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1 Introduction

Most innovative new products are brought to the market because their makers believe they

create new value. However, with innovation often comes uncertainty, and once in the hands

of consumers, there is some chance that the product will not operate as hoped. The conse-

quences of this failure range from consumer regret to death. When this uncertainty matters

for welfare, products often must go through pre-market testing and become approved and

certified by a formal body before entering the marketplace. Especially in oligopolistic mar-

kets, where private and public incentives may diverge (Spence 1975), the standards that the

regulatory body imposes have the potential to fundamentally alter market outcomes by re-

quiring testing that firms would not undertake themselves. As first highlighted by Peltzman

(1973) in the context of pharmaceuticals, higher testing standards can create value through

generating information and decreasing uncertainty, but this benefit comes with the poten-

tial costs of delayed entry, higher entry costs conditional on approval, and fewer available

products. Today such certification processes are commonplace and a source of controversy

in areas as diverse as electronics, airplanes, automobiles, finance, health care, and toys.1

We use new, detailed data and exploit exogenous regulatory differences between the US

and European Union (EU) to identify the impact of product testing requirements (and the

information and costs they generate) on market outcomes for medical devices. Among its

many duties, US Food and Drug Administration (FDA) oversees medical device regulation

in the US, while in the EU medical device approval is performed by private organizations

called “notified bodies.” The FDA applies a “safe and effective” standard while EU notified

bodies only certify the safety performance of the product. For the Class III medical devices

we study, this difference is material.2 Meeting the “effectiveness” standard often requires

manufacturers to generate product performance information through large, randomized clin-

ical trials. These trials are costly in both time and expense. As a result, medical device

1See, for example in electronics “European Environmental Rules Propel Change in U.S.”, The New York
Times, July 06, 2004; in airplanes “Boeing Acknowledges Tests Underestimated 787 Battery Risks”, The
New York Times, April 23, 2013; in automobiles “U.S. Sues Chrysler After Auto Maker Refuses to Recall
Cars”, The New York Times, June 5, 1996; in finance “An FDA for Securities Could Help Avert Crises”,
Bloomberg, April 2, 2012; in toys “Toy Makers Fight for Exemption From Rules”, The New York Times,
September 28, 2010.

2In particular, our analysis focuses on coronary stents 2004-13. We chose this segment as the coronary
stent market is large and important with excellent market data and with constant innovations introduced
over time. Coronary stents treat ischemic heart disease—the narrowing of the coronary artery caused by
fatty deposits. Ischemic heart disease is the leading cause of global death accounting for 7 million fatalities
in 2010 (Lozano 2012). In 2013 total, world-wide sales of coronary stents exceeded $7.9 billion with the vast
majority of those sales occurring in the US and the EU.
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manufactures (many of which are US based) typically introduce products in the EU well

before they are granted FDA approval, if they enter the US at all.

The differences between the US and the EU in the medical device approval process have

led to calls for reform in both regions. In the US, the FDA has faced criticism from from

some commenters claiming that a slower, tougher approval process is crippling innovation.

However, others have taken the opposite view claiming that the approval process is too lax.3

Congress has responded to this debate by including measures in the 21st Century Cures Bill

that would change the amount of information the FDA is allowed to require before market

approval.4 In April 2017, the EU amended the Medical Device Directive, increasing data

collection on high risk devices both before and after they are allowed into the market.5

Despite its broad importance, empirical research on testing and information provision

for innovative new products is scarce. One major challenge is finding exogenous variation

in information provision regimes. To address this challenge, we exploit the fact that the

EU approval process requires less intensive pre-market testing from manufacturers and as a

consequence is both faster and less costly than the US approval process for any given Class III

device. We describe this difference in detail and argue it is due to historical political processes

that are not correlated with market demand for Class III devices. As a result, we are able to

observe market outcomes for the same devices under two regulatory regimes with different

pre-market testing requirements. Most importantly, we observe EU market outcomes for

devices that are concurrently undergoing US trials as well as for those devices that are not

undergoing US trials, allowing us to examine the market response to the additional trials.

The key additional identifying assumption for this comparison (which we verify in the data)

is that selection into US trials is based on the level of expected US profits, not uncertainty

about product quality at the time of EU entry.

A further challenge is assembling a dataset of sufficient detail and scope to credibly

identify the impact of different regulatory information regimes. We assemble monthly data

on prices and quantities for all coronary stents implanted at a large number of hospitals

in the US and the EU from 2004-13. Paired with product-month variation in participation

in US clinical trials, revealed preference arguments imply that such data capture the state

of market knowledge over the expected performance of a device, the uncertainty over that

3For an example arguing the FDA is too lax “Report Criticized F.D.A. on Device Testing”, The New
York Times, January 15, 2009; and too tight “FDA Seeks to Toughen Defibrillator Regulations”, The New
York Times, March 22, 2013.

4See “How Not to Fix the FDA”, The New York Times, July 20, 2015.
5See http://ec.europa.eu/growth/sectors/medical-devices/regulatory-framework/revision˙en.
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expected performance for these devices, and, in turn, consumer choice patterns and welfare.6

We also augment the market data with hand-collected data on clinical trials, which help to

more precisely demonstrate the differences in US and EU requirements, and also allow a

validation of our revealed preference estimates of product quality.

We begin by documenting multiple patterns in the data. The EU enjoys greater access

to the newest medical technologies. On average, US physicians have 11 stents available to

implant while their EU counterparts have 39 from which to choose – 81 percent of products

(accounting for 23 percent of stents used) in the EU never enter the US. Conditional on the

product entering the US, EU physicians have access to the product 10 months earlier.

However, EU consumers also face greater performance uncertainty by allowing entry with

less evidence on product efficacy. A clinical trail has been published for only 20% of EU-only

available devices. In contrast, 85% of FDA approved devices have undergone a published

clinical trail. Also, conditional on publishing a clinical trial, the sample sizes for the FDA

approved devices are 4.7 times larger than the EU-only devices. This extra evidence comes

at a cost as the additional subjects are associated with an extra 9 months in trials (due

to recruitment time). This time is costly in terms of delayed access for patients as well as

raising fixed costs of entry.7

To explore whether the information generated by additional testing for US approval is

valuable to consumers, we look to the market usage data in the EU and compare products

that undergo FDA trials to those that do not. As expected, in both the clinical trial and

market usage data, the products that begin US trials appear better on average at the time

of EU introduction. They are more clinically efficacious and are more likely to be implanted.

However, both sets of products have similar levels of uncertainty in terms of the standard

deviation of efficacy and usage upon introduction. Thus, selection into US trial appears to

be on differences in expected outcomes, not uncertainty about those outcomes.8

6In this sense, our approach contrasts with studies of the FDA using product introductions and with-
drawals (e.g., Grabowski and Wang 2008; Olson 2008; Philipson et al. 2008). The EU does not record
introductions or recalls of devices in a publicly available database. More importantly, our interest is in
understanding whether further efficacy testing required by the US provides more precise information on
product performance, on which negative tail events such as recalls provide little information. See Stern et al.
(2017) and Nistor and Tucker (2015) for analyses of the correlations between FDA review time and adverse
event reporting for cardiac devices and the limitations of using adverse event data to infer device safety.

7See Makower et al. (2010) for industry estimates of $1.6M per month.
8Note that this assumption is key in the reduced form analysis (to rule out that the evidence of no learning

in the sample of products not in US trials is not due to there simply being nothing to learn about them),
but a weaker version is needed in the structural analysis, where we model and estimate the distribution
of product qualities for each subsample. There the key to the credibility of our analysis is that the same
learning rate we estimate from the set of products in US trials would apply to the set of products not in
trials, if they were to undertake them (a slightly milder “parallel trends” assumption).
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After EU entry, the two sets of products display different usage dynamics. For those

products in US trials, volatility in usage decreases over time, consistent with learning from

the trials. Average usage also increases as volatility decreases, consistent with consumers

valuing this additional information and facing decreasing risk. Products not in trials exhibit

neither of these patterns. We consider alternative mechanisms such as non-learning models

of product diffusion, learning from observational use versus learning from clinical trials, and

signaling with asymmetric information. We conclude the evidence is strongest for the EU

market learning from information spillover from US clinical trials, with firms and physicians

learning facing symmetric uncertainty about these additional trials.9

In order to derive welfare measures and address policy questions regarding optimal regu-

lation, we construct a model of an agent charged with regulating medical devices and medical

device manufactures and consumers optimally responding to the agent’s regulatory policy.

In the model, products are invented with uncertain performance characteristics. EU and

US regulators establish product performance statistical thresholds that the product must

meet before it can be marketed to consumers in those regions. These performance thresh-

olds are designed to limit the likelihood that harmful devices or devices that provide limited

health benefits are marketed to consumers. The statistical thresholds determine the clinical

trial sample size which, in turn, maps into the manufacturer’s entry cost and time required

to run the trial. Consumers learn about product performance through these trials and/or

potentially through observational learning once a product is available in the marketplace.

We estimate the structural parameters of the demand and pricing parts of the model

using detailed product-hospital-month price and quantity data and our hand collected data

on the timing and results of clinical trials. Our demand system combines a model of utility

over health outcomes (Cardon and Hendel 2001; Handel 2013) with a model of consumer

learning (Roberts and Urban 1988; Erdem and Keane 1996; Ackerberg 2003; Crawford and

Shum 2005; Ching 2010) and recent work by Quan and Williams (2017) that accounts for

regional variation in tastes (and in our adaptation, hospital variation in learning processes).

9Manufacturers may indeed have private information about their device prior to undertaking in-human
trials, but our analysis of the data is most consistent with a model where firms and physicians are symmet-
rically (un)informed after the results of trials required for EU market entry are released. This is a departure
from the asymmetric information that is frequently the focus of discussion in regulation of pharmaceutical
markets (Scott Morton and Kyle 2012) and in the broader literature on certification (Dranove and Jin 2010).
Our institutional setting of coronary stents—where trials generate important information that could not be
otherwise obtained by manufacturers and interventional cardiologists pay close attention to new technologies
being developed—is a case where symmetric information seems like a reasonable approximation to the first-
order forces at work. We believe that many markets with published testing results and informed consumers
may also fit this model, and indeed symmetric information games of persuasion and information disclosure
have recently received increased attention in the literature (e.g., Kamenica and Gentzkow 2011).
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The model provides an internally consistent approach to estimate the perceived stent quality

distribution, market and hospital level learning about product quality, consumer risk aversion

over health outcomes, and heterogeneity in preferences over stent attributes across hospitals

and patients/doctors. In order to allow for price adjustments under counterfactual regulatory

policies that could affect the set of products entering the market, we estimate parameters of

a hospital-device manufacturer bargaining model as in Grennan (2013, 2014).

The demand model generates sensible parameter estimates which we also validate using

outside data sources. Consistent with the reduced form evidence, they imply that FDA

required clinical trials generate useful information, and there is practically no hospital or

market level observational learning via experience in the EU marketplace. Combined with

product quality estimates that indicate significant variation in stent quality, this implies the

returns to early product testing are large for stents. Further, the estimates suggest that

US testing in excess of EU requirements substantially decreases the risk of using an inferior

product and thus significantly increases consumer surplus.

The bargaining model parameter estimates are also sensible and imply that the stents

generate substantial surplus. Hospitals are able to extract the majority of the surplus for

the bare metal stents (an older technology) while device manufactures receive the majority

of the surplus for drug eluting stents (a newer technology).

We then consider optimal regulatory policy that balances risk from uncertainty over

efficacy vs. access to new devices. We develop simple-to-compute cases that bound the set

of entering firms as a function of regulatory policy and firm behavior, and use these bounds

to generate a partially identified set of welfare outcomes and optimal regulatory policies.10

Our estimates imply that EU surplus could be increased by 5-8 percent by requiring more

pre-market testing for stents – total surplus is maximized when the premarket trials are at

least six months longer than current EU requirements. For stents 2004-13, US regulatory

policy is statistically equivalent to the policy that maximizes surplus in our estimated model.

Our final piece of analysis examines optimal policy under counterfactual regimes with

greater “post-market surveillance.” This idea, which is a centerpiece of the 21st Century

Cures legislation, has a straightforward logic. Increased post-market learning could main-

tain risk reduction while lowering pre-market requirements, thus decreasing entry lags (and

potentially costs). Our estimate of no observational learning in the EU for coronary stents

10A full supply side model requires frontier work in bargaining and dynamic entry modeling. Our approach
avoids the need for a full supply model by using simple assumptions on supply behavior and a partial
identification approach (pioneered by Manski (2003) and more recently in Pakes et al. (2015) and others to
estimate primitive parameters) on the set of counterfactual outcomes based on point identified primitives.
Reguant (2016) on estimating approximate bounds.
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is not surprising, given that there is currently no systematic data collected that links stents

used to clinical outcomes. But we find that if post-approval learning rates could approach

those we observe from clinical trials, the benefits from such a policy change are substantial.11

The extreme case where post-approval learning is as informative as pre-market trials at zero

incremental cost would yield an estimated welfare increase of 19 percent.

Our focus on information and market structure is complementary to recent empirical

research on other regulatory tools that affect late-stage product development and entry in-

centives, such as patent breadth and length (Budish et al. 2015), price regulations (Kyle 2007;

Filson 2012) and regulatory uncertainty and innovation incentives (Stern 2017). Whereas

the focus of that literature is on innovative activity, we show that, conditional on the product

being developed, the welfare impact of regulations on the creation of product performance

information can also be large. New medical technologies with uncertain quality can only

achieve their welfare potential if the necessary clinical trial studies are performed.

More broadly, our work builds on recent empirical research on optimal regulation (Tim-

mins 2002; Seim and Waldfogel 2013; Miravete et al. 2014; Hamilton et al. 2018). Combining

this literature with recent developments in modeling consumer demand with learning is es-

sential in allowing us to build upon the work of Peltzman (1973) in measuring the impact

of regulatory information requirements. As we build on established models, we provide

an approach that others with data with variation in information regimes might find useful

to the study of regulation and product approval/certification in other markets. Our work

also relates to the literature measuring the value of new products (Petrin 2002; Quan and

Williams 2017; Aguiar and Waldfogel 2018) and the value of product characteristics infor-

mation (Brown 2017).

Our analysis of the impact of different regulatory regimes not only speaks to the economics

of information and product quality regulation, but also speaks to an active and contentious

policy debate with potentially large welfare consequences. The amount of economic activity

regulated by the FDA and the notified bodies is significant. In the US the medical device

market sales exceeded $150B in 2010 or 6 percent of total national health expenditures and

approximately $130B (7.5 percent) in the EU.12 Further, the introduction of new medical

technologies are responsible for significant reductions in mortality; and in so far as different

regulatory regimes affect the availability of these technologies, their welfare impact extends

beyond their direct impact on commerce.

11The FDA recently introduced a Unique Device Identifier system that could facilitate post-market data
collection. However, there is currently debate regarding if/when UDIs may be added to patient claims data.

12Donahoe and King (2012) and Medtech Europe (2013).
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2 Medical Device Regulation in the US and the EU

The term medical device applies to a broad set of product categories, ranging from crutches

to pacemakers to CT scanners. In this study we focus on coronary stents, a blockbuster

device in terms of sales and health impact, but also typical of implantable devices that are

deemed “necessary for the sustainment of life” and thus regulated as Class III devices in the

US and EU. It is for Class III devices that EU and US regulatory approaches diverge most

widely, creating the variation we leverage in our study.13 Coronary stents are a small metal

mesh tube that is inserted into the coronary artery to treat atherosclerosis (the build up of

lesions of plaque that narrow the arteries).

Before detailing these regulatory differences, it is useful to keep in mind some basic

facts about the structure of decision making and the players in the market. First, hospitals

generate revenue by performing a procedure (such as an angioplasty with stent), and the

price for purchasing the device is an input cost the hospital incurs. The physician who

performs the procedure will typically be compensated either as a salaried employee of the

hospital, or on a fee-for-service basis for the procedure, where in either case importantly

the financial benefits to the physician are unrelated to the specific brand of device used.

