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1 Introduction

The introduction of Medicare Part D in 2006 was the most important benefit change to

Medicare since its inception. Part D added drug coverage to Medicare’s hospital and physi-

cian/outpatient benefits. Evidence indicates that Part D lowered Medicare beneficiaries’

out-of-pocket costs while increasing prescription drug consumption (Yin et al., 2008; Zhang

et al., 2009; Lichtenberg and Sun, 2007; Ketcham and Simon, 2008). As a consequence, the

program is popular, enrolling over 38 million Medicare beneficiaries in 2013 (Medpac, 2014).

Medicare Part D nonetheless has its critics. Perhaps the biggest criticism is concern

over Part D’s “donut hole” benefit structure. Enrollees in plans with a standard benefit

structure face a nonlinear price schedule where out-of-pocket expenditures are modest until

their accrued total year-to-date expenditures place them in the coverage gap – the so-called

donut hole. Prior to the passage of the Affordable Care Act, the enrollee paid the full price

of all drugs in the coverage gap until she spent through the gap into the “catastrophic zone.”

In 2008, the year of our data, the gap cannot begins at $2,510 in total expenditures and

doesn’t end until $4,050 in out-of-pocket expenditures.1 Approximately one-third of Part D

enrollees entered the gap.2

Importantly, the coverage gap creates a complex dynamic decision problem for enrollees.

To optimally decide on a drug purchase, an enrollee must forecast her future expenditures

over the remaining portion of the year. While a donut hole structure is not common, most

health insurance plans have dynamic aspects in the form of out-of-pocket maximums and de-

ductibles. These dynamic aspects create a complex decision problem where optimal decision-

making depends on rationally forecasting future healthcare consumption, a point that has

been recognized since at least the RAND Health Insurance Experiment.3

Critics of Part D point to the possibility that enrollees may reduce drug consumption upon

entering the donut hole, with adverse consequences for health (Liu et al., 2011). Concern

1Some plans offer partial coverage in the donut hole, though few offer complete coverage (Neuman and
Cubanski, 2009).

2Source: http://www.medpac.gov/documents/reports/mar11 ch13.pdf?sfvrsn=0.
3The Rand Health Insurance Experiment found that utilization increased once enrollees hit their out-of-

pocket maxima (Newhouse, 1993). The study did not disentangle the reasons for this increase.
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regarding the coverage gap has also led to legislation that will phase out the donut hole

over time, enacted as part of the 2010 Affordable Care Act. However, economic models of

forward-looking rational consumers predict that the donut hole, per se, should have little real

effect on behavior, as what matters most is the expected end-of-year price. If enrollees are

not rational, phasing out the donut hole could have large welfare consequences.

Given this dichotomy, a relevant concern is whether the rational model accurately reflects

Part D enrollee behavior. Are the mostly senior-citizen enrollees accurately making the

tradeoffs required to dynamically optimize their choice of prescription drugs? This concern

is underscored by the fact that a number of studies have found that Part D enrollees act

myopically, or at least not fully rationally, when faced with choosing a Part D plan (see

Abaluck and Gruber, 2011, 2013; Abaluck et al., 2015; Ho et al., 2014; Heiss et al., 2010;

Schroeder et al., 2014). In contrast, other studies find that Medicare Part D enrollees are at

least partly rational in their choices of plans or drug purchases (see Ketcham et al., 2012;

Einav et al., 2015; Ketcham et al., 2015).

Dynamic health insurance contracts can lead to “behavioral hazard” (Baicker et al., 2012),

where non-rational consumers make suboptimal decisions. A donut hole structure is partic-

ularly problematic in the presence of myopia, because it causes individuals to over-consume

before the coverage gap, compounding the moral hazard from health insurance, which also

causes overconsumption before the gap. In contrast, with myopia, deductibles may counter-

balance the effects of moral hazard.

This paper has two goals. First, we develop robust tests for whether Part D enrollees act

myopically in their choice of drug treatments. Our tests avoid several selection issues that

often makes such inference challenging. Second, we quantify the relative extents of moral

and behavioral hazards and empirically evaluate how these hazards affect the outcomes and

welfare of policies such as eliminating the coverage gap. We proceed by specifying a dynamic

model of drug choice which allows for non-rational, time inconsistent behavior. Using the

model, we first provide evidence – using a regression discontinuity – that people act myopically

in their drug purchase decision. We then structurally estimate the parameters of the model

and examine the implications of counterfactual policies regarding the coverage gap. We
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believe that both our tests of myopia and our estimation framework may be more broadly

useful in analyzing the implications of different insurance schemes.

Our model and estimation strategy focus on enrollees’ spending behavior as they transi-

tion from the initial coverage region (before $2,510 in spending) to the coverage gap region

(starting at $2,510). In our model, each week, each Part D enrollee has a distribution of

possible health shocks. Each health shock is characterized by a class of drugs that can be

used to treat the shock. Given a health shock, the individual makes a multinomial logit

choice from among the class of drugs and an outside option of not filling a prescription.

Each drug has three characteristics: the (full) price, the out-of-pocket price, and the mean

utility from consumption, which we model with fixed effects. The outside option has utility

normalized to 0. The model is dynamic because purchasing a drug in the initial coverage

region moves an enrollee closer to the coverage gap. We allow for non-rationality in the

form of quasi-hyperbolic discounting (Laibson, 1997; Phelps and Pollak, 1968; Strotz, 1956):

individuals discount their future health shocks in the current week with the factor β, in one

week with the factor βδ, in two weeks with the factor βδ2, etc. An individual with β < 1 is

partly myopic regarding future actions: she would make different tradeoffs at time t between

utility at times t+ 1 and t+ 2 than she would make upon reaching time t+ 1. An individual

with either β or δ of 0 does not value future utility and hence is completely myopic.

We empirically test for myopia using 2008 Medicare Part D administrative claims data

from a large pharmacy benefit manager. Our empirical strategy is to identify a set of enrollees

who face the same end-of-year prices but different current prices, and examine if they respond

to the current prices. We identify such a group: enrollees who arrive near the donut hole

early in the year. We postulate (and empirically verify) that these individuals will almost

certainly reach the donut hole before the end of the year. Without any discounting, these

individuals should not change their drug purchase behavior upon crossing into the donut

hole, because the Part D insurance is essentially just a fixed subsidy. Rational geometric

discounters (with 0 < δ < 1 but β = 1) will consume less inside the donut hole than before

only because of the time value of money saved. This implies a near-linear progression of

increases in purchases before the donut hole. Finally, myopic individuals – whom we define
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to be those with either β < 1 or δ = 0 – may have more drug purchases before the donut

hole than in the donut hole, but their purchase progression can be flat before the donut hole.

Using the group of enrollees who arrive near the donut hole early in the year, we find that

drug purchases drop significantly and sharply upon reaching the donut hole: mean total drug

expenditures falls by 28%; the number of prescriptions falls by 21%; expensive prescriptions

with a price of over $150 fall by 33%; and branded prescriptions fall by 27%. In contrast,

there is no evidence of expenditures falling in the periods leading up to the donut hole, with

no significant differences between spending in the regions $2,200 to $2,399 and $2,000 to

$2,199. A falsification exercise on enrollees in a plan with a different donut hole reveals no

drop in spending upon reaching $2,510. Thus, our discontinuity-based evidence points to

myopic rather than rational individuals.

Having found evidence of myopia, we structurally estimate our dynamic model using the

same group of enrollees. The parameters of the structural model are fixed effects for each

drug, price elasticity parameters, and the discounting parameters β and δ. We estimate these

parameters via maximum likelihood. An estimation challenge is that we do not observe when

people have health shocks but consume the outside good, and yet substitution to the outside

good in the donut hole is a crucial feature of the data. We develop methods that allow us

to integrate in closed form over the shocks at which the individual chooses a drug, thereby

making this estimator computationally tractable.4

As with the discontinuity-based evidence, conditional on price elasticity parameters, the

discounting parameters β and δ are identified by the difference in purchase patterns near the

coverage gap. Our price elasticity parameters are identified by the across-drug and across-

drug-class variation in prices upon entry into the donut hole.

Our structural estimation splits our sample into subsamples based on their ex-ante health

risk score. For each of three subsamples, we find that β = 0. We find a substantial price

response that is lower for more expensive drugs with an overall demand elasticity of −0.32.

At β = 0, δ is not identified. The underlying reason for our results is that the drop in

4The unobserved nature of the health shocks also prevents us from using the computationally advantageous
conditional choice probability estimators initially developed by Hotz and Miller (1993).
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prescriptions upon reaching the donut hole is too large to be explained with a positive β,

given the level of cross-drug substitution, which identifies the price elasticity. We do not

interpret our estimates as implying that individuals are perfectly impatient and not forward-

looking. Rather, we believe that our estimates imply that Medicare Part D enrollees are not

making dynamically sophisticated decisions in their choices of drugs and hence that their

behavior is much more myopic than rational models would typically imply.

Using our structural estimates, we examine counterfactuals as to preferences and poli-

cies for a nationally representative sample. To examine the extent of behavioral hazard, we

examine how prescription purchase behavior would change if individuals were geometric dis-

counters with δ = 0.95 at an annual level. We find that geometric discounting would cause

enrollees to reduce their spending by 29%, with total prescription drug spending dropping

by 14%. In contrast, without moral hazard from insurance, total prescription drug spending

would drop 31%, implying that behavioral hazard is about one half as important as moral

hazard in this market.

Our policy counterfactuals examine eliminating the donut hole as mandated by the Af-

fordable Care Act. We find that eliminating the donut hole would increase total spending by

10% and insurer spending by 31%, implying a substantial cost to the government. Coinsur-

ance would have to increase from the current average of 25% to 36% to implement a revenue

neutral insurance scheme without the donut hole. Providing donut hole coverage for generic

drugs only would increase insurer spending by only 6%.

Our work is most closely related to the works of Einav et al. (2015) and Abaluck et al.

