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1 Introduction and overview

We propose a dynamic model of cash-management and means-of-payment choice in which

optimizing households use both cash and credit. Credit is modeled as a payment instrument

that requires no inventory of cash at hand so that, for instance, debit cards do not count

as “cash” for our purposes. The novel feature of the model is the sequential nature of the

payments choice: in each instant the agent can choose to pay with either cash or credit.

One novel prediction is that the payment choices of households depend on the level of cash

holdings: agents use cash for a purchase as long as they have any cash with them, but use

credit otherwise. Still, agents find it optimal to intermittently replenish their cash holdings,

and so will use both cash and credit. These results match recent survey and diary evidence

such as, for example, Stix (2004), Mooslechner, Stix, and Wagner (2006), Arango, Huynh,

and Sabetti (2011), Arango, Hogg, and Lee (2013) and Huynh, Schmidt-Dengler, and Stix

(2014) who document that (absent other differences) households with larger cash balances

are less likely to use credit. More colorfully, the agents in our model find that “cash burns”

in their hands.1 Our model establishes a tight connection between the size and frequency

of withdrawals, the average cash balances and the share of payments made in cash. We

fully develop these connections which can be used as “over-identifying” restrictions for the

estimation and testing of the model. We also characterize the implications for the shape and

interest rate sensitivity of the demand for cash. Finally, we find that the model gives a clear

example of how some technological innovations are complementary to the use of cash: for

instance it implies that the availability and density of ATM networks crowds out the use of

credit.

The basic cash management problem that we consider is a version of the Baumol-Tobin

inventory model where each withdrawal is subject to a fixed cost b, augmented to have

random free withdrawal opportunities, with an expected number of p opportunities per unit

of time. This augmented Baumol-Tobin model gives rise to a precautionary motive in the

demand for cash holdings that is key to interpret the data as we showed in Alvarez and

Lippi (2009). Expenditures are assumed to be a constant flow through time, denoted by e,

and cash holdings are assumed to have an opportunity cost of R per dollar per unit of time.

Agents discount the real costs incurred at the real rate r, and cash depreciates at the rate

of inflation π. The key new element is that, unlike in the augmented Baumol-Tobin’s model

households can pay with cash or with credit at any time: if they pay with credit they incur

1 Our model abstracts from differences in the size of purchases as well as differences in acceptability of
different means of payments. We view our model as complementary of those that emphasize the role of the
size of purchases on the choice of the means of payments. There is a large theoretical and empirical literature
on models that emphasize those features, such as Arango, Bouhdaoui, and Bounie (2012) and Bouhdaoui
and Bounie (2012), among many others.
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a flow cost of γe per unit of time. The reason that agents use cash if they can (so “cash

burns”) is that for an agent with cash at hand the cost of obtaining it is sunk, so that the

agent pays only the opportunity cost. Thus, as long as there is either discounting, inflation,

or the option value of free cash-adjustments is positive (i.e whenever p + r + π > 0), agents

prefer to pay in cash when they have it, i.e cash burns.

The model establishes conditions under which it is optimal for the agent to use both cash

and credit. This means that agents withdraw cash (even though it burns) and to use credit

only when their cash is inventory exhausted. We show that this policy is optimal when the

fixed cost of adjustment b is higher than some threshold value. In addition to the “cash-

burning” behavior, the model implies connections between observable cash-management be-

havior, and the dynamics of the choice of means of payments. The cash-management statis-

tics that we refer to are: the frequency and average size of withdrawals, the average cash

holdings and the average cash holdings at the time of withdrawals. The information about

the means of payments concerns whether cash or credit is used (relative to the level of cash

holdings), and the average share of expenditures paid with cash. For example, we show that

cash-burning behavior implies a negative relationship between the share of payment in cash

and the ratio of withdrawal size to average cash holdings.

Many papers in the literature incorporate alternative means of payments, as for example

the seminal work of Lucas and Stokey (1987) and Prescott (1987). Those models do not have

an explicit inventory theoretical model of money, so they cannot make contact simultaneously

with observations such as the fraction of purchases made in cash as well as cash-management

statistics such the frequency and size of cash withdrawals, etc. Technically, in this type

of models the cash-in-advance constraints binds in every (exogenously determined) model

period, so that a withdrawal occurs in every period and all cash is spent during it. Hence,

statistics such as frequency of withdrawals, size of withdrawals, cash at withdrawals are all

exogenously determined by the choice of the time period. Other models incorporate both

cash management and the choice of means of payments, which ends up being dictated by

the size of the purchases. Examples of such models are Whitesell (1989) or Freeman and

Kydland (2000). Yet while these models introduce cash-management in that the number of

cash adjustment per period is modeled, those choices are all “within” the period, so they do

not feature a sequential choice of how to pay for each purchase as cash is depleted. Hence in

these models the optimal use of credit does not depend on cash holdings, as the data strongly

suggest.2

The structure of the paper is as follows. The rest of the introduction expands on the

2A close analogy between our sequential formulation and these papers’ simultaneous cash-credit choice is
found in the difference between sequential search, as in McCall’s model, versus simultaneous search, as in
Stigler’s search model. See Sargent’s (1987) chapter 2 for a description of the two types of search models.
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relation with existing models and on the description of the recent empirical household level

evidence regarding cash balances and means of payment choice. We illustrate the model’s

key idea in Section 2 with a simple deterministic steady-state model. This section is useful

mostly for readers that are less familiar with dynamic optimization models. It gives a simpler

treatment of most, but not all, the properties of the model. Section 3 introduces uncertainty

and a proper dynamic treatment of the inventory with payment-choice. This section gives a

sharp characterization of the model parameters for which it is optimal to follow a cash burning

policy (where cash balances influence the choice of means of payment) or alternatively where

it is optimal to follow the augmented Baumol-Tobin policy (so the level of cash balances are

not related to the choice of means of payment). Section 4 extends our theoretical analysis

by allowing for a random cost of cash withdrawals, a feature which appears desirable for

empirical applications. Section 5 concludes. The randomness of the withdrawal cost implies

that an agent follows a cash-burning or an (augmented) Baumol-Tobin policy depending on

the current realization of the withdrawal cost. This feature is useful to fit the data, as we

illustrate with a simple calibration.

1.1 Literature Review

Next we review a few related money demand models which we think are both important and

innovative. Our aim here is to explain the modeling simplifications made by these papers

which did not allow them introduce the main feature of our model: the sequential choice of

payment method. We start with the classic paper by Lucas and Stokey (1987), and the very

large literature that followed this work. In each (discrete) period agents have preferences over

two goods, denoted as cash and credit goods, which are imperfect substitutes in consumption.

Cash goods are paid with previously accumulated cash but credit goods can be paid with

income from the current period. Although this model features a choice of the means of

payments, it is only through the choice of consumption or cash and credit goods. For a given

good, there is no option to use different payment methods. Cash goods must always be paid

for in cash, and the cash-in-advance constraint always binds. Thus in this class of models

the number of withdrawals, the size of the withdrawals, and the cash at hand at the time of

withdrawals are all functions of the exogenously given length of the time period.

The model in Prescott (1987) considers the problem of an agent who makes (simultane-

ously) purchases of differentiated goods. Those purchases can be paid with either cash or

credit. If they are paid with cash, agents must have previously accumulated cash. If they

are paid with credit, agents can pay them with their current income, but for each purchase

they incur a fixed cost. As a consequence, agents pay small purchases with cash and large

purchases with credit. The purchases of all the goods occur simultaneously, and the cash in
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advance constraint for the goods that are chosen to be paid with cash holds with equality in

each discrete time period. As a consequence, as was the case for the Lucas-Stokey cash-credit

model, the frequency of cash withdrawal and the cash management statistics depend on the

exogenously given length of the time period. Moreover the decision of whether to use cash

or credit does not depend on the amount of cash at hand, a state variable that is key in our

model.

Whitesell (1989) uses a model that combines a cash-credit choice and an inventory model

for payments made in cash. He uses a steady state model (or, equivalently, a one period

model) in the tradition of Baumol-Tobin and others. In his model agents are faced with a

distribution of the size of purchases. There are two ways to pay for goods: cash or credit.

Paying with credit has a per-transaction as well as a proportional cost. The total expenditure

made in cash has a cost given by the opportunity cost of the average balances and the

transactions cost associated with cash withdrawals, as in Baumol-Tobin. Thus the agent’s

decision consists of a threshold on the minimum size that is paid with credit, and a Baumol-

Tobin policy used to finance the cash needed to by the remaining total expenditure, which

is only on the smallest purchases. Importantly, all the expenditures of different sizes occur

simultaneously. Thus in this model the agents are not faced with the choice of whether to

pay for a transaction with cash or credit when they have cash at hand, as they do in our

model. It follows that the decision of whether to use cash or credit does not depend on the

amount of cash at hand.

The model in Freeman and Kydland (2000) is a full-blown RBC monetary model. In each

(discrete time) period there is a combination of a version of Prescott’s (1987) model and,

for the goods that are not paid in cash, there is a cost as in the Baumol-Tobin model. We

highlight that the Baumol-Tobin model applies within each model period. Equivalently, the

expenditures of different sizes all occur simultaneously within the same period. Again, as

in Whitesell (1989), this paper combines both payment choice and an inventory model, but

does not expose agents to the choice of what means to payment to choose when they have

cash at hand.

1.2 Empirical Evidence

There is now a growing body of evidence that used both diaries for means of payments

simultaneously with statistics about cash management. We briefly mention here some of the

contributions which connect with the effects highlighted by our paper.

Arango, Huynh, and Sabetti (2011) analyze the pattern of the means used for purchases

using diaries where 2350 individuals in Canada are asked to record all purchases they made

for three days, how they paid for them (cash, credit card, debit card, check, etc), what type of
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good they were, perceptions of the means of payments available on the POS, demographics

such as family size, income, education, gender, information about the type of credit and

debit card held, the amount of cash balances held at the beginning of the three day period,

as well as other variables of interest. In particular they fit multinomial logit(s) to the means

of payment chosen and they find that, controlling for other variables, the amount of cash a

the beginning of the diary has a negative impact on the probability that credit or debit is

used as means of payments, especially for purchases of small value. They state that “higher

initial cash holdings leads to higher probability of paying with cash. The result is especially

pronounced for transactions below 25 dollars. The probability of paying with cash for an

individual carrying 150 dollars could be twice as large compared with that of someone with

only 5 dollars. However, as transaction value increases the marginal cost of paying with cash

goes up reducing the difference in probabilities between high and low cash holders.” Kosse

and Jansen (2012) also report significant positive effect of cash holdings at the beginning of

the diary in a Tobit regression on whether a purchase was paid in cash. They use a diary with

purchases for one day for 2200 individuals in the Netherlands containing similar information

as the one used for Canadian consumers.