Physicians typically have strong preferences over which specific product is best to use for a

given patient/lesion type (devices in this class are often referred to as “physician preference

items”) because devices are differentiated in physical characteristics of the implanted device

itself (for a stent examples are shape, strength, flexibility, and type of drug/polymer) and also

characteristics that affect ease of implantation (for stents: unexpanded size and flexibility,

and controls and capabilities of the catheters and balloons used in delivery). The supply side

of the market is thus a differentiated oligopoly, and prices are typically negotiated between

manufacturers and hospitals, hospital systems, or regional purchasing authorities.

For the purposes of this study, the most important features of the stent market to note

are the constant introduction of new products. These may differ from incumbent products

by offering clinical performance improvements or by design modifications to address less

common niche markets such as small vessel and bifurcated lesions. The two most common

stent types are bare metal (BMS), first introduced to the US in 1994; and drug eluting

(DES), first US introduction 2003, which are coated with a polymer and drug to inhibit scar

tissue growth. Interventional cardiologists are a relatively small and technologically aware

13Class I devices are low risk devices such as elastic bandages are subject to ‘general controls’ and do not
require pre-market approval. Class II devices are higher risk in which general controls alone cannot assure
safety and effectiveness (e.g. infusion pumps).
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community who stay engaged through close relationships with manufacturers, journals, and

several well-attended meetings each year (Transcatheter Cardiovascular Therapeutics each

Fall, American College of Cardiology in March, and European Society of Cardiology in

August each year, as well as numerous regional affiliated conferences throughout the year)

at which the most recent results of in-progress clinical trials are reported.

2.1 Similarities and Differences in US and EU Regulation

Medical device regulation in the US began with the Medical Device Amendments Act of

1976, placing oversight authority within the FDA. The criteria the FDA is mandated to use

is “safe and effective.” The Act established three classification of devices (I, II and III),

based on perceived health risk. Class III devices are defined as those used in “supporting or

sustaining human life, of substantial importance in preventing impairment of human health,

or presents a potential unreasonable risk of illness or injury.”

In the US, the approval process for a Class III device generally requires data from ran-

domized clinical trials, involving thousands of patients and costing tens of millions of dollars

to complete.14 The FDA plays a significant role in determining the design, statistical power,

clinical endpoints and duration of the trial (Kaplan and Stern 2018). The FDA also insures

that the proper clinical trial best practices are used (e.g. data management, audits, core

laboratory review), while clinical studies performed outside of the context of obtaining FDA

approval typically lack many of these best practices (Kaplan and Stern 2018). For stents, the

FDA generally requires the trial to demonstrate efficacy on a number of clinically meaningful

end points including target lesion revascularization (TLR), death, and major adverse cardiac

events (MACE) which is a composite of death, myocardial infarction (heart attack), stent

thrombosis, and target lesion revascularization.

In the EU, the regulatory process is quite different, governed primarily by the Medical

Devices Directive of June, 1993, which has been adopted by each EU member state. A

medical device is approved for marketing in the EU once it receives a ‘CE mark’ of confor-

mity. The CE mark system relies heavily on third parties know as “notified bodies”, which

are independent, commercial organizations that are designated, monitored, and audited by

the member states via “competent authorities.” Currently, there are more than 70 active

14There are two common pathways to bring a device to market: Pre-Market Approval (PMA) and the
510(k). The PMA for Class III devices, and the 510(k) for Class II and some Class I devices. Under the
510(k) process the manufacturer demonstrates the device is ‘substantially equivalent’ to a predicate device.
Bench testing and perhaps a small clinical study are all that are typically necessary. A straightforward
510(k) clearance can typically be obtained within months.
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notified bodies within the EU. A firm is free to choose any notified body designated to cover

the particular type of device.15 To obtain an CE mark, a Class III medical device needs to

demonstrate safety and performance. Compliance with this standard can usually be demon-

strated with simpler, cheaper clinical trials than required by the FDA. Once a device has

been approved for use in one EU country, it can be marketed in any member country.16

Despite their differences, both regions require the submission of similar, detailed engi-

neering and manufacturing process information to assess safety and some measures of per-

formance. Thus, insofar as the EU testing requirements successfully prevent ‘unsafe’ devices

from reaching the market, we do not have in-sample variation allowing us to assess the value

of these minimal ‘safety’ standards shared by both regimes. This places our primary focus

on the value of additional FDA ‘efficacy’ testing, which is also the region of focus of the

current policy debates.17

The difference between the two regulatory regimes implies that there will be variation in

the information sets available to physicians on the performance of the stent across devices

marketed in the EU. Devices undergoing FDA required trials in order to enter the US market

will run large, costly, randomized clinical trials while those devices that won’t enter the US

will not. In our sample, all devices that are ultimately granted FDA approval are sold in

the EU well before they are granted FDA clearance. This is the variation we will leverage

to understand the extent to which the additional FDA ‘efficacy’ testing in the human body

generates information that the marketplace values.

It is also important to note that the differences between the EU and the US is largely

a consequence of different histories that lead up to the passing of the primary medical

15See Guidelines Relating to Medical Devices Directives, http://ec.europa.eu/health/medical-
devices/documents/guidelines/.

16In both the US and EU, new-to-the-world devices may face the additional hurdle of gaining payor
reimbursement, but the devices we study are second, third, and fourth generation products, so coverage and
payment determination has already been made. Coverage decisions are generally based on cost-effectiveness
and budgetary impact analysis performed at the national level. For the EU countries in our sample, hospitals
are typically paid on a per procedure basis and the hospitals pay for devices used in the procedure as part
of the cost of providing care (Schreyögg et al. 2006). The price of the device is determined through bilateral
negotiations between the device manufacture and either a local or regional purchasing authority (Sorenson
and Kanavos 2011).

17It is common to view “safety and effectiveness” as separate concepts. In our context (and perhaps
most), they can best be thought of as lying on a single dimensional continuum. For example, a key
endpoint for the FDA in assessing a stent is Target Lesion Revascularization (TLR), the need for a re-
peat procedure on the same lesion, but it is not obvious if a TLR rate of say 10 vs. 5 percent in one
month should be categorized as a deficiency in safety, efficacy, or both. The FDA implicitly acknowl-
edges this is as it does not distinguish different clinical endpoints for safety and effectiveness for car-
diac stents – they categorize the clinical analysis as simply “safety and effectiveness”. See, for example,
http://www.accessdata.fda.gov/cdrh docs/pdf15/P150003b.pdf).
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device legislation in the two regions (Van Norman 2016). The Medical Device Directive,

the centerpiece of the EU medical device regulatory framework, was passed in 1993 when

there was keen interest in a new approach to harmonizing regulatory frameworks across

the member states. The EU had just undertaken a long and frustrating harmonization

process for food and drugs. This new approach sought to avoid detailed and bureaucratic

government approval processes, particularly duplicative approvals. This framework was also

applied to other products including toys, pressure vessels and personal protective equipment.

In contrast, the US medical device regulatory framework was established after the Dalkon

Shield injured several thousand women which garnered significant public outcry. The FDA

already had oversight on some aspects of medical devices and expanding that role was the

most viable political option. At that time, a non-governmental approach to device regulation

was never seriously considered by the Congress.

The gap between the two regulatory systems is the focus of a number of consulting and

government reports. For example, a series of Boston Consulting Group (BCG) reports shows

that there is no difference in recalls between devices that are marketed in both the US and

the EU. The FDA countered the BCG report with their own case study of 12 devices that

were approved in the EU and were not approved by the FDA. They found that only four

of those devices caused significant adverse events in patients and the other eight devices

would not have met the FDA’s efficacy standard. While there are highly publicized events

in which a device clearly and obviously causes significant harm, those cases are rare. This is

not surprising given that both the EU and FDA require significant safety testing. Perhaps

most importantly, by focusing on extreme, rare cases of recalls and adverse events, none of

these studies address the primary difference inherent in FDA vs CE Mark requirements for

Class III devices—more precise estimation of product efficacy.

It is important to note that while unsafe stents appear not to have been marketed in

the EU, the clinical trial results suggest meaningful differences in the clinical efficacy of

stents. For example, in Medtronic’s FDA approval for its Endeavor stent, the summary

reports that Endeavor’s 9-month major adverse cardiac event (MACE) rate is equivalent to

Boston Scientific’s Taxus Express II and 20 percent less than Johnson and Johnson’s Cypher

stent. Its target vessel failure (TVF) rate was 8 percent less than the Taxus stent.18 The

impact of TVF is significant as it requires additional interventions to restore vessel function.

Consistent with discussion above, we have found no evidence (and we have spent considerable

time looking) of an unsafe stent marketed in the EU.

18http://www.accessdata.fda.gov/cdrh docs/pdf6/P060033b.pdf
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3 Data Summary and Reduced Form Analysis

The primary data set used in this study consists of quantities and prices at the product-

hospital-month level, collected by Millennium Research Group’s (MRG) MarketTrack inter-

national survey of hospitals from 2004-2013. This survey, covering approximately 10 percent

of total market activity, is the main source of detailed market intelligence in the medical

device sector. Its goal is to produce representative estimates of product market shares and

prices by region. Importantly, MRG also tracks the number of diagnostic angiographies (a

procedure that must be preformed before a stent can be inserted), providing the number of

patients potentially eligible for a stent in each hospital-month. The countries in our sample

are US, France, Germany, Italy, Spain, and the United Kingdom.19 These data are quite

large with 494,304 product-hospital-month observations across 372 hospitals in the US and

416 hospitals in the EU.

We supplement the detailed market data with our own searches for product approval

dates in the EU and US in order to validate data coverage within our sample and also to

determine the time in market for products that enter outside of our sample period. In addi-

tion, we collected clinical trial data (when available) from various journal articles, conference

abstracts, press releases, and product catalogs. These provide further evidence regarding the

size and length of trials required for US versus EU entry. They also provide clinical outcomes

which we use to validate our revealed preference estimates of product quality.

Figure 1 summarizes statistics on testing and market access in the EU vs. US. The top

third of the table in panel (a) presents summary statistics for our clinical trial data, listing

data on trials with primary endpoints completed prior to entry in each market. We were

able to find such data for almost all of the products entering the US and 20 percent of the

products that enter the EU. Conditional on publishing a clinical trial online, EU trials are

shorter and enroll fewer patients. On average, by the time a product enters the US, it has

undergone 2 clinical trials, enrolling over 1300 patients and lasting 28 months in total, while

upon entering the EU, the typical product has completed only a single trial with 280 patients

lasting 19 months. This large difference in trial patterns is not surprising given the testing

requirement differentials across the two regions.

Interestingly, the modal/median follow up time for the primary trial endpoint across

19The lack of high quality data on post-market device performance is the topic of the policy debate
regarding “post-market surveillance” that we analyze in Section 6. We believe usage data to be the next
best thing because it captures, via revealed preference, the state of market knowledge of physicians across
products and over time.
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all of these trials is 12 months, so the additional time in US trials is driven primarily by

the additional time required in patient recruitment for a larger trial. This points to the

primary cost of generating information through clinical trials – more certainty in performance

estimates requires recruiting more patients, takes more time (delaying entry), and is more

expensive (raising fixed costs of entry).20

Figure 1: Stent clinical trials and market structure in the US and EU.

(a) EU vs. US: Clinical and Market Data

US EU
Clinical trial data:
Pct products w/ published trials pre-entry 85.7 20.1
Median number of trials 2 1
Median total trial size (patients) 1313 280
Median total trial time (months) 28 19

Market structure data:
Mean manufacturers in market 4 (3) 21 (5)
Mean products in market 11 (5) 39 (8)
Total products in market 2004-13 21 (11) 109 (22)
Mean months EU to US entry 10 -
Mean months EU to US entry (DES) 17 -
(Usage within hospital in parentheses.)

(b) EU usage of stents not in US
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The bottom two thirds of the table, and the graph in panel (b), show how these pre-

market testing requirements are correlated with market structure and product usage in the

US and the EU over our sample period. The EU has over three times as many manufacturers

and products as the US (and still nearly two times as many when measured at the hospital

rather than region level). For those products that eventually enter the US, the average

lag between EU and US introduction is 10 months (17 months for the more technologically

advanced DES). Many of the products to which the EU has greater access are frequently

used. In the average month, 49 percent of the stents used in the EU are unavailable in the

US at that point in time, and 23 percent will never be available in the US.

These basic clinical trial and market structure data illustrate the tension between the two

regulatory approaches. The EU enjoys greater access to a broader variety of devices, and

these devices are available earlier than in the US. However, EU consumers have less testing

on the health impact of these products. The goal of our analysis will be to determine, for

our sample of coronary stents 2004-13, whether the extra US testing provides information

that the market values in terms of decreasing uncertainty, the extent to which there is

20See Appendix B.2 for more detailed figures and regressions relating number of patients and trial re-
cruiting time for EU and US trials.
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observational learning outside of clinical trials, and the value of access to more products

earlier in the EU versus the value of any reductions in uncertainty.

3.1 Evidence: Information and Market Response

We next turn to examining the patterns in adoption and diffusion of stents by region and

FDA trial status. Figure 2 illustrates the evolution of three different statistics plotted against

product age (defined as time since introduction to the region) for three subsets of the data:

the US, the EU for products that are running clinical trials to enter the US, and the EU

for other products. The figures are constructed after controlling for product fixed effects, so

that all patterns are driven by within-product variation over time.

Panel (a) plots the empirical mean across products of a given age of 1
Ja

∑
j ln(sja/s0a)

where sja is the within region share of product j of age a and s0a is the relevant outside good

share based on the number of reported angiographies. Thus, 1
Ja

∑
j ln(sja/s0a) proxies for the

mean perceived stent utility (which incorporates both the perceived uncertainty and clinical

performance) at age a.21 For the EU products undergoing US trials, this value is lower upon

introduction and gradually increases with age, plateauing after approximately two years in

the market. As we discuss in more detail in the next section, this trend is consistent with

a model where consumers learn from US trials and increase average usage as uncertainty is

resolved. However, it is also potentially consistent with observational learning by product

experience in the market or with drivers of diffusion other than learning. We will use the

two other product subsets and two other statistics to examine these differing explanations.

If product introduction exhibited a slow diffusion of usage due to timing of response to

marketing, sales, or distribution post-launch, then one would expect the same products in

the US, or other products in the EU, to exhibit a similar pattern. However, neither the

US share data nor the EU products not undergoing US trials exhibit a meaningful upward

trend in panel (a)—the mean usage patterns in those cases are flat over time after product

introduction. This suggests neither market-specific nor product-specific factors alone drive

the increased usage over time of products in the EU undergoing US trials.

To further examine the learning hypothesis, panel (b) plots the standard deviation of
1
Ja

∑
j ln(sja/s0a) across products against age. Standard models of learning predict that this

statistic will decrease toward the population’s true quality standard deviation as uncertainty

21We chose this measure to balance allowing for some basic controls on the data without putting too much
structure on this exploratory analysis. This would be exactly mean utility in a logit model, so along with
product fixed effects, this measure controls at least in part for competition and substitution. Our subsequent
structural analyses control explicitly for a variety of additional sources of variation.

13



Figure 2: Stent usage patterns after product entry, by region and trial status.
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(c) Prj|a [sjht = 0]
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θa=1 θa=24 ∆θa ∆θ
EU|UStrials
a −∆θrowa

EUS
j|a ln(sjt/s0t) -3.39 -3.43 -0.04 1.04∗∗∗

E
EU|UStrials
j|a ln(sjt/s0t) -4.69 -3.69 1.00∗∗∗

E
EU|not

j|a ln(sjt/s0t) -7.01 -6.57 0.44∗ 0.56∗

SDUS
j|a ln(sjt/s0t) 0.50 0.38 -0.11 -0.38∗∗∗

SD
EU|UStrials
j|a ln(sjt/s0t) 0.89 0.39 -0.49∗∗∗

SD
EU|not

j|a ln(sjt/s0t) 0.99 0.84 -0.15 -0.34∗∗∗

PrUS
j|a (sjht = 0) 0.50 0.42 -0.08∗ -0.11∗

Pr
EU|UStrials
j|a (sjht = 0) 0.77 0.58 -0.19∗∗∗

Pr
EU|not

j|a (sjht = 0) 0.96 0.94 -0.02∗∗ -0.17∗∗∗

NUS = 317, NEU|UStrials = 380, and NEU|not = 1050 product-month observations. Standard errors clustered by
month Nt = 114 in parentheses. ∆θa := θa=24 − θa=1.

is resolved. As with the mean, this second moment changes over time for the EU sample of

products concurrently in US trials – decreasing as we would expect with learning – but it

does not change for the US or EU sample of products not in US trials. Importantly, both

EU samples have the same level of volatility upon EU introduction, suggesting there is a

similar amount to be learned about products regardless of US trial status. However, only

those stents in US trials exhibit evidence of learning.

