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ABSTRACT
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frame- work allows for feedback effects on the temperature dynamics. We are able to match 
estimates of future temperature distributions provided in the fifth assessment report of the IPCC 
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the question of how much the distinction between level and growth rate impact matters. The 
social cost of carbon is similar for frameworks with level or growth rate impact if the potential 
damages of global warming are moderate. On the other hand, they are more than twice as large 
for a growth rate impact if damages are presumably severe. We also study the effect of varying 
risk aversion and elasticity of intertemporal substitution on our results. If damages are moderate 
for high temperatures, risk aversion only matters when climate change has a level impact on 
output, but the effects are relatively small. By contrast, the elasticity of intertemporal substitution 
has a significant effect for both level and growth rate impact. If damages are potentially severe 
for high temperatures, then the results also become sensitive to risk aversion for both damage 
specifications.
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1 Introduction

Our paper proposes a stochastic optimization-based general equilibrium model for the optimal

abatement policy and optimal consumption. In contrast to most of the literature, we allow

for random evolutions of the key variables such as CO2 concentration, global temperature and

world GDP. We determine the optimal abatement policy and study this policy across different

future scenarios for several model specifications. We provide detailed calibrations where we

simultaneously match two decisive climate-sensitivity measures (TCR, ECS), which play an

important role in the report of the IPCC (2014).1 A unique feature of our paper is that we

analyze the implications of alternative assumptions about the impact of climate change on output

if there are potentially climate feedback loops. We compare frameworks where climate change

has either a level or growth rate impact on output and show that significant differences arise

when key variables are assumed to be stochastic and damages are severe for high temperatures

as in Weitzman (2012). In particular, the differences are amplified by climate feedback loops

leading to right-skewed temperature distributions. In contrast to the existing literature, we can

thus identify states where the difference between growth rate and level impact matters the most.

We also document that the size of the social cost of carbon (SCC) is heavily driven by the

assumptions about the damage specification. If climate damages are severe for high tempera-

tures, a growth rate impact leads to significantly higher SCC than a level impact and induces a

higher variation in the optimal emissions, abatement, and SCC. On the other hand, if climate

damages are moderate as in Nordhaus and Sztorc (2013), median results over the next 100 years

are similar for a level and growth rate impact. We also complement the results in Crost and

Traeger (2014), Jensen and Traeger (2014), and Ackerman et al. (2013), among others, who find

that risk aversion has only a second-order effect in their models. By contrast, we show that

risk aversion significantly matters if climate damages are severe and the temperature dynamics

involve the above-described feedback loops.

Our novel approach to include stochastic feedback loops allows us to match moments beyond

the first and second moment of the temperature dynamics. This gives us the opportunity to

study the effects of fat-tailed and right-skewed temperature distributions and to capture some

of the inherent uncertainty of the problem.2 One can think of the feedback loops as a very

tractable modeling alternative to tipping points that avoids additional state variables, but can

still generate domino effects in the climate system and thus in the damage distribution.3

1Transient climate response (TCR) measures the total increase in average global temperature at the date of
carbon dioxide doubling. Equilibrium climate sensitivity (ECS) refers to the change in global temperature that
would result from a sustained doubling of the atmospheric carbon dioxide concentration after the climate system
will have found its new equilibrium.

2See, e.g., the remarks of Nordhaus (2008) on the uncertainty of the problem.
3Formally, the feedback loops in this paper are captured by a so-called self-exciting process (see Section 2.2

for details). By contrast, tipping points are typically modeled using Markov chains. See, e.g., Cai and Lontzek
(2018), Lemoine and Traeger (2016), Cai et al. (2016), and van der Ploeg and de Zeeuw (2018).

1



There are several important papers on integrated assessment models that are related to our

analysis: First, the DICE model (Dynamic Integrated Model of Climate and the Economy)

is a widely used framework to study optimal carbon abatement. It combines a Ramsey-type

model for capital allocation with deterministic dynamics of emissions, carbon dioxide and global

temperature. In contrast to our paper, the DICE approach focuses on a level impact only.

The original model is formulated in a deterministic setting, see for example Nordhaus (1992,

2008, 2017), Nordhaus and Sztorc (2013). When we refer to DICE in this article, we mean the

DICE-2013R-version that is presented in Nordhaus and Sztorc (2013).

Kelly and Kolstad (1999) and Kelly and Tan (2015) extend DICE and allow the decision maker

to learn about the unknown relation between greenhouse gas emissions and temperature. In

frameworks with recursive utility, Crost and Traeger (2014), Jensen and Traeger (2014), and

Ackerman et al. (2013) analyze versions where one component is assumed to be stochastic.

In contrast to our paper, Crost and Traeger (2014) and Jensen and Traeger (2014) do not

allow for stochastic temperature dynamics, but consider uncertainties in economic growth and

the damage function. Ackerman et al. (2013) introduce transitory uncertainty of the climate

sensitivity parameter into the DICE model. These studies indicate that risk aversion has a smaller

effect on the social cost of carbon than the elasticity of intertemporal substitution. We confirm

the earlier results for moderate climate damages and show that risk aversion can have a crucial

effect if damages are severe for high temperatures. Cai and Lontzek (2018) study a stochastic

generalization referred to as DSICE model. Their approach is computationally involved since it

is based on high-dimensional Markov chains. However, both carbon and temperature dynamics

are deterministic and the model only involves a level impact on economic growth induced by

climate change (as all variants of the DICE model).

There are also IAM frameworks not falling into the class of DICE models. Golosov et al. (2014)

use a stylized framework involving log utility, Cobb-Douglas production and full depreciation

to obtain closed-form solutions. Traeger (2015) generalizes this setting to recursive preferences

and provides a sound description of the carbon cycle and the climate system. An alternative

approach is proposed by van den Bremer and van der Ploeg (2018) who combine AK-growth

and recursive preferences to solve for the optimal fossil fuel use. These paper focus on a level

impact of climate change only, which is in contrast to our paper. Finally, there is the FUND

model which involves a detailed representation of the impacts of climate change. In contrast

to our paper the optimal actions are assumed to be deterministic and there are no disastrous

impacts of climate change, see, e.g., Tol (2002a,b).

Further related literature includes Bansal and Ochoa (2011), Dell et al. (2009, 2012) and Burke

et al. (2015) who provide empirical evidence that temperature negatively affects the growth

rate of output rather than its level (as in the DICE approach). Pindyck (2011, 2014) studies

the effect of a growth rate impact in an endowment economy. He solves a static instead of a

dynamic optimization problem and calculates the so-called willingness to pay. This is the fraction
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Economic Model
‐ Gross Domestic Product
‐ Green Technology
‐ Abatement Cost
‐ Economic Shocks

Equilibrium 
Maximize global welfare by 
choosing an optimal abatement 
policy and optimal consumption

Damage Process: 
Translate damages in the 
ecosystem in reduced 
economic growth

Abatement Policy:  
Expenditures for green 
technologies are costly, 
but reduce emissions

Climate Change Process: 
Emissions yield an increase

in global temperature

Carbon Dioxide Model
‐ Carbon Dioxide Emissions
‐ Carbon Dioxide Concentration
‐ Natural Sinks, Carbon Shocks

Climate Model
‐ Global Temperature
‐ Climate Shocks 
‐ Feedback Effects / Fat Tails

Figure 1: Building Blocks of the Model.

of consumption that is necessary to keep global warming below some target temperature, e.g.,

3◦C. However, he abstracts from carbon dioxide emissions and abatement costs. Dietz and Stern

(2015) study a stochastic version of DICE that is plagued by persistent impacts on economic

growth and involves a fat-tailed ECS. Using a Monte-Carlo approach, they provide a solution

where decisions are formed before the first period and are not revised. Moore and Diaz (2015)

study the effect of growth rates impacts in a deterministic two-region version of DICE and find

that a growth rate impact warrants stringent mitigation policy. Finally, similar as in our paper,

Pindyck (2012) studies the difference between level and growth rate effect, but in the stylized

setting of Pindyck (2011, 2014).

As in most of the above-mentioned papers, the starting point for our economic analysis of

climate change is an integrated assessment model. Consequently, our model consists of three

components: carbon dioxide model, climate model, and economic model. Section 2 describes

these components and characterizes the equilibrium of the economy. Section 3 calibrates all

model components. Section 4 presents our benchmark results. Additional robustness checks can

be found in Section 5. Section 6 concludes. An appendix contains details on the calibration.

Additional robustness checks and a description of the solution method can be found in an online

appendix.4

2 Model Setup

This section presents the model setup and describes its equilibrium. Figure 1 depicts the three

building blocks of our framework (carbon dioxide model, climate model, and economic model).

The carbon dioxide model keeps track of the carbon dioxide concentration in the atmosphere.

4This online appendix is also available from the authors upon request.
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This concentration increases by anthropological and also non-man made carbon dioxide shocks

and it decreases since natural sinks such as oceans absorb carbon dioxide. Society can control

anthropological carbon dioxide emissions by choosing an abatement strategy which reduces the

current (business-as-usual) emissions. These efforts are costly.

The climate model measures the average world temperature and its departure from the pre-

industrial level. Empirically, there is a (noisy) positive relation between carbon dioxide concen-

tration and world temperature. Our temperature process captures this relation and allows for

possible feedback effects.

The economic model describes the dynamics of global GDP (syn. output) in a stylized production

economy. In our benchmark setting, global warming has a negative influence on economic

growth, i.e. on the drift of global GDP. Alternatively, we also study a framework with a level

impact as in DICE. Society can only indirectly mitigate this damaging effect by choosing the

above mentioned abatement strategy. This is the link of the economic model to the emission

model, which completes the circle.

Society (syn. mankind or decision maker) chooses optimal consumption and an optimal abate-

ment strategy whose costs contemporaneously reduce economic growth. The remaining part of

output must be invested so that an equilibrium materializes.

2.1 Carbon Dioxide Model

The average pre-industrial concentration of carbon dioxide in the atmosphere is denoted by MPI.

The total current concentration of carbon dioxide in the atmosphere is given by

MΣ
t = MPI +Mt, (1)

where Mt denotes the amount of atmospheric carbon dioxide that is caused by human activities,

i.e., the part of atmospheric carbon dioxide that exceeds the pre-industrial concentration. Its

dynamics are assumed to be

dMt = Mt [(gm(t)− αt)dt+ σmdWm
t ] . (2)

We refer to (2) as carbon dioxide dynamics or process. Here Wm = (Wm
t )t≥0 is a standard

Brownian motion that models unexpected shocks on the carbon dioxide concentration. These

could be the result of environmental shocks such as volcano eruptions or earthquakes, but they

can also be man-made. The volatility of these shocks σm is assumed to be constant. Atmospheric

carbon dioxide increases with an expected growth rate of gm that models the current growth path

of the carbon dioxide concentration. In other words, gm is the growth rate if society does not take

additional actions to reduce carbon dioxide emissions. We thus refer to gm as the business-as-

usual drift of the carbon dioxide process. Notice that it also involves all past policies which have
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been implemented to reduce carbon dioxide emissions. We emphasize that the phenomena of

carbon dioxide depletion can be captured by calibrating the business-as-usual drift appropriately.

Society can however pursue new policies to reduce emissions. We refer to such an additional

effort as an abatement strategy α = (αt)t≥0. In other words, the abatement policy α models how

additional actions change the expected growth of the carbon dioxide concentration, i.e. these are

abatement policies beyond business-as-usual (BAU). By definition, this differential abatement

policy has been zero in the past (αt = 0 for all t < 0). If no abatement policy is chosen and

society sticks to BAU, we also use the notation MBAU instead of M .