In Arango, Bouhdaoui, and Bounie (2012), the authors compare two simple statistical

models of means of payments. Each model has one free parameter per individual. One

model assumes that for each individual payments above a threshold size are made with cash

and otherwise with other means of payments. They refer to this as the TS model, as it is

meant to capture the cash-credit models in which, due to a fixed cost of “credit” transactions,

cash is used only for small-size transactions. This threshold is estimated for each individual

and a goodness of fit statistic is estimated. The second model assumes that payments are

made with cash as long as cash is available, and otherwise they are paid with credit. They

refer to this model as CH (for cash holdings) and it is meant to capture precisely what the

model in our paper describes: cash “burns” in the hands of the household, and hence its

availability determines whether it is used or not. Interestingly the authors report that “We

find that the CH model outperforms the TS model, and does a good job replicating the

distribution of cash shares in both Canada and France.” While the CH rule is assumed by

these authors, our model provides an explanation in terms of primitives (the cost of credit,

the cost of cash withdrawals, etc) of why and when the behavior in the CH model is optimal.

In Huynh, Schmidt-Dengler, and Stix (2014), Table 1, the authors report evidence taken

from diary data from both Austria and Canada to show that (i) currency holdings are larger

than zero at the time of a cash withdrawal (between 1/3 and 1/2 of the mean or median

currency holdings) and that (ii) agents predominantly use cash rather than credit when

they have enough cash at hand. The latter fact is particular relevant for our paper: most
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consumers (81% in Austria, 65% in Canada) with the possibility to choose between cash and

credit will use cash as long as they have enough of it at hand. It is exactly this choice that

our theoretical model will focus on.

2 A steady-state deterministic model

This section considers a simple steady-state deterministic model that highlights the main

features of the dynamic stochastic model of Section 3. The usefulness of this model is to

highlight the main tradeoffs at work in a very simple way. Indeed some key formulas from

this simple model coincide or are useful to interpret the more complex decision rules of the

stochastic model presented later. The main failure of the deterministic model is the lack of a

precautionary motive, so that m = 0 always at the time of a withdrawal. The readers familiar

with continuous time impulse control problems may skip this section and move directly to

Section 3.

Consider an agent who consumes e per unit of time and can pay for this using cash or

credit. If she pays with credit she incurs a direct cost γ per unit bought. In this simple set-up

the cost γ can be understood as the time cost of using credit for small value transactions.

The technology to withdraw cash is as follows. At any time the agent can pay a fixed cost b

and obtain cash. In addition, the agent is given p free cash withdrawals per period.

We briefly comment on the main decisions that an agents must make. Note that in a

deterministic setup an agent with positive cash balances will not pay the fixed cost b to

withdraw cash, unless cash balances are zero. Consider now the decision of whether to

purchase goods using cash or credit. First, for an agent with positive cash balances m > 0 it

is not optimal to pay the cost γ e to use credit, since the cost of acquiring the cash is sunk

at this time.3 Second, for an agent with zero cash balances m = 0, there are two possible

choices. One is to pay the cost γ e to consume using credit, and wait until the next free

withdrawal opportunity to replenish cash balances. The other possibility is to pay the fixed

cost b, withdraw cash, and consume using cash.

Before analyzing the full model, the next subsection describes the solution of the cash

inventory problem that arises when the agent does not use credit. Then we consider a model

with cash and credit purchases. Finally, we consider the best choice among the two.

3Another possibility is to use credit and deposit the cash to earn a higher interest. With a fixed cost for
depositing, this is not optimal unless the cash balances are very large.

6



2.1 Deterministic Baumol-Tobin model with p free withdrawals

The solution of the problem in this case is the same as in Baumol-Tobin model, except that

the agent pays only for the withdrawals in excess of the p free adjustments per period, as in

Alvarez and Lippi (2009).The agent chooses a withdrawal of size m∗ when cash balances are

exhausted (m = 0). The policy implies an average cash balance M = m∗/2 and a number

n = e/m∗ of cash withdrawals. Let R be the opportunity cost of cash. The agent’s choice of

m∗ solves

va(R, b, p, e) ≡ min
m∗

[

R
m∗

2
+ b max

( e

m∗
− p , 0

)

]

.

where the cost is given by the sum of the opportunity cost of cash holdings and the cost

associated with cash withdrawals in excess of p. The optimal policy for a technology with

p ≥ 0 is

m∗

e
=

1

p

√

min

(

2
b p2

e R
, 1

)

.

For p = 0 we have the Baumol-Tobin setup, so that when R is small the agent decides to

economize on withdrawals and choose a large value of m∗. For p > 0 there is no reason to

have less than p withdrawals, since these are free. Hence, for b/e > R/(2 p2) the agent will

choose the same level money holdings: m∗ = e/p. Note that the interest elasticity of money

is zero over this range, while it is equal to 1/2 if b/e ≤ R/(2 p2). In this deterministic set

up, the average withdrawal size W and the average cash balances satisfy:

W = m∗ , M = 2 W = 2 m∗

Replacing the optimal m∗ choice in (1) yields the value function for this problem:

va(R, b, p, e) =















(
√

2 R b
e
− p b

e

)

e if R ≥ 2 p2 b
e

and n > p

(

R
2 p

)

e if R < 2 p2 b
e

and n = p

(1)

where the top branch gives the cost for the case in which the optimal number of withdrawals

per unit of time exceeds the free rate p. The money demand interest rate elasticities is

increasing in R:

−
∂ log M/e

∂ log R
=











1
2

if R ≥ 2 p2 b
e

and n > p

0 if R < 2 p2 b
e

and n = p
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2.2 The deterministic cash-credit model

We now turn to the analysis of the case where instead of withdrawing fresh cash whenever

they run out, the agent instead uses credit and waits for a free withdrawal opportunity.

After a cash withdrawal, denoted by W = m∗, she spends τa = m∗/e units of time paying for

consumption with cash, incurring an opportunity cost Rm∗/2, where m∗/2 are the average

cash balances, conditional on m > 0, and where R is the opportunity cost of cash. We assume

that first the agent consumes using cash, and when cash balances are depleted she pays

with credit. Thus, after cash balances hit zero, the remaining time until a free withdrawal

opportunity, denoted by τr, is given by τr = 1/p − m∗/e. Notice that τr + τa = 1/p. The

steady state cost in every cycle of duration 1/p can be written as: τr γ e + τa R m∗/2. The

cost per unit of time is thus p τr γ e+p τa R m∗/2. Thus the minimized value of the strategy

that uses cash or credit is given by:

vr(R, γ, p, e) = min
0≤m∗≤e/p

p

[

(1/p − m∗/e) γ e + (m∗/e) R e
(m∗/e)

2

]

,

subject to the constraint that the time spent using credit is non-negative, i.e. m∗/e ≤ 1/p.

We denote by s the ratio of the expenditure paid with cash to total expenditure per unit of

time, and referred to as the cash share. The cash share s is given by

s =
τa

τa + τr

= min

{

p
m∗

e
, 1

}

.

Denoting M the average real balances, and using the cash share s we can write M = s m∗/2.

The solution of this problem gives

m∗

e
=

W

e
= min

{

1

p
,

γ

R

}

, s = min
{

1 ,
γ p

R

}

,
M

e
= min

{

1

2 p
,

p

2

( γ

R

)2
}

vr(R, γ, p, e) =















(

R
2 p

)

e if γ > R
p

(

1 − γ p
2 R

)

γ e if γ ≤ R
p

(2)

All the expressions above have two branches: one when γ ≤ R/p so that both cash and credit

are used, and one when γ > R/p so that credit is not used.

2.3 The full deterministic problem

We now analyze the conditions under which is optimal to follow the strategy described in the

previous section. That is, to use credit instead of withdrawing fresh cash when m = 0. To
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do so we compare the steady-state cost of two policies computed above. The value function

for the problem is then v(R, b, γ, p, e) = min {va (R, b, p, e) , vr (R, γ, p, e)} . We define the

threshold function b, as the value of b that equates the two minimized costs:

va(R, b, p, e) = vr(R, γ, p, e) .

Using this definition we obtain that:

b(R, γ, p, e) =
γ2

2 R
e . (3)

provided that γ ≤ R/p, so that credit is used when b ≥ b, and provided that R > 2 p2 b/e so

that n > p for the case with no credit. Note that for b < b credit is not used and n > p.4

The next proposition summarizes the behavior of the full deterministic model. It is

obtained from considering whether the minimum cost is attained by the cash-credit value

described in equation (2) or by the value of the variation of the Baumol-Tobin model described

in equation (2.1). Note that for some of the calculations it is useful to consider the expression

in equation (3). The proposition considers two cases, depending on whether γ ≷ 2 b/e p, and

for each case analyzes the behavior for all values of R.

Proposition 1. The interest rate elasticity of the money demand is decreasing in R,

and takes either three or two values depending on parameters. Let p > 0 and γ > 0. Then

W/M = 2/s and

4 The expression for b comes from equating: vr = γe[1 − γp/(2R)] with va = e
√

2 R b

e
− pb. Note that

inserting the expression of b into va gives eγ − pγ2/(2R)e = γe[1 − γp/(2R)].
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If γ > 2 p b
e
, then

if R ∈
(

γ2

2 b/e
, ∞

)

−∂ log M/e
∂ log R

= 2 cash & credit used n = p s = γp/R

if R ∈
(

2 p2 b
e

, γ2

2 b/e

]

−∂ log M/e
∂ log R

= 1/2 only cash used n > p s = 1

if R ∈
(

0 , 2 p2 b
e

]

−∂ log M/e
∂ log R

= 0 only cash used n = p s = 1

Otherwise, i.e. if γ ≤ 2 p b
e
, then

if R ∈ (γp , ∞) −∂ log M/e
∂ log R

= 2 cash & credit used n = p s = γp/R

if R ∈ (0, γp] −∂ log M/e
∂ log R

= 0 only cash used n = p s = 1

This proposition illustrates four properties of the model. First, the interest rate elasticity

of money demand is decreasing in the level of the interest rate. There are two cases: the first

corresponds to a large cost of credit (γ > 2 p b/e), in which case there are three qualitative

different behavior depending on the level of interest rates. If interest rates are very low,

credit is not used and n = p, resulting in an elasticity of zero. For intermediate level of

interest rates, credit is not used, but n > p, so the local behavior is identical to Baumol-

Tobin, producing an interest rate elasticity of 1/2. For higher interest rates, both cash and

credit are used. The interest rate elasticity is higher here becuase both the cash share as

well as the size of the withdrawals react to interest rates. If instead the cost of credit is low

(γ ≤ 2 p b/e) there is no intermediate case, since credit always dominates the Baumol-Tobin

type of behavior. This is the case discussed in the previous section.