(2015). Our theoretical model builds on Einav et al., who test for the presence of dynamic

behavior by considering individuals faced with the same current prices but different end-of-

year prices. Our tests are complementary, as we test for the presence of myopic behavior by

considering individuals faced with different current prices but the same end-of-year prices.

Einav et al. also estimates a structural, dynamic model and find that the weekly discount

factor is δ = 0.96, implying an annualized discount factor of δ = 0.12. Our test also allows us

to distinguish myopia from a low discount factor. Our structural estimation builds on Einav

et al. by developing a modeling framework for drug choices that is more similar to standard
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dynamic multinomial choice models and by identifying our parameters using actual price data

and the same sample of enrollees on whom our tests for myopia are based. Abaluck et al.

(2015) use a very different identification strategy of relying on plan stickiness of enrollees

following changes in underlying benefit structures. Similar to our findings, their estimates

indicate substantial myopia. Finally, our structural model of quasi-hyperbolic discounting

builds on Fang and Wang (2013) and Chung et al. (2013).

The paper proceeds as follows. Section 2 provides our model. Section 3 describes our data.

Section 4 presents evidence based on the discontinuity near the donut hole. Section 5 describes

the econometrics of our structural model. Section 6 provides results and counterfactuals, and

Section 7 concludes.

2 Model

2.1 Overview

We model the decisions of a Medicare Part D enrollee who has reached $2,000 in spending

between the end of March and the end of July of the a given year, and hence who has arrived

near the donut hole of $2,510. By focusing on this group, we can credibly assume that

individuals in our sample know that they will hit the donut hole at some point during the

year, which simplifies our tests and estimation.5 We also assume that people will not leave

the donut hole during the year. This assumption also generally holds in our data,6 and, as

we discuss in Section 2.3, employing this assumption only weakens our tests of myopia.

We consider the decision-making of an individual enrollee,7 starting at the first complete

week where the individual has reached the $2,000 spending level. At the start of the week,

the individual is faced with a distribution of health shocks, each of which might benefit from

drug treatment. The number of health shocks is distributed multinomial, with a minimum of

0 and a maximum of N . Each health shock is i.i.d. At any point in time during the week, the

5In reality, 96% of the individuals in this group reach the donut hole during the year.
6Only 10% of individuals in this group end up in the catastrophic coverage region at the end of the year.
7Section 5.1 discusses estimation of the model which involves aggregation across individuals.
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individual knows how far she is from the donut hole as well as how many health shocks she

has already had in the current week, but does not know her future health shock realizations

for the week (or future weeks). The individual can calculate the distribution of future health

shock realizations during the week based on the number that have already occurred. Let

Qn, n = 0, . . . N denote the conditional probability of having another health shock given that

n have already occurred this week. Note that QN = 0.

We now consider an individual who is faced with a health shock. Health shocks can

take on different values, h = 1, . . . , H, each corresponding to a particular drug class (e.g.,

calcium channel blockers). Health shock h occurs with probability Ph. For each health shock

h = 1, . . . , H, there is a set of possible prescription drugs, j = 1, . . . , Jh, that can be used to

treat the condition plus the outside option j = 0 which consists of no drug treatment.

The flow utility from any drug treatment j for health shock h is a function of the perceived

fixed utility from treatment, γhj, which is a parameter to estimate; the total price of the drug,

phj; the out-of-pocket price oophj; and an unobservable component εhj, which we assume is

distributed type 1 extreme value, i.i.d. across health shock occurrences and individuals. We

assume that current, but not future values of εhj are known to the individual when making

her choice decision. For individuals not in the donut hole after the cost of the current drug,

the flow utility is γhj −α(oophj) + εhj, while for individuals in the donut hole before the cost

of the current drug, the flow utility is γhj−α(phj)+εhj, where α(·) maps from price to utility.

In order to flexibly capture the different impacts of price on decisions, we allow α(p) to be

a linear spline, with cut points at c1 ≡ $20, c2 ≡ $50, and c3 ≡ $100. We let α ≡ (α1, . . . , α4)

denote the four parameters of the spline. E.g., if c1 < p < c2, then α(p) = α1c1 + α2(p− c1).

Note that the linear spline nests the simple linear case, which has α1 = α2 = α3 = α4.

The outside option costs nothing (so ooph0 = ph0 = 0) and has γh0 = 0 so that its flow

utility is εh0. It is important to model this option because individuals in or near the donut

hole may substitute away from drug purchases entirely.
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2.2 Dynamics and Hyperbolic Discounting

The enrollee’s decision problem is dynamic because filling a prescription brings her closer to

the donut hole state of no insurance, and filling an expensive prescription brings her closer

than filling a cheaper one. We develop a dynamic quasi-hyperbolic discounting model of

individual decision-making over the choice of drug purchases. While there are potentially

several different models of time-inconsistency we could specify, we focus on the hyperbolic

case because it is a popular and parsimonious model of time inconsistency.

At any week t, an individual discounts the utility from treatments of a future health shock

in the current week with the factor β and the utility of a health shock at week t′ > t with the

factor βδt
′
. A value of β = 1 would fit into the standard geometric discounting model. In our

model, an agent at each time period solves for optimal decisions knowing that her future self

will value different time periods differently than in the present. The agent would like to tie

her future self to not spend too much, but cannot do that in our model. This payoff structure

is referred to as “sophisticates” (Baicker et al., 2012), as individuals accurately perceive that

they are hyperbolic discounters.8

Following Fang and Wang (2013), we formalize behavior using Bellman equations. We

first exposit the state space. Let m indicate the monetary distance of the individual from

the donut hole at the start of a given purchase decision. Since the donut hole occurs at

$2,510, if the individual has already spent $2,350 then m = 160. Let n denote the number

of health shocks that the individual has already incurred this week. The state space prior to

the realization of a particular health shock can be written as (m,n). Importantly, because of

our assumption that the donut hole is an absorbing state, we can write our dynamic decision

problem as an infinite-horizon one, rather than a 52-week problem.

Let V (m,n, ~ε, h) be the value at the time of realization of a health shock, net of the β

term, where ~ε refers to the vector (εh0, . . . , εhJh). Let V δ(m,n) denote the value of future

payoffs gross of the hyperbolic β term and before it is known whether or which new health

8We could also model “naifs” who (incorrectly) perceive that they are geometric discounters with discount
factor βδ. For naifs, behavior is governed by βδ and hence one cannot separately identify β from δ. Tests for
naiveté typically consider whether individuals are willing to sign binding contracts to commit future versions
of themselves (DellaVigna, 2009). Such contracts do not exist in our data.
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shock will occur in the week. Last, define effective price for a consumer as:

pef (m, phj, oophj) =


phj, if 0 ≤ m < oophj

oophj + phj −m, if oophj < m ≤ phj

oophj, if m > phj,

(1)

which covers the consumer being completely in the donut hole (the first line), remaining com-

pletely below the donut hole (the last line), and the intermediate case, where the consumer

crosses partially into the donut hole with the purchase (the middle line).9

We now write:

V (m,n, h, ~ε) = max
j=0,...Jh

{
γhj − α(pef (m, phj, oophj)) + βV δ (max{m− phj, 0}, n+ 1) + εhj

}
.

(2)

From (2), the main dynamic effect is that each purchase moves the individual closer to the

donut hole by phj dollars.

Using (2) we can define market shares using the standard logit formulas as:

s(m,n, h, j) =
exp(γhj − α(pef (m, phj, oophj)) + βV δ(max{m− phj, 0}, n+ 1))∑Jh
k=0 exp (γhk − α(pef (m, phk, oophk)) + βV δ(max{m− phk, 0}, n+ 1))

. (3)

Finally, we define V δ as:

V δ(m,n) = (1−Qn)δV δ(m, 0) +Qn

H∑
h=1

Ph

Jh∑
j=0

s(m,n, h, j)×

[
γhj − α(pef (m, phj, oophj)) + V δ(max{m− phj, 0}, n+ 1)− ln s(m,n, h, j)

]
, (4)

where the − ln s(m,n, h, j) term accounts for the expectation of ~ε conditional on choice.10

From (4), there are two possibilities ex-ante to the health shock realization: either there

are no more health shock in this week (which occurs with probability 1 − Qn) or there are

9In this case, the individual pays the out-of-pocket price and the remainder after reaching the donut hole.
10We exclude Euler’s constant from this expression as it does not affect choices.
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more health shocks, in which case we sum over drug classes. We cannot use the standard

logit expression for utility here: choices are made with βδ discounting of the future, but

then future periods are discounted by δ from each other. Mathematically, it is as though the

individual is making “wrong” choices but faced with geometric discounting.

2.3 Testable Implications of the Model

This subsection discusses properties of our model across discount factors. These properties

form the basis for our evidence of myopia in Section 4. For simplicity, we specify a linear

price disutility, α(p) = αp, one drug class and one drug in this class, so that H = 1 and

J1 = 1, and prices p11 = $100.4 and oop11 = $25.1.11 For now, we only assume that the price

coefficient, mean utility, and health shock frequency are in the range where individuals will

make some purchases from inside the donut hole with probability close to 1. Finally, recall

that individuals discount their future health shocks in the current week with the factor β, in

one week with the factor βδ, in two weeks with the factor βδ2, etc.

First, we consider the case where β = δ = 1. To avoid infinite payoffs, we modify this

case slightly to assume that the decision process ends at some finite time sufficiently far in

the future that the enrollee will surely end up in the donut hole. With these parameters,

the first 25 drugs consumed are insured and the enrollee receives a 75% per-drug subsidy on

them for a total subsidy of $1,882.5. The choice problem is then equivalent to one where the

individual receives a fixed subsidy of $1,882.5 and does not have any drug insurance. This

is then a static multinomial logit problem with the full price. Thus, consumption behavior

will not change upon crossing into the donut hole.