Finally, panel (c) shows how usage at the hospital level evolves with age as measured

by the proportion of zero usage observations at the product-hospital level Prj|a [sjht = 0].

Similar to the aggregate results, the EU sample undergoing US trials begins with slightly

more hospitals using each product on average, and this proportion grows with age, whereas

it stays flat for products not undergoing trials.

The results above highlight that more information, on average, increases a product’s

share. However, information generated in a trial might not be positive and lead to a stent’s

share to decline. In Appendix C.1 we show some example paths for individual products and

discuss one case in detail. CoStar was a new stent technology that was acquired by Johnson
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and Johnson prior to running the FDA pivotal trial. While early small sample evidence

was promising, the final trial results on the full sample showed that the device was not as

effective as other existing stents. The impact of that information caused CoStar’s EU share

to tumble. These results are also consistent with the notion, explored more systematically

in Section 3.2, that device manufactures do not precisely know the efficacy of their device

prior to running a large clinical trial of the type required by the FDA.

3.2 Robustness and Alternative Explanations

Placebo Test: PTCA Balloons. One alternative explanation for the above findings

is that the set of manufacturers/products that undergo US trials promote their products

differently than other products in the EU, and they may also market same products upon

US introduction differently. While we believe the evidence on decreasing variance and on

the same products upon US launch make this unlikely, it is not impossible. To further

explore this possibility, we perform a placebo test using percutaneous transcatheter coronary

artery (PTCA) balloons, which are FDA Class II devices and thus face similar regulatory

requirements in both the EU and US. Thus, PTCA should not display the differential signs of

learning we document for stents if our proposed mechanism is true. The results in Appendix

C.2.1 show that we do see more total entry in the EU (presumably due to pre-existing

complementary sales and distribution assets in the US for some manufacturers); but the

differences in amount of entry are smaller than in stents, there is no gap in time of entry on

average, and usage patterns with age show no evidence of learning.

Alternative Explanation: Observational Learning with Different Initial Sample

Size. Another potential explanation for the results in Figure 2 is that there is learning in

the EU sample undergoing US trials, but this is learning is observational. The difference

between the patterns in the two samples is then plausibly driven by the fact that those stents

undergoing US trials enter with higher usage levels, which generate sufficient sample sizes

for observational learning to occur, whereas the EU sample not undergoing trials contains

too many products that do not gain enough early traction to enable learning.

We examine this hypothesis by reformulating the same figures and tests for a set products

with overlapping support on initial values of 1
Ja

∑
j ln(sja/s0a) at aj = 1, so they all have

similar chances to generate early observational learning. The pattern in Appendix Figure

10 is essentially identical to that in Figure 2, suggesting that our results are not driven by

selection on initial quality/usage levels.22

22For this matched sample, selection into US trials must be based on level shifts in expected US profit
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Alternative Explanation: Asymmetric Information and Signaling. Another po-

tential explanation that could rationalize Figure 2 is manufacturer signaling. Under this

hypothesis, after the release of EU trial data, manufacturers retain a sufficiently large degree

of private information about expected product quality, so that undertaking costly US trials

is a credible signal of expected product quality to physicians. To produce the observed data

patterns, such a model also needs to include some combination of slow signal diffusion across

hospitals and/or increasing signal strength as a trial continues. We explore this hypothesis

by looking more closely at the shapes of the distribution of 1
Ja

∑
j ln(sja/s0a) with age.

Appendix Figure 11 shows the evolution with age of different quantiles of the ln(sjt/s0t)|a
distribution. Under a model where manufacturers and physicians are similarly informed

about quality after the release of trials for EU entry, and then learn similarly as data from US

trials is released, the distribution of product quality estimates should converge symmetrically

to the true product quality distribution. In an asymmetric information setting, consumers

do not receive direct information about quality, but instead infer quality must be above some

threshold if a manufacturer is willing to continue with costly testing (see Appendix C.2.3 for

more on this intuition). Learning in this way would cause the lower tail of the distribution

for product in US trials to become truncated. In the Figure, the 25 and 75 percentiles

appear to move symmetrically towards the median as information arrives. Below the figure,

we present relevant test statistics. The change in the skewness of the distribution and the

change in the ratio of the 75th-50th percentile to the 50th-25th are both insignificant.

Exploring Other US/EU Differences. We consider the evidence comparing the two

samples within the EU to be the strongest regarding the risk-access tradeoff, and so our

estimation and welfare analysis moving forward will focus on the EU sample only. However,

we still find the comparison between the US and EU informative in considering the broader

policy environment and the extent to which results from the EU sample can be extrapolated

to consider US policy.

We have argued that historical political circumstances have led to greater testing require-

ments in the US than in the EU, and that the cost of these different testing requirements

have led to more and earlier entry in the EU. Further, we have presented evidence from EU

usage patterns that this differential testing has led to different amounts of information gener-

ation, and that the market values the resulting decreased uncertainty of products with more

due to the fact that those products that enter the US all have pre-existing complementary assets for sales
and distribution (while those that don’t enter do not). This is consistent with the challenges firms such as
Biotronik have faced in develop US sales forces. See, “Tipping the Odds for a Maker of Heart Implants,”
New York Times, April 2, 2011.
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information. In theory, these differences in entry and usage patterns could be confounded

with other differences in disease incidence, preferences for angioplasty and stents, or varia-

tion in price setting regimes between the US and EU over time. However, all the evidence

that we have been able to gather (detailed in Appendix C.3 and summarized here) indicates

that the patterns in the data described above are unlikely to be explained other cross-region

differences. Rates of ischemic heart disease, hospital diagnostic procedures, and prevalence

of angioplasty with stenting are all similar between US and EU. Willingness-to-pay for new

technology and prices tend to follow similar trends, but are on level lower in the EU, making

US a more attractive entry target, all else equal, and pushing in the opposite direction of

the entry levels observed.

3.3 Summary of the Evidence

The totality of the evidence we have assembled from stent entry and usage patterns aligns

most closely with a model in which there is uncertainty about new product performance

learning occurs symmetrically to market players over time, and risk-averse decision makers

factor uncertainty about quality into their product choice. The results imply that there

is significant learning from US clinical trials but very little learning observationally in the

marketplace. This second finding is also consistent with institutional details regarding the

lack of clinical follow-ups and systematic data collection on device clinical performance after

market entry, which itself is part of the current policy debate.

We examine alternative plausible explanations, and no other model seems to fit the

full set of patterns in the data. Specifically, the patterns we observe are not consistent

with differential marketing/diffusion, differential demand side factors, differential prices and

lags in reimbursement determination, selection into testing based on uncertainty, or residual

asymmetric information (post EU testing) between manufacturers and regulators/consumers.

4 Model of Demand and Supply with Uncertainty and Regulation

In this section, we specify a structural econometric model that incorporates the institutional

details and empirical evidence from the previous sections. The model allows us to extend

our analysis by: (1) explicitly accounting for the various drivers of product usage in a way

that we could not in the analysis in Section 3; (2) translating the patterns in the data into

interpretable economic parameters with links to measures of welfare; and (3) providing a

laboratory in which we can explore equilibrium outcomes under counterfactual scenarios
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related to the current policy debates in medical device regulation.

Section 4.1 outlines the timing and information structure. Physicians are able to learn

over time about the stent performance from clinical trials, as well as from market and

hospital specific experience. Section 4.2 details our differentiated products stent demand

model in which consumers (physicians) have heterogeneous preferences over stent design

characteristics and face uncertainty over the stent’s performance characteristics. Section 4.3

continues with a model of stent price negotiations and an approach to bound the welfare

impact of differential manufacturer entry responses to different regulatory policies. Finally,

Section 4.4 considers the regulator’s trade off between risk and access.

4.1 Timing and Information

1. There are two exogenous types of medical device manufacturers: UStrial firms with

sunk distribution networks in the EU and US; and notUStrial firms with a sunk distri-

bution network in the EU only. A sunk distribution network means that the marginal

fixed cost of introducing a new product is given only by the cost of satisfying the reg-

ulatory approval process. In each period t, there is a positive, exogenous probability

that each manufacturer will innovate and produce a new device.

2. The mean performance of a new device j across patients is given by Qj ∼ FUStrial
t (Q).

We follow the consumer learning literature (Erdem and Keane 1996) in assuming this

distribution is normal for tractability Ft(Q) := N(µQUStrialt
, σ2

QUStrial
). The dependence

on time t allows for the evolution of technology; and the indicator UStrial allows

for potentially different prior beliefs regarding the quality distribution for different

manufacturer types.23

3. Prior to the initial period of EU entry, for each product, we assume the firm re-

ceives a noisy but unbiased iid signal via product testing, AEUj = Qj + νEUj where

νEUj ∼ N(0, σ2
EU). This testing is zero incremental cost to the firm given its infrastruc-

ture in place for ongoing research and development, and the results provide sufficient

information to satisfy EU regulatory requirements. We assume the resulting posterior

(Qj0, σj0) is revealed to the EU regulators via the approval process and to physician

consumers upon EU launch.

23Our estimation approach will recover each Qj without parametric restrictions on the distribution, and
the results are reasonably close to normally distributed. We are limited in our ability to allow σQ to vary as
estimation of this parameter relies on pooling the estimated Qj .
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4. If expected profits given (Qj0, σj0) exceed the costs of further clinical trials required

by the FDA for US approval, a UStrials firm will begin these trials. Expected profits

are computed according to stage models of demand and supply in Sections 4.2 and 4.3,

taking other firm entry behavior as given in a rational expectations equilibrium.

5. In subsequent periods t = 1, 2, ...: prices are set, consumption decisions are made, and

surplus is accrued, taking available products and estimates of quality as given. Then

signals are observed, and beliefs are updated, before consumption decisions are made

the following period. Letting age a denote the time in months since product j was

introduced into the EU, signal Ajha received by hospital h is given by:

Ajha = Qj+νja+ν̃jha where

{
νja ∼ N(0, (1− γ)σ2

Ac), ν̃jha ∼ N(0, γσ2
Ac) if in clinical trials

νja ∼ N(0, (1− γ)σ2
A), ν̃jha ∼ N(0, γσ2

A) if not

(1)

where σA and σAc measure the noise of signals generated by market usage and clinical

trials, respectively.24 γ ∈ [0, 1] measures the degree to which noise is hospital-specific.25

Given these signals, beliefs about product quality are updated via Bayes’ rule, resulting

in posterior beliefs distributed N(Qjha+1, σ
2
jha+1) where

Qjha+1 =
σ2
jha

σ2
jha + σ2

Ajha+1

Ajha+1 +
σ2
Ajha+1

σ2
jha + σ2

Ajha+1

Qjha ; σ2
jha+1 =

σ2
Ajha+1

σ2
jha + σ2

Ajha+1

σ2
jha. (2)

Though this is clearly a stylized model, it captures the first order features of the coronary

stent market for the purpose our research questions. The critical component we need from

the upstream development process is that we are able to use estimates of product qualities

for the products we observe entering the EU to estimate the distributions FUStrials
t (Q) that

approximate the correct “structural” priors for considering counterfactual clinical testing

policies between those of the EU and US. Our assumption that testing to satisfy EU regula-

tors and the introduction of a new device are costless (given sunk costs the firms have already

incurred) is just one way to obtain this, and it seems consistent with the low observed profits

of many devices that enter the EU (see Appendix E.3 where ten percent of firms make less

than $1.3M in lifetime profits).26

24We assume that information release from a clinical trial accrues to the market with a consistent signal
each month. This fits with the regular release of interim results at major meetings and in journal articles
and subsequent further diffusion via word of mouth. We have examined and found no evidence of a discrete
demand response in the EU upon US trial completion or FDA approval.

25γ = 0 corresponds to perfect correlation, while γ = 1 corresponds to completely independent signals.
26In addition, our analyses show that this tail of lower profit products is marginal in its welfare effects,
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4.2 Demand and Surplus

4.2.1 Physician/Consumer Preferences

We next turn to characterizing physician preferences over stents, given their beliefs over

each stent’s clinical performance distribution. Let h(viht, xj, Qj) be the perfect information

ex post health state for a given individual i from an implanted stent j at hospital h in period

t where viht is a vector of patient/physician characteristics, xj is a vector of observable stent

characteristics (e.g. bare metal, drug eluting) that affect its suitability for patient i, and Qj

the stent’s true mean performance. We assume that the physician chooses a stent for each

patient, and that physicians have constant absolute risk aversion (CARA) preferences that

incorporate the patient’s health as well the cost of the device to the hospital, pjht:

uijht = −1

ρ
exp (−ρ(h(viht, xj, Qj)− θppjht)) (3)

where ρ = −u′′(·)/u′(·) is the coefficient of absolute risk aversion.27

Physicians choose from the set of available stents at a point in time Jt, including the

option of not implanting a stent, which has utility normalized to zero.28 The true stent clin-

ical performance is unobserved at time of implantation, so that physicians must make their

decisions based on their current information set Iht := ({Qjht}Jt , {σjt}Jt), which summarizes

the expected performance, and uncertainty about that performance, for all available stents.

In this framework, “ex post regret” occurs any time a patient receives a stent that results

in lower utility than the stent she would receive under perfect information. “Ex post harm”

occurs when a patient receives a stent that results in lower utility than the outside good,

h(viht, xj, Qj) < 0. Thus, a regulatory approach that allows in a larger set of products Jt
can make consumers worse off in the sense of increasing the likelihood of ex post regret and

harm if that set includes products that perform below average and have high uncertainty in

their expected performance estimates.

We assume physicians choose the product for each patient that maximizes ex ante ex-

so to the extent that there are some marginal firms that might for some reason enter under more restrictive
entry policies, it seems unlikely that they would meaningfully affect our analysis.

27This closely follows the modeling of utility over health outcomes in the health insurance choice literature
(Cardon and Hendel 2001; Handel 2013). The conceptual difference is that instead of choosing from insurance
plans that affect ex post consumption over a pre-specified distribution of potential health states, our agents
choose among products that each represent different distributions of potential ex post health states.

28Because our data consists of product usage, we do not directly observe the set of stents available at
a given hospital. We proceed with the assumption that any hospital could potentially purchase any stent
available in the market at that time.

20



pected utility, given their information set, E[uijht|Iht] =
∫
uijhtdN(Qjht, σ

2
jt). The normality

of the distribution of beliefs over Q implies this maximization problem is equivalent to max-

imization of the mean-variance representation Uijht = E[h(viht, xj, Qj)|Iht] − ρ
2
σ2
jt − θppjht,

and we follow the consumer learning literature (e.g. see the review in Ching et al. (2013))

in working with this representation directly in the rest of the paper.29

In order to take the model to the data, we parameterize h(viht, xj, Qj) := Qj + ξjh +

εcijht + (1− λc)εijht so that:

Uijht = Qjht −
ρ

2
σ2
jt − θppjht + ξjh + εgijht + (1− λg)εijht (4)

where ξjh captures preference deviations of the physicians at a given hospital over product

features that are known with certainty but unobserved to the econometrician. The deviations

are distributed according to the type of the device, ξjh ∼ N(0, σgH) with g ∈ {bms, des}.
Larger values of the standard deviations imply greater variation in tastes across hospitals.30

The iid error term, εgijht + (1 − λg)εijht, captures the preference deviation relative to the

population average of physician/patient i for device j with characteristic g. This is a random

coefficients utility model where the random coefficients are on indicators for whether the stent

is a drug-eluting or bare-metal, which is equivalent to a nested logit specification under the

assumptions in Cardell (1997) where εgijht + (1 − λg)εijht is distributed generalized extreme

value with mean zero, scale parameter 1, and 0 ≤ λg < 1.31

We further assume that physicians maximize “myopically”, treating each patient as

she arrives and ignoring the impact of the current stent choice on future stent choices.

