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1 Introduction

In the last fifteen years, the theory of market design has inspired dramatic changes in how
children are assigned to public schools across numerous American cities and around the world.
The first new system adopted was for placement of 8th graders into high schools in New York
City (NYC). NYC’s new system has not only led to widespread scientific and popular acclaim
(Nobel 2012, Tullis 2014, Roth 2015), but has also been a template for reforms in other cities.1

Despite the widespread adoption and apparent consensus on the value of market-design inspired
centralized assignment schemes, there is remarkably little evidence on whether, why, and how
much a coordinated assignment system affects the allocation of pupils to schools or on the extent
to which the new system created losers as well as winners. The empirical performance of alter-
natives to NYC’s deferred acceptance-based scheme and the quantitative aspects of particular
design trade-offs also remain open questions.2

Characterizing the state of the market prior to the new mechanism is a major challenge for
such analysis because decentralized and uncoordinated systems do not usually generate system-
atic data. This paper surmounts this hurdle by exploiting new data on school placements in
the system used in New York before 2003 to study the effects of moving from an uncoordinated
assignment system to a coordinated single-offer system on the allocation of students to schools.
Using our rich micro-data on applications, assignment, and enrollment, we describe how stu-
dents are placed into high school in both systems and whether they are placed into one of their
preferred choices. Tracking students from application to assignment allows for a comprehensive
description of the drawbacks of NYC’s previous system across students, but it still leaves open
questions. First, we do not know whether the reform was able to realize most of the possible
gains associated with a new assignment system and how those gains were distributed across
applicants. Second, we know little about the magnitude of further algorithmic improvements
considered by the market design literature compared to other aspects of the design. Our pa-
per addresses these questions using an estimated model of student preferences exploiting the
straightforward incentive feature of New York’s new system.

Prior to 2003, aspiring NYC high school students applied to five out of more than 600 school
programs; they could receive multiple offers and be placed on wait lists. Students in turn were
allowed to accept only one school and one wait list offer, and the cycle of offers and acceptances
repeated two more times. Students not assigned in these rounds were assigned through an
administrative process, which manually placed students at nearby schools. Since admissions
offers were not coordinated across schools, we refer to this as the uncoordinated mechanism.
In Fall 2003, the system was replaced by a single-offer assignment system, based on the student-

1Cities with new coordinated matching systems include Denver, New Orleans, Newark, and Washington DC.
Many former Department of Education officials subsequently took leadership positions in other districts which
put new centralized assignment systems in place inspired by the NYC experience including in Louisiana (Gabriela
Fighetti, John White) and Newark (Cami Anderson).

2There is an active scholarly and policy debate about alternative designs. The OneApp process used in the
Recovery School District in New Orleans is based on an entirely different assignment algorithm, which relaxes the
stability constraint in New York’s system Abdulkadiroğlu, Che, Pathak, Roth, and Tercieux (2015). Abdulka-
diroğlu, Che, and Yasuda (2015) argue that ordinal strategy-proof mechanisms may not lead to improvements in
cardinal utility.
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proposing deferred acceptance algorithm (DA) for the main round. Applicants were allowed to
rank up to 12 programs for enrollment in 2004-05, and a supplementary round placed those
unassigned in the main round. Since the central office coordinated offers across schools into a
single offer, we refer to this new mechanism as the coordinated mechanism. The mechanisms
could produce different allocations for three main reasons: 1) the new mechanism allows students
to rank up to 12 choices, whereas the old mechanism only allowed for five; 2) a limited number
of rounds of offers and acceptances in the old mechanism lead to congestion, where students
hold on to less preferred choices while waiting to be offered seats at more preferred schools once
others decline; and 3) the old mechanism invited strategic considerations on student ranking, as
schools were able to see the entire rank ordering of applicants in the old mechanism and some
advertised they would only consider those who ranked them first.

Offer processing and matriculation patterns provide rich details on how and why the new
mechanism is an improvement compared to the old one. In the old mechanism, 18.6% of students
matriculate at different schools from their assignment at the end of the match compared to 11.4%
under the new mechanism. Multiple offers and short rank order lists in the old mechanism
advantage few students, but leave many without offers. Roughly one-fifth of students obtain
multiple offers, while half of applicants obtain no first round offer and 59% of these applicants are
administratively assigned. The take-up rates for students assigned administratively are similar
across mechanisms, but the number of students assigned in that round is three times larger in
the old mechanism. In addition, 8.5% of applicants left the district after assignment in the old
mechanism, while only 6.4% left under the new mechanism. Students are also traveling 0.69 miles
further to their new assigned school. While suggestive of welfare improvements, it is necessary
to estimate econometric models of school demand to quantify the distribution of student welfare
effects and the relevance of design issues at the heart of literature on school matching market
design.

The fact that the new mechanism is based on DA, which is strategy-proof, motivates treating
stated preferences as true preferences and sidesteps challenges associated with inferring prefer-
ences from highly manipulable systems. As far as we know, our paper is the first to fit econometric
models of school demand using data generated by DA, despite the fact that many have argued for
strategy-proof mechanisms because they generate credible preference data for guiding policy.3

Our preference estimates characterize the heterogeneous nature of student preferences, which
allows us to quantify what aspects of school choice market design are most important for alloca-
tive efficiency. Robustness of our estimates to variations on our assumptions on ranking behavior
and evidence of in-sample and out-of-sample fit reassure us about the suitability of using stated
preferences for welfare analysis.

We use these estimates to evaluate the allocative and distributional aspect of various as-
signment mechanisms, an exercise that provides a quantitative counterpart to the theoretical
literature on matching market design. To scale the magnitude of welfare effects, we first measure
aggregate welfare from two extremes: a neighborhood assignment allocation, where each student

3The fact that strategy-proof mechanisms generate reliable demand data is a common argument in their favor
(see, e.g., Abdulkadiroğlu, Pathak, Roth, and Sönmez (2006), Abdulkadiroğlu, Pathak, and Roth (2009), Sönmez
(2013)). In on-going work, Pathak and Shi (2014) examine the out-of-sample performance of school demand
forecasts using data from Boston’s DA-based system.
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to the closest school subject to capacity constraints, and the utilitarian optimal assignment,
which maximizes the equally weighted average of distance-equivalent utility. The coordinated
scheme is 80% of the way to this idealized benchmark. Next, we find relatively modest gains
from relaxing mechanism design constraints emphasized by a large theoretical market design
literature (Erdil and Ergin 2008, Abdulkadiroğlu, Pathak, and Roth 2009, Kesten 2010, Kesten
and Kurino 2012). Had the mechanism produced a student-optimal stable matching, the average
student welfare would have improved by 0.58%. An ordinally Pareto efficient matching, which
abandons the stability constraints in the current mechanism, is equivalent to an improvement of
about 3.3% of the range. While these alternatives are infeasible without sacrificing some appeal-
ing features of the mechanism, this exercise shows that the magnitude of student welfare gains
from any potential algorithmic improvements are swamped by the effects of simply having choice
in a coordinated system, as measured by the range between neighborhood assignment and the
assignment from the coordinated mechanism.

We then use our demand estimates to evaluate the transition from an uncoordinated to a
coordinated mechanism. We examine three different interpretations of the data from the uncoor-
dinated mechanism. Under each assumption, the new mechanism has made it easier for students
to obtain a choice they want. Even though school assignments are further away, based on our
estimated distribution of preferences, the amount that students prefer these assignments more
than compensates for this difference. Our preferred estimate is that admissions coordination
represents 58% of the range from no choice to utilitarian optimum. Students across all demo-
graphic groups, boroughs, and baseline achievement levels obtain a more preferred assignment on
average from the new mechanism. The largest gains are for student groups who were more likely
to be unassigned after the old mechanism’s main round, suggesting that congestion and ad-hoc
placement of unassigned students in the old mechanism are primarily responsible for misalloca-
tion. This comparison also shows that the elimination of congestion through offer coordination
dominates the allocative effects of further modifications to the matching algorithm within the
coordinated system.

This paper brings together two distinct literatures on school choice and matching mechanisms.
We share a focus with papers interested in understanding how choice affects the assignment
and sorting of students (Epple and Romano 1998, Urquiola 2005) rather than the competitive
effects of choice on student achievement (Hoxby 2003, Rothstein 2006). We also concentrate our
study on allocative efficiency rather than effects of choice options on subsequent achievement
(Abdulkadiroğlu, Angrist, Dynarski, Kane, and Pathak 2011, Deming, Hastings, Kane, and
Staiger 2014, Walters 2014, Neilson 2014). The allocative issues we focus on are likely important
for understanding potential long-term effects on residential choices and school productivity. A
number of recent papers use micro data from assignment mechanisms to understand school
demand (Hastings, Kane, and Staiger 2009, He 2012, Ajayi 2013, Agarwal and Somaini 2014,
Calsamiglia, Fu, and Guell 2014, Hwang 2014, Burgess, Greaves, Vignoles, and Wilson 2015),
typically using data from highly manipulable mechanisms like the Boston mechanism under
strong assumptions on information and agent sophistication. While some of these papers have
compared Boston and DA, ours is the first to examine congestion in an uncoordinated school
assignment system. An approach based on estimated preferences is complementary to survey data
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for comparing mechanisms. For instance, Budish and Cantillon (2012) use survey data on a multi-
unit course allocation mechanism and find that more students are assigned to preferable choices
in a strategy-proof mechanism compared to the strategic draft mechanism used at the Harvard
Business School. Finally, our work is related to comparisons of decentralized and centralized
medical labor markets by Niederle and Roth (2003), who compare the distance between medical
school and residency locations for gastroenterologists before and after a centralized clearinghouse.

2 High School Choice in NYC

2.1 School Options

Aspiring high school students are eligible to apply to any school or program throughout New
York City. Programs exist within schools and have curricula ranging from the arts to sciences
to vocational training. The 2002-03 High School directory describes program types. Specialized
High Schools, such as Stuyvesant and Bronx Science, have only one type of program, which
admits students by admissions test performance on the Specialized High Schools Admissions Test
(SHSAT).4 There are three ways in which non-Specialized high schools differ in how they screen
students. Unscreened programs admit students by random lottery, in some cases giving priority
to students from specific residential zones or to students who attend the school’s open house.
Screened programs evaluate students individually using an assortment of criteria, including
graded, standardized/diagnostic test scores; attendance and punctuality; interviews; and essays.
They might also evaluate students for proficiency in specific performing or visual arts, music,
or dance. Education Option programs also evaluate students individually, but only for half
of their seats. The other half is allocated by lottery. Allocation of seats in each half targets a
distribution of student ability: 16 percent of seats should be allocated to high performing readers,
68 percent to middle performers, and 16 percent to low performers.

Throughout the last decade, the NYC DOE closed and opened new small high schools
throughout the city, each with roughly 400 students. A big push for these small high schools
came as part of the New Century High Schools Initiative launched by Mayor Bloomberg and
Chancellor Klein. Eleven new small high schools were opened in 2002, 23 new small schools were
opened in 2003, and the peak year of small high school openings was in 2004 (Abulkadiroğlu,
Hu, and Pathak 2013). Most of these schools are small and have about 100 students per entering
class. As a result, the new small high schools have a relatively small effect on overall enroll-
ment patterns during our study period, which focuses on school options available in 2002-03 and
2003-04.

2.2 Uncoordinated Admissions in 2002-03

Forms of high school choice have existed in New York City for decades. Before 2002, high
school assignment in New York City featured a hodgepodge of choice options mostly controlled
by borough-wide high school superintendents. Significant admissions power resided with school
administrators, who could directly enroll students. Admissions to the Specialized High Schools

4Abdulkadiroğlu, Angrist, and Pathak (2014) describe their admissions process in more detail.
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and the LaGuardia High School of Music & Art and Performing Arts, however, have been
traditionally administered as a separate process from regular high schools and did not change
with the new mechanism.5 Our study therefore focuses on admissions to non-Specialized public
schools.

About 80,000 students interested in regular high schools visit schools and attend city-wide
high school open houses before submitting their preference in the fall. In the Main round in
2002-03, students could apply to at most five regular programs in addition to the Specialized
High Schools. Programs receiving a student’s application were able to see the applicant’s entire
preference list, including where their program was ranked. Programs then decided whom to
accept, place on a waiting list, or reject. Applicants were sent a decision letter from each
program to which they had applied, and some obtained more than one offer. Students were
allowed to accept at most one admission and one wait-list offer. After receiving responses to
the first letters, programs with vacant seats could make new offers to students from waiting
lists. After the second round, students who did not have a zoned high school were allowed to
participate in a Supplementary round known as the variable assignment (VAS) process. In the
Supplementary round, students could rank up to eight choices, and they were assigned based on
the negotiation of seat availability between the enrollment office and high school superintendents.
After replies to the second letter were received, a third round of letters were mailed. New offers
did not necessarily go to wait-listed students in a predetermined order. Unassigned students
were either placed at their zoned programs or placed administratively by the central office as
close to home as possible. We refer to this final stage as the Administrative round.6

Three features of this assignment scheme motivated the NYC DOE to abandon it in favor of a
new mechanism. First, there was inadequate time for offers, wait list decisions, and acceptances
to clear the market for school seats. DOE officials reported that in some cases, high-achieving
students received acceptances from all of the schools to which they applied, while many others
received none (Herszenhorn 2004). Comments by the Deputy Schools Chancellor summarized
the frustration: “Parents are told a school is full, then in two months, miracles of miracles, seats
open up, but other kids get them. Something is wrong” (Gendar 2000).

Second, some schools awarded priority in admissions to students who ranked them first on
their application form. The high school directory advises that when ranking schools, students
should “determine what your competition is for a seat in this program” (DOE 2002). This
recommendation puts strategic pressure on ranking decisions. Students have to both consider
the limited number of potential applications and whether the school only considers first-choice
applicants.

Third, a number of schools managed to conceal capacity to fill seats later on with better
5The 1972 Hecht-Calandra Act is a New York State law that governs admissions to the original four Specialized

High Schools: Stuyvesant, Bronx High School of Science, Brooklyn Technical, and Fiorello H. LaGuardia High
School of Music and Performance Arts. City officials indicated that this law prohibits including these schools
within the common application system without an act of the state legislature.

6Students who are new to New York City or did not submit an application participate in an “over the counter”
round over the summer. Our analysis follows applicants through to assignment and therefore does not consider
students who arrived to the process after the high school match. Arvidsson, Fruchter, and Mokhtar (2013) provide
further details on the over-the-counter round.

5



students. For example, the Deputy Chancellor stated, “before you might have a situation where a
school was going to take 100 new children for ninth grade, they might have declared only 40 seats,
and then placed the other 60 outside the process” (Herszenhorn 2004). Overall, critics alleged
that the old mechanism disadvantaged low-achieving students and those without sophisticated
parents (Hemphill and Nauer 2009).

2.3 Coordinated Admissions in 2003-04

The new mechanism was designed with input from economists (see Abdulkadiroğlu, Pathak,
and Roth (2005) and Abdulkadiroğlu, Pathak, and Roth (2009)). When publicizing the new
mechanism, the DOE explained that its goals were to utilize school places more efficiently and
to reduce the gaming involved in obtaining school seats (Kerr 2003). As in previous years, in the
first round, students apply to Specialized High Schools when they take the SHSAT. Offers are
produced according to a serial dictatorship with priority given by SHSAT scores.7

In the Main round, students can rank up to twelve regular school programs in their ap-
plications, which are due in November. The DOE advised parents: “You must now rank your
12 choices according to your true preferences” because this round is built on Gale and Shapley
(1962)’s student-proposing deferred acceptance algorithm. Schools with programs that prioritize
applicants based on auditions, test scores or other criteria are sent lists of students who ranked
the school, but these lists do not reveal where in the preference lists they were ranked. Schools
return orderings of applicants to the central enrollment office. Schools that prioritize applicants
using geographic or other criteria have those criteria applied by the central office. That office
uses a single lottery to break ties among students with the same priority, generating a strict
ordering of students at each school.

Assignment is determined by the student-proposing deferred acceptance algorithm, with stu-
dent preferences over the schools, school capacities, and schools’ strict ordering of students as
parameters. The algorithm is run with all students in February. In this first round, only students
who receive a Specialized High School offer receive a letter indicating their regular school assign-
ment, and they are asked to choose one. After they respond, students who accept an offer are
removed, school capacities are adjusted, and the algorithm is re-run with the remaining students.
All students receive a letter notifying them of their assignment or whether they are unassigned
after the Main round.

Unassigned students from the Main round are provided a list of programs with vacancies and
are asked to rank up to twelve of these programs. In 2003-04, the admissions criteria at the
remaining school seats were ignored in this Supplementary round. Students are ordered by
their random number, and the student-proposing deferred acceptance algorithm is run with this
ordering in place at each school. Students who remain unassigned in the Supplementary round
are assigned administratively. These students and any appealing students are processed on a
case-by-case basis in the Administrative round.

7There is very limited overlap between the specialized round and subsequent rounds. In 2003-04, 4,175 out of
4,553 of those offered a specialized high in our sample accepted that offer.
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3 Data and Sample Definitions

3.1 Students

The NYC DOE provided us with several data sets for this study, each linked by a unique student
identification number: information on student choices and assignments, student demographics,
and October student enrollment. For 2002-03, the assignment files record a student’s Main
round rank order list, their offers and rejections for each round, whether they participate in the
Supplementary round, and their final assignment at the conclusion of the assignment process
as of July 2003. For 2003-04, the assignment files contain students’ choice schools in order of
preference, priority information for each school, assignments at the end of each of the rounds, and
final assignment as of early August 2004. The student demographic file for both years contains
information on home address, gender, race, limited English proficiency, special education status,
and performance on 7th grade citywide tests. We use addresses to compute the road distance
between each student and school and to place each student in a census block group.8 We also
have access to similar files for 2004-05. Further details are in the Data Appendix.

Our analysis sample makes three restrictions. First, since we do not have demographic
information for private school applicants, we restrict the analysis to students in NYC’s public
middle schools in the year prior to application. Second, we focus on students who are not assigned
to Specialized High Schools because that part of the assignment process did not change with the
new mechanism. Third, we consider applicants who are given an assignment at the conclusion
of the process (i.e., those who have not left midway). Given these restrictions, we have two main
analysis files: the mechanism comparison sample and the demand estimation sample.

The mechanism comparison sample is used for comparisons of the assignment across the
two mechanisms. This sample is the largest set of students assigned through the high school
assignment mechanism to a school that exists as of the time of the printing of the high school
directory. A key property of the mechanism comparison sample is that every student has an
assignment. Columns 1 and 2 of Table 1 summarize student characteristics in the mechanism
comparison samples across years. 3,500 fewer students are involved in the mechanism comparison
2003-04 sample, a difference mainly due to the students assigned to schools created after the
printing of the high school directory or to closed schools (as shown in Appendix Table C2).

New York City is the nation’s largest school district, and like many urban districts, low-
income and non-white students are in the majority. Nearly three-quarters of students are black
or Hispanic, and about 10% of students are Asian. Brooklyn is home to the largest number of
applicants, followed by the Bronx and Queens, both of which account for roughly one quarter
of students. Manhattan and Staten Island account for a considerably smaller share of students
at about 13 and six percent, respectively. Consistent with the sudden announcement of the new
mechanism, characteristics of applicants are similar across years.

The demand sample contains participants in the Main round of the new mechanism in the
assignment files. The school choices expressed by these students represent the overwhelming

8Though we use road distance, we also computed subway distance using the Metropolitan Transportation
Authority GIS files; the overall correlation between driving distance and subway commuting distance for all
student-program pairs is 0.96.
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majority of students. Among the set of Main round participants, we exclude a small fraction
of students who are classified as the top 2 percent because these students are guaranteed a
school only if they rank it first, and this may distort their incentives to rank schools truthfully.
Additional details on the sample restrictions are in the Data Appendix.

