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1 Introduction and Motivation

The addition of pharmaceutical benefits to Medicare in 2006 was the largest expansion to

the Medicare program since its inception. Not only is the program large, it is also innovative in

design. Traditional Medicare parts A and B are organized as a single-payer system; enrollees see

the physician or hospital of their choice and Medicare pays a pre-set fee to that provider, leaving no

role for an insurer. In contrast, Part D benefits are provided by private insurance companies that

receive a subsidy from the government as well as payments from their enrollees. The legislation

creates competition among plans for the business of enrollees, which is intended to drive drug prices

and premiums to competitive levels. Each Medicare recipient can choose among the plans offered

in her area based on monthly premiums, deductibles, plan formularies, out-of-pocket costs (OOP

or copayments) for drugs, and other factors such as the brand of the insurer and customer service.

The premise of the Part D program was that the consumer’s choices would discipline plans

into providing low prices and high quality, and that this would result in better outcomes than a

government-run plan. Critically, these better outcomes require that market forces work, in that

demand shifts to plans that consumers prefer because they are lower cost or have higher quality.

This in turn requires that consumers choose effectively among firms according to those features.

This paper analyzes both demand and pricing in the Medicare Part D market. We demonstrate

that, in reality, consumer choices are made with substantial frictions. Consumers rarely switch

between plans and do not consistently shop for price and quality when they do switch, reducing the

effective demand elasticity faced by insurers. We provide evidence that, in the absence of strong

disciplining pressures from consumers, insurers set price above the efficient level, allowing plans to

extract high rents due to consumer inattention. Not only would better consumer search benefit

consumers directly, it would also lead to plan re-pricing that would save both consumers and the

government significant sums. Our results indicate that removing inattention and allowing price to

adjust while leaving other choice frictions unchanged would reduce consumer expenditures by $536

per enrollee or 14.8% over the three years 2007-9. Government program costs would fall by a total

of $550 million over 3 years due to plan re-pricing. To our knowledge, this is the first paper to

estimate the impact of better searching through both demand and supply-side channels. We find

that the insurer response - lowering premiums - results in signifciant savings both to enrollees and

taxpayers.

One concern when Part D began was that the prices the plans paid for drugs would rise because

plans would lack the bargaining power of the government. Duggan and Scott Morton (2011)17

demonstrate that this did not happen. Rather, prices for treatments bought by the uninsured elderly

fell by 20% when they joined Part D. Since the program’s inception, increases in pharmaceutical

prices have been restrained, in part due to aggressive use of generics by many insurers. According

to Congressional Budget Office estimates, drug costs under the basic Part D benefit increased by

only 1.8% per beneficiary from 2007-2010 net of rebates.10 The remainder of plan expenditures -

approximately 20% of total costs according to the CBO - consists of administration, marketing,

customer service, and like activities. The PCE deflator for services during this same time period
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increased at an average annual rate of 2.40%. Yet, despite these modest increases in the costs of

providing a Part D plan, premiums in our data were on average 62.8% higher in 2009 than they

were in 2006, the first year of the program, which corresponds to a 17.6% compound annual growth

rate. The CBO estimates10 indicate that plan profits and administrative expenses per beneficiary

(combined) grew at an average rage of 8.6% per year from 2007 to 2010.

These figures raise the question of why slow growth in the costs of drugs and plan administration

were not passed back to consumers in the form of lower premiums. One possibility is that Part

D may be well designed to create competition among treatments that keeps the prices of drugs

low, yet may not do so well at creating competition among plans in order to restrain the prices

consumers face. Since the program is 75% subsidized by the federal government, any lack of effective

competition would increase government expenditures as well as consumer costs.

To determine whether market pressures on plans create a competitive environment, we analyze

the pricing decisions of plans in response to the observed consumer behavior and present evidence

that plans are indeed taking advantage of sub-optimal consumer search. Armed with these results,

we conduct counterfactual simulations to investigate several possible policy interventions designed

to increase competition in the Part D market. We find that removing inattention with fixed prices

saves each consumer on average $162 over the years 2007-9. Choosing wisely among plans with

the help of a pharmacist or similar expert could save enrollees a further $648. However, such

calculations ignore the supply-side response of insurers to newly attentive consumers. In a market

where consumers choose each year based at least partly on price and quality, our simulations show

that average plan premiums fall substantially. Plan repricing would generate consumer savings

of $536 per person on average, even without the help of the pharmacist, and save the federal

government $550 million nationally over three years. Growth in costs would also slow considerably:

$450 million of the predicted government savings would occur in 2009, the last year of our sample,

amounting to a saving of 8.2% of the relevant program costs in that year.

The first section of the paper describes the Medicare Part D program and discusses reasons for

search imperfections. Next we review the literature related to both Medicare Part D specifically and

markets with choice frictions generally. The following section of the paper describes our dataset,

which provides detailed information on the choices and claims of non-subsidized enrollees in New

Jersey. We observe that consumers consistently make choices that lead to overspending relative

to the lowest-cost plan for them, and that this pattern does not appear to diminish with either

experience in the program or time. Consumers seem to switch plans in response to “shocks” to

their health or current plan characteristics, but are much less sensitive to changes in other plans.

Motivated by these findings, we develop a two-stage consumer decision model for estimation

which accounts for inattention as a source of inertia. We identify the effect of consumer inattention

separately from other potential sources of choice persistence, such as persistent heterogeneous

unobserved preferences, using a detailed panel dataset which documents the choices of new entrants

to the Part D program and then follows each individual’s choices over time. Our identification

strategy is similar to that utilized in recent related papers that investigate the reasons for consumer
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choice persistence in other health insurance programs (Handel (2013),22 Polyakova (2014)36). The

estimates indicate that inattention is an important part of the story and that switchers’ preferences

are affected by the shocks they experience.

Having established the behavior of consumers, we turn to analysis of the supply side of the

Part D marketplace. Using a dataset of nationwide plan characteristics and enrollment, we show

that premiums rise steadily over time and that plans with larger market shares set prices in a

manner consistent with high choice frictions. We also document rapid growth in plan prices that

is not accounted for by changes in costs, and high dispersion in relatively homogenous standard

benefit plans that is indicative of search frictions. We write down the first order condition of a

profit-maximizing insurer and show how insurer bids are related to premiums.

The final section of the paper simulates the evolution of the Part D marketplace under several

different policy-relevant counterfactuals. First we fix plan prices but alter consumer behavior. We

consider a counterfactual of fully attentive consumers who re-optimize their plan choices every year.

We find that consumer overspending would fall by approximately $162, or 12%, in 2007-9. However

this policy does not address the issue that even attentive consumers do not choose their lowest-cost

plan. Our second consumer counterfactual allows the enrollee’s pharmacist to move them from

their chosen plan to one of the 5 lowest-cost options available to them if this switch would save at

least $200. We find that 62% of total three-year over-spending would be removed by this policy.

We then turn to the main contribution of the paper, which is the construction of a counterfactual

that allows the supply side to adjust to the change in consumer behavior. We model plans as

profit-maximizing insurers that take into account the elasticity of demand, including consumers

attentiveness, when choosing a markup over cost. More attentive and price-elastic consumers will

generate lower insurer margins. We use accounting data from the Part D program to estimate firm

costs and then simulate the path of premiums under the counterfactual scenario where consumer

inattention is removed. Removing inattention in the simulations makes the price-setting process

static rather than dynamic; since firms no longer have an incentive to lock-in demand early and

raise prices later, the path of prices should be flatter than in the data. We revise our predictions

of consumer choices given these plan premium changes and use them to predict substantial total

equilibrium savings from this change to the Part D program and to consumers. We estimate

that at fixed prices removing inattention reduces over-spending by $162; when we allow prices to

adjust, this figure increases to $536 over three years. These results indicate that even if consumers

do not choose the lowest-cost plan for them, whether due to information processing costs or for

other reasons, simply prompting them to choose a new plan every year has a substantial effect on

costs through the channel of plan premiums. More aggressive plan pricing strategies also reduce

government program costs by $550 million over three years.

Studies such as ours are crucial both to future policies concerning Part D plan design, infor-

mation provision, and quality regulation, but also to those same issues in health insurance. The

Patient Protection and Affordable Care Act (2010) created health plan exchanges through which

consumers who are not eligible for employer-sponsored insurance can access health insurance cov-
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erage. In this setting consumers again face an array of plans, regulated in quality, and provided

by private insurers. The success of that marketplace, and the use of competition as a means to

control costs and deliver quality, requires policy-makers to make choices regarding the design and

regulation of exchanges. We hope this paper will contribute to making those policy choices.

2 Medicare Part D

Pharmaceutical benefits were not part of Medicare when it was first launched in 1965. However,

the rising share of pharmaceuticals in the cost of healthcare created significant OOP expenditures

for seniors and led to the creation of the Part D program under President Bush in 2006. The

novelty of this government benefit is the fact that it is essentially privatized: insurance companies

and other sponsors compete to offer subsidized plans to enrollees. The sponsor is responsible for

procuring the pharmaceutical treatments and administering the plan.

The Basic Part D plan is tightly regulated in its benefit levels so that there is little option for

carriers to reduce quality and thereby lower costs and attract enrollees. Plans must offer coverage

at the standard benefit level, and each bid must be approved by CMS. The coverage rules include

restrictions on plans’ formularies, including which therapeutic categories or treatments must be

covered. Importantly, plans are mandated to cover “all or substantially all” drugs within six large

drug treatment classes, as well as two or more drugs within roughly 150 smaller key formulary types.

Hence plans cannot lower costs by deciding not to pay for psychiatric drugs, for example. Moreover,

subsidy payments to plans for enrollees are risk-adjusted according to their enrollee’s demographics

and health status. Thus sponsors receive higher payments for sicker enrollees, reducing the incentive

of plans to seek out healthy participants. Furthermore, plans must evaluate their OOP costs using

particular actuarial models. This limits their ability to attract consumers by shifting costs to a

part of the benefit that the enrollee has difficulty evaluating or will pay later.

Enrolling in Part D is voluntary, and one might be concerned that adverse selection would mean

only sick seniors enroll. However, the subsidy for the program is set by legislation to be an average

of 74.5% of costs, so for the vast majority of seniors, enrolling is financially favorable (see Heiss et

al. (2006)25) and most eligible seniors did enroll. In addition, the newly eligible who delay enrolling

(perhaps until they become sick) are required to pay a higher price for coverage when they do join.

Many observers have noted that the Part D choice problem is remarkably difficult and the

empirical literature has confirmed that consumers do not choose well. In 2006 when the program

began there were at least 27 plans offered in each county in the US. Enrollees had to consider

how premiums varied across these plans, forecast their drug consumption in the year ahead and

compare the OOP costs for that set of drugs across plans. In addition enrollees might receive an

adverse health shock during the coming year that would change the set of medications demanded,

necessitating the comparison of an expectation of possible expenditures across plans. Furthermore,

no major program like this existed in the US at the time Part D began, so seniors likely had

no experience attempting to make these calculations. Lastly, most Part D consumers are older
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Americans; outside the dual-eligible and disabled, Medicare eligibility begins at age 65. The Part

D program therefore requires the elderly to carry out a fairly difficult cognitive task.

Part D benefits are provided through two types of private insurance plans. The first is a simple

prescription drug plan (PDP) which provides coverage only for prescription drug costs. In 2006,

10.4 million people enrolled in PDPs. Medicare Advantage plans (MA-PD) function similarly to

an HMO; such plans insure all Medicare-covered services, including hospital care and physician

services as well as prescription drugs. In 2006, 5.5 million people enrolled in MA-PDs. By 2013, of

the 32 million Part D enrollees, almost 20 million were enrolled in PDPs. In this paper, we focus

our attention solely on PDPs and prescription drug coverage.

A FFS Medicare enrollee can choose among all the PDPs offered in her region of the country. A

plan sponsor contracts with CMS to offer a plan in one (or more) of the 34 defined regions of the US.

The actuarial value of the benefits offered by a plan must be at least as generous as those specified

in the MMA legislation. In the 2006 calendar year this included a deductible of $250, a 25% co-

insurance rate for the next $2000 in spending, no coverage for the next $2850 (the “coverage gap”),

and a five percent co-insurance rate in the “catastrophic region”, when OOP expenditures exceed

$3600. As these figures change annually, we report them through 2013 in Table 1. A sponsor may

offer a basic plan with exactly this structure, or one that is actuarially equivalent - no deductible

but higher cost-sharing, for example. Enhanced plans have additional coverage beyond these levels

and therefore higher expected costs and higher premiums.

The way in which sponsors bid to participate in the program is important to an analysis of

competition. Sponsors have more freedom to choose their premium level than they do regarding

details of the OOP price schedule described in the previous paragraph. Sponsors must apply to CMS

with a bid at which each plan they wish to offer will provide the benefits of a basic plan to enrollees.

Any costs of enhanced benefits in enhanced plans must be excluded at this stage. Importantly, the

costs that the plan is meant to include in its bid are those it will expend to administer the plan,

including for example, the cost of drugs, overhead, and profit, and net of any costs paid by the

enrollee such as the deductible or copayments and reinsurance paid by CMS. The bid is supposed

to reflect the applicant’s estimate of its “average monthly revenue requirements” (i.e. how much it

wants to be paid) to provide basic Part D benefits for a well-defined statistical person. CMS takes

these bids and computes a “national average monthly bid amount” (NAMBA). In 2006 the various

plans were equally weighted, but in subsequent years the average slowly transitioned to enrollment

weights. The bid amounts must be paid by a combination of the government and enrollees if the

plan is to be compensated enough to participate in Part D. The government subsidy percentage

(74.5%) is written into the law. CMS uses this number plus an estimate of its reinsurance costs

and other payments to determine how much of the bid the beneficiaries must pay on average. This

is called the beneficiary premium percentage, and in the first year of the program it was 34%1. The

Base Beneficiary Premium (BBP) is then the average bid (NAMBA) times the percentage payable

1The sum of the government subsidy and the beneficiary premium percentage is over 100% because part of the
government subsidy is used for plan reinsurance rather than as a direct subsidy to premiums.
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by consumers. The premium for any given plan is this BBP adjusted by the full difference between

the plan’s own bid and the NAMBA average. If a plan’s monthly bid is $30 above NAMBA, then

its premium will be $30 above the BBP, and similarly if the bid is below the NAMBA (with the

caveat that the premium is truncated at zero).

Table 1: Defined Standard Benefit Parameters, 2006-2013

2006 2007 2008 2009 2010 2011 2012 2013

Deductible $250 $265 $275 $295 $310 $310 $320 $325

Initial Coverage Limit $2,250 $2,400 $2,510 $2,700 $2,830 $2,840 $2,930 $2,970

Catastrophic Theshold (Total) $5,100.00 $5,451.25 $5,726.25 $6,153.75 $6,440.00 $6,447.50 $6,657.50 $6,733.75

Catastrophic Theshold (OOP) $3,600 $3,850 $4,050 $4,350 $4,550 $4,550 $4,700 $4,750

Pre-ICL Coinsurance 25% 25% 25% 25% 25% 25% 25% 25%

Catastrophic Generic-Drug Copay* $2.00 $2.15 $2.25 $2.40 $2.50 $2.50 $2.60 $2.65

Catastrophic Branded-Drug Copay* $5.00 $5.35 $5.60 $6.00 $6.30 $6.30 $6.50 $6.60

Notes: *Enrollee pays greater of copay or 5% coinsurance

Enhanced plans provide coverage that is more generous than the defined standard benefit,

and for which they charge correspondingly higher premiums.2 Plan sponsors offering plans with

enhanced coverage must also offer a basic plan within the same region, and sponsors are prohibited

from offering more than two enhanced plans in a given region. Enhanced plans do not receive higher

subsidies, and any incremental costs are paid entirely by enrollees. The amount of this additional

premium is negotiated between the CMS and the plan sponsor depending on their risk pool.

Two types of beneficiaries do not pay the full cost of Part D coverage. Approximately 6.3

million dual-eligible Medicaid recipients were automatically enrolled in Part D in 2006, as were an

additional 2.2 million Low Income Subsidy (LIS) recipients. Premiums and OOP costs are fully

paid by the government for the former, while the latter receive steep discounts. We omit both LIS

and dual-eligible enrollees from our analysis both because they do not pay the full cost of the plan

they chose and because most do not actively choose a plan but are assigned automatically to one of

several eligible plans. These enrollees may affect market structure, and plan characteristics such as

price, however, because they are assigned only to plans with premiums lying below a benchmark3.

There was a great deal of entry into Part D in 2006 on the part of sponsors, both private

and public. There were 1429 PDP plans offered nationwide in 2006 (though this had fallen to

1031 by 2013); every state had at least 27 PDPs every year during our sample period. Enrollees

select one of these plans during the open enrollment period each November to take effect in the

subsequent calendar year. The program includes many sources of aid for enrollees in making these

decisions. Most importantly, CMS has created a website called “Planfinder” that allows a person

to enter her zip code and any medications and see the plans in her area ranked according to

OOP costs. The website also enables prospective enrollees to estimate costs in each plan under

2This added benefit typically takes the form of either additional coverage in the coverage gap, reduced copayments,
or coverage of certain drug types excluded from normal Part D coverage, such as cosmetic drugs and barbiturates.

3See Decarolis (2012)14 for a detailed discussion of how the subsidy affects insurer conduct and market structure
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three health statuses (Poor/Good/Excellent), to estimate costs in standard benefit plans based

on total expenditures in the previous year, and to filter plans based on premiums, deductibles,

quality ratings and brand names. A Medicare help line connects the enrollee to a person who

can use the Planfinder website on behalf of the caller in order to locate a good choice. However,

conversations with CMS representatives suggest that very few enrollees make full use of the website.

Pharmacies, community service centers, and other advocates offer advice. Survey evidence (Kaiser

Family Foundation (2006),4 Greenwald and West (2007)21) indicates that enrollees rely on friends

and family to help them choose a Part D plan, yet still find the choice process difficult.