Integrating over the distribution of patient/physician i heterogeneity then yields the fa-

miliar nested logit closed forms for product-hospital-month specific: choice probabilities,

cpjht := Pr[Uijht > Uikht,∀k ∈ Jt]; elasticities with respect to price ηjkht :=
∂cpjht
∂pkht

pkht
cpjht

; and

ex-ante expected consumer surplus (relative to the outside option) CSht(Jt, Iht).32 Com-

29Although it is less frequently discussed in the consumer learning and health care contexts, a large lit-
erature in portfolio choice has documented that the outcome achieved by maximizing the mean-variance
representation often provides an excellent approximation to the optimal outcome for a consumer who dis-
counts uncertainty, even in cases where the underlying distributions are not normal. In Appendix D.2 we
explore less parametric specifications and find the Normal-Normal learning model provides a parsimonious
approximation that fits the data well.

30We have experimented with allowing for finer nest classifications for some of the specialty stents present
in the EU such as inert metal stents and stents designed specifically for bifurcated lesions, but these categories
are too sparsely used (for context, the total market share of bifurcated stents is an order of magnitude lower
than the average BMS) to identify their nesting parameters with any reasonable amount of precision.

31When the nesting parameter, λg = 0 ∀g, this is the standard multinomial logit model. As λg → 1,
products within the category become closer substitutes to each other than to goods outside the category.

32See Appendix A.1 for the explicit formulas.
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bined with the number of patients receiving diagnostic procedures Mht, these map directly

into quantities, substitution patterns, and welfare that enter supplier and regulator decisions.

4.3 Supply

4.3.1 Pricing

In the EU, device pricing practices vary somewhat across countries and hospitals, but are

typically negotiated between manufacturers and either the hospital or some regional body

responsible for procurement for a set of hospitals. We model this process using a static Nash

Equilibrium of Nash Bargaining models for each period, following the theory developed in

Horn and Wolinsky (1988) and Collard-Wexler et al. (2014) and recent empirical work by

Crawford and Yurukoglu (2012), Grennan (2013), and Gowrisankaran et al. (2014). These

approaches assume that prices maximize the bilateral Nash product

max
pjHt

(∑
h∈H

πjH(Jt, Iht, pjHt)

)bjt(H)(∑
h∈H

CSht(Jt, Iht, pjHt)− CSht(Jt \ {j}, Iht, pjHt)

)bHt(j)

,

(5)

for each j ∈ Jt in each market (group of hospitals in bargaining unit H in each month t),

taking other prices in the market {pkHt}k∈Jt as given. Here πjH := qjht(pjHt − mcj) are

manufacturer variable profits at marginal cost, mcj, for each device. CSht is the hospital

level consumer surplus. The parameters bjt(H) and bHt(j) are the Nash bargaining weights,

determining the extent to which equilibrium prices weight manufacturer profit (minus its

outside option of not producing the stent) versus hospital surplus (minus its outside option

of optimal choice for each patient from a choice set that excludes j).33

4.3.2 Product Entry

The cost of increasing information requirements for device approval is that longer trials delay

access and raise clinical trial costs. This, in turn, potentially affects entry decisions of device

manufacturers. To account for the impact of changes in regulatory policy we need to account

for these impacts on the choice set. However, a full model of dynamic entry and exit poses

conceptual and computational challenges with a large and continuous state space, requiring

approximations of the type explored in recent papers such as Ifrach and Weintraub (2014).

33Assuming constant returns to scale in distribution and manufacturing on the margin at
∑
h∈H qjht.

We also follow previous work in maintaining the Nash-like assumption that other prices remain the same
in the case of disagreement, which is consistent with “passive beliefs” in the theory literature that provides
noncooperative foundations for this concept.
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Because of these challenges, we instead take a bounds approach to partially identify the

answers to our policy questions of interest.

Specifically, we seek to understand the impact of policies requiring (weakly) greater clin-

ical evidence than under the current EU requirements. Denote the additional time required

to complete the trials required by such a policy by T c (again, we focus on clinical trial length

which maps into a sample size), and the fixed cost of running those trials by FC = χT c. To

bound the impact, we use two different sets of assumptions on entry behavior.34

Upper Bound (UB) on entry J UB: Assume firms enter if E[π(Qj,J−j(T c, 0))|IEUj ] > 0,

as if there is no cost of longer trials, χ = 0.

Lower Bound (LB) on entry J LB: Assume firms enter if E[π(Qj,J−j(T c, 0))|IEUj ] >

χT c, as if trials cost χj = $1.6M , but also under the belief that other firms enter

as if there is no cost to trials, χ−j = 0.35

These two cases provide bounds on the equilibrium set of firms present in the market

at any point in time Jt. UB provides an upper bound because the same firms enter under

any T c ≥ 0 as under current EU policy T c = 0. Under this assumption, the only impact

of increasing trial length on market structure is to delay access to the newest technologies

and increase potential learning through trials. LB provides a lower bound because, while

firms do respond to their own entry costs, their beliefs that other firms have zero additional

costs doesn’t allow their expected market shares and prices to increase as fixed costs increase

and the market becomes more concentrated, dampening entry incentives relative to the full

equilibrium. Full proofs of these bounds on choice sets – and the derived bounds on consumer,

producer, and total surplus – are provided in Appendix A.2.

The advantage of these particular bounds is their simplicity of computation. By the

assumptions on beliefs in both cases, the set of competitors firms expect is given by the

observed EU data Jt. In particular, J UB
t (T c) = Jt+T c . Given known learning, demand,

and pricing function parameters, expected equilibrium consumer surplus and manufacturer

profits for UB can then be calculated directly. These expected manufacturer profits for UB

are then equivalent to the believed profits in LB (due to the naive entry assumption in

LB), making entry in LB a series of single-agent calculations, yielding J LB
t (T c). Expected

34Our bounds approach relies on necessary conditions from theory that are easy to compute from the
data and demand model. Reguant (2016) provides a complementary approach to obtaining computational
bounds in cases that are more challenging to compute.

35$1.6M per month from the survey by Makower et al. (2010).
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equilibrium consumer surplus and manufacturer profits for LB can then be calculated using

known learning, demand, and pricing function parameters.

How informative these bounds will be depends on the size of trial costs relative to the

distribution of product qualities. The bounds will be equal to each other and the full equi-

librium model at T c = 0 (the case of no trials beyond EU requirements), then diverge as

increasing entry costs drive a wedge between the entry assumed in the bounds and the entry

that would obtain in a full equilibrium.

4.4 Modeling the Regulator

We treat the regulator as an agent that determines device approval policy by choosing a

mean performance threshold treatment effect that increases health to h and significance

level α over that treatment effect. After the clinical trial has been completed and the data

indicate that Pr[h(Qtrial
j ) > h] > 1 − α, the regulator will then approve the product.36

The regulator also determines the power of the test which, combined with the choice (α, h)

and the underlying quality distribution F , dictates an optimal trial size N∗(h, α), which

(given a constant arrival rate of suitable patients φ per month) implies a clinical trial length

T c∗(h, α) = N∗/φ in months. This is why policy discussions often simply refer to the “length

of trials” as a notion that captures the regulatory policy threshold and its temporal and

monetary cost. To correspond with policy discussions, and to simplify the analysis without

losing much generality, we treat the regulator as choosing T c with the understanding that

the choice of trial length maps into sample size and, in turn, the statistical properties of the

trial data.

Regulatory policy affects social surplus through two distinct channels: uncertainty and

access to new products. Uncertainty is affected in that every φ patients generate a signal,

Aj, so a longer time in clinical trials provides information, which decreases uncertainty and

brings market participants’ estimates of a product’s quality closer to its true quality. Access

is affected directly because an additional month in trials delays consumer access to new stents

by a month. Access is also affected indirectly because trials are costly, so that an additional

month in clinical trials raises fixed costs of entry by χ, with the total costs FC := χT c. In

our counterfactual policy analyses in Section 6, we consider potential regulatory objectives

based on consumer or total surplus.37

36As noted above, given that trials are costly, the model implies that actual rejections will be rare because
if the information from the trials indicates that the likelihood of device approval is low, the manufacturer will
terminate the trial before its completion. The CoStar case discussed above and in Appendix C.1.1 provides
such an example.

37Appendix A.3 provides an explicit closed form solution for a simplified case that helps to clarify the
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5 Estimation and Identification of Model Parameters

5.1 Estimation and Identification of Demand Parameters

We estimate the parameters of the demand model using the detailed data on prices and quan-

tities at product-hospital-month level outlined in Section 3. We use only the EU sample,

leveraging the fact that it contains: (1) variation in the information regimes across prod-

ucts, and (2) within the subset of products undergoing US trials, variation in the amount

information over time, over the range of information between EU and US policies, which is

the primary range of interest in current policy debates. We implement the estimation via a

generalized method of moments algorithm, detailed in Appendix D and summarized here.

A significant challenge faced in taking the model to the data in the EU is that the EU

choice set is large relative to the number of choice instances in a hospital-month. As a

consequence, there are a large number of zero market shares at the product-hospital-month

level. This issue is relatively common in fine-grained data, and has been a topic of concern

in the recent industrial organization and marketing literatures (Gandhi et al. 2013). Quan

and Williams (2017) (henceforth QW) develop a novel solution that involves matching a

combination of micro (in our case product-hospital-month) and aggregate (product-month)

moments to estimate the distribution of preference heterogeneity across markets (in our

case hospital-months) while explicitly allowing for zeros due to sampling variation. Our

estimation strategy combines the intuition and approach of QW with our learning model.

Their insight is aggregation across markets can generate enough purchase instances that the

negligible sampling variation assumption can be restored to estimate product-specific utility

parameters, while moments at the disaggregate level can still be included to estimate the

distribution of heterogeneity in these parameters across hospitals.

Following this logic, we rewrite utility to the mean consumer δjht in terms of aggregate

and hospital-specific portions:

δjht = Qjt −
ρ

2
σ2
jt︸ ︷︷ ︸

δjt

−θppjht + ξjh + Q̃jht (6)

where Qjt := Eh[Qjht] is the expected product quality estimate across hospitals, and Q̃jht :=

Qjht−Qjt is the product-hospital-month specific deviation from that aggregate expectation;

and ξjh is already defined as a deviation with mean zero across hospitals. Following QW, we

regulator’s tradeoff between access and uncertainty in requiring longer trials (more information).
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appeal to the law of large numbers in the number of hospitals H and (letting Mh denote the

number of patients treated at h) set observed aggregate market shares equal to aggregated

choice probabilities sjt :=
∑

h
Mh∑
hMh

sjht =
∑

h
Mh∑
hMh

cpjht, inverting the system to obtain:

δjt(st;λ, σ) = ln(sjt/s0t)− λg ln(sjgt)− (1− λg) ln(R(σg)) + θp
∑
h

Mh∑
hMh

pjht (7)

where R(σg) is an adjustment to the mean utility accounting for aggregating over hospital

heterogeneity

R(σg) := Ej|g

[
exp

{
δ̃jht

1− λg

}]
= exp


σ2
g + γ

(aj−tcj)/σ2
A+tcj/σ

2
Ac

1/σ2
Q+1/σ2

EU+(aj−tcj)/σ2
A+tcj/σ

2
Ac
σ2
jt

2(1− λg)2

 (8)

where the expectation attains from the moment generating function of the normal distribu-

tion. R(·) follows directly from QW, which requires applying a law of large numbers in the

number of products per category Jg. The only difference is that in our model, heterogeneity

across hospitals at any point in time reflects both fixed preference heterogeneity (represented

by σ2
g , as in QW) and learning heterogeneity (represented by γ

(aj−tcj)/σ2
A+tcj/σ

2
Ac

1/σ2
Q+1/σ2

EU+(aj−tcj)/σ2
A+tcj/σ

2
Ac
σ2
jt,

the fraction of uncertainty that is due to hospital-specific signals).

Aggregate moments – means: From (7) and (6), we form the standard linear moments:

ξjt = ln(sjt/s0t)− λgj ln(sjgjt)− (1− λgj) ln(R(σgj)) + θp
∑
h

Mh∑
hMh

pjht −Qj −
ρ

2
σ2
jt (9)

where the econometric residual is the difference between the aggregate estimated product

quality and the true product quality ξjt := Qjt − Qj, where Ej[ξjt] = 0 by the unbiased

learning. We interact these residuals with a set of instruments Zd which includes product

fixed effects to identify product qualities; lagged mean prices
∑

h
Mh∑
hMh

pjht−1 to identify

the price coefficient (following Grennan (2013) in exploiting the fact that changes in “stale”

long-term contracts help identify demand);38 a polynomial in the size of the within-group

choice set [Jgt, J
2
gt] (following Berry and Waldfogel (1999) with a growing choice set over

time directly affecting within- vs. out-of-group substitution) to identify the nested logit

substitution parameters λ; and a set of age dummy variables interacted with whether the

38Grennan (2013) estimates the model using quasi-differences ξjt − ρξjt−1, appealing to changes in infor-
mation over time. We account for that in part by controlling for the evolution of uncertainty directly, but we
could use quasi-differences in addition. Our attempts to do so resulted in difficulty converging to estimates
that fit the data well, presumably due to extracting too much of the signal from the data.
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product is currently undergoing clinical trials to jointly identify−ρ
2
σ2
jt. Further information is

required to separately estimate learning σ2
jt(σA) and heterogeneity across hospitals (γ, σH).39

Aggregate moments – variances: The learning and demand model additionally implies

that the variance of the prediction errors is tightly related to the aggregate uncertainty about

product quality

Ej[ξ
2
jt|(ajt, tcjt) = (a, tc)] = σ2

jt(a, t
c) . (10)

Recall that σ2
jt(a, t

c) =
(
1/σ2

Q + 1/σ2
EU + (a− tc)/σ2

A + tc/σ2
Ac

)−1
, and in particular, note

that this second moment is independent of the risk aversion parameter, ρ. Thus, variation

in usage identifies the learning signal parameters σA as age a and time in trials tc vary.

Further, we impose the consistency assumption that the variance of the estimated product

quality parameters equal the prior belief about the distribution of product qualities that enter

the EU market V arj(Qj) = σ2
Q. Combined with the variance moments (10) in the first period

a product is introduced (when ajt = 0, τ cjt = 0), this also identifies the information provided

by EU trials, σEU because σ2
jt(a = 0, tc = 0) =

(
1/σ2

Q + 1/σ2
EU

)−1
.

These two sets of aggregate moments clarify how learning is identified by the degree to

which the variance in product-specific quality estimates decreases over time. Risk aversion

is then identified by how choice probabilities increase (or don’t) as learning decreases uncer-

tainty.40 This relates directly back to the reduced form evidence in Figure 2. For products in

trials, the variance decreases with age, identifying learning. As this variation decreases, the

mean inclusive share increases, identifying risk-aversion. The dynamic behavior of volatility

for products not in trials identifies observational learning. These parameters are identified

using the within-product variation, conditional on the product fixed effects (whose parame-

ters provide estimates of the product qualities Qj).

Micro moments: The parameters left to be identified are those measuring the dispersion

39A simple and semi-parametric way to estimate Equation (7) would be to regress the inclusive shares
ln(sjt/s0t) on product and age fixed effects interacted with whether a product is in clinical trials or not to
allow for differential learning rates. In this research design, the age fixed effects—paired with the exogenous
variation in learning—would then capture the combined treatment effect risk aversion and learning on utility.
However, because we are interested in questions that involve market reactions to different learning rates and
levels of uncertainty, we need to add structure via the learning model to disentangle these forces. Comparison
to the fixed-effect model in Appendix D.2 provides a useful benchmark for assessing the fit of the more
parsimonious and parametric learning model, which we consider quite good.

