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1. Introduction

Many industry observers and public health advocates believe that disease preventives are inherently less

lucrative than treatments (see, e.g., Rosenberg 1999). Thomas (2002) and others have argued that private

incentives for research and development (R&D) on preventives fall far short of social needs particularly

in the case of human immunodeficiency virus (HIV). Consistent with this view, the manufacturer did not

secure the approval of Truvada as an HIV preventive until eight years after its initial approval as an HIV

treatment, and the revenue generated by its use as a treatment continues to dwarf that from its use as a

preventive. Commentators have argued that weak preventive incentives call for government involvement,

and indeed governments have undertaken special programs to support preventive R&D for HIV and other

diseases, programs including the International AIDS Vaccine Initiative (IAVI), the U.S. Advisory Council

on Immunization Policy (ACIP), and the Pneumococcus Advance Market Commitment.

The delay in the development of any particular product such as Truvada could be ascribed to a variety of

forces. The analysis in this paper will shed light on one determinant of the gap between private and social

R&D incentives. We argue that differences in the distribution of consumer values at the time preventives and

treatments are sold can affect the manufacturer’s ability to extract surplus with the products. The difference

in producer surplus can drive a wedge between private and social incentives to invest in the two products.

To see the logic, consider an example in which a monopoly pharmaceutical manufacturer sells directly

to rational, risk-neutral, completely patient consumers. The firm can develop a preventive or a treatment,

each of which has its own associated R&D cost. To make the example as simple as possible, assume both

the preventive and treatment have no production costs, are perfectively effective, costless to manufacture,

and have no side effects. Suppose the harm to a consumer from contracting the disease is $100. Assume

that the firm knows the distribution of disease risk in the population but not an individual’s risk (or at least

cannot price discriminate based on this risk).

Suppose first there is no heterogeneity in disease risk in the population. In particular, assume there are

100 consumers who have a 19% chance of contracting the disease. The firm would earn $1,900 from a

preventive by selling it to all 100 consumers at a price equal to their expected harm of $19. The firm would

earn $1,900 in expectation from a treatment by selling it to the 19 consumers expected to contract the disease

at a price equal to avoided harm of $100. The producer surplus is the same from either product, so the firm

develops whichever has lower R&D costs. Since the firm captures all of the social surplus created by each

product, it would choose to develop the same product as a social planner.

Now incorporate consumer heterogeneity by assuming that they have two types: 90 have a 10% disease

risk and 10 have a 100% risk. As before, 19 consumers are expected to contract the disease, so the firm

continues to earn $1,900 in expectation from a treatment. However the firm now earns less from a preventive.

It can either sell only to high-risk consumers at $100 or to all consumers at $10. Either way, producer

surplus from a preventive falls to $1,000, biasing the firm away from developing a preventive toward a

treatment. The bias can result in substantial distortions. To see how large, suppose R&D costs are slightly

less than $1,900 for a treatment and slightly more than $1,000 for a preventive. Then the firm develops
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a treatment while a social planner would prefer a preventive because it also eliminates the entire $1,900

disease burden while saving nearly $900 on R&D. This extra R&D spending on the treatment represents the

potential deadweight loss from a biased product choice. An even starker illustration of this large potential

deadweight loss is provided in an example in which no product is developed. Take the previous example but

now suppose R&D costs are slightly more than $1,900 for a treatment. Then no product is developed even

though, as before, the social gain from developing a preventive exceeds the social cost by nearly $900, so

again society experiences a nearly $900 deadweight loss.

When will this bias arise? What characteristics of the disease-risk distribution leads to large biases?

How large can the bias possibly be? To address these questions, we construct a benchmark model in which a

monopolist sells a perfectly safe and effective product, which is costless to produce, directly to risk-neutral

consumers. We show that producer surplus from a treatment will always be strictly higher than from a

preventive as long as there is any heterogeneity among consumers with positive disease risk. The numerical

example illustrates the features of a risk distribution contributing to a large bias against preventives: although

the high consumer type values the preventive ten times more than the low, it only makes up a tenth of

the population, so that the preventive monopolist earns the same (low) producer surplus whichever type it

targets. Distributions with the property that higher values have proportionately fewer types with at least

that value are called Zipf distributions. We derive the “worst case” distribution, minimizing the ratio of

producer surplus from a preventive to that from a treatment holding constant disease prevalence, showing it

is a particular type of Zipf distribution, which we call a symmetrically truncated Zipf (abbreviated STRZ,

read “stars”) distribution. The STRZ distribution leads to a simple demand curve, one that is globally

unit elastic over all prices between its truncated endpoints, generating constant producer surplus for all

these prices. Indeed, constant producer surplus across prices is a necessary condition for producer-surplus

minimization: if one price were more lucrative than others, there would be scope for reducing producer

surplus by converting some of the mass from the marginal type into disease risk at other points in the

distribution, thus holding mean disease risk constant.

We provide a formula that can be used to decompose the ratio of preventive to treatment producer

surplus into just two factors: an index of similarity to the STRZ distribution and disease prevalence. For

extremely rare and Zipf-similar disease distributions, the ratio of preventive to treatment producer surplus

can approach zero. This limiting result can be illustrated by extending the previous numerical example by

including additional consumer types: 900 with 1% disease risk, 9,000 with 0.1% risk, etc. Each additional

type adds $900 to the producer surplus from a treatment but nothing to the producer surplus from a preventive

because, by construction, the firm continues to earn $1,000 whichever types it targets with the preventive

price. If enough types are added, the producer-surplus ratio can thus be driven arbitrarily close to zero.

If disease prevalence is bounded away from zero, the producer-surplus ratio is bounded away from zero

according to a formula we derive.

Much of the analysis uses a simple model of direct-to-consumer sales, which serves as a benchmark

against which other institutions can be compared and policy responses evaluated. In extensions we explore
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some alternative institutions. We show that third-party purchases, for example by insurers or governments,

can mitigate biases but will not eliminate biases if the third party bargains with the firm over prices ex-

post, after R&D costs are sunk. In other extensions, we generalize the results to arbitrary production costs,

efficacies, and side effects for each of the two products and to market structures beyond monopoly.

Just as ex ante heterogeneity in disease risk can lead to a bias against preventives, ex post heterogene-

ity in harm from a disease can lead to a bias against treatments. We characterize relative preventive and

treatment revenue with heterogeneity in ex ante and ex post private information and heterogeneity in private

information that persists across both ex ante and ex post periods (such as information on income or wealth).

After going through the theory, we show how the model can be used to calibrate potential deadweight

loss for any disease using demographic information to estimate the distribution of consumer values in the

population. We first examine the case of HIV in the United States. As others have noted, many real-world

distributions are well-characterized by power laws, and this includes the distribution of sexual partners.

In a simple model in which willingness to pay is proportional to risk, calibrated producer surplus from

a preventive from an HIV vaccine is only 26% of the producer surplus from a treatment. We estimate

that the negative correlation between HIV risk and income raises this to 38%. In contrast, for the much

higher prevalence human papilloma virus (HPV), calibrations generate preventive-to-treatment producer-

surplus ratios much closer to one. Zipf-like risk distributions are not limited to sexually transmitted diseases.

Calibration for heart disease, the leading killer in the United States, suggests that disease-risk heterogeneity

substantially reduces producer surplus from preventives.

In the empirical section, we find that an indicator for factors contributing to Zipf-similarity of the dis-

tribution of disease risk (e.g., sexual transmission, transmission through other specialized vectors, disease

concentration in certain subpopulations or regions) is associated with a significantly lower probability of

vaccine development—by as much as 40 percentage points—but not with a lower probability of drug devel-

opment.

In focusing on the implications of time-varying consumer heterogeneity for incentives to develop pre-

ventives and treatments, we do not mean to minimize the role of other factors such as consumer behavioral

biases, legal rules regarding product liability, or differences in technological opportunities that could also

affect incentives. In the case of infectious disease, another factor has received some attention in the literature

is the possibility that by reducing the spread of infectious disease—a positive epidemiological externality—

preventives may reduce their own future demand.1 The factors examined in the present paper are unique in

that they apply to non-communicable diseases and apply to neoclassical consumers. Perhaps most impor-

tantly, the factor we study is a true bias in the sense of driving a wedge between private and social incentives.

A firm may prefer to develop the product that uses “easier” science or that can be tested without harming

healthy people, but these are not biases per se if the social planner shares these preferences.

1See Brito, Sheshinski, and Intrilligator (1991); Boulier (2006); Francis (1997); Geoffard and Philipson (1997); Gersovitz
(2003); Gersovitz and Hammer (2004, 2005). Our own work (Kremer, Snyder, and Williams, 2012) argues that epidemiological
externalities will tend to induce bigger distortions for communicable diseases that are rare, reinforcing the results in the present
paper on the relationship between prevalence and potential deadweight loss.
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Some of the core theoretical results have general implications for product markets beyond pharmaceuti-

cals, which we touch on in this paper but explore more thoroughly in a companion paper (Kremer and Snyder

2015). There we show the fraction of surplus a monopolist is unable to extract from the market is a tight up-

per bound on potential deadweight loss from all sources—whether distorted product-development decisions

or distorted pricing decisions. Any demand curve with a finite price intercept, when suitably rescaled, can

be compared to the STRZ distribution of consumer values, which minimizes producer surplus for a given

mean value. This allows us to relate potential deadweight loss to the Zipf-similarity of demand for a general

class of markets. We derive bounds on static deadweight loss on gains from optimal subsidy policies and

losses from banning price discrimination. The present paper focuses on a comparison of preventives versus

treatments. This is a unique “laboratory” in which to study rent-extraction effects because the level of de-

mand can be held relatively fixed (both products target the same disease with the same overall burden) while

allowing the shape of the demand curve to change depending on how the distribution of consumer values

evolves from the ex ante to the ex post period.

Our paper links social welfare generated by different pharmaceutical products to the ability of the mo-

nopolist to appropriate surplus selling that product. Perhaps the clearest link between appropriability and

efficiency was drawn by Makowski and Ostroy (1995, 2001). They show that the reason price-taking is

central to the first welfare theorem of general equilibrium is that it is sufficient for suppliers to be able to ap-

propriate 100% of the surplus they create. The latter condition is what is needed for first-best efficiency. Our

analysis complements theirs in that instead of bounding how efficient the equilibrium can be when appropri-

ability is easy, we bound how inefficient it can be what appropriability is difficult, and offer characteristics

of products and shapes of demands that lead to particular difficulties.

This and the companion paper together contribute to a microtheory literature linking the shape of the

demand curve to producer surplus. Anderson and Renault (2003) bound the ratio of producer to total surplus

as a function of a generalized notion of the concavity or convexity of demand in a Cournot market. Some

of our special cases (Propositions 9 and 10) can be proved as immediate corollaries of their theorems. Weyl

and Fabinger (2013) (see also Fabinger and Weyl 2014) provide bounds on the surplus ratio for arbitrary

demand and cost curves and oligopoly models; the bounds are tied to the elasticity of the marginal-producer-

surplus function and oligopoly conduct parameters. Johnson and Myatt (2006) construct several orderings

on demand curves including clockwise rotations. They provide a rich set of applications in which a firm’s

strategy—e.g., advertising or product design—is isomorphic to a choice of an ordered demand curve.2 They

show profit is typically quasiconvex in the demand ordering, rationalizing all-or-nothing strategy choices

observed in the applications. Our decomposition formula provides a different way to order demand curves

based on Zipf similarity and mean surplus.

Demand curves generating equal producer surplus whatever price is charged (alternatively labeled Zipf,

2The idea that the firm will choose the most profitable shape for consumer demand has been applied to a diverse set of phenom-
ena in industrial organization. DeGraba (1995) explains buying frenzies as a response to supply limitations, inducing consumers
to race to buy before acquiring more information about their true valuations. Biehl (2001) applies the idea to the sell versus lease
decision.
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unit-elasticity, equal-revenue, or extremal) have been discovered to be a useful tool in proving a wide range

of important recent results.3 Bergemann, Brooks, and Morris (2014) show that any market can be rep-

resented as a convex combination of segmented markets with such demands. Because the monopolist is

indifferent among prices charged in one of these segmented markets, the modeler can design equilibrium

discriminatory prices attaining any division of first-best surplus across the firm, consumers, and deadweight

loss (as long as the monopolist earns at least the profit under uniform pricing). Brooks (2013) contemporane-

ously derived the symmetrically truncated Zipf demand to provide a worst case for his belief survey auction,

the optimal mechanism for an uninformed principal when agents are informed about their types and rivals’

type spaces. The formula for the revenue ratio in his Proposition 1 is in fact identical to our equation (7). A

growing literature in computer science uses the construction to bound worst cases for approximately optimal

mechanisms in different settings. Hartline and Roughgarden (2009) provides an early such reference: they

use a constant-revenue demand to compare revenue from an optimal auction to that from a Vickery auction

with no reserve but with one more bidder (see their Example 4.6). Weyl and Fabinger (2013) anticipate the

special nature of Zipf demand: in the case of a monopoly with costless production, their formulae imply that

the ratio of producer to total surplus vanishes for Zipf demand. We contribute by showing that the STRZ

demand is the unique minimizer of this surplus ratio among demand curves with a given mean and finite

support, without imposing continuity or differentiability restrictions.

Our paper contributes to the literature on incentives for innovation in R&D-intensive industries (see,

e.g., Newell, Jaffee, and Stavins 1999; Acemoglu and Linn 2004; Finkelstein 2004; and Budish, Roin, and

Williams 2013). Most closely related are studies of innovation in healthcare markets by Lakdawalla and

Sood (2013) and especially Garber, Jones, and Romer (2006). The latter paper relates static and dynamic

deadweight loss to the shape of the demand curve as we do. They focus on a different distortion, that

coinsurance can induce overconsumption and excess entry by defraying a fraction of the pharmaceutical

price. Although we have an extension to third-party procurement, in our benchmark model of private-market

sales deadweight loss is solely due to underconsumption and too little entry, generating novel conditions on

the demand shapes generating the biggest distortions.

We also contribute to the industrial organization literature on monopoly pricing when consumers grad-

ually learn their demands. Lewis and Sappington (1994) and Courty (2003) assume consumers are initially

identical, whereas we assume consumers have ex ante private information about their disease risk. Courty

and Li (2000) compare optimal ex ante and ex post schemes under general conditions, where ex ante schemes

are allowed to involve refunds. Refunds are impossible for preventives because, once the preventive is ad-

ministered, the benefit is inalienable from the consumer. Clay, Sibley, and Srinagesh (1992) and especially

Miravete (1996) are closest to our work. Our application to disease risk calls for a specific mapping from ex

3An early working-paper version of this paper (Kremer and Snyder 2003) used the equal-revenue property to construct discrete
distributions attaining certain lower bounds and attaining a limit on the ratio of preventive to treatment producer surplus of zero.
That version did not derive the STRZ distribution, bounds on deadweight loss, or a number of other core results and extensions
in this published version. Earlier work by one of us with a coauthor (Malueg and Snyder 2006) considers a sequence of linear
demands with the equal-revenue property to bound the ratio of profits from discriminatory to uniform pricing by a function of the
number of markets.
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ante private values into ex post types, whereas Miravete considers general functional forms for the mapping.

The specificity in this one dimension allows us to examine general distributions of ex ante disease risk rather

than the particular class of beta distributions examined by Miravete, to characterize the worst case distribu-

tion as the Zipf, and to decompose the producer-surplus ratio into prevalence and Zipf-similarity factors, all

of which are new results in the literature. Our results on deadweight loss, and our calibrations and empirical

work are new as well.

The remainder of this paper is organized as follows. Section 2 sets up the benchmark model. Section 3

provides a full analysis of this model. We show that if consumers differ only in disease risk, producer sur-

plus from a treatment exceeds that from a preventive and that the gap between these surpluses provides a

bound on the potential deadweight loss from the resulting R&D distortions. We decompose the producer-

surplus ratio into two contributing factors: low disease prevalence and Zipf-similarity of the distribution of

disease risk. Section 4 generalizes the analysis in a number of directions, allowing for imperfect efficacy,

side effects, production costs, a broad class of models with competition among suppliers, and third-party

purchases. Section 5 explores alternative sources of heterogeneity besides disease risk. Just as ex ante het-

erogeneity in disease risk leads to a bias against preventives, ex post heterogeneity in harm from disease

can lead to a bias against treatments. The section connects the ratio of preventive to treatment producer

surplus to the joint distribution of ex ante disease risk, harm from disease realized ex post, and persistent

differences in willingness to pay for expected reductions in harm from disease, for example due to differ-

ences in income. Section 6 calibrates the model for HIV/AIDS, HPV, and heart attacks. Section 7 provides

a first-pass empirical test of the model. Section 8 concludes with a discussion of implications for public

policy, noting that our results provide a potential rationale for programs like the U.S. Advisory Committee

on Immunization Practices or Advance Market Commitments.

2. Benchmark Model

We begin with a benchmark model of a monopoly pharmaceutical manufacturer. The firm can produce either

a preventive or a treatment, which it sells directly to consumers. In the next subsection, we will verify that the

restriction to a single product is made without loss of generality given the parametric assumptions imposed in

the benchmark model. Extensions allowing allowing for general market structures with competing suppliers,

allowing for government or other third-party procurement, and allowing for both products to be produced

under general values of the parameters are deferred to Section 4, where we show that the key welfare results

continue to hold. Let j index products, with j = p for the preventive and j = t for the treatment. Its decision

to enter the market for product j is reflected by the indicator variable E j. Entry requires a fixed R&D

expenditure k j. After entering, it produces at constant marginal cost c j.

Let p j be the price it sets for product j, Q j(p j) be the demand curve, PS j(p j) = (p j − c j)Q j(p j) be

producer surplus, CS j(p j) =
∫ ∞

p j
Q(x)dx be consumer surplus, and TS j(p j) = PS j(p j) + CS j(p j) be total

surplus. Note PS j(p j) and TS j(p j) are surpluses from an ex post perspective, i.e., treating k j as a sunk

cost and thus ignoring it. Profit from an ex ante perspective—treating k j as an economic cost—is denoted
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Π j(p j) = PS j(p j)− k j. Ex ante social welfare is denoted Wj(p j) = TS j(p j)− k j.

On the demand side, consumers are risk neutral. Before purchasing any product, each consumer learns

his or her disease risk, x ∈ [0,1], i.e., the probability he or she contracts the disease. Assume x is a realization

of random variable X with cumulative distribution function (cdf) FX(x) and complementary cdf F̄X(x) =

Pr(X > x) = 1 − FX(x). The proportion of consumers with disease risk at least as great as some value x

is denoted ΦX(x) = Pr(X ≥ x) = F̄(x)+ Pr(X = x). The mean disease risk—also disease prevalence in the

absence of a preventive—is µX =
∫ 1

0 xdFX(x). Assume the firm knows the distribution of X in the population

but cannot price discriminate across consumers based on realized values x.4 If a consumer contracts a disease

and has not had the preventive or does not receive the treatment, he or she experiences harm h ≥ 0 in present

discounted value terms. Prior to Section 5, which explores various sources of heterogeneity in willingness

to pay, we assume that consumers all would pay the same h to avoid harm.

We will impose a number of simplifying assumptions in the benchmark model. Both products are

assumed to be costless to manufacture and administer (i.e., c j = 0), are perfectly effective, and have no side

effects. The discount rate is normalized to 0. (Discounting can be accommodated by interpreting dollar

values in present-discounted-value terms.) Normalize both h and the mass of consumers to 1.

The products differ in the timing of when they are sold relative to when consumer learn their disease

status. To understand how this affects the firm’s ability to extract surplus, consider each product in turn.

First, suppose the firm develops a preventive. A consumer is willing to purchase the preventive if its price

pp does not exceed the expected value of avoided harm—disease risk x times harm normalized to 1.5 Given

the mass of consumers is normalized to 1, the mass of consumers who purchase the preventive is ΦX(pp).6

Hence preventive demand is

Qp(pp) = ΦX(pp). (1)

Suppose instead the firm develops a treatment, which the consumer purchases after becoming infected.