3 Literature Review

The introduction of Part D immediately created a literature evaluating outcomes from the novel

program structure. An important early paper suggesting that the elderly make mistakes is that

of Abaluck and Gruber (2011, hereafter AG).2 Using a subset of claims data from 2005 and 2006

and a similar methodology to our own, the authors show that only 12% of consumers choose the

lowest cost plan; on average, consumers in their sample could save 30% of their Part D expenditure

by switching to the cheapest plan. Consumers place a greater weight on premium than expected

OOP costs, don’t value risk reduction, and value certain plan characteristics well beyond the way

those characteristics influence their measure of expected costs. These results have been largely

corroborated by Heiss et al. (2013)24 and Ketcham et al. (2012)30 among others.

Other studies have examined infrequent switching between plans as an explanation for inefficient

consumer choice in the Part D market. In a field experiment, Kling et al. (2012)33 show that giving

Part D consumers individualized information about which plans will generate the most cost savings

for them can raise plan switching by 11% (from 17% to 28%) and move more people into low-cost

plans. Ketcham et al. (2014)31 use administrative data through 2010 to show that switching

increases when more plans are available and that people become more responsive to large increases

in their plans’ costs over time. Polyakova (2013)36 estimates a model of plan choice featuring

consumer switching costs and adverse selection, with unobservably riskier beneficiaries choosing

more comprehensive coverage. She uses the model to simulate the effect of closing of the coverage

gap on adverse selection and finds that switching costs inhibit the capacity of the regulation to

eliminate sorting on risk. The presence of switching costs and consumer choice frictions has been

documented in other health insurance markets by Handel (2012)22 among others.

There is a great deal of research in both psychology and economics literatures on consumer

search and choice. Iyengar and Kamenica (2010)29 provide evidence that more options result in

consumers making worse choices. In contrast to the prediction of a standard neoclassical model,

more choice may not improve consumer welfare if it confuses consumers and leads them to seek

simplicity. A large literature studies the importance of information processing costs to explain

deviations from the choices expected of computationally unconstrained agents (see Sims (2003)39

and Reis (2006)37 for examples). Models of consumer search with learning, where each consumer
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uses the observed price of a single product to infer the prices likely to be set by other firms, also

indicate that consumers may incur excessive costs by searching either too little or too much (e.g.

Cabral and Fishman (2012)9). Agarwal et al.(2009)3 show that the ability to make sound financial

decisions declines with age. Since Part D enrollees are either disabled or elderly, and seem likely to

experience cognitive costs of processing information, it may be reasonable to expect more mistakes

from Part D consumers than from the population as a whole. These types of results have led

some critics of Part D to call for CMS to limit the number of plans available to seniors. On

the other hand, using data on private-sector health insurance, Dafny et al. (2013)13 show that

most employers offer very few choices to their employees and that employees would greatly value

additional options. Moreover the results from Stocking et al. (2014)40 suggest that merely limiting

the number of available plans would not be sufficient, as this would limit competition and lead to

higher prices. Thus while the difficulty of choosing an insurance plan may lead consumers to make

mistakes, it is not clear that limiting the range of options is the correct policy response.

Other authors have found evidence for inattention or lack of comparison shopping in complex

and infrequent purchase decisions. In the auto insurance market, Honka (2014)27 finds that con-

sumers face substantial switching costs, leading them to change plans infrequently, and that search

costs lead those who switch to collect quotes from a relatively small number of insurers. Sallee

(2014)38 uses the idea of rational inattention to explain why consumers under-weight energy effi-

ciency when purchasing durable goods. Busse et al. (2010)8 find that consumers are inattentive

and use a limited number of “cues” such as price promotions and mileage thresholds to evaluate

auto purchases rather than actual prices and qualities. Hortaçsu et al (2015)28 examine consumer

choices and switching behavior among retail electricity suppliers in Texas and conclude that high

search frictions lead to a high market share for the incumbent supplier.

Several prior studies have considered firm behavior in the presence of choice frictions. Ericson

(2012)18 and Ericson (2014)19 are the primary papers in the literature that analyze the insurer’s

problem in the face of Part D consumers who do not choose perfectly. These papers argue that

consumer switching costs, which are exacerbated by a default of automatic renewal, lead firms

to enter with low prices and raise prices rapidly over time (as in Klemperer (1987)32), gradually

replacing their highest-priced plans with cheaper plans (cycling). Decarolis (2012)14 and Decarolis

et al (2014)15 study the supply side of the Part D market paying particular attention to the

interaction of low-income subsidy and other enrollees. The “invest then harvest” pricing dynamic20

induced by consumer switching costs and other choice frictions has also been studied empirically in

other markets, e.g. by Miller (2014)35 in the case of Medicare Advantage, Cebul et al (2011)11 in

commercial health insurance, and Dube, Hitsch and Rossi (2008)16 in consumer product markets.

4 Data

Our primary data source, provided by the Centers for Medicare and Medicaid Services (CMS),

contains information on prescriptions and plan choices for Part D enrollees from New Jersey in
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2006-9. Our data consists only of enrollees who did not have LIS status at any time and who were

enrolled in stand-alone PDPs, rather than MA plans. Limiting the study to these enrollees reduced

the population size from all New Jersey enrollees in PDP plans, of which there were between 527,000

and 545,000 from 2006 to 2009, to between 300,000 and 325,000 over the same time period4 . From

this subpopulation we drew a random sample in 2006 and a random sample of new enrollees in

2007-9 that added up to 250,000 enrollees in total. We limited the sample to unsubsidized PDP

enrollees in order to focus on a setting where consumers had to pay the listed price for every plan

and where plans had relatively standardized quality (not the case for MA-PD plans which include

medical as well as pharmacy benefits). Details of the data cleaning procedure are provided in

Appendix A.

Appendix Table A1 shows the number of enrollees in our dataset each year, ranging from 127,000

in the first year of the program up to 160,000 in 2009. Just over 60% of enrollees are female, and

about 90% are white. The breakdown by age group is also shown in the table. Over our sample

period the entering cohort, ages 65-69, grows in size from under 20% to almost 28% of the sample.5

Because we have data from four years of the program we can study the behavior of enrollees who

have different numbers of years’ experience in Part D. About 10% of each cohort leaves the program

each year, and between 27,000 and 30,000 new enrollees enter each year.

The quality of PDP plans nationally, as measured by the proportion of the 117 most-commonly

prescribed chemical compounds covered by the plan, rises over time from 51% to 80%. Appendix

Table A2 summarizes the variation in this measure of quality across plans and over time. When

weighted by enrollment we see that consumers disproportionately choose plans that include more

treatments. The enrollment-weighted average coverage begins at 59% and rises to 82% by 2009.6

For each enrollee, we estimate counterfactual costs in each plan (after discarding very small

plans). Our methodology, described in detail in Appendix B, combines elements of the techniques

used in AG (2011)2 and Ketcham et al. (2012).30 First we asked a physician to classify drugs

as either chronic (taken regularly over a prolonged period) or acute (all other). We assume that

chronic drug consumption is perfectly predicted by the patient and calculate the total underlying

drug cost for each enrollee of the observed chronic drug prescriptions. For acute drugs, as in

AG (2011)2 we assign each individual to a group of ex-ante “similar” individuals and assume

that the consumer expects to incur a total underlying drug cost equal to the median within her

group. Following Ketcham et al. (2012),30 we then apply each plan’s coverage terms (deductible,

copayment or coinsurance rate on each tier, gap coverage) to each individual and use his or her

predicted total (chronic plus acute) drug costs to predict total OOP spending given these terms.

4We chose New Jersey because it has a very low percentage of MA-PD enrollees and the total number of enrollees
that met our criteria was not far above the CMS cutoff of 250,000.

5It may be that over time employers and their about-to-be-retired employees no longer make other arrangements
for pharmaceutical coverage, but build in to the employee benefit that he or she will use Part D. An evolution of this
type would cause the flow rate into Part D at retirement to increase over time.

6One other dimension of quality that consumers might care about is customer service. CMS has a star rating
system for enrollees to rate plans (with 3-5 stars available in each of 11-19 categories). Consumers appear to prefer
higher-rated plans. The method used to assign star ratings changed dramatically between 2007 and 2008, making
comparison between the 2006-2007 and 2008-2009 period difficult.
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Table 2: Switching by Demographic Group

2006-07 2007-08 2008-09

Whole Sample 19.08% 24.07% 8.16%

Female 20.86% 26.27% 8.54%

Non-White 21.68% 26.94% 8.83%

Income 2006-07 2007-08 2008-09

1st Quartile (low) 24.84% 30.60% 9.00%

2nd Quartile 19.84% 24.76% 8.18%

3rd Quartile 18.01% 23.20% 8.22%

4th Quartile (high) 13.99% 18.49% 7.43%

Age 2006-07 2007-08 2008-09

Under 65 29.28% 33.23% 11.32%

65-69 12.78% 18.08% 7.68%

70-74 14.71% 20.03% 7.55%

75-79 17.03% 22.33% 7.55%

80-84 20.65% 25.20% 7.64%

Over 85 27.45% 33.37% 9.80%

Notes: Percent of enrollees switching plans in NJ data, by year and demographic group.

This procedure yields estimates which closely track those we observe in the data for chosen plans.

While we expect there to be very little measurement error in the chronic OOP spending variable,

since this is derived from observed utilization, there may be some measurement error in the acute

OOP spending variable. Hence in much of the analysis we treat these variables separately.

If consumers do not like an aspect of their plan, they can switch in the open enrollment period.

Table 2 reports summary statistics on enrollees who switch plans. Our data allow us to analyze

three opportunities for consumers to switch. From 2006-7 a total of 19% of enrollees switch plans7.

In 2007-8 a total of 24% of consumers switch plans. By 2008-9, however, active switching drops

considerably, to 8%. In every year, women and non-whites are more likely to switch plans than

other enrollees. The probability of switching increases monotonically with age. We create a group

of those under-65 but eligible for Medicare due to disability. This group is similar in switching

behavior to the 85+ group. Switching probability also decreases monotonically with income.

5 Analyzing the Behavior of Part D Enrollees

5.1 Consumer Overspending and Switching Behavior

We begin our investigation of the behavior of Part D enrollees by considering their overpayment

in their chosen plan given the other plans that are available to them. For the moment we refer

to overspending as consumer error or mistakes when choosing a plan. However we note that, if

7There are consumers who “passively” switch in the sense that the firm retires their plan and automatically moves
them into a different plan run by the same firm, and we do not count these as switches.
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Table 3: Overspending by Part D Cohort

Full Sample New Enrollees 2006 Enrollees

Count $ Error % Error Count $ Error % Error Count $ Error % Error

$425.37 37.28 $425.37 37.28 $425.37 37.28
2006 127,654 ($369.50) (22.38) 127,654 ($369.49) (22.38) 127,654 ($369.49) (22.38)

$320.08 29.61 $299.03 30.12 $325.36 29.48
2007 141,897 ($301.97) (18.59) 28,460 ($313.16) (19.25) 113,437 ($298.87) (18.41)

$378.72 32.83 $331.88 30.74 $387.50 32.92
2008 151,289 ($348.80) (17.98) 26,802 ($346.83) (18.91) 99,742 ($346.24) (17.49)

$436.96 36.01 $371.78 32.02 $459.19 37.01
2009 159,906 (359.44) (16.49) 31,275 ($371.34) (18.44) 84,258 ($353.25) (15.61)

Notes: Predicted overspending (or error) by year. “%” is percent of enrollee’s total OOP spending (including
premium) in observed plan. Standard deviations in parentheses.

consumers have preferences for non-price characteristics, these may lead them to choose a plan

other than the cheapest available without corresponding to errors in choice. We return to this issue

in the discussion of our demand model and simulations below.

We define overpayment as the expected OOP payment (including premium) in the chosen plan

less the minimum expected OOP payment in any other plan in the choice set. Table 3 summarizes

the level of overspending by year in our sample8. In 2006, the first year of the program, the

average amount paid above the minimum expected OOP payment available to the enrollee, including

premium, was $425.37, or 37% of the OOP payments. The percent and dollar amounts both fell in

2007 but then increased in both 2008 and 2009, to a level of $436.96 or 36% of total spending in the

final year of our sample. These numbers mask underlying variation for new enrollees compared to

those with experience of the program. New enrollees’ overspending was lower in 2008 and 2009 than

that of continuing enrollees, reaching a level of $371.78 or 32% in 2009. 2006 enrollees (those who

first entered the program in 2006 and remained in it throughout our sample) had above-average

errors in every year relative to the full sample; their overspending in 2009 was $459.19, or roughly

the same percentage of total cost (37%) as in 2006 despite their long exposure to the program.

This suggests that overspending is not declining over time.

Part of the overspending by Part D enrollees is a result of failing to choose a new plan each year.

Column 1 of Table 4A shows that in every year, consistent with Ketcham et al. (2012), overspending

is on average lower for consumers who have just switched plans. Moreover, overspending for the

group switching decreases slightly over time, while that for non-switchers increases. Columns 2-5

of the same table show that switchers on average would have had higher overpayment than non-

switchers, and a larger increase in overpayment year-on-year, if they had remained in the same

plan. Table 4B considers the fraction of enrollees spending within 10% or 25% of their estimated

optimal-plan cost and shows much the same pattern. By 2009, over a quarter of switchers spent

less than 110% of their cheapest-plan cost, while only 4% of those not switching achieved this.

8We include both chronic and acute payments in our measure of OOP spending; the qualitatitive results change
very little when we exclude acute spending.
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Table 4A: Overspending by Switch Decision

% Error, Next- % Error, Next- ∆% Error, ∆% Error, ∆% Error, Chosen
Switchers Year Chosen Plan Year Same Plan Chosen Plan Same Plan Relative to Same

2006 27.97% 35.01% -16.66% -9.62% -7.04%

2007 28.09% 42.98% 2.35% 17.24% -14.89%

2008 25.83% 39.75% -4.12% 9.80% -13.92%

% Error, Next- % Error, Next- ∆% Error, ∆% Error, ∆% Error, Chosen
Non-Switchers Year Chosen Plan Year Same Plan Chosen Plan Same Plan Relative to Same

2006 29.81% 29.81% -5.55% -5.55% 0.00%

2007 35.00% 35.00% 4.07% 4.07% 0.00%

2008 37.07% 37.07% 6.03% 6.03% 0.00%

Notes: Predicted percent error in observed chosen plan, and under scenario where enrollee stays in previous-
year plan, for both switchers and non-switchers.

The disparity in overspending between switchers and non-switchers appears to be growing over

time. By 2009, around 62,000 enrollees present in all four years, or just under half the original

cohort (not adjusting for attrition) had never picked a new plan. While switchers continued to

overspend even after switching plans, enrollees who had never switched overspent by more. By

2009 they spent on average about 40% more than they would in their lowest-cost plan; only 2% of

them were within 10% of their lowest-cost plan. Average overspending increases monotonically in

years since last plan election. This suggests that the failure of consumers to switch plans is one

important factor contributing to overspending.

We do not find evidence that over-payment by non-switchers is related to over-insurance, as

would be the case if risk aversion was causing the observed overspending. Appendix Table A3

shows that the percentage of enrollees’ total costs covered in the gap is much higher for switchers

than for non-switchers, while premiums are on average lower for switchers. Thus higher coverage is

chosen by people who overspend by less, rather than more, on average.9. We also run cross-sectional

regressions of percent overspending each year on plan and enrollee characteristics. The results are

set out in Appendix Table A4. Having switched plans is negatively and significantly related to

overspending, and whether or not we control for having switched plans, gap coverage is negatively

related, and premiums and deductibles positively related to overspending conditional on observed

OOP costs. Overspending seems not to be associated with over-insurance (above the level actually

used ex post and therefore reflected in observed OOP spending).

5.2 Who Switches and Why?

We have shown that switchers on average reduce their overspending in the following year. The

next key question is why people do not switch more frequently. If we conservatively define switching

9In addition, this increased gap coverage does not come at the expense of reduced coverage in the pre-ICL phase (the
main coverage phase), as the percent of covered costs is actually higher in this phase on average for switchers as well.
Note that the coverage figures in Appendix Table A3 summarize the percent of costs covered for consumers enrolled
in the relevant plan, not for the statistical average enrollee used for the CMS actuarial equivalence calculations.
The data imply, not that switchers choose plans that provide better coverage at a lower cost for everyone, but that
switchers’ plans provide more coverage for their particular enrollees than do non-switchers’ plans.
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Table 4B: Proportion Within X% of Lowest-Cost Plan

10% Whole Sample Switched Past Year Didn’t Switch

2006 14.81% - -

2007 15.67% 15.00% 16.04%

2008 10.39% 18.09% 6.50%

2009 7.67% 27.81% 4.05%

25% Whole Sample Switched Past Year Didn’t Switch

2006 28.06% - -

2007 42.82% 50.16% 40.85%

2008 35.27% 44.23% 30.83%

2009 21.74% 46.99% 17.12%

Notes: Estimated proportion of sample within 10% and 25% of spending in lowest-cost plan, for full sample
and separately for switchers and non-switchers.

as the optimal choice whenever a consumer’s current plan is expected to cost more than 125% of

the cheapest plan’s cost next year, then the optimal choice for about 83% of enrollees in 2008 was

to switch plans. However, less than a tenth of that number actually switched.

One potential explanation for this behavior, which has been explored in numerous papers in

this and other settings, is that consumers face switching costs which lead to inertia. If switching

costs were important, the consumers choosing to switch would be those for whom the value of

switching was high enough to compensate them for these costs. Our data appear consistent with

this idea. On average over all years and plans, switchers would overspend by $524 if they remained

in their current plan, while non-switchers would overspend by $338 on average10. However, a

decomposition into five categories of future overspending (overspending in the current year, the

increase in the current plan’s premium and in its predicted OOP cost (TrOOP), and the reduction

in the lowest-cost plan’s premium and in its predicted TrOOP) tells a somewhat different story11.

This decomposition, shown in Appendix Table A5, is illuminating. Almost 70% of the difference

between switchers’ and non-switchers’ overspending if they remain in the current plan comes from

changes in their current plan’s premium12. In other words, a key distinguishing feature of switchers

is not just that their value of switching plans is high, but that they also receive a signal of this fact

in the form of a large increase in their current plan’s premium.