The second property of the model is that the model really has only two parameters,

γp and p2 b/e, as the alert reader will have already noticed. Note that in the model with

free withdrawal opportunities analyzed and estimated in Alvarez and Lippi (2009) the shape

of the money demand (both in the deterministic and stochastic version) depends only on

b̂ ≡ p2 b/e. Thus the cash-credit aspect of the model in this paper depends only on γp, if

b̂ is kept constant. We will see that this carries through the stochastic model analyzed in

Section 3.

Third, there are parameter values for which one obtains three extreme cases for all values

of R. The classic Baumol-Tobin case is obtained by having both large cost of credit (γ →

∞) and no free withdrawals (p → 0). Alternatively, it can be obtained when the cost of
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withdrawals is small (b → 0).5 The case where only cash is used with an inelastic money

demand is obtained when there are very frequent free withdrawal opportunities (p → ∞).

The last extreme case is the one where only credit is used, which obtained when the credit

cost is very small (γp → 0).

Finally while the deterministic steady state model gives several of the insights of the

dynamic stochastic model, here we comment on some properties which are both not desirable

from an empirical point of view and also that are not robust in the sense that they disappear

in the stochastic version of the model. These properties are that: i) the result that as R ↓ 0

then b → ∞, so credit is not used, ii) the comparative static of the use of credit w.r.t.

p, iii) the discreteness of the money demand and withdrawing elasticities, iv) the lack of

“precautionary” hoarding, i.e. the result that cash is zero at withdrawal, e.g. M = 0, v) the

fact that W
M

is smaller than 2 if n = p and s = 1, and vi) the fact that W
M

≥ 2 if s ≤ 1 (with

equality holding only at s = 1.

3 An inventory model with means-of-payment choice

In this section we solve a discounted, stochastic dynamic problem which incorporates simul-

taneously: optimal cash management, and the optimal choice of means for payment. As in

the deterministic problem of Section 2 the agent faces a total consumption per unit of time

e > 0 which must be paid with either cash or credit: at each instant the agent can choose

to pay in cash c ∈ [0, e] and to pay the remaining e − c using credit. If the payment is

made by credit, the agent pays a flow cost γ per dollar.6 The state of the agent’s problem is

her real cash balances m ≥ 0. If m = 0 either cash must be withdrawn or credit has to be

used. If m > 0 the agent faces a cash/credit choice. The law of motion of real balances is

then dm = − (c + m π) dt provided that no adjustment takes place, where π is the constant

inflation rate. The agent can adjust her cash balances paying the fixed cost b ≥ 0. Addition-

ally, there is a Poisson process with constant arrival rate p ≥ 0, which describes the arrival

of a free adjustment opportunity. When such an opportunity occurs the agent can adjust

her cash balances at no cost. As standard in monetary models, we assume that holding cash

m entails an opportunity cost R m per unit of time, where R can be interpreted as the sum

of the nominal interest rate plus a probability that cash is lost or stolen. We assume that

the agent minimizes the expected discounted cost, using a constant discount rate r ≥ 0. We

first work with this standard minimization problem, and provide a derivation of the objec-

5Note that the two possibilities which give rise to the classic Baumol-Tobin model can be captured by
simply considering the case where p2 b/e → 0.

6It turns out that, given that all expenditures are of the same size, it is equivalent to assume that there
is a fixed cost, since the optimal policy will be of the bang-bang type.
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tive function and its corresponding opportunity cost from first principles in Appendix C.

There are three substantive differences between the model analyzed in this section and the

steady-state deterministic model of Section 2. First, we take into account explicitly the role

of inflation, as can be seen in the law of motion. Second, the free adjustment opportunities

arrive stochastically. Third, real costs are discounted by an appropriate rate r, and we let

the agent minimize the expected discounted cost, allowing any feasible policy.

Formally we denote by V (m) the minimum expected discounted cost of supporting a

constant flow of expenditure e when the current real cash at hand is m ≥ 0. The function

V , defined in V : R+ → R+ must solve the following functional equation:

0 = min

{

min
0≤c≤e

R m + γ[e − c] + p min
z≥0

[V (z) − V (m)] − V ′(m)(c + πm) − r V (m) ,

b + min
z≥0

V (z) − V (m)

}

for all m ≥ 0 . (4)

The outer min{·, ·} in the functional equation (4) chooses between two strategies. The term

in the first line represents the case where cash is not replenished, but where the agent still

chooses what fraction of their consumption is paid for in cash, and what fraction by credit.

This is a standard continuous time Bellman equation, with flow cost Rm+γ(e− c) and with

expected changes due to either the arrival of the free adjustment opportunities and to due

to the depletion of cash. The minimization with respect to c describes the agent’s choice of

the optimal means of payment. The second term corresponds to the strategy of exercising

control, i.e. paying the fixed cost b and adjusting cash holdings. For each m the value

function is equal to the value of the strategy that yields the minimum cost. Whenever an

adjustment is made, either paying the cost b or when a free adjustment opportunity arrives,

the post-adjustment quantity of cash is chosen optimally. The optimal policy for the problem

in equation (4) consists of deciding for each m ≥ 0 whether an adjustment is made or not, and

if no adjustment is made which payment instrument (cash or credit) to use. In particular,

it does not impose any pattern of when adjustment takes place or when different payment

instruments are used.

We maintain the following assumptions for the model of this section.

Assumption 1. We let b ≥ 0, γ ≥ 0, π ≥ 0, p ≥ 0, and r + p + π > 0, e > 0, R > 0.

We briefly comment on the assumptions. If e = 0 the problem becomes uninteresting since

there is no expenditure to finance. The parameters b and γ are costs, and p a probability

rate, so they must be non-negative. The requirement that r + p + π > 0 and R > 0 are

important. For instance, if r + p + π = 0 there is no intertemporal incentives to use cash.
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While in this section we treat R and r, p, π as parameters that can be set independently, the

value of R and r + p+π are indeed related –for instance r +π should be the shadow nominal

interest rates. We return to this relationship in the next section.

3.1 Two candidate policies

It will turn out that the optimal policy of the problem depicted in equation (4) is one of two

types, depending on parameters. We refer to one of the policies as a cash-burning policy,

defined as follows:

Definition 1. We define a m∗-cash burning policy as a threshold m∗ ≥ 0 for which:

1. Credit is only used when m = 0, and cash is used for every m ∈ (0, m∗).

2. Cash is only adjusted when a free adjustment opportunity arrives.

3. Immediately after a cash adjustment, cash holdings m take the value m∗.

Note that the value of following a m∗-cash burning policy is the function V : [0, m∗] → R+

that satisfies:

(r + p)V (m) = mR + pV (m∗) − V ′(m)[πm + e] for all m ∈ (0 , m∗] and (5)

(r + p)V (0) = γe + pV (m∗) (6)

The first one is the standard Bellman equation, where we assume everything is paid in cash.

The second equation says that at m = 0 agents pay in credit and wait for a free withdrawal

opportunity.

For completeness we define an alternative policy, which we refer to as a modified Baumol-

Tobin policy.

Definition 2. We define a m∗-Baumol-Tobin policy as a threshold m∗ ≥ 0 for which:

1. Credit is never used.

2. Cash is adjusted when either a free adjustment opportunity arrives or when m = 0.

3. Immediately after a cash adjustment, cash holdings m take the value m∗.

We briefly comment on the differences between the two polices. There is a sense in which

in both policies cash burns in the agent’s hands, since in both cases it is used to pay, rather

than credit, as long as it is available (m > 0). But in the Baumol-Tobin case credit is never
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used thus the model is unable to speak to the evidence on cash-credit. Note that when a

m∗-Baumol-Tobin policy is followed, in the range of inaction (0, m∗] the o.d.e. in equation (5)

must still hold. However, under this policy the boundary condition at m = 0 is different, and

it is given by:

V (0) = b + V (m∗) (7)

For a cash burning policy to be optimal, i.e. to solve the problem in equation (4), one

needs to establish three things:

(i) It is optimal to pay with cash at m ∈ (0, m∗] and with credit at m = 0.

(ii) The size of the withdrawals m∗ is optimal.

(iii) At m = 0 it is optimal to wait for a free adjustment opportunity, instead of withdrawing.

Instead for a BT policy to be optimal, i.e. to solve the problem in equation (4), one needs

to establish three things:

(a) It is never optimal to pay with credit.

(b) The size of the withdrawals m∗ is optimal.

(c) At m = 0 it is optimal to pay b to withdraw.

3.2 Characterizing the candidate policies

We now present a few lemmas to characterize the best cash-burning policy as well as the best

BT-policy, without analyzing which of the two policies is better (this mirrors our approach

in Section 2), see Appendix A for the proofs. The lemmas will allow us to analyze the

choice of the optimal policy. The first lemma establishes the existence and uniqueness of

cash burning policies. Moreover, it also establishes that if such a policy is followed, the first

order conditions for the use of cash is verified, i.e. Item i is satisfied.

Lemma 1. For each m∗ > 0 there is a unique value function V for the cash burning policy:

V (m) =

(

pV (m∗) −
eR

r + p + π

)

1

r + p
+ m

R

r + p + π
+ A

(

1 +
π

e
m
)− r+p

π

(8)

for all m ∈ [0 , m∗], where

A =
e

r + p

[

γ +
R

r + p + π

]

. (9)
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The function V is strictly decreasing and convex in an interval [0, m̄] for some m̄ > 0. Thus

the first order conditions for the optimal use of cash are verified, i.e.

