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1 Introduction

In 2006, the U.S. added a new entitlement to the Medicare program, Part D, which offered

prescription drug coverage to enrollees on top of the original entitlements of hospital (Part

A) and physician/outpatient services (Part B). Part D, which was the largest benefit change

to Medicare since its introduction in 1966, has proven very popular with Medicare enrollees.1

Despite its popularity, the program nonetheless has its critics. Perhaps the biggest criticism of

Part D is its nonlinear price schedule. Enrollees with a standard Part D benefit faced modest

out-of-pocket expenditures in the initial coverage region until their accrued total year-to-date

drug spending placed them in the coverage gap—also called the “doughnut hole.” Once in

the doughnut hole, the enrollee paid the full price of all drugs until reaching the catastrophic

region. As shown in Figure 1, in 2008, the year of our data, the gap began at $2,510 in total

drug spending and did not end until $4,050 in out-of-pocket expenditures, which corresponds

to a mean of $5,932.50 in total drug spending.2

With a nonlinear price schedule, a rational dynamically-optimizing enrollee must forecast

her future expenditures when making prescription purchase decisions. For instance, if she is

currently in the initial coverage region but forecasts that she will end the year in the doughnut

hole, then she would want to account for the higher future price, which would likely make her

choose cheaper or fewer drugs than otherwise. If enrollees do not act as dynamic optimizers

in the presence of nonlinear insurance contracts, such contracts can create a welfare loss

from “behavioral hazard,” defined as sub-optimal behavior resulting from mistakes or non-

neoclassical biases (Baicker et al., 2012).

Understanding the importance of behavioral hazard in Part D is important because some

studies find that Part D enrollees do not act fully rationally in their choice of Part D health

plans (Abaluck and Gruber, 2011, 2013; Ho et al., 2014; Heiss et al., 2010; Schroeder et al.,

1The program enrolled over 38 million (or 68%) of Medicare beneficiaries in 2013 (Medpac, 2014). Evidence
indicates that Part D lowered Medicare beneficiaries’ out-of-pocket costs while increasing prescription drug
consumption (Yin et al., 2008; Zhang et al., 2009; Lichtenberg and Sun, 2007; Ketcham and Simon, 2008).

2The mean coinsurance rates are 25% in the initial coverage region and 2% in the catastrophic region.
The 25% rate implies that the initial coverage region has mean out-of-pocket spending of $627.50. Thus, the
coverage gap ends after the initial coverage region total spending of $2,510 plus a mean of $3,422.50 (=$4,050
− $627.50) in further out-of-pocket/total spending, for a combined total of $5,932.50 in mean spending.
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Figure 1: Coverage by region in 2008 with standard Medicare Part D plans
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2014),3 while other studies find that enrollees are, at least in part, rational in their Part D

plan choice (Ketcham et al., 2012). Moreover, although the doughnut hole is specific to Part

D, most health insurance plans have nonlinear aspects, such as out-of-pocket maxima and

deductibles, implying that behavioral hazard is potentially important in many healthcare

contexts.4 Finally, nonlinear contracts such as high-deductible health plans are likely to

increase in the U.S. and other countries as a way to contain increasing costs.

This paper has two goals. The first is to test whether the behavior of Part D enrollees in

their prescription drug purchases meaningfully deviates from the predictions of a benchmark

model defined by neoclassical preferences and a discount factor close to 1 at the annual

level. We develop tests that avoid several selection issues that often make such inference

challenging. The second is to identify the sources and magnitudes of any behavioral hazard

and how they affect counterfactual policy outcomes.

We proceed by constructing two behavioral dynamic models of drug purchases: quasi-

3Also consistent with behavioral hazard, critics of Part D point to the possibility that the doughnut hole
may lead to adverse health consequences (Liu et al., 2011).

4This point that has been recognized since at least the RAND Health Insurance Experiment, which found
that utilization increased once enrollees hit their out-of-pocket maxima (Newhouse, 1993).
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hyperbolic discounting (Laibson, 1997; Phelps and Pollak, 1968; Strotz, 1956) and price

salience (Chetty et al., 2009; Bordalo et al., 2012). The benchmark model is a limiting case

for both models. For both models, we derive and/or compute the implications for drug

purchases in the face of nonlinear insurance contracts. We use the implications of these

models and a discontinuity design to test for deviations from the benchmark model and

provide evidence that enrollees’ drug consumption behavior deviates from its predictions but

can be explained by behavioral models. We then structurally estimate the parameters of

both behavioral models. Using the estimated structural model, we obtain inference on which

behavioral model can best explain purchase patterns, the importance of behavioral hazard,

and the impact of policies such as eliminating the coverage gap.

We believe that our tests of the benchmark model and estimation framework may be

useful more broadly. In particular, there has been substantial recent interest in understanding

the implications of nonlinear pricing in a variety of sectors, with many papers rejecting the

predictions of the benchmark model.5 We contribute to this literature by developing new tests

of the benchmark model—which are not vulnerable to many important selection issues—and

a framework to structurally estimate both price salience and quasi-hyperbolic discounting.

Both of our behavioral models (as well as the limiting benchmark model) consider a Part

D enrollee’s drug purchase decisions within a calendar year. Each week, the enrollee faces a

distribution of possible health shocks and, for each shock, chooses one of a number of drug

treatments, or no treatment. Future weeks are discounted with the weekly discount factor

δ. The drug choice decision is dynamic because purchasing a drug in the initial coverage

region moves the enrollee closer to the coverage gap. With our first behavioral model, quasi-

hyperbolic discounting, the enrollee or her physician discounts future health expenditures

in the current week with the factor β, in one week with the factor βδ, in two weeks with

the factor βδ2, etc. A quasi-hyperbolic discounter with β < 1 is myopic: she would make

different tradeoffs at time t between utility at times t+1 and t+2 than she would make upon

5Brot-Goldberg et al. (2015) find that employees who were forced into a high deductible health insurance
plan significantly reduced healthcare expenditures even when this would not reduce out-of-pocket expen-
ditures. Ito (2014) shows that enrollees respond to average electricity prices, even though the benchmark
model implies that people should respond to marginal prices. Grubb and Osborne (2014) find that con-
sumers exhibit a range of biases in nonlinear cellular phone contracts. In contrast, Nevo et al. (2016) study
forward-looking consumers faced with nonlinear broadband internet contracts using the benchmark model.
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reaching time t+ 1.6 Our second behavioral model, price salience, specifies that any decision

that the enrollee and her physician make in the initial coverage region only incorporates

the possibility of a price change in the doughnut hole with probability σ. Doughnut hole

prices become fully salient during the first purchase decision made after arriving inside the

coverage gap. A value of σ < 1 implies that doughnut hole prices are less than fully salient.

The two behavioral models predict different timings of when the coverage gap prices are fully

internalized and, as a consequence (and as long as β or σ < 1), imply different consumption

dynamics as enrollees approach and enter the doughnut hole. For β or σ = 1, both behavioral

models are equivalent to each other and to geometric discounting with full salience.

These two behavioral models have very different counterfactual policy implications, high-

lighting the importance of distinguishing between them. For instance, the literature on

quasi-hyperbolic discounting has argued that with “sophisticates,” it might be useful to give

people future commitment contracts (Laibson, 1997). However, if the deviation from the

benchmark model is due to a lack of salience about the doughnut hole, then policies that

provided information to help enrollees view future prices as more salient might be useful.

In the benchmark model, where β or σ = 1 and δ is close to 1 at the annual level, drug

purchase decisions depend largely on the distribution of coverage regions where the individual

expects to end the year. To see this, consider an extra drug purchase in the initial coverage

region for an enrollee who expects to end the year in the coverage gap. This extra purchase

results in some later purchase(s) no longer having an insurance subsidy, implying that the

total extra price will be roughly the full price rather than the price with insurance. This

makes robust tests of the benchmark model challenging, generally requiring an estimation

of the expected distribution of the coverage regions where the individual expects to end the

year, made at each potential purchase point in the sample.

Our innovation is to consider enrollees who have reached $2,000 in total spending early in

the year. Since these enrollees have reached near the coverage gap start of $2,510 early in the

year, we hypothesize, and then verify, that they will enter into the coverage gap with near

certainty and leave with low probability. Thus, we can approximate rational expectations

6We estimate both variants where the quasi-hyperbolic discounters are sophisticated and näıve about their
future behavior.
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with the simple assumption that the enrollee will end the year in the gap with certainty.

Moreover, since these enrollees will use all their insurance in the initial coverage region with

very high probability, their Part D subsidy is very close to constant. We show that this

implies that there should be little or no drop in prescription drug purchases upon entering

the doughnut hole under the benchmark model. In contrast, under either behavioral model,

because enrollees do not fully account for the prices that they will pay in the coverage gap,

purchases will be flat away from the doughnut hole, drop on approach into the doughnut

hole, and again be flat inside the doughnut hole. Finally, for the geometric discounting

model with a low but positive δ, purchase probabilities should drop throughout the initial

coverage region.

We test the predictions of the benchmark model by examining whether there are drops in

spending upon reaching the doughnut hole for the set of enrollees noted above. We further

test for geometric discounting with a low discount factor versus the behavioral models by

evaluating whether purchases are flat in a period before the doughnut hole. Finally, since the

two behavioral models have different predictions as to when doughnut hole prices start to

affect behavior, our structural estimation identifies the most appropriate behavioral model

by evaluating which estimated structural model fits the data best on this dimension.

Our empirical work is based on 2008 Medicare Part D administrative claims data from a

large pharmacy benefit manager. Using the subset of enrollees who arrive near the doughnut

hole early in the year, we estimate weekly spending as a function of individual fixed effects

and an indicator for being in the coverage gap. Consistent with the predictions of the

behavioral models, we find that drug purchases are flat in a region before the doughnut hole

and drop significantly and sharply upon reaching the doughnut hole, with mean total drug

expenditures falling by 28% and the number of filled prescriptions falling by 21%. Thus, we

find violations of the benchmark model.

We identify the sources and magnitudes of behavioral hazard by structurally estimating

the parameters of our models for the quasi-hyperbolic discounting and price salience mod-

els using a nested fixed-point maximum likelihood estimation and the the same subset of

enrollees. While versions of the quasi-hyperbolic discounting model have been previously

estimated (e.g. Fang and Wang, 2013), to our knowledge, this is the first paper to estimate
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a structural dynamic model of price salience. The parameters of the structural models are

price elasticity parameters, fixed effects for each drug, the geometric discount factor δ, and

the behavioral parameter β or σ. We show that we can identify the discount factor and

behavioral parameter given sufficient variation in drug attributes.

Our structural estimation splits our sample into three subsamples based on an ex ante

measure of expected pharmacy expenditures. For each subsamples, we can reject β or σ > 0.

The price salience model fits the data best, with a much higher estimated likelihood. The

reason is because the quasi-hyperbolic discounting model cannot explain the sharpness of the

drop in drug spending at the threshold, even with β = 0, which has the sharpest spending

drop. These findings imply that future doughnut hole prices are not at all salient when in

the initial coverage region. Alternately put, enrollees in our sample appear not to take future

coverage gap prices into account at all in their choices of drugs.

Using our structural estimates, we examine behavioral and policy counterfactuals for a

nationally representative sample.7 To isolate the importance of price salience, we examine

how prescription purchase behavior changes under the benchmark model, using an annual

discount factor of 0.95. Optimization under the benchmark model would cause enrollees to

reduce their spending by 31%, with total prescription drug spending dropping by 15%. In

contrast, eliminating drug insurance would lower total prescription drug spending by 35%,

implying that both behavioral hazard and drug insurance are important in this market.

Our policy counterfactuals examine the elimination of the doughnut hole as mandated by

the 2010 Affordable Care Act. We find that eliminating the doughnut hole would increase

total spending by 10% and insurer spending by 27%, implying a substantial cost to the

government. Coinsurance would have to increase to 37% from the current average of 25%

to implement a revenue neutral insurance scheme without the doughnut hole. Providing

doughnut hole coverage for generic drugs only would increase insurer spending by only 7%.

Our paper is most closely related to the works of Einav et al. (2015) and Abaluck et al.

(2015) who both also consider the implications of benefit design for Medicare Part D. We

develop complementary tests to Einav et al. (2015): we test for violations of the benchmark

7The sample is composed of a mix of the estimation sample and others in our claims data, with the mix
chosen to ensure that the percent of enrollees reaching the doughnut hole is equal to the population average.
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model by evaluating whether there are changes in behavior upon crossing into the doughnut

hole when the benchmark model predicts none, while Einav et al. tests for the presence of

forward-looking behavior by evaluating whether there are changes in behavior when predicted

by the benchmark model (in their case, across enrollees joining Part D plans with deductibles

at different points of the year). Our tests avoid selection issues that may be present in

other studies by comparing the same individuals at different points in time. Einav et al.

also estimate a structural, dynamic model and find that the weekly discount factor is δ =

0.96, implying an annualized discount factor of 0.12; our framework provides a behavioral

explanation for our findings and can reject the geometric discounting model with a low but

positive δ. Our structural estimation also builds on Einav et al. by developing a modeling

framework for drug choices that is more similar to a standard dynamic multinomial choice

models and by providing results on identification for this type of model. Abaluck et al.

(2015) use a very different identification strategy based on the assumption that changes in

plan benefits are exogenous and do not result in enrollee selection due to plan stickiness.

Using this assumption, they develop a simpler structural model of drug choice that abstracts

away from the fact that enrollees may not fully know their health shocks requiring drug

purchases at the beginning of the year. They also find that price salience plays an important

role in explaining deviations from the benchmark model. Finally, our structural model of

quasi-hyperbolic discounting builds on Fang and Wang (2013) and Chung et al. (2013).