Now consider the geometric discounting case, where β = 1 but where 0 < δ < 1. We start

by analyzing a time point when the enrollee has already bought 24 drugs, and is deciding

on the last insured purchase. Purchasing the drug at this point costs the enrollee the $25.1

immediately. But, it also moves the next purchase into the donut hole, adding $75.3 to the

cost of the next purchase. Thus, the only increase in mean utility from this 25th purchase

11Our example uses these prices as the donut hole start of $2,510 is an even multiple of them.
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relative to the 26th purchase is that the $75.3 is not paid immediately but instead is paid

at a later date. One can write this difference in mean utility as 75.3(1− δt)α where t is the

expected time until payment of this value. With an annual discount factor of 0.95, (1− δt) is

small. Thus, the geometric discounting model can only explain sizable variations in purchase

before the donut hole with extremely large price elasticities or very low values of δ.

Moreover, for the same rational case, consider an individual who has previously bought

only 23 drugs and is now at her 24th purchase occasion. As with the 25th purchase occasion,

the only increase in mean utility from this 24th purchase relative to the 26th purchase is that

the $75.3 is not paid immediately but instead is paid at a later date. However, it is now paid

two purchase dates in the future, not one. Thus, the difference in mean utilities between

the 24th and 26th purchase occasions is 75.3(1− δt′)α where t′ is the expected time between

the 24th and 26th purchase occasions. If t′ is twice t, this implies a mean utility difference

that is close to twice as large between the 24th and 26th purchase occasions than between

the 25th and 26th purchase occasions. In sum, geometric discounting predicts that purchase

probabilities continue to increase the further away they are from the donut hole.

Finally, we consider the myopic case of β < 1 or δ = 0. Considering again the 25th

purchase occasions, the individual discounts the future payoff by βδt. Thus, the difference in

mean utilities between the 25th and 26th purchase occasion is now 75.3(1−βδt)α. Similarly,

the difference in mean utilities between the 24th and 26th purchase occasion is now 75.3(1−

βδt
′
)α. If β is much below 1 and δ is very close to 1 then these two differences in utilities will

be very close to each other but far from 0. For the extreme case of δ = 0, individuals react

exclusively to the current price, implying that the mean utility for the 24th and 25th purchase

occasions would be exactly the same, and again more than at the 26th purchase occasion.

The implication is that myopia can predict that purchase probabilities before reaching the

donut hole are similar to each other but very different from those within the donut hole.

Figure 1 shows simulated spending for our different models graphically, constructed by

solving for the dynamic decisions using the parameters noted above in combination with a

price term of α = 0.02, a mean utility of γ11 = 1,12 and different values of β and δ (as reported

12These parameters are chosen to roughly calibrate the model to observed spending patterns.
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in the figure), and then simulating mean spending as a function of cumulative spending.

Figure 1: Mean simulated drug spending on cumulative spending for stylized model
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The figure shows that spending is flat and the same across values of β and δ within

the donut hole, at about $27 per week. The β = 0 case has perfectly flat spending before

the donut hole and the highest spending of any case, at $62 per week. With β = 0.5 and

δ = 0.999, mean spending is virtually as flat as with β = 0 before arriving in the donut hole

although, at $46 per week, substantially lower. With geometric discounting and δ = 0.999 (or

0.95 at an annual level), mean spending is virtually flat throughout. Finally, with geometric

discounting and a low discount factor of δ = 0.96 (as in Einav et al. (2015)), mean spending

drops almost linearly over the pre-donut-hole period, from $41 to $27.

Overall then, we can test for whether βδ is substantially less than 1 by examining whether

there is a substantial change in purchase probability between immediately before the cover-

age gap and immediately after the start of the coverage gap. We can test for whether there is

myopia by examining whether periods immediately before the donut hole have a lower pur-

chase probability than previous periods further from the donut hole. Moreover, by focusing
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on the same individual and at similar time periods, our discontinuity-based tests avoid many

issues of selection that potentially confound other tests of myopia.

These implications of the model are robust to alternative assumptions. First, suppose

that there are multiple drugs with different coinsurance rates. While this complicates the

dynamic choice problem, the basic point remains: for individuals in our estimation sample,

only discounting can explain changes to spending behavior upon entering the donut hole.

Second, one might consider a very simple alternate scenario, where the treatment value

of the drug always lies somewhere between the value of $25.1 and $100.4. In this case, the

individual would rationally purchase the drug only in the initial coverage region and stop

purchasing the drug in the coverage gap. Yet, this scenario does not fit enrollees in our

estimation sample since 96% of them surpass the start of the coverage gap (and most by a

substantial amount), implying that they have valuations for some drugs that are sufficient

for purchase even in the absence of insurance. Given that they know that they will end up

purchasing once inside the donut hole, curtailing a purchase in the initial coverage region

will save them the same amount as curtailing a purchase in the coverage gap region, absent

any discounting.13

Third, one might believe that our results are due to enrollees simply being misinformed

regarding the benefits. Yet, because our data are from the third year of the program, it is

unlikely that our results on myopia are driven by a lack of understanding about the presence

of the donut hole and its implications. Because Medicare enrollee drug consumption is

principally tied to the treatment of chronic conditions, those who reach the donut hole in one

year are likely to reach or approach the donut hole in the next year. In addition, as we detail

below in Section 3, enrollees are provided substantial information regarding the structure of

the donut hole and receive regular updates on their spending relative to the donut hole.

Finally, we consider the biases of our tests based on the fact that our model omits the

presence of the catastrophic coverage region. We will find evidence of myopia if individuals

curtail purchases upon reaching the donut hole. One might worry that these results are due

13Note that in our Figure 1 simulation, the value of the drug is 1 + εit while the value of [$25.1, $100, 4]
is [.052, 2.008]. Thus, the ε term ensures that the value of the drug is not always between the value of $25.1
and $100.4.
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to rational behavior where individuals who reach the donut hole due to unexpected health

shocks recognize that these health shocks increase the probability that they will reach the

catastrophic coverage zone. But, spending should rationally be higher in the catastrophic

region. Since a higher probability of reaching the catastrophic region should increase spend-

ing, the presence of a catastrophic coverage region will bias us towards a finding of no impact

upon entry into the donut hole.

3 Data

For our analysis, we rely on a proprietary claims-level dataset of employer-sponsored Part D

plans in the year 2008, the third year of the program. The data come from the pharmacy ben-

efits manger Express Scripts, which managed Medicare Part D benefits for approximately 30

different employer-sponsored Medicare Part D plans with a total of 100,000 enrollees. The

plans were offered to eligible employees and retirees as part of their benefits. Employers

receive subsidies from Medicare in exchange for providing these plans to their employees.

Enrollees in employer-sponsored Part D plans have, on average, higher income than typi-

cal Part D enrollees. The employer-sponsored Part D market constituted nearly 7 million

enrollees or 15 percent of Part D enrollment in 2008.14

An interesting feature of the Part D program is that enrollees are mailed detailed monthly

information that lists their out-of-pocket and total costs for the month, the cost of their drugs

to the plan as well as the out-of-pocket costs and explains how far they are from the donut

hole. Figure A1 in Appendix A shows an example of the part of the information that pertains

to the distance to the donut hole. In our view, the frequency and detail of the information

suggests that rational enrollees have the opportunity to be informed about the coverage gap.

The data contain all claims made by an enrollee in the year 2008 for each plan. For

each claim, we have plan and patient identifiers, the age (at the fill date) and gender of the

patient, the date the prescription was filled, the total price of the drug, the amount paid by

the patient, the national drug code (a unique identifier for each drug), the pill name, the drug

14Source: http://www.medpac.gov/documents/reports/mar09 ch04.pdf?sfvrsn=0, p. 282.
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type (e.g., tablet, cream, etc.), the most common indicator of the drug (e.g., skin conditions,

diabetes, infections, etc.), the dispensed quantity of the drug, and an indicator for whether

the drug is generic or branded. We keep only individuals who are 65 or older at the time

that they fill their first prescription.

Each of the employers offered multiple plans, each with different coverage structures. Our

base analysis uses data from five Express Scripts plans. We chose these plans because (1)

they have a coverage gap that starts at exactly $2,510 in total expenditures and ends at

greater than $4,000 in out-of-pocket expenditures; and (2) the employers that offer these

plans allowed us to use their data. We also include falsification evidence from a sixth plan

with a higher coverage gap phase initiation.

Table 1: Plan characteristics and enrollment
Plan A B C D E F
Employer 1 1 1 2 2 3
% of employees from employer 26 45 9 79 21 46
Deductible ($) 275 100 100 0 200 0
Donut hole start (total $) 2,510 2,510 2,510 2,510 2,510 4,000
Catastrophic start (out-of-pocket $) 4,050 4,050 4,050 4,010 4,010 4,050
Total enrollment 7,541 12,858 2,431 4,062 1,058 35,395
% hitting $2,510 20 13 16 16 13 20
% hitting catastrophic coverage 2 1 1 1 1 0
Estimation sample:
Enrollment 672 717 149 326 52 3,341
% hitting $2,510 96 95 96 97 94 98
% hitting catastrophic 12 8 9 10 12 0
Mean total spending ($) 4,543 4,135 4,082 4,232 3,982 4,150
Mean out-of-pocket ($) 2,398 2,038 2,160 2,032 2,068 1,032
Mean age 74 73 72 75 75 78
Percent female 62 57 54 62 56 64
Mean ACG score 1.07 1.18 1.22 0.94 1.14 0.67
Note: plan A provides generic coverage in deductible region; Plan F used for falsification exercise only and also provides generic
coverage in donut hole.

Table 1 displays the characteristics of the six plans that we consider. The plans represent

three different employers; plan and employer identities are masked. We consider all covered

employees at employer 2 and the majority of covered employees at employer 1 (with the

other employees at this employer choosing plans with different coverage gap regions or some
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insurance in the coverage gap). Importantly, the fact that each employer offered similar plans

to all their employees minimizes the selection issues across plans that one might observe in

non-employer-sponsored Part D coverage.

