this paper uses 2005 administrative boundaries, which specify 398 districts.

The ESOC data effectively provides panel data at the district-day level, with N = 398 and

T = 2082. WITS data are also collected for Pakistan and available from ESOC. We make

use of this additional data for falsification exercises.

Additional geographic information reported in ESOC includes the location of roads,

rivers, and settlements. We aggregate this data to the district level in order to use it jointly

with the district-level attack data. ESOC does not report information on the distribution of

ethnicity in Afghanistan. For geographic data on ethnicities, we thus use the Soviet Atlas

Narodov Mira data. The version used is the “Geo-referencing of ethnic groups” (GREG)

data set of the Swiss Federal Institute of Technology Zurich.28

In Figure 1 we report the ethnic distribution map by district, and Figure 2 shows the

main Afghan highway. Figure 3 gives the attacks observed in the data, aggregated by district.

Without further analysis, it is clear that the data confirm two well known qualitative features

regarding insurgent attacks: they are more likely to occur in Pashtun areas, and there is a

particular concentration on the ring road highway running south from the capital, Kabul.

An analysis by the methods developed above, however, reveals some additional patterns that

are not immediately obvious from an inspection of the raw data.

28http://www.icr.ethz.ch/data/other/greg
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As we discuss further below, poolingWITS attacks over the entire 2004-2009 period masks

some changes in the distribution of violent activity in the country over time. Evidence of

the deterioration of the security environment is reported in Figures 4 and 5, which show

the distribution of incidents by district for the years 2004-2007 and 2008-2009 respectively,

in per capita terms. To provide some context for the reader in interpreting the maps,

Table 1 provides a summary of the US Afghan counterinsurgency timeline produced by the

Council of Foreign Relations. Table 2 includes summary statistics for total incidents, ethnic

fragmentation, roads, rivers, and settlements by district.

4 Results

Figure 6 shows the eigenvalues obtained by using the spectral clustering approach de-

scribed in Section 2.1 on the Afghan data. There is only one zero eigenvalue, with the

following eigenvalues being substantially larger. Thus, the appropriate estimate for the

number of organized insurgent groups is Ĵ = 1. Figure 7 shows the eigengaps for these

eigenvalues. The first eigengap is the largest by a substantial margin, suggesting that small

random perturbations would not likely change the estimated number of groups. Figure 8

shows the presence of organized group members based on the approximation given in Equa-

tion 4. A disadvantage of the estimation strategies used in this paper is that they only

provide information about the relative prevalence of each organized group across districts.

The units reported in Figure 8 thus do not have an interpretation in levels: 0 corresponds

to no attacks being attributable to organized group members, but the numeric scale of the

legend is arbitrary, and it is not possible to interpret the results in terms of “fraction of

attacks due to organized groups” without additional assumptions.29

The approximation in Equation 4 reveals the latent geographic distribution of the Taliban

and, with this, we can investigate the geographic spread of the insurgency. Table 3 shows

regression results based on this approximation including a set of ethnic and geographic

controls, as well as province fixed effects. Most of the estimated coefficients, which should be

read as correlates of Taliban control over each specific district, are not surprising. Ethnicities

29The numbers reported in the legend are the number of attacks per million people the organized group
would have been responsible for if σ2 = 1, but this choice is arbitrary.
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other than Pashtun (the omitted ethnicity) are substantially less likely to be associated with

organized group activity.30 These include the Hazara, a Shia group hostile to the (Sunni)

Taliban, as well as the Tajik and Uzbek communities. These latter groups have historically

found themselves in conflict with the Taliban, and were participants in the Northern Alliance.

With respect to geographic characteristics of districts, there is more group activity in

districts with more roads, particularly the ring road artery connecting Kabul with other

provincial capitals. As in Figure 3, which shows raw total attacks, Figure 8 shows graphically

that organized attacks are concentrated in Pashtun-majority areas, and also near the main

highway passing through Kabul and other cities. A feature that is apparent in Figure 8,

however, that does not show up clearly in the raw attack data of Figure 3 is that there

appears to be a substantial organized insurgency operating near the highway north of Kabul,

as well as the highway running south from it. This area is not as heavily populated by

Pashtuns, and perhaps because of this, the number of total attacks is not as high. The

attack covariance matrix, however, reveals that the attacks that did occur appear to exhibit

substantial coordination.

The main results from analysis via spectral clustering are thus that insurgent attacks in

Afghanistan are best represented as the work of a single organized group (plus “unorganized”

local militants) and that this single insurgent group is active both to the north of Kabul and

to the south. The eigengap analysis suggests that the conclusion regarding the number of

groups would not change under small perturbations of the data.

Although the analysis using spectral clustering makes a strong case for a unitary insurgent

actor, there could still be concerns that any analysis based on the off-diagonal entries of

the sample covariance matrix is fundamentally misguided, because random variation will

overwhelm any signal from actual coordinated attacks. Table 4 addresses this concern by

using total attacks in a district as the left hand side variable: the results are similar to those

in Table 3.31

We now present the results based on the non-negative matrix factorization technique of

30Ethnic variables are based on share of settlements in districts covered by GREG ethnic boundaries.
31As long as the number of attacks from “disorganized” local militants is not too high, one would expect

the analysis of total attacks in Table 4 to give similar results to those in Table 3: the random attacks are
simply a form of measurement error.
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Section 2.2. As this method involves a comparison with permuted data that by construction

has no group structure, results come with some indication of their statistical robustness.32

Tables 5 - 7 show the results of the “gap statistic” type procedure based on Inequality 7,

following Tibshirani, Walther and Hastie [2001]. The tables differ in the “reference distri-

bution” used for comparison with the actual clustering results. In Table 5 we permute the

attacks across time within each district (thus holding the total number of attacks in each

district constant). In Table 6 we permute the attack time series for each district within each

given month (hence preserving low frequency trends in attacks within districts). In Table 7

we permute the attack time series across districts and time holding constant the total num-

ber of attacks within a district and the number of attacks in a day across districts (hence

preserving the marginal distributions of attacks across days and across districts). These

three tables correspond to the three types of permutations discussed in Section 2.2.

Each of Tables 5, 6 and 7 are organized identically. The first set of four columns reports

results for Afghanistan, and the second set for Pakistan. Columns marked I and II use

the attack covariance matrix as discussed in Section 2.2, while the within-month covariance

model of Section 2.3 is estimated in Columns marked III and IV. Columns marked I and III

use exactly the data used for the analysis by spectral clustering, where districts with fewer

than 3 attacks were excluded. Columns marked II and IV use data from all districts, but

with a penalty function that weights each γii′ entry proportionally to the total number of

attacks in districts i and i′. This weighting is ad hoc, but accounts for the fact that estimates

of insurgent prevalence for districts with very few attacks will be very noisy, because little

information is available.33

For illustration, consider the estimates reported in Column I for Afghanistan of Table

5. Under the null hypothesis of zero organized groups of insurgents, the model is without

degrees of freedom and hence the variation left unexplained in both the actual data and the

permuted (reference distribution) data is 1 (i.e. all of it), leaving Gap(0) = 0 in the third row

32More specifically, there is an obvious permutation test of the null hypothesis that there is no group
structure, and the null is rejected at the 95% level. A formal test of J = 1 against J = 2 (and so forth)
appears more complicated, and in this case the results shown have the heuristic interpretation that is common
in the clustering literature.

33As is often the case, weighting does not affect the consistency of the estimator. Here weights are used
in order to ensure reasonable performance with the sample actually observed.
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(marked “A”). Allowing for one group of insurgents in the data leads to N free parameters

(an α̂i1 for each district i), and leaves 88.3% of the variation in the data unexplained in

the randomly permuted data; there is a better fit in the actual data, with only 60.0% of

the variation left unexplained. This produces Gap(1) = 28.4% (marked “B”). The gap

statistic (B-A) is thus 28.4%, which is higher than 5.5%, the estimated standard error for

the objective function obtained by randomly drawing a large number of covariance matrices

from the reference distribution and calculating W1 for each of these matrices. This suggests

1 or more groups are present.

Continuing down the rows of Table 5, we proceed to consider the possibility of two

organized groups of insurgents. This model has 2N free parameters and leaves 82% of the

variation unexplained in the permuted data. Again, the fit is better in the actual data, with

only 53.4% unexplained variation. This produces Gap(2) = 28.6% (marked “C”). The gap

statistic (C-B) is thus 0.2%, which is now lower than 4.5%, the estimated standard error for

W2 in the reference distribution. This satisfies Inequality 7, and we thus conclude that there

are not 2 (or more) groups. That is, the conclusion from this column is that the Taliban

operate as a unified organization (i.e. Ĵ = 1), as previously suggested by spectral clustering.