− γ − V ′(0) = 0 and − γ − V ′(m) < 0 for m ∈ (0 , m∗] . (10)

The next lemma characterizes the optimal cash target m∗ for a cash-burning policy. When

this value for the target m∗ is used the condition in Item ii is satisfied.

Lemma 2. Let V be the value of following a cash-burning policy. If m∗ is chosen optimally,

i.e. if

V ′(m∗) = 0 , (11)

holds, then m∗ is given by:

0 ≤
m∗

e
=

(

1 + (r + p + π) γ
R

)
π

π+r+p − 1

π
≤

γ

R
, (12)

Moreover m∗/e is increasing in π.

Inspection of equation (12) shows that the optimal cash replenishment level is increasing

in γ/R, i.e. the cost of credit relative to the opportunity cost of cash. The next lemma

characterizes the value of a Baumol-Tobin policy. In this case the value function and cash

target m∗ are constructed so that Item b is satisfied.

Lemma 3. For each m∗ > 0 there is a unique value function V for the Baumol-Tobin

policy. This has the same functional form as under a cash-burning policy except that now A

in equation (8) is given by:

A =
e

r + p

[

R
m∗

e
+ (r + p)b +

R

r + p + π

]

. (13)

The function V is strictly convex and decreasing in an interval [0, m̄] for some m̄ > 0.

Moreover, if m∗ is chosen optimally so that equation (11) holds, then m∗ solves

(

1 +
m∗

e
π

)1+(r+p)/π

=
m∗

e
(r + p + π) + 1 + (r + p)(r + p + π)

b

eR
. (14)

This lemma is straight from parts of Propositions 2 and Proposition 3 in Alvarez and

Lippi (2009) where there is no possibility of paying with credit. The next remark develops
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the expressions for the special case where π = 0, by using L’Hopital rule in all the relevant

formulas. These expressions are simpler, so we will focus on them.

Remark 1. If π = 0, then the optimal target m∗ for a cash-burning policy is given by:

m∗

e
=

1

r + p
log

(

1 +
γ(r + p)

R

)

≥ 0 . (15)

and the optimal target m∗ for a Baumol-Tobin policy cash-burning is given implicitly by:

exp

(

m∗

e
(r + p)

)

= 1 +
m∗

e
(r + p) + (r + p)2 b

eR
. (16)

The analysis of the expression for m∗ in equation (15) for a cash-burning policy shows

that m∗/e is decreasing in r + p and decreasing in R. Moreover m∗(r + p) is increasing in

r + p. A first order expansion of m∗/e on γ/R evaluated at (r + p) = 0 or at γ/R = 0, gives

m∗/e ≈ γ/R which is the expression for the deterministic steady state cash-credit model.

The elasticity of m∗/e with respect to R is

0 ≤ −
∂ log(m∗/e)

∂ log R
=

γ(r+p)
R

1 + γ(r+p)
R

/ log

(

1 +
γ(r + p)

R

)

≤ 1.

And so the elasticity is, in absolute value, a decreasing function of γ(r+p)
R

.

In the case of the BT policy, the optimal return point m∗ in equation (16) satisfies

1. m∗

e
is increasing in b

eR
, m∗

e
= 0 as b

eR
= 0 and m∗

e
→ ∞ as b

eR
→ ∞.

2. For small b
eR

, we can approximate m∗

e
by the the solution to the Baumol-Tobin model,

or
m∗

e
=

√

2
b

eR
+ o

(

√

b

eR

)

3. The interest rate elasticity of m∗/e is smaller than 1/2 and it is decreasing in (r+p)/R.

3.3 Characterizing the optimal cash-credit choice

The next proposition characterizes the optimal choice between the cash-burning and BT

policies. There is a threshold b for the fixed cost of adjustment b above which the cash-

burning policy is optimal and below which the Baumol-Tobin policy is optimal. When the
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cost exceeds the lower bound b, the condition in Item iii is verified, and when the cost is

below it, the condition in Item c is satisfied.

Proposition 2. A cash burning policy with m∗ given by equation (12) is optimal provided

that b ≥ b where the lower bound for the fixed cost of adjustment is given by

b =
e

r + p

[

γ − R
m∗

e

]

(17)

and m∗/e is given by equation (12). Instead if b ≤ b a Baumol-Tobin policy with m∗ given

by equation (14) is optimal.

Note that the results of this proposition for the case where b > b correspond to the

deterministic steady state case of Proposition 1 where both cash and credit are used and

where n = p. When b < b the optimal decision rule entails no use of credit. In this case the

problem is the one analyzed in Alvarez and Lippi (2009), and corresponds to the deterministic

steady state problem of Proposition 1 where credit is not used and n > p.

The next proposition analyzes how the threshold b changes as a function of the parameters.

Proposition 3. The function b ≥ 0 and it is homogenous of degree one in (γ, R). Moreover

∂b

∂γ
> 0 with lim

γ→0
b = 0 and lim

γ→∞
b = ∞ ,

∂b

∂R
< 0 with lim

R→0
b = ∞ and lim

R→∞
b = 0 ,

lim
r+p→0

b =
e R

π2

[(

1 +
γπ

R

)

log
(

1 +
γπ

R

)

−
γπ

R

]

=
γ2

2 R
e + π o

(

γ2

R

)

≥ 0 ,

lim
π→0

b =
eγ

r + p

[

1 −
log
(

1 + (r + p) γ
R

)

(r + p) γ
R

]

=
γ2

2 R
e + (r + p) o

(

γ2

R

)

≥ 0 ,

∂b

∂π
< 0 , lim

π→∞
b = 0 ,

∂b

∂(p + r)
< 0 , and lim

r+p→∞
b = 0 .

We use Proposition 3 to analyze the circumstances under which a policy of cash-burning

is optimal. The pattern of using cash to pay as long as it is available reflects that cash is

“burning” in the hands of the agent. Yet even though cash burns if b ≥ b, then the agent

finds it optimal to use credit until a free withdrawal opportunity arrives, replenishing her

cash balances at that point. The proposition shows that this strategy id optimal if the fixed

cost b of adjusting directly is high relative to the cost of using credit. An analogous condition

holds in the deterministic steady-state model. Specifically, b is increasing in the credit cost
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γ and decreasing in the opportunity cost of using cash R. In addition, by varying γ/R the

threshold b ranges from zero to infinity. Equations equation (18) and equation (18) reflect

this: as γ/R → 0 then the threshold b → 0 so that only cash will be used. If γ2/R is

small then b coincides with the one of the deterministic model. Finally, the threshold b is

decreasing in inflation: higher inflation increases the range of parameters for which the cash

burning policy is optimal.

We note that the threshold b and the cash-target level m∗ are both functions of the sum

p + r, instead of p and r separately. From the point of view of the agent, they both enter as

discount rates for the cost. Yet they have very different effects on other observables, as we

will see below. For instance, consider two situations where p + r is the same and where the

parameters are such that cash burning is optimal, i.e. b > b. Assume that in one case p = 0,

so that agents will never use cash in the invariant distribution; once they have depleted their

cash holdings they will never get another free opportunity to adjust. In contrast, for any

other choice of p which keeps p + r constant (and so b unchanged), agents will use cash in

the long run.

The threshold itself is decreasing in p + r. This is because the cost of paying with credit

is a completely static choice and so is independent of m, whereas the cost of paying with

cash depends on m. With a higher discount rate, the future cost of holding cash is small.

For instance, if p + r → ∞, then there is no cost of holding cash, and hence b ↓ 0. Thus

cash burning is optimal. Below we analyze a case where R and r, π, p are related, such as

when take the opportunity cost is R = r +π + p. In this case, given the results above, we see

that ∂b/∂(p + r) < 0, which confirms the intuition given by for the effect of the discounting

p + r. Finally, note that in the deterministic case of the previous section, since there is no

discounting, and since the free adjustment opportunities occur at fixed times, then b was not

a function of p. This is also consistent with the intuition given for the effect of r + p.

3.4 Some predictions of the model

Next we consider several statistics of interest generated by a household who follows the

optimal policy described above. We denote by s the cash share: the long run average fraction

of purchases paid with cash. We denote by M the quantity of money. This is the expected

value of real balances under the invariant distribution of real balances m implied by the

optimal decision rules. We let n be the expected number of withdrawals per unit of time.

We denote by W the expected size of withdrawals under the invariant distribution. Finally,

we let M be the expected value of cash at the time of a withdrawal.

Before analyzing the cash-burning policy we briefly review optimal cash management

statistics when b < b and hence credit is not used. This case was studied in Alvarez and
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Lippi (2009) and the reason for recalling it here is to compare it with the case that occurs

when b ≥ b. To simplify the expressions we consider the case where π = r = 0. The point

of including these expressions is to compare them with the case of b ≥ b given below in

Proposition 5.

Proposition 4. Let R > 0, p > 0, π = r = 0 and b < b. Then

n =
p

1 − e−m∗
p

e

> p ,
W

M
=

m∗

M
−

p

n
∈ (0, 2) ,

M

e
=

[

1

1 − e−
p

e
m∗

m∗

e
− 1/p

]

, and M/M =
p

n
.

where the optimal replenishment target m∗ was characterized in Lemma 3.

Next we consider several statistics of interest for a household who follows the cash burning

policy which is optimal when b > b, so that credit is used.

Proposition 5. Let r + p > 0, π = 0, R > 0. Assume that b ≥ b. Then

n = p , s = 1 −

(

1 +
γ(r + p)

R

)− p

r+p

,
M

e
=

m∗

e
−

s

p
, W =

e

p
s ,

thus, using equation (15), one obtains closed form expression for s, M , W and M . For r ↓ 0

these expressions are simple functions of γp/R:

s =
γp
R

1 + γp
R

,
M

e
=

1

p

[

log
(

1 +
γ p

R

)

− 1 +
(

1 +
γ p

R

)−1
]

and

W

M
=

1
(

1 + R
γ p

)

log
(

1 + γ p
R

)

− 1
and M/M = 1 .