40The typical discussion of identification of learning versus risk aversion in the related literature estimating
similar models from aggregate market share data (see Ching et al. (2013) for an overview) notes, correctly,
that in the context of the Normal-Normal model, the two are in principle separately identified by the shape
and level of the first moment over time. As those models are almost always estimated via maximum likelihood
or bayesian methods, they implicitly use information from the second moment as well in estimation. Our
(to our knowledge novel) use of GMM makes explicit the power of the second moment to identify learning.
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in hospital preferences σH and the extent to which learning signals differ across hospitals, γ.

We follow the strategy developed in QW, adding micro moments at the hospital level based

on the probability of observing a zero market share for each product-hospital-month

Pr [sjht = 0] = (1− cpjht(σH , γ))Mht (11)

which we match to the data by simulating (over the distribution of ξjh) moments equating the

empirical proportion of zeros to the model’s predictions
∑

h 1{sjht=0} = Eh
[
(1− cpjht(σH , γ))Mht

]
.

The distribution of preference heterogeneity across hospitals σHg is then identified by the ex-

tent to which large variance in ξjh is needed to match the zeros in the data for each product

category, on average over time. The extent of hospital-specific learning, γ, is identified by

how that proportion of zeros changes with learning as age and time in trials change.

5.2 Demand Parameter Estimates

The parameter estimates from the model are presented in Table 1. We focus our discussion

here on interpretation and validation of the estimates of our full preferred model described in

the previous section. Appendix D.2 presents further results with a less parametric learning

model, simpler utility models nested within our preferred model, and alternative models of

observational and hospital-specific learning / diffusion of information.

Table 1: Estimates of demand/learning model parameters

Preference/substitution parameters:
θp (utils/$) λdes λbms σdesH σbmsH ρ · θp (1/$)

0.10E-3 0.81 0.82 0.19 0.18 3.26E-3
(0.04E-3) (0.02) (0.01) (0.04) (0.02) (1.47 E-3)

Learning process parameters:
σUStrialsQ σnotQ 1/σ2

EU 1/σ2
Ac 1/σ2

A γH
0.26 0.34 18.79 1.61 0.00 0.00
(0.01) (0.02) (2.75) (0.67) (0.23) (0.10)

Estimates for demand model ln(sjt/s0t) = λgj ln(sj|ght) +R(σ
gj
H , γH)− θppjt +Qj − ρ

2
σ2
jt + ξjt with separate nests for DES

and BMS, and additional E[ξ2jt] moments to identify learning, and Pr[sjht = 0] moments to identify heterogeneity in
preferences and learning across hospitals. NJHT = 407, 191 product-hospital-months and NJT = 4, 888 product-months.
Standard errors in parentheses, estimated via delete-10 jacknife, clustered by month (NT = 114).

Turning first to the utility parameters that capture physician preferences and substitu-

tion patterns, θp is statistically significant and indicates demand is downward sloping but

relatively insensitive to stent price. Both nesting parameters (λdes, λbms) are also statistically

significant and imply that products within the same nest are much closer substitutes than

products in different nests. The estimated standard deviations (σdesH , σbmsH ) of preferences
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across hospitals ξjh are both significant and economically meaningful. At nearly 0.2 logit

utils, they are an order of magnitude larger in effect than the 0.03 util effect of a $316 change

in price (one standard deviation and 26 percent of mean DES price). These results are all

consistent with qualitative reports of strong physician brand preferences, the importance of

DES/BMS-patient match, and estimates of coronary stent demand in other studies (Grennan

2013, 2014; Grennan and Swanson 2018).

We also estimate that physicians are risk averse in their selection of stents with a coeffi-

cient of absolute risk aversion of ρ · θp = 3.26E − 3$−1.41 This estimate is within the range

of estimates of risk aversion in well-designed studies such as Cohen and Einav (2007).

In addition to the uncertainty and risk aversion measures, the utility and learning models

are linked through a rational expectations assumption on the distribution of product qual-

ities F (Qj). Our demand model includes product fixed effects, and under our assumption

of unbiased learning, the coefficients on these dummy variables provide consistent estimates

for the true product quality for each product introduced to the EU market {Qj}. These

product quality estimates then provide a nonparametric estimate for F (Qj) (plotted in Ap-

pendix Figure 16), and rational expectations requires that consumers’ priors about F (Qj)

are consistent with this distribution.

In Figure 3 panel (a) we show that our revealed preference estimates of Qj are correlated

with the clinical quality measure target vessel revascularization (TVR) rates in the sample

of products for which we were able to collect clinical trial data, which we take as evidence

consistent with the validity of our approach in the sense that the revealed preference estimates

from our demand model are related to clinical trial results, where available.42 We return to

the product quality estimates themselves when we consider the role of technological change

in generating gains from access to new products in Section 6, but for now we turn to their

role in the learning model.

The variation in product performance – at (σUStrialsQ = 0.26, σnotQ = 0.34) this uncertainty

exceeds the magnitude of heterogeneity in preferences across hospitals – suggests that, with-

out additional information, consumers selecting a new product for insertion face a non-trivial

probability that the product is significantly worse than expected. Also, consistent with the

reduced form evidence (now controlling for a variety of other factors that influence demand),

41As noted in Train (2015) (and more recently in Brown (2018) using a model very similar to ours), an
ex post utility maximizing agent will also discount uncertainty when forced to make decisions over multiple
uncertain options because of a “winners curse” phenomenon, even with linear demand. We report such an
ex post loss number in Table 3, but we prefer the model with risk aversion and ex ante welfare measure for
their link to the broader literatures on consumer learning and preferences over health states.

42Here we focus on TVR, but the same pattern holds for major adverse cardiac events (MACE).
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the estimates of the learning model imply that there is significant learning in the EU from

FDA clinical trials, with precision 1/σ2
Ac much greater than zero. But the estimates imply

no experiential learning, as 1/σ2
A is very small and not significantly different from zero. The

estimated precision of EU trials 1/σ2
EU implies that learning from the information collected

and trials pre-EU introduction is equivalent to almost 12 months of US trials. Finally, the

parameter determining the extent to which learning is hospital specific γH is a fairly pre-

cise zero, suggesting information accruing to the market is highly correlated across hospitals

(ruling out correlation less than 0.8 with 95 percent confidence).

Our primary use of the estimated demand and learning models is to estimate the welfare

implications of changes to information and market structure induced by different regulatory

policies. Substitution patterns and welfare as the choice set of products and prices change

are captured by price elasticities and consumer surplus as derived from the utility model in

Equations (17) and (18). As both of these measures play integral roles in supply estimation,

we discuss them in detail in that context in the next section.

5.3 Estimation and identification of supply parameters

With the demand and learning model parameter estimates in hand, we turn to estimating

the parameters from the bargaining model between hospitals and device manufacturers. To

take the bargaining model to the data, we follow Grennan (2013) and rewrite (5) as

pjHt = mcj +
bjt(H)

bjt(H) + bHt(j)

∑
h∈H

Mht∑
h∈HMht

AVjht(Jt, Iht, pjHt,mcj; θD) , (12)

where the added value of product j to hospital h is defined as

AVjht :=

(
1 +

∂qjht
∂pjht

pjHt −mcj
qjht

)
CSht(Jt, Iht, pjHt)− CSht(Jt \ {j}, Iht, pjHt)

qjht
+ pjHt −mcj

(13)

To estimate the structural parameters, the bargaining weights and the marginal costs, we

use our utility model estimates. We calculate the substitution patterns by simulating ηjht,

the elasticities across hospitals as defined in Equation (17), over the distribution of hospital

level unobservables fH(ξjh;σ
gj
H ) (suppressing dependence on hospital-specific learning for

simplicity since 1/σ2
A and γH are both estimated to be zero). Similarly, we use the consumer

surplus equation derived from the utility function in Equation (18) to compute the buyer

surplus portion of the added value.

Because of physicians may be imperfect agents for patients and/or hospitals, estimated
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physician price sensitivity measures may not reflect the correct scaling for measuring hospital

and/or consumer surplus. For this reason, we deviate slightly from the standard demand

estimation approach in that we add a scaling coefficient to relate consumer surplus derived

from consumer utility maximization to estimates of the dollar value of quality adjusted life

years obtained in clinical studies. We normalize the total surplus per stenting procedure

to $5,000, which is the approximate median of the estimated dollars in quality adjusted

life years from the procedure relative to a coronary artery bypass graph surgery, an more

invasive alternative to receiving angioplasty and a stent.43 This alternative scaling is only for

translating welfare measures into dollars—we continue to use the estimated θp in quantity

and elasticity calculations, as revealed preference indicates this is the level of price sensitivity

that best fits the demand patterns in the data.

5.3.1 Econometric specification, estimation, and identification of supply

In addition to the standard set of issues that the bargaining literature has identified in

estimating marginal costs and bargaining parameters, we face two additional challenges.

First, the challenge in estimating demand at the hospital level means that our demand

estimates only provide the distribution of added values across hospitals, not the hospital-

specific added values. Second, because we only observe a sample of hospitals, we do not

have added value measures for all hospitals in a group H in cases where our hospitals may

negotiate as part of a group.

We address both of these supply estimation challenges by aggregating our estimation

strategy across hospitals to the product-month level. Otherwise, we follow Grennan (2013,

2014): We assume the econometric error enters relative bargaining weights multiplicatively:

mcj := µCg ;
bjt(H)

bHt(j)
:=

βj
βH

νjHt (14)

where µCg allows marginal cost to vary across BMS/DES, and βj are product-specific bar-

gaining parameters to be estimated. Substituting into Equation (12), rearranging and taking

logs to obtain a linear equation in the unobservable, and aggregating over hospitals gives the

43Among studies reported in the Cost Effectiveness Analysis Registry (https://research.tufts-nemc.org).
We could also scale into dollars using the standard approach of the inverse of the price coefficient 1

θp = 10, 482,
would approximately double all related consumer welfare estimates.
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equations at the product-month level that we take to the data:

∑
h

Mht

Mt

ln

(
pjht − γj
AVjht

)
= ln(βj) +

∑
h

Mht

Mt

(− ln(βh) + ln(νjht))︸ ︷︷ ︸
ν̃jt

(15)

The parameters (βj, γj) can then be estimated by a GMM algorithm, assuming Ejt [ν̃jt|Zjt] =

0 for a set of instruments including product-specific constants and
∂ν̃jt
∂γj

.

5.4 Supply parameter estimates

Table 2 presents the parameter estimates from the bargaining model. As we estimate the

parameters at the product level, we present the means and standard deviations of those

estimates. The first two variables are the elasticity and average value parameters that come

from the demand model that feed into the bargaining model. The price elasticity is somewhat

higher from DES stents and the typic BMS stent adds $1155 of value while the average DES

stent adds significantly more value at $1424.

Table 2: Structural parameter estimates for pricing model

ηpjht AVjht ($) mcj ($)
bjt(H)

bjt(H)+bHt(j)

mean sd mean sd mean sd mean sd
BMS -0.25 0.11 1155 118 87 - 0.41 0.12

(124) (0.06) (0.04)

DES -0.42 0.14 1424 224 361 - 0.60 0.14
(117) (0.08) (0.04)

NJHT = 407, 191 product-hospital-months and NJT = 4, 888 product-months. Standard errors clustered by month
(NT = 114) using a delete-10 block jacknife in parentheses.

The next two sets of variables are parameter estimates from the bargaining model. The

marginal cost estimates align with expectations and prior literature. BMS cost an average of

$87 to produce while DES are more costly at $361. Finally, the last two columns present the

estimates of the relative bargaining weights,
bjt(H)

bjt(H)+bHt(j)
. The results imply that for BMS,

hospitals retain the majority of the surplus (manufacturers obtain 41 percent on average)

from the implantation of the device, with a modest amount of variance across products.

However, for the newer DES technology, on average, the manufacturers receive the majority

of the surplus (60 percent).44

44The DES bargaining parameter is nearly double that in Grennan (2013) in the US 2004-07 subsample,
but this corresponds closely to the magnitude of our alternative scaling of consumer surplus, and may also
be related to lower reimbursements to hospitals and the different competitive environment for DES in the
EU relative to the US.
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6 Technological Change, Uncertainty, and Optimal Trial Length

in the EU Coronary Stent Market

With the model and estimated parameters, we turn to answering several policy relevant

questions. Specifically, we use the model to: (1) calculate the size and source of technology

change; (2) assess the role of information in affecting risk and resulting consumer usage

patterns; and (3) estimate the optimal regulatory policy to balance the risk-access tradeoff

under existing and alternative market and information environments.

6.1 Technological Change in the EU Coronary Stent Market 2004-2013

Not only does the rate of technological change in medical care have an important impact

on aggregate economic welfare (Murphy and Topel 2006), it is also an key determinant of

the optimal regulatory policy on product information provision. This is because the rate

of technological change affects the value of access to the newest devices relative to those

already available. Typically, estimates of the value of a medical technology focus solely

on measuring clinical outcomes and do not assess preferences and substitution patterns.

Here we apply the tools that are standard in the industrial organization literature to assess

welfare improvements associated with coronary stents over time. We compute the rate of

technological change by calculating the ex post average treatment effect (ATE), i.e. the

mean surplus (relative to the outside option) of having a stent implanted using (18) but

making the scale modification described above to address the potential for physician agency.

Figure 3: Clinical Quality, Revealed Quality, and Technological Change.
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Figure 3 panel (b) presents these results, plotting the ATE for each product introduced
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vs. calendar time of the product introduction. During our sample period, the trend of mean

product quality over time is flat.45 However, the set of devices available grows from 38 to 55

over this same time period, which translates into a meaningful increase of 9.6 percent in the

utility consumers receive from access to coronary stents.

This finding is salient for the analysis of the optimal regulatory policy. If technological

change is driven by increases in average product quality, the impact of changing costs of

entry with changing regulatory standards of evidence will likely have a smaller impact on

welfare than if the change is, as we find here, driven by increases in product variety. This is

because niche products will by their nature have smaller market opportunities and thus find

it more difficult to incur the fixed cost of greater testing. The net effect will depend on the

interaction of this access effect with changes in uncertainty faced by consumers.

6.2 Uncertain Quality and Market Outcomes

Regulatory policy must also take into account the potential welfare loss due to the risk that

new products may not improve health as expected. The magnitude of this uncertainty effect

depends upon the mean and variance in quality levels across products, and the amount of

information consumers possess.

Table 3 explores the role of uncertainty in the market by using the demand model to

calculate the percent of patients undergoing a diagnostic angiography who choose a stent

over the outside good (1 − s0), total surplus per stent ( TS
1−s0 ), and the expected ex post

difference between the realized and expected utility from the chosen stent (E[Qj −Qjt|j∗] =∑
j
sjt(Qj−Qjt)

1−s0t ) (all reported numbers take the average across all months in our period of

study). Here we posit hypothetical markets where all products have uncertainty in their

quality, varying from the unconditional variance of the quality distribution σ2
Q (if there were

no testing/learning at all), to the estimated uncertainty upon first entering the EU σ2
aEU=0

(after undergoing EU requirements), to varying lengths of US trials σ2
T c . In order to focus

purely on the role of uncertainty, this is a partial equilibrium analysis in that we do not

consider firms’ strategic responses to these different parameters via pricing or entry.

Table 3 makes several important points. First, holding the strategies of the firms constant,

the stent market would shrink significantly due to the large amount of uncertainty without

any learning. This can be seen in the first column of the table in which the percentage of

consumers having a stent implanted is less than half of that of the cases with testing. This

45This is likely in part due to increasing quality of alternative treatments, such as less-invasive and
beating-heart CABG (Kalyanasundaram and Karlheinz 2014).
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Table 3: The effect of uncertainty on number of stenting procedures, surplus per
stent implanted, and expected ex post loss.

