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Metropolitan area housing prices display significant momentum (Case and Shiller, 1989), mean

reversion (Cutler, Poterba and Summers, 1991), and excess variance relative to fundamentals

(Glaeser et al., 2014). These features were spectacularly on display during the great housing con-

vulsion that rocked the U.S., and the world, between 1996 and 2010. Yet these three phenomena

characterized house price dynamics even before this episode, and continue to do so afterward. Case

and Shiller’s seminal work on house price momentum was published in 1989, and Glaeser et al.

(2014) document mean reversion and excess volatility in house prices between 1980 and 2003. A

successful model of house price dynamics must therefore predict momentum, mean reversion, and

excess volatility in steady state, and not just during periods of extraordinary turbulence.

A large literature has tried, with incomplete success, to accomplish this task with rational

models of the housing market. Rationality is difficult to square with the strong predictability of

house prices, as rational homebuyers should foresee predictable price changes and alter their bids

quickly to arbitrage predictability away. Search models such as Head, Lloyd-Ellis and Sun (2014)

and Guren (2014), in which prices fail to be Walrasian, introduce sluggish adjustment into the

housing market, which produces momentum in price changes. Yet these models typically have more

trouble explaining either excess volatility or longer-term mean reversion. Glaeser et al. (2014) show

that longer-term mean reversion in fundamentals can explain the mean reversion observed in prices,

but the momentum in fundamentals cannot explain the momentum in prices.

In this paper, we present a simple model of housing price formation that can fit these facts in

which buyers use an approximation rather than fully fathoming the beliefs of past buyers. Valuing

a home involves forecasting future house prices, as buyers expect to resell at some future point. To

forecast prices, buyers look at past prices. This extrapolation, on its own, is perfectly rational and

reasonable. Demand to live in the city determines prices, so buyers may learn about the state of

housing demand by studying past prices. Both academics and real estate practitioners commonly

use house prices as a measure of demand for living in an area, and use past prices to forecast future

movements.

This sequential inference is difficult to do correctly. An economy of rational homebuyers will

filter demand perfectly out of the history of prices (Proposition 1). But this filtering depends on

an immense amount of coordination among the buyers. They all must use the same unintuitive

formula to map the price history to current demand. Under some parameters, this formula puts

exponentially increasing weights on past prices (Proposition 3). This bizarre formula works as long
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as all past buyers used it as well. It fails spectacularly when they did not. The cognitive difficulty

in calculating this formula, as well as its lack of robustness, leads to the consideration of alternate

inference rules.

We follow Eyster and Rabin (2010) and assume that individuals are imperfect at inferring the

belief processes of others. Following their terminology, homebuyers are “naive,” meaning that while

they rationally calculate the correct price given their beliefs about demand and demand growth,

they do no rationally infer how past prices were formed. They neglect that past buyers, like

themselves, also used prices to update their beliefs. Instead, naive buyers simply think that past

prices provide direct estimates of housing demand. Our inference rule is also an application of

the cognitive hierarchy model of Camerer, Ho and Chong (2004); naive homebuyers are “level-1

thinkers.” Eyster, Rabin and Vayanos (2013) model similarly naive investors in financial markets.

In their case, traders ignore the information implied by current prices, and in our case, traders use

an approximation that leads to a misunderstanding of past prices.1

One interpretation of naive inference is that buyers just make a mistake, but our preferred

interpretation is that they are making a convenient approximation. Buyers know that on average,

prices equal fundamentals divided by the interest rate. Naive buyers apply this approximation

to compute demand from past prices. The approximation is accurate for deducing the general

level of demand from house prices, but causes errors when used sequentially by buyers. As in

Gabaix (2014)’s sparse reasoning theory, buyers err by using an approximation well-suited to one

environment in a different setting.

This approximation seems plausible to us, especially since like many housing economists, we

have been guilty of it ourselves. Somewhat surprisingly, it radically shifts the model’s predicted

house price dynamics, and generates extrapolation, as in Barberis et al. (2013). Naive homebuyers

infer the path of fundamentals from past price changes. If housing prices grew by five percent

annually over a five year period, they infer that this change represents the underlying growth rate

in fundamentals. The mistake is that this five year growth also reflects changes in beliefs about

fundamentals, which means that the actual level of demand is much smaller. As a result, a positive

demand shock leads to a wave of sequential upward revisions in beliefs, causing momentum in prices

and eventual overshooting. During a boom, naive homebuyers overestimate housing demand, and

1Adam, Beutel and Marcet (2014) study stock price dynamics when traders have extrapolative expectations of
future stock prices. These extrapolative expectations are similar to those that result from naive inference, but they
are motivated in a different way.
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during a bust, they underestimate it.

We incorporate naive inference into a continuous time model of house prices. In this model,

growth rates mean revert and the current growth rate is not directly observable. Importantly, while

individuals observe their own level of demand, they do not observe the current level of market

demand directly and must also infer that through transaction prices. We demonstrate analytically

that if buyers only have limited access to past transactions (two periods) then a sinusoidal relation-

ship between price changes results (Proposition 5). Prices load positively on the most recent lag,

as naive buyers infer the level of demand from this lag, and negatively on the second lag, as a lower

second lag signals a higher growth rate. Precisely this time series relationship leads to short-term

momentum and long-term mean reversion (Lemma 4).

We then calibrate the model to see if the quantitative predictions match the data. Many of

our parameters come from existing literature, and in some cases, we estimate parameters ourselves.

When buyers are all rational, even a strong persistence of demand growth rates generates little

positive momentum in housing price changes. With naive homebuyers, the model closely matches

the empirical value of one- and two-period auto-correlations in housing prices. At lower frequencies,

our model also matches mean reversion when buyers are naive, but fails if buyers are rational. The

naive model generates over-shooting in response to an impulse response, and variance in excess of

fundamentals, especially over longer time periods. We conduct sensitivity analysis to understand

which parameter values are needed to generate these results. Growth rate persistence is most

important, and the necessary value can be calibrated from data on metropolitan area income and

rents.

We ask whether the naive inference can explain the patterns in home buyer beliefs documented

by Case, Shiller and Thompson (2012). Homeowners appear to forecast significant increases in

market values after recent price growth. This type of extrapolation is at odds with full rationality,

as an economy of rational homeowners should realize that demand shocks are fully reflected in house

prices almost immediately. Naive buyers, in contrast, do extrapolate, as they fail to understand the

evolving beliefs of future buyers. Significantly, this failure leads naive buyers to under -extrapolate

future price increases from past ones, a result that Case, Shiller and Thompson (2012) document.

Our simulations match the quantitative extent of extrapolation that appears in survey data.

We find that reasonable parameter estimates yield predictions about momentum, mean reversion

and volatility of prices that match the data reasonably well. The model also shows how these
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predictions change as we change different parameter values. One of the more interesting findings is

that the bubble-like features of markets disappear when information is either too good or too bad.

If buyers have highly accurate direct signals about the state of demand, then momentum, mean

reversion and excess volatility disappear. But these features also disappear if buyers have access to

relatively limited data on the number of past housing transactions. The most extreme fluctuations

occur when buyers have relatively good data about past prices, but limited data on the underlying

fundamentals.

Our approach builds on a number of non-rational theories of momentum and mean reversion in

housing, such as Piazzesi and Schneider (2009). Their work follows a long established “noise trader”

tradition in finance of perturbing rational models by assuming irrationality for a small number of

agents and then examining how those small number of agents shape prices (De Long et al., 1990).

Barberis et al. (2013), for example, continue this tradition by examining the impact of modest

numbers of extrapolators in formal asset markets. Hong and Stein (1999) present a model in which

momentum caused by inattentive investors leads to mean reversion resulting from arbitrageurs.

Yet we think that it is easier to understand housing markets as being driven by small irra-

tionality from the many rather than major irrationality from the few. It seems incorrect to view

housing markets in 2004-2006 as being dominated by a small number of highly irrational investors.

Millions of Americans bought homes during that time period. Polls of homebuyers during booms

(Case, Shiller and Thompson, 2012) suggest that beliefs about perpetually high rates of future price

appreciation were quite widespread. Furthermore, arbitrage by outside investors is notoriously dif-

ficult in the housing market (Glaeser and Gyourko, 2009), limiting the applicability of standard

finance models to this context.

A voluminous literature in finance has argued that movements in discount rates can explain the

excess volatility of asset prices relative to fundamentals. This literature is surveyed by Cochrane

(2011). Discount rate variation provides a fully rational explanation of why high price-dividend

ratios predict low returns.2 This paper explains how homeowners may consistently overestimate

returns when prices are high and underestimate them when prices are low. Consistent errors seem

2In our model, housing prices are driven by beliefs about fundamentals, rather than an independent (near) rational
bubble. We made this choice because with endogenous supply, rational bubbles predict a positive probability of
extreme long-run prices, which would generate extreme long-run investment and city size. Giglio, Maggiori and
Stroebel (2014) compare long-run leases and prices to provide significant evidence that the transversality condition
really does hold for housing, making rational bubbles impossible. Yet Adam, Kuang and Marcet (2011) have shown
how almost-rational bubbles can generate impressive swings in prices and strongly link prices and interest rates.
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more likely in the housing market than in other asset markets where arbitrage is easier and trade

is more frequent.

All work on semi-rationality is troubled by Tolstoy’s corollary: there is only one way to make

correct inferences but an uncountable number of ways to get things wrong. Naive extrapolation is

one possible model of semi-rationality in housing markets. Many other forms of irrationality may

exist, and it may be possible to discover a rational model that can reconcile all the facts. Yet it is

remarkable that this relatively modest deviation from rationality predicts outcomes so much closer

to reality than the standard rational model.

1 A Model of House Price Determination

1.1 Housing Market Fundamentals

We consider the choice of an individual who is deciding whether or not to purchase a home. This

person is matched with one house, and if she purchases the house, she receives a flow of utility

improvement of Di,t relative to her next best alternative. This flow utility can be interpreted as

the overall benefit of living in the city relative to a reservation locale, but in that case, we must

also assume that the opportunity to buy in the city is a once-in-a-lifetime chance. Alternatively,

the reservation utility could include the opportunity of buying again in the city, but this makes

interpretation slightly more difficult. The supply of housing is fixed.3

This overall utility combines an idiosyncratic element ai with a city-specific component Dt:

Di,t = Dt + ai. (1)

These elements include both the labor market returns and utility-related benefits from living in

the city. The idiosyncratic component is drawn independently for each individual from a normal

3The interaction between uncertainty and housing supply has been explored elsewhere. Glaeser, Gyourko and
Saiz (2008) examine the link between belief-based bubbles and housing supply. Nathanson and Zwick (2014) go
further and show that in land markets, which can be dominated by small numbers of professional buyers, bubbles
can appear more readily than in housing markets, in which ownership is far more dispersed. Gao, Sockin and Xiong
(2014) is similar to this paper as they also focus on the process of learning about housing demand from prices, but
their model is fully rational and they focus on the interaction between housing supply and belief aggregation.
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distribution with mean 0 and standard deviation σa. The city-specific component of utility follows

dD = gdt+ σDdW
D, (2)

where WD is a standard Wiener process and g is a stochastic process we define shortly.

In this specification, changes to city-level demand persist over time. Such persistence has

some empirical basis in the fact that Gibrat’s law seems to hold for metropolitan areas (Glaeser,

Scheinkman and Shleifer, 1995; Eaton and Eckstein, 1997; Gabaix, 1999). There is correlation be-

tween past success and the future population or employment growth of the city. Typically, there

has been mean reversion of incomes at the city level, but even that fact has declined over time

(Berry and Glaeser, 2005; Ganong and Shoag, 2013). The absence of city-level mean reversion is for

convenience, and the model could easily encompass this feature while leaving the results unchanged.

The critical assumption is that growth rates shift over time and mean revert, so that

dg = −λgdt+ σgdW
g, (3)

where W g is a standard Weiner process that is independent from WD. If growth rates were constant,

then they would eventually be known, and the learning about growth that is a crucial element in

the model would disappear. If growth rates did not mean revert, but instead followed a random

walk, then the price dynamics would become too explosive and yield none of the mean reversion

that we see in the data.