The same conclusion is obtained in Columns II and IV in this Table and by Columns I-IV

in both 6 and 7, a large set of alternative specifications all pointing in the same direction.34

In addition, the method outlined in Section 2.3 confirms that the claim that the data is best

represented by only one organized insurgent group is not due to long-term trends in attacks

that are the same across districts, but is indeed due to coordinated attacks at a day-by-day

frequency.

The “Pakistan” columns replace the Afghan attack data with comparable data from

WITS covering Pakistan. Tables 5, 6 and 7 show that the Pakistani results differ markedly

from those presented in the Afghan Taliban case. Whereas adding a group structure to

the attacks is able to explain a statistically significant fraction of the Afghan attacks, as

compared to random attacks, the attacks in Pakistan do not appear to match this sort of

clustered structure as well. Typically Columns I and II point to zero groups being present,

34Only Column III of Table 5 shows a very thin case for Ĵ = 2. This is one out of 12 specifications, and
may be the result of random variation.
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while discordantly Columns III and IV point to three or more groups. Overall, the unified

insurgent structure we recover for the Afghan case appears not to be present in Pakistan.

This accords with the qualitative analysis in Dorronsoro [2009].

Figure 9 shows the estimated prevalence of organized insurgents under the non-negative

matrix factorization approach. The general pattern appears to agree with the qualitative

description of insurgent activity just given for the spectral clustering method and shown in

Figure 8. The estimates from the non-negative matrix factorization method appear to make

it slightly clearer that the majority of organized insurgent activity is on the ring highway

passing through Kabul, and that this activity extends to the north as well as the south of

Kabul, possibly with the goal of isolating it. Estimates of the prevalence of the organized

group can also be produced using the method in Section 2.3. As the estimates in this case are

effectively based only on variation within months, estimates appear slightly noisier. Figure

10 shows these estimates. The tendency towards organized insurgent activity along the main

highway can still be seen, although it is not as clear as in Figures 8 and 9.

4.1 Changes in group structure across time

The econometric model outlined so far assumes that the extent and prevalence of the

organized insurgent group remains constant across time. This section considers how we can

relax this strong assumption and, in the process, reveal novel information on the organization

and strategy of the insurgents.

A formal model that allows for this structure to change over time appears challenging to

develop. An informal analysis of potential changes can be conducted, however, by splitting

the data. Specifically, we create an “early” data set, including only attacks in 2004-2007,

and a “late” data set, including only attacks in 2008-2009. The total daily number of attacks

is substantially higher in the later period compared to the earlier one, as already discussed

for Figures 4 and 5. Estimates of the prevalence of organized insurgents from the earlier

data can be compared to estimates from the later data, yielding a description of how the

structure and location of insurgent groups has changed over time.35

35The informal nature of this analysis is due to the fact that the cut point of January 1, 2008, was chosen
based on qualitative information: the econometric model is not one of structural breaks.
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A first important finding here is that the unified Taliban organization is detectable in

both the early and the complete samples, with one group of insurgents. The coordinated

and unified behavior of the Taliban is not a feature developing over time, rather it is present

from the onset.36

Concerning the territorial control of the Taliban, Figure 11 shows an estimate of the

number of attacks due to organized insurgent groups in the earlier period, while Figure 12

shows this for the later period. The colors of the figures are aligned so that the same color

indicates the same number of attacks per capita per year, although the “early” and “late”

data have a different number of months. Comparing the two pictures shows unambiguously

how much gain in territorial control and coordination have been characteristic of the Taliban

offensive since 2008.

With respect to the distribution of attacks across districts, Figure 11 shows a lower

frequency of attacks overall, and most districts that do see a high frequency of attacks are

near the main highway to the south and west of Kabul. Figure 12 shows a higher frequency of

attacks, and also shows districts in the north with high frequencies of attacks. One example

of this is the highway north of Kabul, where now appear to be a number of districts with

high frequencies of attacks. This claim is difficult to test statistically, because of the small

number of districts in question.

A statistical analysis of changes in the distribution of attacks does reveal some patterns

that are statistically significant and of relevance for current efforts in the management of

the conflict. Table 8 investigates the correlates of insurgent group control in each district

in the early and late periods by stacking the set of districts and employing interactions

with POST dummy for the 2008-09 period. Control by the insurgents is measured through

the sum of off-diagonal entries of the covariance matrix of attacks for district i according

to the approximation in Equation 4. The Table reports both OLS in Columns I-IV and

a Generalized Linear Model (Poisson distribution, allowing for overdispersion) in Columns

V-VIII.

36This also shows that our results are not due purely to the August 2009 presidential election, when there
were many attacks on and around election day. While there is substantial evidence that many of these
attacks were in fact coordinated by the Taliban, it would be worrisome if the results presented thus far
changed drastically when the attacks around the 2009 elections were excluded.
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As in Table 3, the results in Table 8 show a clear relationship between ethnicity and

simultaneous attacks. Table 8 reports coefficients for seven ethnic group dummy variables

(indicating the largest ethnic group in the district), with Pashtun as the omitted dummy

variable. For interpreting the Table, recall that the Afghan Taliban are traditionally ethni-

cally Pashtun and follow Sunni Islam. Their historical opposition to Uzbeks, Hazara, and

Tajiks – the main ethnic minorities in Afghanistan – is well documented. It is therefore

unsurprising that our measure of Taliban activity in Afghan districts is negatively correlated

with dummy variables indicating non-Pashtun ethnicity.

What is more surprising is that the coefficient in the POST interaction with the ethnicity

variables is generally positive and of magnitude between 25 and 70 percent of the main effect.

Consider for instance the case of the Uzbeks in Column II: the main effect is a statistically

significant −2.11, indicating a much lower penetration of the Taliban in Uzbek areas in

2004-2007. In the 2008-09 period Uzbek districts are still less likely to experience Taliban

activity, but now the coefficient falls by more than half, to −0.76 (= −2.11 + 1.35). The

distinction between Uzbek and Pashtun districts is thus decreased in the later period. In

Column IV, where we exploit within-province variation, the distinction between Uzbek and

Pashtun districts disappears completely or even reverses (0.3 = −1.05+1.35). Although less

statistically precise, Tajik and Hazara areas appear to display a similar pattern: districts

with non-Pashtun ethnicities exhibit relatively greater activity in the later period, indicating

a substantial penetration of the Taliban into areas previously outside their reach.

For added robustness, Table 9 employs as a dependent variable the pairwise off-diagonal

entries of the covariance matrix of attacks, essentially carrying out the analysis of the in-

surgents’ change in strategy at the district-pair level as opposed to district level. While the

direction of the findings in Table 8 in terms of Taliban penetration in non-Pashtun domi-

nated areas is confirmed, the statistical precision of our estimates is much more pronounced

in Table 9.

Finally, as a check on the district-level analysis, Table 10 considers total attacks as the

dependent variable. Results are consistent with those of Table 8.
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4.1.1 An Oil Spot Strategy

Krepinevich [2005] discusses a state of the art counterinsurgency doctrine where control

is expanded gradually across space. This is sometimes referred to an “oil spot” strategy,

as the area controlled expands like an oil stain.37 Our methodology allows us to ask a

reverse question, regarding the strategy of insurgents: over time, how do attacks expand

across space? Do the Taliban appear in completely new and disconnected areas, or do they

launch attacks in districts that are adjacent to those that they were operating in previously?

We conclude that the Taliban follow an “oil spot” insurgency strategy based on gradual

expansion.

We begin by calculating, for each district, the estimated number of attacks by organized

groups in adjacent districts, following Equation 4. The results of this calculation are shown

in Figure 13: the districts where this variable is zero are shown in blue.38 All but one of these

blue districts are also not estimated to have any organized attacks in the later period, as can

be seen by comparing Figure 12 with Figure 13. In particular, there were no attacks in the

central part of Afghanistan in the early period, or much of the northeast, and these areas sim-

ilarly do not have any attacks in the later period. On the other hand, districts immediately

adjacent to estimated early Taliban strongholds appear prone to insurgent expansion.

Table 11 shows that this qualitative pattern is statistically significant. The basic speci-

fication used here is

ATTACKS LATEi = β0 + β1ATTACKS EARLYi

+β21(ATTACKS EARLY ADJACENTi = 0) + ϵi

where ATTACKS LATE is the number of attacks estimated to be due to organized insur-

gents in the later period, and ATTACKS EARLY this number for the earlier period. AT-

TACKS EARLY ADJACENT is the average number of attacks in geographically adjacent

districts. This last variable is used only as indicator variable: are there an estimated positive

number of attacks attributed to organized groups in adjacent districts?39 Columns I-III of

37This strategy appears to date back to the 19th century, as part of French colonial doctrine. Potiron de
Boisfleury [2010] provides a detailed historical account.