σQ = σaEU=0 = σT c=6 = σT c=12 = σT c=18 = σT c=24 = σT c=30 =
0.312 0.185 0.160 0.143 0.131 0.121 0.113

1− s0 (%) 12.5 24.0 26.4 27.9 29.0 29.7 30.3
(2.5) (1.4) (1.3) (1.3) (1.3) (1.4) (1.4)

TS
1−s0 ($) 5776 6103 6184 6238 6276 6304 6327

(176) (167) (167) (168) (169) (170) (171)

E[Qj −Qjt|j∗] ($) -1096 -560 -429 -348 -292 -252 -221
(127) (23) (37) (41) (41) (39) (37)

implies that clinical testing and information gathering of the type done currently in the EU

provides the necessary information to make this market operate.46

Second, modest increases in the information available to consumers generates significant

improvements in welfare. Moving from a world in which there are no clinical trials to one

in which there is EU testing plus an FDA clinical trial of 6 months leads to meaningful

increases in the number of procedures performed and the surplus created, and decreases in

expected ex post loss due to choice“mistakes” per procedure. Increasing additional required

FDA trial length beyond 6 months generates smaller increases, with the difference between

18 and 24 or 30 months of trials not statistically different from zero at typical thresholds.47

Finally, note that these effects are driven by symmetric yet imperfect information, rather

than informational asymmetries which have been the central concern in much of the quality

information literature. This suggests that in the case of regulating testing/disclosure, taking

into account uncertainty and amount of information provided can be just as important as

solving asymmetric information problems. Appendix Figure 6 provides additional results on

how these effects vary with quality of new products relative to the outside option – the value

of reducing uncertainty increases as mean product quality increases because higher quality

products are used more frequently, so in this sense quality and information are complements.

6.3 Optimal Premarket Clinical Testing

Next we turn to the fundamental question that motivates this paper. In an industry where

new products are developed with uncertain quality, what is the optimal amount of pre-

market testing to require, balancing uncertainty and access to new technology? To do this,

we start with a baseline of current EU requirements, and we consider the effects of requiring

46We see this point as illustrative. In addition to the partial equilibrium caveat applying to this entire
table, the EU process may solve asymmetric information problems in addition to providing testing signals,
making this result further out of sample both in data and conceptual terms.

47Recall that time in trials translates into number of patients in a trial via the trial recruitment process.
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incrementally longer trials, T c (where recruitment timing and thus information for these

trials is assumed to mimic current US trials). This is exactly the region in which the policy

debate is focused. The EU is currently contemplating increasing testing requirements, while

the US is primarily considering loosening them.48

We model any policy change as taking place at the beginning of our data period, January

2004, so products having entered before then are not directly affected. For products entering

after January 2004, there are several effects: First, entry is delayed by T c months. Second,

fixed costs of entry increase by $1.6M×T c. This may cause some firms to decide not to run

these additional trials and thus not enter the market. Third, uncertainty faced by consumers

decreases according to σ2(T c) =
(
1/σ2

Q(J (T c)) + 1/σ2
EU + T c/σ2

Ac

)−1
. Finally, equilibrium

prices, quantities, and surplus generation adjust in equilibrium to the set of products that

enter and information about product quality. Our welfare measures are calculated by a

non-discounted sum over the 10 year period covered in our data.

Figure 4 plots upper and lower bounds on expected consumer and total surplus versus

the required length of time spent in clinical testing (relative to the current EU required

clinical testing), as well as the implied bounds on the range in which the regulatory policy

that maximizes the estimated surplus measure must live. The surplus bounds are generated

by the bounds on the set of firms entering the market developed in Section 4.3.2, combined

with our model of supply and demand. Appendix A.2 reports further details on computation,

and Appendix E.4 provides additional results for bounds on the number of new products

entering, fixed costs, and producer surplus with respect to T c.

The left subfigure (a) of Figure 4 (and top panel of the table below) shows that our

bounds are fairly tight for consumer surplus. The bounds are identical by construction at

no trials beyond the current EU requirements T c = 0, but as T c increases they are driven

apart by the fact that the set of firms entering in the upper bound only decreases due to

delay of entry, but the set of firms entering in the lower bound decreases due to fixed costs

increasing as well. Despite the fact that the sets of firms in the bounds quickly diverge

(see Appendix Figure 18), this has a relatively small effect on consumer surplus because the

first products not entering are on average lower quality (to the extent beliefs after initial

EU testing Qj1 are correlated with true quality Qj), and thus their effect on prices due

to increased concentration is not large. This effect is further muted by the relative price

48As calculating new price equilibria makes these counterfactuals relatively computationally intensive
(especially bootstrapping s.e.), we do not estimate outcomes for T c > 30, as these seem sufficiently far
outside of the policy discussion to make them of little practical interest. 30+ denotes cases when a critical
value has not been reached by T c = 30.
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Figure 4: Optimal Regulation: Red region provide upper and lower bounds on the
surplus measure. Blue region provides the identified set of optimal trial lengths T c∗.
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State of Market at Policy Change ∆CS(T c∗) (%) T c∗CS (months) ∆TS(T c∗) (%) T c∗TS (months)
Jan 2004 [ 8.0 , 9.2 ] [ 10 , 29 ] [ 5.1 , 8.1 ] [ 6 , 30+ ]

( 4.0 , 14.1 ) ( 7 , 30+ ) ( 1.9 , 13.2 ) ( 4 , 30+ )

Jan 2004, no DES [ 7.0, 8.0 ] [ 10 , 21 ] [ 3.9 , 6.6 ] [ 4 , 26 ]
( 5.0 , 12.5 ) ( 7 , 27 ) ( 1.4 , 10.9 ) ( 3 , 30+ )

Jan 2004, no stents [ 5.7, 6.3 ] [ 5 , 13 ] [ 3.5 , 4.7 ] [ 3 , 12 ]
( 3.9 , 10.7 ) ( 3 , 19 ) ( 1.0 , 8.8 ) ( 2 , 18 )

Jan 2004, trial costs $0.8M [ 8.8, 9.1 ] [ 13 , 25 ] [ 6.6 , 8.8 ] [ 9 , 30 ]
( 4.2 , 14.5 ) ( 9 , 30+ ) ( 3.1 , 13.5 ) ( 6 , 30+ )

Jan 2004, trial costs $3.2M [ 6.7, 9.2] [ 6 , 22 ] [ 2.3 , 8.2 ] [ 2 , 27 ]
( 3.4 , 15.1 ) ( 4 , 30+ ) ( 0.4 , 13.8 ) ( 1 , 30+ )

NJHT = 407, 191 product-hospital-months and NJT = 4, 888 product-months. 95 percent confidence intervals, clustered by
month (NT = 114) using a delete-10 block jacknife, in parentheses.

insensitivity of demand.

Both upper and lower consumer surplus bounds are capturing the tradeoff between re-

duced uncertainty and delayed access as T c increases. Our estimates suggest the optimal

tradeoff is reached between T c∗CS = [10, 29] months of premarket clinical testing. The width

of these bounds is driven in part by the fact that the estimated surplus is relatively flat for

a wide range of trial lengths near the optimum.

The total surplus results in the right panel of Figure 4 show a similar qualitative pattern,

but they also differ from the consumer surplus results in several respects. First, the gap

between upper and lower bounds is larger. This is due to both producer surplus – producer

surplus in the market increases with testing – and also the widening gap in fixed costs

incurred.49 For example, by T c = 12 the bounds on firm entry have widened and span 73

49See Appendix Figure 18 for entering products, fixed costs, and producer surplus plots. Note that the
monotone increase in producer surplus with testing is partially driven by the fact that greater testing benefits
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to 28 new products entering over our 10 year sample, which drives the lower bound on total

surplus to decrease more rapidly. The result is wider bounds on optimal testing with respect

to total surplus T c∗TS = [6, 30+]. This also speaks to why firms may not find it in their interest

to conduct testing when not required – the producer surplus gains are typically outweighed

by the fixed costs.

Thus, we find that the current FDA policy for stents (the mean lag between US and

EU entry is 10 months for all products and 17 months for DES) falls within our confidence

interval for the optimal policy in terms of both consumer and total surplus maximization.

Importantly, these results suggest that surplus could be increased in the EU (8-9 percent

consumer and 5-8 percent total) by increasing the pre-market clinical trial requirements.

Less Existing Substitutes: In the middle panel of Figure 4, we report the estimates

from two different scenarios that demonstrate how the impact of regulatory policy changes

as the quality of existing technology decreases. We calculate the optimal trial length as

described above but remove (1) all DES; and (2) all stents that were introduced prior to

2004 from the analysis – thus any change in trial length impacts the availability of DES

(a significant technological improvement) or any stent. There are two opposing forces here

relative to our baseline. Lower quality incumbent technology means new products will be

used more, increasing the value of uncertainty reductions (as in the higher quality panel in

Table 6). But lower quality incumbents also mean the returns to accessing newer technologies

is much higher. In both scenarios we consider, we find that welfare is still improved by

increasing trial length relative to the EU baseline. However, we do find that optimal trial

lengths decrease as the quality of existing technology decreases, indicating that the (relative

change in) value of access is dominating the value of uncertainty reduction.

Fixed Costs of Trials: The bottom panel of Figure 4 reports estimates of how optimal

choice of trial length varies with the costs of trials. As expected, lower trial costs imply it

is optimal to require longer trials. At trial costs half of our benchmark, the lower bound

on optimal trial length (to maximize consumer surplus in our estimated model) increases to

13 months beyond current EU requirements; and double our benchmark implies 6 months is

optimal. Again, the qualitative implications remain the same.50

These results speak directly to the current policy debate over the FDA medical device ap-

proval pathway, supporting the FDA argument that reductions in their standards for device

approval will reduce consumer welfare. With the significant caveat that we are comparing a

Jan 2004 incumbents by delaying competition.
50These results also make clear how our bounds, which depend on the wedge created by fixed costs of

entry, become tighter as fixed costs decrease.
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different time and product market, our results stand in contrast to the Peltzman (1973) in-

fluential analysis of the 1962 Kefauver-Harris Amendments to the Food, Drug, and Cosmetic

Act which required proof of efficacy and made the testing procedures required to prove that

efficacy subject FDA oversight. He concludes that the Kefauver-Harris Amendments led to a

significant decrease in welfare. Peltzman’s analysis, however, does not speak to the optimal

informational requirements pharmaceutical manufacturers should face when introducing a

new molecular agent. To the best of our knowledge, the our analysis is the first that provides

an estimate of the optimal policy on the amount of information creation.

6.4 The Value of Increasing Post-market Learning

One frequently proposed change to FDA regulatory policy is to relax device premarket

clinical standards and increase post-market surveillance by building an infrastructure for

data collection, analysis, and reporting. This policy has a direct connection to our model as

its intention is to increase the rate of post-market approval learning. In the language of our

model, this means increasing the precision 1/σ2
A of the signals that arrive outside of FDA

required clinical trials. We estimated the post market learning rate is effectively zero for the

set of products in our data. There are several potential reasons for this. For reasons that are

familiar to economists, observational learning from real world use make it difficult to infer

the causal treatment effect of the device as their is no randomization into treatment and

control groups. More fundamentally perhaps, currently there is no infrastructure in place to

systematic collect data, perform analysis, and disseminate the results.

We analyze this policy’s potential by varying σA (assuming no additional costs), and cal-

culating the corresponding optimal trial length T c∗TS(σA) under a total surplus maximization

metric and total surplus generated TS(σA, T
c∗
TS(σA)) at the optimal. Figure 5 displays the

results again using our bounds to generate a partially identified set of predictions.

When observational learning approaches clinical trial learning in precision, there is no

reason to run additional trials at all (again assuming required EU testing establishes sym-

metric information).51 Total surplus is increased—up to 19 percent higher than with no

observational learning—because there is no longer a tradeoff between access and learning.

Using baseline estimates of utilization and a value of $5000 per treatment yields an estimate

of $608 million per year in increased welfare from this increase in post-market learning.52

51If the welfare of pre-market clinical trial participants is for some reason treated differently than that
of post-market users, then there is still a consumer surplus gain to removing uncertainty prior to market
access. See Appendix Figures 19.

52In 2009, over 640,000 stent procedures were performed in the US (Auerbach 2012).
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Figure 5: The Value of Post-Market Surveillance: Plots of optimal trial length (left
panel (a)) and total surplus (right panel (b)) as observational learning precision 1/σ2

A varies
from zero to the clinical trial precision 1/σ2

Ac . 95 percent confidence intervals, clustered by
month, provided by dotted lines.

(a) Optimal Trial Length, T c∗TS(σA)

0
10

20
30

O
pt

im
al

 M
on

th
s 

in
 C

lin
ic

al
 (b

ey
on

d 
EU

 re
qu

ire
d)

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Learning Rate Post-Market (Ratio vs. Clinical)

(b) Total Surplus, TS(σA, T
c∗
TS(σA))

0
5

10
15

20
TS

 v
s.

 P
re

-M
ar

ke
t o

nl
y 

po
lic

y 
(%

 c
ha

ng
e)

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Learning Rate Post-Market (Ratio vs. Clinical)

Before reaching this extreme, as the precision of observational learning decreases (relative

to clinical trial learning), it becomes optimal to require increase clinical trial periods prior to

market access in order to take advantage of the faster learning rate of clinical trials.53 The

lesson from this policy experiment is that there is merit to the argument that a requiring

shorter trials with post-approval testing could improve consumer welfare. However, the

gains from this policy critically depend on the rate and cost of learning via post-market

surveillance. And the viable rate of post-market learning will in turn depend on the quality

of the information generation, collection, and analysis.

7 Conclusion

The tradeoff between access to new products and consumer risk in regulating the information

required for market entry is important in a variety of industries, and, in particular, in

medical devices. Informed by qualitative and quantitative evidence that the US regulatory

environment requires more information than the EU via pre-market testing, we develop and

estimate a structural model with products introduced when quality is still uncertain, learning

over time, and regulator and manufacturer decisions regarding product testing and market

53Part of the tradeoff with this TS metric is driven by our assumption that post-market learning is
costless on the margin and pre-market trials are costly. The decrease in optimal pre-market trial length is
less dramatic under the CS metric considered in Appendix E.5.
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entry and pricing. We then conduct welfare analyses of counterfactual policies affecting: (1)

the length of clinical trials required before market entry; and (2) observational learning after

market entry.

For coronary stents 2004-13, we estimate that clinical testing is critical to market function.

Without any testing, quality uncertainty plus risk aversion combine to keep many consumers

from choosing a stent over alternative treatments. We estimate that the US is close to the

optimal policy in terms of trading off testing versus access to innovation, but the EU is too

lax (despite free-riding off of information generated by US trials). We also estimate that if

it is possible to achieve post-market learning rates close enough to those we observe from

clinical trials, then embracing recent calls for more active “post-market surveillance” could

further increase total surplus by as much as 19 percent.

Extrapolating to policy for all devices should be done with care. The model we develop

provides guidance for how this extrapolation should depend on the uncertainty in quality

of new product introductions, the rate of technological improvement, the learning rate in

clinical trials, and the observational learning rate for any type of device being considered.

But it is difficult to give precise guidance without clear estimates or assumptions regarding

these parameters.

Because the model is quite general and the type of data we use is available for many

markets, we hope that we have provided a starting point for analysis of regulation and

market structure in other industries where new product development and testing play are

important. Other product areas may also suffer from asymmetric information problems or

allow more learning via usage. Extending the model to allow for this and to further explore

the extent to which certification solves asymmetry vs. amount of information problems offers

another promising (and challenging) area for future research.

We also hope to have provided a building block that could be used to provide a more com-

plete picture of how regulation affects market structure, innovation, and ultimately welfare.

While estimating the welfare effects of the access/uncertainty tradeoff for an exogenously

given set of innovations is an important step towards better understanding this phenomenon,

a more complete understanding would allow for the regulatory regime to effect the types of

innovations firms develop for the market and vice-versa. Analysis of this type would require

a significant extension to the theory and additional data on innovative activities of the firms

at stages earlier than the final pre-market clinical trial phase studied here. Developing this

type of early-stage innovation data, in a way that links to product markets, is a challenge

shared with the innovation literature more broadly.
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ELECTRONIC APPENDICES—NOT FOR PRINT PUBLICATION

Appendices

A Theory Appendix

This appendix provides formulas and proofs to supplement the results provided in the body

of the paper.