Infected consumers buy if avoided harm, 1, at least weakly exceeds pt . Hence treatment demand is

Qt(pt) =

{
µX pt ≤ 1

0 pt > 1.
(2)

4Price discrimination can be ruled out if x is private information for consumers (for example, related to their sexual behavior
or intravenous drug use, conducted in private) or if x is public information but discrimination is prevented by the difficulty of
controlling resale or other administrative, institutional, or legal barriers.

5By Theorem 4 of Harris and Raviv (1981), selling at a simple linear price pp is optimal among the set of potentially complicated
mechanisms that could be used to sell the preventive.

6For continuous distributions of disease risk, marginal consumers’ purchasing decisions are immaterial because they have zero
measure. Discrete and mixed distributions may have a probability atom at the marginal consumer’s disease risk. To ensure existence
of equilibrium in this case, we must assume that indifferent consumers make the same choice as inframarginal consumers with
higher disease risks. Mixed distributions merit careful treatment because of their role in the later analysis: the symmetrically
truncated Zipf distribution bounding the producer-surplus ratio is mixed. The practical implication of the assumption about the
behavior of indifferent consumers is that ΦX (x) rather than F̄(x) will be the relevant demand curve in the analysis.
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3. Benchmark Analysis
3.1. Initial Results

To facilitate the derivation of equilibrium and comparison to the first best, we introduce some additional

notation. Let stars denote equilibrium values. Thus, for example, p∗j = argmaxp j≥0 PS j(p j) is the monopoly

price for product j, q∗j = Q j(p∗j), PS∗j = PS j(p∗j), and E∗
j indicates whether j is produced in equilibrium.

Dropping the subscript, W ∗ indicates social welfare given the equilibrium product choice, i.e., W ∗ = E∗
pW ∗

p +
E∗

t W ∗
t . Let double stars denote first-best values. Thus, for example, p∗∗j = c j, TS∗∗j = TS j(c j), W ∗∗ =Wj(c j),

and E∗∗
j indicates whether product j is produced in the first best. Dropping the subscript, W ∗∗ denotes first-

best welfare given the first-best product choice, i.e., W ∗∗ = E∗∗
p W ∗∗

p + E∗∗
t W ∗∗

t .

The first result is a lemma with a number of useful implications. Although there are two potential

products for the disease, the lemma implies that there is no ambiguity in speaking of “the” first-best surplus

on this market. Second, the lemma implies that a social planner has no reason to favor one product over the

other in the first best of the benchmark model. Both provide the same total surplus in the first best, so the

planner would develop whichever one had the lower development cost k j.

Lemma 1. In the benchmark model, the first-best surplus (from an ex post perspective, conditional on some
product being available) is the same whether the firm produces a preventive or a treatment. Letting TS∗∗

denote this first-best surplus, we have TS∗∗ = µX =
∫ 1

0 ΦX(x)dx.

The proof is provided in the appendix. To gain some intuition for the proof, note that with harm normal-

ized to h = 1, µX is the total disease burden. But if both products are costless to produce, perfectly effective,

and have no side effects, either can relieve the entire disease burden, generating first-best surplus µX .

The firm’s equilibrium product choice can be easily characterized in the benchmark model. It develops

a preventive if Π∗
p > max{Π∗

t ,0}, a treatment if Π∗
t > max{Π∗

p,0}, and neither if max{Π∗
p,Π

∗
t } < 0. The

remaining strategy—developing both products—can be ignored because it is dominated by developing the

treatment alone in the benchmark model. To see this, note from (2) that at the optimal treatment price p∗t = 1,

the firm sells to all µX consumers who contract the disease, implying

PS∗t = µX = TS∗∗. (3)

Able to extract all social surplus with the treatment, the firm has no additional reason to expend the fixed

cost of developing the preventive. (Section 4.1 allows for the possibility that both products are developed in

an extension with imperfectly safe and effective products.)

We saw from Lemma 1 that the social planner has no reason to favor one product over the other. The next

proposition states that the monopolist may have a bias toward the treatment because it is better at extracting

surplus from the market.

Proposition 1. In a benchmark pharmaceutical market, the firm never develops a preventive unless it is
socially efficient to do so both in equilibrium and in the first best. There exist cases in which the firm
develops a treatment but it would have been socially efficient to develop a preventive.
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Proof. Suppose the firm develops the preventive in equilibrium. Then Π∗
p ≥ max(Π∗

t ,0). But W ∗∗
p ≥W ∗

p ≥
Π∗

p for any product. By equation (3), Π∗
t = PS∗t − kt = TS∗∗ − kt = W ∗

t = W ∗∗
t . Substituting into the first

inequality yields W ∗∗
p ≥ max(W ∗∗

t ,0) and W ∗
p ≥ max(W ∗

t ,0). Thus it is socially efficient to develop a pre-
ventive, whether equilibrium or first-best prices are set.

The appendix completes the proof by constructing an example in which a treatment is developed but a
preventive would be socially more efficient. Q.E.D.

We next turn to quantifying the social loss from the firm’s bias toward treatments. To do so, it is useful to

first distinguish between two deadweight-loss concepts. Static deadweight loss in the market for product j is

SDWL j(p j)= TS∗∗j −TS j(p j). This difference between first-best and equilibrium surplus effectively takes the

decision to develop product j as given, reflecting just the distortion at the intensive margin of charging some

supra-competitive price p j ≥ c j. The equilibrium value of static deadweight loss is SDWL∗
j = SDWL j(p∗j).

Deadweight loss without the “static” modifier is a more comprehensive concept, capturing distortions at all

margins, both the intensive margin (pricing) and the extensive margin (entry). Denote this deadweight-loss

concept by DWL = W ∗∗ − E∗W ∗. The next proposition states that this second deadweight-loss concept is

bounded by the difference between treatment and preventive producer surpluses. If rather than the level of

deadweight loss, one considers what Tirole (1988) calls relative deadweight loss, i.e., deadweight loss as a

proportion of first-best surplus, the next proposition shows that is bounded by 1 −ρ∗X , where ρ∗X = PS∗p/PS∗t
denotes the producer-surplus ratio.

Proposition 2. In a benchmark pharmaceutical market, a tight upper bound on potential deadweight loss
is given by the difference in producer surpluses, PS∗t − PS∗p; i.e.,

sup
kp,kt≥0

(DWL) = PS∗t − PS∗p. (4)

Expressed as a percentage of disease burden µX , this tight upper bound is given by 1 −ρ∗X ; i.e.,

sup
kp,kt≥0

(
DWL
µX

)
= 1 −ρ∗X , (5)

Proposition 2 is a corollary of a more general proposition in Section 4.1. There it is shown that equation

(5) continues to hold when the parameter space is expanded to allow for arbitrary production costs, efficacies,

and side effects for each product. The proof of Proposition 2 will thus be deferred to the later section.

Because it is a core result in the paper, however, the proof merits a sketch here.

In any equilibrium in which a preventive is developed, by Proposition 1 the product choice must be

efficient. The only source of deadweight loss is static deadweight loss from the intensive margin of price

exceeding cost; i.e., DWL = SDWL∗
p. In an equilibrium in which a treatment is developed, deadweight

loss can include the dynamic effect of the inefficient product choice. First-best welfare is W ∗∗ = TS∗∗ − kp

when a preventive is the first-best product, while equilibrium welfare is W ∗ = TS∗∗ − kt when a treatment

is the equilibrium product (because the treatment extracts all surplus in equilibrium). Deadweight loss

then is DWL = W ∗∗ −W ∗ = (TS∗∗ − kp) − (TS∗∗ − kt) = kt − kp. The firm would still be willing to develop

the treatment even as the gap in development costs kt − kp approaches PS∗t − PS∗p. One can check that this

9
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Figure 1: Producer-surplus ratio. Producer-surplus ratio ρ∗X equals the ratio of the area of the
shaded rectangle to the area under the curve.

potential deadweight loss from inefficient product choice exceeds the static deadweight loss in a preventive

equilibrium: PS∗t − PS∗p = TS∗∗ − PS∗p = CS∗p + SDWL∗
p ≥ SDWL∗

p, where the first equality holds by (3). This

establishes the bound on potential deadweight loss in levels given in (4). To express the bound in relative

terms as in (5), divide by TS∗∗ and substitute from (3): (PS∗t − PS∗p)/TS∗∗ = (TS∗∗/TS∗∗) − (PS∗p/PS∗t ) =

1 −ρ∗X .

The sketch of the proof evinces two important economic principles. First, the extra cost of developing

a product just because it is better at extracting surplus can constitute a social loss. Second, this dynamic

deadweight loss can potentially swamp any static deadweight loss from super-competitive product prices.

The next lemma provides a simple formula for ρ∗X that can be read off a graph. Note that xΦX(x) is the

area of the rectangle of height x inscribed under ΦX . Let RECX = maxx∈[0,1][xΦX(x)] denote the area of the

largest such rectangle, shown in Figure 1 as the shaded region. Lemma 1 showed that µX equals the whole

area under ΦX . The next lemma states that ρ∗X = RECX/µX , implying that ρ∗X is the ratio of the area of the

shaded rectangle to the area under the whole curve.

Lemma 2. The producer-surplus ratio ρ∗X satisfies ρ∗X = RECX/µX .

Proof. In the preventive market, PS∗p = maxpp≥0[ppQp(pp)] = maxx∈[0,1][xΦX(x)] = RECX , where the first
equality holds by definition, the second by substituting from (1) and making the change of variables x = pp,
and the last by definition. Dividing, ρ∗X = PS∗p/PS∗t = RECX/µX , where the last equality follows from
equation (3). Q.E.D.

It is obvious from Figure 1 that the area of the shaded rectangle cannot exceed the area under the curve,

and thus ρ∗X ≤ 1. The economic intuition behind this graphical result is that the treatment monopolist knows

more about consumers than the preventive monopolist, in particular the treatment monopolist learns their

disease status from their decision to purchase. This additional information cannot harm the monopolist, as

we know from Ottaviani and Prat (2001). When is the weak inequality strict, i.e., ρ∗X < 1? According to the

next proposition, always, unless all consumers with positive values are homogeneous.

10



Proposition 3. ρ∗X = 1 if and only if there exists some x′ ∈ (0,1] such that Pr(X = x′|X > 0) = 1. Otherwise
ρ∗X < 1.

The proof is provided in the appendix. Intuitively, if consumers are homogeneous, the monopolist can

extract 100% of total surplus with either product, eliminating any wedge between private and social R&D

incentives. The first best is obtained in equilibrium, and there is no deadweight loss. Graphically, the demand

curve analogous to Figure 1 is itself a rectangle in the case of homogeneous disease risk, so an inscribed

rectangle would fill the entire area below the curve. On the other hand, any heterogeneity in positive disease

risk will prevent the firm from extracting 100% of surplus with a preventive given the firm cannot price

discriminate. Although they may be heterogeneous ex ante, infected consumers are homogeneous ex post,

so the firm will still be able to extract 100% of surplus with a treatment. Thus producer surplus is strictly

less from a preventive than from a treatment, implying ρ∗X < 1. Graphically, with nontrivial heterogeneity in

disease risk, there is no way to capture all the area under the demand curve with an inscribed rectangle.

It would be convenient to use some familiar feature of the distribution of X as a proxy for ρ∗X . One

natural candidate is variance. According to Proposition 3, the move from an X with no heterogeneity in

positive values to one with some heterogeneity—equivalent to introducing variance in positive values of

X—reduces ρ∗X from 1 to some value below 1. One might hope that ρ∗X is inversely related to the variance

of X , providing a simple proxy for comparative statics. Unfortunately, we will show this is not the case.

We saw in Lemma 2 that ρ∗X equals the ratio of the area of the largest rectangle inscribed under ΦX to the

area under ΦX , which in turn depends on the detailed shape of the whole distribution of X . Not only does

variance not proxy for ρ∗X but neither does skewness, kurtosis, or any other higher moment of the distribution

of X , as the next proposition states.

Proposition 4. Let Mn(X) be the order n moment of random variable X. The ranking of Mn(X) does not in
general determine the ranking of ρ∗X . Formally, for all n ≥ 2, we can find random variables X1, X2, X3, X4
with mean µX and support [0,1] such that

[Mn(X1)− Mn(X2)][ρ
∗
X1

−ρ∗X2
]> 0

[Mn(X3)− Mn(X4)][ρ
∗
X3

−ρ∗X4
]< 0.

This result holds whether Mn(X) is taken to be the raw moment E(Xn), the central moment E((X −µX)
n),

or the standardized moment E((X −µX)
n)/σn

X , where σX is the standard deviation of X.

The proof provided in the appendix is by construction, working with the simplest of distributions, the

two-type case, which can be completely characterized by three parameters (probability of the low type and

the disease risks of the high and low type). For a given moment, we construct two parameter changes, both

of which increase the moment, but one of which increases ρ∗X , the other of which decreases ρ∗X .

Proposition 4 says that a moment cannot determine which distributions are associated with low values

of ρ∗X .7 Are there any other features of a distribution that can be used for this end? The answer provided in

7Similar results hold for other ways to capture an increase in heterogeneity such as mean-preserving spreads or increases in Gini
mean difference.
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the next subsection is “yes.” We show ρ∗X can be decomposed into two factors: (1) disease prevalence µX

and (2) resemblance of the distribution to the worst case, which has the lowest possible ρ∗X for a given µX .

3.2. STRZ Distribution

The key step in the decomposition of ρ∗X for a given demand curve is to find the worst case, i.e., the demand

curve solving the problem of minimizing producer surplus subject to having area underneath of µX . We

will do this with the help of Figure 2. Consider an arbitrary demand ΦX(x), drawn as the dotted line.

Equilibrium producer surplus is the largest that can be inscribed under it, the shaded rectangle. Imagine

transforming ΦX(x) by moving some area away from the corner of the shaded rectangle to other parts of

the curve, maintaining µX as the area under the curve. This transformation will reduce RECX , implying

that ΦX(x) could not have been the solution to the minimization problem. For a demand curve to be solve

the minimization problem, all inscribed rectangles must have the same area, as is the case with demand

curve Φ(x,µX). This argument shows that Φ(x,µX) is the unique minimizer of RECX among distributions

with a given µX and, because µX is constant, the unique minimizer of ρ∗X given µX . Let ρ(µX) denote the

minimized value of ρ∗X over distributions with prevalence µX .

It remains to determine the functional form of Φ. It was constructed so that the area of the inscribed

rectangle, xΦ(x,µX), equals some constant A over realizations of X . Rearranging, Φ(x,µX) = A/x. This is

a globally unit-elastic demand curve (as expected from the well-known property that revenue is constant in

price where demand is unit elastic). Filling in the remaining details, we need to incorporate the constraint

that demand not exceed 1, yielding Φ(x,µX) =min{A/x,1}. To find an expression for A, note that the area of

the largest inscribed rectangle under Φ is A by construction. Hence ρ(µX) = A/µX , implying A = µXρ(µX).

Although a closed-form expression is not available for ρ(µX), we can drive an implicit expression for it.

Lemma 1 implies

µX =
∫ 1

0
Φ(x,µX)dx =

∫ A

0
dx +

∫ 1

A

A
x

dx = A(1 − lnA). (6)
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Figure 3: Symmetrically truncated Zipf (STRZ) demand for various µX .

Substituting A = µXρ(µX) into (6) and simplifying shows that ρ(µX) is the implicit solution to

ρ(µX)[1 − ln(µXρ(µX))] = 1. (7)

The following proposition summarizes this analysis. A rigorous proof following the outlines of the preced-

ing sketch is provided in the appendix.

Proposition 5. The following demand curve is associated with the unique (almost everywhere) distribution
minimizing ρ∗X subject to disease prevalence being at least µX :

Φ(x,µX) = min
{
µXρ(µX)

x
,1
}
, (8)

where ρ(µX) is the lower bound on ρ∗X attained by the distribution, the implicit solution to (7).

Demand curve Φ can be connected to the growing literature on power laws. According to the terminol-

ogy in Gabaix (2009), a distribution over X is said to satisfy a power law if F̄X(x) = Ax−ζ for some constants

A, ζ > 0 and for an interval of x; ζ is called the power-law exponent. A distribution is said to satisfy Zipf’s

law if it is a power-law distribution with exponent ζ near 1. A bit of work shows that the distribution un-

derlying Φ satisfies Zipf’s law.8 It is a special case with support truncated so that its upper and lower ends

match (see Figure 2). We will therefore call equation (8) a symmetrically truncated Zipf (STRZ) demand and

the distribution underlying it a symmetrically truncated Zipf (STRZ) distribution.

Figure 3 graphs examples of STRZ demand Φ(x,µX) for various prevalence levels ranging from µX =

0.1 to 0.3. Consider Φ(x,0.3). In this example, as can be inferred from (8), the distribution has no mass for

the lowest types (x < 0.087). For higher types, Φ(x,0.3) resembles a rectangular hyperbola. The highest

8For all x in the interior of its support, the distribution under lying Φ is continuous. Thus, for this range of x, Φ is the comple-
mentary cdf as well as being the demand curve. But this complementary cdf is of the power-law form with exponent 1, proving the
distribution satisfies Zipf’s law.
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Figure 4: Lower bound ρ(µX ) as a function of prevalence µX .

relative net value (x = 1) has a point mass with exactly that probability (approximately 0.087) required for

the curve’s truncated extremes to look identical. It can be shown that the bound on the producer-surplus ratio

attained in the example is ρ(0.3) = 0.29. As µX falls, the associated curves “hug” the axes more closely and

are able to generate lower producer-surplus ratios, ρ(0.2) = 0.25 and ρ(0.1) = 0.21.

Figure 4 graphs the lowest producer-surplus ratio attainable, ρ(µX), as a function of disease prevalence

µX .9 The set of feasible ρ∗X is shown as the shaded region above the curve. An empirical implication of

the figure is that for the most common diseases, disease-risk heterogeneity cannot be an important factor

in a firm’s decision to develop a preventive versus a treatment. For example, the figure shows that if the

prevalence of the disease is above 0.74, it is mathematically impossible to generate enough disease-risk

heterogeneity to drive ρ∗X below 1/2. For heterogeneity in disease risk to generate a substantial bias against

preventives requires the disease to be sufficiently rare.

Inspection of Figure 4 suggests that ρ(µX) is increasing in prevalence, ranging from 0 for the lowest

prevalence to 1 for the highest prevalence. Intuitively, if the disease is ubiquitous, most consumers’ disease

risk must be close to 1, implying disease risk is effectively homogeneous. Lower values of prevalence allow

for a substantial bias against preventives. Figure 3 shows that STRZ demands “hug” the axes more tightly

the lower µX , reducing the area of the largest rectangle that can be inscribed under the curve faster than the

area under the curve. For the rarest diseases, i.e., as µX approaches 0, ρ(µX) approaches 0. These claims are

stated formally in the next proposition, proved in the appendix.

Proposition 6. ρ′(µX)> 0, limµX↓0 ρ(µX) = 0, and limµX↑1 ρ(µX) = 1.

An important corollary of the proposition, in particular of the statement limµX↓0 ρ(µX) = 0, is that cases

can be constructed such that ρ∗X is arbitrarily close to 0. But this means, by Proposition 2, that cases can be

9Although there is no closed-form expression for ρ(µX ), there is a closed-form expression for its inverse. Figure 4 graphs this
inverse on the horizontal axis.
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constructed in which the bias against preventives dissipates 100% of total surplus.

With this analysis in hand, we can return to the decomposition of the bias against preventives promised at

start of the subsection. We suggested that one factor in the decomposition is how closely the risk distribution

for the disease resembles the worst case, which we just found to be the STRZ distribution. A challenge in

deriving an index of similarity is capturing global shape differences with a single number. We will define

similarity between a STRZ and another demand curve as the ratio of uncaptured surpluses they entail.