Our dynamics of the carbon concentration M are formulated in terms of the abatement policy

α. However, we are also interested in the resulting CO2 emissions. To back out the implied

CO2 emissions that are consistent with (2), we now consider alternative dynamics of M where

– up to environmental shocks – the change in M is expressed as the difference between CO2

emissions and the amount of carbon absorbed by natural sinks. Formally, if Et denotes the

time-t anthropological carbon dioxide emissions, then we obtain

dMt = ζeEtdt− δm(M s
t )Mtdt+MtσmdWm

t , (3)

dM s
t = δm(M s

t )Mtdt, (4)

where ζe is a factor converting emissions into concentrations.5 The variable M s
t measures the

total quantity of atmospheric carbon dioxide that has already been absorbed by natural sinks.

The function δm models the decay rate of carbon dioxide, i.e., the speed at which carbon dioxide

is absorbed from the atmosphere. We assume δm to decrease in M s, i.e., the capacity of natural

sinks declines with the quantity of carbon that has already been absorbed. This assumption is in

line with the findings of Le Quéré et al. (2007), Nabuurs et al. (2013), and Hedin (2015), among

others. Equation (3) can be considered as an ecological budget constraint : The total change in

carbon dioxide is (up to environmental shocks) the difference between anthropological emissions

and natural carbon sequestration.

The dynamics (2) and (3) can be interpreted as a system of two equations with the two unknowns

dM and E. By equating (2) and (3), we can solve for the anthropological emissions of carbon

dioxide (short: emissions) that are consistent with both dynamics:

Et =
Mt

ζe
[gm(t) + δm(M s

t )− αt] . (5)

Equation (5) provides the relation between the abatement strategy and the anthropological

emissions under that strategy. We use the notation EBAU
t for business-as-usual emissions (α =

0).

5Carbon dioxide emissions are measured in gigatons (GtCO2), whereas concentrations are measured in parts
per million (ppm).
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Finally, we define the so-called emission control rate as

εt = (EBAU − E)/EBAU = 1− Mt

ζeEBAU
t

(gm(t) + δm(M s
t )− αt). (6)

This quantity denotes the fraction of abated carbon dioxide emissions compared to BAU. Equiv-

alently, it is the percentage of carbon dioxide emissions that is prevented from entering the

atmosphere if the abatement policy α is implemented. As in the DICE model, we assume that

the emission control rate ε is between 0 and 1. The assumption ε ≥ 0 excludes strategies that

lead to emissions beyond BAU. On the other hand, the assumption ε ≤ 1 implies that emissions

cannot be negative, which might only be possible if there are major technological breakthroughs

(e.g., direct carbon removal (DCR)).

Notice that the restriction ε ≤ 1 yields to the following upper bound on the abatement policy

αt ≤ gm(t) + δm(M s
t ) (7)

i.e. technological restrictions prevent society from implementing very high abatement policies.

This constraint makes it harder to make up for opportunities that have been missed in the past.6

2.2 Climate Model

We assume that the average global increase in temperature from its pre-industrial level is given

by the dynamics

dTt =
Mtητ

MΣ
t

(
gm(t)− αt

)
dt+

Mtστ

MΣ
t

(
ρmτdWm

t +
√

1− ρ2
mτdW τ

t

)
+ θτ (Tt−)dN τ

t , (8)

which can be seen as a dynamic stochastic version of the empirically well-documented logarithmic

relationship between global warming and atmospheric carbon dioxide concentrations (see IPCC

(2014))

Tt = ητ log

(
MΣ
t

MPI

)
. (9)

Appendix A gives a motivation for the climate dynamics (8) and lists assumptions that imply

these dynamics. We refer to (8) as global warming process. The parameter ητ is a constant

relating the change in global temperature to changes in carbon dioxide concentration. The

6If it were really possible to actively remove carbon dioxide from the atmosphere (direct carbon removal), then
negative CO2 emissions would be feasible. As in the DICE model, we do not allow for negative emissions in our
benchmark calibration. However, our results are robust to this assumption. In robustness checks not reported
here, we have assumed that the emission control rate is restricted to εαt ∈ [0, 1.2], where εαt > 1 involves negative
emissions. On a time scale of 100 years, our median main results however hardly change. Only on extreme paths,
society implements more stringent abatement policies leading to negative emissions.
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Brownian motions W τ and Wm are independent. The diffusion parameter στ is assumed to be

constant. Furthermore, N τ = (N τ
t )t≥0 is a self-exciting process whose jump intensity πτ (Tt) and

jump size θτ (Tt) can depend on Tt itself. There is empirical evidence that the distribution of

future temperature changes is right-skewed (see IPCC (2014)). One reason for this is that there

might be delayed climate feedback loops triggered by increases in global temperature. This line

of argument suggests that the temperature dynamics involve a self-exciting jump process whose

jump intensity and jump size depend on the temperature itself. Intuitively, this means that an

increase in temperature makes future increases both more likely and potentially more severe.

Therefore, a self-exciting process captures the idea of feedback loops and at the same time allows

for calibrating the skewness of the distribution of future temperature changes.

2.3 Economic Model

This paper studies two approaches of how to model economic damages induced by climate

change. First, we analyze a framework that models damages as a negative effect on the growth

rate of GDP, which is suggested by empirical evidence (see, e.g., Dell et al. (2009, 2012)). Second,

we consider the standard approach which assumes that current temperatures directly affect the

level of GDP (see, e.g., Nordhaus (2008)).

2.3.1 Production

As Barro (2006, 2009), Pindyck and Wang (2013), among others, we use a version of the Harrod-

Domar model and postulate that output is given by

Yt = AKt, (10)

where K denotes the aggregate capital stock, which is the only factor of production. The

parameter A denotes its productivity that is assumed to be constant. In this specification,

K is the total stock of capital including physical, human, and firm-specific intangible capital.

Following Nordhaus (2008), among others, we assume that output can be used for investment

I, abatement expenditures X and consumption C, i.e.,

Yt = Xt + Ct + It. (11)

2.3.2 Impact of Global Warming

Growth Rate Impact In the framework with growth rate impact, capital accumulates ac-

cording to

dKt = Φ(It, Xt,Kt)dt− ζdTnt Ktdt+ σkKt(ρkmdWm
t + ρ̂kτdW τ

t + ρ̂kdW
k
t ) (12)
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where the scaling parameter ζd and the exponent n are positive parameters that relate temper-

ature increase T to loss of economic growth. W k = (W k
t )t≥0 is a third Brownian motion that

is independent of Wm, W τ and N τ . The volatility σk of the economic shocks is assumed to be

constant. Output is correlated with carbon concentration and temperature via ρkm and ρkτ .

Standard arguments then lead to the following specifications:7

ρ̂kτ =
ρkτ − ρkmρmτ√

1− ρ2
km

, ρ̂k =
√

1− ρ2
km − ρ̂2

kτ .

The adjustment function Φ(I,X,K) captures effects of depreciation and costs of installing cap-

ital and implementing an abatement policy. As in Hayashi (1982), we assume Φ(I,X,K) is

homogenous of degree one in K, i.e. Φ(I,X,K) = φ
(
I
K ,

X
K

)
K. We choose the following adjust-

ment function involving quadratic adjustment costs

φ

(
I

K
,
X

K

)
=

I

K︸︷︷︸
investments

− δk︸︷︷︸
depreciation

− 1

2
ϕ

(
I

K
+
X

K

)2

︸ ︷︷ ︸
adjustment costs

, (13)

where ϕ is a positive constant that scales the adjustment costs and δk denotes the depreciation

rate of capital.8

Following Nordhaus (1992, 2008), among others, the abatement expenditures X are assumed to

be proportional to output and convex in the emission control rate ε. More precisely, we assume

Xt = a(t)εbtYt, (14)

with b > 1 implying that the costs for the implementation of more stringent abatement policies

increase disproportionately. The time-dependent coefficient a(t) > 0 captures exogenous tech-

nological progress and is assumed to decline over time.9 We refer to a as the cost function trend.

To simplify the notation, we set κ(t, εt) = Aa(t)εbt so that

Xt = κ(t, εt)Kt.

Using relation (6), we can rewrite κ in terms of time t, carbon concentration M and abatement

policy α. Therefore, we also use the notation κ(t,Mt, αt) instead of κ(t, εt). Combining (10),

(11), (12), (13), and (14), we obtain

dYt = Yt

[
(g(t, χt)− κ(t, εt)− ζdTnt )dt+ σk(ρkmdWm

t + ρ̂kτdW τ
t + ρ̂kdW

k
t )
]
, (15)

7Formally, this is a Cholesky decomposition.
8Homogeneous adjustment costs have been widely used in the literature, see, e.g., Hayashi (1982), Jermann

(1998), Pindyck and Wang (2013), van den Bremer and van der Ploeg (2018).
9The assumptions regarding the abatement cost functions are standard in the IAM literature (e.g., DICE

model).
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where χ = C/Y is the fraction of output used for consumption. Furthermore, g(t, χ) = A(1 −
χ)− 1

2ϑ(1−χ)2− δk with ϑ = ϕA2 denotes the expected economic gross growth rate. Therefore,

the expected economic growth rate, g(t, χt) − κ(t, εt) − ζdTnt , consists of three parts that can

be interpreted as follows: (i) the expected gross growth rate g(t, χt) models the growth rate

of capital in the absence of climate change, (ii) implementing an abatement strategy α reduces

economic growth by κ(t, εt), (iii) the growth rate is negatively affected by current temperatures

via ζdT
n
t .

Level Impact The framework with level impact relies on the same assumptions regarding

adjustment and abatement costs. With a level impact, the capital stock K is given by

Kt = K̂tD(Tt),

where the dynamics of the temperature anomaly are given by (8) the dynamics of K̂ are given

by10

dK̂t = Φ(It, Xt, K̂t)dt+ σkK̂t(ρkmdWm
t + ρ̂kτdW τ

t + ρ̂kdW
k
t )

and D is sufficiently smooth damage function with D(0) = 1 and limT→∞D(T ) = 0.

2.4 Equilibrium

It is well-known that for a decision maker with CRRA utility changing the degree of relative

risk aversion has at first sight a counterintuitive effect: The abatement policy is less stringent if

risk aversion increases.11 In order to resolve this puzzle and to disentangle relative risk aversion

from elasticity of intertemporal substitution, we follow Crost and Traeger (2014), Jensen and

Traeger (2014) and Ackerman et al. (2013) and assume the decision maker’s preferences to be of

Epstein-Zin type. This allows us to analyze the effects of varying EIS and risk aversion separately.

The society’s time-t utility index V α,χ
t associated with a given abatement-consumption strategy

(α, χ) over the infinite planning horizon [0,∞) is thus recursively defined by

V α,χ
t = Et

[∫ ∞
t

f(Cs, V
α,χ
s )ds

]
, (16)

10We can interpret K̂ as capital stock before damages.
11Pindyck (2013) explains this fact as follows: For a higher level of risk aversion, the marginal utility of

consumption declines faster. However, consumption is expected to grow and consequently utility from future
consumption decreases with risk aversion. For a higher level of risk aversion society thus implements a less
stringent abatement policy leading to higher emissions and a higher global temperature.
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where C = χY denotes consumption. Following Duffie and Epstein (1992) the aggregator

function f is given by the continuous-time Epstein-Zin aggregator

f(C, V ) =


δθV

[(
C

[(1−γ)V ]
1

1−γ

)1− 1
ψ − 1

]
, ψ 6= 1

δ(1− γ)V log
(

C

[(1−γ)V ]
1

1−γ

)
, ψ = 1

(17)

with θ = 1−γ
1−1/ψ . The parameter γ > 1 measures the degree of relative risk aversion, ψ > 0 reflects

the elasticity of intertemporal substitution (EIS), and δ > 0 denotes the time-preference rate.12

For θ = 1 (or equivalently ψ = 1/γ), the preferences simplify to standard time-additive CRRA

utility with utility function u(c) = 1
1−γ c

1−γ . For θ < 1 (i.e., ψ > 1/γ) the agent prefers early

resolution of uncertainty and is eager to learn outcomes of random events before they occur. On

the other hand, if θ > 1 (i.e., ψ < 1/γ) the agent prefers late resolution of uncertainty. Notice

that although recursive utility allows to disentangle risk aversion from EIS, it does not allow to

disentangle prudence from the other two parameters as well. Following Kimball and Weil (2009)

prudence is given by γ(1 +ψ). Therefore, risk aversion and EIS affect prudence in a linear way.