The persistence of growth rates is empirically debatable, and depends on how demand at the

city level is measured. Head, Lloyd-Ellis and Sun (2014) find a correlation of 0.27 between annual

income growth and lagged income growth at the city level. In our empirical work below, we find a

larger correlation of 0.7 using metropolitan area rents as the proxy for demand. This persistence

is certainly a necessary feature of our model, and we will show what the model implies when the

persistence of growth rates is quite small.

The market assumption is that each transaction involves exactly one buyer and one seller, and

the buyer pays a price that makes her indifferent between owning the house or not. The seller’s

willingness to accept is irrelevant. We do not mean to suggest that this is a realistic model of

housing markets, in which most homes have multiple prospective buyers and most buyers consider
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a number of homes. The role that the bargaining process can play in shaping housing dynamics

has been examined elsewhere (Anenberg and Bayer, 2013; Guren, 2014) and we are interested in

particularly examining the role of non-standard beliefs. As such, we have chosen a particularly

simple market structure in order to focus how the inference process can shape demand volatility

and the persistence of price movements.

Individuals remain in their homes unless they receive a shock that forces them to move. These

exogenous mobility shocks are Poisson and arrive at a rate µ. Mobility shocks are the easiest way

to generate resale and an interest by buyers in future prices. We agree strongly that an endogenous

resale model would be more realistic. Moreover, the fixed sale assumption is compatible with the

earlier assumption that prices are determined by the willingness to pay of the buyer, not any aspect

of the seller.

We define pi,t to be the price of a house transacted at t to buyer i, and pt to be the average

price of all houses sold at t. The discounted value of owning the house and the willingness to pay

therefore equal

pi,t = Ei,t

[∫ T

t

e−r(τ−t)Di,τdτ + e−r(T−t)pT

∣∣∣∣ T − t ∼ Poisson(µ)

]
, (4)

where r is the discount rate. Price formation depends on each buyer’s expectations about future

prices, and therefore on each buyer’s expectations of future buyers’ expectations. When this ex-

pectation forecasting takes a specific form, which is general enough to encompass both the rational

and naive rules we specify later, prices follow a simple linear structure:

Lemma 1. Suppose that for all T ≥ t, Ei,tETDT = Ei,tDT and Ei,tETgT = φg(T − t)Ei,tgt for

some function φg, where ET denotes the average expectation among buyers at T . An equilibrium

for the average price of the houses transacted at t is given by

pt =
1

r

(
r

r + µ
Da
t +

µ

r + µ
D̂t

)
+ Agĝt, (5)

where Da
t equals the average flow utility Di,t among buyers at t, D̂t and ĝt are their average beliefs

about the current values of city demand D and its growth rate g, and Ag is a constant.

To determine the expectations in the pricing formula, we now discuss each buyer’s information set.
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1.2 Information Available to Buyers

At time t, the buyer knows the current flow utility Di,t she receives from the house to which she is

matched. She also observes a history of transaction prices of houses in the city. In particular, she

learns the average price pt′ every δ units of time before her purchase, that is, for t′ = t− δ, t− 2δ,

and so forth. The number of sales in each average equals N . This transaction history corresponds

to a price index in the case N is large, or to simply a list of all transactions when N = 1. We derive

some analytic results in the limit as N → ∞, but allow for finite N in the quantitative exercises.

We denote the set of observed prices by Ωp
t = {pt−mδ | m ∈ N}, where N is the set of positive

integers.

It is natural that the buyer would know her own flow utility Di,t at t. After all, this is the

utility the buyer currently receives from living in the city. Knowing past prices is also reasonable,

as house prices are readily available from a number of sources. Homebuyers frequently examine the

sale prices of similar homes before making a purchase. This practice, called “comparable analysis”

or “comps,” is the foundation for property appraisals.

The buyer cannot directly observe the city demand Dt or its growth rate gt. City-wide demand

Dt is an aggregation of private information Di,t. Less obvious is why the buyer cannot observe gt,

given that this growth rate directly affects the flow utility the buyer will receive. The intuition

here is that the buyer’s utility rises and falls with the quality of the city, either though amenities

or the labor market. As these fluctuations involve city-wide forces beyond the buyer’s control, it

is reasonable to suppose that the buyer possesses no private information about the current growth

rate.

In principle, a buyer could obtain information on Dt from looking at various economic indicators

about the city. To permit this possibility, we allow buyers to observe noisy signals Ds
t of demand,

where Ds
t = Dt + st and st is an independently drawn normal error with standard deviation σs.

Buyers have access to this information at the same frequency with which they observe prices: the

set of signals known at t equals Ωs
t = {Ds

t−mδ | m ∈ N}.

In addition to {Di,t}, Ωp
t , and Ωs

t , the buyer at t also observes stochastically revealed direct

observations of the true state of demand. These observations occur at a set of times T that are

realizations of a continuous-time Poisson process with parameter ρ > 0, where ρ is small. That is,

given realizations on T up to some time, the cumulative distribution function for the time ∆t until
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the next realization is 1 − e−ρ∆t. We denote xt = (Dt, gt)
′ to be the state of demand at t. The

buyer at t observes Ωx
t = {xt′ | t′ ∈ T and t′ ≤ t}. This rare revelation of the true state of the

world has important consequences for the uniqueness of equilibrium when buyers are rational. As

long as ρ > 0, with probability 1 there exists some time in the past when the state of demand was

revealed. Rational buyers begin at that state and then infer all of the demand shocks since then.

This process of rational inference occurs anytime history has a beginning.

The complete information set for the buyer is

Ωi,t = {Di,t} ∪ Ωp
t ∪ Ωa

t ∪ Ωx
t . (6)

1.3 Inference about Demand

The buyer’s inference problem is to use the data in Ωi,t to infer the value of market demand Dt

and its growth rate gt. The best a buyer can do is to extract all the data that has been directly

observed by buyers before t. In addition to the signals in Ωs
t , this information includes all individual

flow utility Di′,t′ . Due to the normality assumptions, a sufficient statistic for the distribution of

buyer flow utility at t′ is Da
t′ , the average flow utility across the N buyers at that time. We denote

Ωa
t = {Da

t−mδ | m ∈ N}.

When buyers are rational and the rationality of all buyers is common knowledge, observing the

infinite history of prices allows the buyers to know the history Ωa
t :

Proposition 1. Suppose it is common knowledge among buyers at all times that information sets

take the form given in (6). Then each buyer can perfectly deduce the history Ωa
t of average buyer

flow utility.

Given this proposition, inference for the rational buyers involves a standard signal extraction prob-

lem where Dt and gt are inferred from the series of past noisy observations of D in Ωa
t and Ωs

t , as

well as the noisy observation of Dt given by private utility Di,t.

The proof of Proposition 1 goes as follows. Let t′ < t be a time at which buyers at t observe

house sales. Conditional on all house prices and demand signals before t′, the price at t′ is a strictly

increasing function of average flow utility Da
t′ , as higher flow utility directly increases the pricing

equation (5) and also increases the posterior means D̂t′ and ĝt′ . Because the buyer at t observes all

prices and demand signals before t′, she exactly infers Da
t′ from observing the transacted price pt′ .
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As this proof makes clear, deducing Ωa
t requires a fairly hefty cognitive load on the part of the

buyers, as they need to infer everything about beliefs in the past. As such, we introduce a second

possibility: buyers believe that past buyers used the pricing formula pi,t′ = Di,t′/r, which makes

inference quite straightforward. Simply multiplying the price pt′ by the constant r yields Da
t′ , and

then the inference proceeds as in the rational case. We call this procedure naive inference.

Naive inference can be motivated as an approximation that results from inattention. Consider

the pricing formula delivered by Lemma 1 evaluated at some past time t′. The long-run average of

g is 0, so if the expectation ĝt′ is unbiased, it equals 0 on average. Similarly, if D̂t′ is unbiased it

equals Da
t′ on average. Therefore, as long as the conditions of Lemma 1 hold, the past price can be

written as pt′ = Da
t′/r+ξt′ , where ξt′ is mean 0 measurement error. The quantity rpt′ is an unbiased

estimate for Da
t′ , and this is the estimate naive buyers use.

The problem with using rpt′ to estimate Da
t′ is that the measurement error ξt′ is correlated across

time. This serial correlation arises from the non-independence of demand forecasts. If buyers believe

that the level or growth rate of demand is higher than its true value or long-run average today,

they are likely to believe this tomorrow as well. Proper Bayesians would recognize the dependence

across time in the measurement error, but naive buyers do not. Naive inference is quite good for

estimating demand from a single observation of house prices, but fails when estimating demand

using a series of prices. Ignoring the serial correlation in ξt′ is a form of inattention that results

from a procedure that is rational in a different context. This sort of inattention is studied in Gabaix

(2014).

A complementary interpretation for naive inference is as the result of a simplified problem for

individuals who lack the cognitive ability to make inferences about inferences. Buyers avoid this

recursion by replacing each prior buyer’s expectation by its expected value, i.e. D̂t′ with Da
t′ and

ĝt′ with 0. In so doing, naive buyers assume that past buyers were “simple,” and used just their

private information {Di,t′} to draw inferences rather than the full information set Ωi,t′ . The idea

that economic agents might assign this type of simplicity to others with whom they interact has

been extensively explored by Eyster and Rabin (2005, 2010, 2014), and naive inference can be seen

as an application of their work to financial markets. Throughout the paper, we focus on the two

cases of hyper-rational homebuyers and naive homebuyers. In theory, it may be desirable to create

a mixture of the two, and consider markets in which there are both types of buyers.

We now solve for the posteriors on Dt and gt of rational and naive buyers. The state of demand
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for the city at t′ can be summarized by a 2 × 1 vector xt′ = (Dt′ , gt′)
′. Given the laws of motion

in (2) and (3), this state vector evolves linearly with normal noise. Over δ, the discrete length of

time in between sales, this state vector changes according to the rule xt′+δ = Fxt′ + wt′ , where

F =
(

1 (1−e−δλ)/λ

0 e−δλ

)
and wt′ is identically distributed mean zero normal noise with covariance matrix

Q that is independent across time and from xt′ . The news at t′ consists of Da
t′ and Ds

t′ . We write

this news as H0xt′ + vt′ , where H0 = ( 1 0
1 0 ) and vt′ is normal mean zero noise with covariance

R0 =
(
σ2
a/N 0

0 σ2
s

)
. At t, the news consists of just Di,t, which we write as Hxt + vt, where H = (1, 0).

The variance of vt is R = σ2
a.

The linear evolution of state variables as well as the normal structure of all noise allows the

buyers to use a Kalman filter to derive the optimal posterior xt | Ωi,t. The resulting average of

the posteriors across buyers at t gives x̂t = (D̂t, ĝt)
′, the belief terms that appear in the pricing

function in (5). Lemma 2 solves for these posterior averages, as well as the covariance of each

buyer’s posterior.

Lemma 2. Let xt = (Dt, gt)
′ denote the state of housing demand at t. For both rational and naive

buyers, the posterior xt | Ωi,t is a multivariate normal with the same covariance. As ρ → 0, the

mean of this posterior for rational buyers converges almost surely to

x̂t = KDa
t + (I−KH)F

∞∑
m=1

[(I−K0H0)F]m−1K0(Da
t−mδ, D

s
t−mδ)

′,

and for naive buyers, the mean converges almost surely to

x̂t = KDa
t + (I−KH)F

∞∑
m=1

[(I−K0H0)F]m−1K0(rpt−mδ, D
s
t−mδ)

′,

where K and K0 are matrices that depend on F,Q,R,R0,H, and H0. The covariance of these

posteriors converges almost surely to a time-independent matrix P.

The two types of buyers use the same filters, but naive buyers use rpt′ in place of the true value

of Da
t′ that rational buyers use. A corollary is that naive buyers are overconfident in their estimates

of housing demand. The naive posterior xt | Ωi,t is a multivariate normal with covariance P. This

matrix P is the optimal covariance that results from the correct application of the Kalman filter.

However, naive buyers do not apply the Kalman filter correctly. They use rpt′ in place of Da
t′ , and

as a result, they use some alternate linear filter without realizing it. Because the Kalman filter is
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optimal among all linear filters, the resulting error covariance is larger than P, and hence larger

than what naive buyers think it is. This following proposition sums up this argument.