3.2 Schools

Data on schools were taken from New York State report card files provided by NYC DOE.
Information on programs comes from the official NYC High School Directories made available to
students before the application process. Table 2 summarizes school and program characteristics
across years. The number of schools increases from 215 to 235, and the number of students
enrolled per school decreases by about 40 students. This is driven by the replacement of some
large schools with smaller schools that took place concurrently in 2003-04, as described above.
Despite this increase, there is little change in the average achievement levels of schools and school
demographic composition as measured by report card data. We are not aware of other significant
changes in school inputs, recruitment campaigns, and materials, including the format of the high
school directory.9

Students in New York can choose among roughly 600 programs throughout the city. Pro-
grams vary substantially in focus, post-graduate orientation, and educational philosophy. For
instance, the Heritage School in Manhattan is an Educational Option program where the arts
play a substantial role in the curriculum, while Townsend Harris High School in Queens is a
Screened program with a rigorous humanities program, making it among the most competitive
in the city. Using information from high school directories, we identify each program’s type, lan-
guage orientation, and specialty. With the new mechanism, there are more Unscreened programs
and fewer Educational Option programs, a change driven by the conversion of many Educational
Option programs to Unscreened programs. This change in labeling was due to overlapping admis-
sions criteria and similarity of educational programming. We code language-focused programs
as Spanish, Asian, or Other, and we categorize program specialties into Arts, Humanities, Math
and Science, Vocational, or Other. Not all programs have specialties, though about 70% fall into
one of these classes. (Details on our classification scheme are in the Data Appendix). The menu
of language program offerings or program specialties changes little across years.

4 Congestion and Changes in Assignments

The similarity of student and school attributes in Tables 1 and 2 suggest that there were not
systematic changes in participant attributes and school supply across years. Moreover, there
does not appear to be a large-scale change in student locations across years, as shown in Figure
1, which maps both student and school locations. These facts motivate attributing differences
in allocations between 2002-03 and 2003-04 primarily to the assignment mechanism rather than
changes in student participation or the menu of school options.

9Appendix Figure A3 shows that the market share of most programs is similar across years, except for about
20 rarely ranked programs in the uncoordinated mechanism.
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4.1 Congestion in the Main Round

Table 3 reports the number of students assigned across rounds of the uncoordinated and co-
ordinated mechanisms. The most noteworthy pattern is that more students obtain their final
assignment in the Administrative round of the uncoordinated mechanism than in the first round.
Panel A of the Table shows that 37% of students are assigned administratively compared to 34%
in the first round. Since 33,894 students obtained one or more first round offers (shown in Panel
B), but only 23,867 students were finalized in the first round, 10,027 students with a first round
offer were finalized with offers made in subsequent rounds. The processing of these students took
place as schools revised offers based on first round rejections and made offers anew in the second
and third rounds. However, the relatively small number of students placed in the second and
third round implies that three rounds were insufficient to process all students. That only half of
the students were placed in the Main round of the old mechanism contrasts sharply with new
mechanism, where 82% of students were placed in the Main round.10

These observations about the old mechanism are characteristic of congestion, as described in
Roth and Xing (1997)’s study of the labor market for entry-level clinical psychologists. Offers
for training positions in that market were made in an uncoordinated fashion during a 7-hour
window, and Roth and Xing (1997) argue that uncoordinated processing and a small market-
clearing window led to mismatch. In NYC, the low number of rounds and the serial-processing of
batches of offers, whereby programs waited for previous offers to be rejected before making new
offers, combined to have a similar effect. In addition to insufficient processing of offers, the small
number of applications allowed in the old mechanism also led to situations where students fell
through the cracks if they applied to oversubscribed schools. Since rank order lists were short,
the mechanism considered a smaller number of alternate choices for these students compared to
a mechanism which allowed students to rank more choices. Had more applications been allowed,
schools where these students were ultimately placed may have been assigned in the Main round.

The new mechanism relieved congestion by increasing the number of choices students can
rank and the number of rounds of offer processing. To investigate the role of these two forces
– short rank order lists and limited offer processing – in producing administrative assignments,
we used data from the coordinated mechanism to simulate two variations: 1) the Main round,
where only the top five choices are considered and there is no restriction in the number of rounds,
and 2) the Main round with twelve choices, but only three sets of proposals from the deferred
acceptance algorithm.11 The first is intended to isolate the role of five choices, while the second
isolates the role of few offer-processing rounds. Since we do not model behavioral responses by
students, we only intend this exercise to shed light on mechanical features generating adminis-
trative assignments in the uncoordinated mechanism. With that caveat in mind, we find that
the five-choice constraint with an unlimited number of rounds leaves about one quarter of appli-
cants unassigned, while the unconstrained mechanism with three proposal rounds leaves roughly

10The marked shift in the number assigned in the Main round also appears in the second year of the coordinated
mechanism, where even more students, 87.3%, were placed in the Main round (shown in Appendix Table B1).

11Even though there are multiple possible implementations of deferred acceptance, our simulation considers the
simultaneous-proposing version, where a round is defined by a set of proposals by students who are not tentatively
held or have not exhausted their rank order list.
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half of applicants unassigned. Relative to the uncoordinated mechanism, the new coordinated
mechanism appears to reduce administrative assignments by computerizing offer processing and
avoiding the need for active student and school participation once preferences are submitted.
Short rank order lists also generate administrative assignments, but perhaps less so than few
offer processing rounds.

4.2 Distance, Exit, and Matriculation

Across mechanisms, there are stark differences in distance to assigned school and offer take-
up. Figure 2 reports the distribution of distance between students’ residence and their assigned
school in both mechanisms. New York City spans a large geographic range, with nearly 45 miles
separating the southern tip of Staten Island from the northernmost areas of the Bronx and 25
miles separating the western edge of Manhattan near Washington Heights to Far Rockaway at
the easternmost tip of Brooklyn.12 The closest school for a typical student is 0.82 miles from
home, and students in the uncoordinated mechanism on average traveled 3.36 miles to their
assignment. In the coordinated mechanism, the average distance is 4.05 miles. Panels A and C
of Table 3 show that average distances were lower in the uncoordinated system because a large
number of students were administratively assigned to a nearby school.

The increase in distance to assigned school parallels the Niederle and Roth (2003)’s study
of the gastroenterology labor market, where physician mobility increased following a centralized
match. While these observations may suggest that coordinated mechanisms expand the scope
of the market, in the school choice context traveling to school daily imposes a cost to students.
It is therefore essential to measure how students value proximity relative to other aspects of
their school choices to assess whether this increase in distance is compensated by improved
assignments.

Student enrollment patterns documented in Table 3, however, indicate that student assign-
ments in the uncoordinated mechanism, particularly those made in the Administrative round,
are undesirable relative to those in the coordinated mechanism. After receiving an assignment,
a student may opt for a private school, leave New York, or even drop out. Families may switch
schools after their final assignments are announced, but before the school year starts. In the
uncoordinated mechanism, principals had greater discretion to enroll students, and the DOE
officials quoted above alleged that students with sophisticated parents might just show up at a
school in the fall and ask for a seat at the school. The exit rate is higher in the uncoordinated
mechanism (8.5% compared to 6.4%), and the fraction of students who enroll at a school other
than their assignment is higher (18.6% compared to 11.4%).

In the uncoordinated mechanism, students assigned in earlier rounds appear more satisfied
with their assignment than those assigned in later rounds. The fraction of students who exit
NYC public schools is 13.3% among administrative placements, compared to 5.2% among those
assigned in the first round. More than a quarter of students assigned in the Administrative round
who are still in NYC public schools matriculate at schools other than those to which they were
assigned. By comparison, the take-up of offered assignments is much higher for those assigned

12Our analysis focuses on road distance, which is highly correlated with subway distance. Appendix B presents
a detailed comparison of both measures.
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in the first three rounds. Based on exit and matriculation, students with multiple offers in the
first round are more satisfied with their assignment than students with zero or one offers. These
students also travel further to their final assignment or enrolled school. In contrast, the majority
of students with no offers are assigned through the Administrative round, and this likely accounts
for their higher rates of exit and enrollment at a school other than their assignment. Even though
the coordinated mechanism has substantially fewer administratively assigned students, the exit
rates are highest and the matriculation rates are lowest for the participants of that round.13

4.3 Mismatch in Administrative Round

To further evaluate the assignments of students processed in the Administrative round, we com-
pare the attributes of schools that students wanted (or ranked) to the attributes of schools to
which they were assigned. Students processed in earlier rounds are assigned to schools that
have attributes more similar to the schools they ranked than students processed in later rounds.
Table 4 shows that for those assigned in the Main round, with the exception of distance, ranked
schools tend to have similar or slightly better attributes than assignments in both mechanisms.
For instance, ranked schools have higher Math and English performance, more students attending
four-year colleges, and higher attendance rates. They are similar in terms of teacher experience,
poverty (as measured by the percent of students receiving subsidized lunch), and racial make-up.

For students placed in the Supplementary round, assigned schools are also less desirable than
ranked schools, and many of the gaps are wider compared to the Main round. In the uncoor-
dinated mechanism, for instance, the gap in Math performance between ranked and assigned
schools is 0.7 percentage points for those assigned in the Main round, while it is 2.5 points in
the Supplementary round. The gap between ranked and assigned alternatives for 9th grade size
is quite pronounced under both mechanisms. For example, in the uncoordinated mechanism,
ranked schools have about 200 fewer 9th graders than the schools where students are assigned.
Since students participate in the Supplementary round when they did not obtain a Main round
assignment, it is not surprising that the difference between what students wanted and what they
received widens.

The most striking pattern in Table 4, however, is for students who are administratively
assigned. We’ve already seen that there are three times more students assigned in this round
in the uncoordinated mechanism. Panel C shows that students who are assigned in that round
ranked schools on average 5.1 miles away from home and were assigned to schools only 1.6 miles
away in the uncoordinated mechanism, a much larger gap than either the Main or Supplementary
round. For other school characteristics, the difference between what students wanted and what
they were assigned widens relative to the Supplementary round, suggesting that mismatch is
greatest for students in the Administrative round. For instance, the 2.5 point spread in Math
achievement is now 4.4 points, and there is a similar widening in the fraction going on to four-
year colleges. The difference in 9th grade size is also considerable: in the Supplementary round,
students wanted schools with on average with roughly 700 9th graders, and they were assigned

13In the second year of the mechanism, the average distance to the assigned school is 4.07 miles and the average
exit rate is 6.4% (shown in Table B1). The take-up rate is higher than the first year and the fraction in the
Administrative round decreases to about 5%.
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to schools with more than 900 9th graders. In the uncoordinated mechanism’s Administrative
round, they are assigned to schools with nearly 1,200 9th graders.

The differences between ranked and assigned schools are also large in the coordinated mech-
anism, though in some cases, they are not as stark. Differences between ranked and assigned
schools on Math and English achievement or four-year college going are narrower for the Ad-
ministrative round of the coordinated mechanism than for the uncoordinated one. On the other
hand, assigned schools are not as close to home in the coordinated mechanism. Therefore, it is
not possible to assert which mechanism’s Administrative round generates better matches. What
is clear is that being processed in the Administrative round is undesirable for students in both
mechanisms. As a result, it is reasonable to expect that a significant fraction of the changes in
student welfare will be driven by the reduction in the number of students who enter this round
in the coordinated mechanism.

4.4 Offer Processing by Student Characteristics

Table 5 reports the attributes of students across rounds compared to the overall population of
applicants in the uncoordinated mechanism. Students from Manhattan, those with high math
baseline scores, and those who have applied to exam schools (indicated as taking the SHSAT)
tend to obtain offers earlier in the uncoordinated mechanism. They are also overrepresented
among students who receive multiple first round offers (not shown). Students from Staten Island,
students who are white, and those from high income neighborhoods tend to systematically obtain
offers later in the process. Compared to the overall population, these groups are overrepresented
in the Administrative round. About a quarter of students in the Administrative round are white,
compared to 15% of participants overall.

The coordinated mechanism distributed school access more evenly across rounds. That is,
the differences in the types of students assigned in each round are not as pronounced under
the coordinated mechanism. This can be seen by comparing students across boroughs or racial
groups in column 4 of Table 5. The fraction of students assigned in the Main round is similar
across all five boroughs, as is the racial composition of students. Higher baseline applicants are
more likely to be assigned in the Main round in the new mechanism than low baseline applicants,
but they are not as overrepresented as in the old mechanism.

The coordinated mechanism assigned fewer students to schools that were undersubscribed in
the uncoordinated mechanism. Figure 3 reports the change in the number of students assigned
to a school compared to a measure of how oversubscribed the school was in the uncoordinated
mechanism. For example, in 2002-03. 1,455 students were assigned to the Louis Brandeis High
School, a struggling Manhattan high school whose four-year graduation rates were among the
lowest in the city, but only 911 students were assigned there in 2003-04.14 The upward sloping
line means that if a school is more oversubscribed in the old mechanism, the new mechanism
tended to assign more students to that school. This phenomenon suggests that the coordinated
mechanism was able to use the submitted preferences more effectively to place children into the

14The NYC DOE announced the closure of this school in 2009. The largest size reduction is the Evander
Childs High School in the Bronx, which went from 1,739 to 453 9th graders. This high school had a longstanding
reputation for violence and disorder, and it was eventually closed in 2008.
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schools that they wanted. The extent to which this represents an improvement in student welfare
depends on the heterogeneity of student preferences, an issue we turn to next.

5 Estimating Student Preferences

5.1 Student Choices

Families in NYC obtain information about high school programs from many sources including
guidance counselors, teachers, and other families. Each year the DOE publishes the NYC High
School directory, a booklet that includes information about school size, course offerings, Regents
and graduation performance, the school’s address, the closest bus and subway, and a description
of each program, including its extracurricular activities and sports teams. Families can also learn
about schools at high school fairs and open houses and from local newspapers, online guides,
and books (e.g., Hemphill (2007)).

While a family may rank a school for reasons that we do not observe, the observable di-
mensions of their choices display consistent regularities: students prefer closer and higher quality
schools as measured by student achievement levels, shown in Table 6.15 The first row of the table
shows that 20% of applicants rank 12 school choices; the majority rank nine or fewer choices,
and nearly 90% rank at least three choices. A student’s top choice is on average 4.43 miles away
from home. Since the closest school is on average 0.82 miles away, most students do not simply
rank the school closest to home first. For the typical student, the first choice is 0.44 miles closer
than her second choice, and her second choice is 0.25 miles closer than her third choice. Distance
increases monotonically until the 9th choice, which is 5.65 miles away.

Lower ranked schools are also less desirable on other measures of school quality. Math
performance decreases going down rank order lists. (English performance exhibits the same
trends as Math and is therefore not reported.) Other measures of performance (also not reported)
such as the percent of students attending a four-year college and the fraction of teachers classified
as inexperienced change monotonically going down rank order lists. Schools enrolling lower shares
of poor students or a higher proportion of white students tend to be ranked higher.

Using requests for individual teachers, Jacob and Lefgren (2007) find that parents in low
income and minority schools value a teacher’s ability to raise student achievement more than in
high income and non-minority schools. In contrast, Hastings, Kane, and Staiger (2009) report
that higher-SES families are more likely to choose higher-performing schools than lower-SES
ones based on stated reports under Charlotte’s school choice plan. This difference across groups
motivates our investigation of ranking behavior by baseline ability and neighborhood income.
High-achieving students tend to rank schools with high Math achievement relative to low achiev-
ers, though both groups place less emphasis on achievement further down their preference list.
Similarly, students from low-income neighborhoods tend to put less weight on Math achievement
than students from high-income neighborhoods, but both groups rank higher achieving schools

15Table B3 provides additional information on school assignments. 31.9% of students receive their top choice,
15.0% receive their second choice, and 2.4% receive a choice ranked 10th, 11th, or 12th. 17.5% of students are
asked to participate in the Supplementary round because they are unassigned in the Main round.
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higher. These differences suggest the importance of allowing for tastes for school achievement to
differ by baseline achievement and income groups in the demand model.

The characteristics of schools ranked in the uncoordinated mechanism, also shown in Table
6, are decreasing in a school’s achievement and income. For distance, however, preferences are
compressed relative to the coordinated mechanism. For instance, the distance to a students’ first
choice is 4.80 miles, while it is 4.79 miles for their fifth choice. In the coordinated mechanism,
the fifth choice is about one mile further than the first choice. Such a pattern is consistent
with students being more expressive with their choices in the new mechanism, which would be
expected given its incentive properties and the fact that more choices can be ranked.

All else being equal, based on their submitted preferences, students prefer attending a school
closer to home. The fact that students in the new mechanism are assigned to schools further from
home might suggest that it led to assignments that are worse on average than the old mechanism.
On the other hand, students may prefer schools outside of their neighborhood because they are
a better fit. We must therefore weigh the greater travel distance in the new mechanism against
changes in other dimensions of the assigned school. Our next task is to quantify how students
evaluate distance relative to school attributes, including average achievement levels, demographic
composition, and size, based on their submitted preferences.

5.2 Model and Estimation

The comparison of the attributes of choices ranked higher to those ranked lower or not at all
provides rich information to identify how a student values school features compared to distance.
To quantify these trade-offs, we work with a random utility model, which allows for factors that
are not observed in our dataset to influence ranking decisions. Let i index students and j index
programs. Since all of the schools we study are free, we treat distance as our numeraire for our
welfare analysis. Specifically, we project student i’s indirect utility for program j on student and
school characteristics as follows:

uij = δj +
∑
l

αlzlix
l
j +

∑
k

γki x
k
j − dij + εij , (1)

with δj = xjβ + ξj ,

where zi is a vector of student characteristics, xj is a vector of program j’s characteristics, dij is
distance between student i’s home address and program j, ξj is a program-specific unobserved
vertical characteristic, γi is a vector of random coefficients that capture idiosyncratic tastes for
program characteristics and εij captures idiosyncratic tastes for programs.

Because we would like the model to capture heterogenous preferences but still be computa-
tionally tractable, we employ an ordered version of the choice model in Rossi, McCulloch, and
Allenby (1996). They describe a class of parametric distributions for unobserved characteristics
and idiosyncratic preferences that allows for estimation via Gibbs’ sampling.16 Specifically, we

16We use Gibbs’ sampling rather than simulated maximum likelihood because of biases in datasets with a
large number of choices (Train 2009). The posterior means we report have the same asymptotic distribution as
maximum likelihood estimates (see chapter 10.1 in van der Vaart (2000)).
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assume that
γi ∼ N (0,Σγ), ξj ∼ N (0, σ2ξ ), εij ∼ N (0, σ2ε)

and conjugate priors for β, α, Σγ , σ2ξ , and σ
2
ε . The specific distributions and additional details

are described in the Computational Appendix.
Our specification is motivated in part by the fact that students may have idiosyncratic tastes

for schools that are not captured by the observable student characteristics in our dataset. This
specification allows for arbitrary correlation between the k dimensions of γi, and therefore exploits
the richness of the rank-ordered data. Berry, Levinsohn, and Pakes (2004), for instance, argue
that data on top and second choices can be used to estimate these parameters by exploiting
common characteristics between subsequent rankings for a given student. Rank order list data
also allow us to relax the common assumption that random coefficients on choice characteristics
are independent. For instance, our model allows for correlated unobserved tastes for school size
and achievement levels.

The parametric assumptions are made for computational tractability as the distribution of
indirect utilities is non-parametrically identified in our setting.17 Given the independence of
idiosyncratic tastes, the two primary restrictions in our specification is that the distance to school
is additively separable in the indirect utility function and that taste shocks are independently
distributed. All else being equal, if students dislike traveling to school, then the coefficient of
−1 is an equivalent scale normalization to the common practice of setting the variance of ε to 1,
which allows for a convenient distance metric for utilities.

We do not explicitly include an outside option and instead normalize, without loss of gen-
erality, the value of δ for an arbitrarily chosen school to zero. This assumption is motivated by
our primary interest in studying the allocation within inside options rather than substitution
outside of the NYC public school system. Moreover, the commonly used model of the outside
option, which infers that a school is unacceptable if not ranked, would require us to assume that
students who have not ranked all 12 choices prefer their outside option to a NYC high school.
However, Table B4 shows that roughly three-quarters of Supplementary round students enroll in
their offer for that round, and the majority enroll in some other NYC high school.