We will discuss the impact of prudence in the robustness section where we vary risk aversion

and EIS separately.

The decision maker chooses an admissible abatement-consumption strategy (α, χ) in order to

maximize his utility index V α,χ
t at any point in time t ∈ [0,∞). An admissible strategy must

ensure that output, consumption, investment and abatement expenditures remain positive, i.e.,

Yt, Ct, It, X ≥ 0 for all t ≥ 0. Furthermore, the abatement policy must satisfy (7) and lead to a

positive emission control rate. The class of all admissible abatement-consumption strategies at

time t is denoted by At. The indirect utility function is given by

V (t, y,m,ms, τ) = sup
(α,χ)∈At

{V α,χ
t | Yt = y,Mt = m,M s

t = ms, Tt = τ} (18)

We solve the utility maximization problem (18) by applying the dynamic programming principle.

Details of the HJB equation and the solution method are presented in Appendix E of the online

appendix.

2.5 Social Cost of Carbon

Our model can be used to calculate the social cost of carbon (SCC). Following Nordhaus and

Sztorc (2013), Traeger (2014) and others, we define the social cost of carbon as the marginal rate

of substitution between carbon dioxide emission and GDP. Formally, the social cost of carbon

12Although empirical evidence suggests that γ > 1 is the reasonable specification for the index of relative risk
aversion, it is also possible to define aggregator functions for γ ∈ [0, 1].
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Carbon Dioxide Model
MPI Pre-industrial carbon dioxide concentration 280
M0 Initial excess carbon dioxide concentration 121
ζe Conversion factor 0.1278
σm Carbon dioxide volatility 0.0078

Climate Model
T0 Current global warming 0.9
ητ Temperature scaling parameter 2.592
στ Temperature volatility 0.1
ρmτ CO2/temperature correlation 0.04

Economic Model
Y0 Initial GDP (trillion US-$) 75.8
A Productivity 0.113
ϑ Adjustment cost parameter 0.372
σk GDP volatility 0.0162
ρkτ GDP/temperature correlation 0
ρkm GDP/CO2 correlation 0.29
ζd Damage scaling parameter 0.00026

Preferences
δ Time-preference rate 0.015
γ Relative risk aversion 10
ψ Elasticity of intertemporal Substitution 1

Table 1: Benchmark Calibration. This table summarizes the parameters of the benchmark calibra-
tion which is described in Section 3.

is given by

SCCt = − ∂Vt
∂Et

/∂Vt
∂Yt

. (19)

Intuitively, the social cost of carbon measures the increase in current GDP that is required to

compensate for economic damages caused by an marginal increase of time-t emissions. Therefore,

SCC can be interpreted as an optimal carbon tax, i.e. the tax that compensates for the negative

external effects from burning carbon. More details on how SCC is calculated can be found in

Appendix E of the online appendix.

3 Calibration

This section provides a detailed calibration of all model components. Table 1 summarizes the

calibration results and serves as our benchmark calibration. This calibration assumes a growth

rate effect of climate change. We choose the year 2015 as starting point of our model (t = 0).13

13Since DICE starts in 2010 and evolves in steps of 5 years, this assumption simplifies comparisons.
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3.1 Preferences

In order to disentangle risk aversion from elasticity of intertemporal substitution, we use recursive

preferences. In the literature, there is no consensus on how to choose γ and ψ.14 Many studies

that incorporate recursive utility in an IAM choose γ = 10 and ψ in the range between 0.5 and

1.5 (see, e.g., Ackerman et al. (2013), Crost and Traeger (2014), Jensen and Traeger (2014) and

Cai and Lontzek (2018)). We follow that literature and choose ψ = 1 as the benchmark value

for EIS. The time-preference rate is δ = 0.015, which is a standard assumption in the IAM

literature (see, e.g., the recent version of the DICE model by Nordhaus and Sztorc (2013)). In

robustness checks, we vary these parameters and study their effects on our results.

3.2 Carbon Dioxide Model

The fifth assessment report of the IPCC (2014) provides four stylized climate scenarios depending

on the future evolution of greenhouse gas emissions referred to as representative concentration

pathways (RCPs). The RCP 8.5 scenario is characterized by high CO2 emissions where the

atmospheric concentration is supposed to stabilize at a high level in the second half of the 23th

century.15 Consequently, the RCP 8.5 data is well-suited to serve as the average BAU scenario

for CO2 emissions and concentrations. Notice that all RCPs are deterministic, i.e., they can

only be used to calibrate averages. Therefore, we use historical data to estimate the randomness

of the carbon dioxide concentration.

Carbon Dioxide Dynamics To calibrate (1) and (2), we fix the pre-industrial carbon dioxide

concentration at MPI = 280 ppm, which is a common assumption in the literature. Furthermore,

in the year 2015 (t = 0) the carbon dioxide concentration was 401 ppm, which implies M0 = 121

ppm as starting value for the carbon dioxide process (2). Then we calibrate the drift gm(t) such

that the drift of the average BAU evolution (i.e., α = 0 and σm = 0 in (2)) is close to the drift

of the RCP 8.5 scenario that is marked by crosses in Graph (a) of Figure 2.16 Obviously, RCP

8.5 assumes three different regimes. For the first 40 years, the drift is virtually flat at a level

close to the historical trend. Then the drift falls to zero over the next 200 years where it remains

afterwards. This functional form of the drift rate can be captured in the following way:

gm(t) = 0.022 1{t<40} + (at2 + bt+ c) 1{40≤t≤240} (20)

14Bansal and Yaron (2004) and Vissing-Joergensen and Attanasio (2003) combine equity and consumption data
and estimate an EIS of 1.5 and a risk aversion in the range between 8 and 10. On the other hand, Hall (1988),
Campbell (1999), Vissing-Joergenen (2002) estimate an EIS well below one.

15The data is available at http://tntcat.iiasa.ac.at/RcpDb
16We have calculated the drift of the RCP 8.5 scenario by computing the log-returns of the excess carbon

dioxide concentration of two consecutive years.
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Figure 2: Calibration of the Carbon Dioxide Model. The crosses in Graph (a) depict the implied
drift of the evolution of atmospheric carbon dioxide in the RCP 8.5 scenario. The solid line is our
calibration of gm. The crosses in Graph (b) depict the evolution of atmospheric carbon dioxide in the
RCP 8.5 scenario. The solid line shows our calibration to that data. The crosses in Graph (c) depict
the emission prognosis in the RCP 8.5 scenario. The solid line shows our calibration to that data and an
extension until 2300.

where a = 3.107 · 10−7, b = −1.963 · 10−4, c = 0.0292. Graph (b) shows that, by applying

(20), our median path simulated using the calibration of gm(t) (solid line) fits the the RCP

8.5 concentration data points (crosses) very well (R2 < 99%). To determine the volatility of

carbon dioxide, we cannot apply the RCP 8.5 data which is deterministic. We thus use historical

carbon dioxide records to estimate this parameter.17 Calculating the standard deviation of the

log changes of M yields a volatility of σm = 0.0078.

Ecological Budget Constraint In a second step, we calibrate the decay rate of carbon

dioxide δm(M s
t ) such that the model-implied carbon dioxide emissions (5) match the RCP 8.5

emissions (crosses in Graph (c) of Figure 2). The main issue here is that RCP 8.5 provides con-

centration data until 2300, but emission data only until 2100. We thus perform our calibration

in two steps: First, we use both concentration and emission data until 2100 and determine the

functional form of δm. Here we fix the conversion factor at ζe = 0.1278 ppm
GtCO2

, which converts

emissions into concentrations (see, e.g., IPCC (2014) and the references therein). Then we use

this functional form and the concentration data to extrapolate the emissions until 2300.

As can be seen from Graph (b), the concentration of RCP 8.5 has an inflection point around

2100 and remains flat after the year 2240. Consequently, the emissions of RCP 8.5 must be

hump-shaped. Since these emissions level off around 2100 in the data (crosses in Graph (c)), it

17Source: Mauna Loa Observatory, Hawaii. Data available at http://co2now.org/Current-CO2/CO2-Now/.
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is reasonable to expect a turning point around that year or shortly after, although - as noted

above - RCP 8.5 is silent about emissions after the year 2100.18 This is exactly what our

extrapolation yields.

The solid line in Graph (c) depicts the fit to that data and our BAU-emission forecast until 2300.

It turns out that the following functional form of the decay rate of carbon dioxide matches the

data well:

δm(M s) = aδe
−
(
Ms−bδ
cδ

)2

where we estimate aδ = 0.0176, bδ = −27.63, cδ = 314.8 (R2 > 99%). Appendix B describes the

technical details. Notice that the presumed evolution of BAU emissions beyond 2100 is similar

to the baseline evolution in DICE. For instance, in the year 2200 DICE predicts 59GtCO2, which

is close to the estimate of 54GtCO2 in our model.

3.3 Climate Model

The calibration of the global warming process (8) is divided into two steps: First, we calibrate the

direct impact of the carbon dioxide concentration on global warming (captured by the continuous

part of the model). The drift is calibrated using historical data, whereas the estimate of the

volatility involves data on the transient climate response (TCR). In a second step, we calibrate

the jump size and jump intensity such that the model can generate the above mentioned feedback

effects. Here we use data on the equilibrium climate sensitivity (ECS).

Direct Impact: Drift and Volatility To estimate the parameter ητ in the drift of the

process, we use historical data on carbon dioxide concentration and global warming.19 Notice

that the starting point for our model of the global warming dynamics is (9). Therefore, we

estimate ητ by running a linear regression of global warming data on log-carbon dioxide data.

Put differently, we calculate

min
ητ

N∑
i=1

[
Ti − ητ log

(
MΣ
i

MPI

)]2

. (21)

Here Ti denotes the temperature above the pre-industrial level and MΣ
i denotes the carbon

dioxide concentration at time ti. Our estimation yields ητ = 2.592. The linear model performs

well with R2 > 0.8. Graph (a) of Figure 3 depicts the data and the estimate. We also use

that data in order to estimate the correlation between carbon dioxide and global warming. We

18Therefore, we can merely extrapolate the emissions from 2100 onwards. It is however obvious that concen-
tration can only flatten out if emissions eventually decrease and reach a low level where natural sinks can absorb
all emissions such that concentration does not increase any more.

19Source: United Kingdom’s national weather service. Global warming data available at
http://www.metoffice.gov.uk/.
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Figure 3: Calibration of the Climate Model. The crosses in Graph (a) depict pairs of empirical
global warming and atmospheric carbon dioxide concentration. The solid line depicts the regression curve
(21). The estimated parameters of the fitted curve is ητ = 2.592. Graph (b) shows a histogram of the
simulated transient climate response. Graph (c) depicts a histogram of the equilibrium climate sensitivity.
The histograms are based on a simulation of 1 million sample paths.

obtain a correlation parameter ρmτ = 0.04.

To calibrate the diffusion coefficient στ of (8), we use data on a measure called the transient

climate response (TCR). TCR measures the total increase in average global temperature at

the date of carbon dioxide doubling, t2× = inft{t ≥ 0 | Mt = MPI}. The data comes from

CMIP5.20 They simulate the future climate dynamics and obtain a multimodel mean (as well

as median) of about E[TCR] = 1.8◦ and a 90% confidence interval of [1.2◦C, 2.4◦C]. This points

towards an approximately symmetric distribution of TCR, which is in line with our Brownian

assumption. Further, notice that our above estimate of ητ leads to a total temperature increase

of about ητ log(2) = 1.797 at the relevant date t2× for TCR. This is also in line with the CMIP5

estimate. Therefore, we are left with finding στ , which we achieve by using the information

about the confidence interval. The 95%-quantile is 1.65 standard deviations above the mean.