Formally, let ZX denote the Zipf similarity of the distribution of X , defined as

ZX =
µX − RECX

µX − RECX
=

1 −ρ∗X
1 −ρ(µX)

, (9)

where the second equality follows from dividing numerator and denominator by µX . Since RECX ∈ [REC(µX),µX ],

it follows that ZX ∈ [0,1], with ZX = 0 for homogeneous consumers and ZX = 1 for a STRZ distribution.

Rearranging (9) gives the decomposition provided in the next proposition.

Proposition 7. The producer-surplus ratio for a given disease-risk distribution satisfies

ρ∗X = 1 − ZX [1 −ρ(µX)]. (10)

To gain some intuition for this decomposition, if demand is not Zipf-similar at all (ZX = 0), then ρ∗X =

1, implying there is no bias against preventives. As Zipf-similarity increases, ρ∗X falls. How much ρ∗X

falls depends on 1 − ρ(µX), which can be interpreted as how difficult it is to capture surplus with a fully

Zipf demand. The lower prevalence µX , the more difficult capturing surplus is. The two factors ZX and

µX completely determine ρ∗X . We will show how to apply the decomposition in practice in the Section 6

calibrations.

3.3. Special Cases

The analysis so far has provided general results for unrestricted distributions of consumer values X . This

subsection derives additional results in several special cases that are of pedagogical and practical interest.

Considering these special cases puts more structure on demand, allowing us to derive a more refined set of

results for these cases. We first look at markets with a discrete distribution of consumer values and second

with a continuous distribution of consumer values having global curvature properties.

Proposition 8. Suppose the distribution of disease risk involves T discrete types. Then 1/T is a tight lower
bound on ρ∗X .

The proof in the appendix is by construction. We construct a discrete version of a Zipf distribution that

approaches the bound in the limit as the disease prevalence approaches 0.

An implication of the proposition for examples like the one from the Introduction with two consumer

types, ρ∗X can come arbitrarily close to 1/2 but can be no lower. This implies that potential deadweight loss

in a market with two consumer types can be nearly 1/2.
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The next special case moves from discrete to continuous distributions. Attention is further restricted to

twice differentiable demands that are either globally concave, convex, or linear over the full support (0,1).

The curvature of ΦX constrains ρ∗X , as the next proposition states.

Proposition 9. If Φ′′
X(x) = 0 for all x ∈ [0,1], then ρ∗X = 1/2. If Φ′′

X(x)≤ 0 for all x ∈ [0,1], then ρ∗X ≥ 1/2.
If Φ′′

X(x)≥ 0 for all x ∈ [0,1], then ρ∗X ≤ 1/2.

The result, proved in the appendix, is a corollary of a quite general proposition in Anderson and Renault

(2003) relating PS∗j/TS∗∗j to general degrees of concavity or convexity under n-firm Cournot competition in

product market j. Figure 5 provides intuition in our simpler monopoly setting. The first graph illustrates

the linear-demand case. Standard results imply that the area of the largest rectangle that can be inscribed

under a line is half of the area under the line, so by Lemma 2, which relates ρ∗X to these areas, ρ∗X = 1/2.

The second graph illustrates the case of concave demand. As the figure suggests, the area of the largest

rectangle that can be inscribed under the curve is at least half the area under the curve, so ρ∗X ≥ 1/2. The

third graph shows the case of convex demand. As the figure suggests, the area of the largest rectangle that

can be inscribed under the curve is no more than half the area under the curve, so ρ∗X ≤ 1/2.

As a further corollary of Anderson and Renault (2003), we have the following results for demands with

log-curvature.

Proposition 10. Suppose ΦX(x) is twice continuously differentiable. If ΦX(x) is log-concave for all x ∈
[0,1], then ρ∗X ≥ 1/e. If ΦX(x) is log-convex for all x ∈ [0,1], then then ρ∗X ≤ 1/e.

For a proof, see the proof of Proposition 9 in the appendix, which in fact provides general results for

arbitrary degrees of curvature which nest the last two propositions.

A new feature of Propositions 9 and 10 is that they provide upper bounds on ρ∗X in some instances,

whereas results up to that point provided lower bounds. This feature is worth emphasizing. The set of

convex demands covered by Proposition 9 is equivalent to the set of downward-sloping densities, a broad

and empirically plausible set of cases. The proposition guarantees that preventives generate no more than

50% of the producer surplus from treatments, implying that potential deadweight loss exceeds 50% of total

disease burden. If demand is log-convex, then Proposition 10 guarantees that preventives generate no more

than 1/e ≈ 37% of the producer surplus from treatments, implying that potential deadweight loss exceeds
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63% of total disease burden. Actual deadweight loss will depend on the actual R&D costs realized for

preventives and treatments, but the large potential for deadweight loss means that there is some realization

of R&D costs for which the social benefit from eliminating disease burden would be mostly dissipated.

4. Generalizations

In this section we show that the insights obtained from analysis of the benchmark model are robust to a

number of generalizations. A series of subsections explores imperfect efficacy, side effects, production

costs, a broad range of models of competition among suppliers, and third-party purchases. We will show

that the key welfare results from Section 3 continue to hold in this more general setting.

4.1. Expanded Parameter Space

This subsection relaxes the assumption that all products are perfectly safe, effective, and costless to manu-

facture. Let c j ≥ 0 be the present discounted value of the marginal cost of manufacturing product j ∈ {p, t}
and administering it to a consumer. Let e j ∈ [0,1] be the efficacy of product j, i.e., the probability that

product j prevents the consumer from experiencing harm from the disease. Let s j ≥ 0 be the expected harm

of side effects from product j, i.e., the probability that a consumer experiences side effects multiplied by

the present discounted value of the harm from the side effects conditional on experiencing them. Variables

with stars (p∗j , etc.) are equilibrium values and with double stars (TS∗∗, etc.) are first-best values for general

parameters c j, e j, s j. Variables with the superscript o (po
j , etc.) are equilibrium values and with double oo

(TSoo) are first-best values when the cost, efficacy, and side-effects parameters are returned to their original

levels in the benchmark model: i.e., co
j = so

j = 0, eo
j = 1.

Proposition 1 stated that incentives to develop treatments can be socially excessive but not incentives to

develop preventives. This result continues to hold under general parameters, as the next proposition states.

Proposition 11. Extend the benchmark pharmaceutical model to allow general values of the parameters
c j,s j ∈ [0,∞) and e j ∈ [0,1] for j = p, t. The firm never develops a preventive unless it is socially efficient
to do so both in equilibrium and in the first best. There exist cases in which the firm develops a treatment
but it would have been socially efficient to develop a preventive.

Furthermore, the upper bound on the welfare distortion found in Proposition 2 continues to hold for more

general parameters.

Proposition 12. Extend the benchmark pharmaceutical model to allow general values of the parameters
c j,s j ∈ [0,∞) and e j ∈ [0,1] for j = p, t. Letting ρo

X = PSo
p/PSo

t , 1 − ρo
X provides a tight upper bound on

deadweight loss as a percentage of disease burden; i.e.,

sup
{k j,c j,e j,s j| j=p,t}

(
DWL
µX

)
= 1 −ρo

X . (11)

Notice that the producer surpluses in the proposition do not correspond to some arbitrary configuration of

cost, efficacy, and side effects but the original parameter values.
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The proofs of Propositions 11 and 12 are complicated by the fact that a third strategy becomes viable

for the monopolist with the expanded parameter space, that of producing both a preventive and a treatment.

This strategy never emerges in equilibrium with perfectly effective and costless products. In that case, if

the monopolist’s equilibrium strategy involved producing a treatment, there was no reason for it to also

produce a preventive because it could extract 100% of social surplus with the treatment. With an imperfect

treatment, the combination of products may be more profitable than a treatment alone. The proofs in the

appendix provide expressions for the profit and welfare from the production of both products, which are

used to verify that the results in Propositions 11 and 12 are robust to allowing for this additional strategy.

4.2. Alternative Market Structures

The analysis so far assumed a monopoly market structure. More realistically, a number of firms could engage

in one of a variety of different forms of competition (Bertrand, Cournot, perfect or imperfect cartel, etc.),

both at the R&D and product-market stages. The monopoly benchmark is valuable because it is perhaps

the simplest setting in which to examine the ideas about surplus extraction developed in this paper. In this

subsection we provide another virtue of the monopoly benchmark. It provides a conservative bound on the

potential deadweight loss; letting C be the model of competition under consideration, with few restrictions

on C these models will be able to generate at least as much deadweight loss for any number of competing

firms.

Consider the following model of competition, nesting various alternatives. To streamline the notation,

return to the original parametric assumptions of costless manufacturing, no side effects, and perfect efficacy

(i.e., c j = co
j = 0, s j = so

j = 1, and e j = eo
j = 1 for j = p, t.) This builds in symmetry, allowing us to keep

track of just the number of firms rather than the vector of firm characteristics. At the start of the game, each

of N potential entrants obtain draws k ji ≥ 0 of fixed costs for the development of the two products j = p, t,

where i = 1, . . . ,N indexes firms. Firms observe the vector of draws and decide whether or not to enter each

market by sinking the relevant fixed cost.

Let PS∗j(n j,nℓ,nb) be the most any single firm earns in equilibrium in market j given n j firms enter the

market for that product alone, nℓ firms enter the market for the other product alone, and nb firms enter both

markets, where n j,nℓ,nb ∈N. To allow for general forms of competition, we will put few constraints on this

function. Assume

PS∗j(n j,nℓ,nb)≤ PS∗j(1,0,0), (12)

capturing the idea that competition destroys industry profits, so a monopoly generates weakly more producer

surplus than any other market structure. Further, assume

PS∗j(1,0,0) = PS∗j . (13)

Condition (13) implies that the existence of potential entrants who do not materialize as actual entrants does
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not constrain the profit that a monopoly can earn.10 Finally, assume

k ji ≤ PS∗j(n
∗
j ,n

∗
ℓ ,n

∗
b) (14)

for each i of the n∗j firms entering the market for product j = p, t alone and

kpi + kti ≤ PS∗p(n
∗
p,n

∗
t ,n

∗
b)+ PS∗t (n

∗
t ,n

∗
p,n

∗
b) (15)

for each i of the n∗b firms entering both markets. Conditions (14) and (15) are minimal assumptions on the

rationality of the entry decision: if either is violated for some i, that firm would have gained by staying out

of the markets. We have the following proposition, proved in the appendix.

Proposition 13. Consider any model of competition C satisfying conditions (12)–(15) and any number of
potential entrants N ≥ 1. The upper bound on equilibrium deadweight loss is weakly higher than under
monopoly:

sup
{k ji≥0| j=p,t;i=1,...,N}

[
DWL(C,N)

µX

]
≥ 1 −ρ∗X , (16)

where DWL(C,N) is the deadweight loss in model C with N firms.

The proof is fairly simple. With N firms, the entry costs may be sufficiently high for all but one firm that

the only feasible outcome involves monopoly. Thus the monopoly distortion is always a possibility with

any of the models under consideration. The N − 1 additional entrants and entry costs just add “degrees of

freedom” that can create even greater distortions.

4.3. Third-Party Purchases

In our benchmark model, consumers purchase pharmaceuticals directly from the manufacturer. Real-world

pharmaceutical markets involve a broad array of different purchasing arrangements and institutions includ-

ing nonlinear pricing, insurance, and government provision. A detailed analysis of all of these arrangements

is beyond the scope of the present paper. Here we will provide a brief analysis of one, the case in which a

third party such as the government or health maintenance organization purchases pharmaceuticals from the

manufacturer on behalf of its constituents. We will show that the insights from the benchmark model carry

over with this alternative purchasing arrangement.

Assume the firm and the third party engage in Nash bargaining over the sale of product j after the firm

has decided which product to develop and has sunk its investment in R&D. If bargaining breaks down, the

firm resorts to the option of selling directly to consumers on the private market. Assume the third party’s

objective is to maximize consumer surplus. Its threat point is thus the consumer surplus from private sales.

The firm’s Nash-bargaining surplus conditional on its having developed product j is

NB j =
1
2
[TS∗∗ + PS∗j − CS∗j ], (17)

10This assumption rules out some forms of contestability along the lines of Baumol, Panzar, and Willig (1982).
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a combination of the first-best “pie” toward which parties bargain, TS∗∗, plus the firm’s threat-point surplus

from selling product j on the private market, PS∗j , minus the third-party purchaser’s surplus in this threat

point, CS∗j . Substituting TS∗∗ = PS∗j +CS∗j +SDWL∗
j and subtracting k j to convert (17) into an objective func-

tion used to decide which product the firm develops yields Π∗
j + SDWL∗

j/2. Comparing the firm’s objective

function with third-party purchasing to the objective function with direct-to-consumer sales, Π∗
j , we see that

they differ only by the term SDWL∗
j/2, reflecting the firm’s share of the static deadweight loss avoided with

third-party purchasing.

This second term mitigates—but does not eliminate—the potential deadweight loss from the firm’s bias

against preventives. This is an instance of the familiar hold-up problem (Klein, Crawford, and Alchian

1978). The firm decides which product to develop before negotiating with the third-party purchaser. Rec-

ognizing that it does not appropriate all the surplus in bargaining, the firm may distort its decision in order

to appropriate more surplus. Note that this will be the case even for a third party representing all potential

consumers (like a hypothetical consortium of national governments) as long as bargaining takes place after

products are developed.

5. Other Sources of Heterogeneity

The paper has so far restricted attention to one source of consumer heterogeneity: disease risk, X . This

source gives consumers private information only in the ex ante period; ex post, the act of seeking treatment

reveals the consumer’s disease status. In this section we examine alternative sources of heterogeneity with

different timing structures. We begin with a general model of the arrival time of consumer private informa-

tion in the next subsection; further subsections fill in the details for the new cases entailed by the general

model.

To streamline the analysis, the same notation used for random variable X will also be used for the

marginal distributions for the other random variables we will introduce. Specifically, let Θ∈ [0, θ̄] denote any

positive random variable. Then θ willl denote a realization of Θ, FΘ(θ) the marginal cumulative distribution

function, F̄Θ(θ) = 1 − FΘ(θ) the complementary distribution, ΦΘ(θ) = F̄Θ(θ) + Pr(Θ = θ) the “demand”

function, µΘ =
∫ θ̄

0 θdFΘ(θ) the mean—also the area under the “demand” function as can be shown using

arguments from the proof of Lemma 1, and RECΘ = maxθ∈[0,θ̄][θΦΘ(θ)] the area of the largest inscribed

rectangle under the “demand” function. Let F (without a subscript) denote the joint distribution function for

all the random variables under consideration.

5.1. Timing of Private Information

Consider a generalization of the model in which the consumer’s ex ante willingness to pay for a preventive

is xv0 and ex post willingness to pay for a treatment is{
v1 with probability x

0 with probability 1 − x,
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where vτ ≥ 0 are realizations of random variables Vτ and where τ indexes periods, with τ = 0 representing

the ex ante period when the preventive is sold and τ = 1 representing the ex post period when the treatment is

sold. The dividing line between periods comes when the consumer realizes whether he or she has contracted

the disease. The Vτ embody signals that the consumer receives each period of the amount he or she will end

up valuing a perfectly effective cure if he or she contracts the disease ex post. To start, we will place few

restrictions on Vτ other than the following consistency requirement:

E(V1|V0 = v0,X = x) = v0. (18)

Equation (18) means that the consumer’s current signal is the best guess of his or her signal next period

given all available private information, required because v0 and v1 are signals of the same ultimate value.11

We can express the model in an equivalent form that helps identify the different sources of private

information.

Proposition 14. The model introduced in this section can be written equivalently as v0 = y, v1 = hy, where
y is a realization of random variable Y ≥ 0 and h is a realization of random variable H ≥ 0 that has unit
mean and is mean independent of X and Y : E(H|Y = y) = E(H|X = x) = µH = 1.

The proposition is a consequence of (18) together with the law of iterated expectations. The proof is provided

in the appendix.

The new way of expressing the model points to three sources of private information embodied in three

random variables: X embodies private information existing ex ante that disappears upon the realization of

disease status ex post, Y private information that exists ex ante that persists ex post, and H private infor-

mation that arises only ex post upon realization of disease status. For example, X could represent number

of sexual partners, affecting the probability of contracting a disease but not necessarily the severity of the

disease conditional on contracting it; Y could represent income, wealth, or some other proxy for willingness

to pay that is the same before and after disease status is realized; H could represent the severity of harm

learned only after the disease is contracted.

The next proposition generalizes Propositions 2 and 12, bounding potential deadweight loss when there

are multiple sources of heterogeneity. The statement of the proposition requires some new notation. In the

model introduced in this section, the burden of the disease becomes E(XV0). This can be rewritten E(XV0) =

E(XY ) = µU , where the first equality follows from V0 = Y by Proposition 14 and the second holds defining

U = XY . Further, define PS∗max = max(PS∗p,PS∗t ) to be the maximum producer surplus available from the

two products and PS∗min = min(PS∗p,PS∗t ) be the minimum. These are equilibrium producer surpluses of

the expanded parameter space: c j,s j ≥ 0, e j ∈ [0,1], j = p, t. Define the analogous expressions PSo
max =

max(PSo
p,PSo

t ) and PSo
min = min(PSo

p,PSo
t ) for producer surpluses given the original parameter values c j =

s j = 0, e j = 1, j = p, t.

11An additional restriction on Vτ is that it is common across products j = p, t. This means that any variables that are allowed to
differ across products (such as c j, e j, s j) cannot also differ across consumers.

21



Proposition 15. Consider a pharmaceutical market with multiple sources of heterogeneity. An upper bound
on deadweight loss as a percentage of disease burden µU is

sup
{k j,c j,e j,s j| j=p,t}

(
DWL
µU

)
≥ PSo

max

µU
−

PSo
min

µU
. (19)

A few remarks about the proposition are in order. Note first that with multiple sources of heterogeneity,

the bound is no longer guaranteed to be tight as in the earlier propositions.12 Note second that treatments

are no longer guaranteed to be more lucrative than preventives. The notation in Proposition 15 allows for

the reverse possibility, for which we will derive conditions below. Note third that Proposition 15 nests the

earlier results, as can be verified: with heterogeneity in just X and with Y and H normalized to 1, we have

that PSo
max = PSo

t = µX and that µU = µX ; thus, (PSo
max/µU)− (PSo

min/µU) = 1 − PSo
p/PSo

t .

Because the benchmark parameter values are central to Proposition 15, we will maintain these (c j =

s j = 0, e j = 1 for j = p, t) for the remainder of the section.

Proposition 15 bounds deadweight loss under quite general time-varying heterogeneity in consumer

values. Because of the generality of the case, the bound is necessarily abstract. In The theoretical bounds

can be refined if one is willing to restrict the number of sources of private information to one or at most two.

The remainder of this section undertakes this theoretical analysis. The case in which X is the sole source of

private information has been examined exhaustively already, so the analysis will focus on the other random

variables Y and H by themselves and in combinations with others.

In any case in which there is private information in a random variable, in the remainder of the section

we assume that the firm cannot condition price on the realization of that random variable, either because

the firm does not observe it or, if it does, because it is prevented by legal rules or arbitrage constraints from

price discriminating on the basis of it. If the firm can price discriminate on the variable, then its pricing

problem simplifies to one in which it conditions on the known value of the variable for each of its possible

realizations.

5.2. Heterogeneity in Y

Random variable Y embodies any consumer characteristics that are private information both ex ante and

ex post. Thus Y may be income, wealth, functions of these, or any other demographic factor that affects

willingness or ability to pay.13 We will first analyze the simple case in which there is no other source of

heterogeneity than Y . It is immediate that consumer heterogeneity in Y alone reduces the producer surplus

from either product, but does not result in a bias because the firm faces the same private information ex

ante when preventives are sold as ex post when treatments are sold. Producer surplus is the same for both

products.
12Intuitively, the bound in (19) reflects dynamic deadweight loss from the inefficient product choice. With heterogeneity in just

disease risk, a treatment can extract all social surplus, limiting the importance of static deadweight loss from super-competitive
pricing. With multiple sources of heterogeneity, no product is guaranteed to extract all surplus. Thus static deadweight loss may
become more significant than dynamic deadweight loss. Thus (19) is a lower bound on potential deadweight loss from all sources.