Proposition 2. Naive homebuyers are overconfident in their estimates of housing demand. Let Pn

denote the covariance matrix of the naive forecast error xt−E(xt | Ωi,t). Then Pn > P, where P is

the covariance matrix of the naive posterior xt | Ωi,t. The inequality means that Pn −P is positive

definite.

The relationship Pn > P means that naive buyers overestimate the precision of their estimates

of the level of demand Dt and its growth rate gt. Furthermore, naive buyers underestimate the

forecast error of any linear combinations of these quantities. In particular, they are overconfident

in the valuations of their homes, as the pricing equation (5) is linear in D̂t and ĝt.

Overconfidence limits naive buyers’ attention to noisy signals about market demand. They do

not appreciate the imprecision of their inferences from prices, so they demand less information, as

the marginal value of information decreases with additional certainty. As a clear example, consider

the inference problem when N , the number of house transactions underlying each price, goes to

infinity. In this case, Da
t′ → Dt′ by the law of large numbers, so the history of buyer flow utility Ωa

t

perfectly reveals the history of market demand. As a result, buyers ignore the noisy demand signals

Ωs
t . They believe all such information is already factored into house prices, which they directly

observe. This response is optimal for the rational buyers, but it is a mistake for the naive buyers.

Their overconfidence leads them to ignore valuable information.

Unlike naive buyers, rational buyers correctly understand the precision of their forecasts, and

their posterior has the optimal covariance matrix P. They are able to achieve this optimal forecast

by inferring the true value of Da
t′ from past prices. As described in the proof of Proposition 1,

extracting Ωa
t from Ωp

t involves knowing exactly how previous buyers form their own expectations

of market demand. One of our motivations for introducing naive inference was the complexity of

this procedure. To illustrate this claim, we solve directly for the rational posterior on Dt as a

function of past prices, which is what buyers directly observe. In general, this expression is quite

complicated. The following proposition gives an intuitive form that holds in a special case.

Proposition 3. Let t0 be the last time demand was directly observed, and suppose n ≡ b(t− t0)/δc >

1. When the number N of transactions observed each period goes to infinity, naive buyers ignore
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information about demand and extrapolate lagged demand from the most recent price:

E(Dt−δ|Ωp
t ∪ Ωs

t ∪ Ωx
t ) = rpt−δ.

When N →∞ and growth rates do not persist (λ→∞), the rational buyer’s posterior on the level

of demand is a telescoping sum of past prices:

E(Dt−δ|Ωp
t ∪ Ωs

t ∪ Ωx
t ) =

(
− α

1− α

)n−1
rpt−nδ − α0Dt0

1− α0

+
n−1∑
m=1

(
− α

1− α

)m−1
rpt−mδ
1− α

,

where

α =
µ

r + µ

σ2
a

σ2
a + δσ2

D

is a constant between 0 and 1, and α0 = µ[r + µ]−1σ2
a[σ

2
a + (t− nδ − t0)σ2

D]−1.

When λ→∞, the growth rate is irrelevant and buyers must only infer the level of demand from

past prices. Even in this simple case, the rational filter takes a starkly unintuitive form. Every other

past price counts negatively towards the rational estimate of current demand. Furthermore, when

α > 1/2 the weights on past prices grow exponentially. The parameter α captures the dependence

of current prices on past prices. A larger µ/(r + µ) leads buyers to care more about resale, and

hence about D̂t, and a larger σ2
a/(σ

2
a + δσ2

D) makes prices better signals about Dt than the buyer’s

idiosyncratic utility Di,t. In contrast, naive buyers simply estimate demand using the most recent

price, and in fact use this rule even when they are inferring the growth rate as well.

Eyster and Rabin (2014) study settings in which people extract information from observing

the sequential actions of others. The correct action is positively correlated with the state of the

world, which is only partially known. They show that hyper-rationality commonly leads to “anti-

imitation.” The optimal action depends negatively on the actions of some previous people, even

though all people have the same objectives. Proposition 3 provides an example of this phenomenon

in the housing market. In this case, the action is the price paid for the house, and the information

is the level and growth rate of housing demand.

Their work, and Proposition 3, call into question the robustness of rational updating in sequential

settings. The divergent nature of the rational filter suggests that it will not work very well if previous

prices were not formed by rational filters. If the rational filter indeed lacks this robustness property,
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then a rational person should not use these rules if there is even a small chance that previous actors

are not hyper-rational as well. Evaluating the robustness of rational filters is difficult, as all possible

inference rules used by others must be considered. This paper stakes a small step in this direction

by investigating the performance of the rational filter when previous buyers are actually naive. We

perform this exercise in Section 3.

1.4 Price Change Forecasts

To close the model, we specify what buyers believe about the expectations of future buyers. The

weight Ag on growth expectations in the pricing formula in Lemma 1 is determined by equation (4),

and in turn by the buyer’s expectation Ei,tpT of future prices. This expectation, in turn, depends

on the forecasts of forecasts Ei,tD̂T and Ei,tĝT .

A natural way to resolve these forecasts is to impose the law of iterated expectations, so that

the first equals Ei,tDT and the second Ei,tgT . Iterated expectations are consistent with the hyper-

rationality we attributed to rational buyers in the inference problem. If common knowledge of

rationality continues into the future, then future buyers, who have at least as much information as

current buyers, should hold beliefs consistent on average with that of present buyers.

Iterated expectations are less consistent with naive inference. Naive buyers believe that past

prices are given by Da
t′/r, and they reached this conclusion by assuming that other buyers’ expec-

tations equal their ex ante averages. A consistent forecast rule would assume that future prices are

also given by pT = Da
T ′/r, which is equivalent to setting Ei,tD̂T = Ei,tDT and Ei,tĝt = 0.

We model buyer forecasts to allow for consistency with both types of inference. A buyer believes

that with probability 1−φ, future buyers are as sophisticated as herself, leading the law of iterated

expectations to hold. With probability φ, future buyers are simple and base their expectations solely

on private demand. This latter case results from buyers thinking that future buyers will be less

sophisticated, or from our preferred explanation that current buyers choose a simple model of the

behavior of others in order to lessen the cognitive load on themselves. The current buyer’s forecasts

hence equal Ei,tD̂T = Ei,tDt and Ei,tĝT = (1 − φ)Ei,tgT = (1 − φ)e−λ(T−t)Ei,tgt. This forecasting

rule satisfies the conditions of Lemma 1. Applying it and solving for Ag yields the following lemma.

Lemma 3. The weight Ag on the growth rate expectation in the pricing formula in Lemma 1 is

given by Ag = [r(r + λ + φµ)]−1, where φ denotes the perceived probability that future buyers are
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simple and do not use prices to draw inference, and 1 − φ is the probability that future buyers are

sophisticated enough for the law of iterated expectations to hold.

One goal of this paper is to make sense of survey evidence concerning expectations about the

housing market. Much of the survey evidence on this topic is framed in terms of expectations of

price growth. For instance, the Michigan Survey of Consumers asks whether the present is a “good

time to buy [housing] for investment” (Burnside, Eichenbaum and Rebelo, 2014). A significant

portion of respondents, around 30%, explicitly mention house prices to justify their view (Piazzesi

and Schneider, 2009). Case, Shiller and Thompson (2012) elicit quantitative estimates of house

price growth. They ask “How much of a change do you expect there to be in the value of your home

over the next 12 months?” and “On average over the next ten years how much do you expect the

value of your property to change each year?”

To match these surveys, we calculate buyers’ expectations of the market value of their house

at current and future dates. The market value VT of a house at time T is the expected price from

selling the house at that time to a randomly selected buyer. Using the pricing function in Lemma

1, we calculate the expected market value as

EtVT =
EtDT

r
+

(1− φ)EtgT
r(r + λ+ φµ)

. (7)

Larger values of φ, the naivety of buyer forecasts, lead to stronger expectations about house

value growth. When the law of iterated expectations holds (φ = 0), buyers today believe their

information is immediately incorporated into market values. As a result, they forecast very little

changes in market values, even when they believe the growth rate is high. In contrast, buyers for

whom φ = 1 believe that growth rate news is never anticipated in market values. They therefore

predict continued increases in the market value of their homes when the growth rate is high. The

following proposition makes these results clear by solving for the expected change in market values

as a function of the growth rate belief.

Proposition 4. For a given belief about the growth rate, buyers expect greater increases in the

market values of their home when they are more naive. The expected growth in the market value of

a house equals

Et(VT − Vt) =
r + φλ+ φµ

r + λ+ φµ

1− e−λ(T−t)

λ

ĝt
r
.
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Holding ĝt constant, this expression increases in φ, the perceived probability of selling to a simple

buyer in the future.

Rational buyers are much more conservative than naive buyers in forecasting the growth in the

market value of their homes. Indeed, the expected change when φ = 0 equals the change when

φ = 1 times r/(r + λ), and this fraction is always less than 1. The empirical value of this fraction

falls significantly below 1. For instance, if the annual persistence of growth shocks is 0.3 (the value

of income growth persistence at the metro-area level), then λ = 1.2; a value of r = 0.04 then leads

to r/(r + λ) = 0.03. Under the parameters we use in Section 3, which assume more persistence in

demand growth, the fraction rises to 0.07. This ratio falls well below 1 unless demand growth is

very persistent.

Rational buyers believe public information gets priced into housing immediately. They therefore

do not expect much growth in the market value of their homes. In contrast, naive buyers mistakenly

believe that information about the growth rate never affects the market value of homes. This belief

allows naive buyers to expect significant increases in market values when they perceive the growth

rate of fundamentals to be high. According to the survey evidence mentioned above, expectations

of changes to the market value of one’s home are large and significant. A model in which all buyers

use rational filtering is at odds with this empirical fact.

2 Autocorrelations of Naive House Price Changes

2.1 Requisite Time Series Properties

The goal of this paper is to explain the predictable booms and busts in house prices. These dynamics

are described by the autocorrelation pattern of house price changes. In the data, annual house price

changes are positively correlated at short lags (1 to 2 years), and negatively correlated at longer

lags, with the autocorrelations decreasing over time. This pattern is fit by a dampened sinusoid: the

autocorrelations gradually oscillate between positive and negative as their amplitude diminishes.

We now show that house prices exhibit this feature when current prices depend positively on recent

lags of prices, but negatively on further lags.

A time series displays sinusoidal autocorrelations when its characteristic polynomial has complex

roots with absolute value exceeding 1. In this case, one of the factors of its characteristic polynomial

16



must be of the form I − β1L + β2L
2, where (β1/2)2 < β2 < 1. If ∆pt has this property, we may

write b(L)(I − β1L+ β2L
2)∆pt = c(L)zt, where zt is independent and identically distributed across

time (and possibly vectorial). Annual price changes then obey the equation

∆pt = β1∆pt−δ − β2∆pt−2δ + ζt, (8)

where ζt = b(L)−1c(L)zt.

If the behavior of ζt is unrestricted, then we cannot say much about the autocorrelations of ∆pt.

However, when ζt is an AR(1) plus noise, β1 measures the short-run autocorrelations of ∆pt while

β2 captures the cyclicality of price changes. The innovation ζt follows this form when it can be

written ζt = γt + εt, with γt = e−δλγγt−δ + ηt, with each of εt and ηt independent and identically

distributed over time and Cov(εt, ηt) ≥ 0. This case is of particular interest. As we show below,

naive prices obey (8) with ζt an AR(1) plus noise. The following lemma, which is proved in the

Appendix, describes the autocorrelations of ∆pt in this case.

Lemma 4. Suppose house price changes are stationary and follow (8) with ζt an AR(1) plus noise.

Then the correlation of price changes on once-lagged changes, given by Corr(∆pt,∆pt−δ), is positive

if β1 > 0 and is strictly increasing in β1. If (β1/2)2 < β2 < 1, then autocorrelations are given by

Corr(∆pt,∆pt−mδ) = Aζe
−mδλζ + Aββ

m/2
2 cos(mθ + ω),

where Aζ, Aβ, and ω are constants, and θ satisfies cos(θ) = β1/(2
√
β2).

