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ABSTRACT

Scandals permeate social and economic life, but their consequences have received scant attention in
the economics literature. To shed empirical light on this phenomenon, we investigate how the scientific
community's perception of a scientist's prior work changes when one of his articles is retracted. Relative
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of the retracted author and the publicity surrounding the retraction shape the magnitude of the penalty.
We find that eminent scientists are more harshly penalized than their less distinguished peers in the
wake of a retraction, but only in cases involving fraud or misconduct. When the retraction event had
its source in “honest mistakes,” we find no evidence of differential stigma between high- and low-status
faculty members.
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1 Introduction

In July 1987 Charles Glueck, a leading scientist known for his investigations into the role of choles-

terol in heart disease, was censured by the National Institutes of Health (NIH) for serious scientific

misconduct in a study he published in Pediatrics, a major medical journal (Glueck et al. 1986).

At the time the article was retracted, Dr. Glueck was the author of 200 publications that had

garnered more than 10,000 citations. The scandal was well-publicized, including two articles in the

New York Times calling into question the ability of peer reviewers to root out misconduct in scien-

tific research more generally. Glueck’s fall from grace was swift—he had to resign his post from the

University of Cincinnati College of Medicine—but also far from complete: he found employment

as the Medical Director of The Jewish Hospital Cholesterol Center in Cincinnati, and was still an

active researcher as of 2014, though he never again received funding from NIH.

Reputation is a canonical concept in economics. Most of the existing research is concerned

with how, and under what conditions, economic agents acquire a good one, separate themselves

from other agents with a bad one, and more generally influence the beliefs of the market about

their quality (Cabral 2005). The literature is mostly silent, however, about the conditions under

which actors can lose their reputation.1 Across many economic settings, including the realms of

entertainment, sports, and the upper echelons of the corporate world, scandal looms as one of the

primary mechanism through which the mighty are often brought low. Because scandal is at its core

an informational phenomenon, this manuscript uses the applied economist’s modern toolkit to study

the professional fate of individuals whose transgressions are suddenly publicized—to paraphrase the

succinct definition of the term provided by Adut (2005).

The reigning paradigm to assess the effects of the revelation of information is Bayesian updating.

When the market observes the release of negative information, it might infer that the agent’s

quality was bad all along, therefore discounting the work that he produced in the past. But our

understanding of the updating process itself is still rudimentary. How good is the market at parsing

the “truth” from signals of varying informativeness? How does the extent of the penalty depend

on the stock of reputation accumulated by the agent up until the time of the shock?

To answer these questions empirically, we turn to the setting of scientific retractions. We

start from a list of biomedical research articles retracted during a period that spans the years

1980 to 2009. We carefully match the authors of these publications to the Faculty Roster of

the Association of American Medical Colleges (AAMC), a comprehensive panel dataset recording

the career histories of U.S. academic biomedical researchers. This generates a list 376 US-based

1This omission stands in marked contrast to sociology, where this question occupies a central place in the disci-
plinary cannon (Goffman 1963; Fine 2001). A notable exception in economics is the model of Cripps, Mailath and
Samuelson (2004); these authors demonstrate how reputation is necessarily a short-run phenomenon when actions
are imperfectly monitored.
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retracted faculty authors for whom we painstakingly assemble a curated list of publications, NIH

grants, and citations received. We proceed in a symmetric fashion to produce a sample of 759

control authors in the same broad fields of the life sciences.

Armed with these data, we analyze the impact of retraction events on the rate of citation

received by non-retracted articles published prior to the retraction in a difference-in-differences

framework. This type of analysis may, however, confound any “citation penalties” accruing to a

specific retracted author with the broader consequences of the scientific community abandoning a

research field altogether. Significant spillover effects of retractions on the evolution of research fields

were documented by Azoulay et al. (2015), who examined the impact of retractions on the citation

of papers in the same field by non-overlapping authors. In order to isolate the effects of retractions

on individuals, we focus exclusively on publications by the retracted authors in a different research

field. Having filtered out the research field-specific effects, we find that the pre-retraction work of

retracted authors suffers a 10% citation penalty following a retraction event, relative to the fate of

the articles published by non-retracted control authors.

We then investigate the impact of prior reputation (whether the authors belonged to the top

quartile of the citation or funding distribution at the time of the retraction) and the informativeness

of the signal contained in the retraction news, which we proxy by carefully separating instances of

misconduct (from fraud to plagiarism) from instances of mistakes (stemming, for example, from

contaminated biological samples or statistical errors). Our results indicate that informativeness and

prior reputation interact in very specific ways to shape the magnitude of the audience’s response.

In particular, the work of eminent authors is not penalized more severely than that of less eminent

ones in the case of honest mistakes. However, the difference in citation penalty is much more

pronounced when retraction events stem from clear-cut cases of scientific misconduct. In these

instances, the prior work of retracted authors sees its rate of citation fall by almost 20%.

Our study bears a resemblance with a recent paper by Jin et al. (2013). These authors

also study the effect of retraction events on the citations received by prior work from retracted

authors, but they focus on the differential penalty suffered by junior and senior authors on the

same retracted paper. They find that the senior authors (those in last authorship position) escape

mostly unscathed following a retraction, whereas their junior collaborators (typically graduate

students of postdoctoral fellows) are often penalized severely, sometimes to the point of seeing their

careers brought to an abrupt end. Their results are seemingly at odds with ours, but it is important

to note that the variation we exploit exists between authorship teams, rather than within them.

The manuscript proceeds as follows. The next section summarizes the institutional context

of retractions as part of the broader scientific peer review system. Section 3 introduces a simple

Bayesian model to frame the empirical exercise. Section 4 describes the data and the process

followed to assemble it. Section 5 presents our empirical strategy and results. Section 6 circles
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back to the model to discuss the extent to which the market’s reaction is, in fact, consistent with

Bayesian learning. Section 7 briefly concludes.

2 Institutional Setting

While the role of scientific research in enabling economic growth has become a truism among

economists, scientific progress does not unfold in an institutional vacuum. Rather, the scientific

enterprise relies on a set of reinforcing institutions that support individual accountability and

reliable knowledge accumulation (Merton 1973; Dasgupta and David 1994). In the context of this

manuscript, peer review, the allocation of credit through citation, and the retraction system are

three fundamental practices worthy of discussion.

One of the central institution of science is the peer-review system. By submitting scientific

articles for independent review by expert peers, the path to publication balances the integrity of

published results with the desire to have an adequate pace of discovery. Similarly, the practice

of citing relevant prior literature allows scientists to clearly and concisely communicate where

there contributions fall within the scientific landscape, while allocating credit to the originators of

particular ideas.

Retractions are often the culmination of a process used by journals to alert readers when articles

they published in the past should be removed from the scientific literature. They are qualitatively

different from simple corrections in that their intent is to strike the entire publication from the

scientific record. Retraction notices may be initiated by the journal editors, by all or some of the

authors of the original publication, or at the request of the authors’ employer.

The informational content of retraction notices is highly variable. Some notices contain detailed

explanations about the rationale for the decision to retract, while others are a single sentence long

and leave the scientific community uncertain about (i) whether the results contained therein should

be disregarded in part or in their entirety, and (ii) whether the retraction was due to fraud, more

benign forms of scientific misconduct, or instead had its root in an “honest mistake.”

In the recent past, specialized information resources, such as the popular blog RetractionWatch,

have emerged to help scientists interpret the context surrounding specific retraction events. One

aspect of a retraction’s “back story” that often proves vexing to decipher pertains to the allocation

of blame across members of the authorship team. Only in the most egregious and clear-cut instances

of fraud would a retraction notice single out particular individuals. In the United States and for

research supported by NIH, scientific misconduct is also policed by the Office of Research Integrity

(ORI) within the Department of Health and Human Services. ORI is vested with broad investigative

powers, and its reports are often the forerunners of retraction events, sometimes involving more

than a single publication.
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Retraction events are still rare (occurring at the rate of roughly one retraction per ten thousand

scientific articles), but their frequency has been increasing steadily over the past 20 years (see

Figure 1). This trend has been the cause of increasing concern in the media (e.g., Wade 2010; Van

Noorden 2011), and much hand-wringing within the scientific community (Fang et al. 2012), but

its fundamental drivers remain an open question. While popular accounts espouse the view that

heightened competition for funding leads to increased levels of sloppiness, scientists can also gain

prominence by detecting instances of misconduct or error (Lacetera and Zirulia 2009). Moreover,

the rise of the Internet and electronic resources has in all likelihood increased the speed at which

peers can direct their attention to results that are both noteworthy and ex-post difficult to replicate.

Much of the public attention to the retraction phenomenon can also be attributed to a handful of

high-profile cases of scientific misconduct.2

3 Model

We introduce a simple model of Bayesian learning and scientific reputations as a guiding framework

for our empirical results. In our model, a representative researcher (the agent) is continuously

evaluated by the scientific community (the market). The agent has a fixed binary characteristic

that denotes his “quality,”

θ ∈ {θB, θG} .

Thus, the agent is either “good” or “bad.” The market’s prior belief that the agent is of the good

type is p0 , Pr (θ = θG).

The market learns about the agent’s quality from observing his scientific output, taking retrac-

tion as a negative signal and non-retraction as a positive signal. For simplicity, we assume that the

agent’s output at each point in time is also binary,

yt ∈ {0, 1} .

In particular, output at time t is given by yt = 1, unless a retraction event occurs, in which case

output is given by yt = 0.

The market rewards the agent with citations based on his reputation. Let pt denote the market’s

posterior belief at time t. The flow of citations to any of the agent’s papers at time t is given by

w (pt), where w is a strictly increasing and twice differentiable function. In other words, the flow of

citations received by the agent’s body of work is a function of the market’s belief that his quality

2Stem cell science has been rocked by two especially sensational scandals. The first was the case of Woo-suk
Hwang—the South Korean scientists who fabricated experiments and claimed to have successfully cloned human
embryonic stem cells. More recently, the media gave major coverage to the retraction of a stem cell paper that
claimed to use acid baths to turn mature cells into stem cells. Tragically, one of the Japanese authors on the
retracted paper, Yoshiki Sasai, committed suicide at his research lab.
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is high, based on his output history. Rewards for reputation are highly nonlinear in our database

(see Figure 6), where the distribution of citations is heavily skewed towards “superstar” agents.3

3.1 Learning and Reputation

The market learns about the agent’s quality through retractions that we model as a “bad news”

Poisson process. The intensity of the Poisson process is higher for low-quality (bad) agents. Thus,

retractions are rare, publicly observable events that reveal information about an agent’s quality.4

As our interest lies in the comparison across rather than within retracted papers, we assume that

a retraction is an equally informative signal for every identifiable author of a retracted paper. The

consequences of this signal, however, vary with each author’s prior reputation, as described below.

More formally, let time be continuous and the horizon infinite. Retraction events for an agent

of type θ are exponentially distributed with parameter λθ, where we assume that λB ≥ λG ≥ 0.

Under this learning model, the agent’s reputation at each time t is measured by the market’s belief

pt. Our empirical approach is focused on the drop in citations following a retraction, and does not

aim to capture the more nuanced dynamics of reputations. Consequently, we now examine on the

effect of a retraction on the market’s beliefs.

The market’s posterior belief pt drifts upward over time, until a retraction event occurs, in

which case it jumps down. Upon observing a retraction at time t, the market updates its beliefs

from pt to

pt+dt , Pr [θ = θG | yt = 0, t] =
ptλG

ptλG + (1− pt)λB
.

The change in the agent’s reputation is then given by ∆ (pt) < 0, where

∆ (pt) , pt+dt − pt = −pt (1− pt) (λB − λG)

ptλG + (1− pt)λB
.