This implies a standard deviation of σTCR = 0.6◦C/1.65 = 0.364◦C. We choose the volatility

parameter στ such that our model fits the distribution of TCR at the time when carbon dioxide

is supposed to double. For this purpose, we estimate the doubling time t2× via Monte Carlo

simulation: We sample 1 million uncontrolled carbon dioxide paths to determine the time of

carbon dioxide doubling. Then, we simulate 1 million global warming paths and choose the

diffusion parameter such that the simulated distribution of TCR matches the above mentioned

quantiles at the time of carbon dioxide doubling (see Graph (b) of Figure 3).21 On average,

20CMIP5 refers to Coupled Model Intercomparison Project Phase 5. See http://cmip-pcmdi.llnl.gov/cmip5/
for further information.

21Here we set the jump part equal to zero such that the results are not driven by warming feedback effects. See
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doubling occurs in 2055. As a result of the calibration, we estimate στ = 0.1 and a small

correlation of about ρmτ = 0.04.

Feedback Effects: Jumps In a second step, we calibrate the jump intensity and size using

IPCC estimates for the equilibrium climate sensitivity (ECS). ECS refers to the change in global

temperature that would result from a sustained doubling of the atmospheric carbon dioxide

concentration after the climate system will have found its new equilibrium. This process is

presumably affected by feedback effects kicking in after the temperature has increased signif-

icantly (e.g., the date related to TCR). Since the jump part in our model captures feedback

effects, we use ECS data to estimate the corresponding parameters. Unfortunately, there is

no consensus distribution for ECS because finding a new equilibrium might take hundreds of

years. Summarizing more than 20 scientific studies, the IPCC (2014) however states that ECS

is “likely” in the range of 1.5◦C to 4.5◦C with a most likely value of about 3◦C.22 Additionally,

there is a probability of 5 to 10% that doubling the carbon dioxide concentration leads to an

increase in global temperature of more than 6◦C, while its extremely unlikely (i.e., less than 5%)

that temperature increase is below 1◦C. These numbers suggest that ECS has a right-skewed

distribution which can be generated by jumps.

We assume that the climate system will find its new equilibrium 100 years after the carbon

dioxide concentration will have doubled. We choose a functional form and an appropriate

parametrization for the jump size and jump magnitude such that we can reproduce the above

mentioned mean and quantiles of ECR by running Monte Carlo simulations. Furthermore, we

perform the calibration in such a way that the constructed distribution for TCR is preserved.

The latter is achieved by allowing for very small negative jumps when the temperature increase

is still low. We thus choose the following parametrization of the climate shock intensity and

magnitude:

πτ (τ) =

(
0.95

1 + 2.8e−0.3325τ
− 0.25

)+

, θτ (τ) = −0.0029τ2 + 0.0568τ − 0.0577

Notice that we calibrate the jump intensity such that πτ (τ) = 0 for all τ ≤ 0, i.e., there are no

feedback effects if the global temperature is at or below its pre-industrial level. The simulated

ECS distribution is depicted in Graph (c) of Figure 3.

3.4 Economic Model

We calibrate the expected gross growth rate, g in (15) such that our economic model closely

matches the evolution of GDP growth in the DICE model. Additionally, we chose the abatement

also the definition of ECS in the next section.
22In the language of IPCC, the word “likely” means with a probability higher than 67%.
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Specification Calibrated with respect to Parametrization

Level Impact
(L-N) Nordhaus and Sztorc (2013) DN (T ) = 1

1+0.00266T2

(L-W) Weitzman (2012) DW (T ) = 1
1+(T/20.64)2+(T/6.081)6.754

Growth Impact
(G-N) Nordhaus and Sztorc (2013) ζNd = 0.00026, n = 1
(G-W) Weitzman (2012) ζWd = 0.000075, n = 3.25

Table 2: Damage Specifications. The table summarizes the four different damage specifications that
are studied in this paper.

cost function from DICE and derive the functional form of κ. The technical details can be

found in Appendix C. In order to analyze the impact of warming, we consider a set of possible

specifications. The standard approach in the literature assumes that warming has a direct

impact on the level of GDP via a sufficiently smooth damage function D(T ) with D(0) = 1.

Thus, GDP at time t is Yt = AK̂tD(Tt), where K̂ denotes capital before damages. There is

however empirical evidence that rather the growth rate of GDP than the level is affected by

global warming, e.g., Dell et al. (2009, 2012). To compare the effects of different damage types,

we implement our model with four different specifications for the impact of warming. Table 2

summarizes these specifications.

Level Impact The standard damage function in DICE is inverse quadratic. Nordhaus and

Sztorc (2013) use the parametrization

DN (T ) =
1

1 + 0.00266T 2
,

which we refer to as (L-N) specification. They calibrate the damage function to temperature

increases between 0◦C to 3◦C. They acknowledge that adjustments might be needed in case of

higher warming. Weitzman (2012) proposes an alternative damage function that is based on an

expert panel study involving 52 experts on climate economics. His damage function is designed

to capture tipping point effects for very high temperature increases:

DW (T ) =
1

1 + (T/20.64)2 + (T/6.081)6.754
,

which we refer to as (L-W) specification. The two damage functions are very close for tem-

peratures in the range between 0◦C and 3◦C. From 3◦C onwards, the losses start to deviate

significantly. For instance, for a temperature increase of 6◦C, Nordhaus’ damage function DN

predicts a GDP loss of 9.2% percent, while Weitzman’s specification DW generates a loss of

approximately 50% of GDP.
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Model 2015 2035 2055 2075 2095 2115 2150 2200

(G-N) GDP [trillion $] 75.8 138.9 228.9 345.4 483.7 637.1 941.8 1435.6
SCC [$/tCO2] 11.12 21.75 50.67 102.52 171.21 225.10 254.12 353.25
Abatement Expenditures [trillion $] 0.01 0.11 0.59 2.02 4.58 6.87 7.11 5.72
Emission Control Rate 0.12 0.24 0.41 0.61 0.82 0.95 1 1
Temperature rise [◦C] 0.9 1.3 1.7 2.1 2.4 2.5 2.7 3.1

(L-N) GDP [trillion $] 75.8 139.3 230.4 348.7 490.2 652.7 988.0 1558.3
SCC [$/tCO2] 10.63 24.23 58.37 116.84 183.03 221.77 254.70 376.68
Abatement Expenditures [trillion $] 0.01 0.12 0.73 2.41 4.98 6.69 6.99 6.00
Emission Control Rate 0.12 0.25 0.44 0.65 0.83 0.93 1 1
Temperature rise [◦C] 0.9 1.3 1.7 2.0 2.3 2.4 2.5 2.9

Table 3: Median Results for the Nordhaus Calibration. The table reports the median evolution
of selected variables for the growth rate (G-N) and level (L-N) impact.

Growth Rate Impact To compare the effects of level and growth rate impacts, we first

calibrate the growth rate impact such that the GDP dynamics are close to those resulting from

a Nordhaus’ level damage (L-N). In (15) we set n = 1. Furthermore, we choose the damage

parameter ζNd = 0.00026 such that the average GDP losses in the year 2100 coincide for both

specifications. Formally, using the following equation implicitly determines ζNd ,

E
[
e−ζ

N
d

∫ t
0 Tsds+σkŴ

k
t

]
= E

[
eσkŴ

k
t DN (Tt)

]
,

where Ŵ k
t = ρkmW

m
t + ρ̂kτW

τ
t + ρ̂kW

k
t and t denotes the year 2100. We refer to the resulting

specification as (G-N). Notice that this parameter is in line with the calibration of Pindyck

(2014). Similarly, we calibrate the growth rate impact (G-W) such that the GDP dynamics

are close to those resulting from a Weitzmans’ level damage (L-W). This yields n = 3.25 and

ζWd = 0.000075.

4 Main Results

This section presents our main results for the model introduced in Section 2. In particular,

we determine the optimal abatement policy, its costs, the evolution of real GDP as well as the

evolution of the carbon dioxide concentration and global average temperature changes over the

next 100 years. Unless otherwise stated, we use our benchmark calibration from Section 3 that

is summarized in Table 1.

4.1 Level vs. Growth Rate Impact for the Nordhaus Calibration

Table 3 and Figure 4 compare the evolutions of key state variables for the growth and level

damage specifications (G-N) and (L-N). Both models behave similarly until the end of this

century. This is not surprising as we calibrate the growth rate impact (G-N) such that the
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Figure 4: Results for the Nordhaus Calibration. Based on the calibration of Section 3, the graphs
depict our results for the level impact (L-N) (left column) and the growth rate impact (G-N) (right
column). Optimal paths are depicted by solid lines and BAU paths by dotted lines. Dashed lines show
5% and 95% quantiles of the optimal solution. Graphs (a) and (b) deptict the evolution of world GDP,
(c) and (d) the carbon dioxide concentration, (e) and (f) changes in global temperature, (g) and (h)
carbon dioxide emissions and the median optimal emission control rate (dash-dotted line), (i) and (j) the
social cost of carbon.
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BAU evolution of world GDP until 2100 it is close to the one in (L-N). However, there are two

main differences between these specifications. First, although the optimally controlled outputs

in models (G-N) and (L-N) are similar until 2115, they diverge significantly in later years such as

2200 where the median output is almost 9% smaller in the model with growth impact. Second,

the variation of global temperature in (G-N) is much higher than in (L-N), while the variability

of emissions and concentrations is lower.

Notice that for a level impact damages are directly related to the current temperature, whereas

for a growth rate impact damages depend on the whole temperature path so that the weight

of the current temperature is much smaller and the damaging effects of high temperatures are

delayed. Therefore, the abatement policy in (L-N) is slightly more stringent on average, but

far more stringent for high temperatures. This implies a higher variability in carbon dioxide

emissions and concentrations, but a lower variability in global temperature compared to (G-N).

It also leads to a higher median output for (L-N), since more rigorous abatement policies tend

to avoid economic damages more effectively.

Our analysis confirms and extends the results in Pindyck (2012). He shows in a static model

that the willingness to pay23 for keeping global warming below a certain threshold is higher for

level damages than for growth damages, a finding that is in line with our results. However,

Pindyck (2012) also states that there are no substantial differences between the two models.

Our findings challenge this conclusion. First, output levels are significantly different in the year

2200, which is reported in Table 3. Second, the optimal emission path depends strongly on both

the current state of the climate system and the damage specification. For instance by 2095, the

95% quantile of temperature is 3.1 (2.6) ◦C in the model with growth (level) impact leading to

optimal carbon dioxide emissions of 19 (0) GtCO2. This implies that the choice of the damage

specification (growth rate or level impact) can have a significant effect, in particular for extreme

paths.