Momentum, as measured by the autocorrelation of once-lagged price changes, is positive if β1 > 0

and also increases with β1. Larger values of β1 decrease the periodicity of further autocorrelations

by lowering θ. In all three senses, β1 captures the momentum in price changes. In contrast, β2

measures the cyclical nature of house prices. When β2 is high, specifically higher than (β1/2)2, the

autocorrelations cycle, obeying the sinusoidal pattern given in the lemma. Furthermore, the higher

is β2, the greater the amplitude of these cycles and the longer they last. The correlations dampen

at the rate β
m/2
2 , so a larger β2 amplifies the sinusoidal nature of the autocorrelations.
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2.2 Autoregressive Structure of Naive Prices

We show naive inference leads prices to obey (8) in a specific case of the model. The particular

case we study imposes a number of simplifications. First, the number of home sales is large enough

that prices aggregate information completely (σa/
√
N → 0). Second, the individual utility noise is

so large that buyers ignore their own utility and use only prices when inferring demand (σa →∞).

Finally, buyers have access only to the two most recent lags of prices. This specification represents

a scenario in which buyers learn about demand entirely from recent observations of a housing price

index. The restricted information set in this special case is denoted Ω′i,t = {Di,t}∪{pt−δ}∪{pt−2δ}.

A naive buyer’s posterior on the lagged level of demand is E(Dt−δ | Ω′i,t) = rpt−δ, and her estimate

of the lagged growth rate equals E(gt−δ | Ω′i,t) = r(pt−δ − pt−2δ)λe
−δλ/(1− e−δλ). The naive buyer

simply extrapolates the level of demand from the level of prices, and the growth rate from the

change in prices.

These simple formulas lead current prices to depend positively on the first lag of prices and

negatively on the second lag. Higher values of pt−δ increase the buyer’s estimate of the level and

growth rate of demand, and both of these estimates increase today’s price pt. Conversely, a higher

value of pt−2δ lowers the estimate of the growth rate, thereby negatively impacting pt. As shown

in Lemma 4, these relationships lead house price changes to exhibit sinusoidal autocorrelations, as

long as certain additional technical conditions hold. The following proposition writes price changes

in the form given by (8), and the Appendix proves that for certain parameters, the conditions in

Lemma 4 are met.

Proposition 5. Suppose naive buyers observe only the two most recent house prices. Then there

exist parameters such that the autocorrelations of price changes obey the sinusoidal formula in

Lemma 4. When σa →∞ and σa/
√
N → 0, one-period house price changes obey the autoregressive

equation

∆pt =

(
(1 + e−δλ)µ

r + µ
+
λe−2δλrAg
1− e−δλ

)
∆pt−δ−

(
e−δλµ

r + µ
+
λe−2δλrAg
1− e−δλ

)
∆pt−2δ+

(1− e−δλ)gt−δ
λ(r + µ)

+
wDt−δ
r + µ

.

The g and w terms constitute an AR(1) plus noise.

Proposition 5 shows that house prices fit the structure analyzed in Lemma 4 when buyers

are naive. Therefore, house prices display momentum and a cyclical autocorrelation structure.
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The momentum comes from the coefficient on ∆pt−δ. Buyers’ estimates of Dt and gt positively

influence their valuations of their homes, and both of these estimates depend positively on pt−δ.

The cyclicality comes from the coefficient on ∆pt−2δ. This coefficient is negative because buyers’

estimate of gt depends negatively on pt−2δ. The lower this price, the higher buyers’ estimate of the

growth rate.

Naive inference succeeds at conceptually explaining the autocorrelation structure of house prices.

To investigate whether naive updating can match these autocorrelations quantitatively, we simulate

the richer model exposited in Section 1 using parameters calibrated from housing data.

3 Dynamics of Price Changes: Quantitative Results

3.1 Parameter Choices

This section calibrates the model using reasonable values of the parameters estimated from housing

market data. Substantial uncertainty exists about the true values of the parameters, and they likely

vary across space as well. Our approach, therefore, is to show that the model matches empirical

house price dynamics using parameters within the range offered by the data. We perform sensitivity

analysis with respect to the parameters of which we are most uncertain in Section 3.7.

Table 1 lists the parameters we estimate, which fall into two groups. The first are identified from

data on city-wide demand. The second are identified from data on individual housing transactions.

At no point do we use data on the time series of house price changes, which are the data we are

trying to explain with our model.

3.1.1 Demand Parameters

The evolution of city-wide demand D is described by (2) and (3) and is governed by three pa-

rameters: the persistence λ of growth shocks, their volatility σg, and the volatility σD of non-

growth demand shocks. These parameters are uniquely determined by the first three autocovari-

ances of annual changes in D, which we denote γ0 = Var(∆Dt), γ1 = Cov(∆Dt,∆Dt−1), and

γ2 = Cov(∆Dt,∆Dt−2); ∆ denotes the difference over one year. As we show in the Appendix, the

ratio γ2/γ1 uniquely determines λ. The autocorrelation γ1/γ0 then determines the ratio σg/σD, and

finally γ0 determines the level of these volatilities.
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The literature has used two empirical proxies for housing fundamentals: rents (e.g. Campbell

et al., 2009) and local incomes (e.g. Head, Lloyd-Ellis and Sun, 2014). Unfortunately, the autoco-

variances of these series differ significantly from each other, leaving us in the position of choosing

between them. We choose intermediate values of these estimates and show that they work fairly

well in allowing the model to capture house price dynamics.

The data on rents come from the Bureau of Labor Statistics (BLS), which compiles rental price

indices for 23 metropolitan areas. Campbell et al. (2009) describe these data further, and provide

the dataset we use. Using these data, we compute the standard deviation of annual changes to be
√
γ0 = $250, and the first and second autocorrelations to be γ1/γ0 = 0.73 and γ2/γ0 = 0.44.4

The BEA provides income data at the metropolitan area level. An alternate source of income

data comes from HMDA, which gives the median income of new homebuyers in a metrpolitan area.

To the extent that flow utility D corresponds to that of the marginal homebuyer, HMDA may be

more appropriate. Glaeser et al. (2014) describe both datasets. In the BEA data,
√
γ0 = $1900,

with autocorrelations γ1/γ0 = 0.30 and γ2/γ0 = 0.11.5 The HMDA data provide a higher standard

deviation of annual changes at
√
γ0 = $2700, with autocorrelations γ1/γ0 = 0.29 and γ2/γ0 = 0.09.

The rent data display much more persistence than the income data. The ratio γ2/γ1, which de-

termines the growth persistence λ, equals 0.60 in rents but only about 0.34 in income. Furthermore,

γ1/γ0, which determines the relative importance of growth shocks, is much higher in the rent data.

We combine features from both datasets by setting γ1/γ0 = 0.3 and γ2/γ1 = 0.6 as our baseline

figures. Although this selection is somewhat arbitrary, it falls within the numbers suggested by the

data, and allows the model to match the dynamics of price changes quite well.

We adopt the value
√
γ0 = $325, which is much closer to the volatility implied by rents. This

value is largely unimportant for the results, as it simply scales the variances in the model and does

not affect the autocorrelations of price changes. It allows the model to match the volatility of price

changes, but as we discuss shortly, the model can compare the predicted volatility of prices and

fundamentals, and this comparison is independent of the assumed value of
√
γ0.

Finally, we set the discount rate r = 0.04, following Glaeser et al. (2014).

4To arrive at γ0, we convert the rent index provided by the BLS to levels. The standard deviation of annual
changes in the index equals 3.2, and the mean of the index is 140. Therefore, the rent index change standard
deviation equals 2.3% of the mean level. Median annual rent in the US is $10,884, so the standard deviation of
annual changes equals $250.

5These figures use BEA income data adjusted for state taxes. Without the tax adjustment, the numbers are√
γ0 = $2100, γ1/γ0 = 0.14, and γ2/γ0 = 0.08.
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3.1.2 Transaction Parameters

The remaining parameters are the flow probability µ of moving, the number N of observed sales

each period, the standard deviation σa of individual flow utility around the city-wide average, and

the standard deviation σs of direct signals about demand. We also must determine the length δ of

each period.

We identify µ using data on the probability that an owner-occupant sells a house in a given

year. The Census, accessed at https://www.census.gov/prod/2000pubs/p23-200.pdf, reports

that the 5-year mobility rate for owners is 31.2%. Therefore 1− e−5µ = 31.2%, and µ = 7.5%. This

figure corresponds to an expected tenancy of 13 years.

To compute σa, we use the standard deviation of rents, controlling for location and housing

characteristic fixed effects. Rent data at the housing unit level come from the 2000 Census; the rent

data provide a snapshot at a given time (2000). In the model, all houses are identical, whereas in

the data they possess different characteristics. We therefore augment (1) with unit characteristics

to arrive at the estimating equation

Dc
i = Dc + hiβ + ai,

where c denotes the location, and hi is a vector of unit characteristics (rooms, bedrooms, plumbing,

kitchen, age of the building, number of units in the building, and an indicator for whether the

building sits on more than 10 acres of land). We observe Dc
i and hi, so we estimate this equation

as a fixed effects regression, and identify σ2
a as the variance of the residual. This procedure assumes

that actual buyers also observe hi and know β. The location identifiers we use are public use

microdata areas (PUMAs), the standard location entity used by the Census. Each PUMA contains

at least 100,000 people. The value of σa we estimate equals $3,120.

We set the length of each period at half of a year (δ = 0.5). This time represents the frequency

at which buyers observe home sales and news about demand. As many house price series, such as

Case-Shiller and FHFA, are published at quarterly frequencies, and because this information may

take some time to disseminate, δ = 0.5 seems like a natural starting point. To compute the number

of observed sales each period, we take the number of owner-occupied homes in the average PUMA,

which is 30,800, and multiply it times 1− e−δµ, the probability of sale within a unit δ of time. The

result is N = 1,130.
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The final parameter to choose is σs, the noise in the news about fundamentals. We set this value

to σs = $1,000. As the median annual rent in the United States is $10,884, this noise equals about

10% of the level. Although this error seems low, it is high enough to make the fundamental news

irrelevant in the simulation. Buyers believe they observe Da
t , the average flow utility of buyers in a

given period. This average is also a noisy signal of fundamentals, with standard deviation σa/
√
N .

Given our parameter choices, σa/
√
N = $93. Buyers ignore the news as it is an order of magnitude

more noisy than prices. For news to be relevant, it must have an error rate on the order of 1%. We

explore this possibility in Section 3.7.

3.2 Simulation Methodology

We simulate the model in the limit as ρ → 0 and measure various statistics about the resulting

prices. Each simulation begins with a choice of the initial state vector (D0, g0)′ and the mean of the

priors. Because D is non-stationary, without loss of generality we set the initial value to $10,000.

We pick the initial value of g0 ∼ N(0, σ2
g/(2λ)), its stationary distribution. As we showed in Lemma

2, in the ρ → 0 limit the covariance of the buyer posterior after observing any price and news

history does not depend on t; we denote it P0. Motivated by this stationarity, we draw the mean of

the prior from a mutivariate normal with covariance P0 and mean (D0, g0)′, and set the covariance

of the prior to P0.6 After seeding the initial values, we iteratively update the prices, states, and

beliefs using the formulas in Section 1.3. For the same evolution of fundamentals, we separately

keep track of the markets in which all buyers are naive and in which they are all rational. We

produce 1,000 simulations and analyze the pooled results. In addition to the naive and rational

prices, we calculate the prices that would hold were city-wide demand directly observable. In this

“Observable” specification, prices are given by (5) with Dt and gt replacing D̂t and ĝt.

We compare the simulated prices to empirical house price data. Our dataset is comprised of the

annual FHFA house price indices for a panel of the largest 115 metropolitan areas in the United

States between 1980 and 2011. To convert the indices into levels, we multiply each city’s index by

the median house price in the 2000 Census, following Glaeser et al. (2014). We run each simulation

for 31 years to align the time horizon in the data and the simulation.

6We give the naive buyers the same initial mean as the rational buyers. As shown in Proposition 2, the covariance of
the naive forecast error exceeds the covariance of their stationary posterior. To account for this fact, we experimented
with “burning in” the simulations by discarding the first five years. Doing so did not materially affect the results.