The demand sample for 2003-04 contains rankings of 69,907 participants across 497 pro-
grams in 235 schools, representing a total of 542,666 school choices. Our specifications follow
other models of school demand and include average school test scores and racial attributes as
characteristics (see, e.g., Hastings, Kane, and Staiger (2009)). We focus on four main school
characteristics: high Math achievement, percent subsidized lunch, percent white, and 9th grade
size.

We start by assuming that rankings reflect true preferences. This benchmark is natural
because of the straightforward incentive properties of the mechanism, and because of the advice
that the NYC DOE provides in the 2003-04 High School Directory and through their information

17Assumptions needed to identify preferences for choice characteristics in binary and multinomial settings have
been examined in Ichimura and Thompson (1998), Lewbel (2000) and Briesch, Chintagunta, and Matzkin (2002),
though ordered choice data contains additional information. Agarwal and Somaini (2014) study identification in
the school choice context with a potential manipulable mechanism. Non-parametric identification results in these
settings carry over to our case.
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and outreach campaign. For instance, the DOE guide advises participants to “rank your twelve
selections in order of your true preferences” with the knowledge that “schools will no longer know
your rankings.” Nonetheless, truthful behavior is a strong assumption that we revisit in Section
8.

5.3 Preference Estimates

We report select estimates for six specifications of our demand model in Table 7 (the full set of
estimates is in Table A1). We interpret our estimates as describing student utilities from various
schooling options and not as the casual effect of changing school attributes on student preferences.
The first specification includes school characteristics (high Math achievement, percent subsidized
lunch, percent white, and 9th grade size), but does not include interactions of school and student
characteristics. We do not include additional achievement characteristics examined in Table
4, such as high English achievement and percent attending a four-year college, because they
are closely related to high Math achievement. The second specification includes student-school
interactions. The next four specifications each add random coefficients. They also vary which
ranks are used in estimation: all choices, only the top three choices, all except the last choice,
and choices for students who rank fewer than 12. Each specification with student interactions
include dummies for Spanish, Asian and Other Language Programs, interacted with a student’s
English proficiency status and whether they are Hispanic or Asian. Computational constraints
prevent us from estimating all of these models on the full sample, so we only report estimates
using the full sample for the specification with student-school interactions and student-specific
random coefficients; the rest of these models are estimated on a 10% random sample of the data,
which contains about 7,000 students.

There are three main patterns in Table 7. First, student-school interactions are often es-
timated precisely. For instance, high baseline math students tend to prefer higher achieving
schools, and minority students tend not to prefer schools with high white percentages. Second,
the estimates are broadly similar across the four specifications with random coefficients. Third,
many of the random coefficients are significantly estimated, suggesting the importance of a flexi-
ble specification in accounting for the underlying heterogeneity in student preferences. We report
further on measures of model fit in Section 8. Since it fully exploits all of the choice data in
the most flexible model, the estimates in the third column will be for our primary calculations,
though we will revisit these other specifications in Section 8.

6 Comparing Alternative Allocation Mechanisms

6.1 Measuring Welfare

Our estimates allow us to compute measures of welfare across assignments, assuming that student
preferences do not change. We measure the difference between two assignments for a student
in terms of the distance-equivalent utility, or the amount a student is willing to travel for the
more preferred school assignment. To compare the welfare associated with two assignments, we
compute the average welfare in distance-equivalent utility. Consider a group of students in set G
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and a matching µ, which specifies the program for each student as µ(i). Define average welfare
for students in G as a function of parameters θ as

Wµ
G (θ) =

1

|G|
∑
i∈G

uiµ(i) (θ) ,

where uij is the utility student i associated with assignment to program j. For two matchings,
µ and µ′, and students in group G(µ) and G(µ′), the difference in welfare between the two
matchings is given by:

Wµ
G (θ)−Wµ′

G (θ) =
1

|G(µ)|
∑
i∈G(µ)

uiµ(i) (θ)− 1

|G(µ′)|
∑

i∈G(µ′)

uiµ′(i) (θ) .

In the coordinated mechanism, we observe the rankings submitted by students. Under the
assumption that these reports are truthful, the kth ranked program yields the kth highest utility.
For a given student and estimate of θ, the observed ranking contains information about unob-
served tastes εij . For students in the coordinated mechanism who submit rank order list ri, we
calculate the expected utility for each ranked and unranked choice by simulating the utility from
the estimated preference distribution, conditional on the relationships implied by the submitted
ranks.

In particular, we compute the expected utility of a program ranked kth by student i, denoted
rik, as

E
[
uij | u(k+1)

i < uij < u
(k−1)
i , rik = j

]
(2)

and the expected utility for all unranked schools as

E
[
uij | uij < u

(|ri|)
i , j 6∈ ∪k{rik}

]
, (3)

where u(k)i is the kth highest value of {uij}Jj=1 and |ri| is the number of ranks submitted by student
i.18 With these definitions, the expected welfare difference for group G from assignments µ and
µ′ is

Wµ
G −W

µ′

G =
1

|G(µ)|
∑
i∈G(µ)

E[uiµ(i)|ri]−
1

|G(µ′)|
∑

i∈G(µ′)

E[uiµ′(i)|ri],

where E[uij |ri] denotes the conditional expectations in equations (2) and (3) above.

6.2 Evaluating Mechanism Design Features

Even though many of the new mechanism’s features were designed to address issues in the old
mechanism, the coordinated mechanism still involves several design constraints. Here, we ask:
how far is the allocation produced by the coordinated mechanism from the best possible one for
students, and what are the quantitative effects of particular design decisions? The alternatives we

18For students who are in the mechanism comparison sample, but not the demand sample (so we don’t observe
their rank order lists), we use the mean utility conditional on observables alone in the welfare calculations. We
follow the same approach for students assigned to choices not ranked in the Main round.
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consider vary the mechanism, holding fixed the set of schools, students, and residential choices,
and therefore are best interpreted as short-run effects of alternative mechanisms.

We begin by using the demand model estimates to assess two benchmark allocations intended
to capture the range of what is achievable with a choice system. The first is a neighborhood
assignment, which models schools as prioritizing students in order of distance and placing
students at their closest possible school. We compute this assignment by running the deferred
acceptance algorithm with applicants simply ranking schools in order of distance and vice-versa.
This allocation further restricts the market’s geographic scope as in the Administrative round of
the uncoordinated mechanism.

The second benchmark allocation, the utilitarian assignment, maximizes the sum of stu-
dent utility subject to the feasibility constraints of the assignment.19 Given the estimated distri-
bution of student preferences, no other allocation can yield higher average utility. This allocation
therefore represents the other extreme, where a planner implements the best possible allocation
by taking full advantage of the cardinal distribution of student preferences.20

To compare the coordinated mechanism to these two benchmarks, in Table 8 we report the
difference with the utilitarian outcome. The first column shows that the difference in distance-
equivalent utility between the neighborhood and utilitarian assignment is 18.96 miles. This
difference is a theoretical upper bound on the gains from school choice. Across student groups, the
gains from a choice system are smaller for whites and Asians compared to blacks and Hispanics.
They are also considerably smaller for residents of Staten Island, which has on average better
performing schools than other boroughs. The coordinated mechanism achieves about 80% of the
possible gains from a choice system, since the difference in distance-equivalent utility with the
utilitarian assignment for the average student is 3.73 miles.21

The utilitarian optimal assignment is an idealized benchmark, but it is difficult to achieve
for two reasons. First, there are over 200 screened programs in New York City, so implementing
this allocation would ignore school-side rankings at those programs. This allocation may also
allow for situations of justified envy at programs that only use coarse priorities, including those
based on geography. Second, this assignment uses cardinal information, which is not elicited by
the coordinated mechanism.22 Therefore, we next turn to more efficient outcomes for students
that do not completely abandon school priorities and only use ordinal information in student
rank order lists.

19We solve for this allocation following Shapley and Shubik (1971). Specifically, we solve the following linear
program:

max
a

∑
ij

uijaij s.t.
∑
j

aij ≤ 1,
∑
i

aij ≤ cj , aij ∈ {0, 1},

where cj is program j’s capacity and a is N × J matrix with (i, j) element aij . The utilitarian allocation implies
equal weights on students.

20Using illustrative examples, Pycia (2014) argues that the welfare loss of ordinal mechanisms relative to cardinal
ones can be arbitrarily large.

21We implement the coordinated mechanism by drawing 100 sets of lottery numbers and re-run the student-
proposing deferred acceptance algorithm given student’s choices. For students unassigned after the Main round,
we implement NYC’s Supplementary round by using preferences from the demand model and assigning students
under a serial dictatorship according to the lottery number.

22Bogomolnaia and Moulin (2001) argue that focusing on ordinal mechanisms can be “justified by the limited
rationality of agents participating in the mechanism.”
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The deferred acceptance algorithm in the coordinated mechanism need not produce a student-
optimal stable matching because it must resolve ties between students when they have identi-
cal priorities at a school. This tie-breaking can lead DA to produce stable outcomes, which
are not student-optimal. Deferred acceptance cannot be Pareto-improved upon without sac-
rificing strategy-proofness for students (Erdil and Ergin 2008, Abdulkadiroğlu, Pathak, and
Roth 2009, Kesten 2010, Kesten and Kurino 2012). We therefore quantify the cost of provid-
ing straightforward incentives for students by computing a student-optimal stable assignment,
which improves the DA assignment by placing students higher in their choice lists while also
respecting stability for strict school priorities. Such an assignment can be computed by the sta-
ble improvement cycles algorithm developed by Erdil and Ergin (2008), which iteratively finds
Pareto-improving swaps for students while still respecting the stability requirement for under-
lying weak priority ordering of schools (i.e., prior to tie-breaking). A total of 2,348 students in
the demand sample can obtain a better assignment in a student-optimal stable matching. The
difference in distance-equivalent utility is 0.11 miles on average compared to the assignment pro-
duced by the coordinated mechanism. The cost is that the underlying mechanism is not based
on a strategy-proof algorithm.23

Another limitation of the coordinated mechanism is that it constrains student welfare due
to its treatment of school priorities and preferences. To quantify the importance of this con-
straint while still retaining the mechanism’s ordinal message space, we compute the welfare of
students under a Pareto-efficient assignment that dominates DA by transferring students from
their assigned schools to their higher-ranked choices via the Gale’s Top Trading Cycles algorithm
(Shapley and Scarf 1974). Since this mechanism does not produce a stable outcome, it is possible
that schools benefit by offering students seats outside of the assignment process. The difference
in aggregate student welfare under this Pareto-efficient assignment and the student-optimal sta-
ble matching may therefore be viewed as the cost of incentives for schools to participate in the
system.24

We calculate a Pareto-efficient matching that dominates each simulated student-optimal sta-
ble matching and report average utility in column 4 of Table 8. A total of 10,882 students obtain
a more preferred assignment at a Pareto-efficient matching. An ordinal Pareto-efficient allocation
still represents a substantial difference between the utilitarian optimum. The utility difference
for the average student 3.11 miles. Relative to the current mechanism, the cost of limiting the
scope for strategizing by schools (by imposing stability) is 0.62 miles.

In summary, these comparisons show that the difference in student welfare between having
a choice system with the coordinated mechanism and not having a choice system at all is much
larger than possible welfare gains from fine-tuning the coordinated mechanism. That is, the abil-
ity to choose schools generates substantial student welfare when preferences are heterogeneous.
Within a coordinated matching system, further optimizing the matching algorithm produces
relatively little gain in the best case, even if it were possible to implement cardinal allocation

23Azevedo and Leshno (2011) provide an example where the equilibrium assignment of the stable improvement
cycles mechanism is Pareto inferior to the assignment from deferred acceptance when students are strategic.

24Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003) provide an alternative equity rationale
for stability. Note that no stable mechanism eliminates strategic maneuvers by schools (Sönmez 1997), although
this may not be an issue in markets with many participants (Kojima and Pathak 2009).
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schemes. This conclusion does not imply that the matching scheme is not important because we
have seen the large number of those processed administratively in the uncoordinated mechanism.
To see where in the spectrum the uncoordinated mechanism lies, we next turn to analyzing its
properties.

7 Comparing the Coordinated and Uncoordinated Mechanisms

Unlike the variations on the coordinated mechanism we’ve just examined by assuming that appli-
cants report their true preferences, there is no simple way to model behavior in the uncoordinated
mechanism. To evaluate it, we adopt an alternative approach that takes advantage of the fact
that we observe the rankings and assignments of students in that mechanism. This approach
requires two important assumptions.

First, since we do not observe the same student in both the uncoordinated and coordinated
mechanism, we have to assume that we can use preference estimates from the coordinated mech-
anism to make statements about the previous year. One potential concern is that schools have
changed significantly because of the mechanism, so a student’s valuation of the school likely
has changed alongside the mechanism. To probe this issue, in Figure A1, we plot the average
characteristics of the schools, as measured by the attributes of peers, in both mechanisms.25 The
Figure shows that for measures of poverty, racial make-up, and baseline math scores, there is
relatively little change in school attributes despite the change in the mechanism. Consistent with
the increased travel distance in Table 3, the last panel of the Figure shows that schools differ
when measuring the travel distance of enrolled students.

The second assumption involves our interpretation of the rankings submitted in the uncoor-
dinated mechanism. For the counterfactuals in Table 8, to compute the utility associated with
an assignment for the new mechanism, we condition on the rank order list submitted by the
student, adjusting for what that rank order list implies about unobserved tastes under the as-
sumption that the student reported her true preferences. The old mechanism’s uncoordinated
nature makes the relationship between preferences and the final assignments less straightforward.
Computing the expected utility, conditional on the assignments produced by the uncoordinated
mechanism, requires strong assumptions about that mechanism, its properties, and agent be-
havior and expectations. This difficulty is not unique to our setting and is likely a challenge in
evaluating other assignment systems where the incentive properties of the mechanism are not
well understood and agent behavior is difficult to model.26 Instead, our approach exploits our
data on observed rankings from the uncoordinated mechanism’s first round.

The approach we start with, unordered applications, assumes that choices submitted in the
uncoordinated mechanism have the property that any ranked choice is preferred to an unranked
choice, but it does not assume that higher-ranked choices are preferred to lower- ranked ones.

25We find qualitatively similar results for 25th, 50th and 75th percentiles of the distribution of these quantities.
26Budish and Cantillon (2012) utilize survey data from a manipulable mechanism to make statements about

changes in mechanism design. Unfortunately, similar survey data does not exist in our setting. Agarwal and
Somaini (2014) present an approach to uncovering preferences from a class of single-offer manipulable mechanisms
that involve lotteries; because the uncoordinated mechanism is a multiple-offer system, it falls outside of this class,
and their methods are not applicable in our setting.
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Specifically, we assume that the expected utility of program j is E
[
uij |uij > uij′ , j

′ 6∈ ∪k{rik}
]

if it is ranked by student i, and E
[
uij |uij < uij′ , j

′ ∈ ∪k{rik}
]
otherwise.27 This assumption

has the benefit of not assuming rank order lists submitted in the uncoordinated mechanism are
truthful, while still using some of the information contained in the preference submission. A
weakness of this assumption is that it excludes the possibility that students have omitted choices
from their rank order list that they prefer, but do not expect to be admitted. However, in Table
6, we saw that less than half of participants rank all five choices in the old mechanism, suggesting
that if these participants wanted to rank more schools, the mechanism does not constrain them.
Nonetheless, we also consider two other assumptions later in this section.

Under the unordered applications, selection assumption from the uncoordinated mechanism,
and assuming true preferences from the coordinated mechanism, we find that most students are
better off under the coordinated mechanism. Figure 4 plots the overall distribution of student
welfare from the two mechanisms. The average student improvement in welfare is equivalent to
10.96 miles. The figure shows a bimodal pattern of utility in the uncoordinated mechanism due
to the students who are assigned in the Administrative round. Most of the mass in the first mode
shifts rightward in the coordinated mechanism, a phenomenon driven by the sharp reduction in
the number of students assigned administratively.

For each student group shown in Table 9, there is a positive gain from the new mechanism.
Across racial groups, whites and Asians gain more than blacks and Hispanics. There are more
pronounced differences across boroughs. Students from Staten Island and Queens gain the most,
while the smallest gain of any student group in the table comes from Manhattan residents. Low
baseline math students gain more than high baseline math students or SHSAT test takers.

It’s worthwhile to compare the difference in utility to the difference in travel distance to
decompose the welfare effects of the improved school match compared to distance. On average,
the improved match ignoring distance is equal to 11.65 miles. This implies that the improved
school match is worth thirteen times the costs associated with increased travel distance. The
lowest gains are for Manhattan residents, a group which experiences no increase in travel distance.
However, the welfare gains are not solely driven by changes in distance. For instance, across
boroughs, Staten Island pupils only travel 0.34 miles further, but they experience the largest
improvement of any borough at 22.56 miles. This suggests that mismatch was particularly
severe in Staten Island and is consistent with the substantially larger fraction of Staten Island
residents who are administratively assigned in the uncoordinated mechanism.28 The magnitude
of our estimates of improved school matches suggest that even if there are not enough good
schools to assign everyone their top choice, preference heterogeneity generates an important role
for the coordinated mechanism.

The welfare gains in the coordinated mechanism are larger for many disadvantaged groups,
a pattern consistent with Hemphill and Nauer (2009)’s claim that the uncoordinated mechanism
advantaged high-achieving students and those with sophisticated parents. For instance, welfare

27We simulate these expectations using a Gibbs sampler.
28In the uncoordinated mechanism, there are 1,054 students who ranked Staten Island Technical, a highly

sought-after screened school. Only 16% are assigned there, and about 75% do not obtain a Main round offer and
are subsequently administratively assigned.
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gains are larger for low baseline math students than for high baseline math students. They are
also higher for limited English proficient students than for SHSAT test-takers. However, the
difference for Staten Island, which has a larger white population and wealthier neighborhoods,
plays a large role in the fact that whites and rich neighborhoods experience larger welfare gains
than blacks and Hispanics and poorer neighborhoods.

Differences across student groups closely track the rounds in which students were processed
in the uncoordinated mechanism. For instance, substantially more high baseline students were
assigned in the Main round of the old mechanism compared to low baseline students. Student
groups with higher fractions assigned in the Administrative round, shown in column 7, tend to
experience the largest gains. Figure 5 reports on the relationship between the likelihood to be
assigned administratively and student welfare. To generate this figure, we fit a probit model
to describe whether a student is administratively assigned on all student characteristics in the
demand model for the uncoordinated mechanism sample. The specification includes census tract
dummies to account for neighborhoods that may or may not have high schools, which are a guar-
anteed fallback option for some students. We then use this estimated relationship to compute
each student’s propensity to be assigned administratively in both the uncoordinated and coor-
dinated mechanism. For each decile of this propensity, we compare the utility from assignment
across both mechanisms. However, there is a clear monotonic pattern between administrative
assignment propensity and the welfare improvement, whether comparing utility differences either
including distance or net of distance.

A possible threat to our welfare calculation is that an initially bad allocation was subsequently
undone post-assignment through the aftermarket, the period between when offers where made
and the school year starts.29 Table 3 shows that students enrolled in schools further away on
average than where they were assigned in the uncoordinated mechanism, but the opposite pattern
is true in the coordinated mechanism. The coordination of admissions occurred with greater
central control of enrollment, which may have made it possible that the more rigid aftermarket
in the coordinated mechanism is actually worse for students. To examine this possibility, we also
compute the utility associated with the schools students enroll at in October of the following
school year. Compared to assignments, the gains from the coordinated mechanism measured by
enrollment are somewhat smaller, but are still large. For instance, the distance-equivalent utility
for the average student is 9.67 miles, which is 88% of the gain from the assignment. The change
in travel distance to enrolled school is also lower than the change in travel distance to assignment.
Though a smaller gain from enrollment suggests that some of the old mechanism’s mismatch was
undone in its aftermarket, these facts weigh against the argument that post-market reallocation
has undone a large fraction of misallocation.