The paper proceeds as follows. Section 2 provides our model. Section 3 describes our

data. Section 4 presents evidence based on the discontinuity near the doughnut hole. Sec-

tion 5 describes the econometrics of our structural model. Section 6 provides results and

counterfactuals, and Section 7 concludes.
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2 Model

2.1 Overview

We develop a dynamic framework to study the drug purchase decisions of a Medicare Part D

enrollee within a calendar year.8 We consider two behavioral models as well as the limiting

case of the geometric discounting model. Our first behavioral model allows enrollees to have

time-inconsistent or myopic preferences that satisfy quasi-hyperbolic discounting (Laibson,

1997; Phelps and Pollak, 1968; Strotz, 1956). In this model, enrollees are present-biased and

discount the future more than would geometric discounters. Our second behavioral model

allows future doughnut hole prices to lack full “salience” (Chetty et al., 2009; Bordalo et al.,

2012; Abaluck et al., 2015). In this model, the enrollee does not pay full attention to the fact

that prices will change in the future. The two explanations differ in their underlying causes

of the deviations from benchmark behavior implying different effective solutions to remedy

these deviations. Moreover, as we formalize below, the two models imply different purchase

patterns near the coverage gap start, thereby allowing our estimation to evaluate the sources

of any deviations from the benchmark model.9

A period in our model is a week, starting with Sunday.10 Enrollees discount future weeks

with a weekly (geometric) discount factor δ. Each week, the enrollee is faced with a number,

zero or more, of health shocks. Each health shock is defined by its type. Each health shock

type has a unique set of drugs that can be used as treatments. An example of a health shock

type is “conditions treated with calcium channel blockers,” which is treated exclusively with

calcium channel blockers.11 An example of a calcium channel blocker is Cardizem (diltiazem

hydrochloride) in tablet form; our uniqueness assumption implies that this drug is not in a

treatment for any other health shock type. Upon receiving a health shock, the enrollee makes

8Section 5 discusses estimation of the model which involves aggregation across enrollees.
9A previous working paper version of this paper only allowed for quasi-hyperbolic discounting. The current

model generalizes the earlier version by considering both price salience and time-inconsistent preferences.
10Our empirical analysis uses the enrollee/week as the unit of observation. A longer time interval, such as

a month, would reduce information through aggregation, while a shorter time interval, such as a day, may
have noisy outcomes because a typical enrollee will fill zero prescriptions on most days. We chose an interval
of a week as a balance between these two constraints.

11For brevity, when unambiguous, we refer to this health shock type simply as “calcium channel blockers.”
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a discrete choice of one of the treatment drugs for the health shock type, or the outside option,

which consists of no drug treatment. It is important to model the outside option because

individuals may substitute away from drug purchases when in the doughnut hole.

Each week, the enrollee receives between 0 and N health shocks.12 She receives the shocks

sequentially, implying that upon receiving one shock, she does not know how many more she

will receive, although she does know the parameters of her categorical distribution, and hence

her conditional distribution of additional shocks. Each health shock is an i.i.d. draw from

the enrollee’s distribution over health shock types.13 Because the distribution of health shock

types is specific to an enrollee, our model is consistent with within-enrollee correlations of

health shock types, as would occur with a chronic disease. For instance, some enrollees might

have type II diabetes, and those enrollees would draw from a health shock type distribution

with type II diabetes while other individuals would not have type II diabetes and hence

would not draw from this health shock type.14

The enrollee’s decision problem is dynamic because each drug purchase brings her closer

to the next phase of her nonlinear insurance scheme (i.e., the coverage gap if in the initial

coverage region), and purchasing an expensive drug brings her relatively closer than pur-

chasing a cheaper one. The quasi-hyperbolic discounting model specifies that the enrollee

discounts a future event t ≥ 0 weeks in the future with factor βδt. We estimate two variants

of the quasi-hyperbolic discounting model (Strotz, 1956; Fang and Wang, 2013). Under the

“sophisticates” variant, the enrollee knows that in the future she will continue to act as a

quasi-hyperbolic discounter. Under the “näıfs” variant, the enrollee believes that she will fol-

low the geometric discounting model in future drug purchase decisions. Both variants with

β = 1 are equivalent to the geometric discounting model.

The price salience model focuses on the information that the enrollee uses to make her

drug purchase decision. We specify that the enrollee—or her physician acting as her agent—

makes her drug purchase decision prior to the point of sale, e.g., in the physician’s office or at

12Hence, the realized number of health shocks received is distributed i.i.d. categorical, or equivalently,
multinomial with one trial.

13We model multiple potential drug purchases within a week in this way in order to leverage standard
discrete choice multinomial logit models for each individual purchase decision.

14Our structural estimation stratifies enrollees into groups based on health risks and allows for each group
to draw from different health shock distributions.
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home before going to fill a prescription when her current supply runs out.15 At the decision

point, the enrollee is aware of the drug prices in the coverage region of her last purchase, but

is not necessarily fully salient about future prices. We assume that the enrollee in the initial

coverage region assesses a probability σ that there remains some future coverage region, with

this probability changing to 1 only after the individual has made a purchase that brings

her into the gap. In other words, with σ < 1, the first purchase decision made with full

salience about the doughnut hole prices will be the first one made after $2,510 or more in

total expenditures. Note that σ = 1 is equivalent to the geometric discounting model.

2.2 Enrollee optimization

We first introduce some additional notation and then formally define enrollee preferences.

We represent the distribution of the number of health shocks via conditional probabilities:

let Qn, for n = 0, . . . N , denote the conditional probability of having another health shock

given that n have already occurred in the current week. Note that QN = 0. At the nth

drug purchase decision node in any week, the enrollee’s information regarding the number of

future health shocks that she will receive in the week is given by Qn, . . . , QN .

Let H denote the number of health shock types. We assume that health shock type

h ∈ {1, . . . , H} occurs with probability Ph. For each h, index the prescription drugs that can

be used for treatment by j = 1, . . . , Jh. For each h and j, let phj denote the full price and

oophj denote the out-of-pocket price when inside the initial coverage region. Each h also has

a baseline health cost ch that applies equally to all treatment options.16

At each state, the enrollee maximizes the expected discounted value of her expected

perceived flow utility subject to her behavioral biases regarding the valuation of future states,

the salience of price changes, and expectations regarding her future behavior. Appendix B

formally exposits the behavioral dynamic optimization problems.

15This is similar to other empirical specifications. For instance, Chetty et al. (2009)’s estimation is based
on the idea that purchase decisions for grocery store items are made at the place where items are displayed
and not at the point of sale.

16Since ch affects all options equally, it does not affect choices and is not identified. Since our counterfactuals
never alter the distribution of health shocks, our counterfactual conclusions are not affected by the fact that
we cannot estimate it.
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The expected perceived flow utility from drug j for health shock type h is additive in:

(1) the fixed utility from treatment, φhj, which is a parameter to estimate; (2) the disutility

from the current expected perceived price of the drug, which we detail below;17 and (3) an

unobservable component εhj, which is distributed type 1 extreme value, i.i.d. across health

shocks and individuals. We assume that current, but not future, values of εhj are known to

the individual when making her choice decision. For each h, denote the outside option as

good 0. We assume that ph0 = ooph0 = φh0 = 0 and that its flow utility is εh0.

Our estimation focuses on enrollees whose drug spending in the early part of the year

have brought them near the start of the coverage gap. Given this, our tests of the benchmark

model and estimation of the structural parameters are based on:

Assumption 1. With probability 1, enrollees in our sample expect that, even if they change

their purchase for any one health shock:

(a) they will reach the doughnut hole start of $2,510 in total spending, and

(b) they will not reach the sample minimum catastrophic region start.

Given Assumption 1, we can treat the doughnut hole as an absorbing state which will

always be reached. This allows us to construct simple tests of the benchmark model. It also

simplifies the dynamic decision problem, as we do not have to account for the week of the

year and can instead exposit the problem as an infinite horizon Bellman equation. This in

turn reduces the computational burden of our estimation algorithm.18 The state space at

the time of a drug purchase then consists of four elements, with a typical state written as

(m,n, h, ~ε): m indicates the monetary distance to the doughnut hole at the start of a given

purchase decision;19 n ∈ {0, . . . , N−1} indicates the number of previous health shocks during

the week; h is the health shock type; and ~ε ≡ (εh0, . . . , εhJh) is the vector of unobservables.

Let s(m,n, h, j), j = 0, . . . , Jh denote the probability of purchase of drug j for a given set of

state variables (m,n, h), integrating over ~ε.

17Our inclusion of this price term in the flow utility is equivalent to there being a money good with utility
equal to the negative of this term.

18Our counterfactuals do not impose Assumption 1 because it may not be close to accurate under coun-
terfactual benefit structures.

19For instance, if the individual had already spent $2,350, then m = $2, 510− $2, 350 = $160.
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Let peff (m, phj, oophj) be the expected effective price perceived by the enrollee. When

price is fully salient as in the quasi-hyperbolic discounting model, we can write peff as:

peff (m, phj, oophj) =


phj, if 0 ≤ m < oophj

oophj + phj −m, if oophj ≤ m < phj

oophj, if phj ≤ m.

(1)

In (1), the first line pertains to the enrollee who has to pay the full price because she is either

already completely in the coverage gap or would be completely inside after paying her out-of-

pocket price. The second line considers the intermediate case where the purchase would move

the enrollee into the coverage gap at some point after she pays the out-of-pocket price. The

last line considers the enrollee who is completely in the initial coverage region, even after the

current purchase. The first and second lines reflect Part D rules which specify that, when a

purchase moves the enrollee into the coverage gap, the enrollee pays the out-of-pocket price,

the insurer pays any remaining amount until total spending reaches the coverage gap start,

and the enrollee also pays the final remaining amount.

For the price salience model, peff satisfies:

peff (m, phj, oophj) =



phj, if m = 0

σphj + (1− σ)oophj, if 0 < m < oophj

σ(oophj + phj −m) + (1− σ)oophj, if oophj ≤ m < phj

oophj, if phj ≤ m.

(2)

In (2), the first and last line are the same as in (1). However, the middle two lines, which

consider the intermediate cases where the purchase would move the enrollee into the coverage

gap, are different. In these cases, with probability 1−σ, the enrollee perceives that prices are

simply the out-of-pocket prices, since her drug purchase decision was made in the physician’s

office where these prices were not yet fully salient. But, with probability σ, the doughnut

hole prices are salient and the individual pays the prices from (1).

Finally, let the function α(p) denote the disutility from current expected perceived spend-
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ing level p. In order to flexibly capture the different impacts of price on decisions, our estima-

tion allows α(·) to be a linear spline, which nests the case of a linear price coefficient. Applying

(1) or (2), the current disutility from expected perceived price is α(peff (m, phj, oophj)).

Note that the price salience model is very similar in its implications to the quasi-hyperbolic

discounting sophisticates model, but not to the näıfs model. With limited salience, the

enrollee believes that at any future pre-doughnut hole state she will still perceive a salience

probability of σ. This is similar to the sophisticate who believes that she will continue

to act as a quasi-hyperbolic discounter in the future. Näıfs believe that they will act as

geometric discounters in the future, which leads to different purchase decisions. The one

difference between the price salience and sophisticates models is in peff for drugs that move

the enrollee into the doughnut hole, which are the two middle cases in (2).20

2.3 Testable Implications of the Model

This subsection discusses testable implications of our model that allow us to distinguish

between the benchmark model and other models. We focus on enrollees who have spent

$2,000 or more early in the year and hence impose Assumption 1 throughout.

Our main insight is that enrollees will act approximately the same before and after the

doughnut hole under the benchmark model (which is the geometric discounting model with

fully salient prices and an annual discount factor close to 1). This is not true for the behavioral

models with β or σ < 1. Intuitively, under the benchmark model, if enrollees perceive that

they will end the year inside the doughnut hole, they will always obtain the full insurance

subsidy for the initial coverage region, and hence will not change their behavior upon crossing

into the doughnut hole. For these enrollees, Part D insurance is very similar to a lump-sum

check for the insured amount. Formally, we can show that there is no change in behavior

upon crossing into the doughnut hole, for the case where every drug has the same full and

out-of-pocket prices and δ = 1:

20It is also be possible to define the drug purchase decision as occurring at (instead of prior to) the point of
sale, in which case the salience model would be identical to the sophisticates model, except for the relabeling
of the parameter β to σ.
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Proposition 1. Consider a dynamically-optimizing Part D enrollee for whom Assumption 1

holds and for whom β or σ = 1 and δ = 1. Suppose further that there is a common full

price p and out-of-pocket price oop that is charged for every (inside-good) drug and that price

disutility is linear so that α(p) ≡ αp. Then, the purchase probability of each hj is the same

across ex ante states, i.e., for all m,n,m′, n′, h, j, s(m,n, h, j) = s(m′, n′, h, j).

(Proofs of propositions are in Appendix C.)

We note two points about Proposition 1. First, the proposition considers the case where

all drugs have the same total and out-of-pocket prices. If there were variation in prices,

then enrollees might change their behavior before and after the doughnut hole because the

doughnut hole start is based on total spending and not out-of-pocket spending. For instance,

if one drug has a higher out-of-pocket price relative to the full price than a second one, then

the enrollee would substitute towards the first drug when in the doughnut hole. Overall,

though, we would expect such substitution to not affect the basic testable implication of the

proposition, which is that, for this sample, crossing into the doughnut hole should not reduce

spending. Second, while Proposition 1 considers the case of δ = 1, we expect the results to

be approximately true for δ close to 1.

To provide further insight as to the role of δ in the geometric discounting model in

affecting dynamic drug consumption patterns we simulate the model for different values of δ.

Figure 2 reports simulated mean total spending per week across discount factors as a function

of the cumulative total spending at the beginning of the week. We report simulations for

four discount factors δ: 0.999, which corresponds to an annualized 5% discount; 0.96, which

is the weekly discount factor estimated by Einav et al. (2015) and corresponds to an annual

discount factor of 0.12; 0.1; and 0, the case of perfect myopia. We calculate dynamically-

optimizing decision-making for enrollees and then simulate weekly spending in the figure.

Enrollees in the simulation all have one health shock each week and each health shock is

drawn with equal probability from one of 20 health shock types, each with one drug.21

Figure 2 shows that mean weekly spending with δ = 0.999 is flat before and after the

21Drug 1 has price p = $10 and quality φ = 0.1; drug 2 has price $20 and quality 0.2. Other drugs follow
the same pattern until drug 20, which has price $200 and quality 2.0. Out-of-pocket prices oop are always
25% of total price. Price disutility is α(p) = p. These ranges of prices are roughly similar to the sample.
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Figure 2: Simulated drug spending for the geometric model across discount factors
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doughnut hole. This occurs even though there are different priced drugs in our sample, sug-

gesting that Proposition 1 is approximately true more generally.22 With δ = 0.96, spending

decreases throughout the initial coverage region and then is flat inside the doughnut hole.

The reason for the sustained decrease is that the time value of money drives the drop in

spending: with a 25% coinsurance, a foregone $100 purchase with $2,300 in total spending

would result in $25 in immediate savings and $75 in savings discounted by the time until the

enrollee expects to cross into the doughnut hole. The same foregone purchase with $2,100

in total spending would have the $75 in savings discounted more because the time until the

expected crossing is longer. With δ = 0, spending is flat in the pre-doughnut-hole region

before $2,310 since discounted savings are worth nothing. Finally, the δ = 0.1 line is only

slightly downward sloped in this region, showing that the slope is continuous in δ.