If λG = 0, the expressions above yield pt+dt = 0 and ∆ (pt) = −pt. In other words, when the

retraction event is fully revealing of a bad type, the agent loses his entire reputation, regardless

of its initial level. Conversely, if λG = λB, then ∆ (pt) = 0. Clearly, when retraction events are

uninformative, they cause no change in reputations.

We now introduce a measure of the informativeness of retractions, namely

α ,
λB
λG
≥ 1.

3Both the agent’s output and the reward function can be made endogenous by introducing an explicit choice of
effort, as in the career concerns model of Holmström (1999).

4The model can easily be extended to simultaneously account for several informative signals, e.g., retractions due
to misconduct and to mistakes. We do so in Appendix A. It is also possible to include both positive and negative
events, such as scientific breakthroughs that augment the agent’s reputation.
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Let p denote the agent’s current reputation level. We can rewrite the change in reputation as

∆ (p, α) = −p (1− p) (α− 1)

p+ (1− p)α
. (1)

Figure 2 illustrates the change in reputation ∆ (·, α) for several values of α. Intuitively, the negative

effect of a retraction is a nonlinear function of the agent’s prior reputation: for p = 0 and p = 1,

the market’s prior belief is so strong that no signal can affect it. In contrast, when the market is

very uncertain about the agent, the reputation change will be large. Indeed, the reputation loss

−∆(p, α) is greatest for an agent with the threshold reputation p̄ :=
√
α/(1 +

√
α).

0.2 0.4 0.6 0.8 1.0
p

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Δ(p,α )

Figure 2: Reputation Losses ∆(p, α), for α ∈ {2, 6, 25}

We now turn to the comparative statics of reputation losses with respect to the informativeness

of the signal. We are particularly interested in whether a more informative signal has a larger effect

on agents with higher prior reputations. Proposition 1 collects our comparative statics results.

Proposition 1 (Signal Informativeness)

1. ∂∆(p, α)/∂α < 0 for all p, i.e., retractions yield greater losses of reputation as the signal

informativeness α increases.

2. ∂2∆(p, α)/∂α∂p < 0 if and only if p < p̂ := α/(1 + α), i.e., as the signal informativeness α

increases, reputation losses are increasing in the prior reputation for low values of p only.

Part (1.) of this proposition is intuitive: if signals are uninformative (α = 1), then ∆ (p, 1) = 0

for all p. Conversely, if signals become arbitrarily informative (α→∞), then ∆ (p, α)→ −p. The

interaction effect in part (2.) follows a similar logic to the level of reputation losses described above:

as signals become more informative, agents with a higher reputation stand to lose more. However,
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for agents with sufficiently high reputation levels, the market essentially attributes a retraction to

“chance,” which dampens the negative effect of enhanced signal precision.5

Finally, note that both thresholds p̄ and p̂ approach 1 as α → ∞. Thus, as signals become

arbitrarily precise, the negative effect of a retraction is increasing in p on (0, 1) and an increase in

signal precision is most damaging to the agents with the highest reputation. However, for any finite

level of informativeness, the effects of prior reputation and signal informativeness on the retraction

penalty remain an empirical question.

3.2 Implications for Citations

We now turn to the average effect of a retraction on agents with similar reputation levels. We con-

sider a population of agents whose reputations p are uniformly distributed. This is a useful exercise

because, in our empirical approach, we use quantiles of the distribution of citations and funding as

proxies for reputation. Reputation levels are, then, uniformly distributed by construction.

We now aggregate the reputation losses of the top quartile and of the bottom three quartiles

in the population. We then compare the effect of a retraction across different levels of signal

informativeness. Figure 3 illustrates the aggregate implications of our model when α ∈ {6, 25}.

0.2 0.4 0.6 0.8 1.0
p

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Δ(p,α )

Figure 3: Average Reputation Loss by Group, α ∈ {6, 25}

The example in Figure 3 is broadly consistent with our main empirical finding—that high-status

agents after a retraction even due to misconduct suffer the sharpest drop in reputation, while the

three other reputation losses are of comparable magnitude to one another.

In Appendix A, we formalize the intuition that an increase in signal informativeness amplifies

the difference in the reputation losses of high- and low-status agents. In particular, we consider

5In our Bayesian model, if the market holds beliefs p = 1, the agent’s reputation is unaffected by retractions. Our
empirical approach assumes that some (arbitrarily small) amount of uncertainty persists for all scientists.
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the average reputation drop for agents with initial levels of reputation p ∈ [0, p∗] and p ∈ [p∗, 1],

respectively. We show that, if one considers a large enough subset of high-status agents (low p∗),

then an increase in the informativeness of the retraction signal α widens the gap between the

reputation losses of high- and low-status agents.

We conclude this section by deriving implications for the effect of retractions on the flow of

citations. Consider an agent with initial reputation p. In order to correctly capture the effect of a

retraction, we must consider two elements: the shape of the rewards for reputation w (p); and the

drop in the market’s beliefs ∆(p). The change in the flow of citations is given by

∆ (w (pt)) , w (pt+1)− w (pt) .

Consider, for example, an exponential reward function w (p) = ep. We can then write the

percentage drop in citations as
d lnw (p)

dp
= ∆ (p) .

Thus, under an exponential reward function, the results of Proposition 1 that relate the dynamics

of reputation p to the signal informativeness α also apply to the relative drop in citations w(p).

The exponential rewards function is a reasonable approximation to the distribution of citations

and funding at baseline in our data. Consequently, in our empirical analysis, we shall report

regression results in logs, and apply the insights derived earlier for the reputation levels.

4 Data Construction

This section details the construction of our multilevel, panel dataset. We begin by describing the

criteria used to select the sample of retracted scientists and how we identified their career and

publication histories. Next, we present the outcome variables used in the study, as well as our

measures of publicity and author prestige. The last step is to explicate the process through which

a sample of control authors—faculty members who did not experience a retraction event, but are

otherwise similar to the retracted authors—was selected.

Retractions, retracted authors, and career histories. In order to build our sample of re-

tracted authors and their publication histories, we begin with a set of 1,129 retractions published

in the period 1977-2007, and retracted prior to 2009. The source of these retractions is PubMed,

the United States National Library of Medicine’s (NLM) primary database for biomedical and life

science publications. PubMed contains more than 24 million citations and indexes articles along a

number of dimensions, including retraction status.

The critical ingredient in the construction of our dataset is the bibliome for each retracted

author, i.e., an exhaustive and accurate list of articles published by these authors. A perennial
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challenge in collecting author-specific publication data is name disambiguation, since bibliographic

databases such as PubMed and Web of Science do not typically include individual author identifiers.

A related paper by Lu et al. (2013) uses self-citation linkages (starting with the retracted paper) to

build author publication histories; this approach has the advantage that it is automated, scalable,

and effectively deals with errors of commission—mistakenly attributing publications authored by

a namesake to the focal author. However, it is much less effective in warding off errors of omission,

especially when scientists have multiple streams of work that are not connected through self-citation.

In our view, this limitation argues against the use of an automated approach: using authors’ prior

work that falls outside the line of research culminating in a retraction can help us distinguish

between the punishment meted out to individual scientists from the loss of intellectual credibility

suffered by the specific ideas associated with the retraction. This concern leads us to invest in the

labor-intensive process of disambiguating publication histories manually. This is a rate-limiting

step for our empirical approach, and it has implications for the way in which we select control

authors (see below).

First, we carefully matched retracted authors to the Faculty Roster of the Association of Amer-

ican Medical Colleges (AAMC), to which we secured licensed access for the years 1975 through

2006, and which we augmented using NIH grantee information (cf. Azoulay et al. [2010] for more

details).6 Whenever the authors we identified in this way were trainees (graduate students or

postdoctoral fellows) at the time of the retraction event, we excluded them from the sample.7 See

Appendix B for a full description of the process of matching author names to the Faculty Roster.

We were able to match at least one author on 43% of the retracted publications to scientists

in the AAMC Faculty Roster. While this figure may seem low, it is a reflection of the fact that

the majority of the retractions are authored by non-US scientists who would not, by definition, be

expected to appear in the AAMC Faculty Roster. The match rate for American scientists is much

higher. Of the 488 retractions with US reprint addresses, we matched at least one author on 412

(84%) of the publications. The matching process yielded 195 retractions with one author matched,

148 retractions with two authors matched, and 146 retractions with three or more authors matched.

Since many of these authors are involved in multiple retractions, matched authors have an average

of 1.5 retracted publications in the sample. As in Azoulay et al. (2015), our analyses exclude the

202 retraction cases where the retracted paper’s claims remain valid after the retraction event (i.e.,

6An important implication of our reliance on these source of data is that we can only identify authors who are
faculty members in U.S. medical schools, or recipient of NIH funding. Unlike Lu et al. (2013), we cannot identify
trainees, staff scientists without a faculty position, scientists working for industrial firms, or scientists employed in
foreign academic institutions. The great benefit of using these data, however, is that they ensure we know quite a
bit about the individuals we are able to identify: their (career) age, type of degree awarded, place of employment,
gender.

7We do so because these trainees-turned-faculty members are selected in a non-random fashion from the entire
population of trainees which we cannot get systematic data about.

9



most—but not all—cases of plagiarism, duplication of publications, faulty IRB approval, etc.).8

From this sample of retractions, we matched a total of 376 retracted faculty authors. For more

information on the author matching process, see Appendix B.

Once matched to the AAMC Faculty Roster, we linked authors to their publication histories by

developing detailed PubMed search queries that return the author’s entire body of work. Figure 4

illustrates this process for the case of one faculty member, Kirk E. Sperber, MD. This process

allowed us to identify author publication histories while carefully removing papers belonging to

other authors with similar (or the same) names, and reliably capturing the full set of a scientist’s

publications.9

Citation data. The primary outcome in the analyses presented below is the annual flow of citations

to authors’ publications in the sample. Citations are both a measure of intellectual credit and

professional attention. Scientists cite prior work in order to communicate where their contributions

fall within their field or subfield, and to bestow credit to the research they are building upon.

Citations also serve as the currency that is essential to maintaining the incentives and norms that

compel honest work and competition in science (Merton 1957).10 We follow in the footsteps of

prior scholarship in the economics of science in using an information shock to trace out the effect of

this shock on the citation trajectories of scientific articles published before the shock (e.g., Furman

and Stern 2011; Azoulay et al. 2015).

Since PubMed does not provide citation data, we use Thomson-Reuters’ Web of Science (WoS)

to obtain citations for publications in PubMed. We match PubMed with WoS to generate a dataset

with 190 million cited-to-citing paper pairs. This resulting dataset contains cited-to-citing pairs

for all PubMed-indexed articles that cite other PubMed-indexed articles.11 Our analyses exclude

all self-citations from any member of the authorship team.

Measuring the public nature of retraction events: misconduct vs. “honest mistakes.”

An important implication of our model is that the informativeness of the signal contained in a

8We verified that including these retractions in the sample does not materially affect our conclusions.
9This manual process is made possible by the construction of a dossier on each author, based on a combination of

curriculum vitae, NIH biosketches, Who’s Who profiles, accolades/obituaries in medical journals, National Academy
of Sciences biographical memoirs, and Google searches. More details regarding the procedure used to link authors
with their publication histories can be found in Appendix C.

10Citations can also be used for less noble purposes such as appeasing editors and reviewers by adding citations,
or making larger claims by reducing the number of citations. It is a limitation of our study that we do not have the
ability to determine which cites are “strategic” rather than “substantive” (cf. Lampe [2012] for examples of such
strategic citation in the case of patents).