Given these findings, we propose a slightly different explanation for the infrequent switching

observed in the data. Consumers may be inattentive and in the absence of highly visible “prompts”

may simply roll-over their current plan choice. We argue in Section 6.1 that this behavior can

be generated by a model where consumers have a cost of obtaining and processing information

10We exclude enrollees who enter or exit the program the following year from this analysis.
11Throughout the paper, TrOOP refers to “true out-of-pocket costs”, or OOP costs excluding premium, while OOP

is the equivalent figure including premium.
12Switchers also have larger errors in the current year than non-switchers. Their OOP spending the following year

falls in both current and lowest-cost plans, consistent with enrollees who have experienced a health shock reverting
back to normal the following year
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regarding alternative plan options and choose to incur this cost only when prompted by “cues” that

are freely observed. For now we investigate whether the data are consistent with this intuition.

Recall that overspending is a function of three variables: consumers’ current plan characteristics,

the characteristics of their lowest-cost plan, and their drug consumption. We consider whether the

decision to switch plans places more weight on own-plan and personal characteristics, which are

readily observable, than on optimal-plan characteristics, which require costly search.

We construct three simple indicators for “shocks” to expected spending that depend only own-

plan and personal characteristics. We define a “premium shock” as an increase in own-plan premi-

ums the following year of greater than the weighted median increase across all consumers (about

$4 in 2007, $7 in 2008, and $4.50 in 2009). A “coverage shock” is defined as occurring when either

(a) the consumer’s current plan drops coverage in the coverage gap or (b) the plan moves from

the defined standard benefit pre-ICL (before hitting the coverage gap) to a tiered system in that

region13. Third, we define enrollees as receiving an “acute shock” if they are in the top quintile

of total spending and also the top decile for either percent spending on acute drugs or deviation

between predicted and observed spending in the current year. This shock is meant to capture unan-

ticipated short-term illness, which may prompt the consumer to scrutinize her choice of insurance

while also serving as signal of high expected future spending. The distribution of these shocks in

the population and their correlation with the decision to switch plans are shown in Table 5.14 These

three shocks appear to explain switching behavior well; those who receive no shocks switch very

infrequently, only 4% of the time, while those who receive multiple shocks are much more likely to

switch plans15. Almost all switchers (87%) receive some shock in the year of the switch.

Appendix Table A6 shows the results of probit regressions of decision to switch plans on own-

plan, low-cost plan and personal characteristics. If consumers prefer low premiums and high cov-

erage but are inattentive, we expect them to switch more frequently when their current plan raises

premium or reduces coverage than when other low-cost plans reduce premium or increase coverage.

If they switch in response to acute shocks we expect those with high OOP spending to switch. The

estimates in Table A6 are consistent with this intuition. In all specifications enrollees with high

OOP spending and those with high premiums and deductibles and without gap coverage switch

more than other consumers. Model 1 indicates that consumers’ switching probability increases

when their own plan’s premium rises or when their own plan removes gap coverage. Model 2 adds

the equivalent variables for the average of the five lowest-cost plans and shows that, to the extent

changes in other-plan characteristics affect switching at all, the correlations run in the “wrong”

direction. In particular it seems that consumers are more likely to switch when low-cost plans

13Recall that basic plans must meet a coverage standard and be actuarially equivalent to the tariff set out in the
law. The declines we label as “shocks” are declines in one part of the benefit schedule, which we treat as appropriate
measures of rapidly increasing premiums and eroding (or increasingly complex) coverage on some dimension.

14The acute shock has a cross-year correlation of around .5, which is considerably lower than the cross-year corre-
lation of other measures of sickness. Total spending, total supply, and acute supply each have a cross-year correlation
between .8 and .9, implying that the acute shock is substantially less persistent than underlying health status.

15These findings are corroborated by Hoadey et al. (2013),26 who find that premium increases and removal of gap
coverage are the best predictors of switching behavior.
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increase their premiums. Changes in low-cost plans’ gap coverage have no significant effect16

Appendix Table A7 presents evidence that consumers who switch select plans with character-

istics that vary depending on the shock that prompted the switch. Consumers who receive acute

shocks, which we can think of as signals of future ill-health, tend to prefer higher coverage condi-

tional on switching than those who do not. The same is true of those receiving coverage shocks.

Consumers facing premium shocks tend to choose plans with lower premiums. This suggests that

consumers treat shocks to their health status and plan characteristics not only as prompts to switch

but also as “cues” to search for particular plan attributes, as in Busse et al. (2012).7

Table A7 also provides evidence on whether the small number of consumers who switch despite

not experiencing shocks are more sophisticated than those who switch due to highly visible prompts.

In fact these consumers are less likely to choose a plan whose costs are within 25% of the lowest

available level than are consumers who switch following a shock. It may be appropriate to think

of consumers who switch without being prompted by an observed shock as responding to some

unobserved shock to their tendency to switch, such as a friend or relative advising them to do so.17

6 A Model of Consumer Behavior

6.1 A Framework for Consumer Inattention

We outline a model under which the consumer inattention we observe in the data is caused

by costs of processing information. Our framework draws from the models of rational inattention

developed by Sims (2003)39 and Reis (2006)37 and from the models of consumer search and learning

of Cabral and Fishman (2012)9 and Honka (2014)27 among others.

Consider a model with the following assumptions. A risk-neutral, myopic consumer i may

choose from a set of plan options j = 1, ..., J . The consumer has a limited capacity for processing

information: acquiring and processing the data needed to understand the characteristics of all plans

in the choice set has a cost ṽi,t = f(Zi,t), where Zi,t are consumer characteristics such as age and

sickness level which could affect, for example, the likelihood of a younger family member helping

with the plan choice process. The consumer’s utility from plan j if she was fully informed of its

characteristics in period t would be

ui,j,t = βXi,j,t + γci,j,t + εi,j,t (1)

where ci,j,t is the OOP cost paid by the consumer, Xi,j,t are other plan characteristics relevant to

the choice and εi,j,t is an i.i.d. shock known to the consumer but not to the researcher18.

16The results are insensitive to using either the lowest-cost plan available or an average of the 5 lowest-cost plans.
17We also consider whether consumers who switch plans on a regular basis are more sophisticated than other

consumers. A small number of consumers (less than 4% of the sample) choose a different plan in every year of our
data. They are enrolled in lower-cost plans on average in 2009 than the population as a whole in 2006. However,
rather than being particularly sophisticated dynamic optimizers, it seems that these consumers are simply unlucky
in terms of the number of shocks they receive over time. Virtually the entire segment receives a premium shock each
year, and these consumers are also three times as likely as other consumers to receive acute shocks.

18We break out ci,j,t into its component parts in the model for estimation; it is condensed to a single variable in
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At the end of year t each consumer observes her own plan k’s cost in the following year; this is

sent to her in the mail and no processing cost is involved in understanding this information. After

receiving this mailing she chooses whether to incur cost ṽi,t in order to observe all plans’ terms and

choose the plan that maximizes her utility, or whether to incur no cost and remain in plan k the

following year. Under these assumptions the consumer will choose to pay the cost ṽi,t provided the

expected benefit is greater than the cost:

E

[
max
j=1...J

(ui,j,t+1) |X̄i,k,t+1

]
− ui,k,t+1 > ṽi,t = f(Zi,t). (2)

where X̄i,k,t+1 are the characteristics (Xi,k,t+1, ci,k,t+1, εi,k,t+1) of plan k in period t + 1 and the

expectation is taken over the characterstic she searches for: cost ci,j,t+1 for all plans j 6= k.

The literature on consumer search and learning indicates that, under these assumptions, the

consumer may choose to default into her current plan until she experiences a sufficiently large shock

to her own plan’s cost or her own health. Cabral and Fishman (2012),9 the study most relevant for

application, show that observing a high price or a large price increase has two effects: it increases

the expected benefit from search (it’s likely that a better deal can be found) but also reduces it

since the consumer assumes firm prices will be correlated. Under reasonable assumptions, the first

effect dominates, and a large increase in price prompts the consumer to search for alternatives.

A shock to the consumer’s health may increase the probability of search and switching for two

reasons. First it may decrease ṽi,t, for example by prompting the senior’s relatives to help evaluate

the plans in her choice set. It could alternatively increase the variance of the consumer’s expected

distribution of costs ci,j,t+1. Sallee (2014)38 shows that, in a similar model where consumers choose

durable goods based partly on their expected lifetime fuel costs, an increase in the variance of the

cost distribution (uncertainty) implies an increase in the expected benefit from search.

6.2 Model for Estimation

Having outlined a framework under which costs of processing information can generate the

consumer inattention we observe in the data, we move on to specify a simple two-stage model

of consumer decision-making for estimation. Consistent with the framework just developed, we

abstract away from risk aversion and learning and assume that consumers are myopic in their

choice of plans. We distinguish between two possible unobserved sources of choice persistence:

persistent variation in unobserved preferences and inattention. We account for inattention using

the following simple framework. We assume that each consumer ignores the plan choice problem

until hit by a shock to the OOP costs of her current plan or to her health. These shocks are assumed

to have additively separable effects on her decision to re-optimize her choice of plan. If she chooses

to re-optimize, she makes choices according to a utility equation to be estimated. We will use

this simple decision model to predict the behaviors that will affect the optimal plan strategies:

this section for simplicity of exposition. The utility equation may not be “rational” in the sense that agents weight
premium and copays equally, for example. However we assume that γ < 0.
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consumers’ decisions to switch in response to different changes in the market and in their own

health and the types of plans to which they switch after each type of shock. Then we will use the

estimates to explore how firms respond to this consumer behavior.

Specification As in section 5.2, we consider three shocks to the consumer’s own characteristics

that could prompt her to incur the costs of search: two types of bad news concerning her current

plan’s characteristics for next year (the plan’s premium will rise or coverage will fall noticeably)

and an unusually high OOP payment driven by a health shock. As before we define a shock to

premiums in the enrollee’s current plan (vp) as a premium increase of more than the weighted

median increase in the relevant year. A coverage shock (vc) is again defined as the plan dropping

coverage in the coverage gap or moving from the defined standard benefit to a different (tiered)

system in the Pre-ICL phase. An enrollee is defined as having an acute shock (vh) when she is in

the top quintile of total drug cost as well as the top decile of either percent spending on acute drugs

or deviation between predicted and observed spending. Additionally, a consumer i could simply

receive a random shock that causes awareness, for example from a younger relative visiting the

consumer and reviewing her plan choices. We label this shock ve. The sum of these shocks creates

a composite shock received by consumer i at time t:19

vi,t = vi,p,tβ1 + vi,c,tβ2 + vi,h,tβ3 + vi,e,t (3)

where the weights β allow the different shocks to have different effects on the propensity to search

(for example shocks to premiums may increase the likelihood of switching more than other shocks).

We assume that the random shock vi,e,t is distributed IID Extreme Value Type 1.

When the composite shock vi,t is large enough, i.e. when:

vi,t ≥ ṽi,t, (4)

then the consumer becomes aware and decides to re-optimize her plan election. Here ṽi,t is a

function of consumer demographics related to health status and sensitivity to changes in plan

characteristics: age groups, income quartiles, gender and race. Heterogeneity in search costs is an

important part of the model and the data, as can be seen for example in Table 220. We also include

year fixed effects in ṽi,t to account for differences in the environment across our three different

enrollment periods. We expect that the amount and nature of advertising and of pharmacy and

government outreach affected consumer attentiveness, and we expect these factors varied over time.

The second stage of the model examines how consumers who have decided to re-optimize choose

whether to switch and to which plans. We assume that if equation (4) holds then consumer i makes

19In a comparable analysis of the Texas retail electricity market, Hortaçsu et al (2015)28 use bill size, brand dummies
and seasonality to explain awareness.

20Note that ṽi,t should not be interpreted as a search cost since we have not fully specified a first stage in which
the consumer re-optimizes when the expected benefit of search is greater than its cost. However it has a similar
interpretation: it is the level above which shocks to the consumer’s attention will lead to search.

19



a choice from the full choice set (including her current plan) based on the following utility from

choosing plan j in year t:

ui,j,t = ˆTrOOP i,j,tβ1 + Premiumj,t[β2,1 + vi,p,tβ2,2] +Dedj,tβ3,1

+ Gapj,t[β4,1 + vi,c,tβ4,2 + vi,h,tβ4,3] +Xj,tβ5,i + εi,j,t

= δi,j,t + εi,j,t (5)

where expected OOP spending excluding premium ( ˆTrOOP i,j,t) is calculated using the method

described in Section 4, Premiumj,t and Dedj,t are annual premiums and deductibles and Gapj,t

is an indicator for any coverage in the gap. Xj,t are non-price plan characteristics including an

indicator for enhanced plans and brand fixed effects (defined at the carrier rather than the plan

level) and εi,j,t is an IID extreme value type 1 error term (assumed to be independent of vi,e,t). In

the reported specifications we use chronic TrOOP as our measure of OOP costs, since acute TrOOP

may be measured with error while this is unlikely to be the case with chronic TrOOP.21 Note that

a consumer who could calculate expected costs perfectly would value a given change in TrOOP and

premium equally, as they are both measured in dollars. We allow consumers prompted to search

by shocks to premiums to place additional weight on premiums. Consumers experiencing shocks

to coverage, or acute shocks, can place additional weight on the plan offering gap coverage.

We model persistent unobserved preference heterogeneity by including normally-distributed

random coefficients β5,i on fixed effects for the three dominant brands and on the enhanced plan

fixed effect. The model therefore allows choice persistence (such as a lack of switching away from a

particular plan even when other plans reduce their premiums) to be caused either by heterogeneous

preferences (some consumers have a very strong valuation for this brand that makes it worthwhile

to remain enrolled even at a high relative price) or by inattention (consumers who are not affected

by any of the previously-defined shocks are unaware of other plans’ premium reductions). One of

our objectives in estimating this equation is to distinguish between these two effects.22

The model is estimated using a random coefficients simulated maximum likelihood approach

similar to that summarized in Train (2009).42 The likelihood function for each enrollee is predicted

for a sequence of choices from entry into the Part D program until the end of our data panel.

Details of the methodology are provided in Appendix D.

Identification The intuition for identification of this model is now fairly standard in the literature

(see for example Handel (2012)22 and Polyakova (2013)36). We use the panel structure of the

data, which implies that we can track individuals making consecutive choices over several years,

21In robustness tests we show that including acute TrOOP as a separate input to the utility equation has very little
impact on the results.

22We choose not to model a third possible source of choice persistence: the existence of switching costs. While this
has been a focus of some previous papers on health insurance markets (e.g. Handel (2013), Polyakova (2014)), we
argue above that inattention is likely to be a more important explanation for consumer inertia in our data. Also the
distinction between the two effects is not of first-order interest for our question. We focus on identifying the effects
of inattention separately from persistent unobserved preferences, choosing not to attempt to also distinguish between
the effects of asymmetric search costs (inattention) and switching costs.
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together with the fact that new enrollees in the program enter the data in every year. These

new enrollees are assumed to choose without inertia; we also assume that the normally distributed

random coefficients fully capture the unobserved heterogeneity in their preferences. The parameters

governing the unobserved preference heterogeneity (the distribution of the random coefficients) can

therefore be estimated from the choices made by new enrollees in the program. Other determinants

of the decision to switch, most importantly the parameters governing inattention, are identified

from consumers’ observed sequences of choices in the years following entry. The initial conditions

problem (e.g., Heckman (1991)23) does not arise in our data because we observe the first Part D

choices for all individuals in the estimation sample.

Endogeneity issues are of course also relevant for identification. A classic endogeneity problem

would occur if a plan’s additional coverage was valued in ways we did not observe and this additional

coverage was correlated with the plan’s premium. An insurer with an unobservably good plan that

wanted to charge a higher price could submit a higher bid to CMS and this would show up as a

higher premium. However, the institutional features of the Part D setting reduce this endogeneity

concern considerably. Because plans must meet the CMS’ actuarial standards for coverage for an

average statistical person, insurers are not permitted to offer plans with the types of unobservable

quality typical in other differentiated products markets. What consumers purchase is a tariff; any

given treatment does not vary in its characteristics across plans, and coverage is regulated by

CMS. Hence the most obvious way to differentiate in an unobservable dimension is via customer

service, which anecdotally does not appear to be a very important force in this market.21 The

typical unobserved quality dimension correlated with premium, as in Berry (1994),6 is therefore

unlikely to play a major role in our data. One possible exception is the additional coverage offered

by enhanced plans, which is subject to less tight regulatory scrutiny than that of basic plans.

We include enhanced plan fixed effects in all specifications and add enhanced-year interactions to

account for time variation in the quality of enhanced plan coverage in some specifications.

A second possible endogeneity concern is the fact that we predict consumer OOP payments using

observed chronic drug utilization and demographic and utilization types, as described in Appendix

B. If there is some error in this calculation, we may predict OOP costs that differ from consumers’

own predictions, implying that consumers may perceive some plans to be more attractive than is

indicated by our OOP spending variable. In this case the error may be correlated with the premium,

leading to downward bias in the premium and premium shock coefficients. For example, if a plan

offers a low-priced version of a chronic drug, many consumers might choose to switch to it if they

enroll in that plan. Our OOP cost measure assumes that consumers do not switch chronic drugs

so we would systematically over-estimate OOP costs for that plan. If premiums are increased to

account for this “unobserved generosity”, the estimated premium coefficient will be biased towards

zero. We address this concern by including carrier fixed effects in all specifications, as formularies

are almost always fixed across plans within a carrier.
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6.3 Demand Estimates

The estimated coefficients and standard errors for four separate demand specifications are shown

in Table 6; the means and standard deviations of the variables used in estimation are reported in

Appendix Table A8. Model 1 uses a simple specification where only chronic TrOOP, premium,

brand fixed-effects and an enhanced plan fixed effect, with random coefficients as specified above,

are included in the utility equation. We add variables incrementally in the following columns; Model

4 is our full specification. In all models the switch parameter estimates indicate that consumers

are more likely to switch plans if they receive premium or coverage shocks or have an acute shock

to their health. Women, nonwhite, lower-income and older enrollees have lower threshold values

to trigger awareness, and hence are more likely to switch. These results are consistent with the

probit regression estimates in Appendix Table A6 and also with intuition. Overspending mistakes

are more costly for older enrollees who spend a higher fraction of their income on drugs and for

lower-income enrollees for whom the excess spending is more burdensome. For this reason they

tend to require smaller prompts in order to re-optimize their choice.