A.1 Nested Logit Demand Formulas

Choice probabilities are given by:

cpjht = Pr[Uijht > Uikht,∀k ∈ Jt]

=
exp

(
δjht

1−λgj

)
∑

k∈J
gj
t

exp
(

δjht
1−λgj

)
(∑

k∈J
gj
t

exp
(

δjht
1−λgj

))1−λgj

1 +
∑
J
gj
t ⊂Jt

(∑
k∈J

gj
t

exp
(

δjht
1−λgj

))1−λgj (16)

where δjht := Qjht − ρ
2
σ2
jt − θppjht + ξjh is the mean ex-ante expected utility across patients

given beliefs regarding the mean stent performance characteristics and the variance of those

beliefs. The corresponding elasticity of choice probabilities with respect to own price is given

by

ηjht :=
∂qjht
∂pjht

pjht
qjht

= −θp
(

1− λgjcpjht|g − (1− λgj)cpjht
1− λgj

)
pjht. (17)

The ex-ante expected consumer surplus (relative to the outside option) as a function of

information and choice set is

CSht(Jt, Iht) = θscale ln

1 +
∑
J
gj
t ⊂Jt

∑
j∈J

gj
t

exp

(
δjht

1− λgj

)1−λgj
 . (18)

where θscale is set to make fully informed the average treatment on the treated vs. non-stent

alternatives for DES introduced to the US equal to $5000.

5000 = θscale
1

|JDES,US|
∑

j∈JDES,US

ln (1 + exp (δjht))(
1+exp(δjht)

exp(δjht)

) (19)
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A.2 Bounds on Set of Entering Firms J (T c) and Surplus Measures

As discussed in Section 4.3 of the paper, developing a full supply model of entry and exit

would add frontier modeling efforts in the dynamic oligopoly literature that would distract

from the current focus on information and the tradeoff between access and uncertainty in

regulating new products when quality of the innovations are uncertain. Instead, we develop

bounds on the set of entering firms J (T c) under any regulatory policy required pre-market

clinical trials of length T c. We then use these bounds to construct bounds on surplus

measures.

Our bounds rely on relatively weak assumptions on supply side behavior (in addition to

the assumptions already embedded in the demand and pricing models):

Supply Assumption 1 (EU Entry Costs): EU entry costs are low enough such that all

products developed with positive expected profits after EU testing enter.

Supply Assumption 2 (Entry Policy): The equilibrium entry policy of firms is increas-

ing in own expected profits: πj > π′j ⇒ Pr[Enterjt|πj] > Pr[Enterjt|π′j].

The first assumption is perhaps the most controversial, but seems to be strongly supported

by the data, where nearly half of firms entering the EU have lifetime profits less than $10

million, and the tenth percentile is $1.3 million (see analysis of lifetime profits in Appendix

E.3). This is borne out again in our counterfactual computations of expected lifetime profits

given expected quality at the time of EU entry (Qj,age=1) (Appendix Figure 18). The EU

admits a significant number of firms that expect and make very little profits. In addition, our

analyses show that this tail of lower profit products is marginal in its welfare effects, so to

the extent that there are some marginal firms that might for some reason enter under more

restrictive entry policies, it seems unlikely that they would meaningfully affect our analysis.

Assumption 2 is shared by most entry models, though it does rule out strong positive

correlations between entry costs and expected profits. This might be concerning if we were

modeling early stage research where one might thing that development costs increase with

expected quality, but in the context of late stage testing and launch, we would expect that

if anything these costs would be decreasing in product quality. In our model, the two are

independent.

Under these assumptions, we can construct upper and lower bounds for the set of entering

products, and then for consumer, producer, and total surplus.

Proposition UB (Upper Bound J UB(T c) on J (T c)): The set of firms J UB(T c) enter-

ing in equilibrium when there are no direct fixed costs of longer clinical trials (FC(T c) =
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0,∀T c ≥ 0) provides an upper bound for the set of firms J (T c) entering in equilibrium

when entry costs are increasing in trial length (FC(T c) = χT c).

Proof: For our demand and pricing models, it is always the case that πj(J UB(T c)) ≥
0,∀j. Q.E.D.

Proposition LB (Lower Bound J LB(T c) on J (T c)): The set of firms J (T c) entering in

equilibrium when entry costs are increasing in trial length (FC(T c) = χT c) is bounded

from below by the set of firms J LB(T c) entering in equilibrium with these same fixed

costs, but following a naive entry strategy that assumes all other firms J UB(T c) will

enter in equilibrium (i.e. enter iff πj(J UB(T c)) > χT c).

Proof: Let j ∈ J LB(T c). Then by definition πj(J UB(T c)) > χT c. By UB, J (T c) ⊆
J UB(T c), and since all products are substitutes it follows that πj(J (T c)) > πj(J UB(T c)).

And thus we have πj(J (T c)) > πj(J UB(T c)) > χT c ⇒ j ∈ J (T c). Since j was arbi-

trary, we have our lower bound J LB(T c) ⊆ J (T c). Q.E.D.

These upper and lower bound scenarios are equivalent to each other and to the full

equilibrium at T c = 0. Both will become further from the true equilibrium as the costs of

entry increase. We go through the details of computing each bound in Appendix E.2. Here

we provide proofs for how these bounds on the set of products in the markets can be used

to generate bounds on surplus measures.

A.2.1 Bounds on Producer Surplus (PS)

Proposition UBPS (Upper Bound PSUB(T c) on PS(T c)): (suppressing dependence on

T c) PSUB :=
∑

j∈JLB πj(J LB) +
∑

j∈JUB\JLB πj(J LB ∪{j}) provides an upper bound

for equilibrium producer surplus PS :=
∑

j∈J πj(J ).

Proof: Let j ∈ J . If j ∈ J LB, then πj(J ) ≤ πj(J LB) by substitutes. If j ∈ J UB\J LB,

then πj(J ) ≤ πj(J LB ∪ {j}) by substitutes. Since j was arbitrary, and J ⊆ J UB, it

follows that PS ≤ PSUB. Q.E.D.

Proposition LBPS (Lower Bound PSLB(T c) on PS(T c)): (suppressing dependence on

T c) PSLB :=
∑

j∈JLB πj(J UB) provides a lower bound for equilibrium producer surplus

PS :=
∑

j∈J πj(J ).

Proof: Let j ∈ J . If j ∈ J LB, then πj(J ) ≤ πj(J UB) by substitutes. Since j was

arbitrary, and J LB ⊆ J , it follows that PSLB ≤ PS. Q.E.D.
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A.2.2 Bounds on Consumer Surplus (CS)

Predicting consumer surplus changes in oligopoly market structures with general demand

and marginal cost heterogeneity is difficult. It is clear that, holding all else fixed (in our

application, importantly, holding information fixed), adding an additional substitute product

will weakly both increase consumer surplus directly via greater choice and indirectly by

adding competition and decreasing producer surplus of the other products in the market.

However, because in oligopoly consumers choose based on quality-price differences instead

of quality-cost differences, product market shares will in general deviate from the efficient

allocation, and entry of an additional product need not always always improve this allocative

efficiency. Understanding when the choice and competitive mechanisms will always dominate

is the topic of some recent theoretical work (e.g. Nocke and Schutz (2018)), which shows

that for Logit, among others, this is indeed the case.

It is beyond the scope of this paper to determine whether or not this holds for Nested

Logit in general, but it seems intuitive that it will in our particular case where demand is

relatively price insensitive and marginal costs are small and differ across products in a way

that correlates in direction and approximate magnitude with quality estimate differences.

Thus we take the approach here of: (1) proving bounds for the case when demand is unre-

sponsive to price and marginal costs are equal, and (2) computationally checking the bounds

for our particular parameter estimates.

Proposition UB (Upper Bound CSUB(T c) on CS(T c)): (suppressing dependence on T c)

CSUB := CS(J UB) provides an upper bound for equilibrium consumer surplus CS :=

CS(J ).

Proof: By the assumption of consumer utility maximization, CS(J ) :=
∑

i=1,...,M uij∗(J ),

where j∗(J ) := arg maxj∈J uij(J ). In the case when demand is not price sensi-

tive, then indirect utility for each product does not depend on the choice set, so

uij(J ) = uij,∀J . Then J ⊆ J UB ⇒ uij∗(J ) ≤ uij∗(JUB),∀i ⇒ CS(J ) ≤ CS(J UB).

Q.E.D.

Proposition LB (Lower Bound CSLB(T c) on CS(T c)): (suppressing dependence on T c)

CSLB := CS(J LB) provides a lower bound for equilibrium consumer surplus CS :=

CS(J ).

Proof: Analogous to the prior proof. By the assumption of consumer utility maximiza-

tion, CS(J ) :=
∑

i=1,...,M uij∗(J ), where j∗(J ) := arg maxj∈J uij(J ). In the case when

demand is not price sensitive, then indirect utility for each product does not depend
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on the choice set, so uij(J ) = uij,∀J . Then J LB ⊆ J ⇒ uij∗(J ) ≥ uij∗(JLB),∀i ⇒
CS(J ) ≥ CS(J LB). Q.E.D.

So it is clear that our CS bounds are correct in the simpler case when θp = 0 and

marginal costs are equal. While computationally checking our bounds would require the

infeasible exercise of checking every possible set of entering products under each policy, we

do check the subset of marginal changes to our bounds. Specifically, for each k ∈ J UB/J LB,

we recompute our surplus measures when k is subtracted from J UB or added to J LB.

We verify that our bounds are valid upper and lower bounds for each of these cases for

T c ∈ [1, 18] (we do not compute for larger values simply to save on computational hours).

Table 4 displays summary stats for the results of this exercise for T c = 12.

Table 4: Numerical checks on CS bounds. Computes CS change when k ∈
J UB/J LB is subtracted from J UB or added to J LB. Distribution shown for J (T c = 12)
case.

mean s.d. p25 p50 p75 N

CS(J UB/k)− CS(J UB) -6.3 7.3 -9.0 -3.0 -1.0 41
CS(J LB ∪ k)− CS(J LB) 13.2 15.6 2.0 8.0 19.0 41

A.2.3 Bounds on Total Surplus (TS)

With bounds on producer surplus PS(T c) and consumer surplus CS(T c), it is straightforward

to compute bounds on total surplus TS(T c) := CS(T c) + PS(T c) − FC(T c). Fixed costs

of a policy come from simply adding the number of months in trials for all entering firms

FC(T c) := |J (T c)|χT c, so that bounds on fixed costs can be obtained by inserting bounds

for J directly. Then TSUB(T c) := CSUB(T c)+PSUB(T c)−FCLB(T c), and TSLB is defined

analogously.

A.3 Regulator’s Total Surplus Tradeoff: Illustrative Case

The general total surplus function is complicated by the entry policies of firms, tracking

observational learning for firms that entered the market at different times, and potential

distortions due to heterogeneity in marginal costs and price markups. To clearly see the core

tradeoff between uncertainty and access in the model, it is helpful to consider a simple case of

a logit demand model with testing and entry costless, no observational learning, homogenous

marginal costs (normalized to zero for convenience), and no distortions in usage due to price.
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In this case, the regulator’s tradeoff simplifies as follows:

TSt(T
c + 1)− TSt(T c) = ln

(∑
j∈Jt(T c+1) e

Qjt− ρ2σ
2
jt(T

c+1)∑
j∈Jt(T c) e

Qjt− ρ2σ
2
jt(T

c)

)
− χ |J e

t (T c + 1) \ J e
t (T c)|

= ln

(∑
j∈Jt(T c+1) e

Qjt− ρ2σ
2
jt(T

c+1)∑
j∈Jt(T c) e

Qjt− ρ2σ
2
jt(T

c)

)
(20)

=
ρ

2

(
σ2(T c)− σ2(T c + 1)

)︸ ︷︷ ︸
gain from decreased risk

− ln

(∑
j∈Jt+1(T c+1) e

Qjt∑
j∈Jt(T c+1) e

Qjt

)
︸ ︷︷ ︸

gain from tech change/entry

(21)

where (20) follows from no fixed costs, and (21) follows from no observational learning and

recognizing χ = 0⇒ Jt(T c) = Jt+1(T c + 1).

B Data Appendix

B.1 Dataset construction

The dataset used in this paper is from Millennium Research Group’s Marketrack survey of

catheter labs, the source that major device manufacturers subscribe to for detailed market

research. The goal of the survey is to provide an accurate picture of market shares and

prices of medical devices. For our purposes, the key variables in the data are the price paid

and quantity used for each stent in each hospital in each month. In addition, the hospitals

report monthly totals for different procedures performed, such as diagnostic angiographies.

The data span January 2004 through June 2013 and cover the U.S. and E.U. markets.

There are three main challenges in constructing a usable dataset from the raw survey data.

First, the survey was not as concerned with collecting price data as it was with collecting

quantity data. Second, the survey measures stent usage rather than availability and our data

go back only to 2004, so it is not always possible to infer regulatory approval dates from

the data. Finally, there is some misreporting in the survey. The following tables illustrate

how key sample summary statistics compare across the cleaning steps for the E.U. and U.S.

datasets. These steps are summarized below; full detail can be found in the Stata code used

to execute them, cleaning-eu-data-3-sample.do and cleaning-us-data-3-sample.do.

EU dataset modifications
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Diagnostic No. of stents No. of BMS No. of DES Average Stent-hospital- Hospital- Hospitals

procedures implanted products products stent age months months

Raw data 151 108 3.8 3.3 54.3 88,144 15,064 542

Rm. suspect q 161 98 3.3 2.8 54.5 61,098 13,477 540

Rm. if q¿2*diagnostics 152 107 3.8 3.3 54.3 86,672 14,812 537

Rm. suspect diagnostics 151 108 3.8 3.3 54.4 87,349 14,933 542

Rm. outlier p 148 106 3.8 3.3 54.4 81,646 14,149 532

Rm. unknown entry 150 108 3.8 3.3 54.0 87,516 14,995 541

Final sample 160 95 3.2 2.8 54.6 54,771 12,313 524

US dataset modifications
Diagnostic No. of stents No. of BMS No. of DES Average Stent-hospital- Hospital- Hospitals

procedures implanted products products stent age months months

Raw data 137 76 2.2 2.5 36.8 68,603 17,183 526

Rm. suspect q 147 68 1.9 2.1 37.8 44,218 14,631 509

Rm. if q¿2*diagnostics 138 76 2.2 2.5 36.7 67,783 16,982 517

Rm. suspect diagnostics 138 76 2.2 2.5 36.8 67,857 16,997 526

Rm. outlier p 136 75 2.2 2.5 37.1 66,293 16,720 525

Final sample 147 67 1.8 2.1 38.0 41,779 13,900 478

The table rows record the sample means for key summary statistics across various cleaning

steps. The summary statistics are means of quantities calculated at the hospital-month

level. The means reported are of the total number of stents implanted; the total number of

diagnostic angiographies; the number of different bare-metal stents (BMS) used; the number

of different drug-eluting stents (DES) used; and the weighted average age, in months, of the

stents used. The table also shows the total number of stent-hospital-month observations,

number of hospital-month observations, and number of hospitals in each sample.

The table rows correspond to different samples. The first row of each table summarizes

the raw E.U. and U.S. survey data. The second row drops hospital-months with suspect

total quantities. The criteria for dropping are threefold. First, we drop hospital-months for

which the total quantity of stents changes by (weakly) more than 50% relative to the previ-

ous month in which the hospital appears in the data. Second, for “low-quantity” hospitals

with mean monthly stent quantities below 15, we drop hospital-months with usage strictly

greater than 1.5 standard deviations from the hospital’s mean. For “high-quantity” hospi-

tals with mean monthly stent quantities (weakly) greater than 15, we drop hospital-months

with usage strictly greater than 3.0 standard deviations from the hospital’s mean. Third, for

hospital-months with flagged quantity changes that were accompanied by a 30% or greater

change in diagnostic angiography procedures, the hospital-months were undropped. Diag-

nostic angiography procedures are performed prior to coronary stent implantation, so large

changes in monthly stent quantities should be accompanied be similarly large changes in

angiographies.