Now we consider spending under the behavioral models. Both behavioral models result

in the future effectively being discounted but in a different way than for the geometric dis-

22The slight dip before the doughnut hole is due to the peculiarities of Part D coverage around the doughnut
hole, as reflected in (1) and the discussion surrounding it, whereby cheaper drugs are insured at a higher rate
than more expensive ones right before the doughnut hole.
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counting model. With δ = 1, in the quasi-hyperbolic discounting model, all future purchase

occasions are discounted by the same β. In the price salience model, future doughnut hole

prices are salient with the same probability σ. This suggests that the model can predict

flat spending before and after the doughnut hole but a drop in spending upon reaching the

doughnut hole. We formalize:

Proposition 2. Consider a Part D enrollee for whom Assumption 1 holds and for whom

δ = 1. Suppose further that there is a common full price p and out-of-pocket price oop that

is charged for every (inside-good) drug and that price disutility is linear so that α(p) ≡ αp.

Finally, assume that there is a unique solution to the ex ante value functions for the behavioral

models. Then, for any h and j,

(a) at the doughnut hole: under the sophisticates or näıfs quasi-hyperbolic discounting model

with β < 1 or the price salience model with σ < 1, s(0, n, h, j) will be equal to its value

under the benchmark model for all n, h, j;

(b) away from the doughnut hole: under the price salience model with σ < 1 or the sophisti-

cates or näıfs quasi-hyperbolic discounting model with β < 1, s(m,n, h, j) = s(m′, n′, h, j) >

s(0, n′′, h, j) if m,m′ ≥ p and for all n, n′, n′′, h, j; and

(c) across models: the purchase probabilities s(m,n, h, j) will be the same for the sophisticates

quasi-hyperbolic discounting model as for the price salience model and higher than for the

quasi-hyperbolic discounting näıfs model if m ≥ p and 0 < β = σ < 1 and for all m,n, h

and for j = 1, . . . , Jh.

Proposition 2 shows that enrollees will purchase the same amount in every period when

completely before the doughnut hole. Similarly, they will consume the same amount in each

period when inside the doughnut hole. Importantly, however, the within doughnut hole

consumption will be strictly lower than the outside doughnut hole consumption. The logic

for this is that, unlike in the benchmark model, the decision process is now different before

and inside the doughnut hole. In the initial coverage region, the quasi-hyperbolic discounter

knows that she will essentially have to repay the insurance subsidy by moving one purchase

into the doughnut hole, but that repayment is discounted with a factor β. The enrollee in the
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price salience model only considers that the repayment will occur with probability σ, thereby

generating an analogous result. The fact that the effective discount of this repayment is

always β or σ, regardless of how far the individual is from the coverage gap start, is what

generates the result that spending is flat before the doughnut hole. Näıfs spend less than

sophisticates in the pre-doughnut-hole region because näıfs expect that their future selves will

make the most responsible choices possible, which raises the value in saving for the future.

Figure 3: Simulated drug spending for different behavioral models
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Figure 3 shows simulation evidence for the same set of flow utility parameters as in

Figure 2 but now across behavioral models, setting δ = 0.999 throughout. The figure displays

results from the two quasi-hyperbolic discounting models with β = 0.5, from the salience

model with σ = 0.5, and also repeats the benchmark model from Figure 2.

The figure shows that the same results from Proposition 2 are approximately true here.

In particular, the three behavioral models all show virtually flat mean spending per week

when the cumulative spending is less than $2,310 (up to which even the most expensive drug

would not move the enrollee into the doughnut hole). The sophisticates and price salience

models generate virtually the same expected spending in the pre-$2,310 region while the näıfs
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model shows lower spending. Note also that the behavioral models have different predictions

from the geometric model with the low weekly discount factor of δ = 0.96. Under the

behavioral models, spending is flat until reaching a drug that could move the individual into

the doughnut hole while under the low geometric discount factor model, spending decreases

continuously from the beginning of the sample.

Importantly, the price salience model differs from the sophisticates model at the point of

entry into the doughnut hole. Under the price salience model, enrollees are not fully aware

of the doughnut hole prices until after the purchase that moves them into the doughnut hole,

while the quasi-hyperbolic discounter makes decisions based on the price at the point of sale.

Thus, as shown in the figure, the sophisticate will have lower spending than the enrollee

with price salience in the region between $2,310 and $2,510. In the limiting case of σ = 0,

under the price salience model, the enrollee would not lower her weekly spending at all in

this region, (given that there is only one health shock per week). This difference between the

two models near the doughnut hole can identify which behavioral model is accurate.

Combining the insights from the propositions and the figures, the testable implications

of our model are:

1. We can test for deviations from the benchmark model by evaluating whether there is

a drop in spending at the doughnut hole.

2. We can test for deviations from a geometric model with low δ by examining whether

there is a region before the doughnut hole where spending is flat.

3. The price salience and sophisticates models have similar implications for drug pur-

chases away from the coverage gap but the price salience model has higher spending

immediately before the doughnut hole, generating a steeper decline at the gap start.

4. Conditioning on other parameters, the näıfs model with 0 < β < 1 has less spending

before the coverage gap than the price salience or sophisticates models.

We test implications 1 and 2 in Section 4 and our structural estimation results in Section 6.1

are identified by implications 3 and 4.
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3 Data

For our analysis, we rely on a proprietary claims-level dataset of employer-sponsored Part

D plans in 2008, the third year of the program. The data come from the pharmacy benefits

manger Express Scripts, which managed Medicare Part D benefits for approximately 30

different employer-sponsored Medicare Part D plans with a total of 100,000 enrollees. The

plans were offered to eligible employees and retirees as part of their benefits. Employers

receive subsidies from Medicare in exchange for providing these plans to their employees. We

believe that enrollees in employer-sponsored Part D plans have, on average, higher income

than typical Part D enrollees, and hence are less likely to be liquidity constrained. The

employer-sponsored Part D market constituted nearly 7 million enrollees or 15 percent of

Part D enrollment in 2008 (Medpac, 2009, p. 282).

The data contain all claims made by an enrollee in the year 2008 for each plan. For

each claim, we have plan and patient identifiers, the age (at the fill date) and gender of the

patient, the date the prescription was filled, the total price of the drug, the amount paid

by the patient, the National Drug Code (a unique identifier for each drug), the pill name,

the drug type (e.g., tablet, cream, etc.), the most common indicator of the drug (e.g., skin

conditions, diabetes, infections, etc.), the dispensed quantity of the drug, and an indicator

for whether the drug is generic or branded. We keep only individuals who are 65 or older at

the time that they fill their first prescription.

Each of the employers offered multiple plans, each with different coverage structures. Our

base analysis uses data from five Express Scripts plans. We chose these plans because (1)

they have a coverage gap that starts at exactly $2,510 in total expenditures and ends at

greater than $4,000 in out-of-pocket expenditures; (2) there is no insurance in the coverage

gap; and (3) the employers that offer these plans allowed us to use their data. We also include

falsification evidence from a sixth plan which has the coverage gap start at a higher spending

level.

Table 1 displays the characteristics of the six plans that we consider. The plans represent

three different employers; plan and employer identities are masked. We consider all covered

individuals at Employer 2 and the majority of covered individuals at Employer 1 (with the
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Table 1: Plan characteristics and enrollment

Plan
A B C D E F

Employer 1 1 1 2 2 3
% of employees from employer 26 45 9 79 21 46
Deductible ($) 275 100 100 0 200 0
Doughnut hole start (total $) 2,510 2,510 2,510 2,510 2,510 4,000
Catastrophic start (out-of-pocket $) 4,050 4,050 4,050 4,010 4,010 4,050
Total enrollment 7,541 12,858 2,431 4,062 1,058 35,395
% hitting $2,510 20 13 16 16 13 20
% hitting catastrophic coverage 2 1 1 1 1 0
Estimation sample:
Enrollment 620 644 126 304 49 2,981
% hitting $2,510 96 94 95 97 94 97
% hitting catastrophic 11 6 9 10 12 0
Mean total spending ($) 4,284 3,867 4,009 4,246 3,974 4,072
Mean out-of-pocket ($) 2,373 2,010 2,125 2,045 2,071 1,026
Mean age 74 73 73 75 75 78
Percent female 62 58 53 62 59 64
Mean ACG score 1.04 1.17 1.18 0.91 1.07 0.67
Note: Plan A provides generic coverage in deductible region; Plan F used for falsification exercise only and provides generic
coverage in doughnut hole.

other covered individuals at this employer choosing plans with different coverage gap regions

or some insurance in the coverage gap). Importantly, the fact that each covered individual

could choose from only similar plans minimizes the selection issues across plans that one

might observe in non-employer-sponsored Part D coverage.

Four of the five plans in our base analysis have a deductible. All deductibles take relatively

low values of $275 or less. By construction, the coverage gap start is the same across the

base plans and the coverage gap end out-of-pocket spending levels are similar. All six plans

include generous coverage in the catastrophic region. Table 1 also lists summary statistics

on plan enrollment. The five base plans cover a total of 27,950 individuals.

The sixth plan in our data, plan F, is only used for falsification tests. Plan F has its

coverage gap start at $4,000 in total spending, a much higher threshold than for the other

plans. Its enrollees are older and disproportionately female relative to the plans in our base

analysis sample.

20



Our base estimation sample consists of all enrollees who start a week between Sunday,

March 30 and Sunday, July 20, 2008 with total spending in the range [$2000, $2, 510). We

chose these dates and this range of spending to be in the part of the year where enrollees

are not yet in the doughnut hole but should perceive that they will end the year in the

doughnut hole with very high probability under the benchmark model. This sample contains

1,743 enrollees distributed across the five plans in our sample. Between 94 and 97 percent

of the enrollees in the estimation sample hit the coverage gap during the year, reflected in

a mean total spending levels of approximately $4,000 across the plans. The mean percent

hitting the catastrophic coverage region ranges from 6 to 12 percent, reflected in mean out-

of-pocket spending levels of approximately $2,200 across plans, or about 55 percent of the

value necessary to hit the start of catastrophic coverage.

Using our database of claims, we first drop claims for drugs which we believe are not in

the formulary. Drugs that are not in the formulary are sometimes reported to the insurance

company by the enrollee but do not count towards spending for purposes of determining if

the enrollee is in the coverage gap or catastrophic coverage regions. We assume that any

claim in the initial coverage region for which the total price is $100 or higher and the out-of-

pocket price is the same as the total price reflects a drug that is not in the formulary.23 We

then calculate the dollars until the doughnut hole (m) for each prescription by tabulating

the spending up to this point during the year.24

We merge our claims data with data on the expected pharmacy claims cost for each

patient, based on their claims from before our sample period. Specifically, we use claims

from Jan. 1, 2008 to Mar. 29, 2008 to construct the Johns Hopkins Adjusted Clinical Group

(ACG) Version 10.0 score for each enrollee. The ACG score is meant to predict the drug

expenditures over the following one-year period. We use the ACG scores to define groups for

the structural analysis and then estimate separate coefficients for each group. ACG scores

have been widely used to predict future health expenditures in the health economics and

23We also drop one claim with a quantity-filled entry of over 1 million.
24There is some ambiguity of the order of claims if there are multiple claims filled on the same date for a

given enrollee. For such multiple claims, we assume that the claims are filled in increasing order of out-of-
pocket price. For multiple claims for an enrollee on a given date with the same out-of-pocket price, we use
the order specified in the database that we received from Express Scripts.
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health services literature (see, e.g., Handel, 2013; Gowrisankaran et al., 2013). Table 1 shows

that the base plans have mean ACG scores which are similar to the over-65 population mean

score of 1; the falsification plan has a somewhat lower mean score.

Our analysis classifies each drug into a unique health shock type meant to capture the

treatment of the drug. The health shock type coding performed by a clinically trained

research assistant using the pill name, drug type (e.g., tablet or cream), most common

indication, and National Drug Code. We classified drugs on the basis of function rather

than the diseases they treat because we believe that drug function is the relevant attribute

for a choice model. Thus, even though both calcium channel blockers and renin-angiotensin

system blockers are used to treat hypertension, they form separate health shock types in our

analysis because their mechanisms are separate.

Table 2 lists the health shock types with the most claims in our estimation sample.

Approximately 9 percent of the claims were for cholesterol-lowering (antihyperlipidemic)

drugs. The next most common categories include blood pressure medicines, opioids, and

antidepressants.25

Table 2: Most common health shock types in base estimation sample

Health shock type Number Rx % of obs. Most common Rx
Cholesterol-Lowering 2,143 9.4 Simvastatin
Renin-Angiotensin System Blocker 1,814 7.9 Lisinopril
Beta-Blocker 1,259 5.5 Metoprolol
Opioid 1,200 5.2 Hydrocodon
Antidepressant 1,190 5.2 Sertraline
Diuretic 1,183 5.2 Furosemide
Calcium Channel Blocker 933 4.1 Amlodipine
Insulin Sensitizer 792 3.5 Metformin
Gastroesophageal Reflux & Peptic Ulcer 778 3.4 Omeprazole
Hypothyroidism 774 3.4 Levothyroxine

25Table A1 in Appendix A provides details on the ten most common drugs purchased.
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4 Evidence from Discontinuity Near Doughnut Hole

This section presents evidence on whether individuals act in a way that is consistent with

the benchmark model, with geometric discounting with a low but positive discount factor, or

with our behavioral models. We base our evidence on the testable implications of the model

developed in Section 2.3. We perform a series of discontinuity-based analyses that all use our

analysis sample of enrollees who arrived near the doughnut hole in the middle of the year.

Our analyses are similar to a standard regression discontinuity framework. However, while

regression discontinuity analyses typically consider different individuals near a breakpoint,

we consider the same individual immediately before and after reaching the coverage gap.

Specifically, the unit of observation for each regression is an enrollee observed over a week.

Enrollees are in the estimation sample from the first week with starting expenditures of over

$2,000 until the last week with starting expenditures of less than $3,000, or the end of the

year if it comes first.

Figure 4: Spending near coverage gap for base estimation sample
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We start by graphing mean weekly spending levels and non-parametric regressions of

these levels. Figure 4 plots mean total drug spending by $20 increments of beginning-of-week
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cumulative spending and a kernel smoothed “lowess” regression of mean total drug spending

on beginning-of-week cumulative spending.26 The mean total drug spending shows little

change in spending over the range $2,000-2,380 in beginning-of-week cumulative spending.