4.2 Level vs. Growth Rate Impact for the Weitzman Calibration

We now consider the specifications (L-W) and (G-W), which are described in Section 3.4. Table 4

and Figure 5 show our corresponding findings. The graphs of Figure 5 on the left-hand (right-

hand) side depict the results for the level (growth rate) impact. To avoid the potentially severe

consequences of global warming, society keeps temperature low and in a narrow confidence band,

which can be seen in Graphs (e) and (f). In turn, this leads to abatement strategies that are

more sensitive to changes in current temperature. Therefore, most of the damaging effects of

climate change can potentially be avoided resulting in steady economic growth (see Graphs (a)

and (b)). From the end of the century onwards, the BAU paths of GDP are significantly lower

23The willingness to pay is defined as the percentage of output that society is willing to sacrifice to keep the
temperatures below a specified threshold.
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Figure 5: Weitzman Damage Specification. The graphs depict our results for the level impact (L-
W) (left column) and the growth rate impact (G-W) (right column). Optimal paths are depicted by solid
lines and BAU paths by dotted lines. Dashed lines show 5% and 95% quantiles of the optimal solution.
Graphs (a) and (b) show the evolution of world GDP, (c) and (d) the carbon dioxide concentration in
the atmosphere, (e) and (f) median changes in global temperature, (g) and (h) carbon dioxide emissions
and the median optimal emission control rate (dash-dotted line), (i) and (j) the social cost of carbon.
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Model 2015 2035 2055 2075 2095 2115 2150 2200

(G-W) GDP [trillion $] 75.8 138.1 223.4 330.3 459.4 610.4 921.1 1451.1
SCC [$/tCO2] 42.86 92.55 145.93 172.82 188.20 198.44 219.77 333.00
Abatement Expenditures [trillion $] 0.14 0.99 3.06 4.59 5.37 5.63 5.58 4.89
Emission Control Rate 0.30 0.53 0.75 0.83 0.87 0.89 0.92 0.96
Temperature rise [◦C] 0.9 1.1 1.2 1.3 1.4 1.4 1.4 1.4

(L-W) GDP [trillion $] 75.8 139.2 229.4 343.4 480.6 642.0 975.3 1551.0
SCC [$/tCO2] 18.07 42.40 93.19 152.92 189.00 207.09 222.51 346.33
Abatement Expenditures [trillion $] 0.03 0.29 1.50 3.69 5.28 5.93 5.46 4.94
Emission Control Rate 0.16 0.35 0.57 0.76 0.85 0.89 0.89 0.93
Temperature rise [◦C] 0.9 1.2 1.5 1.7 1.8 1.9 2.0 2.4

Table 4: Median Results for the Weitzman Calibration. The table reports the median evolution
of selected variables for the growth rate (G-W) and level (L-W) impact.

than the optimally controlled paths.

Although in both scenarios society acts more rigorously than in the previous case, there are

quantitative differences between the level impact (L-W) and the growth rate impact (G-W) that

are also qualitatively different from our previous results on the Nordhaus calibration. For the

growth rate impact, SCC is initially 42.86 and thus more than twice as high as for the level

impact where it is 18.07. This implies more rigorous abatement activities in (G-W) than in (L-

W). Therefore, the temperature increase is significantly smaller. Surprisingly, now the growth

rate impact involves a higher SCC. This can intuitively be explained by the attitude of an agent

with recursive preferences towards changes in the drift of his endowment stream. The long-run

risk literature (see, e.g., Bansal and Yaron (2004)) documents that this type of agents is very

sensitive to persistent changes of the growth rate. Whereas in the Nordhaus calibration the

effect on the growth rate is apparently too moderate, this property has a significant influence in

the Weitzman calibration.

5 Robustness Checks

This section presents robustness checks for elasticity of intertemporal substitution, risk aversion,

and diffusion parameters. We also compare our findings to the results in the DICE model.

5.1 Preference Parameters

Optimal Abatement and SCC We first consider the effect of varying the elasticity of in-

tertemporal substitution, ψ ∈ {0.5, 1, 2}. Table 5 reports the results for the social cost of carbon

and shows a strong dependence on EIS.24 For a high level of EIS, society is willing to accept less

smooth consumption streams. Consequently, it implements a more rigorous abatement policy

24This is in line with the findings of Cai and Lontzek (2018), Crost and Traeger (2014), Jensen and Traeger
(2014) and Bansal et al. (2014).
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ψ γ

Nordhaus Calibration 1 2 5 10 15
0.5 5.58 (5.75) 5.61 (5.80) 5.72 (5.98) 5.93 (6.34) 6.16 (6.79)
1 10.80 (9.25) 10.83 (9.38) 10.94 (9.82) 11.12 (10.63) 11.29 (11.59)
2 16.16 (12.55) 16.16 (12.71) 16.13 (13.24) 16.05 (14.24) 15.90 (15.41)

Weitzman Calibration 1 2 5 10 15
0.5 10.54 (6.98) 11.81 (7.26) 16.50 (8.31) 18.24 (10.83) 21.06 (12.54)
1 18.73 (11.74) 19.69 (12.23) 24.21 (14.04) 42.86 (18.07) 72.44 (23.71)
2 24.58 (15.41) 25.08 (15.98) 26.81 (18.07) 51.14 (22.73) 89.93 (29.05)

Table 5: Sensitivity Analysis of SCC for Risk Aversion and EIS. The table shows SCC [$/tCO2]
in 2015 for different values of γ and ψ. The numbers in front of the brackets are the results for the growth
rate impact. The numbers in brackets are the results for the corresponding level impact.

raising SCC. The opposite is true for a low level of EIS. These results hold for both level and

growth rate impact regardless of the calibration of the damages.

The effect of varying the degree of relative risk aversion depends on the damage specification

and calibration. If damages are moderate for high temperatures (Nordhaus calibration), risk

aversion is negligible in a model with a growth rate impact (G-N) and slightly more pronounced

with a level impact (L-N). Nevertheless, the effects are relatively small. These results are in

line with the findings of Ackerman et al. (2013) and Crost and Traeger (2014) that risk aversion

has a much smaller effect than EIS on the optimal abatement decision and in turn on SCC.25

However, if damages are potentially severe for high temperatures (Weitzman calibration), the

results become sensitive to the choice of risk aversion for both damage specifications. Now, SCC

and optimal abatement policy increase with risk aversion.26

To summarize, abatement expenditures lead to steeper consumption streams (less consumption

today, potentially more consumption in the future) and thus the EIS has a first-order effect. On

the other hand, risk aversion or prudence become only relevant if the consequences of postponing

abatement are severe and significantly state-dependent as in (L-W) and (G-W).

Optimal Consumption and Investment For unit EIS, the optimal consumption rates are

constant. Lemma E.1 shows that for non-unit EIS the optimal consumption rate becomes

state-dependent. Table 6 summarizes the effects of varying EIS on optimal consumption and

investment, both expressed as a fraction of output.

25Crost and Traeger (2014) point out that most integrated assessment models are formulated for a CRRA
decision maker with ψ = 1/γ. Since risk aversion plays an inferior role for the social cost of carbon and the
optimal abatement policy, it is important to calibrate the entangled preference parameters to match EIS, rather
than risk aversion. Especially for deterministic models, where risk aversion is in fact irrelevant, this might lead
to significant changes in the optimal abatement policies.

26Our results also suggest that prudence, which is given by γ(1 + ψ) (see Kimball and Weil (2009)), has a
second-order effect as well. This is because prudence is affected similarly by risk aversion and EIS. If prudence
had a significant effect on our results, then varying γ should also lead to significant changes, but this is only true
when the consequences of postponing abatement are potentially disastrous.
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ψ

Nordhaus Calibration χ I/Y
0.5 [75.4%, 81.9%] (75.4%, 81.9%) [18.1%, 24.2%] (18.0%, 23.7%)
1 [75.0%, 75.0%] (75.0%, 75.0%) [24.0%, 25.0%] (23.8%, 25.0%)
2 [72.2%, 74.7%] (72.2%, 74.4%) [24.5%, 27.7%] (24.2%, 27.8%)

Weitzman Calibration χ I/Y
0.5 [75.6%, 81.6%] (75.6%, 82.0%) [17.3%, 23.9%] (18.0%, 24.2%)
1 [75.0%, 75.0%] (75.0%, 75.0%) [21.2%, 25.0%] (22.3%, 25.0%)
2 [72.2%, 75.1%] (72.2%, 74.6%) [23.3%, 27.7%] (24.1%, 27.8%)

Table 6: Sensitivity Analysis of Consumption and Investment for EIS. The table shows the
range of optimal consumption and investment (as fraction of output) for different values of ψ. The
numbers in box brackets are the results for the growth rate impact. The numbers in curved brackets are
the results for the corresponding level impact.

σk 0 0.0081 0.0162 0.0243
Nordhaus Calibration 11.10 (10.61) 11.11 (10.62) 11.12 (10.63) 11.13 (10.64)
Weitzman Calibration 42.84 (18.05) 42.85 (18.06) 42.86 (18.07) 42.86 (18.09)

στ 0 0.05 0.1 0.15
Nordhaus Calibration 10.14 (7.44) 10.41 (8.26) 11.12 (10.63) 11.75 (13.81)
Weitzman Calibration 15.93 (8,67) 19.95 (10.88) 42.86 (18.07) 69.87 (33.03)

Table 7: SCC for Different Volatility Parameters. The table compares SCC [$/tCO2] for different
volatility parameters for the four damage specifications. The results of the level specifications are in
brackets.

We find that for ψ > 1, the optimal consumption rates are smaller than for unit EIS. Addition-

ally to the more stringent abatement policy, society also installs more new capital via higher

investment rates. Therefore, the gross growth rate of output is higher for ψ > 1. This confirms

our intuition that with higher EIS, society accepts less smooth consumption streams, while the

opposite is true for ψ < 1.27

5.2 Influence of Diffusive Shocks and Feedback Effects

Diffusive Shocks Table 7 shows how SCC in the year 2015 changes if the diffusion parameters

of output and temperature, σc and στ , are varied. It turns out that the volatility σc of economic

shocks has a negligible effect on the current SCC. On the other hand, the effect of στ is significant,

since high variation in temperature amplifies the risk of ending up in a feedback loop during which

temperature increases heavily. This is because the jump intensity increases in temperature.

Therefore, society tries to avoid feedback loops by implementing a more rigorous abatement

policy. Table 7 reports SCC for the four damage specifications. It can also be seen that SCC is

more sensitive for the level impact.

27Notice that for our benchmark choice of unit EIS, Section 3.4 calibrates ϑ = 0.372 in order to match a
consumption rate of 75%. If we choose ϑ to be 0.32(0.4) for an EIS of 0.5(2), then the consumption rate is in
the range of 72%(74%) and 79%(76%), which is well in line with the historical range of 72% and 78%. More
importantly, SCC for the different choices of ϑ are almost identical.
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Abatement
Policy 2015 2035 2055 2075 2095 2115 2150 2200

Optimal GDP [trillion $] (5% quantile) 75.8 124.1 195.4 284.7 386.8 501.4 724.7 1083.6
GDP [trillion $] (median) 75.8 139.3 230.4 348.7 490.2 652.7 988.0 1558.3
GDP [trillion $] (95% quantile) 75.8 156.5 272.1 428.0 620.7 852.6 1351.0 2244.8
Temperature rise (5% quantile) [◦C] 0.9 1.0 1.3 1.6 1.8 1.9 1.9 1.8
Temperature rise (median) [◦C] 0.9 1.3 1.7 2.1 2.4 2.5 2.7 3.1
Temperature rise (95% quantile) [◦C] 0.9 1.5 2.0 2.4 2.6 2.9 3.4 4.9
Abatement Expenditures [trillion $] 0.01 0.12 0.73 2.41 4.98 6.69 6.99 6.00
Emission Control Rate 0.22 0.25 0.44 0.65 0.83 0.93 1 1

DICE GDP [trillion $] (5% quantile) 75.8 123.9 195.1 284.6 389.3 501.9 721.9 1061.4
GDP [trillion $] (median) 75.8 139.1 229.9 348.4 491.3 652.1 979.9 1536.2
GDP [trillion $] (95% quantile) 75.8 156.3 271.4 427.5 620.9 850.2 1335.9 2213.3
Temperature rise (5% quantile) [◦C] 0.9 1.0 1.2 1.4 1.4 1.2 0.9 0.6
Temperature rise (median) [◦C] 0.9 1.2 1.6 1.9 2.2 2.4 2.2 2.2
Temperature rise (95% quantile) [◦C] 0.9 1.5 2.0 2.6 3.1 3.5 4.4 6.4
Abatement Expenditures [trillion $] 0.05 0.24 0.82 2.20 4.91 8.45 7.74 6.13
Emission Control Rate 0.20 0.32 0.54 0.62 0.81 1 1 1

Table 8: Optimal vs. DICE Abatement Policy for Level Impact. The table summarizes the
simulation results obtained by running our model (L-N) with the optimal abatement policy and with the
DICE abatement policy.