22



TABLE 1
Calibrated Parameter Values

Demand Parameters

λ 0.51 Demand growth reversion

σg $180 Volatility of growth shocks

σD $190 Volatility of demand shocks

r 0.04 Discount rate

Transaction Parameters

σa $3,120 Volatility of idiosyncratic utility

µ 0.075 Probability of forced sale

δ 0.5 Length of period (years)

N 1,130 Sales observed per period

σs $1,000 Noise in observations of demand

Notes: We estimate these parameters from data on house prices and rents. As the Appendix shows, the first three
autocovariances of annual city-level demand changes uniquely identify λ, σg, and σD. We take these autocovariances
from time series on rents and incomes at the metropolitan area level. The discount rate r comes from Glaeser et al.
(2014). The resale probability µ comes from Census data on mobility of owner-occupants. The volatility σa is
identified from the residual of a hedonic regression of rents on property characteristics and location (PUMA) fixed
effects. We choose δ to roughly capture the frequency at which housing price and other economic data is released,
and σs to describe the accuracy of local economic indicators (about 10%). Finally, N is determined using the number
of owner-occupied houses in a PUMA, together with µ and δ.
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3.3 Price Autocorrelations

We calculate the autocorrelation of annual price changes in the resulting house prices. Let C denote

the number of simulations (or cities) and let T denote the number of years of data. We focus on

the sample autocorrelations of annual price changes, which we calculate as

Corr(∆pt,∆pt+k) =

∑C
c=1

∑(T−k)/δ
τ=1/δ (∆pc,δτ − ν0)(∆pc,δτ+k − νk)√∑C

c=1

∑(T−k)/δ
τ=1/δ (∆pc,δτ − ν0)

√∑C
c=1

∑(T−k)/δ
τ=1/δ (∆pc,δτ+k − νk)

,

where νk = [C(T − k)/δ]−1
∑C

c=1

∑(T−k)/δ
τ=1/δ ∆pc,δτ+k is the sample mean of each annual price change.

We use δ = 0.5 for the simulated data, and δ = 1 for the empirical data which exist at an annual

frequency. These autocorrelations summarize the serial correlation of price changes over time, and

have been the focus on the literature on the predictability of house prices, starting with Case and

Shiller (1989) and appearing most recently in Glaeser et al. (2014) and Head, Lloyd-Ellis and Sun

(2014).

Table 2 reports the autocorrelations, both in the FHFA housing data and in the simulations. The

Naive specification of the model matches the data quite well, whereas the Rational and Observable

specifications do not even come close. Empirically, house prices display strong momentum at 1-

and 2-year horizons, followed by mean reversion at longer horizons. These results appear in Table

2 under the “Data” column. The Rational and Observable specifications fail to capture these

dynamics. Information is observed with a one-period lag by rational buyers, leading to the modest

autocorrelation at a one-year horizon of 0.11. This figure is substantially below the empirical

momentum of 0.67, and the remainder of the empirical autocorrelation structure fails to appear in

any way in the Observable and Rational specifications.

In contrast, the “Naive” specification well matches the general dynamics in empirical housing

prices. It predicts strong momentum over a 1-year horizon, with a value of 0.75. At longer horizons

it predicts mean reversion. Mean reversion begins around 3 years, similar to in the data. The

magnitude of the mean reversion is similar to the data, although it is higher in the Naive model

and ends faster.

In the Observable and Rational models, prices are close to a random walk. This result is

unsurprising in the Observable model, as news gets incorporated into prices immediately. More

noteworthy is that this result holds in the Rational model as well. This similarity between the two
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TABLE 2
Autocorrelations in House Price Changes, Annual Frequencies

Model
Data Naive Rational Observable

Corr(∆pt,∆pt+1) 0.67 0.75 0.11 0.01

Corr(∆pt,∆pt+2) 0.26 0.20 0.00 0.01

Corr(∆pt,∆pt+3) −0.10 −0.37 −0.00 −0.00

Corr(∆pt,∆pt+4) −0.26 −0.71 0.01 0.01

Corr(∆pt,∆pt+5) −0.28 −0.67 0.01 0.01

Corr(∆pt,∆pt+6) −0.31 −0.33 0.00 0.00

Corr(∆pt,∆pt+7) −0.35 0.13 0.01 0.00

Corr(∆pt,∆pt+8) −0.39 0.59 0.01 0.00

Corr(∆pt,∆pt+9) −0.34 0.58 0.01 0.02

Corr(∆pt,∆pt+10) −0.26 0.39 0.01 0.01

Notes: The ∆ denotes an annual difference, so that ∆pt+k = pt+k−pt+k−1. “Observable” denotes the model in which
buyers can observe the current state of demand, “Rational” denotes the model in which demand is unobservable
but the buyers apply a rational filter, and “Naive” denotes the model in which buyers apply a naive filter. The
correlations are estimated in both the data and the model by computing the correlation of all pairwise realizations
of each pair of price changes in a panel of 100 cities over 30 years. Data come from the FHFA house price indices.
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FIGURE 1
Cumulative Autocorrelations in Annual Price Changes
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Notes: This figure plots the cumulative autocorrelations for each column in Table 2. “Observable” denotes the
model in which buyers can observe the current state of demand, “Rational” denotes the model in which demand is
unobservable but the buyers apply a rational filter, and “Naive” denotes the model in which buyers apply a naive
filter. The correlations are estimated in both the data and the model by computing the correlation of all pairwise
realizations of each pair of price changes over 31 years. Data come from the FHFA house price indices.
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models suggests that the rational buyers are extremely good at quickly filtering underlying demand

from past prices, leading Rational prices to behave similarly to Observable prices. We explore this

hypothesis below.

Figure 1 plots the cumulative autocorrelations for each specification in Table 2. The result

equals the average movement in house prices after they initially rise for 1 year, relative to the initial

increase. Only the Naive specification is able to capture the boom and bust profile of house prices

that appears in the data.

3.4 Belief Dynamics

To explore the boom and bust profile documented in Figure 1, we study the evolution of prices after

an exogenous demand shock. We decompose the resulting impulse response into three components:

the idiosyncratic utility of the buyer, the buyer’s belief about the level of city demand, and the

buyer’s belief about the growth rate. Explicitly,

pt =
1

r + µ
Da
t︸ ︷︷ ︸

idiosyncratic
utility

+
µ

r(r + µ)
D̂t︸ ︷︷ ︸

level
belief

+ Agĝt︸︷︷︸
growth
belief

. (9)

To calculate the impulse response, we simulate the model with and without a one-time, one standard

deviation shock to the demand increments dWD and dW g. We report the average difference between

the impulsed and non-impulsed simulations.

Figure 2 plots the impulse responses for prices, as well as for the “level belief” and “growth

belief” components in (9). The axes are the same for each subfigure so that the relative importance

of the belief components can be easily compared. Relative to Observable and Rational prices, the

Naive prices substantially overshoot after a demand shock. Almost all of this overshooting comes

from buyers overestimating the level of demand after the shock. They overestimate the demand level

because they neglect the “growth belief” component of prices. Naive buyers erroneously believe

that ĝt′ , the growth belief of past buyers, never moves around. As they filter demand from past

prices, naive buyers overestimate the level of demand when growth rates are high.

The profile of prices in Figure 2 captures the common accounts of “bubbles” found in a number

of sources, such as Kindleberger and Aliber (2005), Shiller (2005), Pástor and Veronesi (2009),

and Glaeser (2013). In this narrative, some fundamentally good shock, such as the discovery of
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FIGURE 2
Evolution of Prices and Beliefs After a Demand Shock
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Notes: We plot impulse responses from a one standard deviation shock to demand. The figures plot the average
difference between the simulated model with and without the shock. Panel (a) displays transaction prices, and (b) is
the component of prices related to beliefs about the level of demand Dt and (c) is the price component corresponding
to beliefs about the growth rate of demand gt. This decomposition appears in (9). “Observable” denotes the model in
which buyers can observe the current state of demand, “Rational” denotes the model in which demand is unobservable
but the buyers apply a rational filter, and “Naive” denotes the model in which buyers apply a naive filter.
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a new technology, leads to increases in asset prices. Then, for some reason, this boom in asset

values goes beyond what is justified by fundamentals, leading to an eventual bust. What causes

the overshooting is a matter of debate, for which the sources above, as well as many other papers,

offer competing explanations. Our explanation of this phenomenon is that buyers think the initial

asset price boom conveys better information than it actually does, because the buyers neglect that

part of this boom involves revisions to other buyers’ beliefs about the growth rate. This filtering

error leads to overestimates of fundamentals, which cause an overshooting of prices and an eventual

“bust” as prices return to fundamentals.

3.5 Expected Price Changes

As discussed in Section 1, homebuyers empirically extrapolate expected increases in the market

value of their homes from past price increases. To explore this phenomenon in our model, we

regress the expected annual gain in market value, as given by Proposition 4, on lagged annual price

changes. Using our simulated data, we estimate the coefficients βk in the equation

Et(Vt+1 − Vt) =
9∑

k=0

βk∆pt−k + ξt

using ordinary least squares for each of the three model specifications.

Table 3 displays the results. The Naive buyers strongly extrapolate future increases in the market

values of their houses from past price increases. The Rational buyers, and those who can observe

demand directly, do not. We can put these numbers in perspective using empirical survey evidence

of homebuyer expectations. Case, Shiller and Thompson (2012) regress the reported expected one-

year change in home prices on one-year lagged price changes, and find a coefficient of 0.23. They

have 40 observations from four metropolitan areas between 2003 and 2012. Their simple regression

has an R2 of 0.73.

The naive buyers in our model match this empirical behavior quantitatively. When we regress

the expected market value change on only the most recent annual price change, the coefficient

equals 0.20. Naive buyers think news about growth rates does not get incorporated into prices.

Therefore, when they see recent price increases, they infer a high growth rate, which leads them

to expect increases in flow utility and hence prices in the future. According to Table 3, they draw
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TABLE 3
Impact of Past Price Changes on Expected Appreciation

Model
Naive Rational Observable

Et(Vt+1 − Vt)

∆pt 0.09 0.01 0.02

∆pt−1 0.15 0.01 0.01

∆pt−2 0.04 0.00 0.01

∆pt−3 0.01 0.00 0.00

∆pt−4 0.00 0.00 0.00

∆pt−5 0.00 0.00 0.00

∆pt−6 −0.00 0.00 0.00

∆pt−7 0.00 0.00 0.00

∆pt−8 −0.00 0.00 0.00

∆pt−9 −0.00 0.00 0.00

Notes: This table reports the result from the regression Et(Vt+1 − Vt) =
∑9

k=0 βk∆pt−k + ξt estimated using OLS
with the simulated data from each model. The ∆ denotes an annual difference, so that ∆pt+k = pt+k − pt+k−1.
“Observable” denotes the model in which buyers can observe the current state of demand, “Rational” denotes the
model in which demand is unobservable but the buyers apply a rational filter, and “Naive” denotes the model in
which buyers apply a naive filter.
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these inferences from price changes using several years of data.

In contrast, the rational buyers hardly extrapolate any increases in the market values of their

homes. They (rightly) believe that all available information about growth rates already appears in

the current market value of their home. Past price increases fail to convince them of any future

appreciation in their house values. Although this behavior is perfectly rational, it is strongly at

odds with the survey evidence on expectations.

Rational beliefs about future prices must be correct on average, by definition. Naive beliefs do

not have this restriction. To explore the forecasting ability of naive buyers, we plot the expected

change in market values and the empirical change after a 1-year price increase. The realized change

in market values exactly equals the price response in Figure 1. To compute the expected change, we

use Proposition 4 to extend the expected one-year change conditional on a lagged one-year change

(which is 0.20) to further years.

Figure 3 plots the results. After a 1-year increase in house prices, naive buyers underestimate the

subsequent increase in their home values over the short-run. This result may at first seem surprising.

Naive buyers extrapolate from prices much more strongly than rational buyers, and rational buyers

extrapolate perfectly. One might guess, therefore, that naive buyers over-extrapolate. The reason

they do not is that they fail to anticipate that future buyers will also revise their beliefs upwards after

a price increase. This result—that naive buyers under-extrapolate in the short-run—is essential to

the workings of this model. Momentum can exist in price increases only if buyers are continually

being surprised by the extent of price increases. If naive buyers fully anticipated price increases,

then these anticipations would become priced immediately, negating their realization.