13Kessing and Nuscheler (2006) also study monopoly vaccine pricing when income is the sole source of consumer heterogeneity.
Their dynamic model generates a feedback effect whereby leaving the poor susceptible increases the willingness to pay of the rich.
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Next consider combined heterogeneity in X and Y . Continue to suppose H takes on one value: its mean,

which Proposition 14 shows is equal to 1. We have been unable to obtain meaningful results for arbitrary

covariance between X and Y . Indeed, the logic of Proposition 4 suggests that no single joint moment like

covariance can adequately capture the pattern of association between random variables over their whole joint

distribution. Instead, we provide results for three special cases that span the set of possibilities: X and Y are

independent; Y is an increasing deterministic function of X ; and Y is inversely proportional to X . While the

analysis covers just these three special cases here, it is in fact possible to compare the producer surpluses

from preventives and treatments given any specific joint distribution of X and Y . We illustrate how to do this

in the calibrations in Section 6 using U.S. data on the distributions of disease and willingness to pay proxied

by a function of income.

Assume that X and Y are independent. Consider the preventive producer’s profit-maximization problem.

Recalling the definition U = XY and letting u be a realization of U , consumers buy the preventive if xy =

u ≥ pp. Hence preventive demand is ΦU(pp), and producer surplus is

PSo
p = max

pp∈[0,ū]
[ppΦU(pp)] = RECU . (20)

Next consider the treatment producer’s profit maximization problem. Conditional on contracting the disease,

a consumer would be willing to buy the treatment as long as his or her willingness to pay y exceeds pt .

Because X is independent of Y , the fraction of consumers with income y who contract the disease is the

mean µX . Hence demand for the treatment is µXΦY (pt), implying

PSo
t = max

pt∈[0,∞)
[µX ptΦY (pt)] = µX RECY . (21)

The producer surpluses in (20) and (21) can be ranked. One of the sources of private information inte-

grates out of (21) and becomes the constant µX ; (20) retains both independent sources of private information,

translating into lower producer surplus. We have the following proposition. (The proof of this and the re-

maining propositions in this subsection have been omitted from the published paper for space considerations,

instead provided in online Appendix B.)

Proposition 16. Assume there is heterogeneity in positive values of X and Y but not H. If X and Y are
independent, then PSo

p/PSo
t < 1.

The proposition says that, starting with heterogeneity in X alone, adding independently distributed hetero-

geneity in Y cannot reverse the result from Proposition 3 that treatments are more lucrative than preventives.

Although adding independently distributed heterogeneity in Y cannot change the sign of the gap between

the producer surplus from treatments and preventives, it will reduce the gap as the next proposition shows.

Proposition 17. Adding heterogeneity in Y that is distributed independently from the heterogeneity in X
causes PSo

p/PSo
t to rise at least weakly (strictly for continuous distributions).

Next, consider the extreme case of positive correlation, letting Y be a deterministic function of X that is
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increasing. Ex ante, the two sources of private information compound each other; ex post one of them dis-

appears. The reduction in private information ex post leads treatments to be more lucrative than preventives.

Formally, we have the following proposition.

Proposition 18. Assume there is heterogeneity in positive values of X and Y but not H. If Y is an increasing,
deterministic function of X, then PSo

p/PSo
t < 1.

Thus far we have not uncovered a case in which preventives are more lucrative than treatments. Such

cases do arise as can be seen by considering the extreme case of negative association in which X and Y

are inversely proportional: Y = u/X for some constant u. In this case the maximum willingness to pay for

a preventive would be the same u across consumers, allowing a preventive monopolist to extract all social

welfare—the entire disease burden µU . A treatment monopolist, on the other hand, cannot fully extract µU

if there is nontrivial heterogeneity in Y . This leads all the results from Section 3 to flip. Preventives now

deliver the first best. As in Proposition 3, the firm is guaranteed to have a bias, only now against treatments.

This bias can be quantified and bounded as in Proposition 2, decomposed as in Proposition 7, and shown to

depend on the curvature of ΦY as in Proposition 9, and so forth.

5.3. Heterogeneity in H

Random variable H embodies any private information that arises only ex post. A natural candidate is the

harm suffered from the disease, which in some cases is only learned after contracting it. Polio provides an

example of a disease for which victims show an extremely wide range of harms, roughly following a power-

law distribution. Only around 5% of polio infections result in any symptoms. Of the infections resulting in

symptoms, most result in a mild, flu-like illness. Only around 10% of the symptomatic infections (0.5% of

total infections) result in severe nerve damage such as afflicted U.S. President Franklin Roosevelt, whose

legs were paralyzed by polio (Mueller, Wimmer, and Cello 2005).14

We will begin the analysis with the simple case in which there is no other source of heterogeneity than

H. It is immediate that switching the source of private information from X ex ante to H ex post flips the

results from Section 3, just as the results were flipped in the case studied in the previous subsection in which

14Although we can name examples of diseases exhibiting significant heterogeneity in harm, this does not necessarily correspond
to heterogeneity in H, which embodies only the sort of harm that the consumer cannot predict until contracting the disease. Harm
that varies with patient age, weight, genetic information, or other characteristics the patient knows ex ante are embodied in Y . For
example, a positive result from a genetic test for the BRCA1 mutations not only increases the risk of breast cancer but also increases
the chance it is the triple-negative form that has a poorer prognosis than others (National Cancer Institute 2009).

An additional reason why H will be narrower than the practical range of harm heterogeneity is that patients often must be treated
before the presentation of severe symptoms to avoid the harm from these symptoms. For example, syphilis eventually leads to
blindness in about 15% of untreated cases; however, blindness cannot be reversed by antibiotic treatments for syphilis (Euerle and
Chandrasekar 2012). This sort of heterogeneity would not be a source of private information for consumers in either the market for
preventives or treatments and thus would not generate a bias toward either product.

Further, producers may be better able to discriminate if the heterogeneity is in ex post harm rather than ex ante risk. The
producer could offer different versions of the drug, targeting serious cases with a high-priced version with either a high dosage or
in a presentation that is suited to be administered in hospitals. The price differentials can be huge: the hospital studied by Lau et al.
(2011) paid 35 to 240 times more for the intravenous than the pill form, depending on the drug. Such price discrimination would
eliminate H as a source of private information.
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X and Y are inversely proportional.15

Next, consider combining heterogeneity in H with other sources of heterogeneity. Begin by assuming

consumers are heterogeneous in X and H but not Y , which takes on the single value µY for all i. By Propo-

sition 14, X and H are mean independent. To derive useful results, we will make the stronger assumption

that X and H are stochastically independent. Under these assumptions, the firm’s ability to extract surplus

with a preventive ex ante depends solely on the shape of ΦX . This variable already has the correct rescaling

to apply decomposition results from Section 3.2. The firm’s ability to extract surplus with a treatment ex

post depends solely on the shape of ΦH̃ , where H̃ = H/hmax has been appropriately rescaled, dividing by the

maximum harm conceivable hmax, to apply the decomposition results from Section 3.2. The next proposition

spells out the conditions under which one or the other product extracts more surplus.

Proposition 19. Suppose X and H are the only sources of private information, and these are distributed
independently. Let H̃ = H/hmax. The firm earns more producer surplus from a treatment than preventive if
and only if ZX [1−ρ(µX)]> ZH̃ [1−ρ(µH̃)] and a preventive than treatment if and only if the reverse inequality
holds.

The proposition follows almost immediately from Proposition 7. The proof, provided in online Appendix B,

fills in the details.

The proposition says that when the two sources of heterogeneity X and H are independent, the firm’s

bias can be determined by looking at properties of the demand curves ΦX and ΦH̃ in isolation. If the disease

is rare and the distribution of risk has a high Zipf similarity, then the firm will tend to be biased toward

treatments. On the other hand if severe harms are rare and the distribution of harms is highly Zipf-similar,

then the firm will tend to be biased toward preventives. The proposition implies that the bias could go either

way in theory.

Moving to the remaining combination of sources of heterogeneity to be analyzed, suppose consumers

are heterogeneous in H and Y but homogeneous in disease risk X . Again, to derive useful results, the mean

independence between Y and H guaranteed by Proposition 14 will be strengthened to stochastic indepen-

dence. In this case we have results analogous to Proposition 16 and 17, but with the inequalities flipped

because the variable combined with Y involves ex post rather than ex ante heterogeneity. Thus we have that

adding independently distributed heterogeneity in Y cannot reverse the firm’s bias against treatments found

with heterogeneity in H alone but will reduce the bias. For reference, Table 1 summarizes these and the

preceding results from this section.
15These results may have empirical relevance for polio. Assuming that polio epidemics were widespread, generally independent

of income and other demographic factors embodied in Y , the results from this paragraph suggest that a firm would have stronger
R&D incentives for a polio vaccine than treatment. In fact, a preventive was developed for polio (the Salk vaccine, followed by the
Sabin vaccine), but as yet no good pharmaceutical treatments exist for the disease (Howard 2005). Of course, these outcomes could
have been driven by the underlying technological possibility set rather than differences in commercial incentives.
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Table 1: Summary of results for alternative sources of heterogeneity

Firm’s bias toward treatment Firm’s bias toward preventive
Heterogeneity in X alone X and Y inversely proportional
Independent variation in X and Y Heterogeneity in H alone
Y an increasing function of X Independent variation in Y and H

Ambiguous bias No bias
Independent variation in X and H Heterogeneity in Y alone

Notes: X represents sources of ex ante consumer heterogeneity such as disease risk. Y represents sources of persistent variation
such as income or wealth. H represents sources of ex post variation, such as realized disease severity.

6. Calibrations

In this section we show how the theory can be used to calibrate the producer-surplus ratio and potential

deadweight loss in particular empirical applications. The calibration method does not require any of the

assumptions invoked to derive the propositions in the previous section; in principle, the producer-surplus

ratio and potential deadweight loss can be calibrated for any market for which the researcher has sufficient

information about demand. The information requirement at first seems daunting, requiring knowledge of

the shape of the whole distribution of disease risk in the market rather than just the mean or some other

moment. We show how to estimate this distribution for a variety of different diseases.

Overall, the calibrations suggest that the biases identified by the theory can be quantitatively important.

For example, one of the HIV calibrations presented in Section generates producer-surplus ratio ρ∗X = 0.214,

indicating that potential deadweight loss due to the bias against preventives could potentially dissipate al-

most 80% of total surplus. To show that the results are not a special feature of sexually transmitted infections,

in Section 6.3 we provide calibrations for the disease that is the leading cause of death in the United States,

heart disease. We find higher values of ρ∗X than for HIV but the values are still consistent with potential

deadweight loss of nearly 50%.

6.1. NHANES Data

The calibrations focus on the U.S. pharmaceutical market because is the world’s largest and is widely seen

as the driver of firms’ R&D decisions. The National Health and Nutrition Examination Survey (NHANES)

obtains rich demographic and disease-risk information from a combination of a survey, physical exam, and

blood tests. Table 2 provides descriptive statistics for selected variables from the most recent year of the

NHANES, 2010, which we use for the calibrations.16 The sample is half male, 68% non-Hispanic white,

14% Hispanic, and 11% black. The average age is 42.3. The average family income is about three times the

16The means and standard deviations are computed using the same sampling weights as we will use in the calibrations to make
the results nationally representative. The descriptive statistics and calibrations are similar if the unweighted data is used.
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Table 2: Descriptive statistics for 2010 NHANES sample

Variable Obs. Mean Std. dev. Min. Max.

General demographic variables

Male indicator 6,527 0.50 0.50 0 1
White indicator 6,527 0.68 0.47 0 1
Hispanic indicator 6,527 0.14 0.35 0 1
Black indicator 6,527 0.11 0.32 0 1
Age 6,527 42.3 14.3 18 80
Income (percentage of poverty level) 5,869 3.05 1.67 0 5

STI factorsa

Lifetime sexual partners 4,479 12.7 39.1 0 1,000
Men who have sex with men (MSM) indicatorb 2,242 0.03 0.18 0 1

Heart-attack factorsc

Diabetes indicator 3,938 0.09 0.29 0 1
Smoking indicator 3,938 0.20 0.40 0 1
Total cholesterol 3,938 201.8 41.5 92 528
HDL cholesterol 3,938 53.3 17.1 15 179
Systolic blood pressure 3,938 121.1 16.8 78 228
Diastolic blood pressure 3,938 71.3 11.8 11 132

Notes: Means and standard deviations computed using survey weights. aNon-response rate higher for survey questions related
to sexual behavior. bStatistics for male subsample. bStatistics for age 30–75 subsample, age range to which Wilson et al. model
applies.

poverty line.17

The next set of factors in the table are important in the calibrations for sexually transmitted infections.

Presumably because of the sensitive nature of the questions, the response rate is lower, reflected in the

lower number of observations. The average lifetime number of sexual partners is 12.7. The high standard

deviation, 39.1, is indicative of substantial heterogeneity in the risk of sexually transmitted infections.18

About 3% of male respondents report having at least one male sexual partner, our criterion for the MSM

variable, an indicator set to 1 for men having sex with men.

The next set of factors are important in the calibrations for heart attacks. We present descriptive statistics

for the smaller sample of 30–75 year olds for which the model of heart-attack risk we use applies. About 9%

of respondents have diabetes and 20% smoke. The rest of the variables are blood-chemistry and pressure

measures from exams and blood tests.
17We use income relative to the poverty line for income because it is continuous whereas the family income measure is binned

into large intervals. Further, the measure we use accounts for family size. All income measures in the NHANES are top-coded. The
measure we use is top-coded at five times the poverty line. We use this top code directly for income. Calibration results are similar
if we follow Blanchflower and Oswald’s (2004) approach of using 1.25 times the top income code for top-coded observations.

18The standard deviation is high in part because of a few reports of partners numbering in the hundreds, a handful even as high
as 1,000. The calibrations take these reports as true; results are similar if we censor lifetime partners at 100.
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Table 3: Calibrations of producer-surplus ratio and potential deadweight loss

(1) (2) (3)

Ages in sample: All 40–49 All
Income elasticity: None None 0.4

ρ∗X sup
kp,kt

(
DWL
TS∗∗

)
ρ∗X sup

kp ,kt

(
DWL
TS∗∗

)
ρ∗X sup

kp ,kt

(
DWL
TS∗∗

)

HIV calibrations

HIV1: Linear model 0.263 0.737 0.296 0.704 0.403 0.358
HIV2: Kaplan model, β = 0.033% 0.268 0.732 0.298 0.702 0.412 0.352
HIV3: Kaplan model, β varies by demographics 0.266 0.734 0.214 0.786 0.377 0.383

Observations 4,479 4,479 923 923 4,095 4,095

HPV calibration

Kaplan model, β = 13.5% 0.548 0.452 0.552 0.448 0.798 0.121

Observations 4,479 4,479 923 923 4,095 4,095

Heart-attack calibration

Wilson et al. model 0.427 0.573 0.450 0.550 0.623 0.229

Observations 3,938 3,938 994 994 3,565 3,565

6.2. Sexually Transmitted Infections

Our first set of calibrations leverage the NHANES question on lifetime sexual partners to form estimates of

the distribution of the risk of sexually transmitted diseases in the population, which we then use to calibrate

the producer-surplus ratio ρ∗X = PS∗p/PS∗t and potential relative deadweight loss supkp,kt
(DWL/TS∗∗) for

these diseases. We focus on the case of HIV for several reasons. First, it is an important disease. Second, we

have reasonable proxies for the joint distribution of HIV disease risk and income. Third, until the advent of

antiretrovirals, HIV virtually always led to AIDS and ultimately death, thus arguably exhibiting less harm

heterogeneity than some other diseases, allowing us to focus on disease risk and income heterogeneity for

which we have better data.

The set of columns under (1) of Table 3 provide results from calibrations accounting for disease-risk

heterogeneity but not income heterogeneity. The calibration in the row labeled HIV1 involves a simple

linear mapping from lifetime sexual partners to infection risk with a constant probability of transmission per

partner. Figure 6 graphs the resulting demand curve for this calibration. Recall PS∗p is given by the area of

the largest rectangle that can be inscribed under the curve (the shaded rectangle in the figure) and PS∗t by the

area under the curve. It is apparent that PS∗p is much less than PS∗t ; to be precise, ρ∗X = PS∗p/PS∗t = 0.263.

As shown in the figure, the firm’s optimal strategy in this calibration turns out to be to sell the preventive

at a price at which 17% of consumers purchase. The producer-surplus ratio can be translated into a bound

on potential deadweight loss, according to the formula in Proposition 2, by subtracting it from 1. This gives

the value 0.737 reported in column (1) for the HIV1 calibration, suggesting that the bias against preventives
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Figure 6: Inverse demand curve for calibration in which probability of infection assumed linear in
lifetime number of sexual partners. (The demand curves extend beyond the range shown. The axes
have been truncated from 1 to 0.4 to aid visualization.)

could dissipate as much as 73.7% of the benefit from a perfectly effective HIV vaccine.

The low producer-surplus ratio in the calibration is due to two factors. First, the calibrated demand

curve in Figure 6 looks quite similar to the Zipf demand ΦX(x,µX) having the same prevalence but attaining

the lower bound on potential deadweight loss. Indeed were the axes not truncated to magnify the points of

interest in the figure, the calibrated demand curve would be hard to distinguish from the Zipf demand. Using

our formal measure of Zipf-similarity, ZX = 0.853 in this calibration. The risk distribution inherits its shape

from the Zipfian distribution of lifetime sexual partners owing to the linear mapping between the two.19 The

second factor behind the low calibrated producer-surplus ratio is that, because of the low prevalence of HIV

calibrated in the population (µX = 1.3%), the Zipf demand curve has a low producer-surplus ratio, 0.136.

Substituting these numbers into (9) returns the ratio 0.263 = 1 − 0.853(1 − 0.136) reported in Table 3.

The row of calibrations labeled HIV2 replaces the simple linear model with a model due to Kaplan

(1990), in which a person with n sexual partners has probability 1 − (1 −β)n of ever contracting the disease,

where β is the probability of contracting the disease from any given partner. We take β = 0.033%, calculated

from prevalence rates from Purcell et al. (2012) and the per-partner transmission rate from Rockstroh (1995).

Details on the calculation of β for this and subsequent calibrations of the Kaplan model are provided in

online Appendix C. The figure for ρ∗X , 0.268, is quite similar to that from the linear calibration. Indeed, the

firm ends up using the same pricing strategy as in the linear calibration. The associated potential deadweight

loss is 0.732.

In the row of calibrations labeled HIV3, we allow the β in the Kaplan model to vary by sexual orien-

19Several previous studies have documented the power-law distribution of the number of sexual partners (e.g., Liljeros et al.
2001).
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tation, race, and gender. These parameters are calculated from estimates of HIV prevalence for MSM by

race from Purcell et al. (2012) and HIV transmission rates by gender from Royce et al. (1997), combined

with population data from the U.S. Census Bureau (2013) and overall HIV rates by race from Centers for

Disease Control (2012), which can be used to compute rates for non-MSM by race. These are important

sources of disease-risk heterogeneity in the population: estimates in Purcell et al. (2012) suggest HIV is

over 40 times more prevalent among MSM than non-MSM males and another four times more prevalent

among black than white MSM males. This concentration of disease risk in a smaller population leads to

an even more Zipf-similar demand curve than in Figure 6, resulting in a slight fall in the producer-surplus

ratio to 0.266 and rise in potential deadweight loss to 0.734 times the burden of disease. Interestingly, these

barely perceptible changes mask a wholesale change in the firm’s pricing strategy: it now sells at a much

higher price to a tiny group of the highest-risk consumers. Such swings in strategy are to be expected when

demand is Zipf-similar: when all pricing strategies generate similar producer surplus, a small change in the

distribution of consumer values can lead to a large change in prices.