Mean spending then drops until the doughnut hole and remains roughly constant until the

highest cumulative spending level.

Note that week observations that are near the doughnut hole but not yet in the doughnut

hole may move the individual into the doughnut hole, either because of an expensive drug

or because of multiple drugs. Thus, the fact that spending starts to drop slightly before the

doughnut hole does not necessarily indicate that individuals are forward-looking. In contrast,

the flat spending in the $2,000-2,380 range and the flat but lower spending in the doughnut

hole range is a pattern that is consistent with quasi-hyperbolic discounting or limited price

salience but not geometric discounting with δ > 0, as in Figure 2.27

Figure A2 in Appendix A provides a falsification exercise on Plan F, which had a coverage

gap that started at at the much higher level of $4,000 in total spending. We report the same

plots on this plan as on our base sample. We find very different results: there is no drop in

spending upon reaching $2,510 in total spending. This result allows us to rule out that our

results are due to the drop in spending when hitting $2,510 in our sample being coincident

with a medical condition, such as the seasonal onset of a disease. Thus, the figure supports

the conclusion that the drop in spending is due to the coverage gap itself.

Having shown visually that there is flat spending in a region before the doughnut hole

and a drop in spending at the coverage gap start, we now examine the data in more detail

with linear regressions. Our linear regression specifications follow:

Yit = FEi + λ11{0 < mit0 ≤ $110}+ λ21{mit0 = 0}+ vit, (3)

where mit0 is the beginning-of-week spending left until the doughnut hole, FEi are enrollee

fixed effects, λ1 is the coefficient on an indicator for being above $2,400 in spending (within

$110 of the doughnut hole) and λ2 is the coefficient on an indicator for being in the doughnut

26We use a bandwidth of 0.3 for these regressions.
27Figure A1 in Appendix A displays the analogous figure to Figure 4 for the catastrophic zone. The

catastrophic sample size is small and so the impact of entering the catastrophic zone on spending is imprecise.
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hole, which implies starting the week with at least $2,510 in expenditures. We examine a

number of different dependent variables Yit, including total prescription drug expenditures,

branded drug expenditures, and number of prescriptions filled. The λ1 coefficient captures

the fact that, if the enrollee starts the week near the doughnut hole, her spending during the

week may move her into the doughnut hole.

By selecting a small region around the doughnut hole, we are comparing the same indi-

vidual at similar points in the year but faced with different contemporaneous prices. This

minimizes the possibility that factors other than the presence of the doughnut hole might be

influencing our findings. By including individual fixed effects, we are further controlling for

individual differences at different points in our sample, i.e. the possibility that more severely

ill individuals show up more in the region after the doughnut hole.

Our first set of linear regression findings are reported in Table 3.28 We find sharp drops

in most measures of prescription drug use. Supporting the results in Figure 4, total drug

spending dropped by $18 from a baseline of $62. The number of prescriptions fell by 21% from

a baseline mean of 0.84 per week. Branded prescriptions fell more than generic prescriptions:

27% versus 19%. Similarly, expensive prescriptions – those with a total price of $150 or more

– fell by 27% while inexpensive ones – those under $50 – had no significant drop. The mean

total price of a prescription fell by 12% from a baseline level of $80. All effects, except for

those on the number of inexpensive prescriptions, are statistically significant. Not reported

in the table, the indicators for weeks that start with $2,400 to $2,509 in total spending are

generally significantly negative and much smaller than the reported coverage gap indicators.

These results paint a picture of enrollees who react strongly to being in the doughnut

hole. As discussed in Section 2.3, the interpretation of this result is that they have either a β

or σ or a δ that is substantially less than one: the dynamics of their drug purchase decisions

do not reflect the predictions of the benchmark model.

Next, Table 4 provides evidence on whether drug spending is downward sloped in all

regions before the doughnut hole, as predicted by the geometric model with a low but positive

discount factor (e.g. Einav et al., 2015), but not by the behavioral models. We perform the

same regressions as in Table 3 but with the addition of an extra regressor, which measures the

28In the interest of brevity, we do not report either the enrollee fixed effects or λ1 values in our tables.
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Table 3: Behavior for sample arriving near coverage gap

Mean value Beginning of week spending in:
Dependent variable: before $2,400 $2,510 - 2,999 N
Mean spending in week 61.97 −17.46∗∗ (1.38) 28,543
Mean price per Rx 79.47 −9.77∗∗ (1.37) 10,846
Number of Rxs 0.84 −0.18∗∗ (0.02) 28,543
Number of branded Rxs 0.30 −0.08∗∗ (0.01) 28,543
Number of generic Rxs 0.54 −0.10∗∗ (0.01) 28,543
Expensive Rxs 0.12 −0.04∗∗ (0.00) 28,543
Medium Rxs 0.23 −0.06∗∗ (0.01) 28,543
Inexpensive Rxs 1.10 −0.01 (0.01) 28,543
Note: Standard errors are in parentheses. ‘∗∗’ denotes significance at the 1% level and ‘∗’ at the 5% level.
Each row represents one regression. All regressions also include enrollee fixed effects and an indicator for
beginning-of-week spending between $2,400 and $2,509, and cluster standard errors at the enrollee level.
An observation is an enrollee/week for an enrollee in the base estimation sample and beginning-of-week
spending ≥ $2, 000 and < $3, 000. Inexpensive Rxs are less than $50 and expensive ones are $150 or more.

change in spending in the region $2,200 to $2,399. Thus, the excluded region is now $2,000

to $2,199. Supporting the results in Figure 4 again, the coefficient on total spending in the

$2,200 to $2,399 range is not significant and close to 0. The implication is that, while spending

before the doughnut hole is higher than in the doughnut hole, the increment does not grow

as one moves further back. This is consistent with the predictions of the behavioral models

with β or σ much lower than δ. It is, however, inconsistent with the geometric discounting

model with a sufficiently high discount factor. For instance, the analogous coefficient for

δ = 0.96 in Figure 2 (which uses simulated data) would be well above the confidence interval

for our estimates here.29

Finally, Table A2 in Appendix A provides evidence on the five health shock types which

have the largest drops in prescriptions upon entering the doughnut hole and the five with

the largest increases in prescriptions. Here, we perform similar regressions to Table 3 but

with the number of prescriptions for drugs that treat a health shock type as the dependent

variable. We then report the health shock types with the biggest and smallest coefficients

on the spending drop in the doughnut hole region. The five health shock types with the

biggest drops in prescriptions are also among the ten most common health shock types, as

reported in Table 2. Indeed, the only one of the top five health shock types that does not

29We perform formal tests on β and σ in the context of our structural estimation results in Section 6.1.
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Table 4: Behavior near coverage gap with variation in pre-coverage gap region

Mean value Beginning of week spending in:
Dependent variable: before $2,400 $2,510 - 2,999 $2,200 - 2,399 N
Mean spending in week 61.97 −17.79∗∗ (1.76) −0.68 (2.25) 28,543
Mean price per Rx 79.47 −8.97∗∗ (1.72) 1.64 (2.13) 10,846
Number of Rxs 0.84 −0.20∗∗ (0.02) −0.03 (0.03) 28,543
Number of branded Rxs 0.30 −0.08∗∗ (0.01) 0.01 (0.01) 28,543
Number of generic Rxs 0.54 −0.12∗∗ (0.02) −0.04∗ (0.02) 28,543
Expensive Rxs 0.12 −0.04∗∗ (0.01) −0.00 (0.01) 28,543
Medium Rxs 0.23 −0.06∗∗ (0.01) 0.00 (0.01) 28,543
Inexpensive Rxs 1.10 −0.02∗ (0.01) −0.01 (0.02) 28,543
Note: Standard errors in parentheses. ‘∗∗’ denotes significance at the 1% level and ‘∗’ at the 5% level.
Each row represents one regression. All regressions also include enrollee fixed effects and an indicator for
beginning-of-week spending between $2,400 and $2,509, and cluster standard errors at the enrollee level.
An observation is an enrollee/week for an enrollee in the base estimation sample and beginning-of-week
spending ≥ $2, 000 and < $3, 000. Inexpensive Rxs are less than $50 and expensive ones are $150 or more.

have a drop that is also in the top five is opioids. The five health shock types with the

biggest increases in prescriptions upon entering the doughnut hole are all health shock types

with very few prescriptions (and the coefficients are all insignificant). Overall, this table

shows that the percentage drops in prescriptions are similar across most health shock types.

This finding is also consistent with Chandra et al. (2010) who find similar demand responses

to increased cost-sharing across drug categories. Appendix D considers, and eliminates, a

number of other threats to the identification of our results rejecting the benchmark model

and geometric model with a low but positive discount factor.

5 Econometrics of the Structural Model

5.1 Estimation

We structurally estimate the model developed in Section 2. Our estimation partitions en-

rollees into groups g = 1, . . . , G based on their ACG score, with separate parameters by

group. We assume that Qn (the probability of further health shocks), N (the maximum

number of health shocks), and Ph (the probability of each health shock) vary across groups.
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Our data include 8 discrete ACG score groups.30

Our data do not allow us to directly estimate Ph and Qn since we do not know when

enrollees have a health shock but choose the outside good. Rather than attempting to identify

these parameters from our estimation sample, we estimate them from the same enrollees,

observed earlier in the year. Specifically, we assume that enrollees in our estimation sample

will always choose an inside drug in the months before they enter our estimation window,

with the logic being that the doughnut hole is sufficiently far away. Thus, we estimate Ph

and Qn for each ACG group from that group’s enrollees’ weekly drug purchases measured

from their first week of purchases after the deductible region (conservatively defined as $300

in total spending) until the last week before they enter our sample (which starts at $2,000 in

total spending).

We estimate a separate Ph and Qn distribution for each group g. In addition, we allow

the other parameters to vary in three sets: the lowest, highest, and middle six ACG scores.

For each estimation, we lump together health shock types with fewer than 100 prescriptions

filled for the estimation sample over the entire year in a type called “Other.” We also lump

together drugs within a health shock type as “Other” until such point as every drug has at

least 50 prescriptions filled over the entire year.31

Our basic approach to estimation is maximum likelihood with a nested fixed point al-

gorithm: for any parameter vector, we solve for agents’ dynamically optimal decisions, and

then define the likelihood function based on s, the predicted shares at the optimum. The

model is an optimal stopping problem (where stopping indicates a drug purchase) with many

options (where an option is a particular drug). In this way, the problem is similar to Rust

(1987)’s classic paper on optimal stopping and also to more recent work that combines opti-

mal stopping decisions with a multinomial choice (see, for instance, Melnikov, 2013; Hendel

and Nevo, 2006; Gowrisankaran and Rysman, 2012).

Our framework differs from these models in that we do not observe all health shocks: we

only observe health shocks when the individual chooses to purchase a drug rather than the

30Table A3 in Appendix A provides details on the enrollees by group.
31We make these simplifications for computational tractability, since our estimation has fixed effects for

each drug and requires an accurate estimation of the probability of each health shock type.

28



outside option. Moreover, a large part of our identification will come from people choosing not

to purchase drugs as they approach or are in the doughnut hole. Thus, we develop methods

that allow us to integrate in closed form over the shocks at which the individual chooses a

drug, which makes this estimator computationally tractable.32 Appendix B provides details

on the likelihood function.

Finally, note that we estimate over 200 parameters, mostly drug fixed effects φ. It can

be difficult to estimate structural, dynamic models with this many parameters. Fortunately,

with the exception of the discount / salience effects, our estimation is similar to a multinomial

logit model, which has a well-behaved likelihood. We estimate the model by performing a grid

search over β or σ and δ and then using a derivative-based search for all other parameters,

given each value of β or σ and δ.33 Not reported in the paper, we also performed Monte

Carlo simulations to verify the accuracy of the code and power of the estimator.

5.2 Identification

The parameters that we seek to identify from our structural likelihood estimation are the

fixed utility from treatment parameters φ, the price elasticity parameters of α(·), δ, and β or

σ. In dynamic discrete choice models, an exclusion restriction can be used to identify both

δ and choice-specific value functions (Magnac and Thesmar, 2002; Fang and Wang, 2013).

In our case, the variability of drug prices near the doughnut hole provides such an exclusion

restriction. Intuitively, consider the geometric discounting case and suppose that one drug

has a $25 copay and a $100 full price while a second drug has a $10 copay and a $40 full

price. Then, from equation (1), at a state that is m = $20 dollars from the doughnut hole,

there is no insurance subsidy for drug 1 but there is $10 in insurance subsidy for drug 2.

Hence, the utility from purchasing drug 1 is the same as inside the doughnut hole, which

32We also cannot easily use the computationally advantageous conditional choice probability estimators
initially proposed by Hotz and Miller (1993). These estimators rely on observing all serially correlated state
variables, which is not the case in our setting. Specifically, we do not observe the state variable n, which is
the purchase occasion within the week, because we do not observe the outside option purchase. Moreover, a
high n for one drug purchase is positively correlated with a high n for the next drug purchase.

33We also sped up computation by using parallel computation methods and by using the structure of the
problem, where the doughnut hole is an absorbing state without any dynamic behavior, to simplify the value
function calculation.
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provides an exclusion restriction and allows us to identify δ in the geometric model.

In the geometric discounting model, once we have identified δ, we can identify the param-

eters of α(·). This is because the doughnut hole provides variation in prices that is different

across different drugs. Thus, in the above example, the expected discounted utility for drug 2

at m = $20 can be obtained from the above exclusion restriction. The difference in expected

discounted utility for drug 2 at m = $20 relative to at m = $0 then identifies the parameters

of α(·). Finally, the fact that the doughnut hole is modeled as an absorbing state and hence

has no relevant dynamics allows us to identify φ from the market share of a product net of

the price disutility.

Focusing on β or σ, a behavioral economics literature has shown, in a setting where per-

period utility is known, that one can identify β as the ratio of time t tradeoffs between t

and t+ 1 purchases to time t tradeoff between purchases at t+ 1 and t+ 2 (Laibson, 1997).

Analogously, we can identify β or σ using states with two remaining purchase occasions with

an insurance subsidy. The reason for this is that the first of these two purchase occasions

has implications that are two purchase occasions in the future, which implies that there is

a relevant tradeoff between t + 1 and t + 2, while the second occasion only has implications

one purchase in the future.