Finally, it’s worth noting how the mechanism design matters when we compare the uncoor-
dinated and coordinated mechanisms. That difference represents nearly 60% of the total range
between the neighborhood and utilitarian assignments, which is much larger than the range as-
sociated with tweaks to the matching algorithm. This finding informs a broader debate in the

29Relatedly, since the exit rate in the coordinated mechanism is lower than the uncoordinated mechanism, more
students preferred accepting their coordinated offer to enrolling in a high school outside of the system. This fact
suggests that our welfare estimate understates the overall effect for all public school 8th graders.
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market design literature about the importance of sophisticated market clearing mechanisms. In
the context of auctions, Klemperer (2002) argued that “most of the extensive auction literature
is of second-order importance for practical auction design,” and that “good auction design is
mostly good elementary economics.” Consistent with this point of view, for school matching
market design, coordinating admissions produces much larger gains than algorithm refinements
within the coordinated system.

To see how robust our conclusions are, in Table 10, we repeat the analysis in Table 9 for three
alternative assumptions. In each case, we break the asymmetric treatment of selection rules in
Table 9, and use the same assumption about what rank order lists imply about unobserved
tastes in our welfare calculation for both mechanisms. In the first variation, we do not adjust
the utility based on rank order lists submitted in either the uncoordinated or coordinated mech-
anism. This unselected applications (on unobservables) selection rule simply assumes that
the idiosyncratic component of tastes has no influence on utility. Specifically, we compute the
expected utilities given only observable school and student characteristics, i.e. for both ranked
and unranked programs, E [uij ] = xjβ +

∑
l α

lzlix
l
j − dij , with the parameters α and β set to

their posterior means. While this assumption may be unappealing given the importance of un-
observed determinants of applicant preferences, examining welfare differences under it indicates
how much our estimates are driven by observable dimensions of school and student characteris-
tics. Column 1 of Table 10 reports that the difference in welfare is more than one half of that
implied by unordered applications selection rule. The average student is going to a school that
is about eight times more valuable compared to the increased travel distance. The qualitative
patterns are similar to those under unordered applications selection rules: all student subgroups
benefit and the gains are larger for groups that were more likely to be administratively assigned.
For instance, gains are larger for Asians and whites; they are largest for Staten Island residents
and lowest for Manhattan. One difference with the unordered applications selection rule is for
comparisons across baseline achievement groups: high baseline math students benefit more than
low baseline math students, though low baseline students still gain slightly more than SHSAT
test-takers.

Columns 3 and 4 present estimates using the unordered application selection rule for both
the coordinated and uncoordinated mechanism. The average welfare difference of 9.02 miles
is smaller than that reported in Table 9, but the patterns across student groups is similar.
Finally, in columns 5 and 6, we report estimates from the truthful applications selection rule,
which assumes that the rank order list submitted in the either the uncoordinated or coordinated
mechanism reflect true applicant preferences, with expected utilities computed as in equations
(2) and (3). Under this assumption, the estimated welfare gains are slightly smaller than those
reported in Table 9, at 10.62 miles on average. The qualitative patterns mirror those from the
unordered application rule, though they tend to be slightly larger.

It is reassuring that the estimates we obtain under different selection rules using information
from submitted rank order lists are similar between Table 9 and 10. The smaller estimate under
the unselected applications selection rule in Table 10 implies that unobserved tastes are important
for our quantitative conclusions. Except for comparisons across baseline achievement groups, the
qualitative comparisons between student groups are also similar under each of the assumptions
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8 Model Fit and Alternate Behavioral Assumptions

8.1 Model fit

Since our goal is to make statements about welfare, it is important to examine how well our
econometric model matches the data. We first investigate within-sample fit to see what our
estimates imply for the aggregate patterns by rank in Table 6. Figure A2 reports on measures of
fit using the specification with student-level random coefficients and student-school interactions
from column 3 of Table 7. We plot the observed versus predicted pattern of three school charac-
teristics – high Math achievement, percent subsidized lunch, and percent white – as we go down
a student’s choice list. The panels include three pairs of lines for the entire sample and for the
low and high baseline math applicants. For these three characteristics, our estimates capture
the broad pattern of the choices, matching both the level and slope of these characteristics. For
instance, the average high math achievement is 10.0, and the range from the top choice to the
12th choice is 16.7 to 10.4. Our estimates imply that for first choices, school’s fraction high
math achievement is 18.4, while it drops to 11.8 for the 12th choice. The greater sensitivity of
high baseline math applicants to school math performance is also captured by our model. Fur-
thermore, first choices for percent white are 19.1, while we predict them to be 19.8 on average,
and the average percent white across New York’s schools is only 10.8. Relative to the average
attributes of schools, the model fit is much closer to the actual ranked distribution.

In the last panel of Figure A2, we report the fit for distance. Here, we find that while the
increase in distance observed for lower-ranked choices mirrors that predicted by our model, there
is a greater divergence in the level of distance. This pattern appears in all of the models we’ve
estimated with random coefficients. It’s worth noting that the difference in levels between our
model and the data is small compared to the difference between the average distance to a high
school in New York (12.7 miles from home) and the closest school (less than a mile from home).

Berry, Levinsohn, and Pakes (2004) emphasize the importance of mixture models in the
context of rank data for automobiles. In particular, they emphasize that when examining the
within-consumer relationship between the attributes of alternatives ranked first and second,
models without random coefficients do a poor job. This concern may be particularly important
in our context. For instance, a high correlation between the first and second ranked school’s
size may be indicative of taste for large schools. In Table A2, we report on the correlation
between the first and second choice, the first and third choice, and the second and third choice.
Consistent with earlier work, we see that the observed correlation between choices is much closer
in our preferred specification than in the simpler model within sample. When we examine a
more demanding out-of-sample test, comparing the 2003-04 preference estimates to examine the
correlation pattern of choice made in 2004-05, we also see that the correlation pattern in our
main specification is closer to the observed pattern than from a demand model without student
interactions.
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8.2 Behavioral Assumptions on Ranking

8.2.1 Stability of Preferences

Motivated by the incentive properties of the deferred acceptance algorithm, the preference esti-
mates that we reported come from models assuming that students are truthful in the coordinated
mechanism. We revisit some potential objections to this assumption in this subsection.

In an influential experiment, Hastings and Weinstein (2008) show parent preferences are mal-
leable when provided with direct information on school test-scores in Charlotte-Mecklensberg’s
choice system. Such a finding might suggest that students could be overwhelmed by the prospect
of evaluating over 500 school programs and that preferences are an unreliable guide for welfare
analysis. However, if preferences were generated without much of a systematic component, then
we’d expect that most of our point estimates to be imprecisely estimated or have unintuitive
patterns, contrary to what we’ve seen. Moreover, in Figure A4, we plot school market shares
between the first year of the coordinated mechanism and its second year. This plot illustrates the
extent of variation in market shares, which may occur with new information such as expanded
high school fairs across time. The market shares of most programs are very similar across both
years of the new system. This fact suggests that aggregate preferences have a substantial stable
component across time.

Another way to see that choices are consequential for participant welfare is to examine en-
rollment decisions by choice received. Table B4 reports assignment and enrollment decisions for
students who are assigned in the Main round. The table shows that 92.7% of students enroll in
their assigned choice, and this number varies from 88.4% to 94.5%, depending on which choice a
student receives. Interestingly, take-up is higher for students who receive lower-ranked choices,
while the fraction of students who exit is highest among students who obtain one of their top
three choices. This fact suggests that either families are indifferent between later choices and
simply enroll where they obtain an offer or that families have deliberately investigated later
choices and are therefore willing to enroll in lower-ranked schools. If families are more uncertain
about lower-ranked choices, then using all submitted ranks may provide a misleading account of
student preferences. To examine how sensitive our conclusions are to this assumption, we fit a
demand model that considers only the top three choices of applicants in column 4 of Table 7.

8.2.2 Assumptions on Ranking Behavior

A second concern with treating submitted rankings as truthful is that parents rank schools using
heuristics carried over from the previous system. Despite the theoretical motivation and the
DOE’s advice, parents might still deviate from truth-telling because of misinformation. Table
B4 shows that students are more likely to be assigned their last choice than their penultimate
choice. This pattern may be caused by strategic behavior if students apply to schools that they
like, and, as a safety option, rank a school in which they have a higher chance of admissions
last. For instance, Calsamiglia, Haeringer, and Kljin (2010) present laboratory evidence that a
constraint on rank order lists encourages students to rank safer options. However, it may also
be fully consistent with truth-telling. For example, students usually obtain borough priority or
zone priority for schools in their neighborhoods. Ranking these schools improves their likelihood
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of being assigned to these schools in case they are rejected by their higher choices. If students
consider applying and commuting to schools further away from their neighborhood for the school’s
achievement level, they may as well stop ranking schools below their neighborhood schools once
such considerations no longer justify the cost of their commute. Alternatively, search costs may
induce parents to stop their search for schools before they identify twelve schools for their children
and rank their neighborhood school as last choice. This preference pattern would produce the
observed assignment pattern. To examine how sensitive our conclusions are to this assumption,
we fit demand models that drop the last choice of each student in column 5 of Table 7.

Another issue with the assumption of truthful preferences is that students can rank at most
12 programs on school applications. When a student is interested in more than 12 schools, she
has to carefully reduce her choice set down to at most 12 schools. If a student is only interested
in 11 or fewer schools, this constraint in principle should not influence her ranking behavior
(Abdulkadiroğlu, Pathak, and Roth 2009, Haeringer and Klijn 2009). It is a weakly dominant
strategy to add an acceptable school to a rank order list as long as there is room for additional
schools in the application form. However, 20.3% of students in our demand sample rank 12
schools. Some of these students may drop highly sought-after schools from top of their choice
lists because of this constraint. To examine how sensitive our conclusions are to this assumption,
we fit a demand model that drops students who have ranked all twelve choices in column 6 of
Table 7.

In Table A3, we report on our evaluation of mechanism design choices under these three
specifications: 1) using only the top 3 choices, 2) excluding applicants who have ranked all 12
programs, and 3) dropping the last choice of applicants. Because of computational constraints, we
estimate the models on a 10% random sample, but we use the full sample for the counterfactuals.
For all three demand models, the coordinated mechanism in column 2 is roughly 81% of the
way from the neighborhood assignment to the utilitarian assignment. It therefore appears that
our conclusions on the value of choice relative to changes within the coordinated mechanism
are robust to these alternative ways of using the submitted rank order lists in the coordinated
mechanism.

Panel B of Table A3 reports on how the comparison between mechanisms varies with our
demand specification using all of the ranking information of participants. Preference hetero-
geneity generates a larger role for school choice compared to neighborhood assignment. This
phenomenon can be seen by comparing the estimates from our main specification to those from
specifications without heterogeneity (column 1 in Table A3) and without random coefficients
(column 2 in Table A3). The neighborhood assignment is more appealing according to those two
demand models, since they are only 15.5 and 16.2 miles away from the utilitarian assignment,
compared to 21.5 miles from the main specification in the 10% sample. Moreover, the difference
between neighborhood assignment and the coordinated mechanism is smaller in specifications
that do not allow for student interactions or random coefficients than in the main specification
that includes both student interactions and random coefficients.
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9 Conclusion

The reform of NYC’s high school assignment system provides a unique opportunity to study
the effects of centralizing and coordinating school admissions with detailed data on preferences,
assignments, and enrollment. We find that the new coordinated mechanism is an improvement
relative to the old uncoordinated mechanism on a variety dimensions. More than a third of stu-
dents were assigned through an ad-hoc administrative process in the uncoordinated mechanism
after multiple offers with few choices and few rounds of clearing left a large number of students
without offers after the Main round. Students placed in the Administrative round were assigned
to schools with considerably worse characteristics than what they ranked. The new mechanism
relieved this congestion and assigned more students to schools where they applied.

The coordinated mechanism assigns students 0.69 miles further from home to their assign-
ments. However, the benefit of being assigned through the new mechanism is at least eight times
the cost of additional travel, and is often larger depending on the assumption about the informa-
tion revealed about unobserved tastes from rank order lists submitted under the uncoordinated
mechanism. The gains are positive on average for students from all boroughs, demographic
groups, and baseline achievement categories. Welfare improvements are also seen whether utility
is measured based on assignments made at the end of the high school match or subsequent school
enrollment. The largest gains are for students who were more likely to be processed in the Ad-
ministrative round of the uncoordinated mechanism. These conclusions are robust to alternative
behavioral assumptions on the preferences submitted in both the uncoordinated and coordinated
mechanism.

These gains are measured by a rich specification of student demand that implies significant
estimated heterogeneity in willingness to travel for school. Preference heterogeneity is important
for measuring the allocative effects of choice when there is a shortage of good schools. Our
estimates reveal that the benefits from having coordinated choice are much larger than than those
associated with modifications to the assignment algorithm within the coordinated mechanism.
This does not imply that the design of the mechanism is not important, however, because the
gap in average student welfare between the uncoordinated and coordinated mechanism is large.

The increase in student welfare due to the new mechanism illustrates that there are consid-
erable frictions to exercising choice in poorly designed assignment systems. The 2003 change in
NYC took place in an environment where participants already had some familiarity with choice
since both the uncoordinated and coordinated system had a common application. In other
cities, the school choice market is even less well organized, without readily available information
on admissions processes and application timelines. For instance, admissions in Boston’s growing
charter sector are uncoordinated, and the schools have only recently adopted a standardized
application timeline. Recently, there have been calls to unify enrollment across school sectors
(Vaznis 2013, Fox 2015). The relative value of policies such as common timelines, common ap-
plications, single vs. multiple offers, sophisticated matching algorithms, and good information
and decision aides is an interesting avenue for future research.

Finally, it is worth emphasizing that our analysis has focused on the allocative aspects of
school choice and different school assignment procedures. An important question is whether
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allocative changes contribute to changes in the productive dimensions of assignment. Recent
work on school value added models (Deming 2014, Angrist, Hull, Pathak, and Walters 2015) may
provide a route to measuring how achievement would change under the coordinated mechanism.
Extrapolation based on these methods may require restrictive assumptions about heterogeneous
effects. We’d anticipate achievement effects to be driven by the reduction in the number of
students assigned to poorly performing large zoned schools in the coordinated mechanism. A
more comprehensive examination of these issues is left for future work.
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Demand	  Estimation
Uncoordinated Coordinated Coordinated
Mechanism Mechanism Mechanism

(1) (2) (3)
Number	  of	  Students 70,358 66,921 69,907

Female 49.4% 49.0% 49.0%

Bronx 23.7% 23.3% 23.7%
Brooklyn 31.9% 34.1% 33.3%
Manhattan 12.5% 11.8% 12.0%
Queens 25.0% 24.8% 24.7%
Staten	  Island 6.9% 6.0% 6.3%

Asian 10.6% 10.9% 10.6%
Black 35.4% 35.7% 35.7%
Hispanic 38.9% 40.4% 40.3%
White 14.7% 12.6% 13.0%
Other 0.4% 0.4% 0.4%

Subsidized	  Lunch 68.0% 67.4% 67.8%
Neighborhood	  Income 38,360 37,855 37,920

Limited	  English	  Proficient 13.1% 12.6% 12.6%
Special	  Education 8.2% 7.9% 7.5%
SHSAT	  Test-‐Taker 22.4% 24.3% 23.9%

Table	  1.	  Characteristics	  of	  Student	  Sample
Mechanism	  Comparison

Notes:	  Means	  unless	  otherwise	  noted.	  Uncoordinated	  mechanism	  refers	  to	  2002-‐03	  mechanism	  and	  coordinated	  mechanism	  refers	  to	  the	  2003-‐
04	  mechanism	  based	  on	  deferred	  acceptance.	  	  Neighborhood	  income	  is	  the	  median	  census	  block	  group	  family	  income	  from	  the	  2000	  census	  -‐	  
table	  reports	  the	  mean	  neighborhood	  income	  across	  students.	  	  SHSAT	  stands	  for	  Specialized	  High	  School	  Achievement	  Test.



(1) (2)

Number 215 235

High	  Math	  Achievement 10.2 10.0
High	  English	  Achievement 19.1 19.3
Percent	  Attending	  Four	  Year	  College 47.8 47.2
Fraction	  Inexperienced	  Teachers 54.7 55.6
Attendance	  Rate	  (out	  of	  100) 85.5 85.7
Percent	  Subsidized	  Lunch 62.5 62.6
Size	  of	  9th	  grade 465.7 451.3

Percent	  White 10.9 10.9
Percent	  Asian 8.7 8.6
Percent	  Black 38.5 38.4
Percent	  Hispanic 41.9 42.1

Number 612 558

Screened 233 208
Unscreened 63 119
Education	  Option 316 119

Spanish	  Language 27 24
Asian	  Language 10 9
Other	  Language 6 7

Arts 80 80
Humanities 89 93
Math	  and	  Science 53 60
Vocational 55 59
Other	  Specialties 163 162

Table	  2.	  Descriptive	  Statistics	  for	  Schools	  and	  Programs

A.	  Schools

Notes:	  	  Panel	  A	  reports	  means	  and	  Panel	  B	  reports	  counts,	  unless	  otherwise	  noted.	  Uncoordinated	  mechanism	  refers	  to	  
2002-‐03	  mechanism	  and	  coordinated	  mechanism	  refers	  to	  the	  2003-‐04	  mechanism	  based	  on	  deferred	  acceptance.	  The	  
data	  appendix	  presents	  information	  on	  the	  availability	  of	  school	  characteristics.	  	  High	  Math	  and	  High	  English	  
achievement	  is	  the	  fraction	  of	  student	  that	  scored	  more	  than	  85%	  on	  the	  Math	  A	  and	  English	  Regents	  tests	  in	  New	  York	  
State	  Report	  Cards,	  respectively.	  	  Inexperienced	  teachers	  are	  those	  that	  have	  taught	  for	  less	  than	  two	  years.

B.	  Programs

Uncoordinated	  
Mechanism

Coordinated	  
Mechanism



Assignment Enrollment
(1) (2) (3) (4) (5)

Overall 70,358 3.36 3.50 8.5% 18.6%

First	  Round 23,867 4.23 4.11 5.2% 9.6%
Second	  Round 5,780 4.55 4.44 4.8% 11.4%
Third	  Round 4,443 4.35 4.26 4.9% 14.2%
Supplementary	  Round 10,170 4.61 4.37 7.8% 25.4%
Administrative	  Round 26,098 1.64 2.11 13.3% 26.8%

No	  Offers 36,464 2.80 3.12 10.4% 24.4%
One	  Offer 21,328 3.89 3.85 7.1% 13.8%
Two	  or	  More	  Offers 12,566 4.07 4.03 5.7% 9.8%

Overall 66,921 4.05 3.91 6.4% 11.4%

Main	  Round 54,577 4.02 3.86 6.1% 9.9%
Supplementary	  Round 5,201 5.10 4.90 4.8% 10.4%
Administrative	  Round 7,143 3.50 3.52 9.6% 23.6%

Table	  3.	  Offer	  Processing	  across	  Mechanisms
Distance	  to	  School	  (in	  miles)

B.	  Uncoordinated	  Mechanism	  -‐	  By	  Number	  of	  First	  Round	  Offers

A.	  Uncoordinated	  Mechanism	  -‐	  By	  Final	  Assignment	  Round

C.	  Coordinated	  Mechanism	  -‐	  By	  Final	  Assignment	  Round

Enrolled	  in	  School	  Other	  than	  
Assigned

Exit	  from	  NYC	  Public	  
SchoolsNumber	  of	  Students

Notes:	  Columns	  2-‐5	  report	  means.	  Uncoordinated	  mechanism	  refers	  to	  2002-‐03	  mechanism	  and	  coordinated	  mechanism	  refers	  to	  the	  2003-‐04	  mechanism	  based	  on	  deferred	  acceptance.	  Student	  distance	  
calculated	  as	  road	  distance	  using	  ArcGIS.	  	  Assignment	  is	  the	  school	  assigned	  at	  the	  conclusion	  of	  the	  high	  school	  assignment	  process.	  	  Enrollment	  is	  the	  school	  a	  student	  enrolls	  in	  October	  following	  application.	  
Assigned	  student	  exits	  New	  York	  City	  if	  they	  are	  not	  enrolled	  in	  any	  NYC	  public	  high	  school	  in	  October	  following	  application.	  	  Enrolled	  in	  School	  other	  than	  Assigned	  means	  student	  is	  in	  NYC	  Public,	  but	  in	  a	  school	  
other	  than	  that	  assigned	  at	  end	  of	  match.	  	  Final	  assignment	  round	  is	  the	  round	  during	  which	  an	  offer	  to	  the	  final	  assigned	  school	  first	  made.	  	  