Stochastic Feedback Effects We now analyze the impact of disregarding the stochastic

feedback effects, i.e., πτ (τ) = θτ (τ) = 0. To obtain an expected equilibrium climate sensitivity

of 3◦C, we now choose ητ = 4.33. Notice that this specification can match the first two mo-

ments of ECS, but it cannot generate a fat-tailed climate sensitivity. For the Nordhaus damage

specifications, SCC reduces from 11.12 (10.63) to 8.90 (4.81), where the number in brackets are

the results for the level impact (L-N). Similar, for the Weitzman specifications, SCC in the year

2015 decreases from 42.86 (18.07) to 18.97 (5.34). We thus conclude that fat-tailed distributed

climate dynamics induce a higher social cost of carbon and higher optimal abatement. The effect

is more pronounced for level impacts where a climate feedback loop has potentially disastrous

direct impacts on the economy.

5.3 Comparison with DICE

This subsection compares our benchmark results with those obtained in the DICE version of

Nordhaus and Sztorc (2013). In particular, we compare the optimal social cost of carbon to

Nordhaus’ calculations. Nordhaus estimates the social cost of carbon in 2015 to be 19.6 dollars

(expressed in 2005-dollars per ton of carbon dioxide). He uses a CRRA utility function with

γ = 1.45 implying an EIS of ψ = 1/γ. By contrast, we use recursive preferences with γ = 10 and

ψ = 1. The starting value of the social cost of carbon in our model is lower than estimated in

the latest version of DICE. In our model, however, society optimally anticipates environmental

shocks and adjusts both the optimal abatement rate and the consumption rate. Along a path

with high optimal abatement (as a response to high temperatures), the corresponding SCC
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values are significantly larger than the estimates in DICE. It is important to mention that DICE

is formulated in a purely deterministic setting. In particular the temperature dynamics are

calibrated to expected environmental outcomes, but do not take the uncertainty immanent in

the climate system into account.

To analyze these points, we run our model with the optimal abatement policy obtained from

DICE. Notice that following this policy is suboptimal in our model. The simulation results are

summarized in Table 8. It turns out that the DICE abatement policy is more stringent than the

median optimal policy. This leads to significant GDP losses, since the benefits of the DICE policy

are lower than their abatement costs. Additionally, the DICE abatement policy is insensitive

to unexpected variations in temperature, since it is determined in a deterministic model. By

contrast, the optimal abatement policy reacts to high temperatures by tightening the abatement

activities. This raises the social cost of carbon beyond the optimal value suggested by DICE.

Conversely, along paths with low abatement, society raises consumption and SCC values are

smaller. In contrast to the outcomes of following the (suboptimal) DICE policy, the variation

of optimally controlled global temperatures and in turn the variation of climate damages is

significantly smaller, while the variation of emissions is much higher.

6 Conclusion

This paper studies a flexible dynamic stochastic equilibrium model for optimal carbon abate-

ment. All key variables such as carbon concentration, global temperature and world GDP are

modeled as stochastic processes. Therefore, we can determine state-dependent optimal policies

and provide model-based confidence bands for all our results. We perform a sophisticated cal-

ibration of all three model components (carbon concentration, global temperature, economy).

In particular, we match the future distributions of transient climate response (TCR) and equi-

librium climate sensitivity (ECS) as provided in the report of the IPCC (2014).

We study both a level and growth rate impact of temperatures on output and combine these

two specifications with two alternative calibrations of the damage function. One calibration

suggests moderate effects of climate change even for high temperature as in Nordhaus and Sztorc

(2013), whereas the other calibration involves potentially severe damages as in Weitzman (2012).

Therefore, we can compare four different scenarios: growth-rate impact and moderate damages

(G-N), growth-rate impact and severe damages (G-W), level impact and moderate damages

(L-N), level impact and severe damages (L-W)). We find that depending on the specification of

the damage function the results can be very different. First, the social cost of carbon are similar

for frameworks with level or growth rate impact if the potential damages of global warming are

moderate. This changes significantly if damages can be severe. Then SCC is more than twice

as large for a growth rate impact than for a level impact. The results are qualitatively similar

for the optimal abatement policies.
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We also document the effect of varying risk aversion and elasticity of intertemporal substitution

on our results. If damages are moderate for high temperatures, risk aversion only matters when

climate change has a level impact on output. Nevertheless, the effects are relatively small. By

contrast, the elasticity of intertemporal substitution has a significant effect for both level and

growth rate impact. If however damages are potentially severe for high temperatures, the results

are sensitive to the choice of risk aversion for both impacts. Now, SCC and optimal abatement

policy increase with risk aversion.

Finally, we find that in all scenarios the optimal abatement policies are state-dependent, but the

strength of this dependence varies across scenarios. Given a Nordhaus damage calibration, the

median results for optimal abatement policies and thus optimal emissions are similar, but the

variations are higher for the level than for the growth-rate impact. In both cases, the optimal

policies are less state-dependent than for the Weitzman damage calibration where the abatement

policies are more rigorous.
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Figure 6: Equilibrium Climate Sensitivity Graph (a) shows a histogram of the simulated ECS
using the benchmark calibration. Graph (b) depicts a histogram of the ECS if we turn off the stochastic
feedback effects. The histograms are based on a simulation of 1 million sample paths.

A Global Warming Process

The starting point for our climate model is the empirically well-documented logarithmic re-

lationship between global warming and atmospheric carbon dioxide concentrations (see IPCC

(2014)). A deterministic description of this relation is (9). Applying Ito’s lemma to (9) and

using (2) implies

dTt =
Mtητ

MΣ
t

(
gm(t)− αt −

1

2

Mt

MΣ
t

σ2
m

)
dt+

Mtητ

MΣ
t

σmdWm
t . (22)

Notice that σm is empirically negligible. In Section 3.2, we use historical carbon dioxide data

and estimate σm = 0.0078. This implies
∣∣ − 1

2
Mt

MΣ
t
σ2
m

∣∣ ≤ 3 · 10−5, so that the term −1
2
Mt

MΣ
t
σ2
m is

close to zero. In the sequel, we thus drop this term.

Empirically, the relation between the temperature increase and carbon dioxide concentration

is not deterministic (as assumed in (9)), but noisy. This calls for an additional modification

wherefore we add two additional sources of randomness: First, we allow the temperature to

be driven by a Brownian shock that is not necessarily perfectly correlated with Wm and that

potentially induces more noise than the shock in (22), which is in line with empirical evidence.

The latter means that we replace the diffusion parameter σm by στ . Second, there is empirical

evidence that the distribution of future temperature changes is right-skewed (see IPCC (2014)) as

a response to delayed climate feedback loops climate feedback loops. We thus add a self-exciting

process that captures the idea of feedback loops. This is why we postulate the dynamics (8).

Figure 6 shows that the model is able to generate a right-skewed distribution of the equilib-

31



rium climate sensitivity. The histograms are based on simulations of one million sample paths.

Graph (a) depicts a histogram of the equilibrium climate sensitivity using the benchmark cal-

ibration from Section 3. Graph (b) shows the corresponding histogram for a model without

stochastic feedback effects. Our benchmark calibration yields a right-skewed distribution with a

skewness of 0.92. By contrast, the skewness of the ECS in the model without stochastic feedback

effects is approximately zero.

B Calibration of Natural Sinks

We now provide the details on how to calibrate the natural carbon dioxide sinks. We use annual

RCP 8.5 emission data denoted by {Ei}Ni=1 at times {ti}Ni=1. This data represents our BAU-

emissions. Additionally, we use RCP 8.5 concentration data {Mi}Ni=1 at the same time points.

In the first step, we solve (5) for δm and use that data to calculate a set of model-implied carbon

dioxide decay rates via

δm(M s
i ) =

ζdEi −Mngm(ti)

Mi
, i = 1, . . . , N.

Since the RCP 8.5 emission and concentration data is only available for steps of five years, we

interpolate the decay rate and the concentration between the data points via cubic splines. Then

we simulate the process M s
t applying the Euler method to (4) with one time step per year:

M s
t+1 = M s

t + δm(M s
t )Mt.

Here, we choose without loss of generality M s
0 = 0 as the starting point of the process. We

obtain pairs of annual data points {M s
t , δm(M s

t )}. It turns out that these decay rates can be

fitted well using the following functional form:

δm(M s) = aδe
−
(
Ms−bδ
cδ

)2

,

where aδ = 0.017, bδ = 11.64, cδ = 279.7. This parametrization achieves an almost perfect fit

to the data (R2 > 99%), and Graph (b) in Figure 2 shows that the model excellently replicates

the RCP 8.5 emission data.

C Calibration of the Economic Model

GDP Growth We calibrate the expected gross growth rate g in (15) such that our economic

model closely matches the evolution of GDP growth in the latest version of the DICE model.28

28Notice that the GDP growth in DICE is calibrated to historical data along with projected future growth rates
of population, production and technology. In order to simplify the comparison with DICE, we have decided to
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Figure 7: Calibration of the GDP Process. The figure depicts GDP forecasts simulated by the
DICE model (crosses) and our median path based on simulations with the estimated parameters (solid
line).

Notice that g is the expected growth rate before abatement and climate damage. Therefore,

we simulate the output in the DICE model disregarding abatement and climate damage.29 This

yields data points (t1, Ŷ1), . . . , (tN , ŶN ), which are used to extract the corresponding future GDP

growth rates of DICE. It turns out that these growth rates (before abatement and damages) can

be fitted well using the following functional form:

gDICE(t) = g0 + g1e−δgt (23)

where g0 = 0.005, g1 = 0.029, δg = 0.011, i.e., the growth rate declines at a rate of 1.1% to its

long-term steady-state level of 0.5%. Figure 7 depicts the simulated data points of the DICE

model (crosses) and the fitted values (solid line).

In a second step, we equate g with (23) and determine the unknowns.Following Pindyck and

Wang (2013), we fix the productivity at A = 0.113. To separately identify δk(t) and ϑ, we

must make an assumption about the consumption rate χ, which is an endogenous variable. The

optimal χ in DICE is pretty stable over time and close to 75%. This is also in line with historical

data. Since unit EIS is our benchmark choice, the optimal consumption rate is a constant. It

can be determined from the following quadratic equation30

δ = χ∗(A− ϑ(1− χ∗)).

Therefore, assuming that the optimal consumption rate of the society is χ∗ = 0.75 we obtain

match the future evolution of world GDP. The DICE model is however deterministic. So matching means that we
match the average evolution in our model to the DICE dynamics.

29In the terminology of our paper, this is the shadow GDP of DICE.
30See the first-order condition (29) in Appendix E of the online appendix. Notice that for unit EIS this first-

order condition does not depend on abatement or climate change. In the robustness section, we study cases where
EIS is not one.
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ϑ = 0.372 leading to

δk(t) = 0.0116− 0.029e−0.011 t.

To determine the volatility of the GDP process, we cannot use the DICE model which is de-

terministic. We thus use historical data from the website of the International Monetary Fund

starting in 1960 to estimate this parameter.31 Calculating the standard deviation of the log

returns yields a volatility of σk = 0.0161. Furthermore we obtain the following correlations with

global temperature and carbon dioxide ρkτ = 0 and ρkm = 0.29.

Abatement Costs Following Nordhaus (2008) and Nordhaus and Sztorc (2013) we assume

that abatement expenditures are proportional to the current level of GDP:

X = Yta(t)εbt (24)

for a constant b and a time dependent function a that gradually decreases over time. The de-

creasing trend in abatement expenditures reflects the widening menu of sustainable technological

alternatives implying that abatement becomes cheaper over time. We adopt the parametrization

from the DICE model and use a(t) = 0.05506 exp(−0.0148t) + 0.00043 and b = 2.8.