We offer a formal identification result, which uses the above intuition:

Proposition 3. Let Assumption 1 hold. Assume that there is exactly one health shock

per week, and that there is one health shock type. Assume further that there is sufficient

price variation across drugs such that for some drug k with the lowest out-of-pocket price,

p1, . . . , pJ > oopk, and for some drug l, oopl > oopk. In addition, assume that the price disu-

tility is linear so that α(p) ≡ αp. Finally, assume that the set of drugs that can be purchased

has enough price variation that all states m can be reached. Then, the geometric discounting

model (with full price salience) is identified if δ > 0. Furthermore, each of the three behavioral

models—quasi-hyperbolic discounting näıfs and sophisticates, price salience—is identified if

β or σ, δ > 0 and monotonicity conditions hold.

For tractability, Proposition 3 imposes a number of assumptions—such as the presence of

only one health shock and only one shock per week—but more complex environments should

30



yield more identifying variation. Note also that the proposition did not consider identification

when β or σ = 0, because δ is not identified in this case (since any future state will not affect

current decisions). However, Proposition 3 can be modified to show that, conditioning on δ,

β or σ is identified even when equal to 0. Since δ does not affect behavior with β or σ = 0,

this then shows that β of σ is identified even when equal to 0. Finally, note that we did

not formally consider the identification of the different behavioral models. However, from

our evidence in Section 2, intuitively, the steepness of the slope near the doughnut hole will

identify the different models.

More generally, our identification leverages the heterogeneity of prices across drugs and

health shock types and responses to this heterogeneity. Our overall takeaway is that to iden-

tify discount factors from administrative data such as ours, it is necessary to have variation

in prices across drugs. Moreover, to accurately identify the behavioral parameters, we need

to concurrently identify price elasticity parameters, implying that an accurate specification

of a choice model is important.

6 Structural Estimation Results and Counterfactuals

6.1 Estimation Results

Our structural estimation stratifies the sample of patients in Section 4 by ACG score and

performs the estimation on the three separate samples. For each sample, we estimate the

quasi-hyperbolic discounting model with näıfs and sophisticates and the price salience model.

Table 5 reports results for the middle ACG scores. We find complete myopia or lack of

price salience, that β = 0 for the quasi-hyperbolic discounting models and σ = 0 for the

price salience model. With β = 0, the implications of the näıfs and sophisticates variants are

identical. Since δ is not identified when β or σ = 0, we do not report δ.

We cannot compute a standard error for β or σ given our estimated parameters, because

they are not on the interior of the parameter space. Instead, we performed Lagrange mul-

tiplier tests on the restricted model with fixed δ and β or σ (Newey and McFadden, 1994),

over a grid of these values. We reject all values of β or σ > 0 and δ > 0 that we tested.
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Table 5: Main results of structural estimation

Model: Quasi-hyperbolic Quasi-hyperbolic Price
discounting: discounting: salience

näıfs sophisticates
Price spline < $20 −0.116∗∗ (0.006) −0.116∗∗ (0.006) −0.148∗∗ (0.007)
Price spline ∈ [$20, $50) −0.012∗∗ (0.002) −0.012∗∗ (0.002) −0.014∗∗ (0.002)
Price spline ∈ [$50, $150) −0.013∗∗ (0.001) −0.013∗∗ (0.001) −0.018∗∗ (0.001)
Price spline ≥ $150, −0.006∗∗ (0.001) −0.006∗∗ (0.001) −0.003∗ (0.001)
Behavioral parameter: β or σ 0 (–) 0 (–) 0 (–)
Discount factor: δ – – –
log L −95,594.6 −95,594.6 −95,456.7
log L β or σ = 0.1, δ = 0.1 −95,602.6 −95,602.4 −95,460.4

P-value for LM test 0.00 0.00 0.00
log L β or σ = 0.1, δ = 0.4 −95,604.8 −95,604.5 −95,462.0

P-value for LM test 0.00 0.00 0.00
log L at β or σ = 0.1, δ = 0.995 − 95,619.6 −95,615.7 −95,471.6

P-value for LM test 0.00 0.00 0.00
log L at β or σ = 0.3, δ = 0.995 −95,672.5 −95,663.8 −95,532.9

P-value for LM test 0.00 0.00 0.00
Number of health shock types H 60
Number of drug fixed effects φ 245
N 18,897
Note: Standard errors reported in parentheses are calculated using standard outer product approximations,
treating β, σ and δ as fixed. ‘∗∗’ denotes significance at the 1% level and ‘∗’ at the 5% level. An observation
is an enrollee/week for an enrollee in the base estimation sample and beginning-of-week spending ≥ $2, 000
and < $3, 000, with a middle ACG score. Each column displays the results from the maximum likelihood
estimation for one model. Reported price coefficients are −α(·); all prices affect utility negatively. All
specifications also include fixed effects φ for each drug. LM tests are for the restrictions on β or σ and δ.

Table 5 provides test statistics for selected values of these parameters.

We next turn to model selection. Here we find that the price salience model fits the

data better than the quasi-hyperbolic discounting model, with a log likelihood that is 137.9

points higher. To formally test the two models, because our estimated β and σ parameters

are at the boundary and our two models are partially non-nested, it is difficult to use a test

based on the Kullback-Leibler Information Criterion, as proposed by Vuong (1989). Instead

we construct a test by artificially nesting the two models (see Cameron and Trivedi, 2005,

p. 283). Specifically, we define a new model that is a weighted average of the two models,

with an extra parameter that is the weight on the quasi-hyperbolic discounting model. This

new model nests our two base models as it is equivalent to the quasi-hyperbolic discounting
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(salience) model when the weight parameter is 1 (0). We estimate a weight parameter of

9% quasi-hyperbolic discounting (and 91% salience). Again using a Lagrange multiplier test,

we reject any weight parameter at the 5% significance level if and only if the parameter is

greater than 19%. Thus, this test rejects the quasi-hyperbolic discounting model but does

not reject the salience model.

Figure 5: Fit of quasi-hyperbolic discounting and price salience models near coverage gap
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To provide graphical evidence on the fit of our models, Figure 5 reports mean spending

in the data and from equilibrium simulations of both estimated models. The simulations

use the same empirical distribution of health shocks as does our estimation. The figure

shows that the salience model follows the pattern of relatively constant spending inside the

initial coverage region and a steep drop in spending in weeks that start right before the

doughnut hole. If some groups in our estimation sample were salient about the doughnut

hole prices when in the initial coverage region, we would expect to see the data reflect a

more gradual drop in spending before the doughnut hole than predicted by the estimated

salience model. The salience model also matches the drop in spending at the doughnut hole
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more closely than the quasi-hyperbolic discounting model.34 Finally, the estimated quasi-

hyperbolic discounting model predicts too early a spending decline from the doughnut hole.

Given the estimated value of β = 0, this early decline is exclusively caused by health shocks

with expensive prescriptions and weeks with multiple health shocks, rather than by forward-

looking behavior by enrollees.

Table A4 in Appendix A reports results for other ACG scores, which are very similar to

the base results.35 Overall, our estimates of σ = 0 imply that enrollees in the initial coverage

region were not taking into account the fact that they will face doughnut hole prices in the

future when making their drug purchase decisions in the initial coverage region.

Finally, we turn to our estimates of the price spline coefficients. These coefficients are

all negative and statistically significant, implying that enrollees value price negatively at all

ranges for all three models. However, it appears that enrollees care far less about price for

higher-priced drugs than for lower-priced ones. In order to further understand our price

coefficients, we used our estimated parameters to simulate the impact of a 1% increase in all

drug prices and out-of-pocket prices on the expected number of drugs purchased by enrollees

in our sample over the entire year 2008. We find that the 1% price increase would lead to

a 0.54% decrease in the base-price-weighted number of drugs purchased in 2008 for enrollees

in our estimation sample. Comparing our elasticity of −0.54 to analogous numbers from the

literature,36 Abaluck et al. (2015) estimate a Medicare Part D elasticity of −0.09, Einav et al.

(2015) estimate −0.50, and Ketcham and Simon (2008) estimate −0.22. Karaca-Mandic et al.

(2013) estimate an elasticity of adherence for statin drugs of −0.95.

Thus, our elasticity numbers are in the middle of the range reported by the literature.

Since overly small estimated price coefficients may lead to overly low estimated β or σ in

34Mean weekly spending in the data drops by 23.7% in the [$2,510, $3,000) region relative to the [$2,000,
$2,400) region in the data, compared with 18.2% for the estimated salience model and only 12.9% for the
estimated quasi-hyperbolic discounting model. Thus, while both models underpredict the drop, the salience
model fits much better. The salience model also fits better on many other moments that we examined, such
as the drop in the number of expensive prescriptions.

35Not reported in the paper, we also estimated the model with stratification both by ACG score and by
whether the patient had purchased an insulin sensitizer or cholesterol-lowering drug. The results are similar
across these groups, suggesting that our assumptions on the arrival of disease shocks are not overly influencing
our results.

36Using the nationally representative sample described in Section 6.2 below, we find an elasticity of −0.38.
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order to explain the drop in spending at the doughnut hole, this also adds to credibility that

our estimated values of β and σ are not too low.

6.2 Counterfactuals

We now consider counterfactuals as to enrollee preferences and insurance environments. We

use enrollees and estimates for the price salience model and the middle ACG scores (the last

column of Table 5), but the results are very similar across ACG scores.

Our counterfactuals modify our structural estimation framework in two ways. First, since

our estimation sample pertains to a selected set of enrollees who reached a high spending

level early in the year, we create a nationally representative sample by taking a convex

combination of enrollees in our estimation sample and enrollees in the same plans who are

not in our estimation sample. The combination is chosen so that 33% of enrollees reach

the coverage gap after 52 weeks, the same as the aggregate figure for 2008.37 Second, we

compute a 52-week model, where we model both the doughnut hole and the catastrophic

coverage region, instead of an infinite horizon model with the doughnut hole as an absorbing

state. The reason is that individuals in counterfactual environments may frequently not reach

the doughnut hole, unlike in our base estimation.

We start by examining the relative importance of behavioral hazard to drug insurance.

Here, behavioral hazard is the extent to which the lack of salience about future drug prices

affects purchase decisions.38 To quantify behavioral hazard, we compare the baseline Part

D program to the benchmark model, which we define here as geometric discounting with

δ = 0.999 at the weekly level (or 0.95 at an annual level). We examine the importance of

drug insurance by comparing the baseline to the case without insurance. All cases report

enrollee welfare using σ = 1 and an annualized 95% discount factor.39

37Our counterfactual sample draws 31.8% from our estimation sample, with the remainder from other
enrollees. For each ACG score, we estimate different distributions for the parameters on having a health
shocks (Qn) and on health shock type probabilities (Ph) for the estimation and non-estimation samples.

38This is a relatively simple view of the potential behavioral hazard present here, focusing only on over-
consumption of drugs, and not on substitution to non-pharmaceutical spending.

39Note that there is no one definition of welfare in models with behavioral hazard. Moreover, our welfare
effects do not account for substitute therapies to drugs. For these reasons, we report, but do not focus on,
welfare effects.
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Table 6: Relative impact of behavioral hazard and drug insurance

Statistic Baseline: σ = 0 Benchmark No drug
(per week) future model (no insurance

not salient behavioral hazard)
Case 1 Case 2 Case 3

Number of Rxs 0.59 0.57 0.42
Number of branded Rxs 0.16 0.13 0.11
Number of generic Rxs 0.35 0.38 0.25
Expensive Rxs 0.08 0.06 0.05
Medium Rxs 0.17 0.15 0.13
Inexpensive Rxs 0.33 0.36 0.25
Enrollee spending ($) 15.82 10.91 26.61
Insurer spending ($) 25.39 24.17 0.00
Total spending ($) 41.20 35.08 26.61
Enrollee welfare 1.21 1.27 0.63
Note: Simulations use estimated parameters from Table 5 column 3. Inexpensive Rxs are less than $50
and expensive ones are $150 or more. Simulations are performed for 52 weeks starting enrollees at $0 in
expenditures and use a mix of the estimation sample and other enrollees in same plans so that 33% reach
the doughnut hole in the base case. Geometric discounting case uses an annualized discount factor of 95%.

The results, in Table 6, show that the benchmark model (Case 2) would cause a 31% drop

in weekly enrollee prescription drug spending and a 15% drop in total drug expenditures rel-

ative to our estimated baseline with σ = 0 (Case 1). However, there is little difference in

the number of prescriptions drugs between the two scenarios. Instead, there is a significant

change in the composition of drugs consumed. There is a 25% drop in prescriptions for ex-

pensive drugs with substitution towards the most inexpensive. This substitution effect is also

apparent in the increase in the number of generic drugs under the benchmark model. Inter-

estingly, there is a small decrease in insurer expenditures in moving to geometric discounting,

as enrollees substitute to drugs which are cheaper for themselves and also for the insurers.

Comparing the baseline to the case without insurance (Case 3), we find that eliminating drug

insurance would cause drug expenditures to drop by 35%. Thus, both behavioral hazard and

drug insurance are important in affecting drug spending.

We now examine the implications of counterfactual policies regarding eliminating the

doughnut hole. Table 7 presents the results of the baseline (Policy 1) and three counterfactual

policies. Policy 2 extends the initial coverage region out-of-pocket prices to the doughnut
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Table 7: Impact of filling the doughnut hole

Statistic Baseline: σ = 0 No doughnut No doughnut hole No doughnut
(per week) future not hole with constant hole for

salient insurer spending generics only
Policy 1 Policy 2 Policy 3 Policy 4

Number of Rxs 0.59 0.63 0.62 0.61
Number of branded Rxs 0.16 0.18 0.17 0.16
Number of generic Rxs 0.35 0.37 0.37 0.39
Expensive Rxs 0.08 0.10 0.08 0.08
Medium Rxs 0.17 0.18 0.16 0.17
Inexpensive Rxs 0.33 0.35 0.38 0.36
Enrollee spending ($) 15.71 12.83 14.88 14.25
Insurer spending ($) 25.55 32.49 25.55 27.23
Total spending ($) 41.26 45.32 40.43 41.48
Enrollee welfare 1.21 1.35 1.31 1.29
Coinsurance rate from data from data 37% from data
Note: Simulations use estimated parameters from Table 5 column 3. Inexpensive Rxs are less than $50
and expensive ones are $150 or more. Simulations are performed for 52 weeks starting enrollees at $0 in
expenditures and use a mix of the estimation sample and other enrollees in same plans so that 33% reach
the doughnut hole in the base case.

hole. Policy 3 also eliminates the doughnut hole but leaves insurance spending constant by

setting the coinsurance to a constant fraction of the total price of the drug. Finally, Policy

4 removes the doughnut hole for generics only.