Column (2) provides a robustness check, repeating the calibrations from column (1) for a single age

cohort, 40–49 year olds. At the cost of a smaller sample size, the calibrations address the potential concern

that number of sexual partners may have different meanings for people in different age cohorts because older

cohorts have had a longer time to accumulate partners and also lived in environments with different sexual

norms. The potential deadweight losses are similar to those in column (1), slightly higher in some cases and

slightly lower in others.20

Column (3) returns to the full sample, repeating the calibrations from column (1) but now allowing for

heterogeneity in willingness to pay Y along with infection risk X , as modeled in Section 5.2. We maintain

the assumption from that section that the firm cannot price discriminate based on Y . To get a measure of Y

from the data, we take it to be a function solely of income, in particular taking the elasticity of healthcare

expenditure with respect to income to be 0.4 based on empirical estimates.21 An individual’s demand for a

preventive equals his or her disease risk x multiplied by y. Producer surplus from a preventive is calculated

as the rectangle of maximum area under this inverse demand curve. The demand curve for a treatment is

constructed by ordering consumers by y and then stepping off the expected drug quantity x each consumer

would buy at this reservation price.

In all three HIV calibrations, X and Y are negatively correlated, with a correlations ranging between −2%

and −5%. The analysis from Section 5.2 suggests that adding Y negatively correlated with X to a market can

mitigate the bias against preventives. This suggestion is borne out comparing column (3) to (1): we see that

accounting for heterogeneity in income increases the calibrated producer-surplus ratio by between 10 and 15

20We conducted other robustness checks, not reported in Table 3. We found similar results as in column (1) from calibrations run
on 2004 NHANES data. We also found similar results from calibrations run on 1989–2004 data from the General Social Survey.

21Getzen (2000) surveys empirical studies of the income elasticity of health expenditures. For purposes of the table, we are
interested in the U.S. income elasticity of out-of-pocket expenditures. This is provided by the handful of studies using U.S. micro
data from an historical period when most of the population was uninsured. The 0.4 figure, estimated by Anderson, Collette, and
Feldman (1960) using 1953 data, is in the middle of the [0.2,0.7] range from these studies. Micro studies using data from the
modern era with more insured consumers find income elasticities near zero. Using such an income elasticity would generate the
same results in column (1).

30



percentage points. Though the bias against preventives is reduced, the most detailed calibrations in column

(3), HIV3, still suggest that the producer surplus from a preventive is only 37.7% that from a treatment.

Because disease risk is no longer the sole source of consumer heterogeneity, the generalized formula for

potential deadweight loss from Proposition 15 must be used in place of Proposition 2. Comparing the

results in column (3) to (1), we see that accounting for heterogeneity in willingness to pay cuts potential

deadweight almost in half. Though smaller, the potential deadweight loss can still be substantial, in the most

detailed calibration 38.3% of total disease burden.

As a counterpoint to the calibrations for HIV, Table 3 adds a set of calibrations for a much more common

sexually transmitted infection, HPV. These calibrations are directly comparable to the HIV2 calibrations—

both are Kaplan models with fixed values of β—but β is increased from 0.033% to 13.5%. This value of β

is calculated by combining estimates of the HPV prevalence rate from Dunne et al. (2007) with data on the

HPV transmission rate from Hernandez et al. (2008). The potential deadweight loss measure in the HPV

calibrations is about half that for HIV2 on average across all columns. With a disease as prevalent as HPV,

the disease risk must be fairly homogeneous, bounding the bias against preventives as Figure 4 shows for

large µX . The difference between HPV and HIV2 is mainly the prevalence of the two diseases. The Zipf

index for the HPV calibration (ZX = 0.75) is quite close to that for the HIV2 calibration (ZX = 0.83).

While many factors outside those we model may be at play, it is worth noting several facts consistent

with the calibrations. Only recently has any preventive for HIV become available: Truvada. Truvada was

initially developed to be a treatment, approved for that use by the U.S. Food and Drug Administration (FDA)

in 2006, not approved for use as a preventive until eight years later (GEN News Highlights 2012). Truvada

has a only a niche market as a preventive. The 2014 guidelines issued by U.S. Centers for Disease Control

(CDC) recommended its use as a preventive only for such high-risk individuals as men who have unprotected

sex with men, drug injectors, and their sexual partners, estimated to be less than 0.2% of the U.S. population

(McNeil 2014). The case for HPV is quite different. An preventive for HPV was developed more quickly

than for HIV: the HPV vaccine Gardasil was approved by the FDA in 2006. Unlike Truvada, it is a new

product, not a re-purposed treatment, and is a recommended by the CDC for all U.S. boys and girls.

6.3. Heart Disease

The last row in Table 3 provides calibrations for heart disease, the leading killer in the United States. We

derive an estimate of the distribution of disease risk from the influential Framingham Heart Study, reported

in Wilson et al. (1998). These estimates are available to individuals through the use of a risk calculator

widely available on the Internet. Some medicines such as beta blockers are used primarily as preventives

for heart attacks, not treatments. Others such as ACE inhibitors are used as treatments, not preventives. Still

others such as cholesterol-lowering medications can be used in both capacities. Thus the question of which

category firms decide to invest in is interesting for this condition.

The specific condition examined in the calibration is the risk of a heart attack over a ten-year horizon.

Wilson et al. (1998) estimate the risk of this condition as a function of gender, age, the other risk factors

31



in the bottom rows of Table 2, and their interactions. Calibrating the risk distribution for the subsample of

30–75 year olds, to which the Wilson et al. model applies, and then computing the firm’s optimal pricing

strategies, in column (1) we find a producer-surplus ratio of 0.427 and a potential deadweight loss of 0.573.

Age is an important risk factor in heart attacks. This may lead to medical guidelines specifying that

preventives be administered to people of a certain age, effectively neutralizing age as a source of hetero-

geneity among consumers of the preventive. The calibration in column (2), which restricts the sample to the

40–49 age range, helps account for this possibility. The producer-surplus ratio rises slightly and potential

deadweight loss falls slightly relative to column (1). The calibration in column (3) considers a potential case

with heterogeneity in willingness to pay for healthcare expenditures given by the same function of income

used for the other diseases. Because diabetes, smoking, and other risk factors are negatively correlated with

income, this ends up increasing the producer-surplus ratio and reduce potential deadweight loss.

7. Empirical Tests

In this section we present a first-pass empirical test of the theory. We will see whether the factors predicted

to influence ρ∗X show up as measurable differences in the types of pharmaceuticals developed. According

to the decomposition in equation (10), the most important such factor is Zipf similarity ZX of the risk

distribution as well as prevalence µX . We will test whether ZX and µX affect the probability that a vaccine

(the preventive we study) has been developed relative to the probability that a drug (the treatment we study)

has been developed over the last century for a sample of microorganisms causing infectious diseases.

Direct computation of ZX would require the sort of detailed information used in the calibrations. This

level of detail on the current distribution of disease risk is not systematically available for a cross-section of

diseases, let alone the distribution in the state of nature before any products were developed. Thus we take

a different approach in this section, looking for any factor that might lead the risk distribution to be Zipf-

similar and combining all such factors into a single indicator IZm, where m indexes markets (equivalent here

to a disease). We will test whether, as implied by the decomposition equation, an increase in IZm reduces

the probability of vaccine relative to drug development.22

This difference-in-differences approach provides power against general alternatives. Factors in IZm cor-

related with Zipf-similarity may also correlate with demand levels. Thus IZm may proxy for both the shape

as well as the level of demand. It would not be surprising to find fewer vaccines in low-demand markets. To

have power against such general alternatives, we will not merely show that an increase in IZm decreases vac-

cine development but that it decreases vaccine development more than it does drug development. Comparing

22The left-hand-side variable in the decomposition formula (10) is a ratio of producer surpluses, not entry probabilities. While
it is intuitive that a change in the producer-surplus ratio should translate into an analogous change in relative entry probabilities,
we provide formal details for this result in online Appendix D. We construct a simple entry model and show that an increase in
IZm directly reduces the probability of vaccine entry but has no direct effect on the probability of drug entry in market m. Indirect
effects arise in the model because entry probabilities are strategic substitutes (à la Bulow, Geanakoplos, and Klemperer 1985). A
reduction in the probability of vaccine entry makes drug entry more attractive, feeding back to further decreases in the probability
of vaccine entry and increases in the probability of drug entry. These indirect effects only reinforce the differential effect of IZm on
the probability of vaccine versus drug entry.
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Table 4: Descriptive statistics for sample of CDC-notifiable diseases

Variable Mean Std. dev. Min. Max.

Vaccine developed 0.37 0.49 0 1
Drug developed 0.76 0.43 0 1
Indicator of Zipf similarity (IZm) 0.45 0.50 0 1
Childhood onset 0.14 0.35 0 1
Bacterial 0.55 0.50 0 1
Viral 0.33 0.47 0 1
Parasitic 0.10 0.31 0 1
Fungal 0.02 0.13 0 1
Prevalencea 0.26 0.84 0 4.74
Producer-surplus-ratio boundb 2.62 2.73 0 7.21

Notes: Sample has 58 disease-observations. All variables except those noted a or b are indicators. aMeasured as 1,000 cases in
1944. bComputed by dividing prevalence by U.S. population to express prevalence as percentage, µX , mapping µX into ρ(µX )
as in Figure 4, then expressing as percentage.
Sources: All variables except those noted a or b from Harpavat and Nissim (2001), a widely used teaching reference, supple-
mented by the microbiology reference Mandell, Bennett, and Dolin (2009). aMorbidity and Mortality Weekly Report (various
dates, spanning 1944–2007). bAuthors’ calculations described in the notes.

vaccine to drug development effectively allows us to control for the level of demand in market m.

7.1. Data

Table 4 provides descriptive statistics for our dataset, comprising the 58 diseases classified by the CDC as

notifiable. CDC-notifiable diseases are important to public health but exclude ubiquitous ones such as the

common cold and flu. The listed variables were collected from the sources indicated in the notes by a team

of research assistants including a senior medical student.

The indicator for Zipf-similarity of the risk distribution, IZm, deserves special comment because it is

the regressor of central interest.23,24 We set IZm = 1 if a discrete high-risk group could readily be defined

from a review of the disease’s epidemiology and transmission patterns. Specifically, IZm = 1 if the dis-

ease satisfies at least one of the following conditions: (a) sexually transmitted; (b) transmitted by animal

contact; (c) chiefly affects a concentrated population of either hospitalized patients, immuno-compromised

individuals, intravenous-drug users, or soldiers; (d) organism has restricted ecological habitat (e.g., trop-

ics for malaria). This is the comprehensive list of factors identified by our research team, corroborated by

conversations with other physicians.

23To the extent that the factors included in IZm are imperfect measures or other important factors have been left out, the power
of our tests will be reduced. IZm may be imperfect, for example, if it includes factors on which the vaccine manufacturer can price
discriminate. Such factors would then not contribute to a bias against vaccines. The only enumerated factors that may suffer from
this problem are the last two, (c) and (d). Our results are robust if we omit diseases exhibiting those factors from the regression (see
footnote 26).

24Our cross-sectional data will not allow us to obtain market-specific estimates of an increase in IZm but just an average across
markets. Because IZm is a crude indicator rather than a continuous measure of Zipf similarity of the risk distribution, the average
effect will average across large and small changes in Zipf similarity.
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Theory suggests that prevalence is an important factor in both absolute and relative incentives to develop

vaccines and drugs. The listed variable is our attempt to measure prevalence as close to the counterfactual

state before any product was developed as our sources allow, here cases reported in 1944, the earliest year

available in our data sources. Because CDC-notifiable diseases exclude the most ubiquitous ones, the sample

diseases are fairly rare. The last variable, the producer-surplus-ratio bound converts the prevalence variable

into the bound ρ(µX) on the ratio of vaccine to drug producer surplus from Figure 4, expressed as a percent-

age. The diseases are rare enough that even the most prevalent of them does not much constrain the range

of feasible producer-surplus ratios.

7.2. Linear-Probability Model

Table 5 reports the results from a linear probability model, regressing an indicator for product (vaccine

or drug) availability on IZm and other controls using ordinary least squares. Consider the results for the

spare specification reported in the set of columns (1). The –0.408 coefficient in column (1a) indicates that

vaccines are 40.8 percentage points less likely to have been developed for Zipf-similar diseases, significant

at the 1% level. The analogous coefficient in column (1b) indicates that Zipf similarity has no statistically

significant effect on drug development. The difference between the vaccine and drug coefficients in column

(1c) indicates that Zipf similarity reduces vaccine development 35.8 percentage points more than it does

drug development, a difference significant at the 10% level.

The difference between the constant terms in column (1c) indicates that vaccines are less common than

drugs, the average disease being 21.9 percentage points less likely to have a vaccine than a drug, significant at

the 1% level. This result may capture a host of factors besides Zipf similarity that may make vaccines harder

to market than drugs, such as tendencies for people to invest less in prevention or the greater epidemiological

externalities from vaccines.

One concern with results is that IZm may be proxying for more than just the shape of the risk distribution;

it may be proxying for low overall disease burden, as diseases that are transmitted through specialized

vectors or concentrated in subpopulations may have an overall low prevalence. Virtually any theory would

suggest that firms would have less of an incentive to develop products for low-burden diseases, and so

a significantly negative coefficient on our proxy may not be a dispositive test of the particular theory in

Section 3. This concern can be partially addressed in (1) by focusing not on the negative coefficient in

the vaccine regression in isolation but on a comparison of the vaccine to the drug regression. If IZm were

proxying for low overall disease burden, one would expect to find a significantly negative effect on drug

development as well, but the coefficient on IZm in column (1b) is close to 0. The result in column (1c), which

can be viewed as a difference in differences, indicates that our proxy is having a statistically significantly

different effect on vaccine than on drug development.

The concern is further addressed by the richer specification in (2), which adds an explicit prevalence

measure as well as other variables mainly intended to control for development costs. The fixed effects for

type of organism causing the disease (bacterium, virus, parasite, fungus) control for the possibility that
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certain technologies are well-suited to certain organisms and not others; for example, it is believed to be

technologically easier to develop vaccines than drugs for viral disease. Greater subsidies may be available

for vaccines against childhood diseases because they are easily integrated into childhood immunization

programs.

Of course, many other factors are important determinants of product development, including ease of

the science involved, other cost factors, government subsidies, and as discussed in Section 5.3 particular

forms of harm heterogeneity. Lacking data on these factors, they are included in the error term. We have no

particular reason to expect these factors to be systematically correlated with IZm, but they could be, so this

remains a possible threat to identification.

To address this threat, one robustness check is to see if the coefficient on IZm changes as we introduce

the organism fixed effects and other factors for which we do have data. The coefficients on IZm in (2) are

in fact quite similar to those in (1), with Zipf similarity decreasing the probability of vaccine development

by a statistically significant 36.8 percentage points, but having essentially no effect on drug development,

resulting in a differential effect on vaccines versus drugs reported in column (2c) of 33.0 percentage points,

now significant at the 5% level.25,26

The additional controls in (2) are of some independent interest. Compared to the omitted bacterial

category, drugs are significantly less likely to be developed for viral diseases and vaccines less likely to

be developed for parasitic diseases. These results are consistent with widespread scientific views about

the technological difficulties involved in treating viruses with drugs and in vaccinating against parasites.

Vaccines are significantly more likely to be developed for diseases that disproportionately affect children

and drugs significantly less likely. This is consistent with the lower cost of delivery of vaccines that can

be integrated into childhood immunization programs. Prevalence does not show up as important in the

regressions. One explanation is that prevalence does not vary much among the CDC-notifiable diseases in

our sample. To the extent prevalence varies, if the CDC determines notifiability on the basis of aggregate

health burden, this could generate a negative correlation between prevalence and harm, which would bias

the coefficient on prevalence toward zero since the harm is omitted from the regressions.

The regressions in the set of columns (3) substitute the producer-surplus-ratio bound ρ(µX) for preva-

lence µX . The two variables are monotonically related, but ρ(µX) is in a form connected by theory to relative

incentives for product development. We now see some evidence that an increase in the bound increases the

25As discussed in Oster (2013), the fact that adding controls substantially boosts the regressions’ R2 while leaving the difference-
in-differences effect of IZm unchanged is further reassurance that the extent of omitted-variable bias is limited.

26We performed a variety of other robustness checks not reported here for space considerations. Marginal effects from probits or
logits are very similar to the ordinary least squares coefficients in Table 5. To see if one of the four factors behind the IZm indicator
drives the results, we ran the regressions on subsamples excluding diseases exhibiting each factor in sequence. The results showed
the same broad pattern as in column (1), although the difference in development probability was no longer significant when STIs
were excluded. We ran the regressions on subsamples excluding different types of organisms. We excluded fungal and parasitic
diseases because no vaccines have been developed for such organisms in our sample; this exclusion turned out to strengthen the
results. We excluded bacterial diseases, which can be treated with antibiotics. Because each antibiotic typically combats many
bacterial diseases, the decision to develop it may have been based on the a portfolio of diseases rather on the characteristics of any
one. The exclusion cut the sample in half and reduced the size and significance of the results, but the results have the same basic
pattern as in column (1). Results from these robustness checks reported in online Appendix E.

36



probability of vaccine development more than drug development, but the difference is only marginally sta-

tistically significant and is as much due to a reduction in drug development as to an increase in vaccine

development.27

8. Conclusion

R&D incentives depend on innovators’ capacity to capture the social value of their innovations by exer-

cising market power. This in turn depends on the shape of the distribution of consumer values for their

innovations. We have argued that holding the sum constant, changes in the distribution of values across

consumers between the time disease preventives are sold and the time disease treatments are sold will create

wedges between the ability of preventive and treatment manufacturers to extract consumer surplus, poten-

tially distorting R&D incentives. In the benchmark model in which consumers differ only in disease risk,

Zipf-similar risk distributions generate the largest gap between the producer surplus from a preventive and

treatment, which can be translated dollar for dollar into a bound on potential deadweight loss. Measured rel-

ative to total surplus, this potential deadweight loss is particularly large for rare diseases. We develop tools

to quantify the extent of potential distortions for particular distributions, and use these tools to calibrate

potential distortions of R&D incentives in the cases of HIV and heart attacks, finding large gaps between the

producer surplus associated with preventives and treatments. Finally, we show that vaccines, but not drugs,

are less likely to be developed for diseases with substantial risk heterogeneity.

Considerable scope for further work remains. While this paper focuses on the case of pharmaceuticals,

much of the analysis about how the shape of the distribution of valuation influences the ability of firms to

extract surplus applies to general product markets. A companion paper, Kremer and Snyder (2015), explores

these general implications, tying Zipf-similarity of a suitably rescaled demand curve (to have unit domain

and range) to static and dynamic deadweight loss, R&D incentives, gains from optimal subsidies, and losses

from banning price discrimination. A considerable range of products may approach the upper bounds we

derive for deadweight loss: many economic variables, from income to city size, have been found to follow

power laws (at least in the upper tail; see Gabaix 2009); the Zipf-similarity we found for distributions of

HIV and heart-attack risk may extend to these other domains as well. The companion paper provides an

initial set of calibrations of demand on a global market, assuming consumer unit values for a product are

unit elastic in income and assuming income follows Pinkovskiy and Sala-i-Martin’s (2009) estimates of the

world distribution of income. Calibrated demand for the most recent year of estimates is strikingly similar

to STRZ demand, with a Zipf similarity of 83%, indicating a disturbingly high potential for deadweight loss

on the global market.