The fact that the average cash at the time of withdrawal M equals the mean cash holdings

M is an immediate consequence of the fact that withdrawal times under the cash-burning pol-

icy are uncorrelated with money holdings (their arrival rate p is exogenous and independent

of m). Since a withdrawal is equally likely to happen with any money balance m ∈ (0, m∗),

then the two statistics are the same. This prediction of the model is in contrast with the

data where M < M , an issue that motivates the extension of Section 4.

When both cash and credit are used, there are a number of interesting similarities and

differences of the statistics in this proposition with those in the steady-state model analyzed

in Proposition 1. We discuss these now. As in other dynamic inventory models, the first

order expansion about the no-discounting case of many expressions coincides with those of

19



the deterministic steady state cash-credit model. The cash share in Proposition 5 for the

case of r = 0 can be written as

s = 1 −
(

1 +
γ p

R

)−1

≈
γ p

R
, with s → 1 as

pγ

R
→ ∞, and with s → 0 as

pγ

R
→ 0 ,

where ≈ denotes a first order expansion of s on θ ≡ γ p/R around 0. Thus the share of

expenditure made in cash is increasing in the “credit cost” γp: the product of the cost of

using credit per transaction and the rate of arrival of free opportunities to withdraw cash. It

is also decreasing in the opportunity cost of carrying cash, R. The elasticity of s with respect

to θ is 1/(1 + θ), which implies that the absolute value of the interest elasticity of s is given

by:

−
∂ log s

∂ log R
=

1

1 + γ p
R

= 1 − s ≡ 1 − cash share ,

which is increasing in R, decreasing in γp, and smaller than one. We use the expression for

the cash share to illustrate the tension on the model between the use of cash and credit and

the role of p. If b < b only cash is used, i.e. s = 1. If b > b both cash and credit are used.

Yet, if p tends to zero, then b is finite, so there are values for which b > b. For these values,

only credit is used, i.s. s = 0. Thus we find that the interesting case is the one where b > b

but yet p > 0, so that 0 < s < 1.

For r = 0 the scaled money demand Mp/e can be written as a function θ ≡ γp/R. The

elasticity of this function is:

0 ≤
∂ log Mp/e

∂ log θ
=

(

θ
1+θ

)2

log(1 + θ) − θ/(1 + θ)
≤ 2

and is decreasing in θ. Thus money demand is decreasing in the opportunity cost R, with an

interest rate elasticity increasing in R satisfying:

0 ≤ −
∂ log M/e

∂ log R
=

∂ log Mp/e

∂ log θ
≤ 2

For comparison the model with cash purchases only (c = e) summarized in Proposition 4,

which obtains if b < b, has an (absolute value) of the interest rate elasticity of money to

cash consumption, M/c, that is increasing in the level R, but bounded above by 1/2.7

This difference reflects the elasticity of the cash share s, which is between 0 and 1, and the

7So the elasticity is smaller or equal to the 1/2 implied by the Baumol-Tobin model.
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elasticity of the money demand relative to cash consumption M/c, also between 0 and 1:

0 ≤ −
∂ log M/c

∂ log R
=

γp/R

1 + γp/R

1

log (1 + γp/R)
≤ 1

Now we comment briefly on W/M . Letting r = 0 and b ≥ b, note that W/M is decreasing

in γp/R, ranging from W/M → 0 as (γ p)/R → ∞, to W/M → ∞ as (γ p)/R → 0.

One can see that W/M ≥ R/(γ p). Indeed a first order expansion of on γ around 0 gives

W/M ≈ R/(γ p), i.e. it approaches the lower bound. For comparisons in the model with

b < b we have that W/M ≤ 2.

4 An extension: random variation in fixed cost

The model of Section 3 is very stark in that credit is used at m = 0 provided that the fixed

transaction costs is sufficiently high (b > b) in which case we have that M = M and n = p.

Instead, if the transaction cost is sufficiently low ( b < b) then credit is never used, i.e. s = 1

and the model becomes a version of Baumol-Tobin. These predictions seem too stark against

the data, in particular there is substantive evidence based on micro data that the amount

of cash at the time of withdrawals is significantly smaller than the average cash balance, i.e.

M < M . We show in this section that allowing the fixed cost b to be random and persistent

delivers a significant improvement of the model’s predictions. The variation in b implies that

agents follow a cash-burning policy when they face a high withdrawal cost, while they follow

a Baumol-Tobin policy in the times when the value of b is above some critical threshold. The

analysis can equivalently be conducted assuming the cost of using credit is random.

In particular we assume that there is a Poisson process with constant intensity λ whose

occurrence indicates that a new value of b has been drawn. This Poisson process is inde-

pendent of the one for the arrival of the free adjustment opportunities. The new values for

the cost b̃ are drawn from the cumulative distribution function F : R → [0, 1]. Conditional

on a change in the value of the fixed cost, the new value b̃ is assumed to be independent of

the current value b. In this case the value function has two arguments, (m, b), so we write

it V : R
2
+ → R+. We denote by primes ′ the derivative of V with respect to m. The value

function solves the following functional equation:

0 = min

{

min
0≤c≤e

R m + γ[e − c] + p min
z≥0

[V (z, b) − V (m, b)] + λ

[
∫

V
(

m, b̃
)

dF
(

b̃
)

− V (m, b)

]

−V ′(m, b)(c + πm) − r V (m, b) , b + min
z≥0

V (z, b) − V (m, b)

}

∀ (m, b) ∈ R
2
+ (18)
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The interpretation of the terms in this functional equation is analogue to the one in equation (4):

the outer min operator compares the value of using credit with the value of paying the fixed

cost and replenishing cash balances. There are two differences. First, as mentioned above,

b is also part of the state. Second, in the first term there is an extra expression given by

the contribution to the expected change of the value function due to the change in the cost

from b to a value drawn from the distribution with c.d.f. F . We state without proof the

straightforward, yet useful result, that V must be weakly increasing in b. In particular:

Lemma 4. For all m ≥ 0, if b ≥ b̃ ≥ 0, then V (m, b) ≥ V
(

m, b̃
)

.

In what follows we proceed, based on the analysis of the special cases analyzed in the

previous section, by constructing a solution for a type of cash-burning policy which combines

the two cases analyzed above.

Definition 3. A threshold cash-burning policy is defined by a cost threshold b and a cash-

target function m∗. For all m > 0 and all b ≥ 0 agents use only cash. If m = 0 agents

withdraw cash when 0 ≤ b ≤ b, and they use credit when b > b. For all (m, b) cash balances

are set equal to m∗(b) every time that a free adjustment opportunity arrives. Additionally,

cash balances are set to m∗(b) if m = 0 and b ≤ b.

Hence b is the critical threshold so that at m = 0 the agent uses credit if b < b and

uses cash otherwise. We now turn to characterize the value function under a threshold

cash-burning policy.

Lemma 5. Let V be the value of an optimal threshold cash-burning policy. Define V ∗ as

V ∗(b) = min
z≥0

V (z, b) and V̄ ∗ =

∫ ∞

0

V ∗(b) dF (b) , (19)

for each b ≥ 0. The value function V satisfies the following:

V (m, b) =

(

pV̄ ∗ −
eR

r + p + π

)

1

r + p
+ m

R

r + p + π
+ Ā

(

1 +
π

e
m
)− r+p

π

+
p

r + λ + p

(

V ∗(b) − V̄ ∗
)

+ A(b)
(

1 +
π

e
m
)− r+p+λ

π

for all (m, b) ∈ R
2
+ , (20)

for a constant Ā ≥ 0 and a function A(b) : R+ → R which are the unique solution of two

equations, defined using the function V ∗ given in (19), the parameters (r, λ, p, π, R, γ, e), and

the function F (see Appendix B for details).

Lemma 5 yields a recursion from a function V ∗(b) to another implied V ∗(b). In particular,

given V ∗(b) one can define the corresponding value function V (m, b) using the expression in
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Lemma 5, and use it to construct the implied minimized function V ∗(b). The fixed point

of such mapping gives the solution for the value function of the best threshold cash-burning

policy. The last issue to be established is that the threshold cash burning policy is optimal.

We discuss this formally in Appendix B.2, where we provide conditions for the optimality of

using credit at m = 0 if b < b and the optimality of using cash when m > 0.

Using V̄ (0) =
∫∞

0
V (0, b) dF (b) to denote the expected value at m = 0, we have

V (0, b) =







b + V ∗(b) if b ≤ b

γe+pV ∗(b)+λV̄ (0)
r+p+λ

if b ≥ b
(21)

which gives the condition for the optimality of using cash vs credit at m = 0.

4.1 A quantitative assessment

We use the model with the random b in a calibration that illustrates how it can produce

cash management behavior featuring both cash and credit usage and where the amount of

cash the time of a withdrawal is smaller than the average cash holdings, i.e. M < M . As

mentioned, the latter feature is key in the data but was not produced by the model with a

constant cost of withdrawal studied in Section 3.

The relevant observable statistics that are used as benchmarks of our calibration are

taken from the household evidence collected in Alvarez and Lippi (2009) (for Italy) and

Alvarez and Lippi (2013) (for Italy and Austria). Table 1 in both of these papers shows

that for the households with an ATM card, i.e. the ones who have access to a cash vs

credit/debit choice, the share of cash expenditures s is in between 50 to 90 percent of total

(non-durable) expenditures and that the average currency holdings is about 10 to 17 days

of cash expenditures.8 Moreover, the data shows that the amount of cash at the time of

withdrawal relative to the average money balances M/M is between 0.3 and 0.4, that the

ratio of the average withdrawal to the average money balances is about W/M is in between

1.2 and 1.6 and that the households with ATM withdraw cash about 40 to 70 times per year,

i.e. n ≈ 60. The left panel of Table 1 summarizes the relevant range for these variables.