We find that removing the doughnut hole (Policy 2) results in the total number of pre-

scriptions increasing 7% and total drug spending increasing 10%. Insurer drug spending

would increase 27%. Enrollees would consume more drugs and more expensive drugs. Einav

et al. (2015) also estimate that removing the doughnut hole will increase pharmaceutical

spending 10%, while Abaluck et al. (2015) estimate that figure to be 6%.

It is important to evaluate what might be the overall health consequences of removing the

doughnut hole. We can provide some back-of-the-envelope calculations using Chandra et al.

(2010), who estimate substitution between drug utilization and inpatient hospitalization.

Applying these estimates to the increase in drug consumption under Policy 2 implies that

inpatient hospital admissions would decrease by 1.8% by eliminating the doughnut hole.40

40Chandra et al. (2010) find that a drug use drop of 18.2% leads to an increase in hospitalizations of 5.4%.
We derive our result by applying the resulting elasticity of 0.27 to our 6.8% increase in drug utilization.
Our calculation assumes that all the offset in Chandra et al. (2010) is attributable to the decline in drug
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Under a linear contract with the same insurer cost (Policy 3), enrollees would face a

37% coinsurance rate. This is significantly higher than the current average 25% coinsurance.

Enrollees would consume more drugs but fewer expensive ones than in the baseline as the

lack of price salience is no longer relevant since the contract is not dynamic. Not shown in the

table, this contract also lowers the expected standard deviation of enrollee spending, to $548

relative to $625 under Policy 1. Finally, Policy 4, removing the doughnut hole for generics,

yields a 9% decrease in enrollee spending and a 7% increase in insurer spending relative to

the baseline. The end effect is that total spending is almost the same as in the baseline, as

enrollees substitute to generic drugs and away from branded drugs.

7 Conclusion

The Medicare Part D program established an important prescription drug benefit, but one

that required enrollees interested in optimizing their drug purchases to calculate an inher-

ently dynamic problem, due to the coverage gap. We develop a dynamic behavioral modeling

framework for complex insurance contracts which allows for quasi-hyperbolic discounting and

price salience. Using the framework we provide a discontinuity-based test of the benchmark

model, with a geometric discount factor close to 1 and no quasi-hyperbolic discounting or

price salience. A central challenge of estimating the impact of dynamic incentives on con-

sumer behavior is selection: individuals compared across different settings may be different

in dimensions that are often unobservable. Our test is based on examining how individuals

who arrive near the doughnut hole early in the year change their behavior upon reaching

the doughnut hole. It avoids selection issues by considering how a given enrollee changes her

behavior within a relatively small time period.

We find strong evidence against the benchmark model. Enrollees lower their prescription

drug purchases upon reaching the doughnut hole, with a disproportionate drop for branded

drugs and drugs that cost over $150. Moreover, the data can reject a geometric discounting

model with a low but positive discount factor because spending is flat in a region before

the doughnut hole. Having established evidence against the geometric discounting model, we

consumption and not the decline in outpatient visits.
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turn to structurally estimating the parameters of our model. Our modeling framework builds

on standard industrial organization choice models, with a multinomial choice problem where

enrollees face a health shock of a random type. Each health shock type requires treatment

by a one of a particular set of drugs. The enrollee thus chooses to purchase one of the drugs

in that set or the outside option. The price elasticity parameters are separately identified

from the geometric discount factor and the behavioral parameter by the fact that different

drugs have different prices.

We find that enrollees have significant price elasticities. We also reject the quasi-hyperbolic

discounting in favor of the price salience model. Finally, we find that future prices are not

at all salient. This suggests that policies to make doughnut hole prices more salient in

consumers’ drug purchase decisions in the initial coverage region would add value.

Our structural estimation approach has several limitations. We do not allow for any

medical dynamics to treatment; we do not measure substitute therapies to drugs; we do not

model imperfect physician agency; and our arrival process for diseases is relatively simple.

Nonetheless, we believe that our structural results are reasonable, given that our estimated

model matches data moments reasonably well.

Last, we examine the impact of counterfactual preferences and policies. We find that

closing the doughnut hole would raise total spending 10% or necessitate a 37% coinsurance

for budget balancing. Doughnut hole coverage for generics only would be much less expensive.
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Appendix A: Extra Figures and Tables

Table A1: Most common drugs in base estimation sample

Drug Health Bran- Total Out of pocket Number %
name shock type red price ($) price ($) of Rxs of obs.
Lisinopril Renin-

Angiotensin
System Blocker

N 18.28 9.75 709 3.1

Metoprolol Beta-Blocker N 29.11 10.07 629 2.7
Simvastatin Cholesterol-

Lowering
N 32.57 11.14 629 2.7

Hydrocodon Opioid N 21.44 7.88 609 2.7
Plavix Antiplatelet Y 169.55 40.47 594 2.6
Furosemide Diuretic N 8.16 6.79 575 2.5
Levothyroxine Hypothyroidism N 11.38 9.16 549 2.4
Metformin Insulin Sensitizer N 23.86 9.50 514 2.2
Amlodipine Calcium Channel

Blocker
N 52.16 10.93 496 2.2

Warfarin Anticoagulant N 16.21 8.50 339 1.5
Note: Reported total prices and out-of-pocket prices derived from authors’ calculations.
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Figure A1: Spending near catastrophic coverage start for base estimation sample
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Note: Figure is based on plans in estimation sample, using enrollees who start a week with between $3,550
and $4,050 in out-of-pocket spending between Mar. 30 and Jul. 20, 2008.
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Figure A2: Spending near $2,510 for falsification Plan F
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Note: Figure is based on analog to base estimation sample for plan F.

Figure A3: Histogram of total year drug spending for base estimation and full samples

0
5.

0e
-0

4
.0

01
D

en
si

ty

1000 1500 2000 2500 3000 3500 4000
Total spending

End-of-year spending, full sample

0
5.

0e
-0

4
.0

01
D

en
si

ty

1000 1500 2000 2500 3000 3500 4000
Total spending

End-of-year spending, estimation sample

45



Figure A4: Information provided to Part D enrollees on distance to doughnut hole
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Table A2: Health shock types with largest and smallest spending changes near coverage gap

Dependent variable Mean value Beginning of week
Number of Rxs for: before $2,400 spending in: N

$2,510 - 2,999
Cholesterol-Lowering 0.081 −0.0177∗∗ (0.0034) 28,543
Beta-Blocker 0.046 −0.0135∗∗ (0.0023) 28,543
Gastroesophageal Reflux & Pep-
tic Ulcer

0.032 −0.0130∗∗ (0.0022) 28,543

Renin-Angiotensin System
Blocker

0.065 −0.0120∗∗ (0.0029) 28,543

Antidepressant 0.045 −0.0102∗∗ (0.0024) 28,543

Anti-Glaucoma 0.010 0.0001 (0.0014) 28,543
Antidiarrheal 0.001 0.0002 (0.0004) 28,543
Diuretic & Renin-Angiotensin
System Blocker

0.002 0.0003 (0.0005) 28,543

Folic Acid Antagonist Antibiotic 0.003 0.0005 (0.0008) 28,543
Antiarrhythmic 0.002 0.0007 (0.0005) 28,543
Note: Standard errors in parentheses. ‘∗∗’ denotes significance at the 1% level and ‘∗’ at the 5% level.
Each row represents one regression. All regressions also include enrollee fixed effects and an indicator for
beginning-of-week spending between $2,400 and $2,509, and cluster standard errors at the enrollee level.
An observation is an enrollee/week for an enrollee in the base estimation sample and beginning-of-week
spending ≥ $2, 000 and < $3, 000. Inexpensive Rxs are less than $50 and expensive ones are $150 or more.

Table A3: ACG scores by base estimation sample status

ACG Enrollees in Enrollees not Maximum number Used in
score base sample in base sample of health shocks, N which estimator
0.000 3,287 296 8 Lowest ACG score
0.024 878 71 8 Middle ACG scores
0.260 2,265 203 8 Middle ACG scores
0.970 1,699 100 8 Middle ACG scores
1.043 3,192 207 8 Middle ACG scores
1.541 9,008 574 8 Middle ACG scores
1.753 2,659 167 8 Middle ACG scores
2.251 7,413 444 8 Highest ACG score
Note: Our data contain only the 8 discrete ACG scores listed above.
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Table A4: Robustness results of structural estimation: lowest and highest ACG scores

Estimation sample: Lowest ACG Lowest ACG Highest ACG Highest ACG
Model Sophisticates Price Sophisticates Price

salience salience
Price < $20 −0.101∗∗ −0.122∗∗ −0.141∗∗ −0.193∗∗

(0.011) (0.012) (0.014) (0.018)
Price ∈ [$20, $50) −0.015∗∗ −0.022∗∗ −0.025∗∗ −0.030∗∗

(0.004) (0.004) (0.005) (0.005)
Price ∈ [$50, $150) −0.014∗∗ −0.017∗∗ −0.017∗∗ −0.023∗∗

(0.002) (0.002) (0.002) (0.002)
Price ≥ $150 −0.003 0.002 −0.002 0.002

(0.004) (0.004) (0.003) (0.002)
Behavioral β or σ 0 0 0 0

– – – –
δ – – –
log L −27,244.4 −27,220.7 −19,558.9 −19,504.9
# health shock types 37 37 31 31
# drug FEs 120 120 94 94
N 4,692 4,692 4,958 4,958
Note: Standard errors reported in parentheses do not account for variance in β or σ or δ. ‘∗∗’ denotes
significance at the 1% level and ‘∗’ at the 5% level. An observation is an enrollee/week for an enrollee in
the base estimation sample and beginning-of-week spending ≥ $2, 000 and < $3, 000, with a middle ACG
score. Each column displays the results from the maximum likelihood estimation for one model. Reported
price coefficients are −α(·); all prices affect utility negatively. All specifications also include fixed effects φ
for each drug.
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Appendix B: Details of Dynamic Optimization Problems

and Likelihood Function

We now exposit the enrollee’s dynamic optimization problem, starting with the quasi-hyperbolic
discounting model for sophisticates. Define the ex ante state (m,n) to be the state before
the current health shock or ~ε are realized. We define the value function, V (m,n), to be a
function of the ex ante state. V (m,n) is the value gross of β, with m dollars remaining until
the doughnut hole and at the point in time where n health shocks have already occurred this
week but before it is known whether the n + 1th health shock will exist or what it will be.
Using the value function, we can specify enrollee optimization. For any state (m,n, h, ~ε), the
enrollee’s expected perceived utility from choice j ∈ {0, . . . , Jh} can be written as:

uj(m,n, h) + εhj ≡ φhj −α(peff (m, phj, oophj))− ch + βV (max{m− phj, 0}, n+ 1) + εhj.
(4)

Equation (4) states that the value of a choice is given by the current flow utility (the first,
second, third, and fifth terms) plus the future value (the fourth term). The fourth term
shows that the dynamic effect is that the purchase of drug j moves the individual closer to
the doughnut hole by phj dollars. But, because the enrollee is a quasi-hyperbolic discounter,
this term is discounted with factor β. We combine the first three terms of (4) into the mean
utility, defined as uj(m,n, h).

We now consider s(m,n, h, j), the ex ante purchase probability at each state. Because the
drug choice problem is equivalent to a standard logistic utility with mean utility uj(m,n, h),
s(m,n, h, j) takes on a standard logit functional form:

s(m,n, h, j) =
exp(uj(m,n, h))∑Jh
k=0 exp(uk(m,n, h))

. (5)

Finally, we exposit the value function:

V (m,n) = (1−Qn)δV (m, 0) +Qn

H∑
h=1

Ph

Jh∑
j=0

s(m,n, h, j)×[
φhj − α(peff (m, phj, oophj)− ch) + V (max{m− phj, 0}, n+ 1)− log s(m,n, h, j) + γ

]
, (6)

where γ is Euler’s constant. Equation (6) evaluates, in turn, the two possibilities ex ante to
the health shock realization: first, that there are no more health shocks in the week (which
occurs with probability 1−Qn), and second, that there are more health shocks (which occurs
with probability Qn). In the second case, the equation sums the utility over health shock
types. Here, we cannot use the standard logit expression for utility because the individual
is not necessarily making the optimizing choice given geometric discounting. The first three
terms on the second line of (6) account for the expected future utility gross of εhj. The final
terms, − log s(m,n, h, j)+γ, account for the expectation of εhj conditional on choice j (Hotz
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and Miller, 1993).
The quasi-hyperbolic näıfs case is slightly different. Here, the enrollee perceives that she

will act as a geometric discounter in the future. Hence, we can rewrite the Bellman equation,
which is used to account for perceived future behavior, in its standard geometric (geo) form:

V geo(m,n) = (1−Qn)δV (m, 0) +Qn

H∑
h=1

Ph×(
γ + log

[
Jh∑
j=0

exp
(
φhj + α(peff (m, phj, oophj)− ch) + V geo(max{m− phj, 0}, n+ 1)

)])
.

(7)

The näıf enrollee will make choices with a utility function analogous to uj(m,n, h) in (4),
but using V geo instead of V for future valuations.

The equations underlying behavior for the price salience model are analogous to those
in the sophisticates quasi-hyperbolic discounting model, but with effective prices from (2)
instead of (1). Using this peff and substituting σ for β, the same equations define uj(m,n, h),
s(m,n, h, j) and V (m,n) for the salience model as for the sophisticates model. Note that σ
takes the place of β because the enrollee assesses probability σ of there being a price change
in the future, while with probability 1 − σ, there are no expected perceived future price
changes. This is quite similar to weighting the future with quasi-hyperbolic discount factor
β.

We now define the likelihood. Let g(i) denote the group of individual i and now index
terms by group g, so that we have Qgn, Ng, Pgh, and s(g,m, n, h, j) respectively. For each
person/week observation it, let Nit denote the number of health shocks. For n = 1, . . . , Nit,
let mitn denote the value of m, the dollars till the doughnut hole; hitn ∈ {1, . . . , H} denote
the realization of the health shock; and jitn ∈ {0, . . . , Jh} denote the drug chosen.

We first explain what our likelihood would be if we observed outside option choices, and
then explain how the likelihood is different based on not observing the outside option. If
all health events were observable, then Nit, hitn, jitn, and mitn would all be observable. We
could then write the log likelihood for individual i at week t as:

logLit =

Nit∑
n=0

log
(
1{n = Nit}(1−Qg(i)n) + 1{n < Nit}Qg(i)nPg(i)hitn+1

s(g(i),mitn+1, n+ 1, hitn+1, jitn+1)
)
.
(8)

In words, the log likelihood for an observation can be broken down into a sum across health
shocks n. For each n (starting at 0), there are two possibilities: an additional health shock
occurrence or none. If there is an additional health shock what matters is the probability of
seeing the additional shock multiplied by the conditional probability of the observed shock
(given that one is observed) and the conditional probability of the drug chosen for that shock
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(given the observed shock). If there is no additional shock, then the likelihood is simply the
probability of seeing no more shocks.