While we have provided bounds on relative deadweight loss applicable to arbitrary market structures, it

would be useful to tighten the bounds for particular oligopoly models or distributions of development costs

27The model in online Appendix D provides an explanation of the reduction in the probability of drug development—as a strategic
response to an increase in the probability of vaccine development, corresponding to the movement along the drug manufacturer’s
downward-sloping best-response function (where firms’ best-response functions determine their entry decisions).
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across firms. It would also be useful to allow for nonlinear cost functions and to allow costs, efficacy, side

effects, and other parameters that vary across products to also have a distribution across consumers.

While a formal analysis of policies to counteract the identified distortions along the lines of Weyl and

Tirole (2012) is beyond the scope of this paper, we can at least draw some qualitative conclusions for policy

from the analysis. To the extent that policymakers can identify markets where the shape of the distribution of

consumer values makes it difficult for producers to extract consumer surplus, they may wish to target R&D

subsidies to these markets. The market for an HIV preventive is a case in point. Industry observers such

as Thomas (2002) claim that the profit potential in this market is low relative to the potential social benefit.

Our analysis provides one explanation for the low profit potential: firms may have difficulty capturing social

surplus because of the low prevalence of the disease and the Zipf-similarity of the disease risk distribution.

Given the seriousness of the disease, total surplus, and hence the potential absolute magnitude of the distor-

tions, are likely high. This may provide one potential rationale for programs such as the International AIDS

Vaccine Initiative.

To the extent that policymakers can identify markets where the shape of the distribution of consumer

values makes it difficult for producers to extract consumer surplus, they may wish to target R&D subsidies

to these markets. Thus, for example, the analysis in this paper suggests that, consistent with the claims

of industry observers, such as Thomas (2002), the share of potential social value captured by developers

of HIV preventives may be low due to the low prevalence of the disease and the Zipf-similarity of the

disease risk distribution. Because the disease is so serious, total surplus, and hence the potential absolute

magnitude of the distortions, are likely high. This may provide one potential rationale for programs such as

the International AIDS Vaccine Initiative.

Zipf-similar distributions not only generate large dynamic distortions, but as explored more fully in

Kremer and Snyder (2015), the companion paper, they also generate static distortions. At least in theory,

price controls could greatly increase consumer welfare with only a small impact on R&D incentives when

consumer demand is Zipf similar. Ordinarily, large forced price reductions could be expected to ruin a

firm’s R&D incentives. With a Zipf distribution of values, the firm may be largely indifferent between the

existing high price and a low control price, allowing the control to be implemented without much effect on

producer surplus or R&D incentives. One policy that could potentially improve both static pricing efficiency

and dynamic R&D incentives would be for governments to subsidize consumers’ purchases of preventives,

if possible, targeting the subsidy to consumers with low (net of production costs) valuations. This would

robustly increase dynamic R&D incentives. As noted in Section 4.3, if governments bargain with phar-

maceutical producers over price after R&D costs have been sunk, with the threat point in the case of a

breakdown in negotiations being direct sales to consumers, dynamic distortions may be attenuated but will

not be eliminated. A hold-up problem (à la Klein, Crawford, and Alchian, 1978) will remain. However, if

the government is able to commit in advance to purchase at an appropriate price or to provide an appropriate

subsidy, the first-best dynamic incentives can be achieved. If the distribution of consumer values is close to

being Zipf, the consumer subsidy has the potential for dramatic improvements in static (pricing) efficiency
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as well. Even a modest subsidy would be enough to make a monopolist that is nearly indifferent among a

range of prices strictly prefer the lowest of these prices.

An example of ex ante bargaining is provided by advance market commitment programs for vaccines

(see Kremer and Glennerster, 2004). A pilot program of this type was implemented for pneumococcal

vaccine by a group of donors which committed $1.5 billion to help finance purchase of a vaccine covering

strains of the disease common in developing countries at a price targeted to be between unit production

cost and the vaccine’s social value (see Snyder, Begor, and Berndt 2011 for description and analysis of

the Pneumococcus Advance Market Commitment). The analysis in this paper suggests that advance market

commitments address may be particularly well suited for disease preventives when the distribution of disease

risk is Zipf-similar, as in the case of HIV.

The policies of the U.S. Advisory Committee on Immunization Practices (ACIP) may de facto act in a

way similar to advance market commitments. The ACIP analyzes the cost effectiveness of new vaccines,

recommending that a vaccine be added to the schedule of immunizations eligible for government subsidies

if its price is below a cost-effectiveness threshold. While the ACIP’s recommendations are not legally

binding, they are almost always followed in practice. Firms respond by pricing at this threshold. This

policy effectively commits the government to subsidizing vaccine purchases that would be socially efficient

in a way that both addresses static monopoly pricing distortions and generates R&D incentives for vaccines

corresponding to their estimated social value.28

28See Barder, Kremer, and Levine 2004, chapter 2, for a discussion of these examples.
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Appendix A: Proofs of Propositions

Proof of Lemma 1: First-best preventive surplus is TS∗∗p =TSp(0)
= PSp(0) + CSp(0) = CSp(0) =

∫ ∞
0 Qp(x)dx =

∫ 1
0 ΦX (x)dx. The

first and third equalities follow from the assumption cp = 0 in the
benchmark model, and the last from (1). Similarly, first-best sur-
plus for a treatment is TS∗∗t =

∫ ∞
0 Qt(x)dx =

∫ 1
0 µX dx = µX , where

the second equality follows from (2).
The proof is completed by showing TS∗∗p = TS∗∗t . We have

µX =
∫ 1

0 xdFX (x) = [1 −
∫ 1

0 FX (x)dx] =
∫ 1

0 F̄X (x)dx =
∫ 1

0 ΦX (x)dx.
The first equality follows the definition of µX , the second from in-
tegration by parts, the third from the definition of F̄X (x), and the
last from the fact that F̄X (x) only differs from ΦX (x) for at most a
countable set of x, so their Reimann integrals are equal. Q.E.D.

Proof of Proposition 1: It remains to construct a case in which
Π∗

t > Π∗
p but W ∗

p > W ∗
t and W ∗∗

p > W ∗∗
t . Take X to be uniformly

distributed on [0,1], kp = 0, and kt = 1/5. One can show Π∗
p =

0.25, Π∗
t =W ∗

t =W ∗∗
t = 0.3, W ∗

p = 0.375, and W ∗∗
p = 0.5. Q.E.D.

Proof of Proposition 3: (=⇒) We will prove the contrapositive.
To this end, assume there exists no x′ ∈ (0,1] such that Pr(X =
x′|X > 0) = 1. Then Pr(X = x∗)< 1 for x∗ = argmaxx∈[0,1] xΦX (x).
Thus at least one of the sets (0,x∗) or (x∗,1] has positive measure.

By Lemma 1,

µX − RECX =
∫ 1

0
ΦX (x)dx − x∗ΦX (x∗) (A1)

=

∫ x∗

0
[ΦX (x)−ΦX (x∗)]dx +

∫ 1

x∗
ΦX (x)dx. (A2)

The first term in (A2) is nonnegative because ΦX (x) is nonincreas-
ing, implying ΦX (x) ≥ ΦX (x∗) for all x ≤ x∗. The second term in
(A2) is nonnegative because ΦX (x)≥ 0.

We will show at least one of the terms in (A2) is not just non-
negative but positive, implying (A2) is positive. Suppose (0,x∗) has
positive measure. Then ΦX (x)> ΦX (x∗) for a positive measure of
(0,x∗), implying the first term on the right-hand side of (A2) is
positive. Suppose (x∗,1] has positive measure. Then ΦX (x) > 0
for a positive measure of (x∗,1], implying the second term on the
right-hand side of (A2) is positive. We have shown (A2) is posi-
tive in either case, implying µX > RECX , in turn implying ρ∗X =
RECX/µX < 1, where the equality follows from Lemma 2.

(⇐=) Assume Pr(X = x′|X > 0) = 1 for some x′ ∈ (0,1]. Then
ΦX (x) = 1 for all x ∈ [0,x′] and ΦX (x) = 0 for all x ∈ (x′,1]. Obvi-
ously x∗ = x′. By Lemma 2,

ρ∗X =
RECX

µX
=

x∗ΦX (x∗)∫ 1
0 ΦX (x)dx

=
x′ ·1∫ x′
0 1dx

=
x′

x′
= 1.

Q.E.D.

Proof of Proposition 4: Suppose X has a two-type distribution.
Its distribution can be characterized by three parameters: risk for
the low type x1 ∈ (0,1), risk for the high type x2 ∈ (x1,1], and the
probability of the low type π1 ∈ (0,1). The mean is µX = π1x1 +
(1 −π1)x2, implying

x2 =
µX −π1x1

1 −π1
. (A3)

Therefore, the distribution can equivalently be characterized by the
three parameters x1 ∈ (0,1), π1 ∈ (0,1), and µX ∈ (x1,1).

Let x∗ = argmaxx∈[0,1] xΦX (x). Then

x∗ΦX (x∗) = max{x1,(1 −π1)x2}= max{x1,µX −π1x1} (A4)

substituting from (A3). By Lemma 2,

ρ∗X =
x∗ΦX (x∗)

µX
= max

{
x1

µX
,1 −

π1x1

µX

}
, (A5)

substituting from (A4). The nth raw moment is

E(Xn) = π1xn
1 + (1 −π1)xn

2 = π1xn
1 +

(µX −π1x1)
n

(1 −π1)n−1 ,

substituting from (A3). Differentiating,

∂E(Xn)

∂x1
=

nπ1

(1 −π1)n−1

[
(x1 −π1x1)

n−1 − (µX −π1x1)
n−1
]
.

This is negative for n ≥ 2 because µX > x1. Thus E(Xn) is de-
creasing in x1. On the other hand, (A5) can decrease or increase
in x1 holding µX constant. In particular, (A5) is increasing in x1 if
µX < (1 +π1)x1 and decreasing in x1 if µX > (1 +π1)x1.

This shows that an increase in the raw moment of order n ≥ 2
can be accompanied by a change in either direction of ρ∗X . The
proof for the central and standardized moments is similar and thus
omitted. Q.E.D.

Proof of Proposition 5: Consider a risk distribution embodied in
X . By Lemma 2, ρ∗X = RECX/µX . Let Φ(x,µX ) be the demand de-
fined in (8), where ρ(µX ) is the implicit function defined in (7). The
producer-surplus ratio associated with Φ(x,µX ) is REC(µX )/µX ,
where

REC(µX ) = max
x∈[0,1]

[xΦ(x,µX )] (A6)

= max
x∈[0,1]

[
min{µXρ(µX ),x}

]
(A7)

= µXρ(µX ). (A8)

Equation (A6) follows from the definition of REC(µX ), (A7) from
(8), and (A8) from substituting the highest value of x and noting
that µX ∈ (0,1) and that ρ(µX ) ∈ (0,1) for µX ∈ (0,1). We defer
proving ρ(µX ) ∈ (0,1) to the proof of Proposition 6. Rearranging,
(A8) implies ρ(µX ) = REC(µX )/µX , implying that ρ(µX ) is the
producer-surplus ratio associated with Φ(x,µX ).

We will show ρ(µX )≤ ρ∗X , with strict inequality unless ΦX (x)=
Φ(x,µX ) almost everywhere (a.e.). If ΦX (x) = Φ(x,µX ) a.e., then
ρ = ρ(µX ), and we are done. For the remainder of the proof, as-
sume ΦX (x) ̸=Φ(x,µX ) for a positive measure of x. We have∫ 1

0
ΦX (x)dx = µX =

∫ 1

0
Φ(x,µX )dx,

where the first equation follows from Lemma 1 and the second from
(6). Given that the integrals of the demands are equal but the de-
mands themselves are not, it must be that ΦX (x)<Φ(x,µX ) for all
x in some subset S1 of positive measure and ΦX (x)> Φ(x,µX ) for
all x in another subset S2 of positive measure. For x ∈ S2, xΦX (x)>
xΦ(x,µX )=min{µXρ(µX ),x}, implying either xΦX (x)>µXρ(µX )
or xΦX (x) > x. The latter inequality implies ΦX (x) > 1, a contra-
diction to ΦX (x) being a proper demand curve bounded above by
1 in a market with mass 1 of consumers having unit demand. This

40



proves that for all x ∈ S2,

xΦX (x)> µXρ(µX ). (A9)

It follows that, for x ∈ S2,

ρ(µX )<
xΦX (x)
µX

≤ RECX

µX
= ρ∗X .

The first step holds by (A9), the next because RECX is the max-
imized value of xΦX (x) over x ∈ [0,1], and the last by Lemma 2.
Since ρ(µX )< ρ∗X for some x ∈ [0,1], the inequality must hold for
all x ∈ [0,1] because ρ(µX ) and ρ∗X do not vary with x. Q.E.D.

Proof of Proposition 6: Rather than working with ρ(µX ), we
will initially work with its inverse, denoted µX (ρ), which is the
solution of (7) for µX :

µX (ρ) =
exp(1)/ρ
exp(1/ρ)

. (A10)

Differentiating,

µ′
X (ρ) =

(1 −ρ)exp(1)
ρ3 exp(1/ρ)

,

implying that µX (ρ) is continuously differentiable, with µ′
X (ρ)> 0,

for all ρ ∈ (0,1). By the Inverse Function Theorem, its inverse,
ρ(µX ), exists.

Applying l’Hôpital’s Rule to (A10),

lim
ρ↓0

µX (ρ) = lim
ρ↓0

[
−exp(1)ρ−2

−exp(1/ρ)ρ−2

]
= lim

ρ↓0

[
exp(1)

exp(1/ρ)

]
= 0.

Furthermore, µX (1) = 1. Thus µX (ρ) ∈ (0,1) for all ρ ∈ (0,1),
implying µX (ρ) is a bijection on (0,1), implying its inverse ρ(µX )
is also a bijection on (0,1). The fact that limρ↓0µX (ρ) = 0 implies
limµX↓0 ρ(µX ) = 0, and the fact that µX (1) = 1 implies ρ(1) = 1.
By the Inverse Function Theorem, ρ′(µX ) = 1/µ′

X (ρ(µX )), which
is positive for all µX ∈ (0,1) because µ′

X (ρ)> 0 for all ρ ∈ (0,1).
The proof of Proposition 5 relied on the claim ρ(µX ) ∈ (0,1)

for all µX ∈ (0,1). This claim follows from the fact just established
that ρ(µX ) is a bijection on (0,1). Q.E.D.

Proof of Proposition 8: A disease-risk distribution with T dis-
crete types can be fully characterized by 2T parameters {mτ}T

τ=1
and {xτ}T

τ=1 satisfying the following feasibility conditions:

mτ ∈ (0,1) for all τ = 1, . . . ,T , (A11)
T

∑
τ=1

mτ = 1, (A12)

0 ≤ x1 ≤ ·· · ≤ xT ≤ 1. (A13)

We will choose these 2T parameters so that the distribution
is a discrete Zipf distribution. This will allow us to generate a ρ∗X
arbitrarily close to 1/T . To this end, define type masses

mτ =

{
θτ−1 if τ > 1
1 − ∑T −1

τ=1 θ
τ if τ = 1.

(A14)

for some θ ∈ (0,1/2). It can be shown that this geometrically de-
clining sequence respects constraints (A11) and (A12). Define the

disease risks recursively as follows: set xT = 1, and set

xτ
T

∑
i=τ

mi = xτ+1

T

∑
i=τ+1

mi. (A15)

for τ = 1, . . . ,T − 1. The left-hand side of (A15) is the profit from
charging a price xτ and selling to type τ and higher. The right-hand
side is the profit from charging a price xτ+1 and selling to types τ +1
and higher. It is easy to see that the disease risks respect constraint
(A13). By definition, µX = ∑T

τ=1 mτ xτ . By construction implicit
in (A15), we have RECX = x1; that is, it is weakly most profitable
to charge x1 for the preventive and sell to all consumers. Thus,

µX

RECX
=

∑T
τ=1 mτ xτ

x1
(A16)

= m1 +
T

∑
τ=2

mτ

mτ + · · ·+ mT
(A17)

= 1 −
T −1

∑
τ=1

θτ +
T

∑
τ=2

θτ−1

θτ−1 + · · ·+θT −1 . (A18)

Equation (A16) follows from previous arguments. Equation (A17)
holds since it is equally profitable to sell the preventive to all con-
sumers at price x1 or to consumers of types τ and above at price xτ ,
so that x1 = xτ (mτ + · · ·+ mT ), implying xτ = x1/(mτ + · · ·+ mT ).
Equation (A18) holds by substituting for {mτ}T

τ=1 from Equation
(A14). Taking limits, limθ→0(µX/RECX ) = 1−0+∑T

τ=2 1 = T , or,
equivalently, limθ→0(RECX/µX ) = 1/T . This shows that for any
ϵ> 0, and for the definitions of the parameters in (A14) and (A15),
we can find θ > 0 such that RECX/µX < 1/T + ϵ. By Lemma 2,
ρ∗X = RECX/µX . Hence, ρ∗X < 1/T + ϵ.

To prove ρ∗X ≥ 1/T for all distributions with T discrete types,

T ·RECX = T max
τ∈{1,...,T}

[
xτ

(
1 −

τ−1

∑
i=1

mi

)]
≥ T max

τ∈{1,...,T}
{xτmτ}

≥
T

∑
τ=1

xτmτ

= µX .

Hence ρ∗X = RECX/µX ≥ 1/T . Q.E.D.

Proof of Proposition 9: The result is a corollary of Anderson and
Renault (2003). Assume demand ΦX is twice continuously differ-
entiable and c-concave. Their Proposition 1 shows c-concavity is
equivalent to

Φ′′
XΦX

(Φ′
X )

2 ≤ 1 − c. (A19)

Substituting n = 1 (representing the monopoly market structure)
into their Proposition 5 and taking reciprocals,

PS∗j
TS∗∗j

≥
(

1
1 + c

)1/c
(A20)

for all c > −1 such that c ̸= 0. Observe that letting c = 1 in (A19)
gives the definition of ordinary concavity. Substituting c = 1 into
(A20) yields ρ∗X = PS∗j/TS∗∗j ≥ 1/2, the result for concave demand
in Proposition 9. If c = 0, corresponding to log-concavity, then
Proposition 5 from Anderson and Renault (2003) implies PS∗j/TS∗∗j ≥
1/e, giving the result for log-concave demand in Proposition 10.
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The results for convex and log-convex demands in Proposition 9
and 10 can be proved by reversing the previous inequalities. The
result for linear demand in Proposition 9 can be proved by noting
linear demand is both concave and convex, so 1/2 ≤ ρ∗X ≤ 1/2.

More generally, the preceding arguments can be used to estab-
lish general bounds on ρ∗X for c-concave or c-convex demands for
any c > −1. Q.E.D.

Proof of Proposition 11: Suppose there exists an equilibrium in
which a preventive is developed, either alone or together with a
treatment. Letting subscript b denote the associated variable when
both products are developed, we have

max(Π∗
p,Π

∗
b)≥ max(Π∗

t ,0). (A21)

Because W ∗
j =Π∗

j + CS∗j ≥Π∗
j , we have

max(W ∗
p ,W

∗
b )≥ max(Π∗

p,Π
∗
b) (A22)

≥ max(Π∗
t ,0) (A23)

= max(W ∗
t ,0), (A24)

where (A23) follows from (A21) and (A24) follows from Π∗
t =W ∗

t ,
which holds because a treatment extracts all surplus from the ex
post homogeneous consumers. Thus there exists a socially efficient
outcome in which a preventive is developed. One can similarly
show max(W ∗∗

p ,W ∗∗
B ) ≥ max(W ∗∗

t ,0), implying that there exists a
first-best outcome in which a preventive is developed.

The proof of Proposition 1 provided an example in which a
treatment is developed when it is socially inefficient to do so, an
example which serves the purposes of this proof as well. Q.E.D.