31Available at: https://www.imf.org/external/data.htm
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Endogenous Variables
MΣ Atmospheric CO2 concentration
M Atmospheric excess CO2 concentration
α Abatement policy
E CO2 emissions
Ms CO2 concentration stored in sinks
ε Emission control rate
T Global average temperature increase
Y Aggregate output
C Aggregate consumption
I Aggregate investment
X Abatement expenditures
K Aggregate capital stock
V Indirect utility
χ Consumption rate

Exogenous Parameters
ητ Temperature scaling parameter
ζe Conversion factor
MPI Pre-industrial CO2 concentration
δk Depreciation rate
A Productivity
ϑ Adjustment cost parameter
ζd Growth rate impact scaling parameter
n Growth rate impact exponent
σm CO2 volatility
στ Temperature volatility
σk GDP volatility
ρmτ CO2/temperature correlation
ρkm GDP/CO2 correlation
ρkτ GDP/temperature correlation
δ Time-preference rate
γ Relative risk aversion
ψ Elasticity of intertemporal Substitution
θ Preference parameter

Functions
gm(t) Expected BAU growth of excess CO2

g(t, χt) Expected economic gross growth rate
κ(t, ε) Forgone economic growth due to abatement
D(T ) Level impact damage function
f(t, V ) Epstein-Zin aggregator
δm(Ms) CO2 Decay rate
πτ (T ) Temperature jump intensity
θτ (T ) Temperature jump size
Ψ(I,X,K) Adjustment function

Table 9: Variable Overview. This table summarizes all variables, parameters and functions occurring
in the paper.
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Figure 8: Sensitivity Analysis for the Preferences. The graphs show the median paths of the
key variables for different preference specifications. Median optimal paths are depicted by solid lines and
median BAU paths by dotted lines. The benchmark scenario is depicted by black lines. Grey lines show
the DICE preference structure and light lines represent Stern discounting. Graph (a) shows the carbon
dioxide concentrations in the atmosphere, (b) median GDP growth rates, (c) median changes in global
temperature, (d) carbon dioxide emissions and the optimal emission control rates (dash-dotted lines).

D Further Robustness Checks

D.1 Comparison with Standard Preference Choices

We now compare our benchmark preference structure with two specifications that are standard

in the literature. First, we consider a time-additive CRRA utility function with a risk aversion

parameter of γ = 1.45 and time-preference rate of δ = 1.5%. This utility specification is

used as benchmark specification in DICE. Earlier versions and other models use similar CRRA

specifications.32 Second, we simulate our model using a log-utility function (ψ = γ = 1) with a

very low discount rate (δ = 0.1%). Pindyck (2013), among others, argues that optimal abatement

policies crucially depend on the time-preference rate. In general, there is a lot of debate about

this parameter in the IAM literature. This is because time-preferences put implicitly weights on

the current and future generations: A higher value puts more weight on the current generation,

whereas a lower value shifts some of this weight to future generations. A tension arises since the

current generation is not as severely affected by the climate change as the future generations,

32See, e.g., Nordhaus (2008), Pindyck (2012), Ackerman et al. (2011).
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Preferences 2015 2035 2055 2075 2095 2115 2150 2200

Benchmark 11.12 21.75 50.67 102.52 171.21 225.10 254.12 353.25
DICE 7.67 14.03 35.15 77.01 137.83 201.57 243.49 324.95
Stern 38.11 77.30 139.02 185.47 208.60 223.44 250.53 377.84

Table 10: SCC for Different Preference Specifications. The table compares SCC [$/tCO2] for
different preference specifications. The results are generated using the (G-N) damage specification. DICE
preferences are γ = 1.45, ψ = 1/γ, δ = 1.5%. Stern refers to γ = 1, ψ = 1, δ = 0.1%.

but must today decide upon an optimal abatement policy and pay for it. Of course, more

stringent actions reduce current consumption, but have far reaching consequences for future

generations who might benefit the most. We refer to the very low discount rate of δ = 0.1%

in combination with log-utility as Stern discounting since Stern (2007) suggests this preference

structure. Intuitively, with such a low rate of time-preference, real interest rates are lower and,

in turn, the social cost of carbon is higher. This also implies that society implements a very

stringent abatement policy.

Table 10 and Figure 8 summarizes our findings on how the preference structure affects our

results. With the standard DICE preference structure, both risk aversion and EIS are lower

which leads to a moderate abatement policy. The resulting evolution of median global warming

is in line with the results presented in Nordhaus and Sztorc (2013) although SCC is significantly

smaller. Stern discounting yields a very stringent abatement policy and a high social cost of

carbon. Following this policy reduces carbon dioxide emissions so that the median temperature

increase peaks by the end of this century at 1.5◦C. Additionally, climate variability is significantly

dampened (not shown in the figure).

D.2 Alternative Abatement Costs

We now study the effects of using an alternative cost function κ. Instead of the benchmark spec-

ification, we derive an abatement cost function using the prognosis for the marginal greenhouse

gas abatement costs for the year 2030 provided by McKinsey and Company (2009, 2010).

Calibration The calibration is based on a prognosis for the marginal greenhouse gas abate-

ment costs for the year 2030 provided by McKinsey and Company (2009, 2010). For that year,

they estimate that under BAU the total emissions of greenhouse gases would reach 66GtCO2e

and analyze the expected abatement expenditures. Under rather optimistic assumptions, they

report an abatement potential of 38GtCO2e at a total cost of 150 billion euros. McKinsey

supposes that for 11GtCO2e of abatement the net costs are negative because savings from

implementing energy-efficient measures – compared to the BAU scenario – exceed the initial in-

vestment costs. To avoid issues arising from negative abatement costs, we follow Ackerman and

Bueno (2011) and disregard the negative part of the marginal costs. Therefore, our calibration
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Figure 9: Calibration of the Abatement Costs. The figure depicts the marginal abatement cost
(MAC) for the reference year 2030 (solid line). The prices of the y-axis are in 2005 euros. GtCO2e stands
for gigatons of carbon dioxide equivalents. The MAC function is calibrated such that it fits the positive
part of the McKinsey data (crosses).

is more conservative than the McKinsey prognosis.

In a first step, we fit the McKinsey data using the following functional form for the marginal

abatement cost function:

MAC(q) =
c1q

c2 + c3q + c4q2
.

The variable q is the absolute quantity of greenhouse gas abatement (measured in GtCO2)

compared to the business-as-usual scenario, i.e., the difference between BAU-emissions and

controlled emissions, q = EBAU − E. As can be seen in Figure 9, our estimates of ci fit the

positive part of the marginal abatement costs well (R2 > 0.96). The coefficients are c1 = 0.00039,

c2 = 0.0016, c3 = −3.25 · 10−5, c4 = −7.27 · 10−8. Then, we transform the marginal costs MAC

into (absolute) expenditures, which in our paper are denoted by X. We thus compute the anti-

derivative X(q) of the marginal costs with respect to q and evaluate X at the available data

points q1, . . . , qn. This yields values X1, . . . , Xn.

The resulting data points (q1, X1), . . . , (qN , XN ) can now be used to determine the cost func-

tion κ(t, ε) for the year 2030. Notice that the McKinsey data maps absolute quantities of

abatement q into marginal expenditures, whereas our cost function maps emission control rates

into reductions of economic growth. Therefore, we transform absolute quantities of greenhouse

gas abatement q into emission control rates using εi = qi/E
BAU, i = 1, . . . , N , and absolute

abatement expenditures X in relative expenditures by κi = Xi/E[Y ], i = 1, . . . , N , where E[Y ]

denotes the expected GDP in 2030. We assume the functional form (24) still to hold. We cali-

brate the parameters such that (24) is close to the data points (ε1,κ1), . . . , (εN ,κN ). As a result

3
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Figure 10: Sensitivity Analysis for the Cost Function. The graphs show the median paths of
the key variables for different specifications of the cost function. Median optimal paths are depicted
by solid lines and median BAU paths by dotted lines. The benchmark scenario is depicted by black
lines. Grey lines show the results using McKinsey abatement costs. Graph (a) shows the carbon dioxide
concentrations, (b) median GDP growth rates, (c) median changes in global temperature, (d) carbon
dioxide emissions and the optimal emission control rates (dash-dotted lines).

of the calibration we obtain a = 0.035, b = 3.186 (R2 > 99%) for the year 2030. We take the

rate at which abatement becomes cheaper over time from DICE, i.e. the relative expenditures

for complete abatement (ε = 1) decline at rate of 1.48% to its long-term level of 0.043%. As a

result, we obtain a(t) = 0.0443 exp(−0.0148t) + 0.00043. Notice that the calibration based on

the McKinsey prognosis makes abatement slightly cheaper than in DICE since b is smaller.

Results for (G-N) Figure 10 depicts the median results for both cost specifications and

(G-N).33 It turns out that the results are similar. Implementing the McKinsey specification,

slightly raises the optimal abatement policy leading to lower carbon dioxide concentrations and

temperatures compared to the benchmark case. Therefore, net GDP growth is slightly higher and

SCC in the year 2015 is reduced from $11.12 to $10.05. Notice that, by the end of this century,

the optimal abatement activity becomes higher for the DICE cost function. This is because for

high emission control rates the marginal costs of the McKinsey calibration are higher than for

DICE since θ2 is higher (3.186 instead of 2.8). In turn, the marginal benefits from abatement

are lower when control rates are high.

33The results for (L-N) are similar and available from the authors upon request.
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E Solution Method

The optimization problem (18) cannot be solved explicitly.34 This appendix summarizes how

the problem can be solved numerically.

E.1 Hamilton-Jacobi-Bellman Equation

In case of a growth rate impact, the Hamilton-Jacobi-Bellman (HJB) equation reads

0 = sup
α,χ

{
Vt + y

(
g(t, χ)− ζdτn − κ(t, ε)

)
Vy +

1

2
y2σ2

kVyy +m(gm(t)− α)Vm +
1

2
m2σ2

mVmm

− δm(ms)mVms +
mητ

m+MPI

(
gm(t)− α

)
Vτ +

1

2

( στm

m+MPI

)2
Vττ +

m2

m+MPI
ρmτσmστVmτ

+ ymρkmσkσmVym + yσkρkτ
στm

m+MPI
Vyτ + πτ (τ)

[
V (t, y,m,ms, τ + θτ )− V

]
+ f(χy, V )

}
.

(25)

Subscripts of the indirect utility function V denote partial derivatives (e.g., Vt = ∂V/∂t). The

corresponding HJB equation for a level impact can be found in Section E.3. First, we establish

the following separation result:

Lemma E.1. The indirect utility function of the optimization problem (18) has the form

V (t, y,m,ms, τ) =
1

1− γ
y1−γF (t,m,ms, τ), (26)

where F solves the simplified HJB equation

0 = sup
α,χ

{
Ft +m

[
gm(t)− α+ (1− γ)σkσmρkm

]
Fm +

1

2
m2σ2

mFmm + δm(ms)mFms (27)

+
mητ

m+MPI

[
gm(t)− α+ (1− γ)ρkτσkστ

]
Fτ +

1

2

( mστ
m+MPI

)2
Fττ

+
m2

m+MPI
ρmτσmστFmτ + (1− γ)

[
g(t, χ)− ζdτ − κ(t, εα)− 1

2
γσ2

k −
δ

1− 1/ψ

]
F

+ πτ (τ)
[
F (t,m,ms, τ + θτ (τ))− F

]
+ δθχ1−1/ψF 1−1/θ

}
,

The optimal abatement strategy is given by

α∗t = κα(t,m, ·)−1

(
mFm + mητ

m+MPIFτ

(γ − 1)F

)
, (28)

34Notice that closed-form solutions are only available in rare special cases. A prominent example is the com-
bination of log-utility, a Cobb-Douglas production technology and some further debatable assumptions as in
Golosov et al. (2014). As discussed in Section 5, log-utility is too restrictive for studying the effects of preference
parameters.
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and the optimal consumption rate satisfies

δ(χ∗t )
−1/ψF−1/θ = − ∂

∂χ
g(t, χ∗t ). (29)

Proof. Substituting the conjecture into the HJB equation yields the simplified HJB equation

(27). The representations of the optimal controls are then obtained by calculating the first-order

conditions. 2

The HJB equation cannot be simplified further. Therefore, we have to determine F by solving

equation (27) numerically. First, we consider a simplified problem where the capacity of natural

sinks is assumed to be unconstrained, i.e., the decay rate of carbon dioxide is assumed to be

constant at δm = δm(0). This provisional assumption makes the state variable M s redundant

and significantly simplifies the solution algorithm. In a second step, we address the general case.