We now consider the likelihood accounting for the fact that we only observe health shocks
when the individual purchases an inside good instead of the outside option. The likelihood is
the sum of the likelihood conditional on a configuration of outside option purchases (which
is given by equation 8) times the probability of each outside option purchase configuration.

We illustrate with an example. Consider an enrollee/week observation with 2 purchased
drugs, with A being purchased before B, where the enrollee has a maximum of 4 health shocks
in a period. The drug purchases could occur at the following health shocks (with A being
before B always): ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)). If the last drug purchase is at shock
4, the total number of health shocks must be 4, yielding three configurations. If the last drug
purchase is at shock 3, the total number could be 3 or 4, yielding four configurations. Finally,
if the last drug purchase is at shock 2, then the total number could be 2, 3, or 4, yielding
three configurations. The likelihood sums the probability of the observed data conditional
on each of these 10 outside good configurations times the probability of each outside good
configuration.

Formally, let N̂it denote the number of health shocks where the purchase included an
inside good. Let litn, n = 1, . . . N̂it denote the places of each health shock, with 1 ≤ lit1 <
· · · < litN̂it

≤ Ng(i). Let L(N̂ ,N) denote the set of possible vectors of places when there

are N̂ health shocks with an inside good purchase and N possible purchase occasions; e.g.
L(2, 4) has six elements as listed above. Then, the log likelihood is:

logLit = log

 ∑
l1,...,lN̂it

∈L(N̂it,N)

Ng(i)∑
Nit=lN̂it

(
Nit−1∏
n=0

Qg(i)n

)
(1−Qg(i)Nit

)

N̂it∏
n=1

Pg(i)hitn
s (g(i),mitn, ln, hitn, jitn)

)
Nit∏

n=1,n6=l1,...,n6=lN̂it

(
H∑

h=1

Pg(i)hs

(
g(i), min

ñ s.t. lñ<n
mitñ, n, h, 0

)) . (9)

In words, the first line of (9) represents the double sum over the possible places of each health
shock (l) and the number of health shocks (Ng(i)), and, for each case, lists the probability
of observing that many health shocks. The second line provides the probabilities of seeing
the drugs chosen for the health shocks with observed drug choices, where the places of the
drug shocks show up through ln. The third line is the probability of seeing an outside option
chosen at each place without a drug purchase, where the dollar amount until the doughnut
hole m is simply the dollar amount from the most recent drug purchase (which is also the
minimum dollar amount across previous purchases). Note that equation (9) is similar to the
earlier likelihood in equation (8) but with two main differences: first, it integrates over the
places of each observed shock, the total number of health shocks, and the health shock type
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with the outside option chosen; and second, it combines all health shocks in a week because
they are no longer separable given the unknown places and number of shocks.

The advantage of our formulation in (9) is that it derives the likelihood in closed form
conditional on any set of health shock occurrences L(N̂it, N). By solving for the likelihood
in closed form, we eliminate the need for simulation which improves the efficiency and com-
putational time required to estimate our model.

The remaining challenge is in enumerating the elements of L(N̂it, N). We now describe our
method in more detail, which follows Gowrisankaran (1999) closely. For brevity of notation,
we now suppress the dependence of variables on individual i, group g, or time t. Recall
that each element in L(N̂ ,N) corresponds to one vector of places for the health shocks with
inside good purchases when there are N̂ health shocks with inside good purchases and N is
the maximum number of health shocks. For instance, if N = 8 and N̂ = 3, an element of
L(N̂ ,N) is (1, 5, 8).

As in Gowrisankaran (1999), let o(·) denote the number of elements in a set. Using a
similar proof structure to Gowrisankaran (1999) Theorem 1, we offer the following:

Proposition A1. Using induction, the number of elements in L(N̂ ,N) can be described as
follows:

Base case 1: N̂ = 1. o(L(1, N)) = N .
Base case 2: N̂ = N . o(L(N,N)) = 1.
Inductive case: 1 < N̂ < N . o(L(N̂ ,N)) = o(L(N̂ ,N − 1)) + o(L(N̂ − 1, N − 1)).

Proof We split the proof into assertions of the base cases and the inductive case.
Base case 1: L(1, N) enumerates all possible places for the single health shock with an

inside good purchase. This single health shock can occur at any of the purchase occasions
between 1 and N . There are thus N possible places.

Base case 2: Here L(N,N) represents all possible place vectors for the inside good pur-
chases when the number of inside good purchases is equal to the maximum number of purchase
occasions. Here, each purchase occasion must be used for an inside good purchase. Thus,
the unique place vector is (1, . . . , N), which gives o(L(1, N)) = 1.

Inductive case: Assume by induction that the theorem holds for all cases with maximum
number of purchase occasions less than N and also for the (N,N) case. We now prove that
it holds for the (N̂ ,N) case by induction, where 1 < N̂ < N .

We divide the possible place vectors into two exhaustive and mutually exclusive cases.
Either the Nth health shock has no inside good purchase or it has one. Suppose first that it
has none. Then, all the N̂ inside good health shocks must occur at the first N −1 places. By
the inductive assumption, there are o(L(N̂ ,N − 1)) possible place vectors that satisfy this
criterion. Now suppose that the last place contains the last inside good purchase. Then the
N̂−1 earlier inside good purchases must occur sometime during the first N−1 places. Again
by the inductive assumption, there are o(L(N̂ − 1, N − 1)) possible place vectors that satisfy
this vector. Adding up the number of elements in both cases, we have proven the inductive
case. �

Note that the inductive formula in Proposition A1 is the same as the inductive formula
that defines binomial coefficients. Hence, we could also write L(N̂ ,N) = Binom(N +1, N̂) ≡
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(N+1)!

(N̂)!(N+1−N̂)!
. Finally, note that Gowrisankaran (1999) Theorem 2 provides a computation-

ally efficient method for enumerating and accessing individual elements of L(N̂ ,N). The
analogous method works here and hence we use the method from that paper here also.
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Appendix C: Proofs of Propositions

Proof of Proposition 1 Our proof imposes Assumption 1 and hence allows us to use the
infinite horizon problem modeled in Section 2.3. For further tractability, we analyze a
model with two additional assumptions (but show that our results are still valid without
these additional assumptions). First, we assume an underlying cost of illness of ch = γ +

log
(

1 +
∑Jh

j=1 exp(φhj − α× p)
)

. With this assumption, the expected flow utility from op-

timizing behavior when inside the doughnut hole is exactly equal to the illness cost, which
will render the value function 0 inside the doughnut hole. This then avoids the possibility of
payoffs being infinite, which can occur since we consider δ = 1. Since the value of ch does not
affect enrollee choices and Proposition 1 exclusively concerns enrollee choices, the proposition
is valid for other choices of ch. Second, we specify that there is exactly one health shock per
week. A simple manipulation of (7) shows that, when δ = 1, any V geo that is a solution with
this assumption is a solution without the assumption, thus showing that our results apply
without this assumption. Intuitively, this result holds because with the infinite horizon and
the absence of discounting, the number of health shocks in a week is irrelevant. Employing
this second assumption, we ease notation by removing n from the state space.

We now claim that V geo with these assumptions has the following functional form:

V geo(m) = α

(⌊
m

p

⌋
(p− oop) + max {0,m%p− oop}

)
, (10)

where “b·c” is the floor function and “%” is the remainder function. In (10), V geo(m) is equal
to the marginal utility of money multiplied by the remaining maximum insurance amount,
which essentially implies that the insurance coverage does not bias benchmark agents away

from their optimal decisions. On the first
⌊
m
p

⌋
drugs, the enrollee receives a subsidy of

(p− oop) with a smaller, possibly zero subsidy on the next drug, and no subsidy thereafter.
The complication in the expression, e.g., as reflected in the second term, is only due to the
fact that the drug price does not necessarily divide by the initial coverage amount equally
and, on the last insured drug, the enrollee pays her out-of-pocket cost before the insurance
coverage starts. Finally, note that, as defined here, V geo(0) = 0.

We now verify our claim that V geo satisfies (10) by showing that the Bellman operator,
T (V geo), defined here by:

T (V geo)(m) =
H∑

h=1

Ph

(
γ+

log

[
exp(V geo(m)) +

Jh∑
j=1

exp
(
φhj − αpeff (m, p, oop) + V geo(max{m− p, 0})

)]
− ch

)
, (11)

will have as its value a function equal to (10) when its argument is the same.
We divide our analysis of (11) into three sets of ex ante states. First, we consider all
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states V geo(m), 0 ≤ m ≤ oop, i.e., all states with no future insurance value including the
doughnut hole state. For these states, V geo is zero for the state reached from m following
any choice. Further, note that, in this case, peff (m, phj, oophj) = p. Substituting these values
into (11), we obtain:

T (V geo)(m) =
H∑

h=1

Ph

(
γ + log

[
1 +

Jh∑
j=1

exp (φhj − α× p)

]
− ch

)
= 0,

if 0 ≤ m ≤ oop.
Second, we consider all states V geo(m) with oop < m ≤ p. Here, the remaining insurance

amount is m − oop, V geo(m) = α(m − oop), and the current out-of-pocket payment is p −
m + oop. Thus, the future value is zero upon choosing an inside option; it remains m− oop
with the outside option choice. Substituting these values into (11), we obtain:

T (V geo)(m) =

H∑
h=1

Ph

(
γ + log

[
exp(α(m− oop)) +

Jh∑
j=1

exp (φhj − α(p−m+ oop))

]
− ch

)

= α(m− oop) +
H∑

h=1

Ph

(
γ + log

[
1 +

Jh∑
j=1

exp (φhj − α× p)

]
− ch

)
= α(m− oop),

if oop < m ≤ p.
Finally, we consider all states V geo(m) with m > p. The remaining insurance amount

is ι ≡ α
⌊
m
p

⌋
(p − oop) + max {0,m%p− oop}, V geo(m) = αι, and the current out-of-pocket

payment is oop. Thus, the future value is α(ι − p + oop) upon choosing an inside option; it
remains αι with the outside option choice. Substituting these values into (11), we obtain:

T (V geo)(m) =

H∑
h=1

Ph

(
γ + log

[
exp(αι) +

Jh∑
j=1

exp (φhj − α(oop+ ι+ p− oop))

]
− ch

)

= αι+
H∑

h=1

Ph

(
γ + log

[
1 +

Jh∑
j=1

exp (φhj − α× p)

]
− ch

)
= αι,

if m > p.
Thus, for all cases, T (V geo) = V geo, where V geo is defined using (10). Applying the

standard contraction mapping approach to dynamic programming theory (Stokey et al.,
1989), (10) is accurate. Note that the mean utility function from (13) specializes to:

uj(m,h) = φhj − αpeff (m, p, oop)− ch + V geo (max{m− p, 0}) , (12)
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for all j = 1, . . . , Jh and all h. Similarly, u0(m,h) = −ch + V geo(m) for all h. Substituting
from (10), uj(m,h)− u0(m,h) = φhj − α× p for all j = 1, . . . , Jh and each of the three cases
considered above. Thus, s(m,h, j) = s(m′, h, j) for all m,m′, h, j. �

Proof of Proposition 2 Our proof again imposes Assumption 1. We also again use ch =

γ + log
(

1 +
∑Jh

j=1 exp(φhj − α× p)
)

and specify that there is exactly one health shock per

week. Note that the sophisticates and price salience models use V and not V geo. Similarly
to Proposition 1, if δ = 1, a simple manipulation of (6) shows that any solution to V with
the one health shock assumption is a solution without the assumption. While uniqueness
does not follow from standard dynamic programming theory, our assumption that there is a
unique solution to V further ensures that this is the only solution to the model without the
assumption. Thus, our results are again valid without these additional assumptions.

We first prove part (a) of the proposition. Across the three models, uj deviates from the
benchmark model only in inclusion of the V or V geo term. But, the future state is always
the same, m = 0, and hence current choices are unaffected by this term. Hence, the enrollee
solves the statically optimal policy, exactly as in Proposition 1.

We now prove part (b) for the quasi-hyperbolic discounting näıfs model case. As in
(7), näıfs believe that they will act as benchmark optimizers from next period on. Thus,
specializing to our case, the näıf enrollee will have:

uj(m,h) = φhj − αpeff (m, p, oop) + βV geo (max{m− p, 0})− ch, (13)

for all j = 0, . . . , Jh and all h and where V geo is defined in (10). Applying (10), uj(m,h) −
u0(m,h) = φhj − α(oop + β(p − oop)) for all m,m′ ≥ p, h, and j = 1, . . . , Jh. This implies
that s(m,h, j) = s(m′, h, j) for all h, j and m,m′ ≥ p. Since oop+ β(p− oop) < p for β < 1,
s(m,h, j) > s(0, h, j) for m ≥ p, h, and j = 1, . . . , Jh.

We now prove part (b) for the quasi-hyperbolic discounting sophisticates and price salience
model. For ease of notation, let p̃(m) = peff (m, p, oop), m̃(m) = max{m − p, 0}, V(m) =
V (m) − V (m̃(m)), and xhj(m) = exp(φhj − αp̃(m)), for all h and j = 1, . . . , Jh. Note that
the price salience and sophisticates models are mathematically identical except for a different
p̃(m) (when 0 < m < p) and the use of β instead of σ. In our exposition below, we will use
β but the proof would apply equally well to the price salience model with the substitution of
σ.