11In a separate analysis, available from the authors, we found that citations from PubMed-indexed articles to
PubMed-indexed articles that are also in the Web of Science account for 86% of the total number of citations that
are received by these articles in a sample of 320,000 articles carefully matched between the two sources of data. The
correlation between PubMed-to-PubMed citations and WoS-to-PubMed citations is higher than .99. We conclude
that our decision to focus on the PubMed-to-PubMed citation information for the analyses presented in this paper
is innocuous.
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retraction event should influence the extent to which the market updates on the quality of a

scientist’s prior work. It is therefore essential to develop a way of capturing systematically the extent

to which retraction events are publicized beyond the confines of a scientist’s narrow intellectual

community. In the post-Internet era, it is possible to develop direct measures of publicity using the

electronic trails as meaningful “breadcrumbs.” But this approach is not practical for our sample,

which includes data from an earlier period. We settle on the distinction between misconduct and

“honest mistakes” as a pragmatic solution to the challenge of proxying for the extent to which

retraction events enter the public sphere.12

In order to differentiate between retractions due to misconduct and retractions due to mistakes,

we used the misconduct codes assigned to retractions in Azoulay et al. (2015). These codes

required manual review of every retraction and their associated public documents (Appendix D

provides more details on the assignment of these codes). The difference between retractions due

to misconduct and mistakes is often quite stark. The case of anesthesiologist Scott Reuben is a

clear-cut example of retractions due to misconduct. As a professor at Tufts University purportedly

running clinical trials on the effectiveness of painkillers, Reuben fabricated data and conclusions.

He was charged with and found guilty of health care fraud, resulting in a sentence of six months

in federal prison and over $400,000 in fines and restitution. Our retractions data set contains 15 of

his publications, many of which were simultaneously retracted.

Retractions due to mistakes tend to be less sensational. Contaminated samples and reagents

are the most frequent reasons for mistake retractions. Occasionally, authors also retract papers due

to flawed interpretation of results, or conclusions nullified by subsequent studies. In one case, the

authors retracted a publication after realizing that they mistakenly analyzed the genetic code of a

butterfly rather than a dragonfly (Arikawa et al. 1996).

Measures of author prestige. The seminal work of Merton (1968) alerted scholars that recog-

nition and rewards for a given level of achievement are more likely to accrue to scientists whose

reputation was already established, a phenomenon known as the “Matthew Effect.” As pointed

out by Jin et al. (2013), the retraction phenomenon presents an opportunity to ask whether the

Matthew Effect also operates in reverse, that is, whether more prominent are penalized more harshly

by the scientific community in the wake of a retraction than their less-distinguished peers. In their

work, Jin et al. (2013) choose to operationalize prior prestige using authorship position on the

retracted article. Given the prevailing authorship norms in most of natural and life sciences, this

approach effectively distinguishes between high and low-status scientists within a research team

(i.e., graduate student or postdoctoral fellow vs. faculty member or principal investigator).

12Certainly, instances of fraud and misconduct attract much more attention in the comment sections of special-
ized blogs such as RetractionWatch. Very few, if any, instances of retraction due to mere error lead to editorials,
pontification, or hand-wringing in scientific journals or the national press.
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Because we have at our disposal detailed career and publication histories for each of the scientists

in our sample, we adopt a strategy to measure variation in prior prestige that is more global in

nature. In a first step, we compute each matched author’s cumulative citation count, across all of

their publications, through the year before their first retraction. We define “high-status” scientists

as those authors who belong in the top quartile of this distribution at baseline, and those whose

cumulative citations place them in the bottom three quartiles as “low-status.” Using this measure,

high-status scientists account for 58% of all of the articles published by retracted authors up to the

year of their first retraction.

In a second step, we also compute cumulative funding from the National Institutes of Health

(NIH). Again, we defined high-status authors (resp. low-status) as those in the top quartile (resp.

bottom three quartiles) of the corresponding distribution at baseline. The high-funding group

accounts for 47% of all the articles published by retracted authors up to the year of their first

retraction.13

Identifying and selecting control authors. To shed light on the counterfactual citation trajec-

tories of retracted authors’ pre-retraction publications, we need to assemble a set of control authors.

The most direct approach to identifying controls would be to select from the population of scientists

those whose flows and stocks of publications best mirror the corresponding flows and stocks for re-

tracted authors, as in Jin et al. (2013). Alas, this direct approach is infeasible, since we do not have

at our disposal name-disambiguated bibliomes for every individual in the AAMC Faculty Roster.

Instead, we follow an indirect approach that enables us to delineate, ex ante, a much smaller set of

potential control authors that we expect to exhibit productivity profiles comparable to that of the

retracted authors, at least on average. Of course, the onus will be on us to demonstrate, ex post,

that treated and control authors are well-balanced along demographic characteristics and output

measures.

Specifically, we focus on the authorship roster of the articles immediately preceding and following

the retracted publication in the same journal/issue. Using adjacent articles to construct a control

group for a set of treated articles is an approach pioneered by Furman and Stern (2011), and

adopted by Furman et al. (2012), and Azoulay et al. (2015).14 The procedure we follow mirrors in

all respects the process we adopted to identify treated authors in the sample of retracted articles:

matching the authors to the faculty roster, then assembling detailed publication histories (see

13We also used average citations per publication and average yearly funding as measures of prestige, and the results
were similar to those we present below. We considered using membership in the National Academy of Sciences (NAS)
as an additional measure of author prestige. However, this measure did not give us enough power to perform our
analysis as only 3.6% of the authors in our sample were members of the NAS at baseline.

14One can think of different choices to identify a set of potential control authors, including choosing a random
article in the same journal/issue as the treated article, or all non-retracted articles in the same journal/issue. In past
work, we showed that there is very little difference between choosing a “random neighbor” as opposed to a “nearest
neighbor” (Azoulay et al. 2015).
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Appendix B and C). The final analytic sample includes only retracted authors for whom we have

located at least one matched control author. In total, we have 759 such control authors. Tables 1

and 2 demonstrate that the control authors selected by our procedure are very similar to the

retracted authors along multiple dimensions, a point to which we return in more detail below.

One legitimate concern with this indirect approach to selecting control authors is that of contam-

ination: these immediately adjacent publications could be intellectually related, or their authors

might have been competing for funding during the period leading up to the retraction. If this

were the case, then it is possible that the retraction event also affected the control author and

the market’s perception of her work. Fortunately, the data allows us to do more than speculate

about the potential for contamination: we can assess empirically the extent to which treated and

control authors are related. First, we use the PubMed Related Citation Algorithm (see Appendix

E for more details) to ascertain whether the retracted articles and their journal/issue neighbors are

intellectually related. We find this to be the case in only three instances.15 Second, we check in

NIH’s Compound Grant Applicant File whether treated/control author pairs compete directly for

funding. We found no instances of author pairs who applied for funding from the same component

institute within NIH and whose work was evaluated by the same review committee in a window

of five years before the retraction event. Despite publishing in the same journal at the same time,

we conclude that treated and control authors’ scientific trajectories are sufficiently distinct in in-

tellectual space to ward off the specter of contamination between the treated and control groups.

At the same time, the fact that they are part of the same broad labor market (faculty members in

US Medical Schools), participate in the same broad scientific fields, and face a similar institutional

environment entails that the comparison between their publications and the citations they garner

over time is substantively meaningful.

Descriptive statistics. Our sample includes 23,620 publications by 376 retracted authors and

46,538 by 759 control authors.16 Since each control faculty member entered the dataset because it

is the author of a paper that appeared in the same journal and issue as a retracted paper, we can

assign to them a counterfactual date of retraction, which is the year in which the retracted author

to which they are indirectly paired experienced a retraction event. Table 1 compares treated and

control authors along demographic dimensions, such as gender, degree, career age, and eminence

(measured as cumulative citations as well as cumulative funding). Retracted authors are slightly

more likely to be male, and also have slightly higher cumulative funding and citation impact as of

one year before the earliest associated retraction event, relative to control authors. Below, we will

show that these small differences in baseline achievement levels do not translate into differences in

achievement trends before the treatment.

15We select the articles twice-removed from the retracted publication in the table of contents in these three instances.
16The publications we considered for inclusion in the sample include only original research articles, and exclude

reviews, editorials, comments, etc.
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Appendix D provides details regarding the extent to which specific authors were singled out as

particularly blameworthy. The assignment of blame was unambiguous for only 24 out of the 376

retracted authors in the sample (6.38%). The majority of blamed authors are precisely the types of

scientists that would be less likely to ever appear in the AAMC Faculty Roster: graduate students,

postdoctoral fellows, or technicians.17 Moreover, the set of blamed authors is a proper subset of

authors whose work was retracted because of misconduct; in our data, there is not a single example

of an article retracted because of a mistake which laid blame for the event at the feet of a specific

member of the research team. As a result, while the “blamed” indicator variable is interesting from

a descriptive standpoint, we will not use it in the rest of the analysis.

Table 2 presents descriptive statistics at the level of the author/article pair, which is also

the level of analysis in the econometric exercise. The stock of citations received up to the year

of retraction is well balanced between treated and control articles. This is the case not simply

for the mean and median of these distributions, but for other quantiles as well (see Figure 5).

Figure 6 provides evidence of the skew in the distribution of eminence at baseline, measured in

terms of cumulative citations (Panel A) and cumulative NIH funding (Panel B). These quantile

plots provide some empirical justification for splitting our sample along the top quartile of these

distributions to distinguish the effect of retractions on eminent (top quartile) and less distinguished

(bottom three quartiles) scholars.

5 Methodological Considerations and Results

5.1 Identification Strategy

To identify the impact of retractions on author reputations, we examine citations to the authors’

pre-retraction work, before and after the retraction event, and relative to the corresponding change

for control authors. Retraction events may influence a number of subsequent research inputs,

including effort, flow of funding, referee beliefs, and collaborator behavior. Since our goal is to

measure the scientific community’s response to sudden changes in the reputation of individual

faculty members embroiled in retraction cases, we focus on pre-retraction publications only. The

quality of these publications is not affected by subsequent changes to the research environment.

The difference-in-differences research design allows us to measure the impact of retractions, while

accounting for life-cycle and time-period effects that might be shared by retracted and non-retracted

authors.

A maintained assumption in this approach is the absence of citation trends that might affect

the pre-retracted articles of retracted authors, relative to control authors. Preexisting trends loom

17Retraction events at such an early stage of one’s career would certainly decrease the likelihood of ever holding a
faculty position in the future.
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especially large as a concern because prior research has demonstrated that retracted articles exhibit

a pronounced citation uptick (relative to articles published in the same issue) in the months and

years immediately leading up to the retraction event (Furman et al. 2012). Fortunately, we can

evaluate the validity of the control group ex post, by flexibly interacting the treatment effect with

a full series of indicator variables corresponding to years before and after the retraction date. This

is a common diagnostic test with a difference-in-differences research design, and its result will be

reported below.

An additional issue could confound the interpretation of the results. We have modeled the

process through which the scientific community updates its beliefs regarding the reputation of

individual scientists following a retraction. Empirically, this response might be commingled with

learning about the foundations of the intellectual area to which the retraction contributed. Indeed,

prior work has shown that non-retracted articles related to the same line of scientific inquiry see

their rate of citation drop in the wake of a retraction (Azoulay et al. 2015). To filter out this

aspect of the learning process, we focus on pre-retracted work by the retracted authors that does

not belong to the same narrow subfield as the underlying retraction.