Four of the five plans in our base analysis have a deductible. All deductibles take relatively

low values of $275 or less. Each plan features a tiered drug copayment structure, with

higher copays for brand and specialty drugs, and reduced copays for the use of mail-order

pharmacies. By our inclusion criterion, all five base plans have a donut hole region starting

at $2,510. After an enrollee’s drug spending surpasses $2,510, all plans drop coverage and

the enrollee’s expenses are completely out of pocket. The donut hole region is substantial.

For three of the plans, the donut hole ends when the enrollee reaches $4,050 in out-of-pocket

expenditures (and hence much higher in total expenditures), while the remaining two plans’

donut holes end after the enrollee reaches $4,010 in out-of-pocket expenditures. Generous

catastrophic coverage resumes after the donut hole for all six plans, with low copays of $2.15

for generic drugs and $5.60 for branded drugs.

Table 1 also lists summary statistics on plan enrollment. The five base plans cover a total

of 27,950 individuals. Our base estimation sample consists of all enrollees who reach the

donut hole between Sunday, March 30 and Saturday, July 26, 2008. We chose these dates to

be in the part of the year where people should perceive that they will end the year in the

donut hole with very high probability. We define a week as starting on a Sunday.

Our base estimation sample contains 1,916 enrollees distributed across the five plans in

our sample. The mean age across the plans ranges from 72-75 and the mean percent female

ranges from 54-62%. Between 94 and 97 percent of the enrollees in estimation hit the coverage

gap during the year, reflected in mean total spending levels of approximately $4,000 across the

plans. The mean percent hitting the much higher catastrophic coverage region ranges from 8

to 12 percent, reflected in mean out-of-pocket spending levels of approximately $2,200 across

plans, or about 55 percent of the value necessary to hit the start of catastrophic coverage.

The falsification plan F has the coverage gap start at $4,000 in total spending, a much

higher level than for the base plans. Its enrollees are older and disproportionately female

relative to the plans in our base analysis sample. It also provides generic drug coverage
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during its coverage gap. Very few of its enrollees hit the catastrophic coverage region, due

to the fact that they will require much higher total spending to reach it.

Using our database of claims, we first drop claims for drugs which we believe are not in

the formulary. Drugs that are not in the formulary are sometimes reported to the insurance

company by the enrollee but do not count towards spending for purposes of determining if

the enrollee is in the coverage gap or catastrophic coverage regions. We assume that any

claim in the initial coverage region for which the total price is $100 or higher and the out-of-

pocket price is the same as the total price reflects a drug that is not in the formulary.15 We

then calculate the dollars until the donut hole (m) for each prescription by tabulating the

spending up to this point during the year.16

We merge our claims data with data on the expected pharmacy claims cost for each

patient, based on their claims from before our sample period. Specifically, we use claims

from Jan. 1, 2008 to Mar. 29, 2008 to construct the Johns Hopkins Adjusted Clinical Group

(ACG) Version 10.0 score for each enrollee. The ACG score is meant to predict the drug

expenditures over the following one-year period. We use the ACG scores to define groups for

the structural analysis and then estimate separate coefficients for each group. ACG scores

have been widely used to predict future health expenditures in the health economics and

health services literature (see, e.g., Handel, 2013; Gowrisankaran et al., 2013). Table 1 shows

that the base plans have mean ACG scores which are similar to the over-65 population mean

score of 1; the falsification plan has a somewhat lower mean score.

Our analysis classifies each drug into a unique drug class meant to capture the function of

the drug. We had the drug class coding performed by a clinically trained research assistant

using the pill name, drug type, most common indicator, and national drug code. We classified

drugs on the basis of function rather than the diseases they treat because we believe that drug

function is the relevant attribute for a choice model. Thus, even though both calcium channel

blockers and renin-angiotensin system blockers are used to treat hypertension, we treat them

15We also drop one claim with a quantity-filled entry of over 1 million.
16There is some ambiguity of the order of claims if there are multiple claims filled on the same date for a

given enrollee. For such multiple claims, we assume that the claims are filled in increasing order of out-of-
pocket price. For multiple claims for an enrollee on a given date with the same out-of-pocket price, we use
the order specified in the database that we received from Express Scripts.
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as separate drug classes because their mechanisms are separate. We lump together drug

classes with fewer than 100 prescriptions filled for the estimation sample over the entire year

and in a class called “Other.” We also lump together drugs within a drug class as “Other”

until such point as every drug has at least 50 prescriptions filled over the entire year.

Table 2 lists the drug classes with the most claims in the dataset. Approximately 9

percent of the claims were for cholesterol-lowering (antihyperlipidemic) drugs. The next

most common categories include blood pressure medicines, opioids, and antidepressants. Not

shown in the table, there are 70 drug classes when we use our full sample.

Table 2: Most common drug classes in estimation sample
Indicator Number Rx % of obs. Most common Rx
Cholesterol Lowering 2,201 9.4 Simvastatin
Renin-Angiotensin System Blocker 1,851 7.9 Lisinopril
Beta-Blocker 1,288 5.5 Metoprolol
Opioid 1,233 5.2 Hydrocodon
Antidepressant 1,220 5.2 Sertraline
Diuretic 1,214 5.2 Furosemide
Calcium Channel Blocker 957 4.1 Amlodipine
Insulin Sensitizer 815 3.5 Metformin
Gastroesophageal Reflux & Peptic Ulcer 799 3.4 Omeprazole
Hypothyroidism 798 3.4 Levothyroxine

Table A1 provides details on the most common drugs consumed. Nine of the ten most

common drugs are generic. Not surprisingly, these drugs are all cheaper than the anti-platelet

drug Plavix, the only branded drug on the list. The total prices here range from $8 to $175,

with mean out-of-pocket prices in the initial coverage region ranging from $8 to $41.

4 Evidence from Discontinuity Near Donut Hole

This section presents evidence on whether individuals act in a way that is consistent with

rational forward-looking behavior or with myopia. We base our evidence on the testable

implications of the model developed in Section 2.3.

We perform a series of regression discontinuity analyses that all use our analysis sample of
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enrollees who arrived near the donut hole in the middle of the year. The unit of observation

for each regression is an enrollee observed over a week. Enrollees are in the estimation sample

from the first week with starting expenditures of over $2,000 until the last week with starting

expenditures of less than $3,000, or the end of the year if it comes first.

Figure 2: Mean drug spending on cumulative spending: plans in base sample
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We start with non-parametric kernel smoothed “lowess” regressions of mean total drug

spending on beginning-of-week cumulative spending.17 Figure 2 shows the kernel smoothed

regression results as well as the (non-smoothed) mean total drug spending by $20 increments

of beginning-of-week cumulative spending. The mean total drug spending shows little change

in spending over the range $2,000-2,380 in beginning-of-week cumulative spending. Mean

spending then drops until the donut hole and remains roughly constant until the highest

cumulative spending level.

Note that week observations that are near the donut hole but not yet in the donut hole

may move the individual into the donut hole, either because of an expensive drug or because

17We use a bandwidth of 0.3 for these regressions.
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of multiple drugs. Thus, the fact that spending starts to drop slightly before the donut hole

does not indicate that individuals are forward-looking. In contrast, the flat spending in the

$2,000-2,380 range and the flat but lower spending in the donut hole range is a pattern that

is consistent with myopia but not geometric discounting with δ > 0, as in Figure 1.

Figure 3: Mean drug spending on cumulative out-of-pocket spending: falsification plan

0
20

40
60

80
10

0
To

ta
l s

pe
nd

in
g 

pe
r w

ee
k 

($
)

2000 2200 2400 2600 2800 3000
Cumulative spending at beginning of week ($)

Mean spending during week Smoothed spending during week

Spending near base plan coverage gap: falsification plan

Figure 3 examines a falsification exercise on Plan F, which had a coverage gap that

started at $4,000 in total spending. We report the same kernel smoothed regression on this

plan as on our base sample. We find very different results: there is no drop in spending

upon reaching $2,510 in total spending. Thus, this figure supports the conclusion that there

is nothing medically significant regarding $2,510 that would cause drug expenditures to fall

upon reaching this level, but rather that it is due to the coverage gap itself.

As noted above, for Figure 2 to reflect myopia, it must be that individuals expect to end

the year inside the donut hole and not at the boundary between the initial coverage and

coverage gap regions, as would have occurred if valuations for drugs lie strictly in-between

the out-of-pocket and full prices of the drug, for instance. In order to consider this hypothesis
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more fully, Figure A2 considers the extent to which there is “bunching” of the end of the year

expenditures around the donut hole. For the full sample of enrollees in the plans we consider,

we find evidence of a small amount of bunching, consistent with both myopia and geometric

discounting.18 In contrast, we see no evidence of bunching for our estimation sample, which

is consistent with the fact that enrollees in the estimation sample almost always end the

year well within the donut hole. The lack of bunching also implies that individuals are not

stockpiling drugs at the end of the year to exhaust the insurance from the initial coverage

region, as has been found in other medical contexts (Cabral, 2013).

Having shown with non-parametric regressions that there is a discontinuity in spending

near the donut hole, we now turn to linear regressions that quantify the spending drop and

examines it in more detail. Our linear regression specifications follow the form:

Yit = FEi + λ11{0 < mit0 ≤ $110}+ λ21{mit0 = 0}+ vit, (5)

where mit0 is the beginning-of-week spending left until the donut hole, FEi are enrollee fixed

effects, λ1 is the coefficient on an indicator for being above $2,400 in spending (within $110

of the donut hole) and λ2 is the coefficient on an indicator for being in the donut hole,

which implies starting the week with at least $2,510 in expenditures. We examine a number

of different dependent variables Yit, including total prescription drug expenditures, branded

drug expenditures, and number of prescriptions filled. The λ1 coefficient captures the fact

that observations that are near the donut hole but not yet in the donut hole may move the

individual into the donut hole.