38As in previous figures showing estimates of organized group activity, the units for “number of attacks”
shown in the legend here are arbitrary, and thus only relative comparisons can be made.

39The dummy recoding is used because there is a long-standing problem in the analysis of spatial data
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Table 11 show that districts where there was no insurgent group activity in the early period

are less likely to experience insurgent group activity in the later period, and that this result

is robust to a variety of controls, including province fixed effects.

Based on the definition of organized group attacks in Section 2, there should never be a

negative number of attacks attributed to organized group members. Columns IV-VI of Table

11 thus present the same analysis using a Poisson GLM model, in order to take this non-

negativity into account. An additional advantage of the Poisson model is that districts with

few attacks are (correctly) treated as having higher variance relative to mean.40 The results

in Columns IV-VI confirm that there is very little organized insurgent activity in the late

period in districts that did not border a district with such activity in the early period. The

large coefficient on the ATTACKS EARLY ADJACENT indicator variable is due to the fact

that the data exhibits “almost” complete separation: if there were zero districts rather than

one that saw organized insurgent activity in the late period without any adjacent activity in

the early period, the estimated coefficient here would be negative infinity, and it would not

be possible to calculate standard errors by standard methods.41

5 Insurgency Organization and Economic Recovery

This section briefly discusses case studies chosen to highlight the economic importance of

understanding insurgent organization in conflict and post-conflict environments. We focus

on two different episodes: Iraq, and Syria.

Insurgent groups owe their success to their deep ties with noncombatant populations. By

impeding reconstruction efforts, they can fuel popular dissatisfaction with central authorities,

thereby maintaining a steady flow of recruits and ensuring logistic assistance for their agents.

Insurgencies thus have a particular incentive to delay aggregate economic recovery.

regarding how to use this type of “adjacent observations” data, and there does not appear to be a satisfactory
solution in this case.

40Weighted least squares could also be used here, but the Poisson model is natural as the underlying
attack data is positive integers. The estimated number of attacks attributed to organized group members
are non-integer, but this does not cause a problem for generalized linear models of the sort used.

41As an additional test, Table 12 repeats the regressions in Columns I-VI of Table 11 without the AT-
TACKS EARLY variable. The estimated coefficient on the ATTACKS EARLY ADJACENT indicator vari-
able is still negative (and large in the case of Columns IV-VI), although no longer statistically significant
when province fixed effects are included. Table 12 shows that the results in Table 11 are not due purely to
statistical relationships within the districts that did have attacks in 2004-2007.
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In Iraq, insurgents disrupted the electricity grid and seized control of oil resources. Hen-

derson [2005] describes the loop that linked insecurity and economic stagnation:

Inability to provide security had a profound impact on Iraq’s economic recovery.

In turn, inability to provide recovery had a profound impact on Iraq’s security.

Reconstruction delays fed into Iraqi feelings of resentment and despair, which

fueled insurgency and crime, thereby worsening the security climate.

The connection of the study of insurgency with economic development comes from this tight

link between insurgent strategies and the failure of reconstruction efforts. Understanding

the exact nature of the Iraqi insurgency early on in the conflict could have proven crucial in

breaking the vicious cycle that Henderson [2005] observes.42

Uncertainty about the organization of the insurgency in post-2003 Iraq took several

forms. First, there was disagreement regarding the extent to which attacks represented an

insurgency at all.43 There was also confusion regarding its magnitude: as late as the fall

of 2004, the U.S. military still attributed 80 percent of attacks to random and not political

violence. Finally, there was debate about the organization of the insurgency, once it was clear

that one existed.44 Further complexity in the Iraqi case stemmed from signs of evolution

over time: “the insurgency was now organized regionally, and that evidence pointed to some

planning across regional boundaries”.45

The difficulty, and the importance, of understanding the structure of insurgencies is not

limited to Iraq. Consider recent Western efforts in Syria:

Sixteen months into the uprising in Syria, the United States is struggling to de-

42Henderson is critical of the strategy actually used: “as violence worsened, the response of coalition
officials in charge of reconstruction was not to find a way to fight it more effectively. Instead, their response
was to withdraw into the heavily protected world of the Green Zone.”

43Eisenstadt and White [2005] write that “In the summer of 2003, Secretary of Defense Donald Rumsfeld
and General John Abizaid (head of U.S. Central Command) publicly disagreed about whether the violence in
the Sunni Triangle was the final act of former regime “dead-enders” or an incipient insurgency against the
emerging political order”. There was a similar disagreement in 2005 between Vice President Richard Cheney
and General Abizaid.

44The New York Times quotes senior U.S. intelligence sources stating that “It’s not just one group of
insurgents rallying under one cause. It’s multiple groups with different causes loosely tied together by the
threads of anti-U.S. sentiment, some sort of Iraqi nationalism, Muslim-Arab unity or greed”. The lack of
familiarity with this type of enemy appeared evident:“What makes it more difficult is that you’re dealing
with an insurgency without a single face”.

45http://www.nytimes.com/2004/10/22/international/middleeast/22insurgents.html?pagewanted=2& r=0
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velop a clear understanding of opposition forces inside the country, according to

U.S. officials who said that intelligence gaps have impeded efforts to support the

ouster of Syrian President Bashar al-Assad.46

Beginning with a series of pro-democracy protests in 2011, the situation in Syria quickly

escalated into a full-blown civil war that has cost 200, 000 lives and displaced at least 4

million Syrian citizens. Lack of understanding of the structure of the insurgency in Syria has

been one of the strongest deterrents to military and humanitarian involvement of Western

powers in this conflict.

Western countries were willing to lend support and provide prompt international aid

to moderate Sunni organizations, but the difficulty lay in identifying these rebels. The

impossibility of separating the secular moderates from the religious extremists among the

Sunni opponents of the Alawite-led government resulted in international paralysis. This led

to further economic and social deterioration, radicalization, and escalation of the conflict.

Syria is now a nearly failed state, fought over by Assad loyalists, the Islamic State, and

the al-Qaeda affiliated Nusra front. Numerous attempts at a political solution by the Arab

League and the United Nations have failed.

6 Conclusions

This paper focuses on the empirical analysis of insurgency, with an application to post-

2001 Afghanistan. Often the only type of data available concerning the amount and geo-

graphical diffusion of insurgent activity comes from incident-level data on insurgent attacks.

However limited such information might be, recent important advances in the analysis of

the economics of conflict and reconstruction in war zones have been possible thanks to this

data.47

This paper shows how incident-level data contains information that can be used to es-

timate the structure and geographic span of influence of insurgent groups. We present a

set of econometric methods to detect unobserved insurgent coalition structures, based on

46http://www.washingtonpost.com/world/national-security/in-syria-conflict-us-struggles-to-fill-
intelligence-gaps/2012/07/23/gJQAW8DG5W story.html

47Berman, Shapiro, and Felter [2011] is one recent example.

31



co-occurrences of violent incidents across districts over time. If incidents in two districts

occur simultaneously more than would be expected by random chance, then this suggests

that these districts share an organized insurgent movement, one capable of cross-district

coordination. We then carry out an analysis of the spread and frequency of attacks. Specific

geographic and historical characteristics, in particular highways and the ethnic composition

of the local population, predict insurgent presence and growth.

Progress in understanding insurgency is key in furthering our knowledge of the deter-

minants and consequences of political violence in developing countries. Although much of

the analysis in this paper is necessarily context-dependent, it is informative nonetheless for

regional stabilization and local development goals [Drozdova, 2012]. From a methodological

perspective, our contributions have a more general appeal.
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Figure 1: Ethnicities of Afghanistan

Figure 2: Afghan Ring Road

(via Wall Street Journal)
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Figure 3: Total attacks per capita

Figure 4: Attacks per capita 2004-2007
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Figure 5: Attacks per capita 2008-2009

Figure 6: (Sorted) Eigenvalues for Spectral Clustering
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Figure 7: Eigengaps for Spectral Clustering
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Figure 8: Organized group members: Spectral clustering (Equation 3)
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Figure 9: Organized group members: NNMF method (Section 3.2)

Figure 10: Organized group members: NNMF method (Section 3.3)
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Figure 11: Organized group members: Spectral clustering (2004-2007)

Figure 12: Organized group members: Spectral clustering (2008-2009)
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Figure 13: (Estimated) attacks by organized group members (2004-2007, average over adja-
cent districts)
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Table 1: Afghanistan timeline 2001-2011
18-Sep-01 President George W. Bush signs into law a joint resolution authorizing the use of force against those

responsible for attacking the United States on 9/11.
7-Oct-01 The U.S. military, with British support, begins a bombing campaign against Taliban
Nov-01 The Taliban regime unravels rapidly after its loss at Mazar-e-Sharif on November 9th
Dec-01 Osama bin Laden escapes from Tora Bora

5-Dec-01 Hamid Karzai is installed as interim administration head after the Bonn Agreement
9-Dec-01 The Taliban surrender Kandahar, their regime collapses.