Proof of Proposition 12: We will employ a “sandwiching” argu-
ment, showing that potential deadweight loss is first weakly greater
than, and second weakly less than, 1 −ρo. The proof that

sup
{k j ,c j ,e j ,s j≥0| j=p,t;e j≤1}

(
DWL
µX

)
≥ 1 −ρo, (A25)

draws on a result proved below for a more general context, one
allowing for sources of heterogeneity beyond disease risk. In that
context, Proposition 15 states

sup
{k j ,c j ,e j ,s j≥0| j=p,t;e j≤1}

(
DWL
µX

)
≥
(

PSo
max − PSo

min
µX

)
, (A26)

where PSo
max = max j∈{p,t}(PSo

j) and PSo
min = min j∈{p,t}(PSo

j). In
the special case relevant to the present proposition, with hetero-
geneity only in disease risk, PSo

max = PSo
t = µX and PSo

min = PSo
p,

implying (PSo
max − PSo

min)/µX = 1 − PSo
p/PSo

t = 1 − ρo. Thus, the
right-hand side of (A26) equals 1 −ρo, establishing (A25).

Turning to the other side of the “sandwich,” we have

sup
{k j ,c j ,e j ,s j≥0| j=p,t;e j≤1}

(DWL)

≤ max
ℓ,m∈{p,t,b,n}


sup

{k j ,c j ,e j ,s j≥0| j=p,t;e j≤1}
(W ∗∗

ℓ −W ∗
m)

subject to Π∗
m = max(Π∗

p,Π
∗
t ,Π

∗
b,0).

(A27)

Implicit in (A27) is that the monopolist’s generic strategies, in-
dexed by ℓ and m, can include the possibility of producing both
products (denoted b) or neither (denoted n) in addition to produc-
ing a preventive (p) or treatment (t) alone. The generic strategies

are chosen to maximize the wedge W ∗∗
ℓ − W ∗

m subject to the con-
straint that m is an equilibrium strategy for the monopolist, which
requires Π∗

m to be the highest of the profits. For generic strategy m,

W ∗
m = CS∗m +Π∗

m = CS∗m + max(Π∗
p,Π

∗
t ,Π

∗
b,0), (A28)

where the first equality follows from the definition of W ∗
m and the

second from substitution of the constraint from (A27). For the
generic strategy ℓ, by definition of W ∗∗

ℓ ,

W ∗∗
ℓ = CS∗ℓ + SDWL∗

ℓ +Π∗
ℓ. (A29)

Combining (A28) and (A29) and rearranging,

W ∗∗
ℓ −W ∗

m

=CS∗ℓ + SDWL∗
ℓ − CS∗m + [Π∗

ℓ − max(Π∗
p,Π

∗
t ,Π

∗
b,0)] (A30)

≤CS∗ℓ + SDWL∗
ℓ. (A31)

The second equality follows from the facts that CS∗m ≥ 0 and that
the term in square brackets is non-positive. Substituting (A31) into
the right-hand side of (A27),

sup
{k j ,c j ,e j ,s j≥0| j=p,t;e j≤1}

(DWL)

≤ max
ℓ,m∈{p,t,b,n}

[
sup

{k j ,c j ,e j ,s j≥0| j=p,t;e j≤1}
(CS∗ℓ + SDWL∗

ℓ)

]
(A32)

≤ max
ℓ∈{p,b}

[
sup

{c j ,e j ,s j≥0| j=p,t;e j≤1}
(TS∗∗ℓ − PS∗ℓ)

]
. (A33)

Equation (A33) follows from substituting from the definition TS∗∗ℓ =
CS∗ℓ + PS∗ℓ + SDWL∗

ℓ. It also reflects several other simplifications.
The ex post surplus terms on the right-hand side are not functions of
k j, so development costs can be removed from the set of parameters
over which the supremum is taken. Furthermore, TS∗∗t = PS∗t be-
cause a treatment extracts all surplus. Also TS∗∗n =PS∗n = 0 because
producing nothing generates no surplus. Hence TS∗∗ℓ − PS∗ℓ = 0 for
ℓ = t,n, so generic strategies ℓ = t,n can be ignored in the maxi-
mization problem.

The proof is completed by finding a new expression for the
term in square brackets in (A33), which holds for both ℓ = p and
ℓ= b:

sup
{c j ,e j ,s j≥0| j=p,t;e j≤1}

(TS∗∗ℓ − PS∗ℓ) = µX − PSo
p (A34)

Intuitively, (A34) says that the same parameters that maximize the
total-surplus “pie” also maximize the part left over after the pro-
ducer takes its slice. The arguments needed to prove (A34) are
fairly involved and thus relegated to online Appendix B.

Substituting (A34) into (A33) and dividing by µX ,

sup
{k j ,c j ,e j ,s j≥0| j=p,t;e j≤1}

(
DWL
µX

)
≤

µX − PSo
p

µX
= 1 −ρo. (A35)

Combining (A25) and (A35) completes the “sandwiching” argu-
ment, showing potential deadweight loss equals 1 −ρo. Q.E.D.

Proof of Proposition 13: Consider a model of competition C sat-
isfying (12)–(15). Most of the proof is concerned with a prelimi-
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nary analysis of the set of fixed-cost configurations

K1 =

{
(k ji)

∣∣∣∣∣ k j1 ≥ 0 for j = p, t;
k ji > µX for i = 2, . . . ,N, j = p, t

}
. (A36)

K1 is the set of fixed-cost vectors, with a component for each product-
firm combination, such that the fixed costs for firm 1 can be any
non-negative number but for the rest of the firms are higher than
disease burden µX . Suppose some element of K1 is drawn for firms’
fixed costs. For all i = 2, . . . ,N, k ji > µX ≥ PS∗j = PS∗j(1,0,0) ≥
PS∗j(n j,nℓ,nb). The first step follows from construction of K1 in
(A36), the second step from the fact that consumers do not expend
more than the total disease burden, the third step from (13), and
the fourth step from (12). But k ji > PS∗j(n j,nℓ,nb) implies no firm
i > 1 enters just one of the two product markets by (14). Similar
analysis shows no firm i > 1 enters both markets either. Thus for
any element of K1, only firm 1 possibly enters any market, implying
that equilibrium welfare is monopoly welfare, W ∗.

Continue to suppose some element of K1 is drawn for firms’
fixed costs. In the first best in which the planner can choose prices
and which firms enter which markets, no firms but 1 produce. If
some firm i > 1 produces some product j, social welfare is at most
µX − k ji. This is because gross social welfare cannot exceed the
entire disease burden µX , and if i produces product j, total industry
fixed costs that have to be netted out amount to at least k ji. But
by construction of K1, k ji > µX for i > 1, implying social welfare
is negative if any firm i > 1 enters. Thus the planner would only
choose to have firm 1 enter the market. Hence for any element of
K1, first-best welfare is the same as with a monopoly, W ∗∗. Putting
this result together with the result from the previous paragraph, for
any element of K1, deadweight loss is

DWL(C,N) =W ∗∗ −W ∗. (A37)

With the preliminary analysis of K1 in hand, we can readily
prove the proposition:

sup
{k ji≥0| j=p,t;i=1,...,N}

[
DWL(C,N)

µX

]
≥sup

K1

[
DWL(C,N)

µX

]
(A38)

=sup
K1

(
W ∗∗ −W ∗

µX

)
(A39)

= sup
{kp1,kt1≥0}

(
W ∗∗ −W ∗

µX

)
. (A40)

Condition (A38) holds because K1 is a subset of the set over which
the supremum on the left-hand side is taken, (A39) holds by (A37),
and (A40) holds because values of entry costs for firms i > 1 are
irrelevant if only firm 1 enters. By Proposition 2, (A40) equals
1 −ρ∗X . Q.E.D.

Proof of Proposition 14: The initial equalities in the statement
of the proposition—v0 = y and v1 = hy—are a simple relabeling
that hold without loss of generality. To see this, define Y = V0
and H = V1/V0. Then v0 = y by definition, and v1 = (v1/v0)v0 =
hy. The content of the proposition are the statements involving
expectations. To prove those,

y = v0

= E(V1|V0 = v0,X = x)

= E(V1|Y = y,X = x)

= yE(H|Y = y,X = x),

where the first step holds by definition Y =V0, the second by (18),
the third again by defintion Y = V0, and the last by definition H =
V1/V0 and by a property of conditional expectations. These equali-
ties together imply

E(H|Y = y,X = x) = 1. (A41)

Thus
E(H) = E(E(H|Y = y,X = x)) = E(1),

where the first equality holds by the law of iterated expectations
and the second by (A41). This shows E(H) = 1. Similar arguments
establish E(H|X = x) = 1 and E(H|Y = y) = 1. Q.E.D.

Proof of Proposition 15: Suppose PSo
p = PSo

t . Then PSo
max =

PSo
min, implying that the right-hand side of (19) equals 0. But then

the proposition holds trivially because DWL ≥ 0.
Suppose for the remainder of the proof that PSo

p ̸= PSo
t , a nec-

essary and sufficient condition for PSo
max > PSo

min. More specif-
ically, we will suppose PSo

t > PSo
p. Analysis of the alternative

PSo
p > PSo

t is similar and omitted for brevity. We have

sup
{k j ,c j ,e j ,s j≥0| j=p,t;e j≤1}

(DWL)≥ sup
kp∈(PSo

p,PSo
t )

kt∈(kp,PSo
t )

(DWLo). (A42)

Equation (A42) follows because the supremum on the right-hand
side is taken over a more restrictive set than the left: parameters in
DWLo are implicitly set to their “original” values c j = s j = 0 and
e j = 1, and the set of development costs is smaller.

Some manipulations will help us analyze the right-hand side of
(A42). For kp ∈ (PSo

p,PSo
t ), Π

o
p = PSo

p −kp < 0. For kt ∈ (kp,PSo
t ),

Πo
t = PSo

t − kt > 0. Letting b index the strategy of developing
both products, a revealed-preference argument can be used to show
PSo

b ≤ PSo
p +PSo

t ; i.e., the firm can earn more from a preventive and
treatment sold at optimized prices on replicated markets than sold
together on one market. Hence Πo

b = PSo
b − kp − kt ≤ PSo

p + PSo
t −

kp − kt = Πo
p +Πo

t < Πo
t , where the last step follows from Πo

p < 0.
Hence Πo

t > max(Πo
p,Π

o
b,0), implying the firm’s equilibrium strat-

egy is to develop a treatment alone. Thus equilibrium welfare is
W o =W o

t = µU − SDWLo
t − kt . First-best welfare is W oo = µU − kp.

To see this, note that, given the original value of the parameters, ei-
ther product can generate first-best surplus if offered at no charge.
Whichever product has the lower development cost, in this case kp,
generates first-best welfare.

Using the expressions just derived, DWLo =W oo −W o = µU −
kp − (µU − SDWLo

t − kt) = kt − kp + SDWLo
t . Substituting into (??),

this expression equals

sup
kp∈(PSo

p,PSo
t )

kt∈(kp,PSo
t )

(kt − kp + SDWLo
t ) ≥ sup

kp∈(PSo
p,PSo

t )

kt∈(kp,PSo
t )

(kt − kp)(A43)

= PSo
t − PSo

p (A44)

= PSo
max − PSo

min. (A45)

Equation (A43) follows from SDWLo
t ≥ 0, (A44) from substituting

the upper bound on kt and the lower bound on kp in the constraint
set, and (A45) from maintained assumption PSo

t > PSo
p, which im-

plies PSo
max = PSo

t and PSo
min = PSo

p. The proof is completed by
dividing equations (??)–(A45) through by µU . Q.E.D.
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Description

This document contains four appendices not included in the published paper. The appendix included in
the published paper, Appendix A, contains proofs of propositions. Appendix B included here provides
proofs in part or whole omitted from the published paper for space considerations. Appendix C provides
details on the computation of β in calibrations of the Kaplan model reported in Section of the published
paper. Appendix D introduces a simple entry model showing how results on producer surplus (such as
those reported in Section 3 of the published paper) can be translated into testable hypotheses regarding entry
probabilities (as tested in Section 7.2 of the published paper). Appendix E provides a table of robustness
checks on the linear probability model.

Online Appendix B: Additional Proofs

This appendix contains additional proofs omitted for space considerations from Appendix A of the published
paper.

Completing the Proof of Proposition 12: The remaining step in the proof of Proposition 12 is to establish
equation (A34) for ℓ= p and ℓ= b. For reference, (A34) is repeated and renumbered here:

sup
{c j,e j,s j≥0| j=p,t;e j≤1}

(TS∗∗ℓ − PS∗ℓ) = µX − PSo
p (B1)

First, consider the firm’s strategy of selling the preventive alone (ℓ = p). A consumer with disease risk
x buys the preventive if his expected net benefit from the preventive, epx − sp, exceeds the price pp, or upon
rearranging,

x ≥
pp + sp

ep
= xp, (B2)

where xp is the marginal consumer type when a preventive alone is sold. Producer surplus is

PS∗p = max
pp∈[0,∞)

∫ 1

(pp+sp)/ep

(pp − cp)dFX(x) (B3)

= ep

∫ 1

x∗p
(x∗p − c̃p)dFX(x). (B4)
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The second equality holds by making the change of variables in (B2), taking x∗p to be the maximizing such
value of xp, and substituting c̃p, where

c̃ j =
c j + s j

e j
(B5)

can be interpreted as the combined firm and consumer cost for product j = p, t, expressed per unit of
expected health benefit.

The first-best policy regarding a preventive allocates it to any consumer whose expected net benefit
epx − sp exceeds marginal cost cp, or upon rearranging, x ≥ (cp + sp)/ep = c̃p. First-best surplus from a
preventive is thus

TS∗∗p =
∫ 1

c̃p

(epx − sp − cp)dFX(x) = ep

∫ 1

c̃p

(x − c̃p)dFX(x). (B6)

Combining (B4) and (B6),

sup
{cp,sp,ep≥0|ep≤1}

(TS∗∗p − PS∗p) = sup
{c̃p,ep≥0|ep≥1}

{
ep

[∫ 1

c̃p

(x − c̃p)dFX(x)−
∫ 1

x∗p
(x∗p − c̃p)dFX(x)

]}
. (B7)

Parameters cp and sp have been replaced by c̃p in the set over which the supremum is taken because they
do not appear aside from c̃p. Although c̃p is a function of ep in (B5), it can be varied independently by
varying the parameters sp and cp for which c̃p has been substituted, so ep and c̃p should be viewed as
independent parameters in (B7). Since x∗p is the maximizer of the second integral in (B7), clearly x∗p ≥ c̃p.
Thus the first integral in (B7) is weakly greater than the second, implying the factor in square brackets is
non-negative, implying (B7) is non-decreasing in ep, implying the supremum can be generated by setting
ep = 1. Differentiating (B7) with respect to c̃p yields

−ep

[∫ 1

c̃p

dFX(x)+
∫ 1

x∗p
dFX(x)

]
= ep

[
FX(c̃p)− FX(x∗p)

]
, (B8)

which is nonpositive because x∗p ≥ c̃p. The derivative in (B8) uses the Envelope Theorem, allowing one to
ignore the indirect effect of c̃p on (B7) through its effect on x∗p: because x∗p is a maximizer of the second
integral, changes in x∗p have a second-order effect on the integral. The supremum can be generated by the
lowest feasible value of c̃p, i.e., c̃p = 0. Substituting c̃p = 0 and ep = 1 into (B7) yields

sup
{cp,sp,ep≥0|ep≥1}

(TS∗∗p − PS∗p) =
∫ 1

0
xdFX(x)− max

x∈[0,1]
[xΦX(x)] (B9)

= µX − PSo
p, (B10)

where the last line follows from Lemma 1.
Next, examine the case in which the firm sells both a preventive and a treatment (ℓ= b) using backward

induction. Let pb j be the price for product j ∈ {p, t} given both are sold. A consumer who ends up con-
tracting the disease (either because he did not be the preventive or it was unsuccessful) buys the treatment if
et −st ≥ pbt . The optimal treatment price is p∗bt = et −st . Note this price leaves the consumer with no surplus.
Folding the game back, in deciding whether or not to buy the preventive, the presence of the treatment is thus
irrelevant for the consumer. A consumer with disease risk x buys the preventive if the net benefit epx − sp

exceeds the price pbp, or upon rearranging,

x ≥
pbp + sp

ep
= xbp. (B11)
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The producer surplus from selling both, PS∗b, equals

max
ppb∈[0,∞)

{∫ 1

xbp

[
ppb − cp + (1 − ep)x(p∗bt − ct)

]
dFX(x)+

∫ xbp

0
x(p∗bt − ct)dFX(x)

}
, (B12)

where xbp is regarded as the function of pbp given by (B11). The first integral incorporates the profit from
consumer types who buy the preventive. Markup ppb − cp is earned from each. With probability (1 − ep)x,
the preventive does not work for him and he buys the treatment as well. The second integral incorporates
the profit from consumer types who do not buy the preventive but end up contracting the disease and buy
the treatment. Applying the change of variables in (B11) to (B12) and taking x∗bp to be the value of xbp
maximizing the expression shows PS∗b equals∫ 1

x∗pb

[epx∗bp − sp − cp + (1 − ep)x(p∗bt − ct)]dFX(x)+
∫ x∗bp

0
x(p∗bt − ct)dFX(x) (B13)

= et(1 − c̃t)µX + ep

∫ 1

x∗bp

[x∗bp − c̃p − xet(1 − c̃t)]dFX(x). (B14)

The second line follows from substituting c̃t = (ct + st)/et , substituting p∗bt = et − st , and rearranging.
In the first-best policy involving both products, the preventive and treatment are sold at cost, cp and ct ,

respectively. First-best surplus TS∗∗b thus equals∫ 1

c̃p

[epx − sp − cp + (1 − ep)x(et − st − ct)]dFX(x)+
∫ c̃p

0
x(et − st − ct)dFX(x) (B15)

= et(1 − c̃t)µX + ep

∫ 1

c̃p

[x − c̃p − xet(1 − c̃t)]dFX(x), (B16)

where (B16) follows from similar computations behind (B14). Subtracting (B14) from (B16),

sup
{c j,s j,e j≥0| j=p,t;e j≤1}

(TS∗∗b − PS∗b)

= sup
{c̃ j,e j≥0| j=p,t;e j≤1}

{
ep

{∫ 1

c̃p

[x − c̃p − xet(1 − c̃t)]dFX(x)−
∫ 1

x∗p
(x∗p − c̃p)dFX(x)

}}
. (B17)

Since x∗bp is the maximizer of the integral in (B12), the firm would never chose x∗bp such that the integrand is
negative for any x. Therefore the integrand is non-negative for x = x∗p, implying x∗bp − c̃p − x∗bpet(1 − c̃t)≥ 0,
in turn implying xbp ≥ c̃p. But xbp ≥ c̃p implies that the difference between the integrals in (B17) is non-
negative, implying that the supremum in (B17) can be generated by setting ep = 1. The derivative of (B17)
with respect to c̃t is ∫ 1

c̃p

xetdFX(x)−
∫ 1

x∗p
xetdFX(x), (B18)

which is positive because xbp ≥ c̃p. As in (B8), the derivative in (B18) uses the Envelope Theorem. We have
shown that the supremum in (B17) can be generated by ep = 1 and ct = 1. Substituting these values into
(B17) implies (B17) equals

sup
{c j,s j,e j≥0| j=p,t;e j≤1}

(TS∗∗b − PS∗b) = sup
{c̃p≥0}

[∫ 1

c̃p

(x − c̃p)dFX(x)−
∫ 1

x∗p
(x∗p − c̃p)dFX(x)

]
(B19)

= µX − PSo
p, (B20)

where (B20) follows from the same arguments used to derive (B10) from (B7). Q.E.D.
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Proof of Proposition 16: Assume benchmark values of the parameters c j,s j = 0, e j = 1, j = p, t. Suppose
Y is independent of X . Then

PSo
p = max

pp∈[0,∞)

{∫ 1

pp/ȳ

[∫ ȳ

pp/x
pp dFY (y)

]
dFX(x)

}
(B21)

≤ max
pp∈[0,∞)

{∫ 1

pp/ȳ
max

[
0,
∫ ȳ

pp/x
pp dFY (y)

]
dFX(x)

}
(B22)

≤ max
pp∈[0,∞)

{∫ 1

0
max

[
0,
∫ ȳ

pp/x
pp dFY (y)

]
dFX(x)

}
(B23)

≤
∫ 1

0

{
max

pp∈[0,∞)

{
max

[
0,
∫ ȳ

pp/x
pp dFY (y)

]}}
dFX(x) (B24)

=
∫ 1

0

{
max

pp∈[0,∞)

[∫ ȳ

pp/x
pp dFY (y)

]}
dFX(x) (B25)

=
∫ 1

0

{
max

p′∈[0,∞)

[∫ ȳ

p′
p′xdFY (y)

]}
dFX(x) (B26)

= µX max
p′∈[0,∞)

[
p′ΦY (p′)

]
(B27)

= µX RECY (B28)

= PSo
t . (B29)

Equations (B21) and (B27) hold by applying the independence condition to the formulae (20). The rest of
the steps up to the last are algebraic manipulations. The last step follows from (21). The inequality in (B24)
is strict if there is nontrivial heterogeneity in the distribution of positive risks X . Q.E.D.