By selecting a small region around the donut hole, we are comparing the same individual

at similar points in the year but faced with different current prices. This minimizes the possi-

bility that factors other than the presence of the donut hole might be influencing our findings.

By including individual fixed effects, we are further controlling for individual differences at

different points in our sample, i.e. the possibility that more severely ill individuals show up

more in the region after the donut hole.

18Einav et al. (2015) find similar evidence of end-of-the-year bunching.
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Our first set of linear regression findings are reported in Table 3.19 All our results clus-

ter standard errors at the level of the enrollee. We find sharp drops in every measure of

prescription drug use. Supporting the results in Figure 2, total drug spending dropped by

$18 from a baseline of $62. The number of prescriptions fell by 21% from a baseline mean

of 0.84 per week. Branded prescriptions fell more than generic prescriptions: 27% versus

19%. Similarly, expensive prescriptions – those with a total price of $150 or more – fell by

27% while inexpensive ones – those under $50 – had no significant drop. The mean total

price of a prescription fell by 12% from a baseline level of $80. All effects, except for those

on the number of inexpensive prescriptions, are statistically significant. Not reported in the

table, the indicators for weeks that start with $2,400 to $2,509 in total spending are generally

significantly negative and much smaller than the reported coverage gap indicators.

These results paint a picture of enrollees who react strongly to being in the donut hole.

These are enrollees faced with roughly the same end-of-year price and yet, their spending

drops when faced with a different current price. As discussed in Section 2.3, the interpretation

of this result is that individuals have either a β or a δ that is substantially less than one:

they are not discounting with a factor suggested by standard economic theories of dynamic

decision-making.

While Table 3 presents evidence that enrollees lower spending across most drug categories,

it does not indicate whether enrollees are substituting from one category to another in the

donut hole. For instance, even though generic drugs usage drops overall in the donut hole,

it is possible (but not certain) that people substitute away from branded drugs and towards

generic drugs, but that this is more than offset by substitution from generic drugs to the

outside option. Table A2 in Appendix A addresses this point further by examining the

extent to which branded or expensive drug availability in the period before our sample (with

less than $2,000 in total spending) influences substitution towards generic or cheaper drugs

in the donut hole. We find that having a high fraction of expensive drugs ex ante in a drug

class predicts a significant increase in medium-priced drugs in the donut hole. The effect

(at .170 prescriptions per week) is a little more than than twice as large as the base drop

19In the interest of brevity, we do not report either the enrollee fixed effects or λ1 values in our tables.
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Table 3: Behavior for sample arriving near coverage gap
Mean value Beginning of week spending in:

Dependent variable: before $2,400 $2,510 - 2,999 N
Total drug spending in week 61.83 −17.62∗∗ (1.39) 30,305
Mean total price per Rx 79.47 −9.83∗∗ (1.37) 11,197
Number of Rxs 0.84 −0.18∗∗ (0.02) 30,305
Number of branded Rxs 0.30 −0.08∗∗ (0.01) 30,305
Number of generic Rxs 0.54 −0.10∗∗ (0.01) 30,305
Expensive Rxs 0.12 −0.04∗∗ (0.00) 30,305
Medium Rxs 0.23 −0.06∗∗ (0.01) 30,305
Inexpensive Rxs 1.10 −0.01 (0.01) 30,305
Note: Standard errors in parentheses. ‘∗∗’ denotes significance at the 1% level and ‘∗’ at the 5% level.
Each row represents one regression. All regressions also include enrollee fixed effects and an indicator
for beginning-of-week spending between $2,400 and $2,509, and cluster standard errors at the enrollee
level. Sample consists of enrollees who reach $2,000 in spending between Mar. 30 and Jul. 26, 2008. An
observation is an enrollee/week and includes weeks with beginning-of-week spending ≥ $2, 000 and < $3, 000.
Inexpensive Rxs are less than $50 and expensive ones are $150 or more.

in medium-priced drugs in the donut hole, implying that drug classes with 42% or greater

of expensive drugs see net substitution towards medium-priced drugs in the donut hole. We

find similar effects of substitution towards generic drugs when there are many branded drugs

in a class, but the effect is not statistically significant, nor is the effect of substitution from

expensive drugs towards inexpensive drugs.

Next, Table 4 provides evidence on whether consumers act myopically or as though they

are geometric discounters with a low discount factor. Here, we perform the same regressions

as in Table 3 but with the addition of an extra regressor, which measures the change in

spending in the region $2,200 to $2,399. Thus, the excluded region is now $2,000 to $2,199,

the beginning of the estimation window. Supporting the results in Figure 2 again, there is

no significant effect of total spending in the $2,200 to $2,399 range. The implication is that,

while spending before the donut hole is higher than in the donut hole, the increment does

not grow as one moves further back. Following Section 2.3, the results are not consistent

with geometric discounting with δ > 0 but are consistent with myopia.

Finally, Table A3 provides evidence on the five drug classes which have the largest drops in

prescriptions upon entering the donut hole and the five with the largest increases in prescrip-

tions. Here, we perform similar regressions to Table 3 but with the number of prescriptions
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Table 4: Behavior near coverage gap with variation in pre-coverage gap region
Mean value Beginning of week spending in:

Dependent variable: before $2,400 $2,510 - 2,999 $2,200 - 2,399 N
Total drug spending in week 61.83 −18.03∗∗ (1.78) −0.83 (2.26) 30,305
Mean total price per Rx 79.47 −9.01∗∗ (1.72) 1.68 (2.13) 11,197
Number of Rxs 0.84 −0.20∗∗ (0.02) −0.04 (0.03) 30,305
Number of branded Rxs 0.30 −0.08∗∗ (0.01) 0.01 (0.01) 30,305
Number of generic Rxs 0.54 −0.12∗∗ (0.02) −0.04∗ (0.02) 30,305
Expensive Rxs 0.12 −0.04∗∗ (0.01) −0.00 (0.01) 30,305
Medium Rxs 0.23 −0.06∗∗ (0.01) 0.00 (0.01) 30,305
Inexpensive Rxs 1.10 −0.02∗ (0.01) −0.02 (0.02) 30,305
Note: Standard errors in parentheses. ‘∗∗’ denotes significance at the 1% level and ‘∗’ at the 5% level.
Each row represents one regression. All regressions also include enrollee fixed effects and an indicator
for beginning-of-week spending between $2,400 and $2,509, and cluster standard errors at the enrollee
level. Sample consists of enrollees who reach $2,000 in spending between Mar. 30 and Jul. 26, 2008. An
observation is an enrollee/week and includes weeks with beginning-of-week spending ≥ $2, 000 and < $3, 000.
Inexpensive Rxs are less than $50 and expensive ones are $150 or more.

in the drug class as the dependent variable. We then report the drug classes with the biggest

and smallest coefficients on the spending drop in the donut hole region. The five drug classes

with the biggest drops in prescriptions are also among the ten most common drug classes, as

reported in Table 2. Indeed, the only one of the top five drug classes that does not have a

drop that is also in the top five is opioids. The five drug classes with the biggest increases in

prescriptions upon entering the donut hole are all drug classes with very few prescriptions.

Overall, this table shows that the percentage drops in prescriptions is similar across drug

classes other than pain relief medications. The fact that individuals reduce spending on opi-

oids less upon entry into the donut hole may reflect an interaction between myopia and the

greater immediacy of the benefit from this class of drugs relative to the other most common

drugs. This finding is also consistent with Chandra et al. (2010) who find similar demand

responses to increased cost-sharing across drug categories.
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5 Econometrics of the Structural Model

5.1 Estimation

Let the individuals in our sample be denoted i = 1, . . . , I. We group the individuals into

groups g = 1, . . . , G based on their ACG score. Let g(i) denote the group of individual i.

We assume that Q (the distribution of health shocks), N (the maximum number of health

shocks), and P (the probability of each health shock) vary across groups, implying that s

(the market share of each drug) also varies across groups. Let these terms now be indexed

by g also, so that we have Qgn, N g, Pgh, and s(g,m, n, h, j) respectively.

We now define some additional necessary notation. For each person/week observation it,

let Nit denote the number of health shocks. Now, for n = 1, . . . , Nit, let mitn denote the value

of m, the dollars till the donut hole; hitn ∈ {1, . . . , H} denote the realization of the health

shock; and jitn ∈ {0, . . . , Jh} denote the drug chosen.

Our basic approach to estimation is maximum likelihood with a nested fixed point esti-

mation. Essentially, the model boils down to an optimal stopping problem (where stopping

indicates a drug purchase) together with a discrete choice of many options (where an option

is a particular drug). In this way, the problem is similar to Rust (1987)’s classic paper on op-

timal stopping and also to more recent work that combines optimal stopping decisions with a

multinomial choice (see, for instance, Melnikov, 2013; Hendel and Nevo, 2006; Gowrisankaran

and Rysman, 2012).

Our framework differs from these models in that we do not observe all health shocks.

Indeed, we only observe health shocks when the individual chooses to purchase a drug rather

than the outside option. Moreover, we cannot condition on purchasing the inside option since

a large part of our identification will come from people choosing not to purchase drugs as

they approach or are in the donut hole.

We start by explaining what our likelihood would be if we observed the choice of the

outside option, and then explain how the likelihood is different based on not observing the

outside option. If all health events were observable, then Nit, hitn, jitn, and mitn would all
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be observable. We could then write the log likelihood for individual i at week t as:

lnLit =

Nit∑
n=0

ln
(
1{n = Nit}(1−Qg(i)n) + 1{n < Nit}Qg(i)nPg(i)hitn+1

s(g(i),mitn+1, n+ 1, hitn+1, jitn+1)
)
.

(6)

In words, the log likelihood for an observation can be broken down into a sum across health

shocks n. For each n (starting at 0), there are two possibilities: an additional health shock

occurrence or none. If there is an additional health shock what matters is the probability of

seeing the additional shock multiplied by the conditional probability of the observed shock

(given that one is observed) and the conditional probability of the drug chosen for that shock

(given the observed shock). If there is no additional shock, then the likelihood is simply the

probability of seeing no more shocks. The likelihood in this case would be a function of the

values of P and Q, and of the parameters (α, β, δ, γ) which enter through s.