Ranked 

Schools Assigned

Ranked 

Schools Assigned
(1) (2) (3) (4)

Distance (in miles) 4.82 4.30 5.10 4.00

High Math Achievement 12.4 11.7 13.0 10.7
High English Achievement 20.9 20.2 22.1 19.1
Percent Attending Four Year College 49.1 47.1 50.6 48.3
Fraction Inexperienced Teachers 45.3 45.6 46.6 43.8
Attendance Rate (out of 100) 85.1 84.6 85.7 83.8
Percent Subsidized Lunch 60.0 60.5 57.6 56.7
Size of 9th grade 694.3 698.8 675.0 819.2
Percent White 15.1 14.7 16.7 17.8

Distance (in miles) 4.87 4.59 5.87 5.17

High Math Achievement 11.8 9.3 16.6 14.2
High English Achievement 19.9 15.8 26.5 20.0
Percent Attending Four Year College 48.6 44.9 54.1 50.1
Fraction Inexperienced Teachers 46.0 41.5 45.3 36.9
Attendance Rate (out of 100) 85.1 82.2 87.4 83.2
Percent Subsidized Lunch 62.0 61.8 53.5 51.0
Size of 9th grade 685.3 908.0 638.5 1129.7
Percent White 13.8 13.3 17.4 15.3

Distance (in miles) 5.11 1.62 5.33 3.43

High Math Achievement 14.9 10.5 14.3 10.7
High English Achievement 24.3 17.5 24.2 19.2
Percent Attending Four Year College 52.0 46.7 51.7 47.9
Fraction Inexperienced Teachers 41.9 39.4 47.8 42.1
Attendance Rate (out of 100) 85.8 80.8 86.7 82.9
Percent Subsidized Lunch 53.8 50.4 57.2 53.1
Size of 9th grade 760.6 1181.9 607.6 984.0
Percent White 18.5 19.1 17.6 17.9

Table 4. Ranked vs. Assigned Schools by Student Assignment Round

Notes: Means unless otherwise noted. Analysis restricts the sample to students from the welfare sample with 

observed assignments. Uncoordinated mechanism refers to the 2002‐03 mechanism and coordinated 

mechanism refers to the 2003‐04 mechanism based on deferred acceptance.  Main round in the uncoordinated 

mechanism corresponds to the first round.  Rankings used are those submitted in the main round of the 

process.  Student distance calculated as road distance using ArcGIS.  See Table 2 notes for details on school 

characteristics.

Uncoordinated Mechanism Coordinated Mechanism

C. Administrative Round

B. Supplementary Round

A. Main Round



Main	  Round Supplementary Administrative Main Supplementary Administrative
(1) (2) (3) (4) (5) (6)

Students 48.5% 14.5% 37.1% 81.6% 7.8% 10.7%

Female 51.0% 14.3% 34.7% 82.1% 7.7% 10.2%

Bronx 53.3% 20.2% 26.5% 81.7% 6.7% 11.6%
Brooklyn 49.8% 16.2% 33.9% 82.9% 8.0% 9.1%
Manhattan 66.8% 19.2% 14.0% 78.9% 7.4% 13.7%
Queens 43.1% 8.3% 48.6% 79.2% 10.0% 10.8%
Staten	  Island 11.9% 0.0% 88.1% 88.3% 2.4% 9.3%

Asian 46.1% 5.4% 48.5% 82.3% 7.3% 10.3%
Black 53.2% 18.4% 28.4% 81.3% 8.7% 10.0%
Hispanic 51.2% 17.3% 31.5% 81.8% 7.9% 10.3%
White 31.5% 3.8% 64.7% 81.4% 5.0% 13.6%

High	  Baseline	  Math 57.3% 7.4% 35.3% 85.2% 5.1% 9.7%
Low	  Baseline	  Math 46.8% 19.8% 33.4% 79.9% 7.2% 12.9%

Subsidized	  Lunch 51.8% 15.9% 32.3% 82.7% 7.7% 9.6%
Bottom	  Neighborhood	  Income	  Quartile 55.4% 23.3% 21.3% 81.8% 7.2% 11.0%
Top	  Neighborhood	  Income	  Quartile 41.3% 8.1% 50.6% 80.8% 7.4% 11.8%

Limited	  English	  Proficient 46.9% 16.3% 36.8% 81.8% 7.6% 10.7%
Special	  Education 38.9% 18.8% 42.3% 71.8% 0.0% 28.2%
SHSAT	  Test-‐taker 61.9% 10.3% 27.8% 82.6% 7.3% 10.0%

Uncoordinated	  Mechanism
Table	  5.	  Offer	  Processing	  by	  Student	  Type

Coordinated	  Mechanism

Notes:	  Uncoordinated	  mechanism	  refers	  to	  2002-‐03	  mechanism	  and	  coordinated	  mechanism	  refers	  to	  the	  2003-‐04	  mechanism	  based	  on	  deferred	  acceptance.	  	  Table	  reports	  on	  final	  assignment	  round,	  which	  is	  
the	  round	  during	  which	  an	  offer	  to	  the	  final	  assigned	  school	  was	  accepted.	  	  Neighborhood	  income	  is	  median	  family	  income	  from	  the	  2000	  census.



Choice Mechanism 1st 2nd 3rd 4th 5th 6th 9th 12th

Students	  Ranking	  Choice Coordinated 69,907 93.4% 88.7% 82.8% 76.2% 69.1% 49.7% 20.3%
Uncoordinated 59,277 93.5% 85.8% 71.7% 46.7%

Distance	  in	  Miles	  -‐	  Mean Coordinated 4.43 4.81 5.05 5.21 5.38 5.49 5.65 5.12
Uncoordinated 4.80 4.91 4.94 4.88 4.79

	  	  	  	  Median Coordinated 3.51 3.95 4.20 4.37 4.57 4.63 4.78 4.24
Uncoordinated 3.87 4.00 4.05 4.05 4.02

High	  Math	  Achievement Coordinated 16.7 15.3 14.7 13.9 13.4 12.8 11.5 10.4
Uncoordinated 14.1 13.3 12.8 12.1 11.7

Fraction	  Subsidized	  Lunch Coordinated 51.4 53.4 54.5 56.2 57.4 58.7 61.3 63.1
Uncoordinated 56.6 58.0 59.1 60.7 62.0

Size	  of	  9th	  Grade Coordinated 713.4 708.1 689.3 668.0 655.3 635.9 608.8 649.2
Uncoordinated 720.7 720.7 709.3 696.5 686.6

Percent	  White Coordinated 19.1 16.7 15.7 14.4 13.3 12.2 10.4 9.0
Uncoordinated 14.6 13.4 12.5 11.4 10.8

High	  Math	  Achievement
	  	  	  Students	  with	  Low	  Baseline	  Math Coordinated 10.9 10.9 10.5 10.1 10.0 9.7 9.4 8.8

Uncoordinated 9.5 9.5 9.4 8.9 8.7

	  	  Students	  with	  High	  Baseline	  Math Coordinated 26.0 21.4 20.5 19.1 18.2 17.3 15.2 12.8
Uncoordinated 21.5 19.0 17.8 16.9 16.1

Neighborhood	  Income
	  	  	  Students	  from	  Bottom	  Neighorhood Coordinated 11.4 10.9 10.5 10.4 10.1 9.9 9.6 8.7
	  	  	  Income	  Quartile Uncoordinated 9.5 9.6 9.5 9.1 8.7

	  	  	  Students	  from	  Top	  Neighorhood Coordinated 23.3 20.7 19.6 18.7 17.7 16.8 15.0 12.7
	  	  	  Income	  Quartile Uncoordinated 21.4 18.5 17.6 16.5 16.1

B.	  Student	  Subgroups

A.	  All	  Students

Table	  6.	  School	  Characteristics	  by	  Rank	  of	  Student	  Choice

Notes:	  	  Uncoordinated	  mechanism	  refers	  to	  2002-‐03	  mechanism	  and	  coordinated	  mechanism	  refers	  to	  the	  2003-‐04	  mechanism	  based	  on	  deferred	  acceptance.	  	  Student	  distance	  calculated	  as	  road	  
distance	  using	  ArcGIS.	  High	  Math	  achievement	  is	  the	  fraction	  of	  students	  scoring	  over	  85%	  on	  the	  Math	  A	  regents	  in	  New	  York	  State	  Report	  Card.	  High	  baseline	  math	  students	  score	  above	  the	  75th	  
percentile	  for	  7th	  grade	  middle	  school	  math,	  low	  baseline	  math	  students	  score	  below	  the	  25th	  percentile.	  	  	  Neighborhood	  income	  is	  median	  family	  income	  from	  the	  2000	  census.



Specifications: All	  Choices
Top	  Three	  
Choices

All	  except	  last	  
choice

Students	  that	  
rank	  less	  than	  12

(1) (2) (3) (4) (5) (6)
High	  Math	  Achievement

Main	  effect 	  0.061*** 	  0.048*** -‐0.029 -‐0.029 -‐0.013 -‐0.014
Baseline	  Math 	  0.028*** 	  0.039*** 	  0.062*** 	  0.042*** 	  0.036***

Percent	  Subsidized	  Lunch	  
Main	  effect -‐0.004 	  -‐0.017** 	  -‐0.069*** -‐0.014 -‐0.011 	  -‐0.047***

Size	  of	  9th	  Grade	  (in	  100s)
Main	  effect -‐0.029 0.044 	  -‐0.113** 0.175 	  0.300*** 0.001

Percent	  White	  
Main	  effect 	  0.071*** 	  0.115*** 	  0.062*** 	  0.177*** 	  0.139*** 	  0.119***
Asian 	  -‐0.049*** 	  -‐0.075*** 	  -‐0.135*** 	  -‐0.083*** 	  -‐0.100***
Black	   	  -‐0.090*** 	  -‐0.124*** 	  -‐0.233*** 	  -‐0.155*** 	  -‐0.169***
Hispanic 	  -‐0.041*** 	  -‐0.084*** 	  -‐0.133*** 	  -‐0.097*** 	  -‐0.114***

Standard	  Deviation	  of	  ε 	  7.291*** 	  7.473*** 	  7.858*** 	  9.753*** 	  8.603*** 	  8.414***
Standard	  Deviation	  of	  ξ 	  3.207*** 	  2.783*** 	  3.676*** 	  4.889*** 	  3.729*** 	  3.679***

Random	  Coefficients	  (Covariances)
Size	  of	  9th	  Grade	  (in	  100s) Size	  of	  9th	  Grade	  (in	  100s) 	  1.584*** 	  14.552*** 	  11.379*** 	  14.210***
Size	  of	  9th	  Grade	  (in	  100s) Percent	  White	   	  -‐0.006*** -‐0.009 -‐0.007 -‐0.006
Size	  of	  9th	  Grade	  (in	  100s) Percent	  Subsidized	  Lunch	   	  -‐0.002*** 	  -‐0.019*** 	  -‐0.008** 	  -‐0.011**
Size	  of	  9th	  Grade	  (in	  100s) High	  Math	  Achievement 	  -‐0.011*** 	  -‐0.021* 	  -‐0.012* -‐0.009
Percent	  White	   Percent	  White	   	  0.008*** 	  0.026*** 	  0.015*** 	  0.017***
Percent	  White	   Percent	  Subsidized	  Lunch	   	  -‐0.001*** 	  0.001** 0.000 0.000
Percent	  White	   High	  Math	  Achievement 	  0.005*** 	  0.006*** 	  0.004*** 	  0.004***
Percent	  Subsidized	  Lunch	   Percent	  Subsidized	  Lunch	   	  0.002*** 	  0.015*** 	  0.007*** 	  0.008***
Percent	  Subsidized	  Lunch	   High	  Math	  Achievement 	  -‐0.000** 	  0.002** 0.000 0.000
High	  Math	  Achievement High	  Math	  Achievement 	  0.016*** 	  0.044*** 	  0.024*** 	  0.025***

Number	  of	  Students 69,907 69,907 69,907 12,007 65,310 55,695
Number	  of	  Ranks 542,666 542,666 542,666 23,545 472,759 372,122

Table	  7.	  Selected	  Preference	  Estimates	  for	  Different	  Demand	  Specifications
No	  Student	  
Interactions

School	  Characteristics	  x	  Student	  Characteristics	  
Without	  Random	  

Coefficients
Models	  with	  Random	  Coefficients

Notes:	  	  Select	  estimates	  of	  demand	  system	  with	  submitted	  ranks	  over	  497	  program	  choices	  in	  235	  schools.	  Student	  distance	  calculated	  as	  road	  distance	  using	  ArcGIS.	  
Dummies	  for	  missing	  school	  attributes	  are	  estimated	  with	  separate	  coefficients.	  Estimates	  use	  all	  submitted	  ranks	  except	  in	  columns	  4-‐6.	  Column	  1	  contains	  no	  interactions	  
between	  student	  and	  school	  characteristics.	  Column	  2	  contains	  interactions	  of	  baseline	  achievement,	  gender,	  race,	  special	  education,	  limited	  English	  proficiency,	  subsidized	  
lunch,	  and	  median	  2000	  census	  block	  group	  family	  income	  with	  school	  characteristics.	  Columns	  3-‐6	  include	  random	  coefficients	  on	  school	  size,	  percent	  white,	  percent	  
subsidized	  lunch,	  and	  Math	  achievement,	  with	  unrestricted	  covariance	  across	  characteristics.	  	  High	  Math	  achievement	  is	  the	  fraction	  of	  student	  that	  scored	  more	  than	  85%	  on	  
the	  Math	  A	  in	  New	  York	  State	  Report	  Cards.	  Models	  estimate	  the	  utility	  differences	  amongst	  inside	  options	  only,	  with	  an	  arbitrarily	  chosen	  school's	  mean	  utility	  normalized	  to	  
zero	  (without	  loss	  of	  generality).	  *	  significant	  at	  10%;	  **	  significant	  at	  5%;	  ***	  significant	  at	  1%



Assignment	  Mechanism:

(1) (2) (3) (4)
All -‐18.96 -‐3.73 -‐3.62 -‐3.11
Female -‐18.90 -‐3.71 -‐3.59 -‐3.07

Asian -‐18.08 -‐3.53 -‐3.43 -‐3.01
Black -‐19.43 -‐3.89 -‐3.79 -‐3.25
Hispanic -‐19.37 -‐3.80 -‐3.67 -‐3.10
White -‐17.07 -‐3.21 -‐3.11 -‐2.82

Bronx -‐21.39 -‐4.63 -‐4.46 -‐3.72
Brooklyn -‐18.48 -‐3.21 -‐3.14 -‐2.70
Manhattan -‐20.07 -‐5.40 -‐5.25 -‐4.43
Queens -‐18.02 -‐3.39 -‐3.29 -‐2.96
Staten	  Island -‐13.82 -‐1.25 -‐1.10 -‐1.03

High	  Baseline	  Math	   -‐18.53 -‐3.29 -‐3.18 -‐2.61
Low	  Baseline	  Math	   -‐19.40 -‐4.28 -‐4.18 -‐3.63

Subsidized	  Lunch -‐19.16 -‐3.78 -‐3.66 -‐3.12
Bottom	  Neighborhood	  Income	  Quartile -‐19.89 -‐4.25 -‐4.12 -‐3.46
Top	  Neighborhood	  Income	  Quartile -‐17.44 -‐3.63 -‐3.51 -‐3.15

Special	  Education -‐19.41 -‐4.83 -‐4.73 -‐4.11
Limited	  English	  Proficient -‐19.81 -‐3.74 -‐3.64 -‐3.16
SHSAT	  Test-‐Takers -‐19.13 -‐4.17 -‐4.05 -‐3.41
Notes:	  Utility	  from	  alternative	  assignments	  relative	  to	  utilitarian	  optimal	  assignment	  computed	  using	  actual	  preferences	  ignoring	  all	  school-‐side	  constraints	  except	  capacity.	  	  Utility	  
computed	  using	  estimates	  in	  column	  3	  of	  Table	  7.	  	  Mean	  utility	  from	  the	  utilitarian	  optimal	  assignment	  normalized	  to	  zero.	  	  Column	  1	  is	  computed	  by	  running	  the	  student-‐proposing	  
deferred	  acceptance	  algorithm	  where	  applicants	  simply	  rank	  schools	  in	  order	  of	  distance.	  	  Column	  2	  is	  from	  100	  lottery	  draws	  of	  student-‐proposing	  deferred	  acceptance	  with	  single	  tie-‐
breaking	  using	  the	  demand	  estimation	  sample.	  	  If	  a	  student	  is	  unassigned,	  we	  mimic	  the	  Supplementary	  Round	  by	  assigning	  students	  according	  to	  a	  serial	  dictatorship	  using	  preferences	  
drawn	  from	  the	  preference	  distribution	  estimated	  in	  column	  3	  of	  Table	  7.	  Student	  optimal	  matching	  in	  column	  3	  computed	  by	  taking	  each	  deferred	  acceptance	  assignment	  and	  applying	  the	  
Erdil-‐Ergin	  (2008)	  stable	  improvement	  cycles	  algorithm	  to	  find	  a	  student-‐optimal	  matching.	  	  Ordinal	  Pareto	  Efficient	  Matching	  in	  column	  4	  computed	  by	  applying	  Gale's	  top	  trading	  cycles	  to	  
the	  economy	  where	  the	  student-‐optimal	  matching	  determine	  student	  endowments,	  followed	  by	  the	  Abdulkadiroglu-‐Sonmez	  (2003)	  version	  of	  top	  trading	  cycles	  with	  counters.