E.2 Numerical Solution Approach

Basic Idea We use a grid based solution approach to solve the non-linear PDE. We discretize

the (t,m, τ)-space using an equally spaced lattice. Its grid points are defined by

{
(tn,mi, τj) | n = 0, · · · , Nt, i = 0, · · · , Nm, j = 0, · · · , Nτ

}
,

where tn = n∆t, mi = i∆m, and τj = j∆τ for some fixed grid size parameters ∆t, ∆m, and

∆τ that denote the distances between two grid points. The numerical results are based on a

choice of Nm = 500, Nτ = 1000 and 1 time step per year. Our results hardly change if we use a

finer grid or more time steps per year. The parameters Nτ and Nm are chosen sufficiently large

such that it is very unlikely that these boundaries are reached within the given time horizon. In

the sequel, Fn,i,j denotes the approximated indirect utility function at the grid point (tn,mi, τj)

and αn,i,j refers to the corresponding optimal abatement policy. We apply an implicit finite

difference scheme.

Terminal Condition Since the optimization problem (18) has an infinite time horizon, we

must transform it into a problem with a finite horizon. Therefore, we approximate the indirect

utility function at some point tmax = Nt∆t in the distant future – we choose the year 2500 – by

the solution of a similar problem where the world is in a steady state: We assume that from time

tmax onwards the emission control rate is one, i.e., anthropological carbon dioxide emissions are

zero. To approximate the indirect utility function at the grid point (tmax,mi, τj), we simulate

sample paths for further 500 years and determine the utility index (16).
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Finite Differences Approach In this paragraph, we describe the numerical solution ap-

proach in more detail. We adapt the numerical solution approach used by Munk and Sørensen

(2010).

The numerical procedure works as follows. At any point in time, we make a conjecture for the

optimal abatement policy α∗n,i,j . A good guess is the value at the previous grid point since the

abatement strategy varies only slightly over a small time interval, i.e., we set α∗n,i,j = αn+1,i,j .

Substituting this guess into the HJB equation yields a semi-linear PDE:

0 = Ft +K1F
1− 1

θ +K2F +K3Fm +K4Fmm +K5Fτ +K6Fττ +K7Fτm + πτF (t,m, τ + θτ )

with state dependent coefficientsKi = Ki(t,m, τ). Due to the implicit approach, we approximate

the time derivative by forward finite differences. In the approximation, we use the so-called

’up-wind‘ scheme that stabilizes the finite differences approach. Therefore, the relevant finite

differences at the grid point (n, i, j) are given by

D+
mFn,i,j =

Fn,i+1,j − Fn,i,j
∆m

, D−mFn,i,j =
Fn,i,j − Fn,i−1,j

∆m
,

D+
τ Fn,i,j =

Fn,i,j+1 − Fn,i,j
∆τ

, D−τ Fn,i,j =
Fn,i,j − Fn,i,j−1

∆τ
,

D2
mmFn,i,j =

Fn,i+1,j − 2Fn,i,j + Fn,i−1,j

∆2
m

, D2
ττFn,i,j =

Fn,i,j+1 − 2Fn,i,j + Fn,i,j−1

∆2
τ

D+
t Fn,i,j =

Fn+1,i,j − Fn,i,j
∆t

, D2
τyFn,i,j =

Fn,i,j+1 − Fn,i−1,j+1 − Fn,i+1,j−1 + Fn,i−1,j−1

4∆τ∆m
.

We approximate the jump terms via linear interpolation between the closest grid points:

F (t,m, τ + θτ ) = kτ1Fn,i,j+θ̂τ1
+ kτ2Fn,i,j+θ̂τ2

,

where θ̂τ1 and θ̂τ2 denote the closest grid points of τ + θτ . The variables kτ · denote the weights

resulting from linear interpolation. Substituting these expressions into the PDE above yields

the following semi-linear equation for the grid point (tn,mi, τj)

Fn+1,i,j
1

∆t
= Fn,i,j

[
−K2 +

1

∆t
+ abs

(
K3

∆m

)
+ abs

(
K5

∆τ

)
+ 2

K4

∆2
m

+ 2
K6

∆2
τ

]
+ Fn,i−1,j

[
K−3
∆m
− K4

∆2
m

]
+ Fn,i+1,j

[
−K

+
3

∆m
− K4

∆2
m

]
+ Fn,i,j−1

[
K−5
∆τ
− K6

∆2
τ

]
+ Fn,i,j+1

[
−K

+
5

∆τ
− K6

∆2
τ

]
+ Fn,i−1,j+1

K7

4∆τ∆m
+ Fn,i+1,j−1

K7

4∆τ∆m
− Fn,i+1,j+1

K7

4∆τ∆m
− Fn,i−1,j−1

K7

4∆τ∆m

+ πτ (kτ1Fn,i,j+θ̂τ1
+ kτ2Fn,i,j+θ̂τ2

)−K1F
1− 1

θ
n,i,j .
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Therefore, for a fixed point in time each grid point is determined by a non-linear equation. This

results in a non-linear system of (Nm + 1)(Nτ + 1) equations that can be solved for the vector

Fn = (Fn,1,1, · · · , Fn,1,Nτ , Fn,2,1, · · · , Fn,2,Nτ , · · · , Fn,Nm,1, · · · , Fn,Nm,Nτ ).

Notice that in case of CRRA utility the system becomes linear. Using this solution we update

our conjecture for the optimal abatement policy at the current point in the time dimension. We

apply the first-order condition (28) and finite difference approximations of the corresponding

derivatives. In the interior of the grid, we use centered finite differences. At the boundaries, we

apply forward or backward differences. For instance, for (i, j) ∈ {2, . . . , Nm−1}×{2, . . . , Nτ−1},
we compute the new guess as

α∗n,i,j = κα(tn,mi, ·)−1

(
(mi +MPI)∆τmi(Fn,i+1,j − Fn,i−1,j) + ∆mmi(Fn,i,j+1 − Fn,i,j−1)

∆m∆τ (mi +MPI)(γ − 1)Fn,i,j

)
.

Similarly, we compute the social cost of carbon for fixed GDP Y in the grid point (i, j) ∈{
2, . . . , Nm − 1

}
×
{

2, . . . , Nτ − 1
}

as

SCCn,i,j =
Y

1− γ
Fn,i+1,j − Fn,i−1,j

∆mFn,i,j

ξe
µm + δm − α∗n,i,j

.

With this new guess for the optimal policy we perform a new iterative step. We continue the

iteration until there is no significant change of the result. Then the algorithm continues with

the previous point tn−1 in the time directions until we reach the end of the grid.

Implementation of State-Dependent Sinks The solution procedure described so far does

not deal with state dependent sinks. Since in general the constraint (7) involves M s, we first

solve for the optimal abatement policy if the weaker constraint αt ≤ gm(t)+δm is imposed. The

corresponding abatement decision is then given by

αt = min

[
gm(t) + δm, κα(t,m, ·)−1

(
mFm + mη

m+MPIFτ

(1− γ)F

)]
.

Since the modified constraint is always weaker, we obtain an upper bound J(t, y,m,ms, τ) ≥
J(t, y,m,ms, τ) for the indirect utility function of the true model where (7) is imposed. Of

course, αt is not feasible in the true model. To obtain a feasible strategy, we thus define

αt = min [gm(t) + δm(M s
t ), αt] ,

where we cut off αt if it violates (7). Notice that the strategy αt is suboptimal. Since we have

the upper bound J , we can compute an upper bound on the loss that occurs if we implement

αt instead of the (unknown) optimal strategy. If J(t, y,m,ms, τ) denotes the indirect utility

8



associated with αt, the upper bound on the welfare loss is given by

J(t, y,m,ms, τ) = J(t, y(1− L),m,ms, τ).

It turns out that this upper bound for the welfare loss is significantly below 0.1% and thus the

strategy αt is close to optimal.

Comparison with Value Function Iteration Most IAMs are formulated in discrete time.

The corresponding Bellman equation is usually solved by dynamic programming with value

function iteration (see, e.g., Crost and Traeger 2014; Traeger 2014; Cai and Lontzek 2015). The

main idea is as follows: One first discretizes the state space and chooses an appropriate func-

tional form to approximate the value function in those nodes. A typical choice are multivariate

orthogonal polynomials (e.g., Chebychev polynomials). Starting from the terminal date, one

iterates backwards through time. For every tn one pointwise maximizes the right-hand side of

the Bellman equation and determines the approximate value function in every node. Then the

algorithm goes step-by-step back in time until the end of the time grid is reached.

Since our model is formulated in continuous time, we derive and solve the corresponding Hamilton-

Jacobi-Bellman equation. This partial differential equation can be solved numerically by a grid-

based finite-differences approach as described above. Our method is thus the continues-time

analogue to discrete-time value function iteration. Notice that it is not necessary to make any

assumptions on the functional form of the value function.

E.3 Level Impact

Now, the dynamics of output dynamics are more involved than in the growth rate impact. It is

thus more convenient to use Ŷ = AK̂ as a state variable rather than Y . Its dynamics are given

by

dŶt = Ŷt

[
(g(t, χt)− κ(t, εαt ))dt+ σk(ρkmdWm

t + ρ̂kτdW τ
t + ρ̂kdW

k
t )
]

and output is thus

Y = Ŷ D(Tt).

Then, the HJB equation reads

0 = sup
α,χ

{
Vt + ŷ (g(t, χ)− κ(t, εα))Vŷ +

1

2
ŷ2σ2

kJŷŷ +m(gm(t)− α)Vm +
1

2
m2σ2

mJmm

− δm(ms)mVms + ŷmρkmσkσmVŷm +
mητ

m+MPI

(
gm(t)− α

)
Vτ +

1

2

( στm

m+MPI

)2
Vττ
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+
m2

m+MPI
ρmτσmστVmτ + ŷσkρkτ

στm

m+MPI
Vŷτ + πτ (τ)

[
V (t, ŷ,m,ms, τ + θτ (τ))− V

]
+ f(ŷD(τ)χ, V )

}
.

Lemma E.1 is then modified as follows:

Lemma E.2. The indirect utility function of the optimization problem has the form

J(t, ŷ,m,ms, τ) =
1

1− γ
ŷ1−γF (t,m,ms, τ),

where F solves the simplified HJB equation

0 = sup
α,χ

{
Ft +m

[
gm(t)− α+ (1− γ)σkσmρkm

]
Fm +

1

2
m2σ2

mFmm + δm(ms)mFms

+
mητ

m+MPI

[
gm(t)− α+ (1− γ)ρkτσkστ

]
Fτ +

1

2

( mστ
m+MPI

)2
Fττ

+
m2

m+MPI
ρmτσmστFmτ + (1− γ)

[
g(t, χ)− κ(t, εα)− 1

2
γσ2

k −
δ

1− 1/ψ

]
F

+ πτ (τ)
[
F (t,m,ms, τ + θτ (τ))− F

]
+ δθχ1−1/ψD(τ)1−1/ψF 1−1/θ

}
,

The optimal abatement strategy is given by

α∗t = κα(t,m, ·)−1

(
mFm + mη

m+MPIFτ

(γ − 1)F

)

and the optimal consumption rate satisfies

δ(χ∗t )
−1/ψF−1/θD(τ)1−1/ψ = − ∂

∂χ
g(t, χ∗t ).

10