We now consider the likelihood given our actual data in which we only observe health

shocks when the individual purchases a drug instead of the outside option. Rather than

attempting to identify P and Q from our sample of observations near the donut hole, we

assume that individuals who are before our estimation window have a low enough price

sensitivity that they will always choose an inside drug. Given this assumption, we estimate

P and Q non-parametrically for each group g using the enrollees observed in the period

starting after the deductible region (conservatively defined as $300) until right before the

start of our sample.

We enumerate the likelihood for the remaining parameters by conditioning on both the

health shock places at which the enrollee could have made her observed drug purchases and

the number of health shocks. Conditional on these two variables, the probability of seeing

the observed purchases is the same as in equation (6) except that we need to sum over drug

classes for the health shocks where the enrollee chooses the outside option. The likelihood,

then, is simply the sum of these conditional probabilities taken over the health shock places
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and number of health shocks.

We illustrate with an example. Consider an enrollee/week observation with 2 purchased

drugs, with A being purchased before B, where the enrollee has a maximum of 4 health

shocks in a period. The drug purchases could occur at the following health shock places

(with A being before B always): ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)). The total number of

health shocks could always be 4, and for some cases, e.g., shocks at (1,2), could be 2 or 3.

The likelihood then sums the probability of the observed data conditional on each of the 6

distinct pairs of health shock places and the total number of health shocks.

Formally, let N̂it denote the number of health shocks where the purchase included an

inside product. Let litn, n = 1, . . . N̂it denote the places of each health shock, with 1 ≤ lit1 <

· · · < litN̂it
≤ N g(i). Let L(N̂ ,N) denote the set of possible vectors of places when there are

N̂ health shocks with an inside good purchase and N possible purchase occasions. Note that

L(2, 4) has six elements as listed above. Then, the log likelihood is:

lnLit = log

 ∑
l1,...,lN̂it

∈L(N̂it,N)

Ng(i)∑
Nit=lN̂it

(
Nit−1∏
n=0

Qg(i)n

)
(1−Qg(i)Nit

)

N̂it∏
n=1

Pg(i)hitns (g(i),mitn, ln, hitn, jitn)
)

Nit∏
n=1,n6=l1,...,n6=lN̂it

(
H∑
h=1

Pg(i)hs

(
g(i), min

ñ s.t. lñ<n
mitñ, n, h, 0

)) . (7)

In words, the first line of (7) represents the double sum over the possible places of each health

shock (l) and the number of health shocks (N g(i)), and, for each case, lists the probability

of observing that many health shocks. The second line provides the probabilities of seeing

the drugs chosen for the health shocks with observed drug choices, where the places of the

drug shocks show up through ln. The third line is the probability of seeing an outside option

chosen at each place without a drug purchase, where the dollar amount until the donut hole m

is simply the dollar amount from the most recent drug purchase (which is also the minimum

dollar amount across previous purchases). Note that equation (7) is similar to the earlier
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likelihood in equation (6) but with two main differences: first, it integrates over the places of

each observed shock, the total number of health shocks, and the drug class for health shocks

with the outside option chosen; and second, it combines all health shocks in a week because

they are no longer separable given the unknown places and number of shocks.

The advantage of our formulation in (7) is that it derives the likelihood in closed form

conditional on any set of health shock occurrences L(N̂it, N). By solving for the likelihood

in closed form, we eliminate the need for simulation which improves the efficiency and com-

putational time required to estimate our model. The remaining challenge is in enumerating

the elements of L(N̂it, N). Appendix B describes our method in more detail, which follows

Gowrisankaran (1999) closely.

Finally, note that our estimation algorithm has over 100 parameters, with a fixed effect

for every drug. It can be difficult to estimate structural, dynamic models with this many

parameters. Fortunately, with the exception of β and δ, our estimation is similar to a

multinomial logit model, which is quasiconcave and hence can be estimated with standard

derivative-based search methods. We estimate the model by performing a grid search over

β and δ and then using a derivative-based search for every value of β and δ.20 Not reported

in the paper, we also performed Monte Carlo simulations to verify the accuracy of the code

and power of the estimator.

5.2 Identification

The parameters that we seek to identify from our structural likelihood estimation are α,

β, δ, and γ. We show identification by combining insights from two literatures. First, a

behavioral economics literature has explained how to identify quasi-hyperbolic discounting

models assuming that period utilities are known (Laibson, 1997). The literature shows that

one can identify βδ by comparing time t tradeoffs between t and t + 1 utilities, and δ by

comparing time t tradeoffs between t + 1 and t + 2 utilities. One can then recover β as the

20We also sped up computation by using parallel computation methods and by using the structure of
the problem, where the donut hole is an absorbing state without any dynamic behavior, to simplify the
computation. This was particularly important when δ was close to 1.
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ratio between the recovered βδ and δ.

The analogous identification for our case is illustrated by Figure 1, which uses the simple

one-drug case of Section 2.3. The figure shows that, conditional on period utilities, one can

identify βδt (where t is the expected time between the 25th and 26th purchase) from the

purchase probabilities at the 25th and 26th purchase occasions, and βδt
′

(where t′ is the

expected time between the 24th and 26th purchase) from the purchase probabilities at the

24th and 26th purchase occasions. As a caveat, when β or δ are 0, one cannot separately

identify β from δ using this argument.

Second, an industrial organization literature has shown that dynamic discrete choice

models do not identify both the (geometric) discount factor and static utilities without the

presence of exclusion restrictions (Magnac and Thesmar, 2002). The intuition of this result

applied to our case is that both very myopic enrollees (with low βδ) and very price sensitive

enrollees (with high α) would experience a large drop in their purchase probabilities upon

entering the donut hole. We need a further restriction to separate α from βδ.

We achieve identification by using the heterogeneity across drugs in our sample. Specifi-

cally, we have cross-drug and cross-time variation in drug prices. For instance, some expensive

drugs have more cheap substitutes in their drug class than other expensive drugs. Intuitively

then, consider two parameter vectors which generate the same aggregate drop in spending

upon reaching the coverage gap region, but where the one has a higher α and βδ. Under the

first parameter vector, we would expect to see more substitution away from drugs with many

substitutes in their drug class and less substitution away from drugs with few substitutes.

Formally, Magnac and Thesmar (2002)’s Proposition 4 shows that identification can be

achieved by having two states which have different expected future values for some choices

but the same expected future values for at least one choice (other than the outside option).

Assuming sufficient heterogeneity across drugs, we observe states (m, 0) and (m′, 0) and

health shock h for which m < m′ < phj for some drug hj but for which phk < m′ for a

different drug hk. Purchase of drug hj leads to being in the donut hole at both m and m′

but purchase of drug hk does not lead to being in the donut hole at m. This implies that the

values for choice hj are the same across the two states but that the values for choice hk are
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different for the two states, thereby satisfying the conditions of Proposition 4.21 Thus, we

satisfy Magnac and Thesmar (2002)’s Proposition 4 using a restriction that comes directly

from the economics of our problem. Assuming that β and δ are positive, we separately

identify β and δ by identifying discount factors using two different values of m and m′ and

combining this identification with the quasi-hyperbolic identification argument above.

Our takeaway is that to identify discount factors from administrative data such as ours, it

is necessary to concurrently identify price elasticity parameters. An accurate characterization

of the drug purchase choice is, in turn, necessary to identify price elasticity parameters.

6 Structural Estimation Results and Counterfactuals

6.1 Estimation Results

This subsection describes the results of our structural estimation. We stratify the sample

of patients in Section 4 by ACG score. We perform three separate estimations: one for the

lowest ACG score, one for the highest ACG core, and a third for everyone with a score that

lies in between.

We report our estimation results in Table 5. We start with our estimates of the price

spline coefficients, which are very similar across the three samples. For all three samples,

these coefficients decrease in price. Thus, it appears that people care far less about price for

higher-priced drugs than for lower-priced ones.

In order to further understand our price coefficients, we used our estimated parameters

to simulate the impact of a 1% increase in all drug prices and out-of-pocket prices on the

expected number of drugs purchased by individuals in our sample over the entire year 2008.

Using enrollees with middle ACG scores, we find that the 1% price increase would lead to a

0.32% decrease in the number of drugs purchased. This decrease is very heterogeneous across

drugs, leading to a 1.0% decrease in the number of expensive drugs (priced at $150 or higher),

a 1.1% increase in the number of medium-priced drugs ($50-$150), and a 0.4% decrease in the

21Multiple drugs and heterogeneity across drug prices are necessary to reach states (m, 0) and (m′, 0).
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Table 5: Results of structural estimation
Estimation sample: Lowest Middle Highest

ACG ACG ACG
score score score

Price spline −α1, < $20 −0.110∗∗ (0.011) −0.120∗∗ (0.006) −0.127∗∗ (0.014)
Price spline −α2, < $50 −0.011∗∗ (0.004) −0.007∗∗ (0.002) −0.017∗∗ (0.005)
Price spline −α3, < $100 −0.019∗∗ (0.003) −0.016∗∗ (0.01) −0.022∗∗ (0.003)
Price spline −α4, ≥ $100 −0.006∗∗ (0.002) −0.007∗∗ (0.0007) −0.005∗∗ (0.0016)
Hyperbolic discounting β 0 (–) 0 (–) 0 (–)
Geometric discounting δ – – –
ln L −27,995.3 −98,888.8 −20,672.6
ln L at β = 0.1, δ = 0.4 −27,997.8 −98,899.1 −20,674.8
ln L at β = 0.1, δ = 0.999 −27,999.1 −98,911.1 −20,677.8
ln L at β = 1, δ = 0.1 −28,016.9 −98,979.8 −20,693.5
Number of drug fixed effects 125 254 142
N 4,898 20,091 8,592
Note: Standard errors in parentheses. ‘∗∗’ denotes significance at the 1% level and ‘∗’ at the 5% level. Sample
consists of enrollees who reach $2,000 in spending between Mar. 30 and Jul. 26, 2008 and is stratified by ACG
score. Each row displays the results from one maximum likelihood estimation. All specifications include
fixed effects γ for each drug. An observation is an enrollee/week and includes weeks with beginning-of-week
spending ≥ $2, 000 and < $3, 000.

number of inexpensive drugs (priced at less than $50).22 Comparing our elasticity of −0.32

to analogous numbers from the literature,23 Abaluck et al. (2015) estimate a Medicare Part

D elasticity of −0.09, Einav et al. (2015) estimate −0.50, and Ketcham and Simon (2008)

estimate −0.22. Karaca-Mandic et al. (2013) estimate an elasticity of adherence for statin

drugs of −0.95. Thus, we believe that our elasticity numbers are roughly in the middle of

the range reported by the literature.