First, note that uj(m,h) = φhj −αp̃(m)− ch +βV (m̃(m)), for all h and j = 1, . . . Jh, and
u0(m,h) = −ch + βV (m), for all h. Thus, for all h and j = 1, . . . Jh,

s(m,h, j) =
exp(φhj − αp̃(m))

exp(β(V (m)− V (m̃(m)))) +
∑Jh

k=1 exp(φhk − αp̃(m))

=
xhj(m)

exp(βV(m)) +
∑Jh

k=1 xhk(m)
. (14)
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Similarly, for all h,

s(m,h, 0) =
exp(βV(m))

exp(βV(m)) +
∑Jh

k=1 xhk(m)
. (15)

Now, specializing the value function (6) to the case of the proposition and separating out the
outside option, we can write:

V (m) =
H∑

h=1

Ph

(
γ − ch + s(m,h, 0) [V (m)− log (s(m,h, 0))]

+

Jh∑
j=1

s(m,h, j) [φhj − αp̃(m) + V (m̃(m))− log (s(m,h, j))]
)

⇒ V (m)− V (m̃(m)) =
H∑

h=1

Ph

(
γ − ch + s(m,h, 0) [V (m)− V (m̃(m))− log (s(m,h, 0))]

+

Jh∑
j=1

s(m,h, j) [φhj − αp̃(m)− log (s(m,h, j))]
)
,

⇒ V(m) =

H∑
h=1

Ph

(
γ − ch +

exp(βV(m))

exp(βV(m)) +
∑Jh

k=1 xhk(m)

[
V(m)− log

(
exp(βV(m))

exp(βV(m)) +
∑Jh

k=1 xhk(m)

)]

+

Jh∑
j=1

xhj(m)

exp(βV(m)) +
∑Jh

k=1 xhk(m)

[
φhj − αp̃(m)− log

(
xhj(m)

exp(βV(m)) +
∑Jh

k=1 xhk(m)

)])
,

(16)

where the second expression subtracts V (m̃(m)) from both sides, and the third expression
substitutes from (14) and (15).

Importantly, the last expression in (15) implicitly defines the function V(m) for m > 0.41

Note that, for m,m′ ≥ p and all h, j, p̃(m) = p̃(m′), m̃(m) = m̃(m′), and xhj(m) = xhj(m
′)

so V(m) = V(m′). Applying (14) and (15), s(m,h, j) = s(m′, h, j) for these cases.
To sign the change in purchase probabilities between the two regions, let Vgeo(m) =

V geo(m) − V geo(m̃(m)), analogously to V(m). Then, V(m) < Vgeo(m) for m ≥ p since V geo

represents the value with optimal behavior while V represents the value with suboptimal
behavior, both from the point of view of the same (benchmark) agent. From (14), shares
under the benchmark model are equivalent to shares under the two behavioral models with
the substitution of Vgeo(m) for βV(m). Combining this with (i) the fact that a decrease in βV
increases all inside good shares, (ii) the result from Proposition 1 that the benchmark model
has the same behavior inside and outside the doughnut hole, and (iii) the result from part

41For m = 0, V(m) = V (0)− V (0), so there is nothing to define.
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(a) of the proposition that the behavioral models have the same behavior as the benchmark
model inside the doughnut hole, we find that s(m,h, j) > s(0, h, j) for m ≥ p and for all h, j.

We now prove part (c). Because the last expression in (15), which implicitly defines V , is
identical for the sophisticates quasi-hyperbolic discounting model and for the price salience
model if m ≥ p, s(m,h, j) will be identical for these two models if m ≥ p and for all h
and j. To sign the difference in purchase probabilities between the näıfs and other models,
because (i) market shares for the näıfs model use an expression identical to (14) except for
the substitution of Vgeo for V , (ii) V(m) < Vgeo(m) for m ≥ p, and (iii) a decrease in βV
increases all inside good shares, s(m,h, j) will be lower for the näıfs model than for the other
models if m ≥ p and for all h and j = 1, . . . , Jh.

Proof of Proposition 3 Since the proposition concerns markets with only one health shock
type and one shock per week, to ease notation, we drop h—and, when present, n—from the
terms φhj, Jh, ch, s(m,n, h, j), and uj(m,n, h). Without loss of generality, assume that the
states with data are m ∈ [0, 1, . . . , 2510]. Because we show identification, assume that s(m, j)

is observable for these values. As in Propositions 1 and 2, we normalize c = γ + log
(

1
s(0,0)

)
.

Since this value of c is the expected value of optimizing behavior for one purchase occasion
at m = 0, this then results in V (0) = u0(0) = 0. This in turn implies that

log

(
s(j, 0)

s(0, 0)

)
= uj(0) = φj − αpj,∀j = 0, . . . , J. (17)

Finally, note that for the sophisticate quasi-hyperbolic discounting models, we can write the
mean utility for the outside option as:

u0(m) = βδV (m)⇒ V (m) =
u0(m)

βδ
. (18)

The other models have analogous expressions to (18): for the price salience model, σ substi-
tutes for β; for the quasi-hyperbolic discounting näıfs model, V geo substitutes for V ; and for
the the geometric model, β = 1.

We now prove identification for the sophisticates model with a fixed β > 0, which includes
the geometric discounting model. Fix a cheap drug ‘k’ and an expensive drug ‘l’ as given in the
statement of the proposition. For this model, it can be shown that V (m) = 0, if m ≤ oopk—
and not just for m = 0—because the choices and insurance here are identical to inside the
doughnut hole. Now consider any state m′ for which oopk < m′ ≤ min{p1, . . . , pJ , oopl}. Such
a state exists by the assumptions of the proposition. At m′, there is no insurance value from
buying drug l and hence ul(m

′) = ul(0) (as in equation 17). Using this exclusion restriction,
for all j = 0, . . . , J ,

log

(
s(m′, j)

s(m′, l)

)
= uj(m

′)− ul(m′)⇒ uj(m
′) = log

(
s(m′, j)

s(m′, l)

)
+ ul(0),
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which implies that uj(m
′) is known for each j = 0, . . . , J . This then allows us to identify δ

given that β is fixed. Specifically:

V (m′) = s(m′, 0)[δV (m′)− log(s(m′, 0))] +
J∑

j=1

s(m′, j)[uj(m
′)− log(s(m′, j))] + γ − c

⇒ V (m′) =

∑J
j=1 s(m

′, j)[uj(m
′)− log(s(m′, j))]− s(m′, 0) log(s(m′, 0)) + γ

1− δs(m′, 0)
− c

⇒ u0(m′)

βδ
=

∑J
j=1 s(m

′, j)[uj(m
′)− log(s(m′, j))]− s(m′, 0) log(s(m′, 0)) + γ

1− δs(m′, 0)
− c, (19)

by substituting for V (m′) from (18). Using the fact that V (m′) > 0 and β > 0, (19) defines
δ as a linear equation which implies that δ and V (m′) are identified conditional on a fixed β.

We can then identify α. Specifically,

uk(m′) = uk(0) + α(m′ − oopk)⇒ α =
uk(m′)− uk(0)

m′ − oopk
. (20)

Since every term on the right side of (20) is known, α is identified. This then allows us to
identify φj using (17) for j = 1, . . . , J , implying that any sophisticates model with a fixed
β > 0, including the geometric discounting model, is identified.

We now prove identification for the quasi-hyperbolic discounting sophisticates model.
Consider m′′ such that oopk + pk < m′′ ≤ 2pk. This state has two purchase occasions with
positive insurance value for drug k implying that a positive continuation value with choice
k, i.e. V (m′′ − pk) > 0. We can write:

V (m′′) = δV (m′′)s(m′′, 0)+

J∑
j=1

[
φj − peff (m′′, pj, oopj) + βδV (max{m′′ − pj, 0})

]
s(m′′, j) + γ − log(s(m′′, 0)). (21)

For any β, we have already shown that δ and V (m′′− pj),∀j = 1, . . . , J are identified. Thus,
(21) implicitly defines β. Provided a monotonicity condition holds so that (21) has a unique
solution, β is then identified. While we do not verify that this monotonicity condition is
satisfied, we expect that it will be satisfied because, given β > 0, a higher β should imply a
lower δ is needed to fit the purchase probability at state m′′.

Thus, we have shown identification for the quasi-hyperbolic discounting sophisticates
model. We omit the proof for the quasi-hyperbolic discounting näıfs model, which is similar,
though it uses the value function V geo.

We now prove identification for the price salience case. Analogously to the quasi-hyperbolic
discounting case, we condition on σ > 0, show identification at m′ conditional on σ and then
identify σ from data at m′′. However, this model is slightly different than the quasi-hyperbolic
discounting model because σ enters into the purchase decision at state m′. Because of this,
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we employ a different proof order: conditional on σ, we first show that α is identified and
then that δ is identified. Considering again state m′, note that:

log

(
s(m′, l)

s(m′, k)

s(0, k)

s(0, l)

)
= α(1− σ)(pl − oopl)− α(1− σ)(pk − oopk)− ασ(m′ − oopk), (22)

where the first term in (22) is the extra utility from the lower expected perceived price for
drug l, the second term is the negative of the utility from the lower expected perceived price
for drug k, and the final term is the negative of the utility from the lower actual price for
drug k. It is straightforward to solve for α here, implying that α is identified conditional on
σ. As in the quasi-hyperbolic discounting case, we can then identify all φj using doughnut
hole data. We can then evaluate uj(m

′) for all j = 0, . . . , J , since δ does not enter into the
expression for j = 1 (or any inside good). In addition, an equation analogous to (19) holds
with these uj(m

′) values and the substitution of σ for β. This then allows us to identify δ
and to recover V (·) conditional on σ. Finally, (21) holds with the substitution of σ for β,
which allows us to recover σ provided that the analogous monotonicity condition holds.

�

Appendix D: Analysis of Threats to Identification of Re-

sults in Section 4

We now consider, and eliminate, threats to the identification of our tests in Section 4. First,
one might believe that a drop in spending at the doughnut hole reflects a simple alternate
scenario, where the treatment value of a drug always always lies somewhere between its out-
of-pocket price and its full price, so that individuals would find it optimal to stop purchasing
drugs in the doughnut hole. If this alternate model were to hold, Assumption 1 would be
violated and many individuals would end the year right at the doughnut hole. This is very
much unlike what we find in Table 1. In addition, this would lead to total year drug spending
“bunching” right after the doughnut hole start. Bunching has been observed in the broad
sample of all Part D enrollees (Einav et al. (2015), Starc and Town (2016)). Figure A3 in
Appendix A considers bunching for the full sample of enrollees in the plans we consider and
in our selected sample of enrollees who reach near the doughnut hole early in the year. While
we observe bunching in the full sample, we do not observe bunching for our sample. This
implies that enrollees continue spending well past the doughnut hole and that there is enough
heterogeneity in drug values that some drugs are worth more than their full price.

Second, one might believe that our results are due to enrollees simply being misinformed
regarding the benefit structure of Part D. Yet, because our data are from the third year of
the program, it is unlikely that our results on myopia are driven by a lack of understanding
about the presence of the doughnut hole and its implications. Enrollees are mailed detailed
monthly information that lists their out-of-pocket and total costs for the month, the cost
of their drugs to the plan as well as the out-of-pocket costs and explains how far they are
from the doughnut hole. Figure A4 in Appendix A shows an example of the part of the
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mailing that pertains to the distance to the doughnut hole. In our view, the frequency and
detail of the information provided suggest that rational enrollees have the opportunity to be
informed about the coverage gap. Moreover, because Medicare enrollee drug consumption is
principally tied to the treatment of chronic conditions, those who reach the doughnut hole
in one year are likely to reach or approach the doughnut hole in the next year. While we
lack data from 2007 for enrollees in our sample, we verified this proposition with national
panel data, from the Medicare Part D Prescription Drug Event data.42 Using this dataset,
we examined the probability of reaching the doughnut hole in 2007 for enrollees who would
have been in our sample (because they started a week early in 2008 near the doughnut hole).
We find that 83.4% of these enrollees reached the doughnut hole in 2007, while 16.6% did
not (and we were unable to match the remaining 0.8%). This suggests that, even at the start
of 2008, most enrollees in our sample should have been directly informed about the presence
and attributes of the doughnut hole from their previous experience.

Third, although our testable implications may be somewhat biased because they omit
the presence of the catastrophic coverage region, we can sign the direction of this bias.
Specifically, we will reject the benchmark model if enrollees curtail purchases upon reaching
the doughnut hole. A rational reaction to the upcoming presence of the catastrophic region
would be to increase weekly purchases as the cumulative out-of-pocket spending increases
towards the doughnut hole start. Although we would expect this reaction to be small at the
start of the doughnut hole (since there is some distance to the catastrophic coverage start),
this effect will cause enrollees to increase weekly spending as their cumulative spending
increases. Thus, this effect would work in the opposite direction from our test and thereby
would bias us towards a null finding that the benchmark model is accurate. Note that we
find no evidence of an increase in spending for the range we consider (Figure 4). Moreover,
to the extent that we reject the benchmark model, our finding is conservative.

Fourth, our results are unlikely to be due to cross-year substitution. Cabral (2013) has
found evidence that people move dental services to an earlier year when they have spare
insurance benefits in the current year. But, individuals in our sample have little incentive to
stockpile since they mostly end the year in the doughnut hole. Another possibility is that
they strategically curtail spending during our sample in order to make up that spending in
the following year during the initial coverage region (as shown by Einav et al., 2015)). But,
enrollees in our sample are very likely to hit the doughnut hole in the year after our sample,
which is 2009, implying that this strategy would not add substantial value for enrollees with
δ close to 1.43 Also, most of our enrollees are in plans with deductibles, and it would be
medically costly for these enrollees to wait until they are past the deductible for treatment.
Finally, we can understand the extent of cross-year substitution by comparing doughnut hole
spending at the end of 2008 to earlier in 2008, using the fact that it would also be medically
more costly for enrollees to defer expenditures to 2009 from relatively early in 2008 than from

42This dataset provides a 10% sample of all Medicare eligibles.
43To verify this, we again use the Medicare Part D Prescription Drug Event national panel data to examine

the probability of reaching the doughnut hole in 2009 for enrollees who would have been in our sample (because
they started a week early in 2008 near the doughnut hole). We find that 76.2% of these enrollees hit the
doughnut hole in 2009, while 19.1% did not (and we were unable to match the remaining 4.7%).
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the end of 2008. We regress mean weekly spending on enrollee fixed effects and indicators for
four week intervals, for the part of our base estimation sample that is inside the doughnut
hole. We find that the four-week-indicators for September, October, and November are not
significantly different from the December indicator. We also find qualitatively similar effects
for our structural estimation when we limit our sample to end by November 1, 2008. Together,
these factors suggest that cross-year substitution is limited in our sample.

Finally, our results are unlikely to be due to a variety of other factors. Liquidity con-
straints cannot explain why people would spend more earlier on but less later. Indivisibility
of drugs is not likely to explain the magnitude of our findings either, since for the types with
the largest drops, such as cholesterol-lowering drugs, patients are better off taking a partial
amount of the drug to none. Precautionary savings due to uncertainty about future medical
shocks also is not likely to explain this pattern, since greater price uncertainty would exist
prior to the doughnut hole to inside the doughnut hole.
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