The right panel of Table 1 reports the comparable moments predicted by the 3 cash

management models described above. Column [1] uses the cash-only model described in

Proposition 4. This model corresponds to the best cash management strategy when the

withdrawal costs are low (b < b), so that credit is not used. As discussed in details in Alvarez

and Lippi (2009) this model has essentially 2 independent parameters, p and bp2

eR
, which are

8The use of debit payments is widespread in Europe. In Italy the vast majority of ATM cards also serve
as debit cards.
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Table 1: Selected moments on cash holding patterns : model vs data

Range in Data Model
[1] [2] [3]

cash-only cash-credit mixed
Average Currency M/c (10, 17) 10 10 10
Withdrawal size W/M (1.3, 1.6 ) 1.4 1.4 1.4
Cash at withdrawals M/M (0.3, 0.4) 0.4 1 0.5
Number of cash withdrawals n (40, 70) 26 18 26
Cash share of expenditures s (0.5, 0.9) 1 0.7 0.9

The table reports the unconditional sample means. Average currency is measured relative to cash expen-
ditures per day, c = se. The number of cash withdrawals is per year. The parameters for model [3] are:
p = 13, r = 0.02, R = 0.02, π = 0, γ = 0.0035, λ = 10. The low value of b = 0.005 or 0.5% percent of daily
consumption.

set to reproduce a mean level of cash holdings M/c = 10, where c = se per day so that M/c

amounts to 10 days of cash consumption of average holdings, and a ratio of M/W = 1.4.

The predictions for the other sample moments can be seen as an over-identifying test of the

model. The share of cash expenditure is equal to 1 in this model, clearly higher than in the

data where credit is also used.

The second model in column [2] is the cash-credit model described in Proposition 5. This

model corresponds to the best cash management strategy when the withdrawal costs are

sufficiently hight (b > b) so that credit is used. The model has only 2 independent parameters:

p and γp/R which are used to target the sample moments for M/c and M/W . Both cash and

credit are used in this specification (notice the cash share is 70% of purchases) although the

model unrealistically predicts a very high level of cash at the time of withdrawals, namely

M/M = 1, as stressed above.

The third model, summarized in column [3] is the one where the cost of withdrawal b is

random. We parametrize the model assuming that b can take either a low value (0.5% of

daily expenditures) or a high value (10% of daily expenditures) with equal probability: in

the former case the agent finds it optimal not to use credit when cash is exhausted (since

b < b), while when b is high the agent uses credit at m = 0 (since b > b) waiting for a free

withdrawal opportunity or a change in b. Intuitively, the behavior produced by this model

is close (though not identical, because of option value motives) to a weighted average of the

behavior of the cash-only and the cash-credit model characterized in columns [1] and [2].

The model parameters are taken from, or are close to, the structural estimates in Alvarez

and Lippi (2009): the number of free withdrawal per year is p = 13, the opportunity cost of

cash is R = 2% (this includes the nominal interest rate and the probability of cash theft, as
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discussed in Appendix C).

In spite of its simplicity all of the model’s predictions fall close within, or very close, to

the ranges that are observed empirically in the dataset from Austria and Italy (reported in

the first column of the table). The main point of this analysis is to illustrate the tractability

of the model and its potential for empirical analysis. The simulation fits reasonably well

4 of the 5 data moments. As we argues above Proposition 4 and Proposition 5 show that

the model is over-identified since the two underlying models have essentially 2 independent

(combination of) parameters each. The mixed model adds one parameters (the mixing be-

tween the 2 underlying models) so that it is also over-identified. Further extensions could be

introduced to improve e.g. the fit of the number of cash transactions per year: for instance

we could introduce unexpected large cash-purchases, as in Alvarez and Lippi (2013), which

may increase the number of transactions without first-order effects on the other steady state

statistics. We leave this exploration for future work.

5 Conclusions

We presented a model that combines the ingredients of the dynamic cash inventory problem

with the ingredients of the cash-credit choice. The key novelty compared to the previous

models of the cash-credit choice is the assumption that the choice is sequential, so that the

agent chooses whether to use cash or credit purchase after purchase, a decision which turns

out to depend on the amount of cash at hand. We find this feature interesting because it

makes contact with a body of recent evidence that the likelihood of using cash increases

with the level of cash holdings, as documented in e.g. Arango, Huynh, and Sabetti (2011);

Arango, Bouhdaoui, and Bounie (2012) and Huynh, Schmidt-Dengler, and Stix (2014) using

diary data for Canada and Austria. Our model abstracts from aspects of the cash credit

choice that have been emphasized before: the size of purchases (e.g. Whitesell (1989)) and

the acceptability of credit at the points of sale (as in e.g. Huynh, Schmidt-Dengler, and

Stix (2014)). Future models might benefit by unifying those aspects into a single model and

quantify the relative importance of each of these frictions by using the relevant micro data.
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A Proofs

Proof. (of Lemma 1.) Inserting equation (8) for an arbitrary A one readily verifies that it

solves the o.d.e. in equation (5) for m ∈ (0, m∗). The value of A is obtained by imposing

equation (6). We can take m̄ to be the minimum between m∗ and the point where V ′ = 0.

The existence of the initial decreasing and convex segment follows by inspection. V ′(0) = −γ

is obtained by differentiating equation (8) using equation (9) for A and evaluating at m = 0.

Using the convexity and the value of V ′(0) the f.o.c. for c are directly verified for all m ∈

[0, m∗]. �

Proof. (of Lemma 2.) Solving for V ′(m∗) = 0 using equation (8) and equation (9). That

m∗/e ≤ γ/R is equivalent to:

(

1 + (r + p + π)
γ

R

)
1

π+r+p

≤
(

1 + π
γ

R

)
1

π

which is equivalent to (1 + x)1/x is decreasing in x for x ≥ 0. To simplify the notation of the

derivative, consider without loss of generality that r = 0 and that R = 1 so that:

∂m∗/e

∂π
=

(1 + (p + π)γ)
π

π+p

[

πp
(p+π)2

log (1 + (p + π)γ) + π
π+p

γπ
1+(p+π)γ

− 1
]

+ 1

π2

We first show that this derivative is strictly positive at π = 0 provided that p + r > 0 and

γ/R > 0. For π = 0 we can write:

(1 + (p + π)γ)
π

π+p =

1 +
log (1 + γp)

p
π +

1

2

[

(

log (1 + γp)

p

)2

−
2 log (1 + γp)

p2
+ 2

γ

p(1 + pγ)

]

π2 + o(π2)
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and

πp

(p + π)2
log (1 + (p + π)γ) =

π

p
log (1 + pγ) + π2

(

γ

p (1 + γp)
−

2

p2
log (1 + pγ)

)

Replacing this into the expression for ∂(m∗/e)/∂π and taking the limit as π ↓ 0 we get:

∂m∗/e

∂π
=

(

γ

p (1 + γp)
−

2

p2
log (1 + pγ)

)

1

p

γ

1 + pγ
−

1

2

[

(

log (1 + γp)

p

)2

−
2 log (1 + γp)

p2
+ 2

γ

p(1 + pγ)

]

+

(

log (1 + γp)

p

)2

=
1

p2

[

pγ

(1 + γp)
− log (1 + γp) +

1

2
(log (1 + γp))2

]

≥ 0 ,

so this derivative is positive when π > 0. To finish the proof we let f(π, γ, p) ≡ ∂(m∗/e)/∂π.

Note that f(π, γ, p) → 0 as γ → 0 and for π > 0. Since f(π, γ, p) is increasing in γ, so that

f(π, γ, p) > 0 for p > 0, π > 0, and γ > 0. Thus we have that, in general, ∂(m∗/e)/∂π > 0

for p + r > 0, π > 0, and γ/R > 0. �

Proof. (of Proposition 2.) The value of b equates V (0) + b = V (m∗) so the agent with

m = 0 is indifferent between waiting for a free withdrawal while paying with credit and

incurring the fixed cost and adjusting. It remains to show that when b ≤ b it is optimal to

use cash. For this take the limit as m ↓ 0 on the o.d.e. given by equation (5) obtaining:

−V ′(0)e = (r + p)V (0) − pV (m∗) where V and m∗ are the value function and target cash

form the Baumol-Tobin policy. Using the boundary condition equation (7), the definition of

b and the boundary condition for the cash-burning policy equation (6), we get:

V (0) = V (m∗) + b ≤
γe + pV (m∗)

r + p

Thus

−V ′(0)e = (r + p)V (0) − pV (m∗) ≤ (r + p)
γe + pV (m∗)

r + p
− pV (m∗) = γe ,

and thus −V ′(0) ≤ γ. Hence, using the convexity of V established in Lemma 3, we have:

−V ′(m) − γ ≤ 0 for all m ∈ [0 , m∗]

and hence it is optimal to use cash for all m ∈ [0 , m∗]. �

Proof. (of Proposition 3) Note that b ≥ 0 is equivalent to m∗/e ≤ γ/R. The homogeneity
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of degree one w.r.t. (γ, R) follows from the homogeneity of degree one of the expression for b

and the homogeneity of degree zero of m∗/e. The rest of the expressions follow directly from

computations, and using L’Hopital on the relevant places. �

Proof. (of Proposition 5). That n = p is an immediate implication of the cash-burning

policy. Now we derive the expression for s. Since agents use credit only when they ran out

of cash and until they get a free withdrawal opportunity, we characterize the average value

of the cash share by computing two expected times. One is the expected time that an agent

that has just hit m = 0 will keep zero cash, which is simply 1/p. The other, is the expected

time that an agent that has just hit cash balances m∗ will take to first hit cash balances

m = 0. We denote this quantity as τ(m∗). For the case of zero inflation π = 0, which we

focus throughout, this equals

pτ(m) = 1 − τ ′(m)e + pτ(m∗), and τ(0) = 0,

which has solution: τ(m) = 1
p
exp

(

p m∗

e

) (

1 − exp
(

−p m
e

))

. Evaluated at m∗:

τ(m∗) =
1

p

(

exp

(

p
m∗

e

)

− 1

)

,

The expected time τ(m∗) is increasing in m∗/e and in p. This leads to:

s ≡
τ(m∗)

1/p + τ(m∗)
= 1 −

1

exp (p m∗

e
)

.