In practice, we use the topic-based PubMed Related Citations Algorithm (PMRA) to define

intellectual fields (see Appendix E). We remove all publications that are related (in the sense that

PMRA lists them as a related citation) to the source article. These deletions are performed in

a parallel fashion for both treated and control authors. In total, we remove 12.2% of retracted

authors’ pre-retraction publications that were in the same PMRA field as one of their retracted

articles, and 9.2% of control authors pre-retraction publications that were in the same PMRA field

as their source publications (i.e., the article adjacent to the retraction in the same journal/issue).

The descriptive statistics above, and the econometric analyses below refer only to this sample of

author/publication pairs without the set of in-field publications.

5.2 Econometric Considerations

Our econometric model relates the number of citations to author i’s pre-retraction article j received

in year t to characteristics of both i and j:

E [yijt|Xit] = exp [β0 + β1RETRACTEDi ×AFTERjt + φ(AGEit) + ψ(AGEjt) + δt + γij ]

where AFTER is an indicator variable that switches to one in the year during which author i’s

experiences his first retraction, RETRACTED is equal to one for retracted authors and zero for

control authors, the age functions φ and ψ are flexible functions of author age and article age

consisting of 50 and 33 indicator variables (respectively), the δt’s represent a full set of calendar

year indicator variables, and the γij ’s are fixed effects corresponding to author-publications pairs.
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The dependent variable yijt is the number of forward citations received by author i’s article j

in year t (excluding self-citations). About 44% of all observations in the sample correspond to

years in which the article received exactly zero citations. We follow the long-standing practice in

the analysis of bibliometric data to use the conditional fixed-effect Poisson model due to Hall et

al. (1984), which we estimate by quasi-maximum likelihood (Gouriéroux et al. 1984; Wooldridge

1997). The standard errors are robust, and clustered at the level of individual authors.

5.3 Econometric Results

We report the results of the simple difference-in-differences specification in Table 3, column 1.

The coefficient estimate implies that, following a retraction event, the rate of citation to retracted

author’s unrelated work published before the retraction drops by 10.7% relative to the citation

trajectories of articles published by control authors.

Figure 7 displays the results of the dynamic version of the model estimated in column 1.

We interact the treatment effect variable with indicator variables for number of years until (re-

spectively after) the author’s earliest retraction event. We graph the estimates corresponding to

these interaction terms along with the associated 95% confidence intervals. Relative to control

authors, the retracted authors’ pre-retraction publications receive slightly more citations in the

pre-retraction period; however, this difference appears to be roughly constant in the years leading

up to retraction—there is no evidence of a pre-trend, validating ex post our research design and

control group. Figure 6 also shows that the citation penalty appears to increase over time; it

appears to be a permanent, and not merely transitory, phenomenon.

Exploring heterogeneity in the retraction effect. We begin by splitting the sample into

high- and low-status subgroups, first using cumulative citations as a marker of eminence (Table 3,

columns 2a and 2b), second using cumulative funding (Table 3, columns 3a and 3b). Since high-

status authors tend to produce more publications, splitting the sample by separating the top quartile

of each status metric from its bottom three quartiles yields subsamples of approximately equivalent

size. We cannot detect large differences in the magnitude of the treatment effects across these

groupings. Even in the case of funding, where there is a slightly larger difference in the post-

retraction penalty for low-status faculty members (7.6% vs. 12.2% decrease), this difference is in

itself not statistically significant.

The next step is to split the sample by separating instances of misconduct from instances of mere

error (see Appendix D for the process of assigning misconduct and mistake coding). The estimates

reported in columns (4a) and (4b) of Table 3 do suggest a much stronger market response when the

retraction event comes closer to our definition of scandal, that is when the event is more publicized,

as is usually the case when misconduct or fraud are alleged (17.6% vs. 8.2% decrease).
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Interaction between prior eminence and the informativeness of the retraction event.

Table 4 splits the sample into four subgroups, corresponding to both the status and misconduct

dimensions. One result stands out qualitatively: the high-status authors are more harshly penalized

than their less-distinguished peers, but only in instances of misconduct (columns 1b and 2b). In all

other subgroups, the differences in the magnitude of the treatment effect are modest at best. But

are the differences in treatment effect across subgroups themselves statistically significant? This is

less clear, since our strategy of splitting the overall data into four subgroups results in relatively

noisy estimates for some of the subgroups. An alternative is to pool the entire data and focus on the

coefficients for the interaction effects corresponding to each subgroup. Appendix G discusses these

comparison challenges and deploys two different approaches to comparing magnitudes statistically.

Regardless of the approach chosen, the statistical tests support the main qualitative conclusion:

high-status authors embroiled in misconduct cases are punished significantly more severely than

high-status authors guilty of making a mistake resulting in a retraction. The claim that the high-

status misconduct group’s penalty is greater than that of all the other subgroups is statistically

more tenuous.

6 Discussion

Three different comparisons bear directly on the suitability of our simple Bayesian framework to

explain the empirical patterns that emerge from the econometric analysis.

First, for authors of any status, the effect of a retraction due to misconduct is larger than the

effect of a retraction due to mistake (Table 3, columns 4a and 4b). This result is consistent with a

model where a misconduct retraction is a more informative signal of an author’s bad quality, i.e.,

a higher α in Proposition 1. See Figure 2 for the intuition behind this result.

Second, the most significant effect of retractions occurs after a misconduct event for authors

in the top status quartile. Furthermore, citation penalties for all other event type/author status

combinations have a lower and relatively homogeneous effect (Table 4). The aggregate implications

of our model match these regression results (see Figure 3 for a simple illustration). When a signal

is very informative, it has a large impact on an author’s reputation, independently of its initial

level. The resulting loss of reputation is therefore largest for high-status authors. Conversely, when

the signal is not particularly informative, the reputation loss is mostly tied to the initial level of

uncertainty. This is highest for agents with intermediate reputations, which means very high- and

very-low status authors experience similar drops in reputation.

Third, we can go one step beyond the binary distinction between high- and low-status authors.

We do not have sufficient statistical power to recover the full shapes of the reputation loss as

characterized in our model, for example in Figure 2. Instead, to generate the coefficients graphed
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in Figure 8, we partition authors into quintiles of the status distribution.18 We then contrast the

effects of different types of retraction events for each of five status grouping. Figure 7, Panel A

suggests that the largest drop in citations following a mistake occurs for scientists with intermediate

reputation levels (the third quintile). Conversely, the drop in citations following misconduct is

largest for the highest-status scientists (fourth and fifth quintiles in Figure 7, Panel B).19

Together, these results suggest that the market response to a retraction event is consistent with

Bayesian learning about the author’s quality. In particular, the distinct responses to mistakes and

misconduct indicate that the market considers misconduct events as more precisely revealing the

(low) quality of an individual scientist, relative to instances of “honest mistake.”

From this standpoint, the fact that the ratio of misconduct and mistake retractions is about the

same for both high and low-status authors (Table 5) is an anomaly. While high-status scientists

experience fewer retractions overall, observing a mistake vs. misconduct retraction is not partic-

ularly helpful to predict the eminence of a retracted author. If misconduct is a more informative

signal, and high-status scientists are, in fact, of higher average quality, we would expect them to

exhibit a lower misconduct-to-mistake ratio.

There are two distinct explanations for the discrepancy between the empirical distribution of

retraction events and the theory consistent with an equilibrium market response. Both explanations

point to forces that lie outside the relatively simple model presented in Section 3: the market

“overreacts” to the misconduct information; or the authors adjust their behavior in response to the

market incentives. We examine both possibilities.

Market overreaction. It is possible that the market simply overestimates the informativeness

of misconduct. However, the citation penalty may represent more than just the market’s response

to an information shock. For instance, it may be part of an implicit incentive scheme that sees

ordinary scientists recoil from the prior work of scientists embroiled in scandal, particularly if they

have achieved great fame. That part of the punishment is carried out by giving less credit to the

author’s earlier work makes sense especially if some of the citations accruing to these scientists were

“ceremonial” in nature. If principal investigators can control the likelihood of their team making

a mistake or explicitly cheating, then this stigmatization (whether understood as a deterrent or as

pure sociological mechanism à la Adut [2005]) could discourage scientific misconduct.

Scientist behavior. The pattern may be consistent with the distribution of outcomes in a richer

signal-jamming model where rewards are solely based on the market’s beliefs, but scientists can

exert effort to reduce the likelihood of scientific misconduct. In the equilibrium of a model in that

18In this case, status is only measured by cumulative citation count at the time of the retraction.
19These statements must be interpreted with a great deal of caution, since the sample size is too small for these

differences between coefficient estimates to be statistically significant. We only mean to suggest that their overall
pattern is consistent with the more nuanced implications of our model.
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vein, very high-status agents exert low effort because they deem the probability of misconduct to

be quite small.20 Thus, even if misconduct were, in fact, more likely to occur for bad agents, the

shares of mistakes and misconduct would be more similar for high- and low-status agents due to the

effort component. This would yield patterns consistent with the cross-tabulation results in Table 5.

7 Concluding Remarks

The distribution of scientific recognition is a complex phenomenon. Disproportionate amounts of

credit are given to the very best authors in a field (Merton 1968), but these authors must maintain

their reputation at a high level through consistent performance. We have documented the scientific

community’s response to negative information shocks about a scientist’s past output. The flow of

credit (in the form of citations) responds to scandal (i.e., retractions involving misconduct), all

the more sharply when bad news involve an established member of the profession. Overall, the

community’s response is consistent with Bayesian learning under the assumptions that high-status

scientists have a better initial reputation, and that misconduct is a more revealing signal, compared

to an honest mistake.

In our current approach, we have taken the retraction-generating process as given. In other

words, we do not attempt to construct and test a model of scientist behavior and market response

to scandal, where the frequency and the consequences of a retraction are jointly determined in

equilibrium. With endogenous effort choices, incorporating drivers of incentives such as punishment

schemes and career concerns would enhance our understanding of the scientific reward system. The

data currently available do not allow us to distinguish the effects of pure learning from those of

more elaborate incentive schemes. However, developing empirical tests capable of adjudicating

their relative salience is a valuable objective for future research in this area.

One limitation of looking at the retraction phenomenon through the prism of information reve-

lation is that it sheds light on only a fraction of the private costs of false science — those narrowly

associated with the prior work of the scientists embroiled in scandal. But these scientists bear ad-

ditional costs in the form of foregone future funding, collaboration, and publication opportunities.

Moreover, we cannot say anything definitive regarding the private benefits of fraud or sloppiness,

because we only observe their consequences conditional on detection by the scientific community.

Furman et al. (2012) have shown that retracted articles exhibit “excess” citations prior to re-

traction. Therefore, it is reasonable to infer that undetected instances of false science confer on

their authors enhanced prestige, as well as privileged access to tangible resources, such as editorial

goodwill, better trainees, or state-of-the-art laboratory equipment. These benefits are extremely

difficult to assess without making a host of untestable assumptions.