Over longer horizons, naive buyers do over-extrapolate. As Figure 3 shows, these buyers com-

pletely fail to anticipate the eventual mean reversion in prices. Naive buyers believe market values

follow the path of Dt, the city-wide demand. This demand exhibits no mean reversion, as it is a

random walk with persistent drift. Actual prices, however, do exhibit mean reversion because naive

buyers overestimate fundamentals after recent price increases.

Our model therefore microfounds the result that homebuyers fail to forecast busts. This phe-

nomenon has recently been explored in a number of papers on “Natural Expectations” (Fuster,

Laibson and Mendel, 2010; Fuster, Hebert and Laibson, 2010, 2011). This line of research studies

consumers who, due to cognitive limitations, forecast macroeconomic variables as an AR(1) instead

of an AR(2). This forecast restriction prohibits consumers from forecasting mean reversion in vari-
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FIGURE 3
Price and Belief Evolution for Naive Buyers
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Notes: This figure plots the naive price changes from Figure 1 along with naive buyers’ expected change in market
values after a one-year price increase. This expectation is calculated using Proposition 4 and a regression of ĝt on a
one-year price increase.
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ables such as house prices where it exists, while allowing them to forecast momentum. In contrast to

consumers with natural expectations, naive buyers perfectly understand the underlying process for

fundamentals. Their naive view that house prices reflect just fundamentals and not beliefs prohibits

them from forecasting busts.

3.6 Volatility

Empirically, house prices exhibit excess volatility relative to the movements of underlying funda-

mentals (Glaeser et al., 2014; Head, Lloyd-Ellis and Sun, 2014). We compare the volatility of price

changes to that of movements in flow utility in the three specifications of our model. The fun-

damental in our model is Dt, the city-wide flow utility at time t. We must scale Dt so that it is

comparable to house prices p. On average, gt = 0, so house prices on average are pt = Dt/r. This

result leads us to use Dt/r as our measure of fundamentals at t.

We estimate the volatility of a price change over a horizon of k years using the sample standard

deviation of k-year price changes over all simulations and k-year price intervals. Specifically,

Vol(∆kpt) =

√√√√[C(T − k)/δ]−1

C∑
c=1

T/δ∑
τ=k/δ

(∆kpc,δτ − νk)2,

where νk = [C(T − k)/δ]−1
∑C

c=1

∑k/δ
τ=1/δ ∆kpc,δτ and ∆k is the k-year difference operator.

Two broad patterns emerge from the results, which appear in Table 4. First, all three simulated

price paths display excess volatility relative to fundamentals. This feature has a simple explanation.

Because growth is persistent, a rise in fundamentals today coveys news about future fundamentals.

Because prices are forward-looking, they move more strongly than current fundamentals, and hence

exhibit more volatility.

The second pattern is that naive prices are more volatile than rational and observable prices.

This relationship holds because naive buyers over-extrapolate fundamentals from demand shocks.

This added volatility in naive prices explains the majority of excess volatility at longer horizons.

Over 5 years, the volatility in rational price changes is only 17% higher than fundamentals, whereas

the naive volatility is 2.1 times fundamental volatility. Head, Lloyd-Ellis and Sun (2014) calculate

that empirical house prices display volatility 2.2 times higher than fundamentals.
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TABLE 4
Volatility of Price Changes at Different Horizons

Horizon
1 Year 3 Years 5 Years

Data $16,000 $40,000 $50,000

Simulated Prices

Naive $16,000 $41,000 $51,000

Rational $11,000 $21,000 $28,000

Observable $12,000 $22,000 $28,000

Simulated Fundamentals

Dt/r $8,000 $17,000 $24,000

Notes: We calculate volatility as the sample standard deviation of changes over the given time horizon, for all
realizations over this horizon and over all simulations we run. “Observable” denotes the model in which buyers can
observe the current state of demand, “Rational” denotes the model in which demand is unobservable but the buyers
apply a rational filter, and “Naive” denotes the model in which buyers apply a naive filter. The fundamental Dt/r
denotes the present value of the current city-wide level of flow utility. Empirical volatility is computed using FHFA
house price data for 115 metropolitan areas from 1980-2011.
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3.7 Predictions for Alternate Parameters

Table 5 explores how the key house price moments change under different parameter values. We

focus on three moments: the autocorrelation of annual price changes over a one-year horizon, the

autocorrelation over a five-year horizon, and the standard deviation of five-year price changes. These

moments encompass the three stylized facts of house prices that motivate this paper—momentum,

mean reversion, and excess volatility. To explore the sensitivity of these moments to the parameters,

we change a single parameter at a time, holding the ones used in the main analysis constant.7

We first adjust λ, the persistence of demand growth. As mentioned earlier, the autocovariance

ratio γ2/γ1 determines this parameter. The empirical value of this ratio depends on how one

measures demand at the city level. Using income yields a ratio of 0.3, smaller than the 0.6 we

estimate from BLS rents. In Table 5, we report the ratio γ2/γ1 corresponding to the values of λ

used; we adjust σD for each λ to keep the volatility of demand changes (
√
γ0) constant. According

to Table 5, smaller values for the persistence significantly attenuate the mean reversion and excess

volatility of naive prices, yet leave the momentum largely unchanged. Overshooting occurs in

the model when buyers incorrectly attribute price growth from revisions about ĝ to increases in

fundamentals. When growth persistence is small, growth shocks are not of much quantitative

importance, and growth rate expectations enter into prices only slightly. In terms of (5), Ag is

small. Momentum persists because shocks to dWD slowly incorporate into prices when buyers are

naive.

The next parameter we consider is tenancy length. This input determines µ, as the expected

tenancy equals 1/µ. When tenancy length is shorter, buyers expect to resell their houses more

quickly and therefore care more about market demand. This change enhances momentum in naive

prices, but has a non-monotonic affect on mean reversion and volatility.

More precise information about demand moves naive prices closer to rational ones. This result is

unsurprising, as with perfect news, demand is known and buyers no longer rely on house prices for

inference, rendering the two types of buyers identical. News must be extremely precise to dampen

the effects of naive inference. Momentum persists even when the error is on the order of $100.

The reason is that prices already aggregate information about demand quite well due to the central

limit theorem and the large number of observed sales, so news must be extremely precise to make

7In some cases, extreme values of the parameters lead to non-stationarity of naive price changes, causing explosive
behavior of the price paths. We do not analyze any such cases in Table 5.
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TABLE 5
Simulated Moments for a Range of Inputs

1-Year 5-Year 5-Year
Momentum Reversion Volatility

Naive Rational Naive Rational Naive Rational

Annual Growth
Persistence

0 0.50 0.17 0.03 0.00 $16,000 $18,000
0.3 0.56 0.15 0.00 0.00 $18,000 $19,000
0.6 0.75 0.11 −0.67 0.01 $51,000 $28,000

Expected Tenancy
(Years)

2 0.94 0.04 −0.07 −0.00 $46,000 $28,000
10 0.80 0.11 −0.80 0.00 $62,000 $28,000
30 0.60 0.16 −0.14 −0.01 $35,000 $28,000

News Noise (σs)
$10 0.12 0.10 0.01 0.00 $28,000 $28,000
$100 0.44 0.11 0.00 0.00 $29,000 $28,000
$1,000 0.75 0.11 −0.67 0.01 $51,000 $28,000
$10,000 0.76 0.12 −0.71 0.00 $54,000 $28,000

Houses in
the Area

1,000 0.21 0.12 −0.03 0.00 $28,000 $28,000
10,000 0.76 0.14 −0.47 0.00 $39,000 $28,000
50,000 0.75 0.11 −0.72 −0.01 $59,000 $28,000

Utility Noise (σa)
$100 0.05 0.10 0.01 0.00 $27,000 $28,000
$1,000 0.69 0.11 −0.51 0.01 $59,000 $28,000
$10,000 0.61 0.16 −0.17 −0.00 $31,000 $28,000

Notes: “Annual Growth Persistence” is the ratio of the second and first autocorrelations of annual changes in city-
wide demand D. This input uniquely determines λ; as we change λ we alter σD to maintain the volatility of annual
demand changes. “Expected Tenancy” equals the average time spent in a house before a forced sale; its inverse equals
the moving probability µ. ”News Noise” gives the standard deviation of error in direct signals about demand. “Houses
in the Area” determines the number N of sales observed each period. “Utility Noise” is the standard deviation of
idiosyncratic utility for each buyer. In each row, we simulate the model with naive and rational homebuyers using
the parameters of our main analysis (shown in Table 1) with the exception of the parameter of interest studied in
that row. “1-Year Momentum” is the correlation of annual price changes on lagged changes, “5-Year Reversion” is
the correlation on a 5-year lag, and “5-Year Volatility” is the standard deviation of 5-year house price changes.
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a difference.

By the same token, naive inference produces stronger mean reversion and volatility when there

are more houses in the area. The number of houses in the area determines how much weight naive

buyers place on past housing prices. When the number of houses is very low, they do not weight

the past much and the momentum attenuates. In a sense, this result suggests a non-monotonic

relationship between information flows and housing fluctuations. With no information, momentum

and mean reversion disappear. With good information about fundamentals, the same effect occurs.

It is only when there is good information about past market behavior but not about fundamentals

that momentum, mean reversion and volatility become most pronounced.

Finally, the standard deviation of idiosyncratic utility has a non-monotonic affect on the mo-

ments of interest. Low values of σa mean that buyers know much about the city-wide demand from

observing their own demand. Hence in this case they do not rely on market prices for inference very

much, dampening the volatility, momentum, and mean reversion of naive prices. At high values of

σa, house prices are again not of much use. House prices average away the noise in idiosyncratic

utility, but for a given N , this average is less precise when σa is larger. However, momentum and

mean reversion exist to some degree even at σa = $10,000, three times higher than the baseline

value in Table 1 that is implied by rent data.

3.8 Forecast Accuracy

This section evaluates the relative accuracy of the naive and rational filters. Each buyer’s goal is to

infer Dt and gt to minimize the error in valuing her home. The error in this forecast is the difference

between the price in (5) under D̂t and ĝt and that under the true values Dt and gt:

error =
µ

r + µ

D̂t −Dt

r
+ Ag(ĝt − gt). (10)

The accuracy of the filter is the standard deviation of this error. We calculate this standard deviation

as the square-root of the pooled variance across all simulations and time periods of the above error.

We additionally use this error to evaluate the robustness of the rational and naive filters. As

Proposition 3 suggests, the rational filter is quite sensitive. It performs poorly when applied to price

paths produced by buyers using non-rational filters. We document this phenomenon quantitatively

here. We calculate the estimates of D̂t and ĝt obtained using the rational filter applied to naive
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TABLE 6
Forecast Accuracy

Market
Rational Naive

In
d
iv

id
u
a
l

Rational $11,000 $600,000,000,000,000,000,000,000,000,000,000

Naive $12,000 $22,000

Notes: This table reports the standard deviation of the forecast error in (10), calculated as the square-root of the
variance pooled over all simulations and time periods. The column denotes the filtering used by buyers to determine
the price path, and the row specifies the filtering used by an individual, the error of whose forecasts is evaluated.
The parameters used in the simulations are given by Table 1.
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prices.8 We also compute the forecast accuracy for the naive filter applied to rational prices.

Table 6 presents the results. The row chooses the filter used by the buyer we are studying, and

the column specifies the filter used to obtain market prices. The rational equilibrium is twice as

accurate as the naive one. When all buyers are rational, the forecast error has standard deviation

$11,000; it rises to $22,000 when all buyers are naive. When the market uses the rational filter,

the marginal cost of using the naive filter is very small in terms of lost accuracy. The standard

deviation of the error rises only to $12,000 from $11,000. The largest error comes from employing

the rational filter when other buyers are in fact naive. In this case, the standard deviation of the

error equals essentially an infinite number ($(6)1032).

These results suggest that the naive filter is much more robust to uncertainty about previous

buyers. The equilibrium in which all buyers are rational is extraordinarily fragile. If there is even

a small probability all other buyers are naive, an individual buyer is much better of being naive as

well. Furthermore, the cost of naivety is quite small when others are rational, as the naive buyer

essentially free-rides off the information aggregation provided by others.