Replacing the expression for m∗ we have:

s = 1 −

(

1 +
γ(r + p)

R

)− p

r+p

∈ (0, 1) ,

Now we turn to the average withdrawal size as W . To write an expression for W we split

the withdrawals between those occurring when m = 0, which happens a fraction (1 − s) of

the times, and those occurring when m = 0, which happens a fraction s of the time. This

gives

W = (1 − s) · m∗ + s

∫ m∗

0

(m∗ − m)h(m)dm ,

where h(·) is the density of the invariant distribution of cash holdings conditional on m > 0,

which satisfies

h(m) = h′(m)
e

p
, 1 =

∫ m∗

0

h(m)dm .
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W is obtained from the accounting identity Wn = c with n = p and c = s e:

W =
e

p
s =

e

p

(

1 −

(

1 +
γ(r + p)

R

)− p

r+p

)

The average cash holdings are defined as:

M = (1 − s) · 0 + s

∫ m∗

0

mh(m)dm

The formula for M takes into account that the distribution of cash holdings has a mass point

at m = 0 of size (1 − s). Combining the expression for M with the expression for W gives

M = m∗ − W , which replacing the expressions for m∗ and W yields the following money

demand:

M

e
=

m∗

e
−

s

p
=

1

r + p
log

(

1 +
γ(r + p)

R

)

−
1

p

(

1 −

(

1 +
γ(r + p)

R

)− p

r+p

)

When r → 0 the expression simplifies to:

M

e
=

1

p

[

log
(

1 +
γ p

R

)

− 1 +
(

1 +
γ p

R

)−1
]

The ratio W/M equals s/(pm∗

e
− s), which in terms of parameters gives:

W

M
=





p

p + r
log

(

1 +
γ(r + p)

R

)

(

1 −

(

1 +
γ(r + p)

R

)− p

r+p

)−1

− 1





−1

.

Also as r → 0, the expression simplifies further to

W

M
=

1
(

1 + R
γ p

)

log
(

1 + γ p
R

)

− 1
,

The following two identities hold regardless of the average cash share s, and including the

extreme cases)

W + M = m∗ and M =
p

n
M ,

but that since n = p then M = M .

�

Proof. (of Proposition 6.) To show the equivalence we characterize the value function
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for the total and shadow cost. Once this is done, the proof follows immediately by using

equation (6).

Characterization of Total Cost. The first order condition with respect to c gives

− (1 + γ) − G′(m) ≤ 0 if c = e ,−(1 + γ) − G′(m) = 0 if 0 < c < e and

−(1 + γ) − G′(m) ≥ 0 if c = 0 (22)

Under a cash-burning policy there is threshold m∗, the value of cash that the agent chooses

after a contact with a financial intermediary (the optimal “replenishment”). The best re-

plenishment level for the agent, m = m∗, solves

m∗ = arg min
z≥0

z + G (z) . (23)

Under a cash-burning policy and using the value of the target m∗ we can rewrite the

bellman equation as

rG (m) = G′ (m) (−e − πm) + p1 [m∗ − m + G (m∗) − G (m)] + (24)

+ p2 [b + m∗ + G (m∗) − G (m)] .

In a cash-burning policy the boundary condition when m = 0 is that the agent will use credit

until a withdrawal occurs, either because of a free opportunity or because of a theft, so that

rG(0) = e(1 + γ) + (p1 + p2)(m
∗ + G (m∗) − G (0)) + p2 b

Combining this boundary condition with (24) we have:

G (m) =











e(1 + γ) + p2b + m∗ + (p1 + p2) (m∗ + G (m∗))

r + p1 + p2
if m = 0

−G′ (m) (e + πm) + (p1 + p2) [m∗ + G (m∗)] + p2b − p1m

r + p1 + p2
if m ∈ (0, m∗)

A cash-burning policy is optimal if the agent prefers not to pay the cost b and adjust money

balances in the relevant range:

m + G (m) ≤ b + m∗ + G (m∗) for m ∈ [0, m∗] .
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Instead following a Baumol-Tobin policy the value function satisfies:

G (m) =







b + m∗ + G (m∗) if m = 0
−G′ (m) (e + πm) + (p1 + p2) [m∗ + G (m∗)] + p2b − p1m

r + p1 + p2
if m ∈ (0, m∗)

(25)

with boundary:

b + m∗ + G (m∗) ≤
e(1 + γ) + p2b + m∗ + (p1 + p2) (m∗ + G (m∗))

r + p1 + p2
(26)

Summarizing, a m∗ cash-burning policy is optimal if and only if G and m∗ satisfy

equation (A) and its first order condition in equation (22) for all m ∈ [0, m∗], the target

m∗ satisfies equation (23), and the boundary condition equation (A) is satisfied. A m∗

Baumol-Tobin policy is optimal if and only if G and m∗ satisfy equation (25) and its first

order condition in equation (22) for all m ∈ [0, m∗], the target m∗ satisfies equation (23), and

the boundary condition equation (26) is satisfied.

Characterization of Shadow Cost. The derivation of the Bellman equation follows by

the same logic used to derive equation (24). As in problem (37) we consider a cash-burning

policy where the agents uses no credit as long as cash is available, i.e. that c(t) = e as long

as m(t) > 0, and to use credit when m = 0 until a withdrawal opportunity arises. This gives

the following necessary and sufficient first order condition for the choice of c:

− γ − V ′(m) ≤ 0 if c = e ,−γ − V ′(m) = 0 if 0 < c < e and

−(1 + γ) − V ′(m) ≥ 0 if c = 0 (27)

Denoting by V ′ (m) the derivative of V (m) with respect to m the Bellman equation for m > 0

satisfies

rV (m) = Rm + p min
z≥0

(V (z) − V (m)) + V ′ (m) (−e − mπ) .

Upon being matched with a financial intermediary the agent chooses the optimal adjustment

setting m = m∗, or

V ∗ ≡ V (m∗) = min
z≥0

V (z) . (28)

At m = 0 the agent uses credit and waits for a free withdrawal to arrive i.e.

rV (0) = γe + p (V (m∗) − V (0))
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Combining these equations we have:

V (m) =











γe + pV ∗

r + p
if m = 0

Rm + pV ∗ − V ′ (m) (e + mπ)

r + p
if m ∈ (0, m∗)

(29)

To ensure that it is optimal not to pay the cost and contact the intermediary in the relevant

range we require:

V (m) ≤ V ∗ + b for m ∈ [0, m∗] . (30)

Instead, if a Baumol Tobin policy is optimal, we have:

V (m) =







b + V ∗ if m = 0
Rm + pV ∗ − V ′ (m) (e + mπ)

r + p
if m ∈ (0, m∗)

(31)

with

(r + p)(V ∗ + b) ≤ γ + pV ∗ . (32)

Summarizing, a m∗ cash-burning policy is optimal for the shadow cost problem with if

and only if V and m∗ satisfy equation (29) and its first order condition in equation (27) for all

m ∈ [0, m∗], the target m∗ satisfies equation (28), and the boundary condition equation (30)

is satisfied. A m∗ Baumol-Tobin policy is optimal for the shadow cost problem with if and

only if V and m∗ satisfy equation (31) and its first order condition in equation (27) for all

m ∈ [0, m∗], the target m∗ satisfies equation (28), and the boundary condition equation (32)

is satisfied.

�

B Threshold cash-burning policy: proofs.

Proof. (of Lemma 5) The Bellman equation following a threshold cash-burning policy is:

(r + p + λ) V (m, b) = m R + pV ∗(b) + λ V̄ (m) − [e + πm] V ′(m, b) for all m ≥ 0

V̄ (m) =

∫ ∞

0

V (m, b) dF (b) (33)
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By integrating V w.r.t. b in equation (B) the function V̄ solves the following ode on m:

(r + p) V̄ (m) = m R + pV̄ ∗ − [e + πm] V̄ ′(m) for all m ≥ 0 (34)

Note that the o.d.e. (34) does not depend on λ and has the same solution as the model with

no variation on b for an arbitrary constant Ā given in equation (8) in Lemma 1. So we have:

V̄ (m) =

(

pV̄ ∗ −
eR

r + p + π

)

1

r + p
+ m

R

r + p + π
+ Ā

(

1 +
π

e
m
)− r+p

π

The function

Vp(m, b) ≡ V̄ (m) + p(V ∗(b) − V̄ ∗)/(r + λ + p)

is a particular solution of the o.d.e. in equation (B). Note that it depends on two con-

stants (Ā, V̄ ∗) as well as the function V ∗(b). We also have that Vh(m, b) is a solution of the

homogenous equation:

Vh(m, b) = A(b)
(

1 +
π

e
m
)− r+p+λ

π

where we let A be a function of b. Note that we have for all m ≥ 0, integrating Vp(m, b) +

Vh(m, b) with respect to F we must obtain V̄ (m). So

V̄ (m) = V̄ (m) +
p

r + λ + p

∫

(V ∗(b) − V̄ ∗)dF (b) +
(

1 +
π

e
m
)− r+p+λ

π

∫

A(b) dF (b)

and thus, using the definition of V̄ ∗ we have that A must satisfy:

∫

A(b) dF (b) = 0 .

Summarizing, the solution of equation (B) is given by V (m, b) = Vp(m, b) + Vh(m, b), which

depend on the functions V ∗(b), A(b) and the constant Ā and V̄ ∗. We then have:

V (m, b) =

(

pV̄ ∗ −
eR

r + p + π

)

1

r + p
+ m

R

r + p + π
+ Ā

(

1 +
π

e
m
)− r+p

π

+
p

r + λ + p

(

V ∗(b) − V̄ ∗
)

+ A(b)
(

1 +
π

e
m
)− r+p+λ

π

Now we turn to the behavior at m = 0. Note from equation (21) that at b = b we have:

(r + p + λ) b = γe − (λ + r)V ∗ (b) + λV̄ (0) .
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Since V ∗ is a (weakly) increasing function of b, then there exist a unique solution to b,

although it may be 0 or +∞. We can restate these properties using e form of the value

function derived above:

A(b) ≥ V ∗(b)

(

1 −
p

p + r + λ

)

+ b −
p λ V̄ ∗

(p + r + λ)(r + p)
+

e R

(r + p + λ)(r + p)
− Ā

with = for b ≤ b . Also, using that V (0, b) = V̄ (0) + p/(p + r + λ)(V ∗(b) − V̄ ∗),

A(b) ≥
γe

p + r + λ
−

(

1 −
λ

p + r + λ

)

V̄ (0) +
p V̄ ∗

(p + r + λ)

with equality for b ≥ b . Note that for b ≥ b, the function A(b) does not depend on b. We

can also write this condition, by using the form of V̄ as:

A(b) ≥
γe

p + r + λ
−

p + r

r + p + λ

[(

pV̄ ∗ −
eR

r + p + π

)

1

r + p
+ Ā

]