Table	  8.	  Welfare	  Comparison	  of	  Alternative	  Mechanisms	  Compared	  to	  Utilitarian	  Assignment

Coordinated	  Mechanism
Student-‐Optimal	  

Matching
Ordinal	  Pareto	  Efficient	  

Matching	  

School	  Choice
Neighborhood	  
Assignment



Assignment Enrollment Assignment Enrollment Main	  Rounds Supplementary Administrative
(1) (2) (3) (4) (5) (6) (7)

All	  Students 10.96 9.67 0.69 0.38 48.5% 14.5% 37.1%
Female 10.41 9.08 0.68 0.37 51.0% 14.3% 34.7%

Asian 12.40 10.68 0.63 0.33 46.1% 5.4% 48.5%
Black 9.27 8.20 0.74 0.45 53.2% 18.4% 28.4%
Hispanic 10.56 9.53 0.66 0.39 51.2% 17.3% 31.5%
White 15.76 13.47 0.56 0.22 31.5% 3.8% 64.7%

Bronx 9.82 8.96 0.93 0.64 53.3% 20.2% 26.5%
Brooklyn 10.86 9.85 0.52 0.33 49.8% 16.2% 33.9%
Manhattan 11.62 9.20 0.00 -‐0.09 43.1% 8.3% 48.6%
Queens 5.80 5.14 1.13 0.57 66.8% 19.2% 14.0%
Staten	  Island 22.56 22.38 0.34 0.00 11.9% 0.0% 88.1%

High	  Baseline	  Math	   9.52 7.66 0.53 0.20 57.3% 7.4% 35.3%
Low	  Baseline	  Math	   10.80 10.07 0.57 0.33 46.8% 19.8% 33.4%

Subsidized	  Lunch 10.49 9.35 0.65 0.38 51.8% 15.9% 32.3%
Bottom	  Neighborhood	  Income	  Quartile 9.17 8.61 0.57 0.42 55.4% 23.3% 21.3%
Top	  Neighborhood	  Income	  Quartile 12.34 10.15 0.71 0.25 41.3% 8.1% 50.6%

Special	  Education 10.43 9.32 0.76 0.43 38.9% 18.8% 42.3%
Limited	  English	  Proficient 11.88 10.89 0.60 0.38 46.9% 16.3% 36.8%
SHSAT	  Test-‐Takers 7.55 6.24 0.55 0.25 61.9% 10.3% 27.8%

Table	  9.	  Welfare	  Comparison	  between	  Coordinated	  and	  Uncoordinated	  Mechanism

2002-‐03	  Offer	  ProcessingChange	  in	  Distance	  (in	  miles)
Change	  in	  Utility

(in	  miles)

Notes:	  Utilities	  are	  in	  distance	  units	  (miles)	  averaged	  across	  students	  in	  the	  mechanism	  comparison	  sample	  in	  Table	  1	  using	  preference	  estimates	  in	  column	  3	  of	  Table	  7.	  	  Utility	  estimated	  from	  unordered	  application	  
selection	  from	  the	  uncoordinated	  mechanism	  and	  the	  truthful	  application	  selection	  rule	  from	  the	  coordinated	  mechanism.	  	  Assignment	  is	  the	  school	  assigned	  at	  the	  conclusion	  of	  the	  high	  school	  assignment	  process.	  	  
Enrollment	  is	  the	  school	  student	  enrolls	  in	  October	  following	  application.	  	  If	  a	  student	  enrolls	  in	  the	  assigned	  school,	  we	  use	  the	  assigned	  program	  to	  compute	  the	  utility	  of	  enrollment.	  	  If	  a	  student	  enrolls	  at	  another	  
school,	  we	  use	  the	  program-‐size	  weighted	  average	  of	  utilities	  from	  all	  programs	  at	  that	  school.	  2002-‐03	  offer	  process	  reports	  the	  fraction	  of	  students	  with	  row	  characteristic	  first	  offered	  school	  	  finally	  assigned	  in	  the	  
Main	  round	  (rounds	  1-‐3),	  the	  Supplementary	  round	  or	  the	  Administrative	  round.	  Student	  distance	  calculated	  as	  road	  distance	  using	  ArcGIS.	  	  	  High	  baseline	  math	  students	  score	  above	  the	  75th	  percentile	  for	  7th	  grade	  
relative	  to	  citywide	  distribution,	  while	  low	  baseline	  math	  students	  score	  below	  the	  25th	  percentile.	  	  Subsidized	  lunch	  not	  available	  pre-‐assignment	  and	  comes	  from	  enrolled	  students	  as	  of	  2004-‐05	  school	  year.	  	  	  
Neighborhood	  income	  is	  median	  census	  block	  group	  family	  income	  from	  the	  2000	  census.



Selection	  assumption:
Assignment Enrollment Assignment Enrollment Assignment Enrollment

(1) (2) (3) (4) (5) (6)
All	  Students 4.99 4.67 9.02 7.66 10.62 9.25
Female 4.89 4.52 8.37 6.99 10.01 8.59

Asian 6.52 5.83 10.73 8.99 11.91 10.11
Black 3.90 3.60 7.17 6.03 8.97 7.83
Hispanic 4.61 4.29 8.47 7.37 10.21 9.11
White 8.66 8.03 14.52 12.09 15.46 13.03

Bronx 4.28 4.00 7.46 6.46 9.46 8.54
Brooklyn 4.66 4.35 8.84 7.77 10.57 9.49
Manhattan 2.46 2.10 3.14 2.30 5.10 4.33
Queens 5.10 4.43 10.27 7.84 11.30 8.78
Staten	  Island 14.23 14.77 21.68 21.47 22.62 22.42

High	  Baseline	  Math	   5.60 4.90 7.30 5.41 8.85 6.85
Low	  Baseline	  Math	   4.45 4.38 8.95 8.14 10.61 9.83

Subsidized	  Lunch 4.76 4.44 8.40 7.21 10.13 8.93
Bottom	  Neighborhood	  Income	  Quartile 3.88 3.73 6.83 6.15 8.81 8.18
Top	  Neighborhood	  Income	  Quartile 6.34 5.70 10.86 8.58 12.02 9.71

Special	  Education 4.02 4.10 9.08 7.66 10.30 9.10
Limited	  English	  Proficient 4.99 4.72 9.84 8.80 11.62 10.58
SHSAT	  Test-‐Takers 4.38 3.81 5.45 4.11 6.91 5.51

Unordered	  Applications Truthful	  Applications

Notes:	  Utilities	  are	  in	  distance	  units	  (miles)	  averaged	  across	  students	  in	  the	  mechanism	  comparison	  sample	  in	  Table	  1	  using	  preference	  estimates	  in	  column	  3	  of	  Table	  7.	  	  	  Assignment	  is	  
the	  school	  assigned	  at	  the	  conclusion	  of	  the	  high	  school	  assignment	  process.	  	  Enrollment	  is	  the	  school	  student	  enrolls	  in	  October	  following	  application.	  Results	  from	  the	  unselected	  
applications	  selection	  rule	  in	  columns	  1	  and	  2	  do	  not	  include	  the	  idiosyncratic	  taste	  shock	  in	  utility	  calculations	  for	  both	  mechanisms.	  	  Results	  from	  unordered	  application	  selection	  rule	  
in	  columns	  3	  and	  4	  compute	  utility	  for	  an	  assignment	  conditional	  on	  the	  schools	  listed	  on	  a	  rank	  order	  list	  being	  preferred	  to	  those	  not	  listed	  for	  both	  mechanisms.	  	  Results	  from	  the	  
truthful	  application	  selection	  rule	  in	  columns	  5	  and	  6	  compute	  utility	  for	  an	  assignment	  conditional	  on	  a	  student's	  rank	  order	  list	  assuming	  its	  truthful	  for	  both	  mechanisms.	  	  High	  
baseline	  math	  students	  score	  above	  the	  75th	  percentile	  for	  7th	  grade	  relative	  to	  citywide	  distribution,	  while	  low	  baseline	  math	  students	  score	  below	  the	  25th	  percentile.	  	  Neighborhood	  
income	  is	  median	  census	  block	  group	  family	  income	  from	  the	  2000	  census.

Table	  10.	  Welfare	  Comparison	  for	  Alternative	  Selection	  Rules
Unselected	  Applications



	  	  	  	  	  	  	  	  	  	  	   	  
	  

Figure	  1.	  School	  Locations	  and	  Students	  by	  New	  York	  City	  Census	  Tract	  in	  2002-‐03	  and	  2003-‐04	  



	  
	  
	  

Figure	  2.	  Distribution	  of	  Distance	  to	  Assigned	  School	  in	  	  
Uncoordinated	  (2002-‐03)	  and	  Coordinated	  (2003-‐04)	  Mechanism	  	  	  

Mean	  (median)	  travel	  distance	  is	  3.36	  (2.25)	  miles	  in	  2002-‐03	  and	  4.05	  (3.04)	  miles	  in	  2003-‐04.	  	  Top	  and	  bottom	  1%	  are	  not	  shown	  in	  
figure.	  Line	  fit	  from	  Gaussian	  kernel	  with	  bandwidth	  chosen	  to	  minimize	  mean	  integrated	  squared	  error	  using	  STATA’s	  kdensity	  

command.	  



	  

	  
	  

Figure	  3.	  Change	  in	  Number	  Assigned	  by	  Oversubscription	  in	  Uncoordinated	  Mechanism	  
	  

The	  figure	  the	  change	  in	  the	  number	  assigned	  to	  the	  school	  in	  the	  new	  mechanism	  minus	  the	  old	  mechanism	  (on	  the	  vertical	  axis)	  
compared	  to	  oversubscription	  in	  the	  uncoordinated	  mechanism	  (on	  the	  horizontal	  axis).	  	  Oversubscription	  is	  measured	  as	  the	  log	  of	  

the	  number	  of	  applications	  divided	  by	  the	  number	  assigned	  to	  the	  program.	  



	  

	  
	  

Figure	  4.	  Student	  Welfare	  from	  Uncoordinated	  and	  Coordinated	  Mechanism	  	  
Distribution	  of	  utility	  (measured	  in	  distance	  units)	  from	  assignment	  based	  estimates	  in	  column	  3	  of	  Table	  A1	  with	  mean	  utility	  in	  
2003-‐04	  normalized	  to	  0.	  Top	  and	  bottom	  1%	  are	  not	  shown	  in	  figure.	  	  Line	  fit	  from	  Gaussian	  kernel	  with	  bandwidth	  chosen	  to	  

minimize	  mean	  integrated	  squared	  error	  using	  STATA’s	  kdensity	  command.	  



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Figure	  5.	  Change	  in	  Student	  Welfare	  by	  Propensity	  to	  be	  	  

Administratively	  Assigned	  in	  the	  Uncoordinated	  Mechanism	  	  
	   	  

Probability	  of	  administrative	  assignment	  estimated	  from	  probit	  of	  administrative	  assignment	  indicator	  on	  student	  census	  tract	  dummies	  and	  all	  student	  
characteristics	  in	  the	  demand	  model	  except	  for	  distance.	  If	  student	  lives	  in	  tract	  where	  either	  all	  students	  are	  administratively	  or	  no	  students	  are	  

administratively	  assigned,	  all	  students	  from	  those	  tracts	  are	  coded	  as	  administratively	  assigned.	  Each	  student	  is	  assigned	  to	  one	  of	  ten	  deciles	  of	  probability	  of	  
administrative	  assignment	  based	  on	  these	  estimates.	  Differences	  across	  deciles	  in	  distance-‐equivalent	  utility	  including	  distance,	  distance-‐equivalent	  utility	  net	  of	  

distance,	  and	  distance	  are	  plotted,	  where	  preference	  estimates	  come	  from	  column	  3	  of	  Table	  7,	  under	  the	  selection	  assumption	  in	  Table	  9.	  
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Specifications: All	  Choices
Top	  Three	  
Choices

All	  except	  last	  
choice

Students	  that	  
rank	  less	  than	  12

(1) (2) (3) (4) (5) (6)
High	  Math	  Achievement

Main	  effect 	  0.061*** 	  0.048*** -‐0.029 -‐0.029 -‐0.013 -‐0.014
Baseline	  Math 	  0.028*** 	  0.039*** 	  0.062*** 	  0.042*** 	  0.036***
Baseline	  English 	  0.031*** 	  0.039*** 	  0.071*** 	  0.053*** 	  0.059***
Subsidized	  Lunch 	  -‐0.011*** 	  -‐0.016*** 	  -‐0.022** 	  -‐0.021*** 	  -‐0.026***
Neighborhood	  Income	  (in	  1000s) 	  0.004*** 	  0.012*** 	  0.017*** 	  0.014*** 	  0.012***
Limited	  English	  Proficient	   	  0.014** 0.000 	  0.032* 	  0.026** -‐0.021
Special	  Education	   0.009 -‐0.006 	  0.039* 0.020 0.010

Percent	  Subsidized	  Lunch	  
Main	  effect -‐0.004 	  -‐0.017** 	  -‐0.069*** -‐0.014 -‐0.011 	  -‐0.047***
Asian -‐0.009 	  -‐0.012*** 	  -‐0.024* -‐0.012 0.008
Black	   0.007 	  0.009*** 0.005 	  0.016*** 	  0.017**
Hispanic 	  0.035*** 	  0.043*** 	  0.084*** 	  0.059*** 	  0.064***
Subsidized	  Lunch 	  0.006*** 	  0.011*** 	  0.024*** 	  0.015*** 	  0.015***
Neighborhood	  Income	  (in	  1000s) 	  -‐0.005*** 	  -‐0.008*** 	  -‐0.019*** 	  -‐0.013*** 	  -‐0.011***

Size	  of	  9th	  Grade	  (in	  100s)
Main	  effect -‐0.029 0.044 	  -‐0.113** 0.175 	  0.300*** 0.001
Baseline	  Math 	  -‐0.012** 	  -‐0.026*** -‐0.007 -‐0.024 0.042
Baseline	  English 	  -‐0.050*** 	  -‐0.066*** 	  -‐0.226*** 	  -‐0.104* -‐0.083
Subsidized	  Lunch 0.014 	  0.038*** 0.015 0.059 0.102
Neighborhood	  Income	  (in	  1000s) 	  -‐0.011*** 	  -‐0.012*** -‐0.010 	  -‐0.031* -‐0.009
Special	  Education	   0.019 	  0.052** 0.198 0.091 0.155

Percent	  White	  
Main	  effect 	  0.071*** 	  0.115*** 	  0.062*** 	  0.177*** 	  0.139*** 	  0.119***
Asian 	  -‐0.049*** 	  -‐0.075*** 	  -‐0.135*** 	  -‐0.083*** 	  -‐0.100***
Black	   	  -‐0.090*** 	  -‐0.124*** 	  -‐0.233*** 	  -‐0.155*** 	  -‐0.169***
Hispanic 	  -‐0.041*** 	  -‐0.084*** 	  -‐0.133*** 	  -‐0.097*** 	  -‐0.114***

Spanish	  Language	  Program	  
Limited	  English	  Proficient	   	  14.281*** 	  15.437*** 	  18.961*** 	  16.887*** 	  16.386***
Limited	  English	  Proficient	  x	  Hispanic	   	  -‐9.517*** 	  -‐10.502*** 	  -‐18.420*** 	  -‐11.541*** 	  -‐12.465***

Models	  with	  Random	  Coefficients
School	  Characteristics	  x	  Student	  Characteristics	  

Without	  Random	  
Coefficients

Table	  A1.	  Posterior	  Means	  of	  Preference	  Estimates	  for	  Different	  Demand	  Specifications
No	  Student	  
Interactions



Asian	  Language	  Program	  
Limited	  English	  Proficient	   	  11.180*** 	  11.814*** 	  16.651*** 	  13.508*** 	  14.139***
Limited	  English	  Proficient	  x	  Asian	   	  -‐8.424*** 	  -‐7.091*** 	  -‐17.598*** 	  -‐9.926*** 	  -‐8.279***

Other	  Language	  Program	  
Limited	  English	  Proficient	   	  6.423*** 	  7.448*** 	  10.023*** 	  7.930*** 	  8.992***

Standard	  Deviation	  of	  ε 	  7.291*** 	  7.473*** 	  7.858*** 	  9.753*** 	  8.603*** 	  8.414***
Standard	  Deviation	  of	  ξ 	  3.207*** 	  2.783*** 	  3.676*** 	  4.889*** 	  3.729*** 	  3.679***

Random	  Coefficients	  (Covariances)
Size	  of	  9th	  Grade	  (in	  100s) Size	  of	  9th	  Grade	  (in	  100s) 	  1.584*** 	  14.552*** 	  11.379*** 	  14.210***
Size	  of	  9th	  Grade	  (in	  100s) Percent	  White	   	  -‐0.006*** -‐0.009 -‐0.007 -‐0.006
Size	  of	  9th	  Grade	  (in	  100s) Percent	  Subsidized	  Lunch	   	  -‐0.002*** 	  -‐0.019*** 	  -‐0.008** 	  -‐0.011**
Size	  of	  9th	  Grade	  (in	  100s) High	  Math	  Achievement 	  -‐0.011*** 	  -‐0.021* 	  -‐0.012* -‐0.009
Percent	  White	   Percent	  White	   	  0.008*** 	  0.026*** 	  0.015*** 	  0.017***
Percent	  White	   Percent	  Subsidized	  Lunch	   	  -‐0.001*** 	  0.001** 0.000 0.000
Percent	  White	   High	  Math	  Achievement 	  0.005*** 	  0.006*** 	  0.004*** 	  0.004***
Percent	  Subsidized	  Lunch	   Percent	  Subsidized	  Lunch	   	  0.002*** 	  0.015*** 	  0.007*** 	  0.008***
Percent	  Subsidized	  Lunch	   High	  Math	  Achievement 	  -‐0.000** 	  0.002** 0.000 0.000
High	  Math	  Achievement High	  Math	  Achievement 	  0.016*** 	  0.044*** 	  0.024*** 	  0.025***

Number	  of	  Students 69,907 69,907 69,907 12,007 65,310 55,695
Number	  of	  Ranks 542,666 542,666 542,666 23,545 472,759 372,122
Notes:	  	  Estimates	  of	  demand	  system	  with	  submitted	  ranks	  over	  497	  program	  choices	  in	  235	  schools.	  Student	  distance	  calculated	  as	  road	  distance	  using	  ArcGIS.	  Dummies	  for	  
missing	  school	  attributes	  are	  estimated	  with	  separate	  coefficients.	  Estimates	  use	  all	  submitted	  ranks	  except	  in	  columns	  4-‐6.	  Column	  1	  contains	  no	  interactions	  between	  
student	  and	  school	  characteristics.	  Column	  2	  contains	  interactions	  of	  baseline	  achievement,	  gender,	  race,	  special	  education,	  limited	  English	  proficiency,	  subsidized	  lunch,	  and	  
median	  2000	  census	  block	  group	  family	  income	  with	  school	  characteristics.	  Columns	  3-‐6	  include	  random	  coefficients	  on	  school	  size,	  percent	  white,	  percent	  subsidized	  lunch,	  
and	  Math	  achievement,	  with	  unrestricted	  covariance	  across	  characteristics.	  	  High	  Math	  achievement	  is	  the	  fraction	  of	  student	  that	  scored	  more	  than	  85%	  on	  the	  Math	  A	  in	  
New	  York	  State	  Report	  Cards.	  Models	  estimate	  the	  utility	  differences	  amongst	  inside	  options	  only,	  with	  an	  arbitrarily	  chosen	  school's	  mean	  utility	  normalized	  to	  zero	  (without	  
loss	  of	  generality).	  *	  significant	  at	  10%;	  **	  significant	  at	  5%;	  ***	  significant	  at	  1%



Main	  
Specification

No	  Student	  
Interactions

Main	  
Specification

No	  Student	  
Interactions

(1) (2) (3) (4) (5) (6) (7) (8)
Distance 1 2 0.47 0.16 0.09 0.50 0.17 0.07

1 3 0.39 0.15 0.09 0.41 0.16 0.07
2 3 0.44 0.17 0.12 0.47 0.16 0.07

High	  Math	  Performance 1 2 0.35 0.39 0.03 0.39 0.42 0.03
1 3 0.32 0.36 0.03 0.35 0.38 0.03
2 3 0.34 0.33 0.03 0.39 0.36 0.03

Percent	  Free	  Lunch 1 2 0.61 0.49 0.30 0.66 0.49 0.34
1 3 0.54 0.46 0.28 0.60 0.47 0.33
2 3 0.55 0.43 0.26 0.62 0.45 0.31

Percent	  White 1 2 0.55 0.55 0.29 0.60 0.56 0.37
1 3 0.47 0.52 0.26 0.54 0.54 0.36
2 3 0.48 0.48 0.24 0.56 0.51 0.35

Size	  of	  9th	  Grade 1 2 0.29 0.60 0.07 0.34 0.59 0.09
1 3 0.21 0.58 0.06 0.24 0.57 0.09
2 3 0.27 0.56 0.06 0.33 0.56 0.08

Choice Choice Observed

Notes:	  Table	  reports	  the	  observed	  correlation	  between	  the	  school	  characteristic	  of	  the	  choice	  in	  column	  1	  with	  the	  choice	  in	  column	  2	  for	  the	  main	  specification	  (shown	  in	  column	  3	  of	  Table	  
A1)	  and	  the	  specification	  with	  no	  student	  interactions	  (shown	  in	  column	  1	  of	  Table	  A1).