17-Apr-02 U.S. Congress appropriates over $38 billion in humanitarian and reconstruction assistance to
Afghanistan from 2001 to 2009.

1-May-03 U.S. Secretary of Defense Donald Rumsfeld declares an end to ”major combat.”
8-Aug-03 NATO assumes control of international security forces (ISAF) in Afghanistan

Jan-04 Afghan Constitution is approved.
9-Oct-04 Hamid Karzai is popularly elected as president.
29-Oct-04 Osama bin Laden releases a videotaped message three weeks after the country’s presidential election.
18-Sep-05 Legislative elections in Afghanistan for the Wolesi Jirga (Council of People) and the Meshrano Jirga

(Council of Elders)
Jul-06 Violence increases across the country, including suicide attacks.
Nov-06 U.S. Secretary of Defense Robert Gates criticizes NATO countries in late 2007 for not sending more

soldiers.
22-Aug-08 Afghan civilian casualties mount. Gen. Stanley A. McChrystal orders an overhaul of U.S. air strike

procedures.
17-Feb-09 New U.S. president Barack Obama announces plans to send seventeen thousand more troops to

Afghanistan. Reinforcements focus on countering a ”resurgent” Taliban and stemming the flow of
foreign fighters over the Afghan-Pakistan border in the south.

27-Mar-09 New American strategy focused on disrupting Taliban safe havens in Pakistan
11-May-09 Secretary of Defense Robert Gates replaces the top U.S. commander in Afghanistan, Gen. David

D. McKiernan, with counterinsurgency and special operations guru Gen. Stanley A. McChrystal.
Jul-09 U.S. Marines launch a major offensive in southern Afghanistan (Helmand Province), representing

a major test for the U.S. military’s new counterinsurgency strategy.
Nov-09 Hamid Karzai is popularly re-elected as president.

1-Dec-09 President Obama announces a major escalation of the U.S. mission, an Afghan surge.
23-Jun-10 Gen. Stanley McChrystal is relieved of his post as commander of U.S. forces in Afghanistan
1-May-11 Osama bin Laden killed in Pakistan

Jun-11 President Obama outlines a plan to withdraw troops according to NATO plans of complete with-
drawn by 2014

7-Oct-11 10 years of counterinsurgency war. 1,800 U.S. troop casualties and $444 billion in spending
Source: Council on Foreign Relations
http://www.cfr.org/afghanistan/us-war-afghanistan/p20018
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Table 2: Summary Statistics

Statistic N Mean St. Dev. Min Max

PASHTUN 396 0.516 0.439 0.000 1.000
UZBEK 396 0.123 0.285 0.000 1.000
BALOCH 396 0.015 0.099 0.000 1.000
HAZARA 396 0.097 0.257 0.000 1.000
TAJIK 396 0.219 0.357 0.000 1.000
PAMIR.TAJIK 396 0.013 0.094 0.000 1.000
ORMURI 396 0.005 0.050 0.000 0.731
NURISTANI 396 0.012 0.084 0.000 0.846
POPULATION 398 58.673 150.129 1.841 2, 882.164
AREA 398 1.948 2.624 0.032 25.128
LIGHT 398 0.051 0.192 0.000 2.000
LATITUDE 398 34.580 1.724 29.889 38.225
LONGITUDE 398 67.796 2.607 61.156 73.349
ROADS 398 1.063 1.212 0 6
RIVERS 398 0.798 1.687 0.000 13.598

The first eight variables indicate the shares of ethnicities in each district. PASHTUN also includes Pashai,
Tirahi, Afghan Arabs, and Persians. UZBEK also includes Turkmens and Kirghis. BALOCH also includes
Brahui. HAZARA includes Mongols, in addition to Hazaraberberi and Hazaradehizainat. TAJIK also
includes Jamshidis, Taimanis, Firozkohis, Teymurs. ORMURI includes Parachi. There are two districts for
which ethnic information is not available.

POPULATION is in thousands of people. AREA is in thousands of square km. LIGHT is a index of nightime
light emissions. LATITUDE and LONGITUDE are in degrees. ROADS is the number of major roads in the
district. RIVERS is the total length of rivers in the district.
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Table 3: Dep. variable is sum of off-diagonal entries of cov. matrix for a given district i
I II III IV V VI VII VIII

(Intercept) 2.57∗ 1.86∗ 0.18 −2.28∗ 3.83∗ 3.93∗ 1.87∗ −0.36
(0.19) (0.75) (0.62) (0.96) (0.12) (0.54) (0.38) (0.83)

UZBEK −0.56 −0.20 −1.06∗ −0.08 −1.17∗ −0.98 −1.57∗ −0.98
(0.38) (0.73) (0.39) (0.71) (0.36) (0.55) (0.41) (0.69)

BALOCH −1.78 −2.65 −1.93 −1.55 −2.24∗ −2.80∗ −2.19∗ −1.57
(1.49) (1.42) (1.47) (1.34) (0.93) (1.03) (1.07) (1.09)

HAZARA −1.46∗ −2.27∗ −2.14∗ −2.44∗ −0.75 −0.71 −1.17 −0.74
(0.38) (0.54) (0.40) (0.73) (0.61) (0.61) (0.66) (0.65)

TAJIK −0.89∗ −0.19 −1.33∗ −0.35 −0.44 −0.26 −0.81∗ −0.26
(0.38) (0.78) (0.37) (0.62) (0.29) (0.81) (0.28) (0.47)

PAMIR.TAJIK 0.97∗ 3.77∗ 1.95∗ 4.49∗ −0.35∗ 3.66∗ 0.20 4.28∗

(0.22) (0.81) (0.44) (0.74) (0.13) (0.88) (0.32) (0.61)
ORMURI 1.64 −0.28 1.05 −1.64∗ 0.61 −0.18 0.24 −1.55∗

(0.87) (0.44) (0.62) (0.69) (0.75) (0.28) (0.54) (0.70)
NURISTANI −1.45 0.51 −0.94 0.91 −3.02∗ −0.76∗ −1.85 −0.43

(1.21) (0.32) (1.37) (2.05) (1.31) (0.19) (1.13) (1.06)
logPOP 0.52∗ 0.73∗ 0.43∗ 0.59∗

(0.17) (0.19) (0.09) (0.13)
logAREA 0.38∗ 0.18 0.28∗ 0.19

(0.13) (0.16) (0.08) (0.12)
logROADS 0.55∗ 0.59∗ 0.43∗ 0.60∗

(0.23) (0.26) (0.17) (0.17)
logRIVERS −0.22∗ −0.13 −0.03 −0.01

(0.09) (0.13) (0.07) (0.09)
PROV Y Y Y Y

N 262 262 262 262 262 262 262 262
R2 0.06 0.24 0.18 0.35
adj. R2 0.04 0.10 0.15 0.22
Resid. sd 1.93 1.86 1.82 1.74
Columns I - IV use OLS with dependent variable log transformed

Columns V - VIII use GLM/Poisson allowing for overdispersion

Robust standard errors in parentheses
∗ indicates significance at p < 0.05
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Table 4: Dependent variable is total attacks for district i
I II III IV V VI VII VIII

(Intercept) 2.58∗ 1.96∗ 0.23 −1.97∗ 3.37∗ 3.98∗ 1.02∗ −0.97
(0.11) (0.82) (0.32) (0.71) (0.14) (0.61) (0.34) (0.77)

UZBEK −1.65∗ −1.36∗ −2.04∗ −1.30∗ −2.17∗ −1.74∗ −2.70∗ −2.15∗

(0.24) (0.47) (0.22) (0.44) (0.29) (0.51) (0.33) (0.50)
BALOCH −2.02∗ −3.03∗ −1.59∗ −1.50∗ −2.38∗ −3.29∗ −1.93∗ −1.71∗

(0.54) (0.43) (0.49) (0.48) (0.44) (0.38) (0.42) (0.41)
HAZARA −1.71∗ −1.72∗ −2.21∗ −1.73∗ −1.72∗ −1.31∗ −2.12∗ −1.18∗

(0.26) (0.38) (0.28) (0.33) (0.43) (0.53) (0.43) (0.51)
TAJIK −1.12∗ −0.52 −1.58∗ −0.66 −0.82∗ −0.05 −1.22∗ −0.41

(0.24) (0.55) (0.21) (0.38) (0.40) (0.91) (0.38) (0.49)
PAMIR.TAJIK 0.16 2.01∗ 0.72∗ 2.36∗ −0.64∗ 2.45∗ 0.02 2.80∗

(0.13) (0.57) (0.28) (0.45) (0.14) (0.93) (0.33) (0.60)
ORMURI 0.85 0.61 0.10 −0.82 −0.00 0.36 −0.59∗ −1.04∗

(0.51) (0.54) (0.24) (0.50) (0.28) (0.37) (0.20) (0.36)
NURISTANI −1.27∗ −1.85∗ −0.34 −1.29 −2.45∗ −2.82∗ −0.92 −2.89

(0.50) (0.38) (0.60) (1.08) (0.56) (0.40) (0.52) (1.57)
logPOP 0.60∗ 0.69∗ 0.49∗ 0.63∗