The third panel of Table 6 sets out the estimated choice coefficients. As noted in the previous

literature, if consumers are risk neutral and perfectly predict their expected OOP costs, we expect

the coefficients on TrOOP and premium to be negative and approximately equal in magnitude.

Consistent with AG,2 our estimates do not satisfy this criterion. Consumers are estimated to place

a much greater weight on premiums than on chronic TrOOP.23. If we ignore shocks for simplicity,

the model 4 estimates imply that a one-standard-deviation (or $241) increase in premium for a

single plan, holding all other plans’ characteristics fixed, generates an average reduction in the

probability that the plan is chosen of 8.5%, while a one-standard-deviation increase in chronic

TrOOP, which is a much larger dollar increase of $935, leads to a 7.6% reduction in probability

of choice. Consumers also put significant weights on both gap coverage and deductibles. Model

4 implies that, for plans offering coverage in the gap, eliminating that coverage has an equivalent

effect to a $252 increase in annual premium, a $915 increase in the deductible, or a $1211 increase in

chronic TrOOP. We note that the significant coefficients on gap coverage and deductibles are likely

due to these variables absorbing the effect of expected acute OOP costs which are not included in

these specifications. They may also be evidence of consumer risk aversion24.

The random coefficient estimates are intuitive. All three large brands have positive and sig-

nificant means.25 Those for large brands one and two, the largest in the sample, are particularly

high and have variances of the same order of magnitude as the means. The third large brand has

a relatively low premium which helps rationalize its high market share; its brand fixed effect has a

23Evidence for consumers over-weighting premiums and other plan variables relative to expected costs in other
insurance markets is presented in Handel (2012).22

24Acute TrOOP is excluded from the main specifications because of measurement issues: it is generated from
an average within a group defined by demographics and utilization and thus does not pick up private information
regarding idiosyncratic cost variation within the group, which is likely to be an important factor in consumers’ choice
of plan. Appendix Table A9 shows that when we add acute TrOOP to models 1 and 2 its coefficient has the wrong
sign but most of the other estimates change very little.

25Our data agreement prevents us from specifying the names of the insurers in our data.
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Table 6: Estimated Structural Demand Coefficients

Model 1 Model 2 Model 3 Model 4

Switch Parameters
Threshold Shifters Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Year (2007) 3.73*** 0.03 3.73*** 0.04 3.72*** 0.04 3.74*** 0.04

Year (2008) 3.17*** 0.03 3.19*** 0.03 3.26*** 0.03 3.27*** 0.03

Year (2009) 4.38*** 0.04 4.38*** 0.04 4.35*** 0.04 4.34*** 0.04

Female -0.26*** 0.02 -0.26*** 0.02 -0.26*** 0.02 -0.26*** 0.02

Nonwhite -0.04 0.03 -0.04 0.03 -0.06* 0.03 -0.06* 0.03

Q1 Income -0.52*** 0.03 -0.52*** 0.03 -0.52*** 0.03 -0.52*** 0.03

Q2 Income -0.29*** 0.02 -0.29*** 0.02 -0.29*** 0.02 -0.29*** 0.02

Q3 Income -0.22*** 0.02 -0.22*** 0.03 -0.22*** 0.02 -0.22*** 0.02

Age 70-74 -0.15*** 0.03 -0.15*** 0.03 -0.14*** 0.03 -0.14*** 0.03

Age 75-79 -0.35*** 0.03 -0.35*** 0.03 -0.36*** 0.03 -0.36*** 0.03

Age 80-84 -0.50*** 0.03 -0.49*** 0.03 -0.50*** 0.03 -0.49*** 0.03

Age U-65 -0.49*** 0.05 -0.48*** 0.05 -0.52*** 0.05 -0.52*** 0.05

Age O-85 -0.76*** 0.03 -0.76*** 0.03 -0.76*** 0.03 -0.75*** 0.03

Shocks Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Premium Shock 2.38*** 0.01 2.40** 0.02 2.36*** 0.03 2.38*** 0.02

Coverage Shock 0.70*** 0.05 0.69** 0.05 0.68** 0.05 0.68** 0.05

Acute Shock 0.58*** 0.04 0.58** 0.05 0.57*** 0.05 0.56*** 0.05

Choice Parameters Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Chronic TrOOP -1.58*** 0.01 -1.51*** 0.05 -1.46*** 0.02 -1.34*** 0.02

Annual Premium -5.81*** 0.08 -7.51*** 0.12 -6.14*** 0.03 -6.44*** 0.08

Deductible - - -0.35** 0.16 -1.67*** 0.08 -1.77*** 0.24

Gap Coverage - - 1.44*** 0.08 1.44*** 0.07 1.62*** 0.08

Premium Shock x Prem - - - - -10.33*** 0.17 -10.08*** 0.25

Coverage Shock x Gap Cov - - - - 0.61 1.24 0.43 1.94

Acute Shock x Gap Cov - - - - 0.95** 0.37 0.94** 0.28

Enhanced: Mean -0.22*** 0.10 -0.60*** 0.02 -0.59*** 0.04 -1.30*** 0.07

Enhanced: Variance 2.81 - 2.81 - 3.40 - 4.09 -

Enhanced (2007) - - - - - - 0.78*** 0.08

Enhanced (2008) - - - - - - 0.44** 0.10

Enhanced (2009) - - - - - - 1.83*** 0.12

Lge Brand 1: RC Mean 3.26*** 0.02 3.07*** 0.06 3.01*** 0.03 2.92*** 0.06

Lge Brand 1: RC Variance 3.31 - 4.01 - 3.88 - 1.72 -

Lge Brand 2: RC Mean 2.47*** 0.05 2.51*** 0.09 2.67*** 0.02 2.77*** 0.03

Lge Brand 2: RC Variance 2.07 - 1.10 - 0.45 - 3.12 -

Lge Brand 3: RC Mean 1.22*** 0.15 0.91*** 0.09 1.02*** 0.03 1.18*** 0.04

Lge Brand 3: RC Variance 4.65 - 3.96 1.56 - 3.53 -

Fixed Effects Brand Brand Brand Brand

N 580,746 580,746 580,746 580,746

Notes: Estimates from two-stage demand model. Threshold Shifters and Shocks are variables that affect
the probability of switching. Choice Parameters are variables that affect preferences for plans conditional
on switching. TrOOP is predicted OOP cost excluding premium. TrOOP, Deductible and Premium are in
$000 per year. Gap Coverage is an indicator for any coverage in the gap. White HCE Standard Errors. “*”
= 90% Significance, “**” = 95% Significance, “***” = 99% Significance
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somewhat lower mean and relatively higher variance than the others. The remaining brand dummy

variables (not reported) indicate that consumers are willing to pay on the order of $500 to move

from the second-lowest-value plan to one of the three largest brands. Conditional on all other plan

variables, consumers show a slight aversion to enhanced plans on average, although the variance

of this random coefficient is three times larger than its mean. When we break out the enhanced

plan coefficient by year in Model 4, we see that enhanced plans became increasingly attractive over

time; the overall coefficient is positive by 2009.26

The choice equation also identifies a second source of frictions in consumer decision-making.

Consistent with the evidence presented above as well as that in Busse et al. (2012),7 consumers

switching plans following a shock to premiums place additional weight on premiums in making their

choice, while those switching following a health shock place additional weight on gap coverage27.

These findings suggest that while consumer inattention, and the extra weight placed on pre-

miums and coverage by enrollees experiencing related shocks, explain some of the choice frictions

identified in the previous literature, some other sources of overspending remain. For example

consumers display a substantial willingness-to-pay for access to particular brands. In the counter-

factual analyses below we explore the implications of these findings for the cost savings derived

from policies that reduce consumer inattention relative to policies that address the other frictions

as well. Before conducting these analyses, however, we consider the supply side of the market.

7 The Supply Side of the Part D Market

The estimated model of consumer demand for Part D plans presented above contains substantial

choice frictions, both due to consumer inattention (as described in Farrell and Klemperer (2007)20)

and for other reasons. The frictions caused by inattention induce a tradeoff for insurance providers

between (in the words of those authors) “harvesting” and “investing”. “Investing” is the process

of building up market share via low prices in order to increase future profits, while “harvesting”

is the process of reaping those profits by raising prices on an installed base. Ericson (2012)18

finds evidence of this dynamic at work in the Part D market. In this section we present evidence

consistent with this model of insurer pricing behavior.

7.1 The New Jersey Part D Market

To analyze the supply-side of the Part D market, we make use of the dataset of Part D plans

generously provided by Francesco Decarolis (Decarolis (2012)14) from CMS files on plans, ownership,

26Some of the effect of enhanced benefits could be subsumed in the estimate for gap coverage which many enhanced
plans provide and many basic plans do not.

27We also estimate the choice model without an initial stage where consumers experience shocks and choose whether
to switch. This specification is very similar to that in AG;2 it estimates preferences by averaging over the behavior of
inattentive and attentive consumers. The results are shown in Table A9. Consistent with AG, the average consumer
under-weights TrOOP relative to premiums, deductibles and gap coverage. Adding a first-stage switching model
makes the coefficient on enhanced plans become less negative (more “rational” in the sense of risk-neutral fully-
informed agents choosing the utility-maximizing option) and the variance of the random coefficients decrease. That
is, including consumer inattention in the model helps explain the choice behavior identified in AG on these dimensions.
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Table 7: New Jersey Part D Market Summary Statistics

Year Num Enrollmnt CR-4 HHI Entering Enhanced Enhanced DSB DSB
Plans Plans Plans Mkt Share Plans Mkt Share

2006 43 281,128 0.862 0.259 43 17 12.27% 6 12.89%

2007 55 298,978 0.780 0.217 19 27 24.32% 8 10.49%

2008 57 304,198 0.617 0.157 9 29 28.62% 7 5.31%

2009 52 317,997 0.637 0.154 1 27 30.63% 5 0.48%

2010 46 329,178 0.660 0.163 2 24 30.43% 5 2.48%

2011 33 333,553 0.751 0.285 1 15 22.46% 4 2.53%

2012 30 343,886 0.753 0.281 3 14 24.00% 3 0.38%

Notes: Summary statistics on New Jersey Part D plans. Source: aggregate CMS data, generously provided
by Francesco Decarolis. Total number of plans includes enhanced, Defined Standard Benefit (DSB), and
other standard plans not following DSB coverage terms exactly. The latter are not listed separately in the
table.

enrollment, premiums, formularies, and other characteristics. It covers all plans in all regions of the

US (34) for the years 2006-201228. We focus laregly on stand alone Part D PDPs in New Jersey,

as these are the plans which serve the consumers modeled in the previous section.

There were 43 PDP plans active in New Jersey in 2006, the first year of the Part D program;

this is in line with an average of 42.2 plans per region nationwide. The New Jersey market is fairly

concentrated in every year of our data: measured in terms of enrollees, the 4-firm concentration

ratio begins at 0.862 and declines to .617 in 2008 before rising again to .753 in 2012. Herfindahl

indices show the same pattern, declining from 0.259 to 0.154 between 2006 and 2009 before peaking

at .285 in 2011. There was some plan entry in New Jersey in the first several years of the program

but subsequent entry was limited. A total of 19 plans entered in 2007, joining 36 continuing from

2006, and 9 others entered in 2008, but from 2009 to 2012 no more than 3 plans entered in any

year. After 2008 plan attrition reduced the number of active firms in every year from 57 down to

30 by 2012. In the first few years of the program enhanced plans proliferated rapidly, going from

17 of 43 plans with a combined 12% market share in 2006 to 27 of 52 plans with a combined 31%

market share in 2009. This coincided with a near-continuous shift away from Defined Standard

Benefit plans; by 2012, only 3 such plans remained in the market, down from 8 in 2007. These

statistics, presented in Table 7, suggest an oligopolistic market characterized by increasing product

differentiation and increasing concentration.

7.2 Insurer Pricing Strategies

We now consider the effect of consumer inattention, coupled with product differentiation and

imperfect competition, on insurer pricing strategies in the Part D marketplace. One would expect

a profit-maximizing insurer to set its premiums in a way that took advantage of consumer choice

frictions. In this section we note that the patterns in the data are consistent with this intuition.

Theoretical models of search frictions have fairly clear predictions for prices. Papers such as

28See Decarolis (2012)14 for a detailed description of the data.
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Varian (1980)43 feature search in an environment of a homogeneous product, multiple sellers, and

heterogeneous consumers. In this model, consumers do not engage in sequential search but rather

“become informed” (perhaps by paying a cost) and at that point know all prices. This model

fits the situation where a consumer who has experienced a shock decides to re-optimize her plan

choice, enters her ZIP code and medications in the Part D website, and then has access to all

firms and prices. The equilibrium symmetric outcome of Varian’s model is price dispersion, which

we certainly see in the Part D marketplace. In particular, Defined Standard Benefit plans are so

tightly regulated as to represent a nearly homogeneous product. Nevertheless, Table A10 in the

Appendix shows that price dispersion persists among Defined Standard Benefit plans. Though

the difference between the minimum and maximum premium is falling over time, there is still

considerable variation in the cost of this essentially homogeneous product by 2012.

Another important feature of the Part D marketplace is the existence of switching frictions.

We model these frictions as limited attention rather than an explicit switching cost but the effect

on insurer behavior is similar. The classic switching cost model of Klemperer (1987)32 captures

the main intuition of the firm’s problem. If consumers enter the market in period t and choose

among firms in that period without frictions, the firm has an interest in capturing them with

a low price (“invest”). In later periods there are two offsetting effects: an incentive to increase

prices (“harvest”) because the firm’s installed base has to pay a cost to switch, and an incentive

to keep prices low to attract new entrants to the market and switchers from other firms. The first

effect usually dominates. In the Part D setting the prediction of consistent price increases is even

more stark because the second, offsetting effect is very small: consumer inattention (or asymmetric

search costs) imply that enrollees in one plan rarely notice other plans’ prices29. A critical element

of these models is that firms cannot discriminate between new and old consumers; likewise, in

Medicare Part D the firm must choose one price for both types of consumers. 30

Table 8 shows that, consistent with these predictions, premiums increase on average almost

every year. The average annual premium increase for basic plans (weighted by enrollment) is small,

less than $6 per month in every year. Premiums for enhanced plans increase more quickly; in 2008,

the weighted-average premium increase for enhanced plans is over $14 per month, and in 2011 and

2012 smaller enhanced plans post large premium increases. The second panel of Table 8 flags plans

that raise premiums by more than $10. For three years from 2008 to 2010, at least a third of

enrollees in enhanced plans face large premium shocks, although the rate is lower in other years.

We can also use the intuition from the theory to predict differences in premium growth across

insurers. First, the change in profit for a given change in price is a function of both the intensive

margin (profit per enrollee) and the extensive margin (number of enrollees). Since larger firms have

a larger intensive margin, we should expect large firms to raise prices more than smaller firms all else

29The papers on consumer search and learning referenced above (e.g. Cabral and Fishman (2012)9) also consider
how firms price in response to consumer search. They contain similar intuition and make the point that the equilibrium
outcome for prices depends on the size of the search cost relative to the variation in firm costs of production.

30Since firms can sponsor more than one plan, we might expect to see segmentation of consumers and price
discrimination as in Ericson (2012).18 In our supply-side model we simplify by abstracting away from multi-product
strategies and concentrate on the invest versus harvest tradeoff.
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Table 8: Average Premium Increase and % of Plans with $10 Premium Increase

Premium Increase ≥ $10 Premium Increase

Equal Equal Weighted Weighted Equal Equal Weighted Weighted
Basic Enhanced Basic Enhanced Basic Enhanced Basic Enhanced

2007 -$2.94 $1.01 -$2.20 $7.20 33.33% 40.74% 0.33% 10.53%

2008 $4.65 $11.50 $5.93 $14.45 39.29% 55.17% 24.10% 39.82%

2009 $6.20 $7.12 $3.68 $4.39 24.00% 33.33% 0.83% 39.31%

2010 $5.06 $1.77 $2.92 $5.44 21.74% 29.17% 1.19% 35.08%

2011 $1.04 $14.33 -$3.09 $2.84 11.11% 73.33% 6.50% 24.48%

2012 -$1.24 $6.52 $1.97 $2.02 12.50% 42.86% 0.16% 16.38%

Notes: Summary of premium changes ($ per enrollee per month) over time for New Jersey PDPs, by Year
and Plan Type

Table 9: Estimated Coefficients from Regression on Annual Premium Increases ($)

Model 1 Model 2 Model 1 Model 2

Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Lagged Premium -0.177*** 0.008 -0.165*** 0.008 -0.177*** 0.008 -0.165** 0.008

Lagged # Tier 1 Drugs 0.040*** 0.005 0.037** 0.005 0.035** 0.005 0.031*** 0.005

Lagged Deductible -0.009*** 0.001 -0.008*** 0.001 -0.009*** 0.001 -0,007*** 0.001

Lagged Enhanced 1.448*** 0.334 1.617*** 0.335 1.442*** 0.333 1.623*** 0.334

Lagged Gap Coverage 5.773*** 0.395 5.552*** 0.396 5.750*** 0.394 5.505*** 0.396

Lagged Market Share - - 6.227*** 1.220 - - 6.716*** 1.228

Enrollment Growth Rate - - - - -3.288** 1.148 -4.011** 1.154

Brand FE? Yes Yes Yes Yes

Region FE? Yes Yes Yes Yes

N 7,796 7,796 7,796 7,796

R2 0.274 0.276 0.274 0.277

Notes: Regression of premium increase (in $) on previous-year plan characteristics (national data). Enroll-
ment growth rate is rate of growth for region’s Part D program. Lagged market share is for this plan.

equal. Second, we should expect slower premium growth when the number of consumers purchasing

for the first time is high relative to the size of the installed base. Thus premiums should rise more

slowly in years with high attrition (e.g. high death rates) or large cohorts aging into the Part D

program. Because of our focus on shocks to consumers’ attention and the dynamics of pricing, we

do not estimate our motivating regression in levels like Polyakova (2013), but rather in premium

changes. It is the increase in price that becomes more lucrative with an increase in installed base.