Turning to the discount factor parameters, we find complete myopia, that β = 0 for all

three samples. At this level of β, δ is not identified, since the future does not impact current

decisions at all. Hence, we do not report a value for δ. We report the log likelihood for a few

different values of β and δ, optimizing across other parameters. The finding here is that a

high β performs worse than a high δ.

Overall, our estimates of β are consistent with our reduced form findings that there is a

22The increase in medium-priced drugs is consistent with the reduced-form evidence in Table A2 of sub-
stitution from expensive to medium-priced drugs in the donut hole.

23Using the nationally representative sample described in Section 6.2 below, we find an elasticity of −0.44.
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large drop in drug spending after the start of the donut hole. While they imply complete

myopia, we interpret them more broadly. We do not believe that Part D enrollees are not

partially forward-looking. Rather, we believe that the parameter estimates capture the fact

that these consumers are not sophisticated, dynamic decision makers. This interpretation

squares with the large behavioral economics literature that finds that individuals often behave

in time inconsistent ways (DellaVigna, 2009). Given that we use our model to predict the

impact of counterfactual policies, the important issue is the extent to which the preference

parameters that we estimate remain constant across such policies. Here, we believe that the

lack of dynamic sophistication will remain true if, for example, the government mandated

donut hole coverage for generics. Other policies, such as eliminating the donut hole, result

in dynamic sophistication being irrelevant.

6.2 Counterfactuals

We now consider counterfactuals as to enrollee preferences and insurance environments. We

use enrollees and estimates with middle ACG scores (the middle column of Table 5), but

the results are very similar across ACG scores. Our counterfactuals modify our structural

estimation framework in two ways. First, since our estimation sample pertains to a selected

set of enrollees who reached a high spending level early in the year, we create a nationally

representative sample by taking a convex combination of enrollees in our estimation sample

and enrollees in the same plans who are not in our estimation sample. The combination

is chosen so that 33% of enrollees reach the coverage gap after 52 weeks, the same as the

aggregate figure for 2008.24 Second, we compute a 52-week model, where we model both the

donut hole and the catastrophic coverage region, instead of an infinite horizon model with

the donut hole as an absorbing state. The reason is that individuals here may frequently not

reach the donut hole, unlike in our base estimation.

We start by examining the relative importance of behavioral hazard to moral hazard in

24Our counterfactual sample draws 29.6% from our estimation sample, with the remainder from other
enrollees. For each ACG score, we predict the arrival of disease shocks and drug types (Q and P respectively)
separately for the non-estimation sample.
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Medicare Part D. Behavioral hazard is the extent to which enrollees’ behavior is affected by

the fact that they are myopic. To compute the extent of behavioral hazard, we compare

the baseline Part D program to outcomes with geometric discounting and δ = 0.999 at the

weekly level (or 0.95 at an annual level). Moral hazard in healthcare refers to the extent to

which health insurance raises enrollees’ spending relative to environments without insurance

(Pauly, 1968). We examine the extent of moral hazard by comparing the baseline to the case

without insurance. All cases report consumer welfare using β = 1 and an annualized 95%

discount factor.

Table 6: Relative impact of behavioral and moral hazard
Statistic Baseline Geometric discounting No insurance
(per week) (no behavioral hazard) (no moral hazard)

Case 1 Case 2 Case 3
Number of Rxs 0.56 0.55 0.43
Number of branded Rxs 0.16 0.13 0.12
Number of generic Rxs 0.33 0.36 0.26
Expensive Rxs 0.10 0.07 0.06
Medium Rxs 0.15 0.14 0.12
Inexpensive Rxs 0.31 0.33 0.25
Enrollee spending ($) 16.33 11.56 29.47
Insurer spending ($) 26.44 25.29 0.00
Total spending ($) 42.78 36.85 29.47
Consumer welfare 1.10 1.16 0.67
Note: simulations use estimated parameters from Table 5 column 2. Inexpensive Rxs are less than $50
and expensive ones are $150 or more. Simulations are performed for 52 weeks starting enrollees at $0 in
expenditures and use a mix of the estimation sample and other enrollees in same plans so that 33% reach
the donut hole in the base case. Geometric discounting case uses an annualized discount factor of 95%.

The results, in Table 6, show that geometric discounting (Case 2) would cause a 29% drop

in weekly enrollee prescription drug spending and a 14% drop in total drug expenditures

relative to our estimated baseline with β = 0 (Case 1). However, there is little difference in

the number of prescriptions drugs between the two scenarios. Instead, there is a significant

change is the composition of drugs consumed. There is a 30% drop in prescriptions for

expensive drugs with substitution towards the most inexpensive. This substitution effect is

also apparent in the relative increase in the number of generic drugs. Interestingly, there

is a small decrease in insurer expenditures in moving to geometric discounting, as enrollees

33



substitute to drugs which are cheaper for themselves and also for the insurers. The fact that

β = 0 in combination with the nonlinear benefit design causes enrollees to over-consume

prescription drugs relative to the consumption path they would follow if they could pre-

commit to optimal state-contingent behavior. Because of this, consumer surplus, as evaluated

by the rational agent, increases by 5.5% by moving from the extremely myopic case of β = 0

to the time-consistent, geometric discounting case.

The no-insurance counterfactual allows us to compare the relative importance of moral

hazard to behavioral hazard. We find that without any insurance (Case 3), mean total

spending drops by 31% and consumer welfare drops by 39% relative to the baseline. Thus,

moral hazard has about twice as large an impact on total spending as does behavioral hazard.

Overall, Part D insurance induces two types on inefficiencies: time-inconsistent consumption

and moral hazard. We find that both distortions are important.

Table 7: Impact of filling the donut hole
Statistic Baseline No donut hole No donut hole No donut hole
(per week) with constant for generics

insurer spending only
Policy 1 Policy 2 Policy 3 Policy 4

Number of Rxs 0.56 0.59 0.58 0.57
Number of branded Rxs 0.16 0.17 0.16 0.15
Number of generic Rxs 0.33 0.35 0.35 0.36
Expensive Rxs 0.10 0.11 0.09 0.09
Medium Rxs 0.15 0.15 0.14 0.15
Inexpensive Rxs 0.31 0.32 0.35 0.33
Enrollee spending ($) 16.33 12.57 15.11 14.73
Insurer spending ($) 26.44 34.54 26.44 28.01
Total spending ($) 42.78 47.10 41.56 42.74
Consumer welfare 1.10 1.22 1.18 1.16
Coinsurance rate from data from data 36% from data
Note: simulations use estimated parameters from Table 5 column 2. Inexpensive Rxs are less than $50
and expensive ones are $150 or more. Simulations are performed for 52 weeks starting enrollees at $0 in
expenditures and use a mix of the estimation sample and other enrollees in same plans so that 33% reach
the donut hole in the base case.

We now examine the implications of counterfactual policies regarding eliminating the

donut hole. Table 7 presents the results of the baseline (Policy 1) and three counterfactual
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policies. Policy 2 removes the donut hole by implementing the same prices during the donut

hole region as existed before the donut hole. Policy 3 removes the donut hole but would leave

insurance spending constant by setting the coinsurance to a constant fraction of the total

price of the drug. Finally, Policy 4 removes the donut hole for generics only.

We find that without the donut hole (Policy 2) the total number of prescriptions increases

5% and total drug spending increases 10%. Insurer drug spending would increase 31%.

Enrollees consume more drugs and more expensive drugs. Einav et al. (2015) also estimate

that removing the donut hole will increase pharmaceutical spending 10%, while Abaluck

et al. (2015) estimate that figure to be 6%. Not surprisingly, we find that consumer welfare

increases significantly under the more generous benefit structure.

It is important to evaluate what might be the overall health consequences of removing

the donut hole. We can provide some back-of-the-envelope calculations using Chandra et al.

(2010), who estimate substitution between drug utilization and inpatient hospitalization.

Applying these estimates to the increase in drug consumption under Policy 2 implies that

inpatient hospital admissions would decrease by 1.4% by eliminating the donut hole.25

Under a linear contract with the same insurer cost (Policy 3), enrollees face a 36% coin-

surance rate. This is significantly higher than the current average 25% coinsurance. Enrollees

consume more drugs but fewer expensive ones than in the baseline as their myopia is no longer

relevant since the contract is not dynamic. This contract is significantly welfare improving

as consumer surplus increases 7% relative to the baseline. This policy also shows that the

nonlinear benefit design leads to reductions in welfare because of the myopic consumption

behavior of consumers.

Finally, Policy 4, removing the donut hole for generics, yields a 10% decrease in enrollee

spending and a 6% increase in insurer spending relative to the baseline. The end effect is

that total spending is very slightly lower than the baseline, as enrollees substitute to generic

drugs and away from branded drugs. Yet, consumer surplus increases 5% relative to the

25Chandra et al. (2010) find that a drug use drop of 18.2% leads to an increase in hospitalizations of
5.4%. We derive our result by applying the resulting elasticity of 0.27 to our 5% increase in drug spending.
Our calculation assumes that all the offset in Chandra et al. (2010) is attributable to the decline in drug
consumption and not the decline in outpatient visits.
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baseline. Thus, by causing individuals to substitute to generic drugs, this policy is welfare

increasing while not raising total prescription spending.