(0.08) (0.10) (0.08) (0.11)
logAREA 0.19∗ −0.04 0.24∗ 0.10

(0.07) (0.09) (0.07) (0.08)
logROADS 0.37∗ 0.57∗ 0.59∗ 0.77∗

(0.16) (0.15) (0.15) (0.14)
logRIVERS −0.03 0.03 −0.03 −0.01

(0.06) (0.07) (0.08) (0.07)
PROV Y Y Y Y
N 262 262 262 262 262 262 262 262
Columns I - IV use OLS with dependent variable log transformed

Columns V - VIII use GLM/Poisson allowing for overdispersion

Robust standard errors in parentheses
∗ indicates significance at p < 0.05
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Table 5: Non-negative matrix factorization (“full shuffle” reference distribution)
Afghanistan Pakistan

I II III IV I II III IV
0 grps rnd shuffled data (mean) 1 1 1 1 1 1 1 1

actual data - 1 1 1 1 1 1 1 1
gap A 0 0 0 0 0 0 0 0

1 grp rnd shuffled data (mean) 0.883 0.950 0.962 0.972 0.682 0.918 0.947 0.972
actual data - 0.600 0.721 0.921 0.883 0.773 0.655 0.903 0.889
gap B 0.284 0.229 0.042 0.089 -0.091 0.263 0.043 0.084
gap statistic (B minus A) 0.284 0.229 0.042 0.089 -0.091 0.263 0.043 0.084
rnd shuffled data (std. dev.) 0.055 0.018 0.011 0.008 0.133 0.040 0.008 0.008

2 grps rnd shuffled data (mean) 0.820 0.913 0.937 0.951 0.537 0.861 0.903 0.951
actual data - 0.534 0.668 0.884 0.863 0.631 0.610 0.845 0.829
gap C 0.286 0.245 0.053 0.088 -0.094 0.251 0.058 0.122
gap statistic (C minus B) 0.002 0.016 0.011 -0.001 -0.003 -0.012 0.015 0.038
rnd shuffled data (std. dev.) 0.045 0.023 0.010 0.011 0.130 0.049 0.012 0.011

3 grps rnd shuffled data (mean) 0.787 0.887 0.910 0.935 0.433 0.817 0.864 0.935
actual data - 0.493 0.633 0.858 0.842 0.501 0.580 0.785 0.783
gap D 0.294 0.254 0.052 0.093 -0.068 0.237 0.079 0.152
gap statistic (D minus C) 0.009 0.009 -0.001 0.005 0.026 -0.015 0.021 0.030
rnd shuffled data (std. dev.) 0.070 0.031 0.012 0.012 0.126 0.053 0.015 0.012

4 grps rnd shuffled data (mean) 0.845 0.904 0.921 0.921 0.366 0.780 0.828 0.921
actual data - 0.458 0.603 0.836 0.825 0.419 0.543 0.750 0.750
gap E 0.387 0.301 0.085 0.096 -0.053 0.237 0.078 0.172
gap statistic (E minus D) 0.093 0.047 0.033 0.003 0.015 0.001 -0.001 0.019
rnd shuffled data (std. dev.) 0.073 0.038 0.032 0.013 0.114 0.055 0.016 0.013

5 grps rnd shuffled data (mean) 0.880 0.918 0.956 0.908 0.315 0.749 0.796 0.908
actual data - 0.427 0.576 0.816 0.809 0.352 0.514 0.721 0.738
gap F 0.453 0.343 0.140 0.099 -0.037 0.235 0.076 0.170
gap statistic (F minus E) 0.066 0.042 0.054 0.003 0.016 -0.002 -0.002 -0.002
rnd shuffled data (std. dev.) 0.098 0.042 0.028 0.015 0.103 0.055 0.017 0.015

Columns I-II use the model in Section 2.2; III-IV use the model from Section 2.3.
Columns I and III consider only districts with more than three attacks.
Columns II and IV use all districts, but weight districts by the number of attacks.
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Table 6: Non-negative matrix factorization (“monthly shuffle” reference distribution)
Afghanistan Pakistan

I II III IV I II III IV
0 grps rnd shuffled data (mean) 1 1 1 1 1 1 1 1

actual data - 1 1 1 1 1 1 1 1
gap A 0 0 0 0 0 0 0 0

1 grp rnd shuffled data (mean) 0.880 0.939 0.958 0.968 0.736 0.667 0.943 0.956
actual data - 0.600 0.722 0.921 0.883 0.773 0.655 0.903 0.889
gap B 0.281 0.217 0.037 0.085 -0.037 0.012 0.039 0.067
gap statistic (B minus A) 0.281 0.217 0.037 0.085 -0.037 0.012 0.039 0.067
rnd shuffled data (std. dev.) 0.049 0.015 0.014 0.013 0.109 0.022 0.010 0.009

2 grps rnd shuffled data (mean) 0.800 0.886 0.928 0.944 0.597 0.611 0.897 0.925
actual data - 0.534 0.669 0.884 0.863 0.631 0.603 0.845 0.829
gap C 0.266 0.217 0.044 0.081 -0.034 0.008 0.052 0.096
gap statistic (C minus B) -0.014 -0.001 0.007 -0.004 0.002 -0.004 0.013 0.029
rnd shuffled data (std. dev.) 0.047 0.026 0.018 0.015 0.122 0.022 0.014 0.012

3 grps rnd shuffled data (mean) 0.732 0.854 0.905 0.928 0.504 0.579 0.856 0.901
actual data - 0.493 0.634 0.858 0.842 0.501 0.572 0.785 0.782
gap D 0.239 0.220 0.046 0.086 0.003 0.006 0.071 0.120
gap statistic (D minus C) -0.028 0.003 0.003 0.005 0.038 -0.001 0.019 0.024
rnd shuffled data (std. dev.) 0.065 0.030 0.018 0.015 0.120 0.024 0.017 0.014

4 grps rnd shuffled data (mean) 0.680 0.813 0.884 0.917 0.434 0.551 0.820 0.881
actual data - 0.458 0.604 0.836 0.825 0.419 0.540 0.750 0.761
gap E 0.222 0.209 0.048 0.091 0.015 0.011 0.070 0.120
gap statistic (E minus D) -0.016 -0.011 0.002 0.005 0.012 0.004 -0.002 0.000
rnd shuffled data (std. dev.) 0.051 0.032 0.0181 0.013 0.112 0.024 0.019 0.015

5 grps rnd shuffled data (mean) 0.673 0.794 0.864 0.901 0.379 0.529 0.786 0.861
actual data - 0.427 0.577 0.816 0.809 0.353 0.519 0.720 0.733
gap F 0.246 0.217 0.048 0.091 0.026 0.010 0.066 0.129
gap statistic (F minus E) 0.024 0.009 0.000 0.000 0.011 -0.001 -0.003 0.009
rnd shuffled data (std. dev.) 0.096 0.033 0.018 0.015 0.104 0.024 0.020 0.017

Columns I-II use the model in Section 2.2; III-IV use the model from Section 2.3.
Columns I and III consider only districts with more than three attacks.
Columns II and IV use all districts, but weight districts by the number of attacks.
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Table 7: Non-negative matrix factorization (“constant marginals” reference distribution)
Afghanistan Pakistan

I II III IV I II III IV
0 grps rnd shuffled data (mean) 1 1 1 1 1 1 1 1

actual data - 1 1 1 1 1 1 1 1
gap A 0 0 0 0 0 0 0 0

1 grp rnd shuffled data (mean) 0.894 0.952 0.956 0.960 0.713 0.891 0.843 0.810
actual data - 0.600 0.722 0.921 0.883 0.773 0.654 0.903 0.888
gap B 0.294 0.230 0.035 0.077 -0.060 0.237 -0.060 -0.079
gap statistic (B minus A) 0.294 0.230 0.035 0.077 -0.060 0.237 -0.060 -0.079
rnd shuffled data (std. dev.) 0.040 0.018 0.011 0.009 0.106 0.020 0.022 0.033