4 Conclusion

Many salient features of house prices—excess volatility, momentum, and mean reversion—can be

explained by a model in which homebuyers make a small error in filtering information out of past

prices. These naive buyers expect the market value of their home to rise after recent house price

increases, and they fail to forecast busts after booms. They are overconfident in their assessments

of the housing market.

Several promising avenues for future research arise from this paper’s results. One is to investigate

robust filtering rules buyers could use to reduce house price volatility. The rational filter in this

paper has two flaws: it is very complicated, and it works only if all other buyers use it. Perhaps

there exists a simple filtering rule whose use would reduce house price volatility and whose accuracy

is independent of the actions of other homebuyers. It is also possible that the naive filter already

is optimal for reducing volatility among simple filters.

A second direction for future research is to explore the implications of naive filtering for con-

8The rational buyer begins with a prior on x0 which we seed randomly, as explained above. At each step, the
rational buyer at t extracts Da

t′ out of pt′ by assuming that E(xt′ | Ωp
t′ ∪ Ωa

t′ ∪ Ωx
t′) is the same for buyers at t′ as it

is for herself. Then, using this extracted value for Da
t′ , the buyer updates her posterior using Lemma 2.
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sumption. Several recent papers have documented the explosion of consumption financed by home

equity during the 2000-2006 boom. Because naive buyers do not forecast the bust that follows

booms, they may over-consume out of house price increases relative to rational buyers. This over-

consumption may be important for understanding the extent of leverage homeowners took on during

the boom.

Finally, incorporating construction into the model is of first-order importance. Supply responses

have the potential to temper price increases caused by naive homebuyers. However, if the home-

builders are also using naive filters, it is unclear whether housing supply would attenuate or even

amplify the effects documented in this paper.
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Appendix

Proof of Lemma 1. We posit a pricing function of the form pt = A0Dt +AcD̂t +Agĝt and show
that this type of function is an equilibrium. If the random sale happens at T > t, then the realized
value to the buyer equals∫ T

t

e−r(τ−t)Di,τdτ + e−r(T−t)pT =∫ T

t

e−r(τ−t)
(
Di,t +

∫ τ

t

gτ ′dτ
′
)
dτ + e−r(T−t)(A0D

a
T + AcD̂T + AgĝT ).

We first solve for the expected value Ei,t of the above quantity. It is a standard result from stochastic
calculus that Ei,tgτ = e−λ(τ−t)Ei,tgt for all τ > t, given the specification in (3). It follows that

Ei,t

∫ T

t

∫ τ

t

e−r(τ−t)gτ ′dτ
′dτ =

∫ T

t

∫ τ

t

e−r(τ−t)e−λ(τ ′−t)Ei,tgtdτ
′dτ

=

∫ T

t

e−r(τ−t)
1− e−λ(τ−t)

λ
dτEi,tgt

=

(
1− e−r(T−t)

rλ
− 1− e−(r+λ)(T−t)

λ(r + λ)

)
Ei,tgt.

We have Ei,t

∫ T
t
e−r(τ−t)Di,tdτ = (1− e−r(T−t))Di,t/r, and Ei,tD

a
T = Ei,tDT by (1). This expectation

equals

Ei,tDT = Ei,tDt + Ei,t

∫ T

t

gτdτ = Ei,tDt +
1− e−λ(T−t)

λ
Ei,tgt.

Next note that Ei,tD̂T = Ei,tDT by assumption, and that Ei,tĝT = φg(T − t)Ei,tgt. The price pi,t is
the expected value of the realized value to the buyer, given that T − t is distributed with probability
distribution function µe−µ(T−t):

pi,t =

∫ T

t

µe−µ(T−t)
[

1− e−r(T−t)

r
Di,t +

(
1− e−r(T−t)

rλ
− 1− e−(r+λ)(T−t)

λ(r + λ)

)
Ei,tgt+

e−r(T−t)(A0 + Ac)

(
Ei,tDt +

1− e−λ(T−t)

λ
Ei,tgt

)
+ e−r(T−t)Agφg(T − t)Ei,tgt

]
dT

Evaluating this integral and collecting terms yields

pi,t =
r

r + µ

Di,t

r
+

µ

r + µ
(A0 + Ac)Ei,tDt +

(
1 + (A0 + Ac)µ

(r + µ)(r + λ+ µ)
+ φ∗Ag

)
Ei,tgt,

where φ∗ =
∫∞
t
µe−(µ+r)(T−t)φg(T − t)dT . Taking the average over all buyers i at t and then

using the method of undetermined coefficients yields A0 = (r/(r + µ))/r, Ac = (µ/(r + µ))/r, and
Ag = 1/(r(r + λ+ µ)(1− φ∗)). These formulas exactly match (5).

Proof of Proposition 1. For any two times τ1 and τ2, we say a buyer at τ1 observes τ2 if
(τ1 − τ2)/δ ∈ N, the set of positive integers. Let t′ be any time that buyers at t observe. Let t0
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denote the maximal member of T such that t0 ≤ t′. The time t0 exists because arbitrarily negative
values of T exist, as ρ > 0. We denote T′ to be the set of times at least t0 that the buyer at t′

observes. This set is clearly finite.
We claim that the buyer at t′ forms her posterior on xt′ conditional only on the finite set

Ω′i,t′ = {Di,t′}∪{pτ | τ ∈ T′}∪{Ds
τ | τ ∈ T′}∪{xt0}. It is clear from (2) and (3) that x is a Markov

process (this statement is proved formally in the proof of Lemma 2). Thus, a rational inference on
xt1 will not use any information from times before t0, as xt0 is observed. The totality of Ωi,t′ that
occurs no earlier than t0 is Ω′i,t′ .

The state x evolves linearly with normal noise, and the elements of Ω′i,t′ are all observations of
some linear function of a lag of x with normal noise, or they are linear combinations of posteriors
on lags of x and such noisy observations (in the case of prices). Hence, standard Kalman filtering
(which we make explicit in the proof of Lemma 2) leads the posterior xt′ | Ω′i,t′ to be linear in the
observations in Ω′i,t′ . The linear weights are common knowledge to all buyers, as they depend only
on the parameters governing the noise and evolution of the state. The average posterior x̂t′ across
buyers at t′ is thus a linear function of Da

t′ and xt′ | Ω′i,t′ \ {Di,t′}. As the price at t′ follows (5)
in Lemma 1, pt′ is a linear combination of Da

t′ and xt′ | Ω′i,t′ \ {Di,t′} whose weights are common
knowledge. The buyer at t observes Ω′i,t′ \ {Di,t′} and pt′ , and therefore can perfectly deduce Da

t′ .

Proof of Lemma 2. First, we prove that the state variable evolves as described in the text.
Consider the evolution of Dt between times t = 0 and t = δ. We will prove that we can write
Dδ = D0 + βg0 +wD and gδ = e−δλg0 +wg, where wD and wg are independent from D0 and g0 and
have mean 0 conditional on data at t = 0. We also calculate the covariance matrix of w = (wD, wg)′.

From (2) and (3), we have Dδ = D0 +
∫ δ

0
gtdt + σD

∫ δ
0
dWD

t and gδ = e−δλg0 + σg
∫ δ

0
e−λ(δ−t)dW g

t .
We find β as the coefficient from regressing Dδ −D0 on g0. This coefficient equals

β =
Cov

(
g0,
∫ δ

0
gtdt+ σD

∫ δ
0
dWD

t

)
Var(g0)

=
Cov

(
g0,
∫ δ

0
gtdt

)
Var(g0)

=

∫ δ

0

e−λtdt =
1− e−λδ

λ
,

where we have used the fact that for stochastic processes of the form specified in (3), Cov(g0, gt) =
e−λtVar(g0) for all t. The variance of wD equals the variance of this regression’s forecast error,

which is Var
(∫ δ

0
gtdt+ σD

∫ δ
0
dWD

t

)
− β2Var(g0) = Var

(∫ δ
0
gtdt

)
+ δσ2

D − β2Var(g0). We solve for

the first variance on the right as

Cov

(∫ δ

0

gtdt,

∫ δ

0

gsds

)
=

∫ δ

0

∫ δ

0

e−λ|t−s|Var(g0)dtds =
2
(
e−δλ − 1 + δλ

)
λ2

Var(g0).

Another standard fact about the stochastic process specified in (3) is that Var(g0) = σ2
g/(2λ). We

substitute this expression into the above equations to conclude that

Var(wD) = δσ2
D +

σ2
g

2λ3

(
−3 + 2δλ+ 4e−δλ − e−2δλ

)
.

We turn now to proving the equation gδ = e−λδg0 + wg. Another standard fact about the process
in (3) is that for all t, we may write gt = e−λtg0 +

∫ t
0
σge
−λ(t−τ)dW g

τ . Substituting δ = t yields the
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equation we desire. The variance of wg equals σ2
g

∫ δ
0
e−2λ(δ−t)dt, so that

Var(wg) =
σ2
g

2λ
(1− e−2λδ).

The last task is to calculate the covariance of wD and wg, which equals Cov(gδ−e−δλg0, σD
∫ δ

0
dWD

t +∫ δ
0
gtdt − βg0). The dWD term drops out because WD is independent from W g. The remainder

can be written as the sum of four covariances. The first is Cov
(
gδ,
∫ δ

0
gtdt

)
=

σ2
g

2λ

∫ δ
0
e−tλdt =

σ2
g

2λ2
(1 − e−δλ), the next one is Cov (gδ,−βg0) = − σ2

g

2λ2
(e−δλ − e−2δλ), the third covariance equals

Cov
(
−e−δλg0,

∫ δ
0
gtdt

)
= −e−δλ σ

2
g

2λ

∫ δ
0
e−tλdt = − σ2

g

2λ2
(e−δλ − e−2δλ), and the fourth and final covari-

ance is Cov(−e−δλg0,−βg0) =
σ2
g

2λ2
(e−δλ − e−2δλ). The total covariance equals the sum of these four

terms:

Cov(wg, wD) =
σ2
g

2λ2

(
1− e−δλ

)2
.

We conclude that (Dδ, gδ)
′ = F(Dc

0, g0)′ + w, where F is the matrix given in the text, and the
covariance matrix of w equals

Q =

(
δσ2

D +
σ2
g

2λ3

(
−3 + 2δλ+ 4e−δλ − e−2δλ

) σ2
g

2λ2

(
1− e−δλ

)2

σ2
g

2λ2

(
1− e−δλ

)2 σ2
g

2λ
(1− e−2δλ)

)
.

The formulas in Lemma 2 result from applying a Kalman filter to the problem specified. For
an exposition of Kalman filtering, see, for instance, Hamilton (1994). We solve for the posterior
conditional on observing {Di,t} ∪ Ωa

t ∪ Ωs
t ∪ Ωx

t ; the naive buyers substitute rpt′ for Da
t′ . As in the

Proof of Proposition 1, we let t0 denote the time of the most recent observation of x; the buyer
ignores all data that occurs before t0. Let t1 be the first time not before t0 that the buyer at t
observes. The buyer forms a posterior on xt1 from observing just xt0 as well as Da

t1
and Ds

t1
; this

posterior is a normal distribution with mean x̂1 and covariance P1. As we show below, we do not
need to solve for this posterior directly. At each subsequent period, the buyer learns Da

tk
and Ds

tk

and iteratively applies the Kalman filter using the formulas x̂k = Kk(D
a
tk
, Ds

tk
)′+ (I−KkH0)Fx̂k−1

and Pk = (I−KkH0)(FPk−1F
′+Q), where Kk = (FPk−1F

′+Q)H′0(H0(FPk−1F
′+Q)H′0 +R0)−1.

Let n be such that tn = t− δ. Then the posterior xt−δ | Ωi,t \ {Di,t} is a normal with mean x̂n and
covariance Pn. The final posterior xt | Ωi,t updates this posterior based on the information in {Di,t}
and the evolution of time between t − δ and δ. The mean of this posterior equals E(xt | Ωi,t) =
KDi,t + (I −KH)FE(xt−δ | Ωi,t \ {Di,t}), where K = (FPnF

′ + Q)H′(H(FPnF
′ + Q)H′ + R)−1.