Table	  A2.	  Model	  Fit	  of	  Correlation	  between	  Choices	  across	  Demand	  Specifications

Specification Specification
Correlation	  between	   Coordinated	  Mechanism	  (2003-‐04) Coordinated	  Mechanism	  (2004-‐05)

ObservedSchool	  Characteristic



(1) (2) (3) (4)

10%	  Sample,	  Top	  3	  choices -‐24.91 -‐4.65 -‐4.51 -‐3.88
10%	  Sample,	  Excl.	  Full	  Lists -‐21.14 -‐4.13 -‐4.00 -‐3.46
10%	  Sample,	  Excl.	  Last	  Choice -‐21.46 -‐4.13 -‐4.01 -‐3.45

Full	  Sample,	  Main	  specification -‐18.96 -‐3.73 -‐3.62 -‐3.11
10%	  Sample,	  Main	  specification -‐21.45 -‐4.09 -‐3.96 -‐3.41
10%	  Sample,	  No	  student	  interactions -‐15.48 -‐3.29 -‐3.19 -‐2.75
10%	  Sample,	  No	  random	  coefficients -‐16.17 -‐3.23 -‐3.13 -‐2.67

2,344 10,881

Notes:	  Utility	  from	  alternative	  assignments	  relative	  to	  utilitarian	  assignment	  computed	  using	  actual	  preferences	  ignoring	  all	  school-‐side	  constraints	  except	  capacity.	  	  See	  notes	  to	  Table	  
8	  for	  details	  on	  mechanism	  calculations.	  	  10%	  sample	  represents	  random	  10%	  of	  sample	  of	  applicants	  to	  estimate	  preferences.	  	  All	  mechanism	  counterfactuals	  used	  these	  estimates	  for	  
all	  applicants	  in	  the	  mechanism	  comparison	  sample.	  	  Top	  3	  choices	  refers	  to	  estimates	  that	  only	  use	  the	  top	  3	  choices	  of	  applicants.	  	  Excl.	  Full	  lists	  refers	  to	  estimates	  that	  only	  use	  
rankings	  of	  students	  who	  rank	  fewer	  than	  12	  choices.	  	  Excl.	  Last	  choice	  refers	  to	  estimates	  that	  use	  all	  rankings	  except	  the	  last	  one.	  	  	  No	  student	  interactions	  and	  No	  random	  coefficient	  
refers	  to	  the	  specification	  in	  column	  1	  and	  2	  of	  Table	  7,	  respectively.

Table	  A3.	  Welfare	  Comparisons	  for	  Alternative	  Demand	  Specifications

Number	  of	  students	  reassignments	  
relative	  to	  column	  (2)

Coordinated	  
Mechanism

Student	  Optimal	  
Matching

Ordinal	  Pareto	  Efficient	  
Matching	  

School	  Choice
Neighborhood	  
Assignment

A.	  Alternative	  Behavioral	  Assumptions

B.	  Alternative	  Samples	  and	  Demand	  Model	  Interactions



	
 

                                                                  a) Percent Subsidized lunch                                               b) Percent white 

  
                                                        c) Baseline Math Standardized Score                                             d) Distance 

 
Figure A1. Comparison of Characteristics of Enrolled Students at Each School 

between Uncoordinated and Coordinated Mechanism 
 

This figure reports school characteristics measured by the attributes of students enrolled at each school across mechanisms.  
The dotted line is the 45 degree line, while the solid line is the least squares line fit. 
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Figure	  A2.	  Model	  Fit	  

	  
This	  figure	  reports	  the	  observed	  and	  estimated	  school	  characteristics	  for	  different	  student	  ranked	  choices	  

The	  estimates	  are	  from	  the	  main	  specification	  in	  column	  3	  of	  Table	  7.	  



	  

	  
	  
	  

Figure	  A3.	  Comparison	  of	  School	  Market	  Shares	  between	  	  
2002-‐03	  Uncoordinated	  Mechanism	  and	  2003-‐04	  Coordinated	  Mechanism	  

	  
This	  figure	  plots	  school	  market	  shares	  defined	  as	  the	  count	  of	  applicants	  ranking	  a	  program	  at	  a	  given	  	  
school	  divided	  by	  the	  total	  number	  of	  choices	  expressed	  for	  schools	  that	  students	  can	  apply	  to	  in	  	  

2002-‐03	  and	  2003-‐04.	  	  Market	  shares	  are	  normalized	  within	  this	  set	  to	  sum	  to	  1.	  	  	  



	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Figure	  A4.	  Comparison	  of	  School	  Market	  Shares	  between	  	  
2003-‐04	  Coordinated	  Mechanism	  and	  2004-‐05	  Coordinated	  Mechanism	  

	  
This	  figure	  plots	  school	  market	  shares	  defined	  as	  the	  count	  of	  applicants	  ranking	  a	  program	  at	  a	  given	  school	  divided	  by	  the	  total	  
number	  of	  choices	  expressed	  for	  schools	  that	  students	  can	  apply	  to	  in	  2003-‐04	  and	  2004-‐05.	  	  Market	  shares	  are	  normalized	  within	  

this	  set	  to	  sum	  to	  1.	  	  The	  slope	  of	  the	  line	  fit	  is	  0.93	  and	  the	  R2	  is	  0.86.	  



Online Appendix for
“The Welfare Effects of Coordinated Assignment:

Evidence from the New York City High School Match”

Atila Abdulkadiroğlu Nikhil Agarwal Parag A. Pathak

October 19, 2015

A Computational Appendix (Not for Publication)

The demand model is an ordered version of the model in Rossi, McCulloch, and Allenby (1996).
We assume that the utility for student i for program j can be written as:

uij = δj +
∑
l

αlzlix
l
j +

∑
k

γki x
k
j − dij + εij ,

with δj = xjβ + ξj .

We parametrize the random coefficients as follows:

γi ∼ N (0,Σγ), ξj ∼ N (0, σ2ξ ), εij ∼ N (0, σ2ε).

The priors for β, α, Σγ , σ2ξ , and σ
2
ε are as follows:

β ∼ N (0, Σ̄β), α ∼ N (0, Σ̄α)

Σγ ∼ IW(Σ̄γ , νγ), σ2ξ ∼ IW(σ̄2ξ , νξ), and σ2ε ∼ IW(σ̄2ε , νε),

where IW is the inverse Wishart distribution. Following Chapter 5 of Rossi, Allenby, and Mc-
Culloch (2005), we set diffuse priors as follows: the prior variances of β and α are 100 times the
identity matrix, and

(Σ̄γ , νγ) = ((3 + dim(γi))Idim(γi), 3 + dim(γi)),

(σ̄2ξ , νξ) = (1, 2) and (σ̄2ε , νε) = (3 + J, 3 + J),

where Ik is the identity matrix of dimension k.
The Gibbs sampler iterates through the following steps (where we omit conditioning on the

observed data and the priors for notational simplicity). First, we iterate through the observed
rank ordered lists to update the values of uij . We then draw utilities for the unranked options
by observing that their indirect utility must be at most the indirect utility of the lowest ranked
option. This step can be written as

uij |ui−j , ri, β, ξ, γi, α,

where each simulation is from a (two-sided) truncated normal.
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Given the utilities, the posteriors of ξ, β and α are multivariate normal distributions that
can be computed as follows:

ξ | u, γ, β, α, σ2ξ ,

β | u, γ, ξ, α, Σ̄β,

α | u, γ, β, α, Σ̄α,

where u and γ stack the utilities and random coefficients for all students. We then update the
student-specific random coefficients:

γi|ui, β, ξ, α,Σγ .

The priors and distribution of εij imply that a posterior is a multivariate normal distribution
for each student. Finally, we sample from the posteriors σ2ε |ε, σ2ξ |ξ and Σγ |γ, which are given by
inverse Wishart distributions.

For the estimates for the Full sample, main specification, we iterate through the Markov
Chain 1.25 million times, and discard the first 0.75 million draws as “burn in” to ensure mixing.
We diagnosed mixing by examining trace plots and computing the Potential Scale Reduction
Factor (PSRF) following Gelman and Rubin (1992). Because of computational constraints in
drawing from separate chains, we split the draws after the burn-in period into three equally sized
continguous pieces and computed the PSRF using the first and third pieces. The PSRFs for
almost all parameters were within 1.1 and were within 1.3 for all parameters. Trace plots for the
few parameters with PSRFs higher than 1.1 did not indicate any obvious convergence issues.

Estimates of the 10% samples were computed by iterating through the Markov Chain 1
million times and discarding the first 0.75 million draws. We obtained estimates from three
distinct chains initiated from dispersed starting values. We compared variances within each
chain and the variance between chains, by computing both within and across chain values of the
PSRF. For nearly all parameters, the PSRF is close to one, suggesting that we’ve reached the
target distribution.

Our estimates report the posterior mean and standard deviations. We examined the his-
tograms of the marginal distributions of the posteriors to assess the skew. These histograms
indicate that the means, modes and medians of the parameters in the main specification are
similar.
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B Appendix: Subway Distances (Not for Publication)

In New York, high school students who live within 0.5 miles of a school are not eligible for
transportation. If a student lives between 0.5 and 1.5 miles, the Metropolitan Transit Authority
provides them with a half-fare student Metrocard that works only for bus transportation. If they
reside 1.5 miles or greater, they obtain full-fare transportation with a student Metrocard that
works for subways and buses and is issued by the school transportation office.

Since subway is a common mode of transportation in New York City, this appendix assesses
how the driving distance measure we utilize in the paper differs from commuting distance using
NYC’s subway system. Subway distance is defined as the sum of distance on foot to the student’s
nearest subway station, travel distance on the subway network to a school’s nearest subway
station, and the distance on foot to the school from that station. To compute these distances,
we used ESRI’s ArcGIS software and information on the NYC subway system using GIS files
downloaded from Metropolitan Transit Authority’s website. Details on these sources are in the
Data appendix.

The overall correlation between driving distance and total commuting distance for all student-
program pairs is 0.96. A regression of commuting distance on driving distance yields a coefficient
of 0.77. Table S1 provides a summary of the correlations by the student and school borough.
The correlations are higher than 0.84, except for schools in Staten Island, where the subway
system is not quite as extensive as in other boroughs. In fact, it may be that driving distances
are a more accurate measure of travel costs in Staten Island than subway distance.

Panels B and C show that most students are assigned to schools in their borough in both
the uncoordinated and coordinated mechanism. In both mechanisms, a very small number of
students who do not live in Staten Island are assigned to schools there, and conversely, only a
small number of students living in Staten Island are assigned to schools in a different borough.
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Assignment Enrollment
(1) (2) (3) (4) (5)

Overall 69,013 4.07 3.96 6.6% 6.9%

Main	  Round 60,251 4.11 3.99 6.5% 6.4%
Supplementary	  Round 5,475 4.16 4.03 8.5% 13.6%
Administrative	  Round 3,287 3.25 3.26 4.9% 5.4%

Table	  B1.	  Offer	  Processing	  in	  Second	  Year	  of	  Coordinated	  Mechanism	  (2004-‐05)

Notes:	  Columns	  2-‐5	  report	  means.	  Coordinated	  mechanism	  for	  2004-‐05	  based	  on	  deferred	  acceptance.	  Student	  distance	  calculated	  as	  road	  distance	  using	  ArcGIS.	  	  Assignment	  is	  the	  school	  assigned	  
at	  the	  conclusion	  of	  the	  high	  school	  assignment	  process.	  	  Enrollment	  is	  the	  school	  a	  student	  enrolls	  in	  October	  following	  application.	  Assigned	  student	  exits	  New	  York	  City	  if	  they	  are	  not	  enrolled	  in	  
any	  NYC	  public	  high	  school	  in	  October	  following	  application.	  	  Enrolled	  in	  School	  other	  than	  Assigned	  means	  student	  is	  in	  NYC	  Public,	  but	  in	  a	  school	  other	  than	  that	  assigned	  at	  end	  of	  match.	  	  Final	  
assignment	  round	  is	  the	  round	  during	  which	  an	  offer	  to	  the	  final	  assigned	  school	  first	  made.	  	  

Coordinated	  Mechanism	  -‐	  2004	  -‐	  2005

Number	  of	  Students

Distance	  to	  School	  (in	  miles)

Exit	  from	  NYC	  Public	  
Schools

In	  NYC	  Public,	  but	  at	  
School	  Other	  than	  

Assigned



Bronx Brooklyn Manhattan Queens	   Staten	  Island Total
Student	  Borough (1) (2) (3) (4) (5) (6)

Bronx 0.90 0.93 0.97 0.91 0.76 …
Brooklyn 0.90 0.91 0.95 0.91 0.92 …
Manhattan 0.96 0.95 0.98 0.95 0.76 …
Queens 0.91 0.91 0.95 0.87 0.85 …
Staten	  Island 0.84 0.92 0.85 0.89 0.73 …

Bronx 15,187 41 1,382 66 1 16,677
Brooklyn 13 20,877 1,073 502 12 22,477
Manhattan 89 42 8,604 24 1 8,760
Queens 15 493 586 16,498 0 17,592
Staten	  Island 2 13 59 4 4,774 4,852

Bronx 13,335 85 2,049 84 8 15,561
Brooklyn 39 20,035 1,858 846 40 22,818
Manhattan 238 108 7,492 52 7 7,897
Queens 26 584 1,028 14,972 9 16,619
Staten	  Island 3 37 69 4 3,913 4,026

School	  Borough

A.	  Correlation	  between	  Subway	  and	  Driving	  Distance

B.	  Cross-‐Borough	  Travel	  in	  Uncoordinated	  Mechanism

C.	  Cross-‐Borough	  Travel	  in	  Coordinated	  Mechanism

Table	  B2.	  Subway	  and	  Driving	  Distance	  and	  Cross-‐Borough	  Travel

Notes:	  Panel	  A	  reports	  on	  the	  correlation	  between	  student-‐school	  distance	  as	  computed	  by	  road	  distance	  and	  by	  subway	  distance.	  	  Subway	  distance	  is	  the	  sum	  of	  
distance	  on	  foot	  to	  the	  student's	  nearest	  subway	  station,	  travel	  distance	  on	  the	  subway	  network	  to	  a	  school's	  nearest	  subway	  station,	  and	  the	  distance	  on	  foot	  to	  
the	  school	  from	  that	  location.	  	  Both	  measures	  of	  distance	  computed	  using	  ArcGIS.	  	  Panels	  B	  and	  C	  report	  on	  the	  number	  of	  students	  in	  each	  borough	  who	  are	  
assigned	  school	  in	  each	  borough.



Choice	  Assigned All 1 2 3 4 5 6 7 8 9 10 11 12
Total 69,907 4,597 3,282 4,128 4,622 4,952 4,776 4,406 4,390 4,558 6,135 9,849 14,212

1 31.9% 88.6% 40.7% 35.2% 31.9% 27.9% 28.6% 27.1% 25.7% 25.6% 25.4% 26.2% 25.2%
2 15.0% 39.8% 17.7% 15.1% 14.8% 14.6% 13.7% 13.9% 13.9% 15.2% 14.7% 14.6%
3 10.2% 24.3% 11.6% 11.6% 10.6% 10.0% 10.8% 9.9% 10.4% 10.4% 10.5%
4 7.3% 18.0% 9.3% 8.1% 7.9% 8.0% 7.6% 7.6% 7.8% 8.2%
5 5.4% 12.8% 7.0% 7.0% 6.3% 6.1% 6.6% 6.2% 6.7%
6 3.9% 10.2% 5.7% 4.9% 5.0% 4.9% 4.8% 5.3%
7 2.9% 8.1% 4.3% 4.4% 4.0% 4.1% 4.3%
8 2.0% 5.8% 3.4% 3.3% 2.9% 3.5%
9 1.5% 4.0% 2.8% 2.7% 2.8%
10 1.1% 3.2% 2.3% 2.6%
11 0.8% 2.6% 2.2%
12 0.5% 2.5%

Unassigned 17.5% 11.4% 19.5% 22.8% 23.3% 23.6% 20.9% 20.6% 20.3% 20.1% 16.7% 15.3% 11.6%

Table	  B3.	  	  Main	  Round	  Assignments	  in	  Coordinated	  Mechanism,	  by	  Length	  of	  Rank	  Order	  List
Length	  of	  Rank	  Order	  List

Notes:	  This	  table	  reports	  choices	  assigned	  after	  the	  main	  round	  in	  coordinated	  mechanism	  in	  2003-‐04.



All 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Number	  of	  Students 57,658 4,072 2,641 3,187 3,545 3,782 3,776 3,497 3,499 3,642 5,113 8,340 12,564
Average	  Rank	  of	  Assignment 3.00 1.00 1.49 1.86 2.21 2.53 2.76 3.04 3.20 3.35 3.49 3.60 3.93

Accept	  Main	  Round	  Assignment 92.7% 91.2% 88.5% 88.4% 90.2% 91.2% 92.3% 91.9% 93.0% 93.6% 94.5% 94.6% 94.3%
Enroll	  in	  Private	  School 2.5% 6.9% 7.4% 6.1% 4.5% 2.9% 2.4% 2.1% 1.9% 1.2% 1.0% 0.7% 1.0%
Remain	  in	  Current	  School 1.2% 1.2% 2.0% 2.3% 1.9% 2.1% 1.4% 1.8% 1.4% 1.2% 0.9% 0.7% 0.6%
Attend	  Specialized	  or	  Alternative	  School 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.1% 0.1% 0.2% 0.1% 0.0%
Participate	  in	  Supplementary	  Round 0.3% 0.1% 0.2% 0.2% 0.4% 0.5% 0.6% 0.3% 0.6% 0.3% 0.3% 0.2% 0.3%

Number	  of	  Students 12,249 525 641 941 1,077 1,170 1,000 909 891 916 1,022 1,509 1,648
Participate	  in	  Supplementary	  Round 52.6% 26.1% 44.8% 54.0% 54.1% 56.2% 55.6% 55.7% 52.7% 46.5% 43.5% 49.6% 68.2%
Enroll	  at	  Supplementary	  Round	  Assignment 72.9% 73.0% 85.0% 76.0% 75.5% 77.8% 73.0% 75.9% 74.5% 68.8% 71.7% 69.5% 66.3%
Enroll	  in	  Private	  School 2.8% 6.7% 6.1% 4.7% 3.5% 3.8% 2.2% 1.7% 1.6% 1.9% 2.2% 1.4% 1.9%
Remain	  in	  Current	  School 3.2% 6.7% 6.2% 5.6% 5.3% 4.4% 3.2% 3.3% 2.5% 2.0% 1.5% 0.9% 1.8%
Attend	  Specialized	  or	  Alternative	  School 0.3% 0.8% 0.5% 0.6% 0.2% 0.1% 0.3% 0.3% 0.3% 0.1% 0.2% 0.5% 0.1%

Table	  B4.	  Assignment	  and	  Enrollment	  Decisions	  of	  Students	  in	  Coordinated	  Mechanism	  by	  Rank	  Order	  List	  Length

A.	  Students	  Offered	  Assignment	  in	  Main	  Round

B.	  Students	  Unassigned	  after	  Main	  Round

Notes:	  	  Assignment	  and	  enrollment	  decisions	  of	  students	  in	  the	  demand	  estimation	  sample	  under	  the	  coordinated	  mechanism.	  Panel	  A	  restricts	  to	  students	  that	  received	  an	  assignment	  in	  an	  NYC	  Public	  School	  in	  the	  Main	  Round.	  Panel	  B	  restricts	  to	  students	  that	  
did	  not	  receive	  an	  assignment	  in	  the	  Main	  Round.

Length	  of	  Rank	  Order	  List



C Appendix: Data (Not for Publication)

The data for this study comes from the NYC Department of Education (DOE), the 2000 US Cen-
sus, ArcGIS Business Analyst toolbox and GFTS NYC subway data from the NYC Metropolitan
Transit Authority. These sources provide us with data on students, schools, the rank order lists
submitted by the students, the assignment of students to schools or the distance between the
students and schools on the road network or the subway system. Students and programs are
uniquely identified by a number that can be used to populate fields and merge across DOE
datasets. We geocode student and school addresses to merge with geo-spatial data.