20See Board and Meyer-ter-Vehn (2013) or Bonatti and Hörner (2015) for models with this feature.
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Paradoxically, it is somewhat easier to quantify the externalities that retraction events generate

on the vitality of the scientific fields they afflict. Azoulay et al. (2015) provide evidence that these

external effects are quantitatively large, and that they arise mostly because scientists tend to stay

away from these fields lest their own reputation suffers through mere intellectual proximity.
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Figure 1: Incidence of PubMed-Indexed Retractions 

 
Note: The solid blue line displays the yearly frequency of retraction events in PubMed as a whole, all retraction reasons included. 
The solid red line displays the yearly retraction rate, where the denominator excludes PubMed-indexed articles that are not 
original journal articles (e.g., comments, editorials, reviews, etc.) 
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Figure 4: Matching Authors to their Bibliomes 

 626 Citations at time of first retraction (36th percentile)
 $1.98 Million in cumulative funding at time of first retraction (57th Percentile)

Verified PubMed Search Query:
((“sperber ke”[au] OR (“sperber k”[au] AND (sinai[ad] OR ponzetto[au] OR rats OR wolf[au] OR frishman[au] OR shapiro[au] OR hiv OR asthma))) AND 1990:2011[dp]) 

Kirk E. Sperber, MD 
(Internal Medicine, Mt. Sinai Medical Center, NY)

Falsified data, leading to three retractions
Earliest Retraction: December 15, 2005

 
Note: The example above illustrates the matching procedure employed to identify the career publication histories of faculty 
authors. In the example, Kirk Sperber is an author on three publications retracted due to fabricated data (he was later barred 
from receiving grants and contracts for four years by the Department of Health and Human Services’ Office of Research Integrity). 
His earliest retraction came in the Journal of Immunology in December 2005. Our hand-curated PubMed query for Dr. Sperber 
utilizes common coauthors and research topics for his publications, as well as the relevant date range; it also addresses his lack of 
consistency in using a middle initial as an author. The query results in 78 publications, which we verified as his complete body of 
work. 60 of these articles were published prior to his earliest retraction (2005), and 7 publications were intellectually related (via 
the PMRA algorithm) to a retracted paper. 
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Figure 5: Cumulative Citations to Pre-Retraction Publications 

 
Note: Cumulative number of citations up to the year preceding the corresponding earliest retraction event for 
21,103 retracted authors’ publications and 42,115 control authors’ publications.    
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Figure 6: Cumulative Citations and Funding at Baseline 
A. Citations B. Funding

Note: We compute the cumulative number of citations (Panel A), and cumulative amount of funding (Panel B) up to the year preceding the 
corresponding earliest retraction event for all 376 retracted and 759 control authors, and plot it against 100 percentiles of the corresponding 
distribution. 
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 Figure 7: Dynamics of Retraction Effect on Citations to Pre-Retraction Publications 

 
Note: The green dots in the above plot correspond to coefficient estimates stemming from conditional fixed effects quasi-maximum likelihood 
Poisson specifications in which the citation rates for articles published by retracted and control authors prior to their first associated retraction 
event are regressed onto year effects, article age indicator variables, as well as 15 interaction terms between treatment status and the number of 
years before/after the retraction event (the indicator variable for treatment status interacted with the year of retraction is omitted). The 95% 
confidence intervals (corresponding to robust standard errors, clustered around unique author identifiers) around these estimates is plotted with 
the help of capped spikes. 
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Figure 8: Retraction Effect on Citations to Pre-Retraction Publications, by Status Quintile 
A. Mistake B. Misconduct

 
 

Note: The green dots in the above plots correspond to coefficient estimates stemming from conditional fixed effects quasi-maximum likelihood 
Poisson specifications in which the citation rates for articles published by retracted and control authors prior to their first associated retraction 
event are regressed onto year effects, article age indicator variables, as well as five interaction terms between the treatment indicator variable and 
five indicator variables corresponding to each quintile  of the author status distribution. Status is defined by the author’s cumulative citations at 
baseline. Panel A limits the sample to publications of retracted authors and their controls who were associated with a retraction event stemming 
from mistake, while Panel B includes only publications for retracted authors and their controls that were associated with a retraction event 
stemming from misconduct. The 95% confidence intervals (corresponding to robust standard errors, clustered around unique author identifiers) 
around these estimates is plotted with the help of capped spikes. 
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Table 1: Baseline Descriptive Statistics for Retracted and Control Authors 
 Mean Std. Dev. Median Min Max 
Control Authors (n=759)      
Female 0.19 0.39 0 0 1 
Degree Year 1975.13 10.85 1975 1941 1999 
MD 0.41 0.49 0 0 1 
PhD 0.48 0.50 0 0 1 
MD/PhD 
Misconduct – Earliest Associated Retraction 
Blamed Author – Earliest Associated Retraction 

0.10 
0.53 
0.00 

0.30 
0.50 
0.00 

0 
1 
0 

0 
0 
0 

1 
1 
0 

Cumulative Citations 2,776 4,961.30 1,091 0 45,077 
Cumulative Funding ($1000s) 5,971 15,884.90 1,362 0 302,862 
Retracted Authors (n=376)      
Female 0.16 0.36 0 0 1 
Degree Year 1976.95 10.64 1978 1938 1998 
MD 0.39 0.49 0 0 1 
PhD 0.49 0.50 0 0 1 
MD/PhD 
Misconduct – Earliest Associated Retraction 
Blamed Author – Earliest Associated Retraction 

0.11 
0.40 
0.06 

0.31 
0.49 
0.24 

0 
0 
0 

0 
0 
0 

1 
1 
1 

Cumulative Citations 2,994 4,543 1,267 1 28,633 
Cumulative Funding ($1000s) 6,373 12,619 2,191 0 132,403 
Note: The set of 376 retracted authors consist of authors from 412 retracted papers for which we matched at least one author to the Faculty 
Roster of the Association of American Medical Colleges (AAMC). The 759 control authors are authors from adjacent articles in the same 
journal and issue as their retracted counterpart, and matched to the AAMC in the same fashion. The 12 retracted and 24 control authors who 
were NIH intramural researchers are excluded from the cumulative funding calculations, because their research funded through a very different 
system. The percentage of authors affiliated with misconduct cases for their earliest retractions is different between the two groups because the 
number of control authors varies by retraction case. 
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Table 2: Baseline Descriptive Statistics for Author-Publication Pairs 
 Mean Std. Dev. Median Min Max 
Control Author-Publications (n=46,538)      
Article Age (years) 9.34 7.42 8 0 32 
First Author 0.16 0.37 0 0 1 
Middle Author  0.41 0.49 0 0 1 
Last Author  0.43 0.49 0 0 1 
Cumulative Article Citations 42.25 136.29 16 0 18,301 
Retracted Author-Publications (n=23,620)      
Article Age (years) 9.43 7.30 8 0 32 
First Author  0.16 0.37 0 0 1 
Middle Author  0.39 0.49 0 0 1 
Last Author 0.44 0.50 0 0 1 
Cumulative Article Citations 44.35 89.22 18 0 3,430 
Note: The retracted- and control author/publications pairs in the sample correspond to articles published by the retracted and control 
authors prior to their affiliated retraction event. Authors were matched to their pre-retraction publications by developing PubMed search 
queries for each scientist using relevant keywords, names of frequent collaborators, journal names and institutional affiliations. The 
publication information for each paper, including publication date and authorship list, was gathered using the PubHarvester open source 
software tool [http://www.stellman-greene.com/PublicationHarvester/]. In biomedical journal publications, the last author is usually 
the primary investigator (lab director), and junior investigators (e.g. post-docs, graduate students, junior faculty) are listed as first or 
middle authors. Citation data was obtained through Thomson-Reuters’ Web of Science (WoS) database, and we excluded all self-
citations. We defined within-field and outside-field citations based on the PubMed Related Citations Algorithm (PMRA), such that 
citations from other publications within the same PMRA field were considered within-field. We removed all articles that were in the 
same PMRA field as original retracted or control publications. 
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Table 3: Citations to Pre-Retraction Articles, by Author Prominence and Misconduct 
 

Full Sample 
Author Status 

Retraction Type 
 Citations Funding
 

 
(1) 
 
 

 
(2a) 

 
High 

 
(2b) 

 
Low 

 
 

(3a) 
 

High 

 
(3b) 

 
Low 

 
(4a) 

 
Mistake 

 
(4b) 

 
Misconduct 

After Retraction 
-0.113** -0.100* -0.105** -0.070 -0.130** -0.086* -0.193**

(0.033) (0.042) (0.039) (0.050) (0.046) (0.038) (0.053)
Nb. Authors 1,130 286 844 277 829 577 553
Nb. of Author-Publications 70,158 40,665 29,493 32,265 35,671 38,204 31,954
Nb. of Author-Paper-Year Obs. 1,736,319 979,230 757,089 802,765 878,238 888,557 847,762
Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The unit of analysis is Author-Publication-Year, and the 
dependent variable is number of citations. All models incorporate a full suite of calendar year effects as well as indicator variables for the age of 
the publication and age of the author. High-status authors are those in the top quartile in terms of the author’s cumulative citations (column 2a) 
or funding (column 3a) at baseline. Low-status authors are those in the bottom three quartiles of the same measures (columns 2b and 3b). NIH 
intramural scientists are excluded in the funding status models. The retraction type is defined by the earliest retraction for a given retracted 
author (controls retain the code associated with the retracted author with whom they are affiliated). 
 
Exponentiating the coefficients and differencing from one yields estimates interpretable as elasticities. For example, the estimates in column (1a) 
imply that the prior articles of authors involved in retractions experience a statistically significant (1-exp[-0.113])=10.7% yearly decrease in 
citation rate after the retraction event, on average. QML (robust) standard errors in parentheses, clustered around individual author.  
†p < 0.10, *p < 0.05, **p < 0.01. 
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Table 4: Citations to Pre-Retraction Articles, by Author Prominence and Misconduct 
Interactions 
 Status: Citations  Status: Funding   
 High Low  High Low 

  
(1a) 

 
Mistake 

 
(1b) 

 
Misconduct 

 
(1c) 

 
Mistake 

 
(1d) 

 
Misconduct 

  
(2a) 

 
Mistake 

 
(2b) 

 
Misconduct 

 
(2c) 

 
Mistake 

 
(2d) 

 
Misconduct 

After Retraction -0.079† -0.191** -0.097† -0.100*  -0.027 -0.200* -0.135* -0.152* 
(0.047) (0.066) (0.051) (0.051)  (0.055) (0.079) (0.055) (0.070) 

Nb. Authors 160 126 417 427  149 128 411 418 
Nb. of Author-Publications 22,635 18,030 15,569 13,924  18,256 14,009 18,369 17,302 
Nb. of Author-Paper-Year Obs. 528,115 451,115 360,442 396,647  439,066 363,699 410,869 467,369 
Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The unit of analysis is Author-Publication-Year, 
and the dependent variable is number of citations. All models incorporate a full suite of calendar year effects as well as indicator variables 
for the age of the publication and age of the author. High-status authors are those in the top quartile in terms of the author’s cumulative 
citations (columns 1a, 1b) or funding (columns 2a, 2b) at baseline. Low-status authors are those in the bottom three quartiles of the same 
measures (columns 1c, 1d, 2c, and 2d). NIH intramural scientists are excluded in the funding status models. The retraction type is defined 
by the earliest retraction for a given retracted author (controls retain the code associated with the retracted author with whom they are 
affiliated).  
 
Exponentiating the coefficients and differencing from one yields estimates interpretable as elasticities. For example, the estimates in column 
(1b) imply that the prior articles of high-status authors involved in a ‘‘misconduct’’ retraction experience a statistically significant (1-exp[-
0.191])=17.4% yearly decrease in citation rate after the retraction event, on average. QML (robust) standard errors in parentheses, 
clustered around individual authors. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 5: Status and Retraction Type – Two-way Table of Frequencies 

 

 Low Status High Status  

Mistake 152 [58.02%] 68 [61.82%] 220 

Misconduct 110 [41.98%] 42 [38.18%] 152 

Total 262 110 372 

Note: Total author counts for each status group are displayed in the bottom row, while total author counts for 
each retraction type are displayed on the far right column. The percentages refer to the fraction of events in that 
cell for the corresponding column (status grouping). As can be readily observed, the ratio of misconduct and 
mistake retractions is about the same for both high and low-status authors. 