2 grps rnd shuffled data (mean) 0.821 0.919 0.922 0.934 0.560 0.823 0.785 0.760
actual data - 0.534 0.669 0.884 0.852 0.631 0.605 0.845 0.829
gap C 0.287 0.250 0.038 0.082 -0.071 0.217 -0.059 -0.069
gap statistic (C minus B) -0.008 0.020 0.003 0.005 -0.011 -0.019 0.001 0.009
rnd shuffled data (std. dev.) 0.051 0.025 0.014 0.012 0.117 0.031 0.023 0.035

3 grps rnd shuffled data (mean) 0.764 0.892 0.894 0.912 0.463 0.778 0.739 0.723
actual data - 0.493 0.634 0.858 0.831 0.501 0.576 0.785 0.780
gap D 0.271 0.258 0.035 0.082 -0.038 0.202 -0.046 -0.058
gap statistic (D minus C) -0.016 0.008 -0.003 0.000 0.033 -0.015 0.013 0.012
rnd shuffled data (std. dev.) 0.053 0.028 0.016 0.013 0.119 0.035 0.024 0.036

4 grps rnd shuffled data (mean) 0.716 0.868 0.869 0.894 0.396 0.741 0.700 0.692
actual data - 0.458 0.604 0.836 0.815 0.419 0.543 0.750 0.756
gap E 0.258 0.264 0.033 0.080 -0.023 0.198 -0.050 -0.064
gap statistic (E minus D) -0.013 0.006 -0.002 -0.002 0.015 -0.004 -0.005 -0.006
rnd shuffled data (std. dev.) 0.055 0.030 0.017 0.013 0.115 0.036 0.024 0.037

5 grps rnd shuffled data (mean) 0.674 0.847 0.846 0.879 0.347 0.710 0.664 0.668
actual data - 0.427 0.577 0.816 0.798 0.353 0.518 0.720 0.737
gap F 0.247 0.270 0.030 0.080 -0.006 0.192 -0.056 -0.069
gap statistic (F minus E) -0.011 0.006 -0.003 0.001 0.017 -0.006 -0.005 -0.005
rnd shuffled data (std. dev.) 0.055 0.031 0.017 0.013 0.108 0.036 0.024 0.037

Columns I-II use the model in Section 2.2; III-IV use the model from Section 2.3.
Columns I and III consider only districts with more than three attacks.
Columns II and IV use all districts, but weight districts by the number of attacks.
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Table 8: Dep. variable is sum of off-diagonal entries of cov. matrix for a given district i
I II III IV V VI VII VIII

(Intercept) −1.08∗ −0.96∗ −1.23∗ −3.23∗ 0.63 0.75∗ 0.61 −1.69
(0.40) (0.40) (0.50) (0.71) (0.36) (0.35) (0.38) (0.87)

POST 0.31∗ 0.09 0.62 0.62 0.58∗ 0.40∗ 0.67 0.76
(0.15) (0.20) (0.79) (0.73) (0.15) (0.17) (0.62) (0.63)

UZBEK −1.44∗ −2.11∗ −2.11∗ −1.05∗ −1.54∗ −3.28∗ −3.34∗ −2.44∗

(0.27) (0.31) (0.30) (0.50) (0.40) (0.65) (0.67) (0.76)
BALOCH −1.02 −1.54∗ −1.05 −0.93 −1.90∗ −2.45∗ −2.23∗ −1.56∗

(0.89) (0.63) (0.60) (0.71) (0.84) (0.68) (0.68) (0.77)
HAZARA −1.82∗ −1.98∗ −1.92∗ −1.73∗ −1.05 −2.20∗ −2.18∗ −1.85∗

(0.32) (0.36) (0.38) (0.49) (0.60) (0.44) (0.45) (0.50)
TAJIK −1.39∗ −1.62∗ −1.68∗ −0.66 −0.84∗ −1.00∗ −1.03∗ −0.57

(0.23) (0.30) (0.29) (0.47) (0.25) (0.38) (0.38) (0.48)
PAMIR.TAJIK 1.92∗ 2.03∗ 1.88∗ 3.60∗ 0.34 0.64∗ 0.60 4.43∗

(0.35) (0.31) (0.38) (0.63) (0.40) (0.29) (0.35) (0.93)
ORMURI −0.12 0.82∗ 0.60 −1.66∗ 0.17 −0.26 −0.36 −2.37∗

(1.24) (0.32) (0.36) (0.75) (0.57) (0.20) (0.19) (0.82)
NURISTANI −0.53 0.11 0.47 1.49 −2.35 −1.11 −0.77 0.51

(0.76) (1.00) (0.95) (1.22) (1.23) (0.97) (0.91) (0.82)
logPOP 0.60∗ 0.60∗ 0.70∗ 0.85∗ 0.44∗ 0.44∗ 0.45∗ 0.64∗

(0.11) (0.11) (0.13) (0.14) (0.09) (0.08) (0.09) (0.14)
logAREA 0.25∗ 0.25∗ 0.14 0.03 0.26∗ 0.26∗ 0.24∗ 0.16

(0.08) (0.08) (0.09) (0.12) (0.07) (0.07) (0.08) (0.12)
logROADS 0.44∗ 0.44∗ 0.46∗ 0.55∗ 0.39∗ 0.39∗ 0.58∗ 0.71∗

(0.16) (0.16) (0.20) (0.21) (0.15) (0.16) (0.20) (0.23)
logRIVERS −0.08 −0.08 0.01 0.10 −0.03 −0.03 0.00 0.02

(0.07) (0.07) (0.08) (0.09) (0.07) (0.06) (0.08) (0.10)
POST:UZBEK 1.35∗ 1.35∗ 1.35∗ 2.22∗ 2.29∗ 2.09∗

(0.51) (0.52) (0.52) (0.77) (0.80) (0.65)
POST:BALOCH 1.04 0.06 0.06 0.80 0.43 0.34

(1.48) (1.48) (1.45) (1.23) (1.27) (1.30)
POST:HAZARA 0.32 0.19 0.19 1.53 1.50 1.55∗

(0.60) (0.65) (0.53) (0.80) (0.85) (0.70)
POST:TAJIK 0.46 0.57 0.57 0.26 0.31 0.36

(0.45) (0.46) (0.41) (0.51) (0.50) (0.46)
POST:PAMIR.TAJIK −0.21 0.09 0.09 −0.59∗ −0.53 −0.55

(0.23) (0.60) (0.50) (0.18) (0.54) (0.52)
POST:ORMURI −1.88 −1.43 −1.43 0.64 0.81 0.99

(1.97) (1.95) (1.52) (0.86) (0.91) (0.77)
POST:NURISTANI −1.28 −2.01 −2.01 −3.11 −3.74 −2.86

(1.60) (1.65) (1.48) (2.68) (2.81) (1.99)
POST:logPOP −0.20 −0.20 −0.02 −0.05

(0.21) (0.20) (0.15) (0.15)
POST:logAREA 0.23 0.23 0.03 0.04

(0.15) (0.14) (0.13) (0.14)
POST:logROADS −0.03 −0.03 −0.29 −0.26

(0.33) (0.29) (0.30) (0.29)
POST:logRIVERS −0.18 −0.18 −0.04 −0.04

(0.13) (0.12) (0.12) (0.12)
N 524 524 524 524 524 524 524 524
Columns I - IV use OLS with dependent variable log transformed. Column IV has province fixed effects.

Columns V - VIII use GLM/Poisson allowing for overdispersion. Column VIII has province fixed effects.
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Table 9: Dependent variable is off diagonal covariance matrix entry i i′

I II III IV

POST 0.234∗ 0.905∗ 0.909∗ 0.491
(0.032) (0.173) (0.173) (0.467)