We also use three samples of students in our analysis: one sample to estimate demand and
the other two to infer the welfare effects of the mechanism change. The welfare samples consists
of public middle school students who matriculate into NYC Public High Schools in the academic
years 2003-04 and 2004-05. The demand sample consists of public middle school students who
participated in the Main round of the mechanism in 2003-04. The demand sample and the welfare
sample from 2003-04 are not nested because students participating in the mechanism may choose
to enroll in a school outside the NYC Public School system, whereas others may be assigned to
a public school outside the main assignment process.

C.1 Students

Assignment and Rank Data

Data on the assignment system come from the DOE’s enrollment office. The files indicate the
final assignment of all students in both years in our analysis. We use these assignments as
the basis of our baseline welfare calculations. In addition, the assignment system also provides
separate files that detail the rank orders, applications, or processes through which a student is
assigned to a given school.

We use the records from the Main round in the new mechanism to obtain the rank order
lists submitted by students and the assignment proposed by the mechanism. A total of 87,355
students participated in the main round.

For the old mechanism, the assignment system provides student choice and decision files for
the Main round. The former contains the ranked applications submitted by the students and the
latter provides the decisions of the schools to accept/reject/waitlist the student and the students
response to these offers, if any. A total of 84,272 students participated in the Main round.

The old assignment system also contains several files documenting the supplementary variable
assignment process (VAS) round.

Assignment Rounds and Offers in the Old Mechanism

The files in the old mechanism do not directly contain information on how students were assigned
to their programs. However, we are able to determine whether a student applied to a particular
program/school in the Main process or the supplementary VAS process. We first append fields
indicating whether a student applied to her assigned program in the main process. We also
append a field indicating whether a student applied to her assigned school in the supplementary
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VAS process. It turns out that no final assignment appears in both the main and the VAS files.
We therefore categorize the former assignments as main-round assignments and the latter as
VAS assignments. We assume that all other assignments are through the Administrative round.
Based on conversations with DOE officials, students were typically assigned to the school closest
to home that had open seats. Our understanding is that most of the students who participated
in the VAS process did not have a default local school. An analysis of the geographic distribution
of our definition of students assigned administratively is consistent with this fact: many parts of
NYC have no students assigned administratively.

Finally, we also append the number of offers made to a particular student using a file with
the initial response of schools to the student application.

Assignment Rounds in the New Mechanism

We use the NYC assignment files described above to determine the process through which a
student was assigned a given school.

The assignment files in the new mechanism contain, for every student program pair that
is ranked in either the Main round or the Supplementary round, two fields indicating whether
the student is eligible for the school and if the student was assigned to that school. A final
assignment is treated as a Main round assignment if it appears as an eligible assignment in the
Main round. Assignments that are not made in the main round are treated as a supplementary
round assignment if they appear in the Supplementary round files. All other assignments are
treated as administrative assignments.

Student Characteristics

The records from the NYC Department of Education contain the street address, previous and
current grade, gender, ethnicity, and whether the student was enrolled in a public middle school.
Each student is identified by a unique number that allows us to merge these data with additional
data from the NYC DOE on a student’s scores in middle school standardized tests, Limited
English Proficiency status, and Special Education status. A separate file indicates subsidized
lunch status as of the 2004-05 enrollment. If a student is not in that file, we code the student as
not receiving a subsidized lunch.

There are several standardized tests taken by middle school students in NYC. To avoid the
concern that two different tests may not be comparable indicators of student achievement, we
identify the modal standardized tests in math and reading taken by students in our sample. These
are the May tests with codes CTB and TEM respectively. Of the students who did not take
either of these tests in May, at most 10% (<2% of the full sample) took a different standardized
test in the same subject while in middle school. We verified that the distribution and support
of the test scores are similar across the two years in our sample. Some students took the test
multiple times. The highest score obtained by a student was used in these instances.

In 2002-03, the math and reading scores are missing for 13.56% and 17.55% students from
our final sample respectively. For the 2003-04 welfare sample, scores are missing for 8.29% and
13.57% students respectively for math and reading. In the demand sample the corresponding
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fractions are 7.13% and 12.56%.

Geographic Data

We use the 2000 US Census to obtain block group family income. The addresses of students
and their distance to school were calculated using ArcGIS. Corrections to the addresses, when
necessary, were made using Google Map Tools followed by manual checks and corrections.

The final set of addresses were geocoded using ArcGIS geocoder with the address-set in the
Business Analyst toolbox (ver. 10.0). We first used an exact match to determine if a student’s
address can be geocoded precisely to a rooftop. If the results were unreliable, we coded the
student to the centroid of the zip-code. The vast majority of students were placed at the roof-
top level. The OD Cost matrix tool in the Network Analyst toolbox was used to compute the
distance by road for each student-school pair. The road network is also obtained from Business
Analyst.

Our computation of subway distances assumes that a student first walks to the closest subway
stop, then uses the subway system to travel to the subway stop closest to the school, and finally
walks from the subway to the school. The location of the subway stops is taken from the GTFS
and geodata data on the NYC Metropolitan Transit Authority website. The network analyst
toolbox is used to compute the walking distance and the GTFS data is used to compute the
distance on the subway system between every pair of subway stops.

Merging Student Records

Assignment and other DOE files are matched using the unique student identifier linking these
data. Each eighth-grade non-private middle school student in the Department of Education
records could be merged uniquely with a student in the NYC assignment records. Less than
0.45% of students with known assignments in the records of the NYC assignment system could
not be merged with a student in the DOE records. These students were not included in the
analysis.

C.2 Applicant Sample Construction

Our goal is to consider first-time applicants to the NYC public (unspecialized) high school system
who live in New York City and attend a public middle school 8th grade. Below, we described the
procedure used to construct the samples. The selection procedure is also summarized in Table
B1.

Welfare Sample

The welfare samples are constructed from the NYC Department of Education’s records of all
students enrolling in ninth grade at a high school in academic years 2003-04 and 2004-05.

Because our choice set in the demand analysis will be restricted to unspecialized, non-charter
high schools in the public school system, we do not include students who matriculated to such
schools in the welfare sample.
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Of the 92,623 eighth grade students matriculating into ninth grade at a NYC public school
in 2002-03, 11,790 (12.73%) students went to a private middle school and were dropped. An-
other 8,051 (8.69%) of students were not included in the analysis because their assignment was
unknown, or because they matriculated at either a specialized high school or a charter school.
Finally, we exclude students in schools that were closed (no assignments in the new system).

In 2003-04, about 1.3% students had also participated in the old mechanism, presumably
because these students repeated eighth grade. These students were considered a part of the
2002-03 sample and only their 2002-03 assignment into high school is considered in our analysis.
We also drop private middle school students and those not assigned to public school. These
fractions were similar to the 2002-03 numbers, at 12.21% and 8.13% respectively. We also drop
students who were assigned to new schools.

These selections into the sample leave us with 70,358 students in 2002-03 and 66,921 students
in 2003-04. Students who may have been assigned to a high school program through a process
other than the Main round are included in these samples.

Demand Sample

This sample is sourced from the NYC Assignment system’s records on the participants in the
Main round of the mechanism. As discussed in the text, we use data only from the Main round
of the mechanism because this round has the most desirable incentive properties.

We do not want to exclude students on the basis of final assignment to avoid selecting on the
choice to leave the public school system. In order to most closely match the construction of the
welfare sample, we select the demand sample only on characteristics that can be considered as
exogenous at the time of participation.

Since we focus on first-time applicants in eighth grade, we exclude 747 students who were
part of the 2002-03 files, and 5,311 students who were ninth graders. Presumably, these students
were held back in eighth or ninth grade. This leaves us with a sample of 81,297 eighth grade
students.

Of the eighth-grade participants, 9,301 or 11.44% of students were from private middle schools
and were dropped. We also excluded students designated as belonging to the top 2% of their
middle school class beause they are prioritized at education option schools, creating incentives
to misreport their preferences. These are 2.5% of the non-private eighth grade population.

A total of 216 students did not rank any public schools in our sample. After excluding these
students, a total of 69,907 students remain in the sample we will use for the demand analysis.

C.3 Programs/Schools

NYC Department of Education School Report Cards

The school characteristics were taken from the report card files provided by the NYC Depart-
ment of Education. These data provide information on a school’s enrollment statistics, racial
composition of student body, attendance rates, suspensions, teacher numbers and experience,
and Regents Math and English performance of the graduating class. A unique identifier for each
school allows these data to be merged with data from our other sources.
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There were significant differences in the file formats and field names across the years. To
keep the school characteristics constant across years, we use the data from the 2003-04 report
cards as the primary source. Except for data on the math and reading achievement, variable
descriptions were comparable across years. For these comparable variables, we used the 2002-03
data only when the 2003-04 data were not available. The coverage of the characteristics for the
sample of schools is enumerated in Table B2.

Assignment System and DOE files

Assignment data contain a list of all school programs in the public school system along with
an identifier for the associated high school. The Department of Education provided a separate
file with data on the school addresses and identifiers that allow a merge with the assignment
system database. A second identifier can be used to merge these data with other fields in the
department of education records described above.

Across the two years, the high school identifiers in the files were inconsistent for a small
number of schools in our sample. These were matched by name and address of the school. One
school moved from Brooklyn to Manhattan and was investigated to ensure that the records were
appropriately matched.

Program Characteristics

Program characteristics are taken from the DOE’s High School Directory, which is made available
to students before the application process. Reliable data on program types was not available
in 2002-03. For that year, the program types were imputed from the 2003-04 program types if
the program was present in both years. Otherwise, the program was categorized as a general
program.

There were a very large number of program types. These were aggregated into fewer broad
categories. The items in the list below are the aggregated categories that include all of the
subcategories as described by the data.

1. Arts: Dance, Instrument Performance, Musical Theater, Performing and Visual, Perform-
ing Arts, Theater, Theater Tech, Visual Arts, Vocal Performance.

2. Humanities/Interdisciplinary: Education, Humanities/Interdisciplinary.

3. Business/Accounting: Accounting, Business, Business Law, Computer Business, Finance,
International Business, Marketing, Travel Business.

4. Math/Science: Engineering, Engineering – Aerospace, Engineering – Electrical, Environ-
mental, Math and Science, Science and Math.

5. Career: Architecture, Computer Tech, Computerized Mech, Cosmetology, Journalism, Vet-
erinary, Vision Care Technology.

6. Vocational: Auto, Aviation, Clerical, Construction, Electrical Construction, Health, Heat-
ing, Hospitality, Plumbing, Transportation.
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7. Government/law: Law, Law Enforcement, Law and Social Justice, Public Service.

8. Other: Communication, Expeditionary, Preservation, Sports.

9. Zoned

10. General: General, Unknown.

Finally, some programs adopt a language of instruction other than English. We categorized
the languages into Spanish, English, Asian Languages, and Other.

C.4 School Sample Construction

We consider the assignment of eighth grade students in NYC public middle schools into public
high schools that are not charters, specialized or parochial. Our analysis uses two school sample,
one for each year in our analysis.

To construct these samples, we started with the set of schools and programs in the assignment
records. For the analysis of rank data, we added the set of school programs that were ranked by
any student in our demand sample. This initial set consists of 743 (301) programs (schools) in
2002-03 and 677 (293) programs (schools) in 2003-04.

In 2003-04, this list contained 62 parochial school programs. We verified that each of the 130
students matriculating to these school programs were private middle-schoolers. These schools
were dropped from the analysis because private middle-schoolers are not in the population of
interest. Subsequently, we dropped all charter and specialized high school programs and other
school programs that do not have assignments and were not ranked by any student in our sample.

A total of 9 continuing student programs accepted students only from their associated mid-
dle school. Since these programs cannot be chosen by students who were not in that school in
eighth grade, we combine these programs with a generic program (e.g., unscreened, English, gen-
eral/humanities/math). Rank order lists for students who ranked both the continuing students’
only program and the associated program were modified as described below.

Finally, we dropped new and closed schools from the analysis. Closed schools were ones that
admitted students in 2002-03, but not in 2003-04. The set of new schools was collected from
a separate DOE directory of new schools. These schools were not well advertised and very few
students ranked them, making calculations with those schools unreliable.

The number of schools and programs at each stage of our selection procedure is also summa-
rized in Table B2.

C.5 Program Capacities

Program capacities are not provided separately in the data files. We have estimated program
capacities from the actual match files and students’ final assignments. The capacity of each
program is initially set to zero. If a student in our demand sample is assigned a program at the
end of the assignment process, the capacity of the program is increased by one. Otherwise, if
the student is assigned a program in the Main round, the capacity of the program is increased

13



by one. Finally, if a student is not assigned in the Main round and is assigned a program in the
supplementary round, the capacity of the program is increased by one.

Education Option programs are divided into six buckets: High Select, High Random, Middle
Select, Middle Random, Low Select and Low Random. The bucket capacities are calculated as
above by taking into account the category of the assigned student. For example, if a student of
High category is assigned an Education Option program, then the capacity of a High bucket is
increased by one. If the current capacity of the High Select bucket is less than or equal to that of
High Random, then the capacity of the High Select bucket is increased, otherwise the capacity
of the High Random bucket is increased.

C.6 Program Priorities

The type of a program determines how students are priority-ordered for the program. The
data contains a list of all programs with program-specific information, including type, building
number, street address, etc. When students have the same priority, the tie is broken randomly.
The random numbers are generated by computer during our simulations.

The assignment data contains the following fields that determine a student’s priority order at
programs. Priority group is a number assigned by the NYC Department of Education depending
on students’ home addresses and location of programs, etc. High school rank is a number
assigned by each program. This may reflect an student’s ranking among all applicants to an
Education Option program, or whether a student attended the information session of an limited
unscreened program, etc. These fields are provided for every student at every program that
the student ranked. Students applying to Educational Option programs are placed into one
of three categories based on their score on the 7th grade reading test: top 16 percent (high),
middle 68 percent (middle), and bottom 16 percent (low). Student categories are included in the
assignment data.

Unscreened programs order students based on their random numbers only. Limited un-
screened and formerly zoned programs order students first by priority group, and then by random
number within the priority group. Screened programs order students by priority group, then by
high school rank. Each Education Option program orders all applicants for each of six buckets,
High Select, High Random, Middle Select, Middle Random, Low Select and Low Random. A
high bucket orders high category students first, then middle category students, then low category
students. A middle bucket orders middle category students first, then high category students,
then low category students. A low bucket orders low category students first, then high category
students, then middle category students. A select bucket orders students within each category by
priority order, then by high school rank. A random bucket orders students within each category
by priority order.

C.7 Miscellaneous Issues

Modifications to the rank order list

1. Some students ranked a program that were either charter schools or specialized high schools
in the Main round. These programs are not in the sample of schools we consider and were
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likely ranked by the students in error. In such cases, programs were removed from the rank
order lists and rank orders lists were made contiguous where all programs ranked below a
program not in the sample were moved up in the rank order lists. These programs were
observed a total of 795 times in the data. Thirty students ranked only charter or specialized
programs.

2. The rank order lists of students who ranked continuing student program were modified as
follows: First, the lists of all students who ranked only the continuing student program
were modified so that the student ranked the associated generic program instead. When
students ranked both the generic program and the associated continuing student program,
the list was modified so that only the associated program was ranked, and at the highest of
the two ranked positions. All programs ranked at positions below the lower ranked of the
two programs were moved up by one. A total of 46 students ranked both the continuing
program and the generic program we mapped the continuing program to. In 17 cases, these
ranks were not consecutive.
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Uncoordinated
2002-‐2003 2003-‐2004 2004-‐2005 2003-‐2004 2004-‐2005

(1) (2) (3) (3) (4)
Number	  in	  the	  NYC	  DOE	  student	  file 100,669 97,569 96,327
Number	  of	  students	  in	  the	  rank	  data 87,355 91,290
Excluding	  students	  in	  both	  2002-‐03	  and	  2003-‐04	  files	  from	  2003-‐04 96,275 86,608
Excluding	  ninth	  grade	  students 92,623 89,062 90,250 81,297 86,514
Excluding	  private	  middle	  school	  students 80,833 78,183 80,093 71,996 78,439
Excluding	  students	  with	  addresses	  outside	  the	  five	  boroughs 80,725 78,089 79,977 71,916 78,327
Total	  number	  of	  students	  with	  known	  assignments	  to	  sample	  schools 75,515 73,989 75,049
Excluding	  students	  attending	  specialized	  high	  schools 72,725 70,992 71,861
Excluding	  students	  attending	  charter	  schools 72,681 70,886 71,749
Excluding	  students	  in	  closed	  and	  new	  new	  schools 70,358 66,921 69,013
Excluding	  top	  2%	  students 70,123 76,753
Excluding	  students	  that	  did	  not	  rank	  any	  sample	  schools 69,907 76,569

Table	  C1.	  Student	  Sample	  Selection
Mechanism	  Comparison Demand	  Analysis

Coordinated Coordinated

Notes:	  Uncoordinated	  mechanism	  refers	  to	  2002-‐03	  mechanism	  and	  coordinated	  mechanism	  refers	  to	  the	  mechanism	  based	  on	  deferred	  acceptance.	  A	  student	  has	  invalid	  census	  information	  if	  address	  is	  missing,	  
cannot	  be	  geocoded	  or	  places	  the	  student	  outside	  of	  New	  	  York	  City.	  A	  distance	  observation	  is	  invalid	  if	  it	  is	  missing	  or	  is	  greater	  than	  65	  miles.



Programs Schools Programs Schools Programs Schools
(1) (2) (3) (4) (5) (6)

Programs	  where	  NYC	  public	  school	  students	  assigned 743 301 669 293 658 322
Adding	  additional	  programs	  ranked	  by	  students 677 294 764 338
Excluding	  parochial	  schools 681 239 677 294 752 331
Excluding	  specialized	  schools 669 232 665 287 750 329
Excluding	  charter	  schools 667 230 663 285 702 315
Excluding	  programs	  with	  no	  assignments	  or	  ranking 637 225 648 284 691 313
Combining	  continuing	  education	  programs 637 225 639 284 691 313
Excluding	  closed	  schools 612 215 639 284 691 313
Excluding	  schools	  opened	  after	  HS	  directory	  printed* 612 215 558 235 661 283
Programs/schools	  ranked	  by	  students	  in	  sample 497 234 660 283

Table	  C2.	  Construction	  of	  School	  Sample
Uncoordinated

Notes:	  13	  continuining	  student	  programs	  were	  merged	  with	  a	  generic	  program	  at	  host	  school.	  	  Parochial	  schools	  in	  2002-‐03	  only	  have	  private	  middle	  school	  students	  assigned	  to	  them	  and	  are	  not	  ranked	  by	  students	  in	  
the	  demand	  sample.	  	  *A	  total	  20	  schools	  and	  23	  programs	  opened	  before	  HS	  directory	  printed	  are	  included	  in	  2003-‐04.

2002-‐2003
Coordinated

2003-‐2004 2004-‐2005



Uncoordinated Coordinated Both	  
2002-‐03 2003-‐04 Years

(1) (2) (3)
Total	  number	  of	  schools	  in	  the	  sample 215 234 215
9th	  grade	  enrollment 196 199 189
Race 196 199 189
Attendance	  Rate 196 199 189
Percent	  Free	  Lunch 196 198 189
Percent	  of	  teachers	  less	  than	  2	  years	  experience 219 223 212
High	  Math	  Achievement 198 200 191
High	  English	  Achievement 180 177 173
Percent	  Attending	  College 171 167 165

Table	  C3.	  Coverage	  of	  School	  Characteristics

Notes:	  Table	  reports	  the	  number	  of	  schools	  with	  the	  characteristics	  from	  New	  York	  State	  Report	  cards.