+
p V̄ ∗

p + r + λ

=
γe

p + r + λ
+

eR

(r + p + π)(r + p + λ)
−

p + r

r + p + λ
Ā

with equality for b ≥ b. Equating the expressions for A(b) at b = b we have:

V ∗(b)(r + λ) + b (p + r + λ) −
p λ V̄ ∗

(r + p)
+

e R

(r + p)
= γe +

eR

(r + p + π)
+ λ Ā (35)

Using the form of A(b) and that it integrates to zero, we obtain one more equation:

0 =

∫ b

0

[

V ∗(b)
r + λ

p + r + λ
+ b

]

dF (b) + F (b)

[

−
p λ V̄ ∗

(p + r + λ)(r + p)
+

e R

(r + p + λ)(r + p)
− Ā

]

+ (1 − F (b))

[

γe

p + r + λ
+

eR

(r + p + π)(r + p + λ)
−

p + r

r + p + λ
Ā

]

(36)

Note that given the function V ∗ we can regard equation (35) and equation (36) as a system

of two equations in two unknowns (Ā, b). We can write equation (36) as:

(p + r)Ā =

∫ b

0

[V ∗(b)(r + λ) + b(p + r + λ)] dF (b) + F (b)

[

−
p λ V̄ ∗

(r + p)
+

e R

(r + p)
− λĀ

]

+ (1 − F (b))

[

γe +
eR

(r + p + π)

]
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and replacing λĀ from equation (35) we write an equation for Ā:

(p + r)Ā =

∫ b

0

[V ∗(b)(r + λ) + b(p + r + λ)] dF (b) − F (b) [V ∗(b)(r + λ) + b(p + r + λ)]

+ γe +
eR

(r + p + π)

or the following equation which gives a unique solution for b :

(p + r)

[

V ∗(b)(r + λ) + b (p + r + λ) −
p λ V̄ ∗

(r + p)
+

e R

(r + p)
− γe −

eR

(r + p + π)

]

=λ

∫ b

0

[V ∗(b)(r + λ) + b(p + r + λ)] dF (b) − λF (b) [V ∗(b)(r + λ) + b(p + r + λ)]

+ λγe + λ
eR

(r + p + π)

�

B.1 Analytic expressions for Ā, b and A(·).

The threshold b is the unique solution of:

(p + r) [V ∗(b)(r + λ) + b (p + r + λ)] − p λ V̄ ∗ + e R − (p + r + λ)γe − (p + r + λ)
eR

(r + p + π)

= λ

∫ b

0

[V ∗(b)(r + λ) + b(p + r + λ)] dF (b) − λF (b) [V ∗(b)(r + λ) + b(p + r + λ)]

The constant A is defined using the threshold b by

Ā = V ∗(b)

(

r + λ

λ

)

+ b

(

p + r + λ

λ

)

−
p V̄ ∗

(r + p)
+

e R

λ(r + p)
−

γe

λ
−

eR

λ(r + p + π)

The function A is defined using Ā and the threshold b by:

A(b) =
γe

p + r + λ
−

p + r

r + p + λ

[(

pV̄ ∗ −
eR

r + p + π

)

1

r + p
+ Ā

]

+
p V̄ ∗

p + r + λ
, if b ≥ b ,

A(b) = V ∗(b)
r + λ

p + r + λ
+ b −

p λ V̄ ∗

(p + r + λ)(r + p)
+

e R

(r + p + λ)(r + p)
− Ā , if b ≤ b .
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B.2 On the optimality of using cash when m > 0

Next we show that under the proposed policy we have the following property for the derivative

of V at m = 0.

V ′(0, b) = −γ if b ≥ b , V ′(0, b) ≥ −γ if b ≤ b

We use this property to establish the optimality of using cash for m > 0 and credit at m = 0

and b ≥ b. To see why this property has to hold take the limit as m ↓ 0 on the ode given by

(B) together with equation (21) to obtain:

e V ′(0, b) =







pV ∗(b) + λ V̄ (0) − (r + p + λ) V (0, b) = −γe if b ≥ b

pV ∗(b) + λ V̄ (0) − (r + p + λ) V (0, b) ≥ −γe if b ≤ b .

It remains to be shown that it is optimal to use cash for m > 0. A sufficient condition for

this is that V (·, b) has a convex and decreasing segment starting at m = 0.

C A foundation for the inventory problem

In this appendix we formulate a more basic problem which gives rise to the inventory problem

of Section 3. This allows to better interpret the parameters of the model, especially p and

R, as well as to clarify why cash burns in the model of Section 3. Recall that the model of

that section assumes that households that hold cash balances face an opportunity cost R per

unit of time.

As in the previous sections we assume that the agent has a constant consumption flow

equal to e > 0 per unit of time. This consumption expenditure can be paid for using a cash

flow c or a credit (or debit) card. Differently from the previous sections, we allow two sources

or randomness, each described by an independent Poisson process with intensities p1 and p2.

The first describes the arrivals of “free adjustment opportunities” for cash balances. The

second describes the arrivals of times where the agent’s wallet is stolen, so that neither her

cash balances nor her credit-debit can be used to purchase consumption. As in the previous

section we assume that a fixed cost b is paid for each adjustment unless it happens at the

time of a free adjustment opportunity. We assume that in the event in which the agent cash

is stolen, it must necessarily pay b, at which time it can adjust it cash with no cost.
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The problem of the agent is:

G (m) = min
{m(t),c(t),τj}

E0

{

∞
∑

j=0

exp (−r τj)
[

Iτj
b +

(

m
(

τ+
j

)

− m
(

τ−
j

))]

+

∫ ∞

0

exp (−r t) (e − c(t))(1 + γ)dt

}

(37)

subject to dm = −(c + πm)dt − m dN2, where m (t) ≥ 0, where N2 is the Poisson counter

of times where the cash was lost or stolen up to t, and where m (0) = m is given. In this

equation τj denote the stopping times at which an adjustment of m takes place (a cash

withdrawal), c(t) ∈ [0, e] denotes the fraction of purchases made in cash, and 1 + γ the cost

of buying one unit of goods using credit. The indicator Iτj
is zero −so the cost is not paid− if

the adjustment occurs upon a free opportunity, otherwise it is one. The expectation is taken

with respect to the two Poisson processes. The parameters of this problem are r, π, p1, p2, b, γ

and e. Importantly, R is not a parameter of this problem.

Note the differences between this problem and the one analyzed in the previous section.

In this problem we write explicitly the cost incurred by the agent, i.e. the amount withdrawn

at each adjustment and the fixed costs. Instead in the problem of Section 3 we assume that

the agent has an opportunity cost R for each cash holdings, and at the time of a withdrawal

we only include explicitly the fixed cost paid.

C.1 Optimal policy

We now write the Bellman equation and characterize the optimal policy. We will show that,

provided that b is above some critical value, the optimal policy involves using no credit as

long as a positive amount of cash is held, namely that c(t) = e if m > 0, and that credit

is used only once m = 0, in which case c(t) = 0. Thus the agent follows a cash-burning

policy. Assuming that for m ∈ [0, m∗] the value function G is differentiable it must solve the

following functional equation:

0 = min

{

min
0≤c≤e

(1 + γ)[e − c] + p1 min
z≥0

[z − m + G(z) − G(m)]

+p2 min
z≥0

[b + z + G(z) − G(m)] − G′(m)(c + πm) − r G(m) ,

b + min
z≥0

[z − m + G(z) − G(m)]

}

for all m ≥ 0 .

This equation accounts for the different choices the agent can make about using cash vs

credit and deciding whether to replenish cash balances. In particular, the outer min operator
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compares the value of paying the fixed cost b to replenish cash balances (the last line) versus

not doing it (the first two lines). The equation also considers the optimal choice of z, i.e.

the replenishment level to choose conditional on adjusting, as well as the choice on c about

whether to use cash or credit.

C.2 An equivalent “shadow-cost” representation

We now define a related problem that is closer to the standard inventory theoretical problem

where the agent minimizes the shadow cost, as we used in the previous section.

V (m) = min
{m(t),c(t),τj}

E0

{

∞
∑

j=0

exp (−r τj)

[

Iτj
b +

∫ τj+1−τj

0

exp (−r t) R m (t + τj) dt

]

+

∫ ∞

0

exp (−rt)(e − c(t))γ dt

}

(38)

subject to dm = −(c + πm)dt, m (t) ≥ 0, where τj denote the stopping times at which an

adjustment (jump) of m takes place, and m (0) = m is given. The indicator Iτj
equals zero

if the adjustment takes place at the time of a free adjustment, otherwise it is one. In this

formulation R is the opportunity cost of holding cash and there is only one Poisson process

with intensity p describing the arrival of a free opportunity to adjust. The parameters of the

problem are r, R, π, p, b, γ and e. Note the presence of R as well as the fact that there is only

one Poisson process.

We are now ready to show conditions under which (37) and (38) are equivalent and to

characterize the solution.

Proposition 6. Either a cash-burning or Baumol-Tobin policy with cash target m∗ is

optimal for the shadow cost problem (38) defined by parameters (e, r, π, b, p, R) if and only if

it is optimal for the total cost problem (37) defined by parameters (e, r, π, b, p1, p2) with the

same cash-target value m∗, provided that R = r +π + p2 and that p = p1 + p2. Moreover the

functions G (·) and V (·) satisfy

G (m) = V (m) − m + e/r + p2b/r

for all m ≥ 0.

Few remarks are in order. First, note that the parameters (r, π, b, e) are common across

the two problems. Second, the value of R = r + π + p2 has a natural interpretation as an

opportunity cost, it is the sum of the (implied) nominal interest rate and the probability (per

unit of time) of losing all the cash. Third, the relation between the value functions is very
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natural: the total cost includes the present discounted value of the expenditure e/r, which

equals all the future withdrawals that have to be made, net of the original cash at hand. The

fact that cash is not used immediately is accounted for the opportunity cost R = π + r + p2.

An extra adjustment is the inclusion of the cost that must be paid when the cash is lost,

the term bp2/r. Fourth, the importance of this result for our purposes is that the optimality

of cash-burning does not follow from an arbitrary assumption on the opportunity cost of

holding cash. Indeed, it makes clear that when π + r + p = 0, then it must be the case that

R = 0, and hence cash does not burn.
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