Appendix A: Model Extensions

Two Signals

Consider a model where retractions can occur due to two different processes. In particular, a “mistake” retraction
follows a Poisson process with parameter λθ, and a “misconduct ” retraction arrives according to an independent
process with parameter µθ. When a retraction event occurs, its type is publicly observed.

Because information arrives continuously to the market, when a retraction occurs, the drop in the agent’s reputation
depends on the probability distribution of that retraction type only. Therefore, let

β ,
µB
µG

> 1

denote the relative informativeness of the misconduct signal. The resulting drop in reputation is given by ∆ (p, α)
following a mistake event and by ∆ (p, β) following a misconduct event.

We assume that the misconduct signal is more informative of the agent’s low quality, i.e. β > α. Our earlier
Proposition 1 states that reputations suffer a larger drop following a retraction due to misconduct than after a
mistake.

Finally, Bayesian updating and rational expectations have testable implications for the distribution of retractions in
a population of high-and low-reputation agents. In particular, if the market holds correct beliefs pt at each point in
time, the arrival rate of a retraction for agents with reputation p is given by

p (λG + µB) + (1− p) (λB + µB) .

It then follows that the distribution of retractions of different kinds is related to the current reputation level of an
agent.

Proposition 2 (Relative Frequency) The fraction of misconduct events is decreasing in the agent’s reputation p.

Similarly, the distribution of retracted authors’ reputations for each kind of retraction should differ in a systematic
way: high-reputation agents should be relatively more frequent among authors with a retraction due to mistake.

Aggregate Implications

We define the average reputation drop for agents with initial levels of reputation p ∈ [0, p∗] and p ∈ [p∗, 1] respectively
as follows:

L (p∗, α) =
1

p∗

∫ p∗

0

∆ (p, α) dp

H (p∗, α) =
1

1− p∗

∫ 1

p∗
∆ (p, α) dp.

We study the gap in reputation losses as a function of signal informativeness α, which we define as |H (p∗, α)| −
|L (p∗, α)|. We then have the following result.

Proposition 3 (Critical Partition) For each α, there exists a critical p such that the gap in reputation losses is
increasing in α for all p∗ ≤ p.

Changing Types

Suppose the agent’s type follows a continuous-time Markov chain with transition rate matrix

Q =

[
−γ γ
β −β

]
.

i



That is, it switches from good to bad at rate γ and from bad to good at rate β. The probability matrix P (t) with
entries Pij = Pr [θt = j | θ0 = i] is given by

P (t) =

[
β

γ+β
+ γ

γ+β
e−(γ+β)t γ

γ+β
− γ

γ+β
e−(γ+β)t

β
γ+β
− β

γ+β
e−(γ+β)t γ

γ+β
+ β

γ+β
e−(γ+β)t

]
.

This means intuitively that the effect of—even arbitrarily precise—signals fades away as time passes (because the
underlying fundamental is likely to have changed).

In our context, we can compute this “depreciation effect” backwards. In particular, if the market assigns probability
p to θ = θG after a retraction, it will assign probability

π (p, t) = p

(
β

γ + β
+

γ

γ + β
e−(γ+β)t

)
+ (1− p)

(
β

γ + β
− β

γ + β
e−(γ+β)t

)
to the agent’s type being good t periods ago. While π (p, t) will be increasing or decreasing depending on the
comparison of p with its long-run mean, it will always move in the direction of dampening the most recent change,
i.e., the retraction.

Proofs

Proof of Proposition 1 (1.) Differentiating ∆ (p, α) with respect to α yields

∂∆ (p, α)

∂α
= − p (1− p)

(p+ (1− p)α)2
< 0.

(2.) Similarly, the cross-partial is given by

∂2∆ (p, α)

∂α∂p
=

p− α (1− p)
(p+ (1− p)α)3

,

which is negative over the range p ∈
[
0, 1/

(
1 + α−1

)]
. �

Proof of Proposition 2 The relative frequency of misconduct events is given by

pµG + (1− p)µB
p (λG + µB) + (1− p) (λB + µB)

,

whose derivative is
λBµG − µBλG

(p (λG + µB) + (1− p) (λB + µB))2
,

which is negative because α < β. �

Proof of Proposition 3 Use the definition of ∆(p, α) given in (1) to compute |H (p∗, α)| − |L (p∗, α)|. The
result then follows directly. �

ii



Appendix B: Author Matching

This appendix describes the method used to match retraction and control article authors to the augmented Association
of American Medical Colleges (AAMC) Faculty Roster (cf. Azoulay et al. [2010] for more details on the AAMC
Faculty Roster). Our process involved two main steps, using different pieces of available information about authors,
publications, and grants. We have checked that our matching criteria of both steps is reliable and conservative, such
that we are very confident in the accuracy of our final set of matched authors.

As a first step, we matched all authors for whom we already had a confirmed AAMC Faculty Roster match and full
career publication histories from prior work (see Azoulay et al. 2012). We determined this set of pre-matched authors
by identifying any relevant source publications (retracted or control articles) in the validated career publications for
our set of previously matched authors.

For the remaining unmatched retraction or control authors, we undertook an iterative process to determine accurate
matches in the augmented AAMC Faculty Roster. As a first pass, we identified potential matches using author
names, and confirmed and matched those with only one possible match. For those with common names or multiple
potential name matches, we used additional observable characteristics such as institution, department, and degree to
remove erroneous potential matches. When multiple potential matches remained, we compared the topic area of the
retracted/control paper to the grant titles, PubMed publication titles and abstracts associated with author name and
the AAMC Faculty Roster entry. In these cases, we only declared a match when the additional information made
the choice clear.

Appendix C: Linking Scientists with their Journal Articles

The next step in data construction is to link each matched author to their publications. The source of our publication
data is PubMed, a bibliographic database maintained by the U.S. National Library of Medicine that is searchable
on the web at no cost.i PubMed contains over 24.6 million citations from 23,000 journals published in the United
States and more than 70 other countries from 1966 to the present. The subject scope of this database is biomedicine
and health, broadly defined to encompass those areas of the life sciences, behavioral sciences, chemical sciences, and
bioengineering that inform research in health-related fields. In order to effectively mine this publicly-available data
source, we used PubHarvesterii, an open-source software tool that automates the process of gathering publication
information for individual life scientists (see Azoulay et al. 2006 for a complete description of the software). Pub-
Harvester is fast, simple to use, and reliable. Its output consists of a series of reports that can be easily imported
by statistical software packages.

This software tool does not obviate the two challenges faced by empirical researchers when attempting to link
accurately individual scientists with their published output. The first relates to what one might term “Type I Error,”
whereby we mistakenly attribute to a scientist a journal article actually authored by a namesake; The second relates
to “Type II error,” whereby we conservatively exclude from a scientist’s bibliome legitimate articles:

Namesakes and popular names. PubMed does not assign unique identifiers to the authors of the publications
they index. They identify authors simply by their last name, up to two initials, and an optional suffix. This makes
it difficult to unambiguously assign publication output to individual scientists, especially when their last name is
relatively common.

Inconsistent publication names. The opposite danger, that of recording too few publications, also looms large,
since scientists are often inconsistent in the choice of names they choose to publish under. By far the most common
source of error is the haphazard use of a middle initial. Other errors stem from inconsistent use of suffixes (Jr., Sr.,
2nd, etc.), or from multiple patronyms due to changes in spousal status.

i
http://www.pubmed.gov/

iiThe software can be downloaded at http://www.stellman-greene.com/PublicationHarvester/

iii

http://www.stellman-greene.com/PublicationHarvester/


To deal with these measurement problems, we opted for a labor-intensive approach: the design of individual search
queries that relies on relevant scientific keywords, the names of frequent collaborators, journal names, as well as
institutional affiliations. We are aided in the time-consuming process of query design by the availability of a reliable
archival data source, namely, these scientists’ CVs and biosketches. PubHarvester provides the option to use such
custom queries in lieu of a completely generic query (e.g, "azoulay p"[au] or "krieger jl"[au]). For authors with
uncommon names and distinct areas of study, a customized query may simply require a name and date range. For
example, scientist Wilfred A. van der Donk required a simple PubMed search query: ("van der donk wa"[au] AND

1989:2012[dp]). On the other hand, more common names required very detailed queries that focus on coauthor
patterns, topics of research, and institution locations. An example of this type of detailed query is that of author
John L. Cleveland in our data: (("cleveland jl"[au] OR ("cleveland j" AND (rapp or hiebert))) NOT (oral

OR diabetes OR disease[ad]) AND 1985:2012[dp]).

As an additional tool, we also employed the Author Identifier feature of Elsevier’s Scopus database to help link authors
to their correct publication histories. This feature assigns author identification numbers using names, name variants,
institutional affiliations, addresses, subject areas, publication titles, publication dates and coauthor networks.iii We
compared the publication histories compiled by the Scopus system to our our detailed PubMed queries and found
greater than 90% concordance, and extremely few “Type I” errors in either system. Our systematic comparisons led
us to believe that the Scopus system provides an accurate set of career publications.

Appendix D: Measuring Misconduct and Blame

In order to distinguish between instances of misconduct and instances of “honest mistakes,” we relied on the coding
scheme developed in Azoulay et al. (2015). These authors developed a procedure to capture whether intentional
deception was involved in the events that led to a specific article being retracted. They investigated each retraction
by sifting through publicly available information, ranging from the retraction notice itself, Google searches, the news
media, and blog entries in RetractionWatch.

The “intent” coding scheme divide retractions into three categories :

1. No Sign of Intentional Deception for cases where the authors did not appear to intentionally deceive the
audience (i.e., “honest mistakes”).

2. Uncertain Intent when negligence or unsubstantiated claims were present, but an investigation of the public
documents did not hint at malice on the authors’ part.

3. Intentional Deception is reserved for retractions due to falsification, intentional misconduct, or willful acts
of plagiarism.

There is of course an element of subjectivity in the assignment of these codes, but the third category can be distin-
guished from the first two unambiguously.iv

For the empirical exercise performed in this manuscript, we lumped the “No Sign of Intentional Deception” and
“Uncertain Intent” categories into a single “honest mistake” grouping. This coding choice ensures that retracted
authors associated with a misconduct retraction have been linked unambiguously to a case of intentional deception.
In robustness checks, we also replicated the results presented in Table 4 while (a) lumping the uncertain cases with
the clear-cut cases of misconduct; and (b) dropping from the sample all the retractions that belong to the “uncertain
Intent” category. These tweaks had an impact on the precision of some of the estimates presented in Table 5, but
did not change its take-away message.

iiidescribed at http://help.scopus.com/Content/h_autsrch_intro.htm
ivThe codes for each retraction, together with a rationale for the category chosen, can be downloaded at http://jkrieger.

scripts.mit.edu/retractions_index.html.

iv

http://help.scopus.com/Content/h_autsrch_intro.htm
http://jkrieger.scripts.mit.edu/retractions_index.html
http://jkrieger.scripts.mit.edu/retractions_index.html


We evaluated the assignment of blame among the authors of each retracted publication, and coded which authors
were deemed at-fault for the events that led to retraction. On occasion, the retraction notice singles out particular
authors. In other cases, the notice itself might be silent on the topic of blame, but other publicly available sources of
information (e.g., newspaper articles, press releases, blog posts, ORI investigation reports) enable us to pinpoint the
individual deemed responsible. Additionally, authors are occasionally blamed by omission, such as when an author
name is conspicuously absent from a series of retractions or related documents, or the retracted publication has a
sole author.