We estimate regressions of annual premium increases on lagged market shares, growth rates, and

other plan variables that might affect costs for all PDP plans in the national dataset.

Table 9 reports these coefficients. When we control for region and carrier fixed effects and

coverage variables that may affect costs, lagged market shares significantly predict future increases

in premiums, providing evidence in support of the first hypothesis. The estimates also indicate

that the growth rate of enrollment in the region, which we treat as a proxy for new enrollment, is

negatively associated with price increases. This result provides evidence for the third hypothesis,
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that price competition is more aggressive (with smaller price increases) when there are relatively

more unattached consumers to compete for. Taken together, the results of these models provide

suggestive evidence in favor of firms pursuing pricing strategies similar to those in Klemperer

(1987)32 and Farrell and Klemperer (2007).2031.

8 Counterfactual Simulations

Previous studies have considered the effects of various interventions designed to ease the decision-

making process. For example, in a randomized experiment, Kling et al. (2012)33 provide informa-

tion to Part D enrollees regarding their best plan choice, and find that it increases the probability

of switching by 11 percentage points.32 Abaluck and Gruber (2013)1 predict that if an intervention

could make consumers fully informed and fully rational, they would choose plans that reduced their

costs by about 27%. However these papers do not simulate the impact of policy experiments that

“switch off” particular components of consumer choice frictions. Perhaps more importantly, they

do not account for plans repricing in response to changes in consumer behavior, potentially further

lowering program costs. In this section we address both issues.

We use our demand model to simulate the effect of removing the different sources of consumer

choice error. We then use estimated firm cost data, together with a model of firm behavior, to

consider price changes in response to the changes in consumer choices. The key insight is that when

consumers choose more easily or more wisely, insurers choose to set different prices. In particular,

more attentive consumers will cause plans to slow the premium increases that resulted from the

“invest-harvest” dynamic. Hence the impact of more attentive consumers will appear not just in

lower out of pocket costs, but in plans choosing to set lower premiums, especially in later years.

These lower premiums affect overall program costs and are therefore very important to take into

account when assessing any policy change that affects choice frictions.

As an input to these simulations, we first estimate plan costs by aggregating our claims data

to the plan-year level. Details of our methodology are provided in Appendix D. The predicted per-

enrollee costs are summarized in Table 10. We report weighted averages and standard deviations

of both the estimated cost per enrollee and the cost net of OOP payments; the latter will be the

cost variable used as an input for the premium-setting simulations. We also report for comparison

the weighted average observed bid and observed premium separately for each year of our data.

Observed bids are essentially the same as predicted costs net of TrOOP on average in 2006, the

31The observed pattern of price increases could potentially be due to unobserved quality; plans with higher quality
are more attractive to enrollees, leading to higher market shares, and are also able to raise prices as a result. However
the model contains brand fixed-effects to account for unobserved brand quality. Also the coefficient on lagged market
share is still positive (although not significant) even when we restrict the sample to Defined Standard Benefit plans,
suggesting that the harvesting dynamic is active even among non-differentiated plans.

32While the rather modest efficacy of this experiment may in part be explained by the relatively low dollar amounts
at stake in Medicare Part D and the reduced cognitive capacity of older beneficiaries, Cronqvist and Thaler (2004)12

document similar experiences with an advertising campaign intended to deter people from selecting the default option
following a redesign of the Swedish pension system. The confirmation of these results among younger participants
with greater stakes suggest that they are not a feature unique to Medicare Part D.
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Table 10: Bids and Estimated Plan Costs for New Jersey PDP Plans

Observed Bid Observed Premium Predicted Cost Pred. Cost net of TrOOP

2006 $65.03 ($26.68) $24.00 ($10.23) $144.40 ($40.70) $65.67 ($27.33)

2007 $64.93 ($25.76) $25.05 ($11.92) $148.97 ($36.19) $71.69 ($18.00)

2008 $92.28 ($31.04) $35.29 ($15.83) $142.07 ($40.38) $71.12 ($30.85)

2009 $100.97 ($29.90) $40.34 ($15.22) $143.61 ($38.81) $74.02 ($39.20)

Notes: Summary of weighted average observed bids, observed premiums, predicted costs to the plan, and
predicted costs net of enrollee OOP payments. All figures are per enrollee per month. Weighted standard
deviations in parentheses; weighted by enrollment.

first year of the program. Observed bids fall slightly in the second year, and this together with

an increase in estimated costs implies a lower average markup33. Bids increase much faster than

predicted costs in the following two years. These estimates suggest that plan margins did not

converge towards zero over the first few years of the program.

8.1 Simulations Holding Prices Fixed

We begin by simulating the effect of changing the Part D plan choice mechanism in a way

that makes consumers actively re-optimize their plan choices each year (i.e. removes the effect of

consumer inattention). This could potentially be accomplished by replacing the existing default,

under which each consumer remains in her current plan unless she chooses to switch, with the

default that she exits the program34. Choices are predicted using the estimated preferences from

Table 6 except that we suppress the effect of past shocks on preferences: shocks no longer have

any effect when all consumers re-optimize each year35. In order to compare simulated-to-simulated

choices, we also predict choices under the full frictional model specified in Section 6.2 and treat

these estimates as the “baseline”.36

Our next counterfactual policy addresses the issue that even attentive consumers do not make

cost-minimizing choices. We simulate the impact of a policy that pays the pharmacist $50 each

time he moves an enrollee to the average of her five lowest expected-cost plans, if moving would save

her at least $200 on average. We consider this policy for two reasons. First it removes all sources

of consumer overspending rather than just inattention. By involving a pharmacist in the choice

process, who is assumed to use the online CMS plan finder tool, we remove all choice frictions and

unambiguously place the enrollee in one of the lowest expected-cost plans (although we note that,

due to acute shocks, it may not turn out ex post to be the cheapest plan in the current year)37.

33The markup is not exactly the bid less the cost and for this reason we do not report a markup estimate based on
these data. Plan revenues also include an additional premium amount for enhanced plans plus reinsurance payments
from CMS. See the plan profit equation in Section 8 for details.

34Heiss et al. (2006)25 suggests that few consumers would choose to exit the program rather than re-optimizing.
35This is consistent with a model where the increased importance of a plan characteristic following a shock is due

to its relevance in prompting the consumer to re-optimize. However, we note that the results are similar if shocks are
allowed to interact with preferences.

36Details of how these choices are simulated are provided in Appendix D.
37We abstract from the possibility that the pharmacist’s choice would be constrained by pharmacy networks.
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We further assume that the pharmacist is independent of all insurers, and cannot be compensated

or incentivized by an insurer. Other enrollees, whose choices are predicted to be within $200 of the

optimal choice, continue to make choices based on our two-stage demand model.

Finally we conduct a slightly different pharmacist-based simulation. Here we address an is-

sue with the previous counterfactual: the allocations made by the pharmacist in that simulation

overrode consumer choices that were partly due to preferences for non-price characteristics (e.g.

the brand and enhanced fixed effects in our model) which may have led to overspending by our

definition but did not correspond to choice mistakes. To address this we consider an analogous

policy, except that now the pharmacist is paid $50 for moving enrollees to another plan within the

same brand if this would save over $200 in expectation. This simulation removes overspending due

to consumer choice frictions while respecting their preferences for particular insurance carriers.

8.2 Allowing Insurers to Change Prices

The second set of counterfactuals allows plans to change their prices. We focus on the simple

counterfactual where consumer inattention is removed and preferences are not affected by shocks

experienced in the previous year. We note that while the firm pricing problem in the observed

data is dynamic, the dynamics come only from consumer inattention, i.e. the fact that consumers

are “sticky” so a plan’s price in one period affects its enrollment in future periods. Removing

inattention makes the price-setting process static rather than dynamic, implying that the new

equilibrium prices can be predicted (as a function of costs) using a simple system of static first-

order conditions. Since capturing demand today to “harvest” tomorrow is no longer important in

the static problem, we expect the path of prices to be flatter in our simulations than in the data.38

It is important at this point to fix ideas concerning the pricing freedom Part D insurers have.

Recall that each insurer submits a bid for each plan. That bid determines the price consumers

face (by the amount over the base beneficiary premium). Importantly, each basic plan must offer

actuarially equivalent coverage if it does not follow the tariff set out by law. This means that

for a statistical person, the mean of OOP charges must be the same in expectation for all basic

plans, so plans cannot respond to increased consumer premium sensitivity by reducing premiums

while increasing average OOP charges. Additionally, the subsidy for each enrollee is risk-adjusted

depending on age and chronic conditions. While the risk-adjustment mechanism is potentially

manipulable, risk-adjusted subsidies mean the rewards to “cream-skimming” are likely second order.

38Our simulations compare predicted bids and premiums without inattention to observed data with inattention.
We choose not to simulate the dynamic path of premiums in the model with inattention for two reasons. First,
predicting the equilibrium of a dynamic pricing game with many firms is difficult. Papers on the methodological
frontier have either considered very simple markets with two firms and small numbers of consumer types (e.g. Dube
et al (2010)16) or made other simplifying assumptions, e.g. that markets are large enough that the random evolution
of individual firms “averages out” and each firm can be assumed to respond to a long-run average industry state
rather than the predicted current choices of its competitors (Weintraub et al (2008)44 and applications such as Miller
(2014)35). None of these assumptions seems reasonable in our setting. Second, the existence of low-income subsidy
enrollees makes our application even more complex. These enrollees can be modeled as “attentive” since they are
assigned to low-cost plans by CMS. They therefore cause few problems for the simulations without inattention, but
would substantially complicate any attempts to simulate the pricing equlibrium in the model with inattention.
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This allows us to abstract from selection issues as we model the behavior of insurers. We model

insurers’ choices of bids while holding the schedule of OOP charges fixed.

We write plan j’s variable profit in year t as:

πj,t = (Bj,t + Ej,t − Cj,t)Nj,t (6)

where Bj,t is the bid made to CMS reflecting the plan’s average monthly revenue requirement per

enrollee in a basic plan (including profit), Ej,t is the additonal amount charged to enrollees in an

enhanced plan (the “enhanced premium”; this is zero when j is a basic plan), Cj,t is the plan’s cost

per enrollee net of enrollee OOP payments and Nj,t is its number of enrollees.

The premium charged to enrollees in a basic plan is the difference between the bid and the

proportion of the NAMBA that is subsidized by the government:

PremiumBasic
j,t = Bj,t − γtNAMBAt = (1− γt

Jt
)Bj,t −

γt
Jt

Σk 6=jBk,t (7)

where γt is the proportion of the NAMBA that is paid by the government and Jt is the number of

Part D plans included in the average in year t.39 This expression reflects the fact that, in the first

two years of the program, the NAMBA was an unweighted national average of bids for all MA and

PDP plans. From 2008 on, CMS phased in the implementation of a weighted average, where the

weight was the plan’s enrollment.40

We take several steps to account for CMS’s risk adjustment strategy. The government subsidy,

which is written into law at 74.5% of the NAMBA, is split between a premium subsidy and reinsur-

ance or risk adjustment payments. The latter include a commitment to pay 80% of the total cost

of drugs above each enrollee’s catastrophic threshold and payments to keep plans within symmetric

risk corridors that limit their overall losses and profits. We adjust our measure of plan costs per

enrollee to take account of the catastrophic drug subsidies as described in the previous section. We

use the true proportion of the NAMBA that is paid by the government in every year (which is

observed in our data, e.g. 66% in 2006) as an input to the premium calculation in equation (7). We

assume that the remaining risk adjustment payments neutralize the effect of enrollee selection on

plan costs, i.e. the cost per enrollee does not change with enrollees’ plan choices in our simulations.

We implement the “no inattention” assumption by considering a single-stage consumer demand

system. We use the estimated parameters of the choice equation in model 4 of Table 6 but set the

coefficients on premium, coverage and acute health shocks to zero. The resulting utility equation

39CMS requires that the basic premium never fall below zero. This constraint is not binding for PDPs in our
data because MA-PDs, which bundle prescription drug insurance with Medicare Part C insurance and whose bids
are included in the NAMBA, often have very low premium bids. However we account for this truncation in the
simulations that predict equilibrium bids when inattention is removed.

40The premium charged to enhanced plan enrollees is the basic premium defined in equation (7) plus the enhanced
premium Ej,t. The enhanced premium is negotiated between the carrier and CMS and is meant to comprise the
average additional cost of enhanced benefits provided to enrollees in the plan. It is not subsidized by CMS. We
observe this variable in the data for every plan-year and account for it in our simulations under the assumption that
it does not change in response to simulated changes in enrollee behavior.
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can be written as:

ui,j,t = ˆTrOOP i,j,tβ1 + Premiumj,tβ2,1 +Dedj,tβ3,1 +Gapj,tβ4,1 +Xj,tβ5,i + εi,j,t

= λi,j,t(β5,i) + β2,1Premiumj,t + εi,j,t

= δi,j,t(β5,i) + εi,j,t (8)

where Premiumj,t includes the enhanced premium where relevant. λi,j,t(.) includes all consumer

and plan-specific variables in the estimated utility equation except the premium; it is a function of

β5,i, the random coefficients on the three dominant brands and the enhanced plan fixed effect. This

utility equation can be used to predict plan enrollment Nj,t under any set of plan characteristics:

Nj,t =

Nt∑
i=1

∫
β5,i

eδi,j,t(β5,i)∑Jt
k=1 e

δi,k,t(β5,i)
∂F (β5,i)

=

Nt∑
i=1

∫
β5,i

Λi,j,t(λi,j,t(β5,i), λi,−j,t(β5,i), P remiumj,t, P remium−j,t) ∂F (β5,i). (9)

Here Λi,j,t(.) is the predicted probability that consumer i chooses plan j in period t; it is a

function of all plan characteristics including their premiums. We consider plans’ optimal choices in

the static bid-setting game that results from removing consumer choice frictions. The first-order

condition for plan profits with respect to the bid Bj,t is:

(Bj,t + Ej,t − Cj,t)
∂Nj,t

∂Bj,t
+Nj,t = 0. (10)

Calculating the derivative
∂Nj,t

∂Bj,t
requires us to predict the effect of a change in the bid Bj,t on

the premium. We use the expression in equation (7) under the assumption that the NAMBA is an

(unweighted) national average for MA-PD and PDP plans and that plans internalize their impact

on the NAMBA, and therefore on the government subsidy, when choosing their bids41. We predict

the resulting effect on enrollment using equation (9). The first order condition simplifies to:

Nj,t + (Bj,t + Ej,t − Cj,t)
{

ΣNt
i=1 β2,1[

∫
β5,i

Λi,j,t(.)(1− Λi,j,t(.)) ∂F (β5,i)]
Jt − γt
Jt

+Σk 6=j β2,1[

∫
β5,i

Λi,j,t(.)Λi,k,t(.) ∂F (β5,i)]
γt
Jt

}
= 0

where we omit the arguments of Λi,j,t(.) for ease of exposition. All plans’ bids enter this equation

through Λi,j,t(.) as well as through Bj,t. We solve this system of equations to obtain the implied

new equilibrium for bids.42

41We account for the fact that a change in one plan’s bid will affect all plans’ premiums via the subsidy. We use
national NAMBA figures published in annual press releases as an input to this analysis. The bid-setting game is
solved for NJ PDP plans, holding fixed the bids of other plans that contribute to the NAMBA.

42Additional details of this derivation are provided in Appendix D.
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Table 11A: Simulated Per-Person Spending Holding Premiums Fixed

Baseline Lowest Pred. Cost Lowest 5 Average No Inattention

Premium OOP Premium OOP Premium OOP Premium OOP

2006 $293.78 $1,195.50 $124.54 $790.20 $214.20 $948.40 $293.77 $1,195.50

2007 $320.93 $1,216.60 $232.74 $857.32 $270.22 $949.72 $319.48 $1,205.30

2008 $459.01 $1,272.40 $261.53 $820.94 $282.30 $900.24 $389.72 $1,174.40

2009 $489.41 $1,320.90 $290.19 $819.75 $338.94 $954.02 $493.57 $1,268.50

Total ’07-09 $1,269.36 $3,809.90 $784.46 $2,498.01 $891.46 $2,803.98 $1,202.77 $3,648.20

Saving - $0 - $1,311.79 - $1,005.82 - $161.50

% Fixed - 0% - 100% - 76.7% - 12.3%

Notes: Results of counterfactual simulations holding premiums fixed at observed levels. Simulated OOP
costs are cross-enrollee averages per enrollee per year including premiums. Premiums include both basic and
enhanced premium.

8.3 Simulation Results

The simulation results are set out in Tables 11-13. Table 11 considers the impact of altering con-

sumer behavior without allowing premiums to change in response. The column labeled “baseline”

in Table 11A shows the cross-enrollee average of annual premium costs and OOP costs (including

premiums) predicted by our demand model including all frictions.43 The second column (“Lowest

Predicted Cost”) shows the same simulated costs when every enrollee chooses the plan with the

lowest predicted costs to her in the relevant year; this is the lowest-cost outcome possible. Column

3 shows the average simulated costs from the average of the five lowest predicted-cost choices for

each enrollee. Column 4 shows costs simulated using the “no inattention” model. In each column,

the row labeled “Total” provides cumulative spending per enrollee over the three years 2007-944.

“Saving” is the difference between that cumulative three-year spending and the spending in the

baseline scenario, and “% Fixed” is the proportion of the saving from moving every consumer to

her lowest-cost plan that is achieved by the relevant counterfactual.

Substantial savings could be achieved in every year if enrollees could be switched to their lowest-

cost plan. Cumulative savings over the three year period from this change would be approximately

$1,312 per person, or 34% of the total baseline OOP cost. The total saving from moving each

enrollee to the average of her five lowest-cost plans is $1,006 or 77% of the total overspending. The

savings from removing inattention begin in 2007 with a total saving of approximately $11 per person

and rise to $98 per person in 2008 and $52 per person in 2009. Overall the model predicts that the

average consumer saves $162 cumulatively across the three years when frictions are removed, or

12.3% of total overspending. While these savings are non-trivial, they do represent a fairly small

proportion of total overspending. This is unsurprising given that consumers rarely choose the

lowest-cost plan available when they do actively choose. We should not expect our simulations to

bring overspending below the level reached by observed switchers in the data; that level, defined as

43The “baseline” in Table 11A is slightly different from the panel labeled “Full Sample” in Table 4 because the
baseline in Table 11 uses predicted choices from our demand model rather than the choices observed in the data.