7 Conclusion

The Medicare Part D program established an important prescription drug benefit, but one

that required enrollees interested in optimizing their drug purchases to calculate an inher-

ently dynamic problem, due to the coverage gap. This paper considers the extent to which

consumers follow the complex dynamic incentives created by Part D, and examines the im-

plications of the myopia that we find.

We develop a dynamic modeling framework for complex insurance contracts which allows

for quasi-hyperbolic discounting. Using the framework we provide a regression-discontinuity-

based test for myopia. A central challenge of estimating the impact of dynamic incentives

on consumer behavior is selection: individuals compared across different settings may be

different in dimensions that are often unobservable. Our test is based on examining how

individuals who arrive near the donut hole early in the year change their behavior upon

reaching the donut hole. It avoids selection issues by considering how a given individual

changes her behavior within a relatively small time period.

We find strong evidence in favor of myopia, defined as hyperbolic discounting, β < 1, or

a complete absence of forward-looking behavior, δ = 0. Enrollees lower their prescription

drug purchases upon reaching the donut hole, with a disproportionate drop for drugs that

cost over $150 and branded drugs. Moreover, the data can reject the presence of geometric

discounters with a low discount factor in favor of myopia.

Having established evidence in favor of myopia, we turn to structurally estimating the

parameters of our model. Our modeling framework builds on standard industrial organization

choice models, with a multinomial choice problem where enrollees face random disease shocks

that require treatment by a particular drug class and then choose to purchase one of a

number of drugs in that class or the outside option. Notably, the price elasticity parameters

are separately identified from the discount factor parameters by the panel data variation in
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drugs within different drug classes. We find that consumers have significant price elasticities

and complete myopia.

Our structural estimation approach has several limitations. We do not allow for any

medical dynamics to treatment, we do not measure substitute therapies to drugs, we do not

model imperfect physician agency, and our arrival process for diseases is relatively simple.

Nonetheless, we believe that our structural results are reasonable, given the large drop in

spending shown by the regression-discontinuity evidence.

Last, we examine the impact of counterfactual preferences and policies. We find that

closing the donut hole would raise total spending 10% or necessitate a 36% coinsurance for

budget balancing. Donut hole coverage for generics only would be much less expensive.
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Appendix A: Extra Figures and Tables

Figure A1: Information provided to Part D enrollees on distance to donut hole
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Figure A2: Histogram of end-of-year drug spending for estimation and full sample
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Table A1: Most common drugs in estimation sample
Drug Indication Bran- Total Out of pocket Number %
name red price ($) price ($) of Rxs of obs.
Lisinopril Renin-

Angiotensin
System Blocker

N 18.84 9.90 727 3.1

Metoprolol Beta-Blocker N 30.73 10.27 649 2.8
Simvastatin Cholesterol Low-

ering
N 33.52 11.51 640 2.7

Hydrocodon Opioid N 21.48 7.92 625 2.7
Plavix Antiplatelet Y 174.60 41.43 603 2.6
Furosemide Diuretic N 8.23 6.85 589 2.5
Levothyroxine Hypothyroidism N 11.52 9.26 562 2.4
Metformin Insulin Sensitizer N 24.59 9.68 526 2.2
Amlodipine Calcium Channel

Blocker
N 52.35 11.07 508 2.2

Warfarin Anticoagulant N 16.20 8.46 346 1.5
Note: reported total prices and out-of-pocket prices derived from authors’ calculations.
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Table A2: Behavior near coverage gap with variation across drug classes
Dependent variable: number of Rxs in category during a week

Regressor Branded Rx Generic Rx Expensive Rx Medium Rx Inexpensive Rx

Frac branded 1.45∗∗ −1.50∗∗ – – –
(.038) (.054)

Frac branded −.065 .085 – – –
× donut hole (.042) (.060)

Frac expensive – – 1.47∗∗ .168∗ −1.79∗∗

(.051) (.065) (.078)
Frac expensive – – −.065 .170∗∗ .056
× donut hole (.042) (.054) (.084)

Donut hole −.045∗ −.041 −.031∗∗ −.072∗∗ −.002
($2,510 - 2,999) (.019) (.036) (.011) (.018) (.027)

N 11,197 11,197 11,197 11,197 11,197

Note: Standard errors in parentheses. ‘∗∗’ denotes significance at the 1% level and ‘∗’ at the 5% level. Each
column represents one regression. The regressor “frac branded” indicates the mean fraction of branded
prescriptions filled for the drug classes chosen in a week prior to $2,000 in spending; similarly for “frac
expensive.” All regressions also include enrollee fixed effects and an indicator for beginning-of-week spending
between $2,400 and $2,509, and cluster standard errors at the enrollee level. Sample consists of enrollees
who reach $2,000 in spending between Mar. 30 and Jul. 26, 2008. An observation is an enrollee/week with
at least one prescription filled and includes weeks with beginning-of-week spending ≥ $2, 000 and < $3, 000.
Inexpensive Rxs are less than $50 and expensive ones are $150 or more.
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Table A3: Largest and smallest changes in drug classes near coverage gap
Dependent variable Mean value Beginning of week
Number of Rxs for: before $2,400 spending in: N

$2,510 - 2,999
Cholesterol Lowering 0.080 −0.0176∗∗ (0.0034) 30,305
Beta-Blocker 0.046 −0.0136∗∗ (0.0023) 30,305
Gastroesophageal Reflux & Pep-
tic Ulcer

0.031 −0.0129∗∗ (0.0023) 30,305

Renin-Angiotensin System
Blocker

0.065 −0.0124∗∗ (0.0029) 30,305

Antidepressant 0.045 −0.0105∗∗ (0.0024) 30,305

Opthalmic Antibiotic 0.002 −0.0000 (0.0006) 30,305
Antidiarrheal 0.001 0.0002 (0.0004) 30,305
Folic Acid Antagonist Antibiotic 0.003 0.0003 (0.0008) 30,305
Diuretic & Renin-Angiotensin
System Blocker

0.002 0.0003 (0.0005) 30,305

Antiarrhythmic 0.002 0.0007 (0.0005) 30,305
Note: Standard errors in parentheses. ‘∗∗’ denotes significance at the 1% level and ‘∗’ at the 5% level.
Each row represents one regression. All regressions also include enrollee fixed effects and an indicator
for beginning-of-week spending between $2,400 and $2,509, and cluster standard errors at the enrollee
level. Sample consists of enrollees who reach $2,000 in spending between Mar. 30 and Jul. 26, 2008. An
observation is an enrollee/week and includes weeks with beginning-of-week spending ≥ $2, 000 and < $3, 000.
Inexpensive Rxs are less than $50 and expensive ones are $150 or more.

Appendix B: Method to Enumerate Elements in L(N̂ ,N)

This section describes our method for enumerating all the elements in L(N̂ ,N).26 Recall

that each element in L(N̂ ,N) corresponds to one vector of places for the health shocks with

inside good purchases when there are N̂ health shocks with inside good purchases and N is

the maximum number of health shocks. For instance, if N = 8 and N̂ = 3, an element of

L(N̂ ,N) is (1, 5, 8).

As in Gowrisankaran (1999), let o(·) denote the number of elements in a set. Using a

similar proof structure to Gowrisankaran (1999) Theorem 1, we offer the following:

Proposition 1. Using induction, the number of elements in L(N̂ ,N) can be described as

follows:

26For brevity of notation, this section suppresses the dependence of variables on individual i, group g, or
time t.
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Base case 1: N̂ = 1. o(L(1, N)) = N .

Base case 2: N̂ = N . o(L(N,N)) = 1.

Inductive case: 1 < N̂ < N . o(L(N̂ ,N)) = o(L(N̂ ,N − 1)) + o(L(N̂ − 1, N − 1)).

Proof I split the proof into assertions of the base cases and the inductive case.

Base case 1: L(1, N) enumerates all possible places for the single health shock with an

inside good purchase. This single health shock can occur at any of the purchase occasions

between 1 and N . There are thus N possible places.

Base case 2: Here L(N,N) represents all possible place vectors for the inside good pur-

chases when the number of inside good purchases is equal to the maximum number of purchase

occasions. Here, each purchase occasion must be used for an inside good purchase. Thus,

the unique place vector is (1, . . . , N), which gives o(L(1, N)) = 1.

Inductive case: Assume by induction that the theorem hold for all cases with maximum

number of purchase occasions less than N and also for the (N,N) case. We now prove that

it holds for the (N̂ ,N) case by induction, where 1 < N̂ < N .

We divide the possible place vectors into two exhaustive and mutually exclusive cases.

Either the Nth health shock place has no inside good purchase or it has one. Suppose first

that it has none. Then, all the N̂ inside good health shocks must occur at the first N − 1

places. By the inductive assumption, there are o(L(N̂ ,N − 1)) possible place vectors that

satisfy this criterion. Now suppose that the last place contains the last inside good purchase.

Then the N̂ − 1 earlier inside good purchases must occur sometime during the first N − 1

places. Again by the inductive assumption, there are o(L(N̂ − 1, N − 1)) possible place

vectors that satisfy this vector. Adding up the number of elements in both cases, we have

proven the inductive case.

Note that the inductive formula in Proposition 1 is the same as the inductive formula

that defines binomial coefficients. Hence, we could also write L(N̂ ,N) = Binom(N +1, N̂) ≡
(N+1)!

(N̂)!(N+1−N̂)!
. Finally, note that Gowrisankaran (1999) Theorem 2 provides a computation-

ally efficient method for enumerating and accessing individual elements of L(N̂ ,N). The

analogous method works here and hence we use the method from that paper here also.

45