In the full sample of 1,129 retractions, 565 had at least one “blameworthy” author according to our definition.
However, the majority of blamed authors are precisely the kinds of scientists less likely to ever appear in the AAMC
Faculty Roster (e.g. graduate students, postdoctoral fellows, and technicians). Only 24 out of the 376 retracted
authors we could match to the AAMC Faculty Roster qualified as blameworthy using the criteria above.

Appendix E: In-Field and Out-of-Field Publications

This appendix describes our method of identifying “related” publications for all of the retracted/control publications
in our sample. In the econometric analyses, we separated publications that were in the same line of scientific inquiry
as the retracted or control source article. We treated these closely related papers separately because in prior work
(Azoulay et al., 2015), we found that papers in the same field as a retraction experience citation declines due to their
intellectual association with the retracted piece. Therefore, we wanted to remove such papers to avoid contaminating
our measurement of individual reputation effects with the field-level effects found in this prior work. Furthermore, by
identifying the entire set of related papers, we can also differentiate between citations coming from within vs. outside
a particular field.

The data challenge in the paper is to separate, in the body of published work for a given scientist that predates a
retraction, the set of articles that belong to the same narrow intellectual subfield as the retraction from the set of
articles that lies outside the retracted article’s narrow subfield. This challenge is met by the use of the PubMed
Related Citations Algorithm [PMRA], a probabilistic, topic-based model for content similarity that underlies the
“related articles” search feature in PubMed. This database feature is designed to aid a typical user search through
the literature by presenting a set of records topically related to any article returned by a PubMed search query.v

To assess the degree of intellectual similarity between any two PubMed records, PMRA relies crucially on MeSH
keywords. MeSH is the National Library of Medicine’s [NLM] controlled vocabulary thesaurus. It consists of sets
of terms naming descriptors in a hierarchical structure that permits searching at various levels of specificity. There
are 27,149 descriptors in the 2013 MeSH edition. Almost every publication in PubMed is tagged with a set of MeSH
terms (between 1 and 103 in the current edition of PubMed, with both the mean and median approximately equal
to 11). NLM’s professional indexers are trained to select indexing terms from MeSH according to a specific protocol,
and consider each article in the context of the entire collection (Bachrach and Charen 1978; Névéol et al. 2010).
What is key for our purposes is that the subjectivity inherent in any indexing task is confined to the MeSH term
assignment process and does not involve the articles’ authors.

Using the MeSH keywords as input, PMRA essentially defines a distance concept in idea space such that the proximity
between a source article and any other PubMed-indexed publication can be assessed. The algorithm focuses on the
smallest neighborhood in this space that includes 100 related records.vi The following paragraphs were extracted
from a brief description of PMRA:

The neighbors of a document are those documents in the database that are the most similar to it. The similarity
between documents is measured by the words they have in common, with some adjustment for document lengths.

vLin and Wilbur (2007) report that one fifth of “non-trivial” browser sessions in PubMed involve at least one invocation of
PMRA.

viHowever, the algorithm embodies a transitivity rule as well as a minimum distance cutoff rule, such that the effective number
of related articles returned by PMRA varies between 58 and 2,097 in the larger sample of 3,071 source articles published by the
451 star scientists in the five years preceding their death. The mean is 185 related articles, and the median 141.

v



To carry out such a program, one must first define what a word is. For us, a word is basically an unbroken string
of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens, spaces, new lines,
and punctuation. A list of 310 common, but uninformative, words (also known as stopwords) are eliminated
from processing at this stage. Next, a limited amount of stemming of words is done, but no thesaurus is used
in processing. Words from the abstract of a document are classified as text words. Words from titles are also
classified as text words, but words from titles are added in a second time to give them a small advantage in
the local weighting scheme. MeSH terms are placed in a third category, and a MeSH term with a subheading
qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is starred (indicating a
major concept in a document), the star is ignored. These three categories of words (or phrases in the case of
MeSH) comprise the representation of a document. No other fields, such as Author or Journal, enter into the
calculations.

Having obtained the set of terms that represent each document, the next step is to recognize that not all words
are of equal value. Each time a word is used, it is assigned a numerical weight. This numerical weight is
based on information that the computer can obtain by automatic processing. Automatic processing is important
because the number of different terms that have to be assigned weights is close to two million for this system.
The weight or value of a term is dependent on three types of information: 1) the number of different documents
in the database that contain the term; 2) the number of times the term occurs in a particular document; and
3) the number of term occurrences in the document. The first of these pieces of information is used to produce
a number called the global weight of the term. The global weight is used in weighting the term throughout the
database. The second and third pieces of information pertain only to a particular document and are used to
produce a number called the local weight of the term in that specific document. When a word occurs in two
documents, its weight is computed as the product of the global weight times the two local weights (one pertaining
to each of the documents).

The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a
term that occurred in most of the documents would really tell one very little about a document. On the other
hand, a term that occurred in only 100 documents of one million would be very helpful in limiting the set of
documents of interest. A word that occurred in only 10 documents is likely to be even more informative and will
receive an even higher weight.

The local weight of a term is the measure of its importance in a particular document. Generally, the more
frequent a term is within a document, the more important it is in representing the content of that document.
However, this relationship is saturating, i.e., as the frequency continues to go up, the importance of the word
increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be
considered more important just because it is longer; therefore, a length correction is applied.

The similarity between two documents is computed by adding up the weights of all of the terms the two documents
have in common. Once the similarity score of a document in relation to each of the other documents in the
database has been computed, that document’s neighbors are identified as the most similar (highest scoring)
documents found. These closely related documents are pre-computed for each document in PubMed so that when
one selects Related Articles, the system has only to retrieve this list. This enables a fast response time for such
queries.vii

To summarize, PMRA is a modern implementation of co-word analysis, a content analysis technique that uses
patterns of co-occurrence of pairs of items (i.e., title words or phrases, or keywords) in a corpus of texts to identify
the relationships between ideas within the subject areas presented in these text (Callon et al. 1989; He 1999).
One long-standing concern among practitioners of this technique has been the “indexer effect” (Whittaker 1989).
Clustering algorithm such as PMRA assume that the scientific corpus has been correctly indexed. But what if the
indexers who chose the keywords brought their own “conceptual baggage” to the indexing task, so that the pictures
that emerge from this process are more akin to their conceptualization than to those of the scientists whose work it
was intended to study?

Indexer effects could manifest themselves in three distinct ways. First, indexers may have available a lexicon of
permitted keywords which is itself out of date. Second, there is an inevitable delay between the publication of an
article and the appearance of an entry in PubMed. Third, indexers, in their efforts to be helpful to users of the
database, may use combinations of keywords which reflect the conventional views of the field. The first two concerns
are legitimate, but probably have only a limited impact on the accuracy of the relationships between articles which
PMRA deems related. This is because the NLM continually revises and updates the MeSH vocabulary, precisely in
an attempt to neutralize keyword vintage effects. Moreover, the time elapsed between an article’s publication and
the indexing task has shrunk dramatically, though time lag issues might have been a first-order challenge when MeSH

viiAvailable at http://ii.nlm.nih.gov/MTI/related.shtml
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was crated, back in 1963. The last concern strikes us as being potentially more serious; a few studies have asked
authors to validate ex post the quality of the keywords selected by independent indexers, with generally encouraging
results (Law and Whittaker 1992). Inter-indexer reliability is also very high (Wilbur 1998).

Appendix F: The Impact of Authors with Multiple Retractions

In the analyses presented in the main body of the manuscript, we use the retracted authors’ earliest retraction
event as their year of “treatment.” One problem with this approach is the possibility that scientists are associated
with retraction events across multiple years over the course of their careers. This is not idle speculation: 71 of
the 376 authors (18.88%) in the sample have retraction events that occur in more than one calendar year (with
a maximum of nine different years with retractions). If we also count authors who retract multiple articles in
the same year, the number of multiple retractors grows to 115 (30.59%). This appendix investigates the role that
these “multiple retractors” have on the papers’ key findings. First, we provide descriptive summaries regarding the
nature of the retracted authors with retractions that span more than one year. We focus on this group, rather
than additionally including authors with multiple retractions in the same year, because the paper’s theoretical and
empirical approach rely heavily on the timing of the earliest retractions as representing one-time shocks to scientist
reputation. Retractions across multiple years are a threat to this approach because, in those cases, the timing of the
reputation shock is spread out such that our empirical estimation could be picking up reactions to the subsequent
retractions and assigning those responses to the earlier events. Next, we evaluate the impact of the multiple-retraction
cases by running the regression analyses with the multiple retractors removed.

As one might expect, multiple retractions authors are more likely to be affiliated with misconduct retractions than the
singleton retractors. Table F2 shows that of the 71 scientists in our sample with retractions in more than one year,
69.01% have earliest retractions associated with misconduct. Among the 305 single retractions authors, only 33.77%
have misconduct earliest retractions. This disproportionate number of misconduct cases among the multiple retractors
raises the possibility that more drawn out (and potentially more severe and higher-profile) “retraction episodes” drive
the negative citation impact for prior work. This concern motivates our supplemental regression analysis that excludes
the multiple retractors group (see below).viii In contrast to the misconduct split, the proportion of high-status authors
(as measured by cumulative citations) is fairly similar for singleton and multiple retractors. Table F3 shows that
30.49% and 23.94% of single and multiple retraction authors, respectively, are high status.

To evaluate the impact of multiple retractors on our results, we ran our primary sets of regressions (Tables 3 and 4,
as well as the event-study graph) excluding the authors with multiple retraction events spanning multiple years. We
also excluded their associated control authors, so that the sample contains the articles of authors with retraction
events occurring in the same year, together with the corresponding control authors identified by looking at articles
in the same/journal issues as the retraction events. Naturally, excluding these authors means that the coefficients of
interest are less precisely estimated, especially when splitting the sample using the misconduct and status covariates.

Column 1 of Table F5 shows that despite the more limited sample, we still see that retraction authors experienced
a statistically significant drop in citations to prior work after the retraction event. The magnitude of this effect is
slightly smaller than in the main analyses (8.1% yearly decrease in citation rate, as opposed to 10.7% in the full
sample version). Figure F2 displays the interactions between the treatment effect variable with indicator variables
for number of years until the retraction event. The general pattern is the same as the full sample version (Figure
7), but there are two notable differences. First, the confidence intervals are slightly larger in Figure F2. Second, the
magnitude of the treatment effect is more steady over time than in the full sample analysis, with very little change
between year three and year nine after treatment. One explanation for this difference is that the steady negative
slope in the full analysis graph may be influenced by the multiple retraction authors’ later retraction events, which
serve as additional shocks to their reputation.

viiiJin et al. (2013) and Lu et al. (2013) remove authors who retracted publications multiple times from their analyses. This
data construction choive makes the difference-in-differences analysis more straightforward, but also entails that the miscon-
duct/mistake split in their sample of authors is less representative of the split in the overall population of retracted authors.
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The results in Table F6 (which is analogous to Table 4 in the paper) show that the subgroup comparisons remain
directionally the same with multiple retractors excluded. We still find the most stark difference between mistake and
misconduct authors within the high-status category (as measured either by citations or funding). We also continue
to observe similar magnitudes in the citation decline for low-status authors, whether or not misconduct is involved
in the corresponding retraction event.