44We ignore potential savings in the first year of the program since it seems unrealistic to “zero out” mistakes by
either consumers or firms in that year, as both were still learning the details of the Part D market.
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Table 11B: Simulated Per-Person Spending, Premiums Fixed, Pharmacist Simulations

Baseline Lowest Pred. Cost Pharma Pharma w/in-Brand

Premium OOP Premium OOP Premium OOP Premium OOP

2006 $293.78 $1,195.50 $124.54 $790.20 $224.17 $990.94 $279.09 $1,126.41

2007 $320.93 $1,216.60 $232.74 $857.32 $271.00 $1,010.04 $284.50 $1,112.49

2008 $459.01 $1,272.40 $261.53 $820.94 $314.24 $968.95 $383.56 $1,125.56

2009 $489.41 $1,320.90 $290.19 $819.75 $368.05 $1,021.18 $440.69 $1,193.26

Total ’07-09 $1,269.36 $3,809.90 $784.46 $2,498.01 $953.29 $3,000.17 $1,108.75 $3,431.31

Saving - $0 - $1,311.79 - $809.63 - $378.49

% Fixed - 0% - 100% - 61.62% - 28.85%

Notes: Results of counterfactual simulations holding premiums fixed at observed levels. “Pharma” is pharma-
cist. Simulated OOP costs are cross-enrollee averages per enrollee per year including premiums. Premiums
include both basic and enhanced premium.

a percent of total spending, is approximately 26-28% (Table 4A) and our simulations generate errors

of a comparable magnitude. We also note that, since our demand estimates indicate consumers

respond strongly to premiums, a substantial part of the savings from removing inattention should

come from consumers choosing low-premium plans. Consistent with this intuition, 41% of the

savings from removing inattention come from lower premiums. Savings are concentrated in later

years when the baseline choices are most affected by inattention.

Table 11B repeats the baseline and lowest-cost estimates for comparison and shows the simulated

outcomes in the policy experiments where pharmacists are involved in plan choice. The OOP costs

include the $50 payment to the pharmacist per switched enrollee. In column 3 the pharmacist

can move the enrollee to any plan45; in column 4 she can be moved only to other plans within

the same carrier. The “no inattention” counterfactual demonstrated that approximately 12% of

overspending in our setting was due to consumer inattention. The “pharmacist” counterfactuals

address the remaining 88% which is attributable to other factors such as enrollees placing a high

weight on particular characteristics (e.g. brand, premium or gap coverage) rather than minimizing

overall costs. As shown in Columns 3 and 4 of Table 11B, pharmacists are very effective in reducing

costs. Even though the payments made to pharmacists are included in the OOP costs, the first

pharmacist counterfactual generates savings of $810 per enrollee over the three year period, or 62%

of the total baseline error. Approximately 65% of enrollees are switched to low-cost plans by the

pharmacist. While we note that not all the frictions removed here are necessarily due to consumer

errors - they may represent heterogeneous preferences that the social planner would not wish to

ignore - the magnitudes of the cost savings from this counterfactual are considerable. We also note

that, when the pharmacist is restricted to moving enrollees to other same-carrier plans, the savings

fall to 29% of the total baseline error. While consumers may have preferences for particular brands,

and this may be one reason why they do not choose the lowest-cost plan available, the benefit to

the enrollee from staying within-brand may not be as great as the cost.

45We use the average of the five lowest-cost plans for each enrollee. The savings from moving enrollees to the single
lowest cost plan are approximately four percentage points higher.
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Table 12: Simulated Per-Person Spending With Premium Adjustments

Baseline Lowest Pred. Cost No Inattention No Inattention
(Fixed Premium) (Fixed Premium) (Fixed Premium) Premium Change

Premium OOP Premium OOP Premium OOP Premium OOP

2007 $320.93 $1,216.60 $232.74 $857.32 $319.48 $1,205.30 $246.77 $1,129.70

2008 $459.01 $1,272.40 $261.53 $820.94 $389.72 $1,174.40 $238.58 $1,050.70

2009 $489.41 $1,320.90 $290.19 $819.75 $493.57 $1,268.50 $263.29 $1,066.10

Total ’07-09 $1,269.36 $3,809.90 $784.46 $2,498.01 $1,202.77 $3,648.20 $748.64 $3,246.50

Saving - $0 - $1,311.79 - $161.50 - $536.40

% Fixed - 0% - 100% - 12.3% - 43.0%

Notes: Results of counterfactual simulations allowing premiums to adjust to changes in consumer behavior.
Simulated OOP costs are cross-enrollee averages per enrollee per year including premiums. Premiums include
both basic and enhanced premium.

Tables 12 and 13 report our key results. Here we see the “no frictions” simulations when we

allow prices to adjust. We exclude the year 2006 because firms were likely experimenting, with

limited information about competitors’ pricing strategies, in the first year of the program and this

limits the validity of any comparison with the static pricing equilibrium. Consider first the cross-

plan unweighted average bids reported in columns 1 and 2 of Table 13. Recall that theory predicts

plans should respond to the removal of consumer inattention (i.e., increased search) by reducing

the rate at which they increase prices from year to year. The observed and simulated bids reported

in Table 13 for 2007-2009 are consistent with this intuition. The average simulated bid in 2007

is very similar to the average observed in the data for NJ PDP plans – both are essentially $80

per enrollee per month – while the median simulated bid is lower than the observed median ($77

compared to $81 observed in the data). Simulated bids then increase very little in 2008 and 2009,

approximately in line with the rate of cost increases, while the observed version has a much higher

growth rate.

Table 12 translates the bids into average per-enrollee premium and OOP spending figures anal-

ogous to those in Table 11. The first three columns are repeated from Table 11 for ease of com-

parison: these are the baseline, the lowest-cost plan and the no inattention scenarios, all holding

prices fixed. Column 4 reports the results when we allow plans to re-optimize prices. Simulated

premiums are lower than the fixed price level in every year for two reasons: the difference between

observed and simulated bids, which increases every year (Table 13), and the fact that enrollees

choose low-premium plans (particularly when inattention has been removed)46.

These results indicate a large supply side response to the simulated changes in consumer be-

havior. While removing inattention resulted in only small reductions in costs, once premiums are

allowed to adjust the savings are substantial. Plans respond to the newly attentive, premium-

46The Table 13 bid numbers are unweighted averages across plans, consistent with the method used to calculate
government program costs in the first few years of the program. In contrast Table 12 reports averages across
enrollees rather than plans. Consumers tend to choose lower-premium plans, particularly in these simulations without
inattention. The simulated premium numbers are particularly low in 2007 because the cross-plan variation in predicted
premiums is high, allowing enrollees more leeway to choose low-premium options.
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Table 13: Counterfactual Government Savings

Year Observed Bid Simulated Bid γt Annual ($) Non-LIS Savings
Unw. Ave Median Unw. Ave Median Ave Savings Enrollment ($ billion)

2007 $79.74 $80.53 $80.11 $77.19 0.66 -$2.97 8,120,524 -$0.02

2008 $84.32 $81.54 $82.53 $75.85 0.65 $14.00 8,413,202 $0.12

2009 $92.52 $89.72 $85.66 $80.84 0.64 $52.70 8,572,910 $0.45

Total ’07-09 $256.58 - $248.30 - - $63.73 25,106,636 $0.55

Notes: Results of Program Cost Savings Calculation. Columns 1 and 2 are unweighted average and median
bids, observed and simulated, for PDP plans in NJ, measured in $ per enrollee per month. Per-member
average savings are the difference between the two average bids scaled by the proportion paid by the govern-
ment and annualized. Non-LIS enrollment reported in national plan data generously provided by Francesco
Decarolis. γt is defined in Section 7.

sensitive enrollee market by reducing their premiums. The results in the fourth column of Table 12

indicate a saving of $536 per enrollee over three years or 43% of the total overspending. Premium

reductions account for 92% of the estimated savings.

Extrapolating these estimates from New Jersey to the entire nation implies substantial govern-

ment savings for enrolled consumers over three years. Program cost savings result mostly from

the slower growth in plan bids, of which the government pays a sizeable proportion. As shown

in Table 13, bids in the counterfactual grow much more slowly than in the baseline, and by 2009

the average bid is roughly $82 lower per year in the counterfactual than in the baseline. Applying

the conservative assumption that reinsurance costs remain fixed so that the government saves a

fraction of the difference in average bids equal to one minus the Base Beneficiary Percentage (γt

in Section 8.2), we find that government savings per covered life come to $64 over three years.

Assuming further that low-income subsidy payments are unaffected and multiplying this figure by

the non-LIS PDP population in each year generates cumulative three-year savings of $550 million

or 3.4% of the government’s cost of this part of the program47. As with consumer spending, most

of the savings are realized from bending the cost curve downward. 83% of the savings to the gov-

ernment are realized in 2009, amounting to a saving of 8.2% of the non-LIS PDP program cost in

that year. Combined with the theoretical results discussed in Section 7 and the results from Table

9, these estimates suggest it would be reasonable to expect savings to continue in future years.

We also consider the impact of these policy experiments on plan revenues and margins. Our

estimates indicate that average margins rise in the observed data from approximately $14 per

enrollee per month, or 16.4% of revenues, in 2007 to $21 or 21.3% of revenues in 200948. In

the simulations these values remain at stable levels of approximately $14 per enrollee per month,

declining from 16.7% of revenues to 15.5% from 2007 to 2009. In an unregulated market, plans

would be likely to respond to these changes by reducing quality (e.g. the number of drugs included

in the formulary) or increasing consumers’ OOP payments. In Medicare Part D, however, the

47This simple calculation assumes that, if inattention is removed nationally, the reduction in the NAMBA will be
the same as the average predicted reduction in bids in NJ. The $550 million saving is 3.4% of the government’s cost
of subsidizing PDP premiums for non-LIS enrollees nationally.

48The margin is defined as the sum of the bid and enhanced premium less costs net of OOP payments.
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regulatory requirements described above restrict plans’ ability to respond in this way, and for this

reason (as well as computational tractability) our simulations hold OOP costs and formularies fixed.

We note that enhanced plans, whose additional benefits are less tightly regulated, might increase

in cost or reduce their quality in response to the policies we simulate. Even given this caveat,

however, the savings from the above policies are likely to be substantial.

9 Conclusions

In this paper we have developed a model of consumer choice in the Part D program and have

analyzed how firms set prices in response to the presence or absence of those behaviors. We find

that the data support a model where consumers face costs of processing information. This leads

them to avoid making new choices, rolling over their plan selections from one year to the next

unless shocked by a change to their current plan or their current health. When making choices

they place a substantial weight on brand; they may also under-weight predicted OOP payments

relative to plan characteristics that are easier to observe such as premiums and gap coverage.

We provide evidence that firms’ premium choices are responsive to consumers’ search frictions.

In particular, when consumers are attentive, firms are incentivized to lower their margins, resulting

in lower premiums. Using our estimates of consumer behavior and a model of firm price-setting we

simulate the cost effects of different counterfactual policies that could be used to address these is-

sues. The benefit of removing inattention at fixed prices is fairly small, perhaps because consumers

continue to face cognitive costs when making their new plan choice. However, when we simulate

plans’ premium choices, we predict a large price response to this change in behavior. Ironically, con-

sumers’ overweighting of premiums works to their advantage; as long as consumers are attentive, an

effective way for plans to attract customers is by lowering premiums. Our simulations indicate that

the combination of the demand- and supply-side changes would reduce the current overspending

relative to consumers’ lowest-cost options by 43%, even without addressing other choice frictions.

The natural plan response of increasing other components of the price, like the OOP cost schedule,

is constrained by the tightly regulated standard benefit levels. We also consider counterfactuals

that involve the pharmacist in the plan choice process, particularly for those enrollees who over-

spend the most. These simulations predict even larger reductions in spending, although at the cost

of overriding choices that reflect consumer preferences for non-price characteristics.

The role of plan re-pricing in response to more frequent and effective consumer search has not

been analyzed to the best of our knowledge in the Medicare Part D economics literature to date. It is

an important element in the evaluation of any policy that would help consumers choose better plans.

In particular, the government savings we estimate from consumer choice – $550 million over 3 years

- are important in their own right and indicate how important well-designed insurance marketplaces

can be. Indeed, without effective consumer choice that puts market pressure on insurers, a policy

of privatizing the delivery of benefits can be very expensive. This cost of privatization should be

taken into account by policy makers. The Affordable Care Act creates health insurance exchanges
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that have similar characteristics to Medicare Part D. Policy makers may wish to choose features of

market design in a way that helps generate competitive outcomes in light of our results.

References

[1] Abaluck, J., & Gruber, J. (2013). Evolving Choice Inconsistencies in Choice of Prescription

Drug Insurance. (No. w19163) National Bureau of Economic Research.

[2] Abaluck, J., & Gruber, J. (2011). Heterogeneity in Choice Inconsistencies Among the Elderly:

Evidence from Prescription Drug Plan Choice. The American Economic Review, 101(3).

[3] Gabaix, X., Agarwal, S., Laibson, D., & Driscoll, J. C. (2010). The Age of Reason: Financial

Decisions over the Life Cycle and Implications for Regulation. Brookings Papers on Economic

Activity : Fall 2009, 51.

[4] Altman, D.E., Benson, J., Blendon, R., Brodie, M., & Deane, C. (2006). Survey Finds Few

Seniors Expect to Switch Medicare Drug Plans for 2007. Kaiser Family Foundation and the

Harvard School of Public Health.

[5] Berndt, E. K., Hall, B. H., & Hall, R. E. (1974). Estimation and Inference in Nonlinear

Structural Models. Annals of Economic and Social Measurement, Vol. 3, No. 4 (pp. 103-116).

[6] Berry, S. T. (1994). Estimating Discrete-Choice Models of Product Differentiation. The

RAND Journal of Economics, 242-262.

[7] Busse, M. R., Pope, D. G., Pope, J. C., & Silva-Risso, J. (2012). Projection Bias in the Car

and Housing Markets. (No. w18212) National Bureau of Economic Research.

[8] Busse, M. R., Simester, D. I., & Zettelmeyer, F. (2010). “The Best Price You’ll Ever Get”:

The 2005 Employee Discount Pricing Promotions in the US Automobile Industry. Marketing

Science, 29(2), 268-290.

[9] Cabral, L. & Fishman, A. (2012). Business As Usual: A Consumer Search Theory of Sticky

Prices and Asymmetric Price Adjustment. International Journal of Industrial Organization

30: 371-376.

[10] A. Cook (2013). Costs Under Medicare’s Prescription Drug Benefit and a Comparison with

the Cost of Drugs Under Medicaid Fee-for-Service. Congressional Budget Office.

[11] Cebul R.D., Rebitzer J.B., Taylor L.J. & Votruba M.E. (2011). Unhealthy Insurance Markets:

Search Frictions and the Cost and Quality of Health Insurance. The American Economic

Review, 101(5), 1842-1871.

[12] Cronqvist, H., & Thaler, R. H. (2004). Design Choices in Privatized Social-Security Systems:

Learning from the Swedish Experience. The American Economic Review, 94(2), 424-428.

38



[13] Dafny, L., Ho, K., & Varela, M. (2013). Let Them Have Choice: Gains from Shifting Away

from Employer-Sponsored Health Insurance and Toward an Individual Exchange. American

Economic Journal: Economic Policy, 5(1), 32-58.

[14] Decarolis, F. (2012). Pricing and Incentives in Publicly Subsidized Health Care Markets: the

Case of Medicare Part D.

[15] Decarolis, F., Polyakova, M. & Ryan, S.P. (2014). The Welfare Effects of Supply-Side Regu-

lationis in Medicare Part D. Working Paper.

[16] Dube, J. P., Hitsch, G. J., & Rossi, P. E. (2010). State Dependence and Alternative Expla-

nations for Consumer Inertia. The RAND Journal of Economics, 41(3), 417-445.

[17] Duggan, M. G., & Morton, F. S. (2011). The Medium-Term Impact of Medicare Part D on

Pharmaceutical Prices. The American Economic Review, 101(3), 387-392.

[18] Ericson, K. M. M. (2012). Consumer Inertia and Firm Pricing in the Medicare Part D Pre-

scription Drug Insurance Exchange. American Economic Journal: Economic Policy.

[19] Ericson, K. M. M. (2014). When Consumers Do Not Make An Active Decision: Dynamic

Default Rules and their Equilibrium Effects. NBER Working Paper Number 20127.

[20] Farrell, J., & Klemperer, P. (2007). Coordination and Lock-In: Competition with Switching

Costs and Network Effects. Handbook of Industrial Organization, 3, 1967-2072.

[21] Greenwald, L.M. & West, N. (2007). Medicare Part D Demonstration Focus Group Report.

Research Triangle Institute.

[22] Handel, B. (2012). Adverse Selection and Inertia in Health Insurance Markets: When Nudging

Hurts. American Economic Review, forthcoming.

[23] Heckman, J. (1991). Identifying the Hand of the Past: Distinguishing State Dependence from

Heterogeneity. American Economic Review 81(2): 75-79.

[24] Heiss, F., Leive, A., McFadden, D., & Winter, J. (2013). Plan selection in Medicare Part D:

Evidence from administrative data. Journal of Health Economics, 32(6), 1325-1344.

[25] Heiss, F., McFadden, D., &Winter, J. (2006). Who Failed to Enroll in Medicare Part D, and

Why? Health Affairs, vol. 25 no. 5 w344-w354.

[26] Hoadley, J., Hargrave, E., Summer, L., Cubanski, J., & Neuman, T. (2013). To Switch or Not

to Switch: Are Medicare Beneficiaries Switching Drug Plans to Save Money? Kaiser Family

Foundation Issue Brief (Oct. 2013).

[27] Honka, E. (2014). Quantifying Search and Switching Costs in the US Auto Insurance Industry.

The Rand Journal of Economics, 45(4), 847-884.