UZBEK −2.431∗ −2.433∗ −1.472∗ −1.703∗

(0.229) (0.229) (0.334) (0.352)
BALOCH −0.936 −0.713 −0.421 −0.756

(0.773) (0.775) (0.701) (0.718)
HAZARA −2.490∗ −2.476∗ −2.310∗ −1.741∗

(0.269) (0.269) (0.325) (0.331)
TAJIK −1.454∗ −1.525∗ −0.538∗ −0.604∗

(0.166) (0.167) (0.238) (0.244)
PAMIR.TAJIK 1.254 1.237 3.627∗ 2.548∗

(0.832) (0.834) (0.909) (0.932)
ORMURI −0.182 −0.278 −1.866∗ −1.058

(0.739) (0.739) (0.746) (0.754)
NURISTANI −0.104 0.114 −0.404 −1.065

(0.719) (0.719) (0.970) (0.992)
logPOP 0.479∗ 0.530∗ 0.638∗ 0.633∗

(0.081) (0.082) (0.080) (0.082)
logAREA 0.194∗ 0.167∗ −0.004 0.019

(0.052) (0.053) (0.064) (0.066)
logROADS 0.368∗ 0.428∗ 0.540∗ 0.518∗

(0.111) (0.113) (0.106) (0.107)
logRIVERS −0.079 −0.047 0.018 0.072

(0.049) (0.051) (0.056) (0.057)
POST:UZBEK 1.364∗ 1.364∗ 1.365∗ 1.637∗

(0.122) (0.123) (0.123) (0.190)
POST:BALOCH −0.180 −0.529 −0.530 0.027

(0.475) (0.479) (0.479) (0.501)
POST:HAZARA 1.020∗ 0.992∗ 0.994∗ 0.252

(0.117) (0.117) (0.118) (0.167)
POST:TAJIK 0.382∗ 0.483∗ 0.485∗ 0.561∗

(0.057) (0.060) (0.060) (0.098)
POST:PAMIR.TAJIK −0.487 −0.471 −0.470 1.606∗

(0.256) (0.265) (0.265) (0.761)
POST:ORMURI 0.500∗ 0.650∗ 0.651∗ −0.533∗

(0.197) (0.199) (0.199) (0.250)
POST:NURISTANI 0.076 −0.265 −0.266 0.858∗

(0.302) (0.305) (0.305) (0.433)
POST:logPOP −0.081∗ −0.082∗ −0.071∗

(0.022) (0.022) (0.032)
POST:logAREA 0.042∗ 0.042∗ 0.001

(0.018) (0.018) (0.027)
POST:logROADS −0.095∗ −0.095∗ −0.053

(0.037) (0.037) (0.042)
POST:logRIVERS −0.047∗ −0.047∗ −0.120∗

(0.018) (0.018) (0.025)
Constant −6.889∗ −7.303∗ −11.288∗ −11.044∗

(0.590) (0.601) (1.055) (1.085)
N 68,382 68,382 68,382 68,382
GLMM/Poisson allowing for overdispersion, with random effects at district level

Overdispersion modelled via random effects at observation level. Column IV has province fixed effects.
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Table 10: Dependent variable is total attacks in district i
I II III IV V VI VII VIII

(Intercept) 0.67∗ 0.26 −0.09 −1.82∗ 1.02∗ 0.45 0.31 −1.77∗

(0.28) (0.22) (0.28) (0.44) (0.34) (0.28) (0.37) (0.66)
UZBEK −1.74∗ −1.85∗ −1.85∗ −1.24∗ −2.70∗ −3.27∗ −3.23∗ −2.64∗

(0.18) (0.16) (0.17) (0.29) (0.33) (0.43) (0.44) (0.45)
BALOCH −1.25∗ −1.07 −0.88 −0.83 −1.93∗ −1.50∗ −1.36 −1.08

(0.34) (0.60) (0.57) (0.59) (0.42) (0.72) (0.73) (0.72)
HAZARA −1.84∗ −1.58∗ −1.58∗ −1.13∗ −2.12∗ −2.15∗ −2.11∗ −1.18∗

(0.23) (0.23) (0.23) (0.23) (0.43) (0.39) (0.40) (0.37)
TAJIK −1.34∗ −1.42∗ −1.45∗ −0.70∗ −1.22∗ −1.40∗ −1.40∗ −0.61

(0.18) (0.19) (0.19) (0.26) (0.38) (0.44) (0.45) (0.39)
PAMIR.TAJIK 0.54∗ 0.69∗ 0.75∗ 1.84∗ 0.02 0.17 0.21 3.04∗

(0.24) (0.18) (0.25) (0.39) (0.33) (0.27) (0.37) (0.60)
ORMURI 0.05 −0.19 −0.29 −1.04∗ −0.59∗ −1.00∗ −1.01∗ −1.47∗

(0.22) (0.20) (0.23) (0.35) (0.20) (0.20) (0.23) (0.30)
NURISTANI −0.31 −0.62 −0.45 −1.38∗ −0.92 −1.27 −1.14 −3.16∗

(0.46) (0.50) (0.52) (0.66) (0.52) (0.67) (0.68) (1.21)
logPOP 0.52∗ 0.47∗ 0.59∗ 0.67∗ 0.49∗ 0.49∗ 0.53∗ 0.68∗

(0.07) (0.06) (0.07) (0.07) (0.08) (0.06) (0.09) (0.11)
logAREA 0.16∗ 0.15∗ 0.12∗ −0.04 0.24∗ 0.24∗ 0.22∗ 0.08

(0.06) (0.04) (0.06) (0.07) (0.07) (0.05) (0.08) (0.09)
logROADS 0.36∗ 0.36∗ 0.27∗ 0.42∗ 0.59∗ 0.59∗ 0.58∗ 0.76∗

(0.13) (0.09) (0.13) (0.11) (0.15) (0.12) (0.17) (0.15)
logRIVERS −0.02 −0.02 0.01 0.07 −0.03 −0.03 −0.02 −0.00

(0.05) (0.04) (0.06) (0.06) (0.08) (0.06) (0.09) (0.06)
POST −0.12 0.60 0.60 −0.25 0.08 0.21

(0.13) (0.41) (0.40) (0.16) (0.49) (0.41)
POST:UZBEK 0.57∗ 0.56∗ 0.56∗ 1.05∗ 0.99 0.90∗

(0.22) (0.24) (0.23) (0.52) (0.53) (0.34)
POST:BALOCH −0.35 −0.74 −0.74 −1.39 −1.69 −1.87

(0.83) (0.80) (0.82) (1.39) (1.39) (1.50)
POST:HAZARA −0.12 −0.13 −0.13 0.08 −0.01 0.01

(0.29) (0.31) (0.23) (0.64) (0.64) (0.58)
POST:TAJIK 0.40 0.46 0.46∗ 0.39 0.37 0.40

(0.26) (0.26) (0.22) (0.56) (0.56) (0.32)
POST:PAMIR.TAJIK −0.47∗ −0.59 −0.59∗ −0.41∗ −0.51 −0.57

(0.13) (0.34) (0.29) (0.16) (0.49) (0.34)
POST:ORMURI 0.53∗ 0.74∗ 0.74∗ 0.79∗ 0.83∗ 0.84∗

(0.24) (0.32) (0.23) (0.25) (0.30) (0.19)
POST:NURISTANI 0.69 0.35 0.35 0.72 0.42 0.51

(0.58) (0.62) (0.59) (0.77) (0.85) (1.09)
POST:logPOP −0.24∗ −0.24∗ −0.09 −0.11

(0.11) (0.11) (0.12) (0.10)
POST:logAREA 0.05 0.05 0.05 0.05

(0.08) (0.07) (0.10) (0.09)
POST:logROADS 0.17 0.17 0.01 0.01

(0.18) (0.15) (0.23) (0.19)
POST:logRIVERS −0.06 −0.06 −0.02 −0.01

(0.07) (0.06) (0.12) (0.07)
N 262 524 524 524 262 524 524 524
Columns I - IV use OLS with dependent variable log transformed. Column IV has province fixed effects.

Columns V - VIII use GLM/Poisson allowing for overdispersion. Column VIII has province fixed effects.

Robust standard errors in parentheses
∗ indicates significance at p < 0.05
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Table 11: Estimated Organized Attacks, 2008-2009
I II III IV V VI

(Intercept) −1.31∗ −1.23 −11.78 0.48∗ −4.11 −8.59
(0.09) (2.71) (12.30) (0.14) (4.98) (21.03)

I(ATTACKS EARLY ADJACENT == 0) −0.95∗ −0.69∗ −0.49∗ −4.71∗ −4.39∗ −3.67∗

(0.10) (0.12) (0.18) (1.02) (1.04) (1.11)
ATTACKS EARLY 0.78∗ 0.68∗ 0.69∗ 0.34∗ 0.28∗ 0.34∗

(0.11) (0.11) (0.11) (0.07) (0.08) (0.13)
logPOP 0.27∗ 0.24 0.54∗ 0.61∗

(0.10) (0.13) (0.17) (0.23)
logAREA 0.08 0.06 0.22 0.10

(0.07) (0.10) (0.14) (0.17)
LIGHTS −0.71∗ −0.63∗ −1.94 −1.04

(0.27) (0.29) (1.18) (1.30)
LATITUDE −0.17∗ 0.01 −0.18 −0.27

(0.05) (0.17) (0.09) (0.41)
LONGITUDE 0.05 0.10 0.08 0.14

(0.03) (0.17) (0.05) (0.29)
Provice FE N N Y N N Y
N 398 398 398 398 398 398
R2 0.36 0.39 0.46
adj. R2 0.35 0.38 0.40
Resid. sd 1.41 1.38 1.36

Columns I-III use OLS with log(ATTACKS+0.1) as dependent variable

Columns IV-VI use Poisson regression with ATTACKS as dependent variable

ATTACKS EARLY is (estimated) number of organized attacks in 2004 - 2007.

ATTACKS EARLY ADJACENT is (est.) # of organized attacks per capita in adj. districts in 2004-2007.