Proof of Proposition 17: Assume benchmark values of the parameters c j,s j = 0, e j = 1, j = p, t. Let
PSo

p and PSo
t be equilibrium producer surpluses in the model with no heterogeneity in Y and PSYo

p and PSYo
t

be equilibrium producer surpluses when Y distributed independently from X is added to the model. Given
h = 1,

PSYo
p = po

UΦU(po
U) (B30)

≥ po
X po

YΦU(po
X po

Y ) (B31)

≥ po
X po

Y Pr(x ≥ po
X)Pr(y ≥ po

Y ) (B32)

= PSo
pPSYo

t /PSo
t , (B33)

where po
Θ = argmaxp[pΦΘ(p)] for Θ ∈ {X ,Y,U}. Equation (B30) follows from equation (20). Condition

(B31) follows because po
U , as an argmax, produces a higher value for pΦU(p) than the product po

X po
Y .

Condition (B32) follows from

ΦU(po
X po

Y ) =Pr(u ≥ po
X po

Y )

=Pr(xy ≥ po
X po

Y )

≥Pr(x ≥ po
X)Pr(y ≥ po

Y ),

where the last step holds because x ≥ po
X and y ≥ po

Y implies xy ≥ po
X po

Y . To see (B33), note first that the
proof of Lemma 2 implies PSo

p = po
X Pr(X ≥ po

X). Note second PSo
t = µX by equation (3). Note third PSYo

t =
µX po

Y Pr(y ≥ po
Y ) = µX po

Y Pr(y ≥ po
Y ) applying the independence assumption to equation (21). Conditions

(B30)–(B33) together imply PSo
p/PSo

t ≤ PSYo
p/PSYo

t . If X and Y are continuous, then the inequality in (B32)
is strict. Q.E.D.
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Proof of Proposition 18: Suppose Y = g(X), where g is some increasing function. Let p∗p be the optimal
preventive price. Preventive demand equals ΦU(p∗p) = ΦY (ŷ) for ŷ given by the solution to g−1(ŷ)ŷ = p∗p.
Hence

PS∗p = p∗pΦY (ŷ) = g−1(ŷ)ŷΦY (ŷ). (B34)

Turning to producer surplus from a treatment,

PS∗t ≥ ŷ
∫ ȳ

ŷ
g−1(yi)dFY (yi) (B35)

≥ ŷ
∫ ȳ

ŷ
g−1(ŷ)dFY (yi) (B36)

= g−1(ŷ)ŷΦY (ŷ) (B37)

= PS∗p. (B38)

Equation (B35) holds because producer surplus from a treatment PS∗t at the maximizing price at least weakly
exceeds producer surplus on the right-hand side from selling a treatment at price ŷi. To see that the right-
hand side of (B35) is the correct expression for this producer surplus, note that all types yi > ŷ buy the drug
if they contract the disease. Each contracts the disease with probability xi = g−1(yi). Integrating over types
gives the expression for producer surplus. Equation (B36) holds because g−1 is an increasing function, so
xi ≥ g−1(ŷi) for yi ≥ ŷi. Equation (B37) is a straightforward calculation. Equation (B38) follows from (B34).
The inequality in (B36) is strict if there is nontrivial heterogeneity in X for preventive consumers. Q.E.D.

Proof of Proposition 19: Assume benchmark values of the parameters c j,s j = 0, e j = 1, j = p, t. Suppose
that Y = µY and that X and H are independent. First compute the producer surplus from a preventive.
The consumer buys a preventive if pp is less than the expected benefit from his or her ex ante perspective,
E(XY H|X = x,Y = µY ) = xµY E(H|X = x) = xµY , where the second equality holds by Proposition 14.
Thus, preventive demand is ΦX(pp/µY ). Producer surplus from a preventive is ppΦX(pp/µY ) = µY xΦX(x),
making the change of variables x = pp/µY . In equilibrium,

PSo
p = µY RECX . (B39)

Next compute the producer surplus from a treatment. The consumer buys a treatment conditional on
contracting the disease if pt is less than his or her ex post benefit yh = µY h. Because X and H are inde-
pendent, we can multiply probabilities to obtain the individual consumer’s treatment demand: xΦH(pt/µY ).
Market demand for a treatment is thus

∫ 1
0 xΦH(pt/µY )dx = µXΦH(pt/µY ), implying that producer surplus

is µX ptΦH(pt/µY ) = µXµY hΦH(h), making the change of variables h = pt/µY . In equilibrium,

PSo
t = µXµY RECH . (B40)

Thus PSo
t >PSo

p if and only if (B40) strictly exceeds (B39), which in turn holds if and only if RECH/µH >
RECX/µX .

The last step is to use decomposition results from Section 3.2 to find an equivalent expression for the
ratios RECH/µH and RECX/µX . The decomposition results apply to random variables with support on
the unit interval. This is the reason for introducing the rescaled variable H̃ = H/hmax. We need to verify
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RECH/µH = RECH̃/µH̃ . Obviously µH = hmaxµH̃ . A series of steps shows RECH = hmaxRECH̃ :

RECH = max
h≥0

[hΦH(h)]

= hmax max
h≥0

[(h/hmax)ΦH(h)]

= hmax max
h≥0

[(h/hmax)ΦH̃(h/hmax)]

= hmax max
h̃∈[0,1]

[h̃ΦH̃(h̃)]

= hmaxRECH̃ ,

where the fourth step holds by the change of variables h̃ = h/hmax. Hence

RECH̃

µH̃
=

RECH/hmax

µH/hmax =
RECH

µH
.

We are set to apply the decomposition results from Section 3.2. Substituting the definition ρ∗X =
RECX/µX into the decomposition formula in (10) gives RECX/µX = 1−ZX [1−ρ(µX)]. Similarly, RECH̃/µH̃ =
1 − ZH̃ [1 −ρ(µH̃)]. Substituting, we have that ρ(µH̃)/ZH̃ > REC(µX)/ZX > RECX/µX if and only if ZX [1 −
ρ(µX)] > ZH̃ [1 − ρ(µH̃)], which is thus a necessary and sufficient condition for PSo

t > PSo
p. The reverse

inequalities are proved similarly. Q.E.D.
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Online Appendix C: Computing β in Calibrations of the Kaplan Model

This online appendix provides details on the derivation of β used in the calibrations based on the Kaplan
(1990) model.

HIV2 Calibration: Calibration HIV2 assumes a homogeneous β parameter across the U.S. population,
computed by multiplying an estimate of the per-partner transmission rate by an estimate of the HIV preva-
lence rate. We take the per-partner transmission rate to be 10% from Rockstroh et al. (1995). The overall
prevalence rate is computed from subgroup estimates in Purcell et al. (2012), a meta-analysis of seven sur-
veys covering the 37 states with confidential, name-based HIV infection reporting. The following table
reproduces estimates from their Table 5 of the number of HIV cases [in column (1)] and rates [in column
(2)] by year end 2007 for the three mutually exclusive subgroups in the row headings.

Table C1: Computation of overall U.S HIV prevalence rate

HIV Rates Population
Cases (per 100,000) (100,000)

(1) (2) (3) = (1)÷ (2)

Women 153,814 173 889.1
MSM 265,330 7,929 33.5
Other men 152,468 187 815.3

Combined 571,612 329 1,737.9

Population in column (3) is derived from columns (1) and (2). Summing down columns (1) and (3)
given total number of cases and population, which can be divided to give the overall prevalence rate, 329
per 100,000, rounding to 0.033% per individual. Multiplying by the 10% per-partner transmission rate gives
the 0.0033% value of β used in the calibration. 2

HIV3 Calibration: Calibration HIV3 allows β to vary by sexual orientation, race,and gender. The homo-
geneous population parameter β = 0.033% is transformed into ones varying by subgroup in two stages. In
the first stage we scale β by the following subgroup factors, reflecting the HIV prevalence for each subgroup
relative to that in the overall population.

Table C2: HIV prevalence relative to overall U.S. rates

MSM Women and other men

Race (1) (2)

White 16.792 0.141
Hispanic 32.231 0.814
Black 63.902 2.466
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Column (1) can be computed fairly directly from Purcell et al. (2012), specifically, dividing the HIV
rates per 100,000 for MSM by race reported in their Table 5 by the population rate of 329 from Table C1.

Column (2) requires more calculation. We obtain 2007 populations by race from the U.S. Census Bureau
(2013) and 2007 HIV cases from Centers for Disease Control (2012), Table 5b. The number of HIV cases
among women in Purcell et al. is half that in Centers for Disease Control (2012) and is also approximately
half for other subgroups. Assume, therefore, that the 37 states covered in Purcell et al. account for half the
U.S. population and, furthermore, that they are representative of this larger population. Then the statistics
for MSM males by race from Purcell et al. can be combined with the overall statistics by race from Centers
for Disease Control (2012) to back out statistics for non-MSM individuals by race, reported in column (2).

In the second stage, for all MSM categories, after scaling by the factor in column (1), we further scale
by a factor of three to compute the associated β to reflect the estimate from Royce et al. (1997) that HIV is
three times more likely to be passed between males than from males to females.

Some examples will help clarify the risk calculations. Consider a white woman with n = 15 lifetime
sexual partners. Her estimated HIV risk is

1 − (1 − 0.000047)15 = 0.07%,

where the value 0.000047 for her β comes from multiplying the population β by 0.141 from column (2) of
Table C2. Consider an Hispanic man reporting two male and three female partners. His estimated HIV risk
is

1 − (1 − 0.031909)2(1 − 0.000269)3 = 6.36%,

where 0.031909 is the β associated with his male partners, computed by multiplying the population β by
32.231 from Table C2 and again by the male-male transmission factor of 3, and 0.000269 is the β associated
with his female partners, computed by multiplying the population β by 0.814 from Table C2. 2

HPV1 Calibration: The β for the HPV1 calibration is computed by multiplying the transmission rate
times the prevalence rate. Data from Hernandez et al. (2008) imply an HPV transmission rate of 88.8%: of
the 18 couples in which one partner had an HPV strain that the other did not at the beginning of their study,
16 ended up transmitting a strain to the other. Dunne et al. (2007) estimated the prevalence among U.S.
women of the HPV strains classified as posing a high cervical-cancer risk as 15.2%. We take this as the
HPV prevalence rate. Dunne et al. estimated the prevalence of the four strains included in the Gardasil HPV
vaccine as 3.4%, but the vaccine also offers cross-protection against other high-risk strains (Ault 2007). Our
estimate of β is 88.8%×15.2% = 13.5%. 2

Additional References: References to all cited work are provided in the published paper except the fol-
lowing.

Ault, Kevin A. (2007) “Human Papillomavirus Vaccines and the Potential for Cross-protection Between
Related HPV Types,” Gynecologic Oncology 107: S31–S33.
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Online Appendix D: Empirical Entry Model

To connect the results on producer surplus from Section 3 to the probability of product development studied
in our regressions, in this subsection we introduce a simple entry game played by a preventive and treat-
ment producer. The game nests the case in which only one product is viable, in which case the relevant
decision would be that producer’s monopoly entry decision. To keep the game, which involves incomplete
information, as simple as possible otherwise, we will consider a static version.

Setup: Each producer receives a draw of a development cost k jm ≥ 0, where j = p, t indexes products
and m indexes the particular disease market under consideration. Assume k jm is private information for the
producer of j, a continuous random variable with cumulative distribution function FK(k jm,ω jm), where ω jm

are factors that shift the development technology for product j in market m. If producer j enters, its expected
profit net of the development cost is

E(Π∗
jm) = PS∗jm(1 −η− j,mγ j)− k jm, (D1)

where the expectation operator is taken over realizations of the development cost of j’s rival. Producer j’s
surplus PS∗jm is scaled down by γ j, measuring losses due to rival’s business stealing, if j’s rival enters, which
happens with probability η− j,m. (If producer j is a monopolist with no rival entry threat, then we can set
either η− j,m or γ j to 0.)

Equilibrium: Producer j enters if (D1) is non-negative, or rearranging, k jm ≤ PS∗jm(1 − η− j,mγ j). The
probability of this event is

η jm = FK(r∗jm(1 −η− j,mγ j),ω jm). (D2)

Simultaneous solution of the set of equations (D2) for j = p, t gives the equilibrium entry probabilities
η∗jm. Because these are the variables of interest, for our purposes the game of entry under incomplete infor-
mation can be reduced to a static game of complete information in which firms choose entry probabilities
η jm ex ante.

Comparative Statics: Comparative statics are straightforward to derive viewing the right-hand side of
(D2) as a standard best-response function: i.e., η jm = BR jm(η− j,m), where

BR jm(η− j,m) = FK(r∗jm(1 −η− j,mγ j),ω jm).

Figure D1 provides a schematic diagram of the best responses. In the absence of heterogeneity, best re-
sponses are given by the solid curves. Equilibrium entry probabilities are given by the intersection at point
A. To verify that the best-response functions are downward sloping as drawn, note

BR′
jm(η− j,m) = −γ j fK(r∗jm(1 −η− j,mγ j),ω jm)≤ 0,

where fK(k jm,ω jm) is the density function associated with k jm. Hence entry probabilities are strategic sub-
stitutes in the sense of Bulow, Geanakoplos, and Klemperer (1985).

The introduction of heterogeneity corresponding to an increase in IZm from 0 to 1 results in a shift in the
best responses. The shift is mediated through the term PS∗jm in (D2). By definition,

PS∗jm =

{
PS∗tm j = t
ρ∗mPS∗tm j = p,

(D3)

where ρ∗m is the producer-surplus ratio in the market under consideration, m. Proposition 3 implies ρ∗m = 1
if IZm = 0 and ρ∗m < 1 if IZm = 1. Hence an increase in IZm from 0 to 1 reduces ρ∗m, in turn reducing PS∗pm,
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Figure D1: Best-response functions yielding equilibrium entry probabilities. (Market subscript m
suppressed for brevity. Best responses after IZm increased from 0 to 1, reflecting the introduction of
disease-risk heterogeneity, given by dashed curves.)

in turn shifting the best response for the preventive BRpm down from the solid to the corresponding dashed
curve. The best response for the treatment BRtm does not shift because PS∗tm is independent of IZm. Thus
an increase in IZm moves the equilibrium from point A to B, resulting in a decline in the probability that the
preventive producer enters and, if anything, an increase in the probability that the treatment producer enters.
Producer surplus from a monopoly treatment does not shift, but the decrease in the probability of entry by
the preventive, which may steal some business from the treatment, makes entry indirectly more attractive
for the treatment producer.

Threats to Identification: One threat to identification of the bias against preventives arises if IZm is cor-
related with unobservable factors related to demand for all products in market m. For a stark example,
suppose that a higher value of IZm is associated with lower demand in market m, reducing PS∗tm, but has no
effect on the relative bias against preventives, so ρ∗m = 1 independent of IZm. Increasing IZm from 0 to 1
would shift both best responses, moving the equilibrium from A to C in Figure D1. One would not want to
attribute the associated reduction in the probability of preventive development to a bias against preventives
in this case. While we will be interested how an increase in IZm affects the probability of preventive devel-
opment η∗pm, these considerations will lead us to focus more on difference in probabilities η∗pm − η∗tm. The
difference-in-differences result will help identify the relative bias against preventives by effectively purging
market fixed effects. The identification strategy is not iron-clad because the distribution functions in (D2)
are not necessarily the same across products nor linear, so a proportional change in their arguments may not
translate into an equal effect on resulting probabilities. One can simply assume that the density functions do
not differ much in the relevant ranges for the two products. We will go further in the empirical analysis by
controlling for technological factors ω jt that might affect the distribution of development costs separately
for each product.

Endogenizing Business Stealing: For simplicity, we have assumed γ j is exogenous, independent of IZm.
More generally, the proportion of business one product steals from another could depend endogenously on
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heterogeneity in disease risk. Although we will not develop the full-blown model of competition necessary
to endogenize γ in the general case here, we will argue that endogenizing γ j in the benchmark model
(perfectly effective products, possible heterogeneity only in disease risk) reinforces the comparative-static
effects derived from Figure D1. In the benchmark model, entry by a preventive would steal all of the market
from a treatment with no heterogeneity but would leave some of the market for the treatment with some
heterogeneity in disease risk. Thus changing IZm from 0 to 1 would reduce γt . On the other hand, entry
by a treatment would have no effect on producer surplus from a preventive because the treatment’s price
extracts consumers’ entire ex post surplus, so treatment entry would not reduce their ex ante demand for
the preventive. Hence changing IZm from 0 to 1 would not affect γp. Reflecting these considerations in
Figure D1, the shift in BRpm would be the same whether or not γ is endogenized, in either event shifting in
from the solid to the dotted curve. BRtm, which did not shift when γ was taken to be exogenous would shift
out from the solid to the dotted curve further from the origin. The equilibrium shifts from A to D, yielding
qualitatively the same comparative-statics conclusions as when the equilibrium shifted from A to B when γ
was taken to be exogenous.
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Online Appendix E: Additional Robustness Checks for Linear Probability Model

The following table reports alternative specifications for the spare specification reported in column (1) of
Table 5 of the published paper. The first row repeats the baseline specification from the published table for
comparison. The next two rows run a probit or logit instead of linear probability models. The remaining
rows return to linear probability models but are run on restricted samples.

Table E1: Alternatives to spare specification in Table 5

IZm coefficient from spare specification (1)

Vaccine Drug
developed developed Difference Observations R2 or pseudo

Specification (1a) (1b) (1c) = (1a) − (1b) in (1a), (1b) R2 in (1c)

Baseline linear probability −0.409∗∗∗ −0.050 −0.358∗ 58 0.232
model (0.115) (0.116) (0.184)

Probit (marginal effect) −0.381∗∗∗ −0.050 −0.322∗ 58 0.180
(0.087) (0.113) (0.178)

Logit (marginal effect) −0.380∗∗∗ −0.050 −0.317∗ 58 0.180
(0.086) (0.113) (0.180)

Excluding STIs −0.396∗∗∗ −0.115 −0.281 50 0.185
(0.127) (0.136) (0.213)

Excluding diseases spread −0.491∗∗∗ 0.004 −0.496∗∗∗ 46 0.248
by animal contact (0.114) (0.135) (0.183)

Excluding diseases affecting −0.396∗∗∗ −0.073 −0.323∗∗∗ 56 0.211
concentrated populations (0.118) (0.120) (0.190)

Excluding diseases with restricted −0.381∗∗∗ −0.009 −0.372∗ 54 0.215
ecological habitats (0.123) (0.118) (0.195)

Excluding parasitic or −0.500∗∗∗ −0.032 −0.468∗∗ 51 0.217
fungal diseases (0.121) (0.128) (0.195)

Excluding bacterial diseases −0.321 −0.083 −0.238 26 0.057
(0.023) (0.203) (0.324)

Notes: See notes to Table 5.
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