39
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APPENDICES FOR ONLINE PUBLICATION

A Sample Definition

The original sample consists of 249,999 Medicare Part D beneficiaries from the years 2006 to

2009. The panel is unbalanced, with some beneficiaries entering and others exiting throughout

the sample, so the number of observations for each of the four years are, respectively, 209,827,

220,716, 226,501, and 227,753. We restrict the sample only to beneficiaries residing in New Jersey

who, for any four consecutive months during the year were enrolled in a Medicare PDP but were

neither Medicaid-eligible nor on low income subsidy. We also exclude beneficiaries whose Medicare

termination code or ZIP code is unobserved. We then discard data from any month in which

a beneficiary is Medicaid-eligible, low-income subsidized, or either not Part D enrolled or not

enrolled in a Medicare PDP (e.g. in an MA plan or employer-sponsored coverage). New Jersey

sponsors a prescription-drug assistance program for the elderly, PAAD, which caps out-of-pocket

(OOP) payments at either $5, $6 or $7 (depending on the year and the drug type) so long as the

beneficiary opts into the program and enrolls in an eligible low-cost plan. We infer the presence of

this benefit, which is unobserved in the data yet severely restricts the set of possible plan choices,

and exclude any beneficiaries enrolled in PAAD. We define a beneficiary as PAAD-enrolled if they

enroll in a PAAD-eligible plan (as defined by the plan-type specific New Jersey premium thresholds)

without gap coverage or deductible coverage and at least 95% of events occurring in the deductible

phase or the coverage gap phase (where beneficiaries should pay the entire amount out-of-pocket)

with total cost greater than the PAAD maximum copay result in the beneficiary paying the PAAD

copay. As the plan formularies must be inferred from the drug event data, we cannot precisely

estimate formulary structure for plans without a sufficient number of observed drug events. Hence

we restrict the number of plans to 64 large plans covering around 95% of the sample and exclude

any beneficiary ever enrolled in a different plan. Finally, we also exclude any beneficiaries observed

only in non-consecutive years, since these observations do not assist in identifying the determinants

of switching plans. This yields a final sample of 214,191 unique beneficiaries with the observations

for each of four years, respectively, as 127,654, 141,897, 151,289, and 159,906.

We supplement the data with several additional variables from outside sources. First, we map

beneficiary ZIP codes to census tracts using ArcGIS. We then define the income and percent college

educated of each ZIP code as the tract median income and percent with a bachelor’s degree or higher

from the 2000 Census. In cases where a ZIP code mapped to multiple census tracts, the associated

income and education levels were defined as unweighted averages across the tracts. We then convert

these measures of income and education level into quartiles at the ZIP code level. Next, we obtain

a list of commonly-prescribed drugs covering 92% of the events observed in our sample and classify

these according to whether they are branded or generic and whether they are used for chronic or

acute care. Of these, 464 distinct brand names for chronic drugs, representing 13.8 million of the

19.1 million events in our sample, are classified according to the condition they are most-commonly

prescribed to treat using the website Epocrates Online. We then defined indicators for the 20
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most common chronic conditions for which Medicare patients are prescribed medication based on

whether the beneficiary was observed taking a drug to treat that condition. Finally, we generate

estimated costs under a variety of counterfactual plan choices, a more detailed description of which

is contained in the following section.

B Counterfactual Cost

We partition the set of prescribed drugs into 464 common chronic drugs and all others. We

assume that all other drugs treat acute conditions. We define the total cost per month supply for

each common chronic drug in each plan to be the sample average cost per month for drug events

where the supply length is between 7 and 90 days. This plan-specific average captures the effects

of bulk discounts that particular plans negotiate with drug manufacturers.49

We approximate acute drug costs using a different method. We classify individuals into one of

7,040 “severity” bins. Whites, who are over-represented in the sample, are classified on the basis

of gender, four age groups (< 65, 65-75, 75-85, > 85), income quartiles, deciles of days’ supply

of chronic drugs, ten plan indicators (the largest nine plans plus “all other”) and an indicator for

receiving medication for any of hypertension, high cholesterol, diabetes or Alzheimer’s. Nonwhites

are classified on the basis of the same criteria, excepting plan indicators, for which there are not

enough observations. Within each of these 7,040 bins, per-month acute drug cost is estimated as the

median per-month amount. We divide these estimated per-month acute shocks into a branded and

generic amount based on the percent of acute drug spending on generic drugs each year and generate

an estimated sequence of acute drug events with two drug events (one branded, one generic) on the

15th of each month in which the beneficiary is observed in-sample. To this we add the observed

sequence of chronic drug events and treat this as the estimated sequence of drug events.

We do not observe plan formularies; our next step is therefore to approximate the true formulary

for each plan. In many cases, the tier on which a drug is categorized is observed for the plan, and

when this is the case we use the observed tier. If the tier is unobserved (i.e. there are no instances

in the data of a prescription written for a given drug in a given plan in a given year), we classify

it as either a branded or generic drug based on the observed classification in other similar plans

and fill in the tier accordingly. For generic drugs, we place the drug on the plan’s generic-drug tier

if such a tier exists. For branded drugs, if the drug is not observed for any plan in that contract,

we assume the drug is not covered by the plan. These assumptions are based on consideration

of the actual formularies used by 5 of the largest Part D providers, which share a common list of

covered drugs for all plans sponsored by the provider and typically cover any generic drug but not

all branded drugs. If the drug has still not been assigned a tier, but it is observed for a plan offered

by the same carrier, we fill in the tier as the corresponding drug-type tier for the plan. If none of

these cases apply, we assume the drug is uncovered if at least 33% of plans do not cover the drug

in that year; otherwise, we classify it on either the “ Generic” or “Branded” tier according to the

49For each event in the simulated drug sequence we adjust the total cost of the drug under each plan accordingly
if the observed days supply is between 7 and 90 days (otherwise the observed total cost is left unchanged).
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drug type. For simplicity we assume that the Pre-Initial Coverage Limit and Gap phases employ

the same formulary structure, as they do for the few plans with Gap tiers, and we ignore the effect

of specialty tiers as only one of the 464 most-commonly prescribed chronic drugs is a specialty

treatment.

Finally, to generate counterfactual spending under each plan we step through the simulated

sequence of drug events and generate counterfactual benefit phases and patient OOP payments

according to the plan’s stated cost structure, the estimated formulary, and cumulative spending for

the year. Counterfactual OOP payments for each plan are estimated as the sum of OOP payments

for the observed chronic drugs and simulated acute events for each beneficiary in each large plan

every year. Note that, as in previous papers, our method assumes no moral hazard, and unlike

Ketcham et al. (2012)30 we assume no elasticity with respect to plan prices for chronic drug

consumption, in that patients take the same sequence of prescription drugs in every plan regardless

of the costs they face. The plan-specific medians allow for some price elasticity for acute drugs for

large plans. For simplicity we ignore the effect of prior authorization requirement, step therapy

regimens and quantity restrictions.

The estimated payments, which represent the “True Out-of-Pocket Payments”, are added to

a premium payment for each month in which the beneficiary is enrolled in the plan to create a

counterfactual “Total Payment” variable for each beneficiary in each plan. These numbers are

scaled up to a 12-month equivalent for each beneficiary enrolled for fewer than 12 months. The

minimum cost plan for each beneficiary is defined as the plan with lowest “Total Payment” in each

year.

C Details on Demand Model Estimation

We estimate the model using simulated maximum likelihood. Let XS and θS denote respectively

the observed variables and parameters governing the decision to search, with XC and θC analogously

denoting the observed variables and mean values of the parameters governing the individual’s choice

of plan. Further let θ̃RC,i denote the R individual-specific random preference parameters, with

associated observed variables XR
C . We assume θ̃RC,i ∼ MVN(θRC ,ΣIRΣ′), where θC = {θRC , θNRC }.

Then for some individual-specific R−dimensional IID-N(0, 1) vector νi, we can express utility as:

ui,j,t = XC,i,j,tθ
NR
C +XR

C,i,j,tθ̃
R
C,i + εi,j,t

= XC,i,j,tθ
NR
C +XR

C,i,j,tνiΣ + εi,j,t

= δi,j,t + εi,j,t

The parameters to be estimated are then Θ = {θC , θS ,Σ}.
Estimation is complicated by two problems. First, the individual-specific component of prefer-

ences, νiΣ, is unobserved. Second, we do not observe the individual’s decision to search, only to

switch plans, and must hence must estimate the probability of remaining in the current plan as
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a mixture over cases in which the individual searched and chose their current plan and cases in

which the individual did not search. We can account for the second problem directly by writing

the likelihood conditional on νi and Θ as a mixture:

Li,j,t|νi,Θ =
eδi,j,t

ΣKt
k=1 e

δi,k,t
if New Entrant

Li,j,t|νi,Θ =
1

1 + eXS,i,tθS︸ ︷︷ ︸
P(Search)

eδi,j,t

ΣKt
k=1 e

δi,k,t︸ ︷︷ ︸
P(Choose j)

if Switching

Li,j,t|νi,Θ =
eXS,i,tθS

1 + eXS,i,tθS︸ ︷︷ ︸
P(No Search)

+
1

1 + eXS,i,tθS︸ ︷︷ ︸
P(Search)

eδi,j,t

ΣKt
k=1 e

δi,k,t︸ ︷︷ ︸
P(Choose j)

if Not Switching

where Kt is the number of plans offered in Year t. Let C1
i,t, C

2
i,t, and C3

i,t be indicator functions for

the chosen plan j being selected by respectively a New Entrant, Switcher, or Non-Switcher. We

can thus account for the first problem by writing the likelihood conditional on Θ as the integral

over all possible values of νi, which we assume is constant across years for a given individual:

Li,j,t|Θ =

∫
νi

[
eδi,j,t

ΣKt
k=1 e

δi,k,t
]C

1
i,t + [

1

1 + eXS,i,tθS

eδi,j,t

ΣKt
k=1 e

δi,k,t
]C

2
i,t

+ [
eXS,i,tθS

1 + eXS,i,tθS
+

1

1 + eXS,i,tθS

eδi,j,t

ΣKt
k=1 e

δi,k,t
]C

3
i,t ∂Φ(νi)

We approximate this likelihood using simulation. Specifically, we take S = 10 R−dimensional

fully independent draws {νsi }Ss=1 from a standard normal distribution for each individual i and apply

them to the individual for all years in which they are active in the data. At Step m of the likelihood

maximization routine, for the current guess of Θ(m) we compute Li,j,t|νsi ,Θ(m) for the individual’s

observed choice j and each νsi and approximate the integral above with the sample average over

the S draws. We then maximize the likelihood using KNITRO maximization software. In general

the likelihood and integral are not exchangeable, and thus the gradient does not have a convenient

closed-form expression; in particular the gradient is not in general equal to the integral over νi of the

gradient conditional on νi. Hence in the maximization routine we use numerical gradients. However

at the optimal maximum-likelihood parameter estimate Θ̂ the likelihood is linear in parameters,

hence we can exchange the integral and gradient in order to compute standard errors directly,

approximating the Hessian with the cross-product of the gradient as in Berndt et al (1974).5

D Details on Counterfactual Simulation

In order to simulate plan pricing in the counterfactual, we first must construct an estimate of

plan costs. In each year for each drug observed in the prescription drug event file, we categorize the

drug as either branded or generic. For drugs that cannot be categorized, we label them as generic
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if their average cost is below the median among uncategorized drugs. Then for each branded drug

and each year we generate the average cost per day’s supply of the drug and apply it to each

observed prescription, scaled by the observed supply length. We assume the cost net of rebates is

80% of this amount50. For generic drugs, we assume the cost is $4 per month’s supply and scale

by the observed supply length51. For drug events in the catastrophic phase, we assume the plan

pays 15% and the beneficiary pays 5%, while for all other events we treat the beneficiary’s TrOOP

payment as known. We sum these drug costs over beneficiaries to generate an estimated annual

cost figure and annual TrOOP for each beneficiary. Then within each plan and year we winsorize

by replacing estimated annual costs and annual TrOOP for the bottom 2.5% of beneficiaries with

the 2.5% quantile, and analogously for the top 2.5%. These winsorized annual figures are then

averaged within plan and year to generate estimates of benefit cost and TrOOP per covered life.

Applying an administrative cost assumption of 16% of drug costs52, we generate an estimate of

total costs per covered life net of TrOOP, which treated as Cj,t in Equation (6).

The second step in our simulation is to refine our estimates of each individual’s unobserved type

by using the information from their observed choices. Each individual i has random preferences

θ̃RC,i ∼ MVN(θRC ,ΣIRΣ′). Denoting the distribution of random preferences as a function of our

estimated parameters as F (θ̃RC,i|θ̂C , Σ̂) with associated density f and the observed sequence of

(possibly multiple) choices for individual i as CObsi , we can write the conditional distribution of the

individual’s type as:

P (θ̃RC,i|CObsi ) =
P (CObsi |θ̃RC,i, Θ̂)f(θ̃RC,i|θ̂C , Σ̂)∫

θ̃RC
P (CObsi |θ̃RC , Θ̂) ∂F (θ̃RC |θ̂C , Σ̂)

Given Θ̂ and θ̃RC,i we can compute the likelihood of a given sequence of choices CObsi directly using

the formulas from Appendix C. We use this approach to construct the conditional density using

simulation, approximating the integral in the denominator with S′ = 50 simulation draws and

drawing S = 10 values {θ̃R,sC,i }Ss=1 from the conditional distribution for each individual.

The next input to our analysis is a simulation of individuals’ choices under various price regimes.

For the purposes of simulating choices under the no inattention counterfactual, we can generate logit

choice probabilities using the estimated demand model with frictions removed and sum across bene-

ficiaries to generate market shares. The static nature of the choice problem makes this computation

straightforward. For simulating choices under the baseline, the strong path-dependence implied by

inattention makes simulating every possible path (of which there are K2006×K2007×K2008×K2009 =

50A study by the Department of Health and Human Services Inspector General (Levinson (2011)34) found that, in
2009, rebates reduced Part D drug expenditures by 19% on average for the 100 highest-volume brand name drugs.
We assume a slightly lower percentage to account for potentially lower rebates for lower-volume drugs.

51Our assumption for generic drug costs is based on Walmart’s well known “$4 for any generic prescription”
program.

52Sullivan (2013)41 notes that the National Health Expenditure Accounts (NHEA) includes the administrative
costs of Medicare Advantage plans and Part D plans in its report of total Medicare administrative costs. We use
this fact, and data from the NHEA for 2006-2010, to back out administrative expenses of 14-16% of total costs - or
16-19% of non-administrative costs - for Parts C and D combined.
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7,076,160) computationally infeasible. Instead, we opt for a Monte Carlo approach in which we

generate choice probabilities in the initial year, randomly assign beneficiaries to plans according to

these choice probabilities, generate shocks and switching probabilities using these simulated choices,

and simulate forward. We draw S′′ = 10 such sequences of choices and shocks for each beneficiary

and average across simulation draws to construct our estimates.

Finally we use these inputs to solve for each plan’s optimal bid under the counterfactual of

no search frictions. With no frictions and conditional on their unobserved type θ̃RC,i, the choice

probability of each individual for each plan is of the simple logit form:

Λ̃i,j,t =
eXC,i,j,tθ

NR
C +XR

C,i,j,tθ̃
R
C,i

ΣKt
k=1 e

XC,i,k,tθ
NR
C +XR

C,i,k,tθ̃
R
C,i

while the unconditional probability is the integral over the filtered distribution from step 2:

Λi,j,t =

∫
θ̃RC,i

Λ̃i,j,t P (θ̃RC,i|CObsi ) ∂θ̃RC,i

Plan j’s enrollment in year t under the counterfactual is therefore:

Nj,t = ΣNt
i=1 Λi,j,t

where Nt is the number of beneficiaries active in year t.

Denote the bid, base premium, enhanced premium and costs for plan j in year t by Bj,t, Pj,t,

Ej,t, and Cj,t, respectively. Plan profits are a function of the bid, enhanced premium, costs, and

enrollment, and plans choose their bid to maximize profit:

Bj,t = ARGMAX
B

πj,t = (B + Ej,t − Cj,t)Nj,t

subject to the restriction that their premiums, and thus in part their enrollment, are determined

by the Medicare Part D bidding mechanism, and are constrained to lie above zero:

Pj,t = Bj,t −NAMBAt +BBPt + Ej,t

BBPt = BPPt ×NAMBAt

NAMBAt =
1

Jt
ΣJt
k=1 Bk,t

Pj,t ≥ 0

Under the assumption that the Base Premium Percentage (BPPt), enhanced premium and costs

are exogenous, we can write the plan’s premium in terms of its own and all other plans’ bids,

yielding an expression for the derivatives of plan premiums with respect to own- and other-plan
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bids:

∂Pj,t
∂Bj,t

=
Jt − (1−BPPt)

Jt
∂Pk,t
∂Bj,t

=
−(1−BPPt)

Jt

Conditional on θ̃RC,i, the derivative of the choice probability with respect to plan premiums is of the

usual logit form:

∂Λ̃i,j,t
∂Pj,t

= β2,1Λ̃i,j,t(1− Λ̃i,j,t)

∂Λ̃i,j,t
∂Pk,t

= −β2,1Λ̃i,j,tΛ̃i,k,t

where β2,1 is the utility parameter for plan premiums.

Combining the expressions above, we can write the plan’s optimal bidding problem as:

MAX
B

(B + Ej,t − Cj,t)× (ΣNt
i=1 Λi,j,t)

s.t. B ≥ −Ej,t +
1−BPPt

Jt
ΣJt
k=1 Bk,t

where Ei,t, BPPt and Jt are given. Ignoring complementarity, we can derive a first-order condition

for the plan’s bidding decision as:

∂πj,t
∂Bj,t

= (Bj,t + Ej,t − Cj,t)
∂Nj,t

∂Bj,t
+Nj,t = 0

where

∂Nj,t

∂Bj,t
= ΣNt

i=1 β2,1[

∫
θ̃RC,i

Λ̃i,j,t(1− Λ̃i,j,t) P (θ̃RC,i|CObsi ) ∂θ̃RC,i]
Jt − (1−BPPt)

Jt

+ Σk 6=j β2,1[

∫
θ̃RC,i

Λ̃i,j,tΛ̃i,k,t P (θ̃RC,i|CObsi ) ∂θ̃RC,i]
(1−BPPt)

Jt

We solve for each plan’s choice of bids, and hence premiums, by solving the system of first-order

conditions expressed above using Gauss-Jacobi and SQP. In each step, we solve each plan’s con-

strained optimization problem using the current-iterate bids and the expressions for the bidding

mechanism above, and then generate choice probabilities and update the bid accordingly. Choice

probabilities are generated using Model 4 from Table 6, where we assume that the shock interaction

effects are all zero, and we use the observed Base Premium Percentage in each year.