Robust standard errors in parentheses
∗ indicates significance at p < 0.05
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Table 12: Estimated Organized Attacks, 2008-2009 (no attacks in 2004-2007)
I II III IV V VI

(Intercept) −1.93∗ 2.60 20.39 −0.93∗ 14.67 106.11∗

(0.07) (2.38) (12.69) (0.43) (7.82) (42.20)
I(ATTACKS EARLY ADJACENT == 0) −0.34∗ −0.15 −0.13 −3.29∗ −2.61∗ −1.78

(0.08) (0.08) (0.12) (1.10) (1.15) (1.26)
logPOP 0.10 0.02 0.62 0.02

(0.08) (0.09) (0.38) (0.52)
logAREA 0.01 0.02 −0.32 0.44

(0.05) (0.06) (0.40) (0.58)
LIGHTS −0.29∗ −0.12 −7.43 −1.52

(0.13) (0.15) (7.62) (3.00)
LATITUDE −0.10∗ −0.10 −0.46∗ −1.50

(0.04) (0.09) (0.19) (0.82)
LONGITUDE −0.03 −0.28 −0.10 −0.81

(0.03) (0.17) (0.11) (0.51)
Provice FE N N Y N N Y
N 235 235 235 235 235 235
R2 0.03 0.09 0.50
adj. R2 0.02 0.06 0.40
Resid. sd 0.87 0.85 0.69

Sample is districts with zero (estimated) number of organized attacks in 2004-2007.

Columns I-III use OLS with log(ATTACKS+0.1) as dependent variable

Columns IV-VI use Poisson regression with ATTACKS as dependent variable

ATTACKS EARLY is (estimated) number of organized attacks in 2004 - 2007.

ATTACKS EARLY ADJACENT is (est.) # of organized attacks per capita in adj. districts in 2004-2007.

Robust standard errors in parentheses
∗ indicates significance at p < 0.05

51



A Spectral Clustering Consistency

Each off-diagonal γ̄ii′ entry will converges to γii′ as the number of time periods grows,

and the Γ̄H matrix will converge to ΓH . Thus, L̄ will converge to L. Asymptotically,

the correct number of the sample eigenvalues of L̄ will approach zero. From a theoretical

perspective, a test statistic similar to that given in Yao, Zheng, and Bai [2015] could be used

to determine the number of zero eigenvalues. This test statistic appears to have originated

from Anderson [1963], and a simplified version appears to be appropriate in this case: the

eigenvalues that are converging to zero are doing so at a
√
T rate, and thus for the K

smallest eigenvalues, the test statistic
√
T
∑K

k=1 λk or T
∑K

k=1 λ
2
k could be used.48 However,

the asymptotic distribution of these test statistics is not clear, and it is also not obvious that

a subsampling bootstrap approach would yield the correct distribution either. Simulations

suggest that here are certain cases where the correct number of groups will only be obtained

with high probability when a very large number of time periods are observed. Specifically,

consider the case where αij is positive but very close to zero for some i and j. That is, there

are members of group j in district i, but there are very few of them. In this case γii′ will

be very close to zero for all the other i′ that contain members of group j. It is thus difficult

to distinguish between i containing its own separate group, and i being a part of group j.

Given the difficulty of a formal test, heuristic methods are used.

The estimate Ĵ corresponds to an eigenvalue such that λk is “small” for all k ≤ Ĵ . The

presence of high eigengaps on the right hand side of Figure 7 is not relevant for the eigengap

procedure, as eigenvalues preceding the gaps on the right hand side of Figure 7 are “large”.

In particular, Luxburg [2007] suggests that the cutoff between “small” and “large” should

not be larger than the minimum degree in the graph, and this is trivially met by Ĵ = 1

but would be violated by any much larger estimate. Although the “eigengap” approach is

intended to be heuristic rather than formal, it is possible to compare the first eigengap to

simulated data where there is no group structure. Compared to data where the attacks in

each district have been reassigned to a random date, the first eigengap shown in Figure 7 is

larger, and this difference is statistically significant at the 95% level.

48The asymptotic argument is made with a fixed number of districts, N , and a growing number of time
periods, T .
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B NNMF Consistency

Γ̄H will converge to ΓH with an asymptotically normal distribution, by the Cramer-Wold

device and the fact that the underlying distribution of attacks has finite fourth moments. Let

Wk = ||Γ̂k
H − Γ̄H ||, where Γ̂k

H is the estimated covariance matrix for the model with k groups.

When k = J , Γ̂k
H will converge to ΓH , and thus WJ will converge to zero. The estimated

α̂ that produce Γ̂H will be a consistent estimator for the true α so long as the standard

GMM assumptions are satisfied. As is usually the case, however, the GMM identification

condition is challenging to prove. Huang, Sidiropoulos, and Swami [2014] discuss uniqueness

of symmetric non-negative factorizations at some length. They conclude that while there are

no obvious necessary conditions to check for uniqueness, simulations reveal that multiplicity

of solutions does not appear to be a problem unless the correct factorization is extremely

dense: factorizations with 80% non-zero entries are still reconstructed successfully. The ΓH

matrices considered in this paper would generally be expected to have a relatively sparse

factorization, so long as insurgent groups have geographic territories. One concern might

be that diagonal entries has been zeroed out in ΓH , and disregarding these entries would

increase the probability of factorizations being non-unique. There is no evidence of problems

with non-uniqueness, however in the results reported in Tables 5 to 7.

Additional groups will not worsen the model fit, and thus WJ+1 will also converge to

zero. For values k < J , Wk will converge to a positive value, so long as αik′ > 0 for at

least two districts i and k′ > k. The main difficulty is thus in selecting a threshold such that

asymptotically k = J will be selected instead of k = J+1 or K < J . Convergence of WJ and

WJ+1 is at the standard
√
T rate, and thus any threshold that also shrinks at this rate will

lead to an inconsistent estimator: this includes any the rule of thumb “one standard error”

rule from Tibshirani, Walther and Hastie [2001], as the errors in the random model with no

group structure will also shrink at
√
T rate. The solution would be to use a threshold that

shrinks to zero, but at a rate slower than
√
T . The probability of an incorrect selection of

k = J + 1 or higher number of groups would then decrease to zero asymptotically, and the

probability of k < J being selected would similarly decrease. The asymptotic argument is

theoretical, in the sense that only one data set is actually available: the “one standard error”
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rule is used with it, and a hypothetical larger data set would call for a more stringent rule.

C Estimation using monthly covariance matrices

Suppose that attack probabilities are relatively small. Then the number of attacks by

unorganized militants can be approximated using a Poisson(ζimηℓi) distribution instead of

using the actual Binomial(ζimη, ℓi) distribution. Similarly, the distribution of attacks by

members of an organized group can be approximated with Poisson(ζimϵtjαij) in place of

Binomial(ζimϵtj, αij).

Now, suppose that there are a total of xim attacks in district i. Conditional on there

being a total of xim attacks, the distribution of these attacks across days is given by a

Multinomial(xim, pi) distribution, where pi is a probability vector with elements of the form

pit =
ηℓi +

∑
j ϵtjαij∑

t′ (ηℓi +
∑

j ϵt′jαij)

If in some other district i′ there were xi′m attacks, then the covariance of daily attacks has

the useful form

Cov(xim·, xi′m·) = ximxi′m

∑
t

pitpi′t −
xim

T
· xi′m

T

= ximxi′m(
∑
t

pitpi′t −
1

T
· 1
T
)

Cov(xim·, xi′m·)

ximxi′m
= SCov(pit, pi′t)

where SCov(pit, pi′t) gives the sample covariance for a given draw of ϵ. The first line of the

above holds because each attack decision is independent given both the total number of

attacks and the realization of ϵ. If the ϵ are constructed such that
∑

t′ ϵt′j = 1, then the

denominator in the expression above for pit will simplify such that

SCov(pit, pi′t) =

∑
j αijαi′jσ

2
j

(Tηℓi +
∑

j αij)(Tηℓi′ +
∑

j αi′j)

If the distribution of ϵ conditional on the number of attacks is the same as the unconditional

distribution of ϵ, then the above will hold because the number of attacks is a sufficient

statistic (if the ϵ are independent of the number of attacks?). The Tηℓi +
∑

j αij term can
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be taken to be the “average” number of attacks, which implies that α̃ij =
αij

Tηℓi+
∑

j αij
is the

fraction of attacks in district i that group j will be responsible for. Then

Cov(pit, pi′t) =
∑
j

α̃ijα̃i′jσ
2
j

Here α̃ and σ2 are not separately identified. If the normalization σ2
j = 1 is used, then the

estimated α̃ describe relative degrees to which groups are more or less responsible for attacks,

across districts.
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