The covariance of the posterior equals P = (I−KH)(FP0F
′ + Q). Averaging the posterior mean

across i gives

x̂t = KDa
t + (I−KH)F

[
n−1∑
m=1

(
m−1∏
k=1

(I−Kn−k+1H0)F

)
Kn−m+1(Da

t−mδ, D
s
t−mδ)

′ +

x̂1

n−1∏
k=1

(I−Kn−k+1H0)F

]
.

We now show that as ρ → 0, this expression converges almost surely to the formula in the

46



lemma. We demonstrate pointwise convergence, and hence show convergence of the coefficients on
the dividend terms. According to Proposition 13.2 of Hamilton (1994), limn→∞Pn = P0, where P0

is the unique solution to

P0 = (I− (FP0F
′ + Q)H′0 (H0(FP0F

′ + Q)H′0 + R0)
−1

H0)(FP0F
′ + Q).

We may apply this proposition because Q is strictly positive definite (as it is the covariance matrix
variables that are not linear combinations of each other). As written in Hamilton (1994), the
proposition requires the eigenvalues of F to lie inside the unit circle (which they do not, as 1 is an
eigenvalue), but the proof shows that the strict positive definiteness of Q is sufficient. We define
K0 = (FP0F

′ + Q)H′0(H0(FP0F
′ + Q)H′0 + R0)−1; note that limn→∞Kn = K0.

We also claim that limn→∞
∏n

k=1(I−Kn−k+1H0)F = 0. A direct computation shows that F has
an eigenvalue less than 1 in magnitude and an eigenvalue of 1 with eigenvector (1, 0)′. Similarly, for
any Kk, I−KkH0 has an eigenvalue less than 1 in magnitude (and that is independent of k) and
an eigenvalue of 1 with eigenvector (0, 1)′. As the eigenvectors with eigenvalue 1 are not collinear,
and the other eigenvalues are less than 1 in magnitude, the limit is 0 as claimed.

It follows that given an error tolerance ε for the coefficients, we can choose n large enough so
that the coefficients in the equation for x̂t are within ε of those in the formula in the lemma. We
first choose n1 large enough so that |((I−K0H0)F)m−

∏m
k=1(I−KkH0)F| < ε for m ≥ n1 and any

valid Kk; as these products both converge to 0, n1 exists. Then we choose n0 such that for n ≥ n0,
|((I−K0H0)F)m−

∏m
k=1(I−Kn−k+1H0)F| < ε for m ≤ n−n1; n0 exists because limn→∞Kn = K0.

Thus convergence occurs as long as n ≥ n0, which happens with probability at most 1− e−ρ(1+n0)δ.
This probability converges to 0 as ρ→ 0.

Proof of Proposition 3. In the limit as N → ∞, the noise in Da
t′ , which is σ2

a/N , goes to 0.
Naive buyers believe that rpt−δ = Da

t−δ = Dt−δ, so they neglect all information in Ωp
t ∪ Ωs

t ∪ Ωx
t

before t − δ, which is all information other than pt−δ and Ds
t−δ; they ignore Ds

t−δ as it provides a
noisy signal of Dt−δ. This argument proves the naive formula.

We now prove the rational formula. Note that from Lemma 1, rpt′ = Dt′r/(r+µ)+D̂t′µ/(r+µ).
At t′ = t − nδ, the expectation is formed using only xt0 and Di,t−nδ, as older data is obviated by
xt0 . The noise in using Dt0 as a measure of Dt−nδ is (t− nδ − t0)σ2

D, and the noise in using Di,t−nδ
is σ2

a. Therefore

D̂t−nδ =
(t− nδ − t0)σ2

D

σ2
a + (t− nδ − t0)σ2

D

Dt−nδ +
σ2
a

σ2
a + (t− nδ − t0)σ2

D

Dt0 .

Prices therefore are given by rpt−nδ = (1− α0)Dt−nδ + α0Dt0 , where α0 is as defined in the text.
At all other times t′, from Proposition 1, we know that the rational buyer can infer all observed

demand. Therefore E(Dt′−δ | Ωp
t′ ∪ Ωa

t′ ∪ Ωx
t′) = Dt′−δ and there is no noise in this estimate. It

follows that the posterior on Dt′ combines this estimate and Di,t′ , with weights equal to the relative
variance. The variance of the lagged demand estimate is δσ2

D and the variance of the idiosyncratic
estimate is σ2

a. Therefore rpt′ = (1 − α)Dt′ + αE(Dt′−δ | Ωp
t′ ∪ Ωs

t′ ∪ Ωx
t′), where α is as defined in

the proposition. Hence

E(Dt′−δ | Ωp
t′ ∪ Ωs

t′ ∪ Ωx
t′) =

rpt′−δ − αE(Dt′−2δ | Ωp
t′−δ ∪ Ωs

t′−δ ∪ Ωx
t′−δ)

1− α

47



for t′ > t− (n− 1)δ. At t′ = t− (n− 1)δ,

E(Dt−nδ | Ωp
t−(n−1)δ ∪ Ωs

t−(n−1)δ ∪ Ωx
t−(n−1)δ) =

rpt−nδ − α0Dt0

1− α0

.

Iterating the first equation until the second is employed yields the formula in the proposition.

Proof of Lemma 3. Using the terminology from the proof of Lemma 1, φ∗ =
∫∞

0
µe−(r+µ)τ (1−

φ)e−λτdτ = (1 − φ)µ/(r + µ + λ). We then use the formula from that same proof that Ag =
[r(r + λ+ µ)(1− φ∗)]−1 to arrive at the result.

Proof of Proposition 4. Using (7) and the forecasting rules in the text, we write Et(VT −Vt) as

Et(DT −Dt)

r
+

(1− φ)(EtgT − ĝt)
r(r + λ+ φµ)

=
1

r

∫ T

t

Etgτdτ −
(1− φ)(1− e−λ(T−t))ĝt

r(r + λ+ φµ)
,

which reduces to the formula in the Proposition. This expression increases in φ. The derivative
of the first fraction is positive when (r + λ + φµ)(λ + µ) > (r + φλ + φµ)µ, which is true because
r + λ+ φµ > r + φλ+ φµ and λ+ µ > µ, as λ > 0.

Proof of Lemma 4. We write ∆pt = β1∆pt−δ−β2∆pt−2δ+γt+εt. We let ρm = Corr(∆pt,∆pt−mδ).
By taking the covariance with respect to ∆pt−1 of the above equation and simplifying, we obtain

ρ1 =
β1

1 + β2

+
ξCov(∆pt, γt)

(1 + β2)Var(∆pt)
,

where ξ = e−δλγ and we have used Cov(γt,∆pt−δ) = Cov(ξγt−δ + ηt,∆pt−δ) = ξCov(γt−δ,∆pt−δ).
Similarly, note that Cov(γt,∆pt−2δ) = ξ2Cov(γt,∆pt). Therefore, by taking the covariance of the
first equation with respect to γt and simplifying, we obtain

Cov(∆pt, γt) =
Var(γt) + Cov(ηt, εt)

1− β1ξ + β2ξ2
,

where we have used Cov(γt, εt) = Cov(ηt + ξγt−δ, εt) = Cov(ηt, εt). This expression is nonnegative:
by assumption, Cov(ηt, εt) ≥ 0, and the polynomial 1−β1L+β2L

2 has no roots between 0 and 1, as
it is a factor of the characteristic polynomial of the stationary time series ∆pt (stationarity forces the
roots to have magnitude exceeding 1). Therefore ρ1 > 0 if β1 > 0, and both terms in the expression
for ρ1 are increasing in β1. We turn now to the general expression for the autocorrelations ρm. We
may write (I − ξL)(I − β1L+ β2L

2)∆pt = ηt + εt− ξεt−1. By taking the covariance of this equation
with respect to ∆pt−mδ for m > 2, and then dividing by the variance of ∆pt, we uncover that the
autocorrelations satisfy the recursion (I − ξL)(I − β1L+ β2L

2)ρm = 0. Let r1 and r2 be such that
(I − r1L)(I − r2L) = I − β1L + β2L

2. These roots satisfy r1 + r2 = β1 and r1r2 = β2, and are
given by rj = (β1 ±

√
β2

1 − 4β2)/2 for j ∈ {1, 2}. These roots are complex when β2
1 < 4β2. In this

case, their absolute value is given by
√

(β2
1 − (β2

1 − 4β2))/4 =
√
β2. The autocorrelations satisfy

(I − ξL)(I − r1L)(I − r2L)ρm = 0, so ρm = Aγξ
m + A1r

m
1 + A2r

m
2 for some constants Aγ, A1, and

A2. As long as β2 < 1, then |r1|, |r2| < 1 and the autocorrelations are well-defined. When β2
1 < 4β2,

rm1 and rm2 are complex conjugates. As ρm is real, A1 and A2 must be conjugates as well. We write
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A1 = Aβe
iω/2 and A2 = Aβe

−iω/2 with Aβ real, and r =
√
β2e
±iθ, where cos(θ) = β1/(2

√
β2). Then

ρm = Aγξ
m + Aββ

m/2
2 eimθ+iω/2 + Aββ

m/2
2 e−imθ−iω/2 = Aγe

−mδλγ + Aββ
m/2
2 cos(mθ + ω).

We proved this formula for m ≥ 3, but it holds for m = 1 and m = 2 as well, as the first three
autocorrelations determine the constants Aγ, Aβ, and ω.

Proof of Proposition 5. We know from Proposition 3 that the posterior on Dt−δ equals rpt−δ.
For gt−δ, note that Di,t is too noisy to provide information, and from the equation xt = Fxt−δ +
wt, we have ∆Dt−δ = gt−2δ(1 − e−δλ)/λ + wDt−2δ. Therefore, as the naive buyer sets rpt′ = Dt′ ,
her posterior on the growth rate is E(gt−δ | Ω′i,t) = r∆pt−δλe

−δλ/(1 − e−δλ). To arrive at the
contemporaneous estimates, we again use the law of motion for x and get E(Dt | Ω′i,t) = rpt−δ +
e−δλr∆pt−δ and E(gt | Ω′i,t) = r∆pt−δλe

−2δλ/(1 − e−δλ). Substituting these expressions into (5)
and differencing yields the equation in the Proposition. The growth rate is an AR(1) as gt =
e−δλgt−δ + wgt , and Cov(wgt , w

D
t ) > 0 by the formula for Q, so the innovation constitutes an AR(1)

plus noise under the definition in Lemma 4. Finally, to show that the condition (β1/2)2 < β2 < 1
holds for some parameters, use δ = 1, λ = 1, r = 0.04, µ = 0.075, and φ = 1, which yields β1 = 1.08
and β2 = 0.43.

Identification of Demand Parameters. We observe the following three covariances from the
data: γ0 = Var(∆Dt), γ1 = Cov(∆Dt,∆Dt−1), and γ2 = Cov(∆Dt,∆Dt−2). These identify σD, σg,
and λ as follows. First, note that Dt+1 = Dt + gt(1 − e−λ)/λ + wDt , where wD is the error defined
in the proof of Lemma 2. This equation comes from applying the law of motion for xt, which is
xt+1 = Fxt + wt, where wt and xt are independent and the covariance matrix of w is Q . As a
result, ∆Dt = gt(1− e−λ)/λ+ wDt . It follows that the variance of the yearly price change equals

γ0 =

(
1− e−λ

λ

)2 σ2
g

2λ
+ Var(wDt ) = σ2

D +
σ2
g

λ3
(e−λ − 1 + λ).

The first covariance of price changes equals

γ1 = Cov

(
1− e−λ

λ
gt + wDt ,

1− e−λ

λ
(e−λgt + wgt ) + wDt+1

)
=

(1− e−λ)2σ2
g

2λ3
.

The second covariance equals

γ2 = Cov

(
1− e−λ

λ
gt + wDt ,

1− e−λ

λ
(e−λ(e−λgt + wgt ) + wgt+1) + wDt+2

)
=
e−λ(1− e−λ)2σ2

g

2λ3
.

These three equations identify the parameters. Note that γ2/γ1 = e−λ, so this ratio determines λ.
Conditional on λ, γ1/γ0 uniquely determines the ratio σg/σD. Finally, γ0 pins down the level of
these volatilities.
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