Some of the inputs to this analysis need to be imputed from the data. We observe PDP plan to-

tal and basic premiums for NJ and infer enhanced premiums as the difference between the two. The

NAMBA, Base Beneficiary Premium and Base Premium Percentage are published annually by the
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CMS, and in the years over which we simulate, they were, respectively, ($92.30, $32.20, 34.88%) in

2006, ($80.43, $27.35, 34.00%) in 2007, ($80.52, $27.93, 34.68%) in 2008, and ($84.33, $30.36, 36.00%)

in 2009. For the purposes of determining monthly per-member subsidies, plan bids are actually

scaled by a risk metric (RxHCC) that varies depending on the average demographic and chronic

conditions of the insurer’s risk pool. We ignore this metric, assuming that the government rein-

surance program removes any incentives that may result from the scaling, and assume that each

plan is paid their bid (Bj,t) plus their enhanced premium (Ej,t). For the baseline simulations our

premium measure is the observed total premium for each plan. For the simulations where we allow

the bid to adjust, we assume the enhanced premium is held fixed at observed levels. The NAMBA

is a national average over all MA-PD and PDP plans. We use our NJ data, and the observed total

number of plans included in the NAMBA, to back out the sum of bids for all plans except NJ PDPs

and hold that “other market” component of the NAMBA fixed in our simulations. This implies an

assumption that, while NJ PDPs respond to changes in their competitors’ bids, plans outside this

group do not.

In order to estimate government savings under the counterfactual, we construct average bids

under the “baseline” and “no frictions” counterfactuals. Bids in the “no inattention” case are

predicted as the outcome of the bid-setting game. We back out bids in the “baseline” scenario

from the observed premium and the NAMBA data using the formula in equation (7). We make

the simple assumption that, if inattention is removed nationally, then the NAMBA will fall by the

same amount as the predicted average reduction for NJ. The government therefore saves a fraction

of the difference in average bids equal to 1 minus the observed Base Premium Percentage, or γt,

per person per month. Scaling this figure up to the year and multiplying by the observed number

of non-LIS enrollees in PDP plans generates a conservative estimate for annual savings, assuming

no change in the low-income subsidy and reinsurance components of program costs.

E Appendix Tables

Appendix Table A1A: Sample Composition

Count % of Sample % Female % White

2006 127,654 21.98% 63.7% 91.1%

2007 141,987 24.43% 62.4% 90.8%

2008 151,289 26.05% 61.6% 91.0%

2009 159,906 27.53% 60.4% 90.9%

Notes: Summary statistics on composition of New Jersey data sample.
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Appendix Table A1B: Age Distribution

Under 65 65-69 70-74 75-79 80-84 Over 85

2006 5.82% 19.71% 19.51% 20.33% 17.27% 17.36%

2007 6.20% 22.28% 19.51% 18.63% 16.52% 16.85%

2008 6.15% 24.84% 19.85% 17.26% 15.66% 16.24%

2009 6.27% 27.68% 20.08% 16.13% 14.54% 15.28%

Notes: Summary statistics on age distribution of New Jersey data sample.

Appendix Table A1C: Part D Tenure

New Entrants 1 Year 2 Years 3 Years

2006 127,654 0 0 0

2007 28,460 113,437 0 0

2008 26,802 24,745 99,742 0

2009 31,275 25,203 21,170 84,258

Notes: Summary statistics on composition of New Jersey data sample by number of years in Part D.

Appendix Table A2: Average Plan Quality

# Plans % Top Drugs Covered % Top Drugs Covered % Quality Stars % Quality Stars

Unweighted Enrollment Weighted Unweighted Enrollment Weighted

2006 1,426 51% 59% 92% 96%

2007 1,866 67% 71% 95% 98%

2008 1,824 80% 81% 75% 77%

2009 1,687 80% 82% 67% 68%

Notes: Percent of 117 most-commonly prescribed drugs covered, and percent of possible stars achieved, in
PDP plans in each year (national data).
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Table A3: Following-Year Plan Characteristics Choices, Switchers and Non Switchers

Switchers % Enhanced Premium % Pre-ICL Cvge % ICL Cvge

2006 14.64% 19.02 70.15% 12.15%

2007 24.00% 26.50 70.50% 29.29%

2008 37.53% 29.93 71.34% 29.60%

Non Switchers % Enhanced Premium % Pre-ICL Cvge % ICL Cvge

2006 28.13% 26.02 62.29% 10.29%

2007 33.62% 38.63 65.85% 6.52%

2008 31.58% 38.31 62.40% 9.07%

Notes: Comparison of observed plan characteristics, for switchers and non-switchers. ‘% Pre-ICL Cvge’ is
average observed percent of costs covered by the plan in Pre-ICL phase for that plan’s enrollees; ‘% ICL
Cvge’ is analogous figure for costs in the coverage gap.

Table A4: Predicted Overspending Regressions

Without Switching Decision With Switching Decision

Coeff. S.E. Coeff. S.E.

Years in Program -0.0254*** (0.0002) -0.0017*** (0.0004)

Female 0.0026*** (0.0004) 0.00027 (0.00047)

White 0.0102*** (0.0007) 0.0089*** (0.0008)

Obs TrOOP ($) -0.000011*** (3.97 E-07) -0.000025*** (4.68 E-07)

Premium ($) 0.0007*** (2.52 E-06) 0.0006*** (2.71 E-06)

Deductible ($) 0.000068*** (1.85 E-06) 0.000084** (2.40 E-06)

Gap Cov. (All) -0.159*** (0.004) -0.664*** (0.024)

Gap Cov. (Generic) -0.128*** (0.001) -0.099*** (0.001)

National PDP -0.038*** (0.001) -0.061*** (0.001)

Switched Plans - - -0.005*** (0.0008)

Constant 0.324*** (0.001) 0.342*** (0.002)

N 580,746 - 366,555 -

R2 0.378 - 0.412 -

Notes: Regressions of predicted overspending (relative to predicted lowest-cost plan) on plan characteristics.
All specifications include deciles of days’ supply of chronic drugs in the previous year, income quartiles
and age group fixed effects. Robust Standard Errors in Parentheses. “*” = 90% Significance, “**” = 95%
Significance, “***” = 99% Significance
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Table A5: Decomposition of Difference in Next-Year Overspending if Remain in Cur-
rent Plan, Switchers vs. Non-Switchers

% from Change in % from Change in % from This % from Change in % from Change in

Year Current Plan Prem Current Plan TrOOP Year Error Cheapest Plan Prem Cheapest Plan TrOOP

2006 29.35% -64.92% 173.89% -16.77% -21.54%

2007 71.76% -0.62% -9.98% 10.59% 28.26%

2008 57.11% 2.63% 2.28% 2.04% 35.93%

Overall 68.94% -19.94% 33.10% -1.29% 19.19%

Notes: Decomposition of the difference between overspending of switchers vs non-switchers if they remain
in their current plan. This difference is broken into five components: the current-year error (defined as over-
spending in current year relative to lowest-cost plan), the increase in current-plan premium and TrOOP, and
the reduction in lowest-cost plan premium and TrOOP.

Table A7: Next-Year Plan Choices and Overspending by Shock, Switchers Only

2006 Acute Shock No Acute Premium Shock No Premium Cov Shock No Cov

% Gap Coverage 14.10% 7.13% 3.46% 45.41% 30.87% 5.95%

Premium 20.83 18.82 17.46 32.47 29.65 18.16

% within 25% 72.07% 49.55% 52.29% 47.98% 62.53% 50.96%

2007 Acute Shock No Acute Premium Shock No Premium Cov Shock No Cov

% Gap Coverage 5.39% 3.20% 2.97% 5.29% 0.00% 3.41%

Premium 27.25 26.43 25.77 29.68 22.10 26.50

% within 25% 64.99% 42.20% 46.70% 34.20% 0,00% 44.37%

2008 Acute Shock No Acute Premium Shock No Premium Cov Shock No Cov

% Gap Coverage 9.54% 4.34% 3.55% 9.12% 2.44% 4.98%

Premium 31.84 29.76 29.07 32.97 29.99 29.92

% within 25% 58.28% 46.56% 47.91% 46.18% 46.45% 47.63%

Overall Acute Shock No Acute Premium Shock No Premium Cov Shock No Cov

% Gap Coverage 9.23% 4.75% 3.25% 15.08% 21.07% 4.52%

Premium 25.54 24.36 23.19 31.05 29.76 24.26

% within 25% 66.63% 45.49% 48.98% 39.98% 56.97% 47.11%

N 5,924 56,183 51,955 10,152 2, 496 59,611

Notes: Summary of types of plans chosen by type of shock experienced. ‘% Gap Coverage’ is average percent
of plans chosen with gap coverage; ’Premium” is average premium per enrollee per month for chosen plan;
‘% within 25%’ is percent of plans chosen that are within 25% of lowest-cost option available.
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Table A6: Probit Regressions on Switch Decision

Model 1 Model 2 Model 3 Model 4

Years in Sample -0.174*** -0.174*** -0.167*** -0.167***
(0.0047) (0.0047) (0.0049) (0.0049)

Alzheimers/Mental Illness -0.016** -0.017** -0.014** -0.015**
(0.007) (0.007) (0.007) (0.007)

Obs TrOOP ($) 0.00011*** 0.00011*** 0.00010*** 0.00010***
(4.76 E-06) (4.88 E-06) (4.79 E-06) (4.81 E-06)

Premium ($) 0.0027*** 0.0027*** 0.0026*** 0.0026***
(0.000036) (0.000036) (0.000037) (0.000037)

Deductible ($) 0.0041*** 0.0041*** 0.0042*** 0.0042***
(0.000026) (0.00026) (0.000027) (0.000028)

Gap Coverage (All) -0.944*** -0.951*** -0.853*** -0.861***
(0.031) (0.031) (0.031) (0.031)

Gap Coverage (Generic) -1.628*** -1.628*** -1.515*** -1.516***
(0.028) (0.028) (0.029) (0.029)

National PDP -0.332*** -0.334*** -0.327*** -0.329***
(0.007) (0.007) (0.007) (0.007)

Female 0.099*** 0.099*** 0.099*** 0.099***
(0.006) (0.006) (0.007) (0.007)

White -0.014 -0.014 -0.028 -0.029
(0.011) (0.011) (0.011) (0.011)

Premium Change 0.0055*** 0.0055*** 0.0053*** 0.0053***
(Own Plan) (0.0001) (0.0001) (0.0001) (0.0001)

Next-Year Gap Coverage Dropped 1.895*** 1.898*** - -
(Own Plan) (0.087) (0.087)

% TrOOP Change - - -1.05 E-10 -6.44 E-11
(Own Plan) (7.11 E-11) (7.90 E-11)

Premium Change - 0.0002*** - 0.0002***
(Avg. 5 Lowest-cost Plans) (0.00004) (0.00004)

Next-Year Gap Coverage Dropped - -0.0397 - -
(% 5 Lowest-cost Plans) (0.0362)

% TrOOP Change - - - -1.31 E-10
(Avg. 5 Lowest-cost Plans) (1.61 E-10)

Constant -2.685*** -2.693*** -2.587*** -2.596**
(0.021) (0.021) (0.025) (0.025)

N 366,555 366,555 337,477 337,477
Pseudo-R2 0.310 0.310 0.311 0.311

Notes: Probit regressions to predict probability of switching. All specifications include deciles of days’ supply
of chronic drugs in the previous year, income quartiles and age group fixed effects. White HCE Standard
Errors in Parentheses. “*” = 90% Significance, “**” = 95% Significance, “***” = 99% Significance
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Table A8: Descriptive Statistics for Demand Model Variables

Switch Parameters

Threshold Shifters Variable Mean Standard Deviation

Constant 1.000 0.000

Female 0.619 0.486

Nonwhite 0.091 0.287

Q1 Income 0.225 0.417

Q2 Income 0.269 0.443

Q3 Income 0.255 0.436

Age 70-74 0.198 0.398

Age 75-79 0.179 0.383

Age 80-84 0.159 0.365

Age U-65 0.061 0.240

Age O-85 0.163 0.370

Shocks Variable Mean Standard Deviation

Premium Shock -0.266 0.442

Coverage Shock -0.024 0.154

Acute Shock -0.037 0.189

Choice Parameters Variable Mean Standard Deviation

Chronic TrOOP($000) 0.784 0.935

Acute TrOOP ($000) 0.105 0.128

Premium ($000) 0.471 0.241

Deductible ($000) 0.095 0.126

Gap Coverage 0.235 0.424

Premium Shock x Premium 0.127 0.247

Coverage Shock x Gap Coverage 0.006 0.079

Acute Shock x Gap Coverage 0.010 0.098

Enhanced 0.472 0.499

Enhanced (2006) 0.072 0.258

Enhanced (2007) 0.122 0.328

Enhanced (2008) 0.135 0.342

Enhanced (2009) 0.143 0.350

Notes: Summary statistics for variables included in two-stage model of choice and switching. Premium,
Coverage and Acute Shocks defined in Section 5.2. Gap Coverage is an indicator for any coverage in the
gap.

53



Table A9: Demand Robustness Tests

No Switch 1 No Switch 2 Model 5 Model 6

Switch Parameters
Threshold Shifters Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Year (2007) - - - - 3.73*** 0.04 3.73*** 0.05

Year (2008) - - - - 3.17*** 0.03 3.20*** 0.04

Year (2009) - - - - 4.38*** 0.04 4.38*** 0.05

Female - - - - -0.26*** 0.02 -0.26*** 0.02

Nonwhite - - - - -0.04 0.03 -0.04 0.03

Q1 Income - - - - -0.52*** 0.03 -0.52*** 0.03

Q2 Income - - - - -0.29*** 0.02 -0.29*** 0.03

Q3 Income - - - - -0.22*** 0.03 -0.22*** 0.03

Age 70-74 - - - - -0.15*** 0.03 -0.15*** 0.03

Age 75-79 - - - - -0.35*** 0.03 -0.35*** 0.03

Age 80-84 - - - - -0.50*** 0.03 -0.50*** 0.03

Age U-65 - - - - -0.48*** 0.05 -0.48*** 0.03

Age O-85 - - - - -0.76*** 0.03 -0.76*** 0.04

Shocks Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Premium Shock - - - - 2.39*** 0.03 2.40*** 0.03

Coverage Shock - - - - 0.70** 0.05 0.69** 0.05

Acute Shock - - - - 0.58** 0.05 0.58*** 0.05

Choice Parameters Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Chronic TrOOP -1.20*** 0.01 -1.11*** 0.01 -1.59*** 0.01 -1.52*** 0.03

Acute TrOOP 0.61** 0.06 0.60** 0.11

Annual Premium -3.91*** 0.01 -3.92*** 0.01 -5.81*** 0.12 -7.51*** 0.27

Deductible -0.33** 0.03 0.07 0.06 - - -0.38** 0.17

Gap Coverage 0.66*** 0.03 0.76*** 0.07 - - 1.44** 0.20

Premium Shock x Prem - - - - - - - -

Coverage Shock x Gap Cov - - - - - - - -

Acute Shock x Gap Cov - - - - - - - -

Enhanced: Mean -0.74*** 0.01 -1.52*** 0.09 -0.18 0.13 -0.61*** 0.13

Enhanced: Variance 47.85 - 45.19 - 5.08 - 2.68 -

Enhanced (2007) - - 0.58** 0.11 - - - -

Enhanced (2008) - - 0.71** 0.02 - - - -

Enhanced (2009) - - 1.32** 0.10 - - - -

Lge Brand 1: RC Mean 2.55*** 0.04 2.62*** 0.02 3.13*** 0.11 3.17*** 0.15

Lge Brand 1: RC Variance 5.57 - 4.92 - 2.83 - 3.85 -

Lge Brand 2: RC Mean 1.11*** 0.01 1.10*** 0.01 2.44*** 0.13 2.55** 0.22

Lge Brand 2: RC Variance 67.04 - 61.84 - 2.74 - 1.10 -

Lge Brand 3: RC Mean 1.05*** 0.02 1.03*** 0.04 1.25*** 0.05 0.99** 0.10

Lge Brand 3: RC Variance 3.02 - 5.87 - 4.03 - 3.96 -

Fixed Effects Brand Brand Brand Brand

N 580,746 580,746 580,746 580,746

Notes: Estimates from demand robustness tests. Threshold Shifters and Shocks are variables that affect the
probability of switching. Choice Parameters are variables that affect preferences for plans conditional on
switching. TrOOP is predicted OOP cost excluding premium. TrOOP, Deductible and Premium are in $000
per year. Gap Coverage is an indicator for any coverage in the gap. White HCE Standard Errors. “*” =
90% Significance, “**” = 95% Significance, “***” = 99% Significance54



Table A10: Premium Dispersion in New Jersey DSB Plans

Mean, Equal Std. Dev., Equal Mean, Weighted Std. Dev., Weighted Minimum Maximum

2006 $26.33 $11.33 $9.27 $10.52 $4.43 $35.49

2007 $31.28 $12.44 $10.37 $1.86 $10.20 $47.40

2008 $32.51 $17.61 $31.28 $6.19 $19.20 $69.00

2009 $42.88 $18.08 $29.84 $10.46 $26.60 $72.70

2010 $37.66 $4.88 $32.84 $2.21 $32.00 $42.90

2011 $39.73 $5.73 $37.26 $3.17 $34.20 $47.60

2012 $38.37 $4.20 $37.32 $4.48 $34.80 $43.00

Notes: Summary of premium dispersion in NJ Defined Standard Benefit plans. Premiums are in $ per
enrollee per month. “Weighted” means weighted by enrollment.
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