We highlight two important findings contained in these supplemental analyses. First, multiple-retraction authors
are more likely to be associated with misconduct cases than are singleton retractors. Removing the multiple-year
retraction authors from the analysis sample reduces statistical power, but our main results continue to hold, at
least qualitatively. A single retraction event is enough to damage the reputation of an author’s prior work, and the
punishment meted out by failing to cite these authors still varies across misconduct and status subgroups in ways
that are consistent with our theoretical predictions.
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Table F1: Retraction Authors—Singletons vs. Multiple Year Retractors 
Across >1 Year Nb. Percent 
 Retractions

Single Retraction 305 81.12% 

Multiple Retractions (across >1 years) 71 18.88% 

Total 376 100.00%  
 
 
 

  

Table F2: Single vs. Multiple Year Retractors, By Misconduct

Total Authors
Single Retraction 

Authors
Multiple Retractions 

Authors
Not Misconduct 224 (59.57%) 202 (66.23%) 22 (30.99%)
Misconduct 152 (40.43%) 103 (33.77%) 49 (69.01%)
Total 376 305 71

Table F3: Single vs. Multiple Year Retractors, By Citation Status

Total Authors
Single Retraction 

Authors
Multiple Retractions 

Authors
Bottom 75% Citation Status 266 (70.74%) 212 (69.51%) 54 (76.06%)
Top 25% Citation Status 110 (29.26%) 93 (30.49%) 17 (23.94%)
Total 376 305 71
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Table F4: Status and Retraction Type – Two-way Table of Frequencies (Sample without Multiple 
Retractors) 

 

 Low Status High Status  

Mistake 141 [66.51%] 61 [65.59%] 202 

Misconduct 71 [33.49%] 32 [34.41%] 103 

Total 212 93 305 

Note: Total author counts for each status group are displayed in the bottom row, while total author counts for 
each retraction type are displayed on the far right column. The percentages refer to the fraction of events in that 
cell for the corresponding column (status grouping). As can be readily observed, the ratio of misconduct and 
mistake retractions is about the same for both high and low-status authors. 
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Table F5: Citations to Pre-Retraction Articles, by Author Prominence and Misconduct 
(Multi-Year Multiple Retractors Removed) 
 

Full Sample 
Author Status 

Retraction Type 
 Citations Funding
 

 
(1) 
 
 

 
(2a) 

 
High 

 
(2b) 

 
Low 

 
 

(3a) 
 

High 

 
(3b) 

 
Low 

 
(4a) 

 
Mistake 

 
(4b) 

 
Misconduct 

After Retraction 
-0.084* -0.071 -0.111** -0.065 -0.068 -0.072† -0.153*

(0.037) (0.048) (0.042) (0.059) (0.043) (0.042) (0.062)
Nb. Authors 800 224 576 213 566 505 295
Nb. of Author-Publications 52,126 31,675 20,451 25,183 24,963 33,480 18,646
Nb. of Author-Paper-Year Obs. 1,229,816 744,653 485,163 607,477 574,084 767,153 462,663
Note: This table is analogous to Table 3. Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The unit of analysis is 
Author-Publication-Year, and the dependent variable is number of citations. All models incorporate a full suite of calendar year effects as well as 
indicator variables for the age of the publication and age of the author. High-status authors are those in the top quartile in terms of the author’s 
cumulative citations (column 2a) or funding (column 3a) at baseline. Low-status authors are those in the bottom three quartiles of the same 
measures (columns 2b and 3b). NIH intramural scientists are excluded in the funding status models. The retraction type is defined by the earliest 
retraction for a given retracted author (controls retain the code associated with the retracted author with whom they are affiliated). 
 
Exponentiating the coefficients and differencing from one yields estimates interpretable as elasticities. For example, the estimates in column (1a) 
imply that the prior articles of authors involved in retractions experience a statistically significant (1-exp[-0.084])=8.1% yearly decrease in citation 
rate after the retraction event. QML (robust) standard errors in parentheses, clustered around author identifiers. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table F6: Citations to Pre-Retraction Articles, by Author Prominence and Misconduct 
Interactions (Multi-Year Multiple Retractors Removed) 
 Status: Citations Status: Funding  
 High Low High Low 

  
(1a) 

 
Mistake 

 
(1b) 

 
Misconduct 

 
(1c) 

 
Mistake 

 
(1d) 

 
Misconduct 

 
(2a) 

 
Mistake 

 
(2b) 

 
Misconduct 

 
(2c) 

 
Mistake 

 
(2d) 

 
Misconduct 

After Retraction 
-0.061 -0.151† -0.098† -0.124* -0.024 -0.193* -0.090† -0.062
(0.053) (0.081) (0.053) (0.055) (0.066) (0.091) (0.049) (0.065)

Nb. Authors 142 82 363 213 129 84 360 206
Nb. of Author-Publications 19,900 11,775 13,580 6,871 15,584 9,599 16,452 8,511
Nb. of Author-Paper-Year Obs. 456,278 288,375 310,875 174,288 368,975 238,502 362,709 211,375
Note: This table is analogous to Table 4. Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The unit of 
analysis is Author-Publication-Year, and the dependent variable is number of citations. All models incorporate a full suite of calendar year 
effects as well as indicator variables for the age of the publication and age of the author. High-status authors are those in the top quartile in 
terms of the author’s cumulative citations (columns 1a, 1b) or funding (columns 2a, 2b) at baseline. Low-status authors are those in the 
bottom three quartiles of the same measures (columns 1c, 1d, 2c, and 2d). NIH intramural scientists are excluded in the funding status 
models. The retraction type is defined by the earliest retraction for a given retracted author (controls retain the code associated with the 
retracted author with whom they are affiliated).  
 
Exponentiating the coefficients and differencing from one yields estimates interpretable as elasticities. For example, the estimates in column 
(1b) imply that the prior articles of high-status authors involved in a ‘‘misconduct’’ retraction experience a statistically significant (1-exp[-
0.151])=14.0% yearly decrease in citation rate after the retraction event. QML (robust) standard errors in parentheses, clustered around 
author identifiers. †p < 0.10, *p < 0.05, **p < 0.01. 
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Figure F1: Number of Retractions and Retraction Years per Retractor 
A. Nb. Retracted Publications Per Retracted Author B. Nb. Years in which Retracted Authors Were 

Retracted Publication Authors 

Note: We count the number of retracted publications per retracted author (Panel A) and number of years in which each retracted authors 
experienced a retraction event (Panel B). Both panels are based off the main analysis data set, which includes 376 retraction authors matched to 
the faculty roster and to their entire career publication histories. 
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Figure F2: Dynamics of Retraction Effect on Citations to Pre-Retraction Publications 
(Single Year Retractors Only) 

 

Note: This graph is analogous to Figure 7. The green dots in the above plot correspond to coefficient estimates stemming from conditional fixed 
effects quasi-maximum likelihood Poisson specifications in which the citation rates for articles published by retracted and control authors prior to 
their first associated retraction event are regressed onto year effects, article age indicator variables, as well as 15 interaction terms between 
treatment status and the number of years before/after the retraction event (the indicator variable for treatment status interacted with the year of 
retraction is omitted). The 95% confidence intervals (corresponding to robust standard errors, clustered around unique author identifiers) around 
these estimates is plotted with the help of capped spikes. 
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Appendix G: Comparing Magnitudes for the Treatment Effects
Across Author Groups

In our analysis of heterogeneous treatment effects, we split the sample by retraction type interacted with status cells
(Table 4). The advantage of the “split-sample” approach is that the corresponding treatment effects are estimated off
control groups that correspond exactly to the treatment group (e.g., high-status retracted authors are only compared
to high-status control authors). A downside of this approach, however, is that it becomes more challenging to compare
the magnitudes of the treatment effects, since they are estimated from separate samples that are not randomly selected
from the overall data.

An obvious alternative is to run a regression on the entire sample, interacting the “after retraction” treatment variable
(as well as all the other covariates) with indicator variables for each of the four subgroups. Unfortunately, we cannot
get this fully saturated specification to converge.

We use two different approaches to statistically compare the magnitudes of the treatment effects across subgroups.
First, under the assumption that, conditional on the included covariates, the four subsamples are randomly drawn
from the overall data, then we can compare the coefficients’ magnitudes using a Z-test in the spirit of Clogg et al.
(1995):

Z =
β1a − β1b√
SE2

1a + SE2
1b

Using this approach, the p-value for the one-tailed test of equality between the treatment effects in columns (1a)
and (1b) is 0.08. But the p-value for the one-tailed test of equality between the treatment effects in columns (1b)
and (1d) is 0.13: the difference between these coefficient estimates is not statistically significant at conventional levels.

Since the Z-test relies on a problematic assumption (that the subsamples are randomly drawn from the overall
data), we also pool the data in a slightly simplified version of the fully-saturated model. In particular, our pooled
specification does not include a full suite of interaction terms between the year effects, age effects, and the subgroup
indicator variables. The results are displayed in Table G1. Columns (1) and (2) utilize the entire analysis sample,
and columns (3) and (4) split the sample by author citation status. We use Wald hypothesis tests to compare the
magnitudes of the treatment effect variables. In column (1), we observe a statistically significant (p < 0.05) difference
between the misconduct and mistake groups. In column (2), we compare the treatment effects for each of the four
subgroups. The Wald test statistic allows us to reject the null hypothesis that the coefficient on the treatment variable
“After Retraction × High Status × Misconduct” is equal to any of the other treatment variables (when the Wald
test is performed in a pairwise manner). We cannot reject the null hypothesis that any of the other three treatment
variables are equal at conventional levels of statistical significance. Column (3) also offers support for the claim that
the high-status misconduct group suffers the largest citation penalty; conversely, in column (4), the two low-status
subgroups experience penalties that are statistically indistinguishable from one another.
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Table G1: Citations to Pre-Retraction Articles, 
by Author Prominence × Misconduct Cells (Pooled Specifications) 
 (1) (2) (3) (4) 

 
Entire 
Sample 

Entire 
Sample 

High 
Status 

Authors 

Low 
Status 

Authors 

After Retraction × Mistake -0.060  -0.027 -0.120* 
(0.040)  (0.050) (0.055) 

After Retraction × Misconduct -0.217**  -0.257** -0.080 
(0.050)  (0.062) (0.049) 

After Retraction × High Status × Mistake   -0.061   
 (0.049)   

After Retraction × High Status × Misconduct  -0.300**   
 (0.061)   

After Retraction × Low Status × Mistake  -0.061   
 (0.058)   

After Retraction × Low Status × Misconduct  -0.007   
 (0.051)   

Nb. Authors 1,130 1,130 286 844 
Nb. of Author-Publications 70,158 70,158 40,665 29,493 
Nb. of Author-Paper-Year Obs. 1,736,319 1,736,319 979,230 757,089 
Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The unit of analysis is 
Author-Publication-Year, and the dependent variable is number of citations. All models incorporate a full suite of 
calendar year effects as well as indicator variables for the age of the publication and age of the author (though these 
variables are not interacted with treatment group). High-status authors are those in the top quartile in terms of the 
author’s cumulative citations. In column (2), a Wald test shows that we can reject the null hypothesis that the 
coefficient on the treatment variable “After Retraction × High Status × Misconduct” is equal to any of the other 
treatment variables (p<0.01). We cannot reject the null hypothesis that any of the other three treatment variables in 
column 2 are equal. In columns (1) and (3), the Wald tests confirm that the treatment coefficient for the misconduct 
group is significantly different than the mistake effect (p<0.05). In column (4), we cannot reject the null hypothesis 
that the mistake and misconduct treatment effects are identical in magnitude. 
 
Exponentiating the coefficients and differencing from one yields estimates interpretable as elasticities. For example, the 
estimates in column (1) imply that the prior articles of authors involved in a ‘‘misconduct’’ retraction experience a 
statistically significant (1-exp[-0.217])=19.5% yearly decrease in citation rate after the retraction event, on average. 
QML (robust) standard errors in parentheses, clustered around individual authors. †p < 0.10, *p < 0.05, **p < 0.01.  
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