The third and fourth rows of the table drop hospital-months with suspect diagnostic

angiography counts. Diagnostic angiographies should be bounded below by some multiple of
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the number of stents used; in our data and anecdotally according to clinicians, there are at

least two diagnostic angiography procedures per stent implant. The third row drops hospital-

months if their total quantity of stents exceeds twice the number of diagnostic angiographies

in that hospital-month. The angiography count itself could be suspect. The fourth row

drops hospital-months if the number of diagnostic angiographies is more than 2 standard

deviations away from the hospital’s mean and if the ratio of angiographies to stents was 2

standard deviations from the hospital’s mean.

The fifth row of the table drops hospital-months with problematic prices. We drop

hospital-months with outlier prices based on a regression of log-price on the hospital’s number

of BMS products and number of DES products used that month, in addition to a hospital

fixed-effect. Hospital-months with products whose regression residuals were more than 2

standard deviations from the mean of all residuals were dropped.

The sixth and penultimate row of the E.U. table drops hospital-months with positive

quantities for stents for which E.U. regulatory approval dates are not known. Since the age

of the product is an important component of our analysis, the products for which an entry

date could be pinned down with reasonable certainty must be removed from the analysis.

This drop affects only a few products. There are no products for which the U.S. approval

dates could not be ascertained, so this row is missing from the U.S. table.

The final row in each table reports summary statistics for the final sample, which drops

all observations that meet one or more of the dropping criteria described above.

B.2 Clinical trial data

Our collected clinical trial data, and a detailed document on the sources, are available in the

online archive and upon request from the authors.

In addition to clarifying the differences between EU and US trial policy and validating

our product quality estimates, the trial data make clear the strong relationship between the

size of clinical trial in terms of patients and the time spent on the trial via the time it takes

to recruit patients. Figure 6 plots the data on patients and length of recruitment in days for

smaller and larger trials (broken down to roughly correspond to the scale of trials required

for “EU” and “US” approval). One can see from the fitted lines that larger trials take longer.

The fit is not perfectly linear, as there are of course idiosyncracies to particular trials, but

especially for the larger “US” trials, which tend to be run by professional units within large

firms or third party research organizations that do this as their core business, the fit is pretty

tight, implying an average arrival rate of 186 patients per month.
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Figure 6: Relationship between trial size and time.
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(b) Large “US” Trials
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C Robustness and Alternative Explanations: Supplemental Fig-

ures and Discussion

C.1 Evidence of learning from individual products

Averaging across products conditional on age provides patterns in the data that have direct

relation to expected patterns in our model. However, these averages cloud heterogeneity

across products. Figure 7 provides two types of evidence of this variation. First, the figures

in the panels provide patterns for a few individual products illustrate how learning does not

always bring good news and lack of learning brings a volatile mix of good and bad over time.

Second, the table below the panels provides summary statistics on the raw changes in usage

patterns with age ln(sjt/s0t)− ln(sjt+1/s0t+1) for products in the EU, undergoing US trials.

The patterns documented previously regarding decreases in volatility and increasing mean

usage with age might be worrisome if they were driven by increasing usage for all product

with age that then asymptotes as in a diffusion process. The table on the raw usage changes

show this is not the case—there is a large fraction of changes that are ”bad news” for

products.

C.1.1 Case Study: CoStar and the Role of Bad News

The focus on averages across products thus far obscures the fact that information is not

always good news for a product. The arrival of bad news will obviously reduce the posterior
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Figure 7: Learning patterns for selected individual products. Three representa-
tive products that receive good and bad news from trials or not much (useful) news at all.
Left panel (a) plots mean utility estimate for each product ln(sja/s0a) by age since introduc-
tion into the EU. Right panel (b) plots absolute differences |ln(sja/s0a)− ln(sja+1/s0a+1)|
by age, which should be larger with more uncertainty, and converge toward zero with
learning.
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mean s.d. p25 p50 p75 N
∆t ln(sjt/s0t)|a=1 0.24 1.14 -0.16 0.12 0.60 27
∆t ln(sjt/s0t)|a=12 0.17 0.50 -0.04 0.08 0.27 29
∆t ln(sjt/s0t)|a=24 -0.11 0.30 -0.31 -0.06 0.11 32

uncertainty, but it will also reduce the posterior mean quality estimate. Appendix C.1

provides more individual product summary statistics demonstrating these up and down

dynamics. Here we focus on a clear example of the impact of bad news. A small firm

named Conor Medsystems developed a drug-eluting stent with an intuitively appealing new

design for drug release that performed well in small early trials (CoStar I (87 patients) and

EuroStar I (149 patients)), which were received enthusiastically at conferences in late 2005

through 2006. During this period, pivotal US trials were begun. The stent saw growing

market share after receiving a CE mark and being released in the EU in February 2006.54 In

November 2006, Johnson & Johnson was sufficiently optimistic about CoStar to buy Conor

for $1.4B. J&J took over CoStar’s pre-market notification submission to the FDA. In May

2007 J&J announced the results of a large US trial (CoStar II (1675 patients)), where safety

evidence was good but efficacy was disappointing with TLR rates 8% for CoStar versus 4%

for its competitor and the control stent, Taxus. Shortly after, J&J announced that it was

terminating its FDA mandated clinical trials as the stent was failing to meet its primary

54See http://www.ptca.org/pr conor/20060217.html
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endpoints.55

Figure 8: Evolution of ln(sjt/s0t) for CoStar.
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The CoStar story demonstrates many of the themes of our analysis. CoStar’s usage

rose as early trial results were communicated at physician conferences and it underwent US

trials. As more information was generated via the clinical trial, that information is reflected

in the inclusive share. Presumably J&J shared this optimism and did not possess differential

information, even after due diligence that would have made it privy to the same information

as Conor. And when trial results on efficacy were unfavorable, market share dipped and the

product was pulled from the market.

C.2 Robustness and Mechanism Tests: Supplemental Figures and Discussion

C.2.1 Placebo Test: PTCA Balloons

One alternative explanation for the above findings would be that the set of manufactur-

ers/products that undergo US trials promote their products differently than other products

in the EU, and also differently than for the same products upon US introduction. While

we believe the evidence on decreasing variance and on the same products upon US launch

make this unlikely, it is not impossible. To further explore this possibility, we perform a

placebo test using percutaneous transcatheter coronary artery (PTCA) balloons, which are

FDA Class II devices and thus face similar regulatory requirements in both the EU and US.

Thus PTCA should not display the differential signs of learning we document for stents if

our proposed mechanism is true. The results in Appendix C.2.1 show that we do see more

total entry in the EU (presumably due to pre-existing complementary sales and distribution

55See http://www.investor.jnj.com/releasedetail.cfm?releaseid=241182.
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assets in the US for some manufacturers); but the differences in amount of entry are smaller

than in stents, there is no gap in time of entry on average, and usage patterns with age show

no evidence of learning.

As another check that our results are indeed capturing learning in the EU from US clinical

trials, we perform a “placebo” type analysis by looking at a device where we know such trials

are not required. We perform the analysis on PTCA balloons catheters, which are often used

to clear a blockage in the artery before the stent is placed. Standard balloons (ones that

do not have drug coatings or special cutting capabilities) typically have little, if any, gap

between US and EU approval requirements. This is evident in the lag between US and EU

introduction of on average two months (here we calculated entry from first observation in the

data instead of looking up press releases, and so the confidence interval includes zero when

sampling error is taken into account). Despite this lack of lag for those products introduced

in both the US and EU, we still observe many balloons introduced only in the EU because

they are sold by the same sales force as stents, but are much lower revenue products, so

that only a few companies enter the US market for the purpose of selling balloons only.

During our ten year sample, 40 manufacturers sell 113 different balloons in the EU and 6

manufacturers sell 40 different balloons in the US. Thus we can execute our same research

design on balloons, with the expectation of no differential learning between products that

are EU only versus those that enter the US as well.

Figure 9 shows the results of this placebo test, comparing EU data for products that do

and do not enter the US as well. The results illustrate the importance of looking at learning

evidence in the volatility along with trends in means as well as the importance of having

comparison groups to be able to look at differences-in-differences. Except for what appears

to be an outlier shock from month one to two for usage of EU only balloons, there is no

evidence of learning in the volatility figure. Mean usage of products in both groups trend

up slightly with age, but these trends are statistically identical, suggesting a slight diffusion

process that affects all balloons in the EU that is not driven by learning about product

quality.

C.2.2 Alternative Explanation: Observational Learning with Different Initial

Sample Size

Another potential explanation for the results in Figure 2 is that there is learning in the

EU sample undergoing US trials, but this is learning is observational (all or in part). The

difference between the patterns in the two samples is then plausibly driven by the fact that
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Figure 9: PTCA Balloons—EU only, products that enter US vs. not.
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−
7

−
6
.5

−
6

−
5
.5

−
5

−
4
.5

−
4

−
3
.5

−
3

In
c
lu

s
iv

e
 S

h
a
re

 (
W

it
h
in

)

0 12 24
Age Since Introduction to Region (Months)

EU (enter US) EU (don’t enter US)

(b) SDj|a ln(sjt/s0t)

0
.2

.4
.6

.8
1

1
.2

1
.4

1
.6

1
.8

2
2
.2

2
.4

2
.6

2
.8

3
In

c
lu

s
iv

e
 S

h
a
re

: 
S

tD
e
v
 A

c
ro

s
s
 P

ro
d
u
c
ts

 (
W

it
h
in

)

0 12 24
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EU (enter US) EU (don’t enter US)

xa=1 xa=24 x24 − x1 (xtrials24 − xtrials1 )− (xnot24 − xnot1 )

Mean
EU |trials

j|a ln(sjt/s0t) -4.22 -3.25 0.96 0.37

(0.17) (0.27) (0.32) (0.33)

Mean
EU |not

j|a ln(sjt/s0t) -6.52 -5.93 0.60

(0.16) (0.18) (0.21)

SD
EU |trials

j|a ln(sjt/s0t) 0.62 0.59 -0.03 0.01

SD
EU |not

j|a ln(sjt/s0t) 0.85 0.81 -0.04

N = 789 product-month observations (all in EU). Standard errors clustered by month Nt = 114 in parentheses.

those stents undergoing US trials enter with higher usage levels, which generate sufficient

sample sizes for observational learning to occur, whereas the EU sample not undergoing

trials contains too many products that do not gain enough early traction to enable learning.

We examine this hypothesis by reformulating the same figures and tests for a set products

with overlapping support on initial values of 1
Ja

∑
j ln(sja/s0a) at aj = 1, so they all have

similar chances to generate early observational learning. The pattern in Appendix Figure

10 is essentially identical to that in Figure 2, suggesting that our results are not driven by

selection on initial quality/usage levels.56

56For this matched sample, selection into US trials must be based on level shifts in expected US profit
due to the fact that those products that enter the US all have pre-existing complementary assets for sales
and distribution (while those that don’t enter do not). This is consistent with the challenges firms such as
Biotronik have faced in develop US sales forces. See, ”Tipping the Odds for a Maker of Heart Implants,”
New York Times, April 2, 2011.
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Figure 10: Stent usage patterns after product entry, by region and trial status
(subsample matched on age = 1 usage)
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θa=1 θa=24 ∆θa ∆θ
EU|UStrials
a −∆θrowa

E
EU|UStrials
j|a ln(sjt/s0t) -5.27 -3.87 1.40∗∗∗

E
EU|not

j|a ln(sjt/s0t) -5.56 -5.70 -0.13 1.54∗∗∗

SD
EU|UStrials
j|a ln(sjt/s0t) 0.82 0.42 -0.40∗∗∗

SD
EU|not

j|a ln(sjt/s0t) 0.84 0.72 -0.12 -0.28∗∗∗

Pr
EU|UStrials
j|a (sjht = 0) 0.78 0.54 -0.24∗∗∗

Pr
EU|not

j|a (sjht = 0) 0.95 0.96 0.01∗∗ -0.25∗∗∗

NEU|UStrials = 197 (8 products), and NEU|not = 159 (10 products) product-month observations. Standard errors
clustered by month Nt = 114 in parentheses. ∆θa := θa=24 − θa=1.

C.2.3 Alternative Explanation: Asymmetric Information and Signaling

Another potential explanation that could rationalize Figure 2 is manufacturer signaling.

Under this hypothesis, after the release of EU trial data, manufacturers retain a sufficiently

large degree of private information about expected product quality, and so undertaking

costly US trials signals expected product quality to physicians. To produce the observed

data patterns, such a signaling model also needs to include some combination of slow signal

diffusion across hospitals and/or increasing signal strength as a trial continues. We explore

this hypothesis by looking more closely at the shapes of the distribution of 1
Ja

∑
j ln(sja/s0a)

with age.

Appendix Figure 11 shows the evolution with age of different quantiles of the ln(sjt/s0t)|a
distribution. Under a model where manufacturers and physicians are similarly informed

about quality after the release of trials for EU entry, and then learn similarly as data from US

trials is released, the distribution of product quality estimates should converge symmetrically

to the true product quality distribution. In an asymmetric information setting, consumers

do not receive direct information about quality, but instead infer quality must be above some

threshold if a manufacturer is willing to continue with costly testing (see Appendix ?? for
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more on this intuition). Learning in this way would cause the lower tail of the distribution

for product in US trials to become truncated. In the Figure, the 25 and 75 percentiles

appear to move symmetrically towards the median as information arrives. Below the figure,

we present relevant test statistics. The change in the skewness of the distribution and the

change in the ratio of the 75th-50th percentile to the 50th-25th are both insignificant.

Figure 11: Symmetry of changes in quality distributions
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EU, in trials EU, not
θa=1 θa=24 ∆θa θa=1 θa=24 ∆θa(

µ−p50
σ

)
j|a

ln(sjt/s0t) 0.06 -0.08 -0.14 -0.09 -0.11 -0.01(
p75−p50
p75−p25

)
j|a

ln(sjt/s0t) 0.49 0.41 -0.08 0.53 0.42 -0.10

N = 383 product-months (in EU; US trials). Standard errors clustered by month Nt = 114 in parentheses.

Our test of information symmetry in Figure 11 relies upon the intuition that symmet-

ric learning (as we assume in our model) suggests that the inferred distribution of product

qualities should tighten from both ends of the distribution as learning occurs (and also shift

up if consumers are risk averse). This contrasts with a model where suppliers have private

information about their product qualities, where consumer learning should take the form of

realizing that manufacturers who engage in costly testing must have product quality exceed-

ing some threshold, which suggests that the inferred distribution of product qualities should

tighten from the bottom as learning occurs. Figure 12 illustrates these ideas graphically.

The left panel (a) plots two distributions directly from our EU data for stents undergoing

US trials: (Pre-learning) plots the density of ln(sjt/s0t)|a=1; and (Post-learning) plots the

density of ln(sjt/s0t)|a=12. As one would expect from Figure 11 in the paper, the distribution

shifts up and tightens symmetrically after 12 months in US clinical trials.

The right panel (b) plots the same pre-learning distribution, and displays the expected

post-learning distribution from applying a truncated learning rule ln(sjt/s0t)|a=1,ln(sjt/s0t>−6.

The plot illustrates the type of distribution we might expect if there were learning with
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Figure 12: Learning effects on inferred product quality distributions under
symmetric and asymmetric information mechanisms.
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asymmetric information. This is clearly different from the symmetric model and from our

data, which is why our test in Figure 11 fails to reject the null hypothesis of symmetric

learning.

C.3 EU vs. US: Other Differences Driving Entry and Diffusion Patterns?

In theory it could be that the differences in usage patterns between the US and EU are

driven by differences in disease incidence, preferences for angioplasty and stents, or variation

in price setting regimes between the US and EU. However, all the evidence that we have been

able to gather indicates that these explanations do not plausibly explain the patterns in the

data described above. For example, the average ischemic heart disease mortality rate is very

similar between the US and the EU, suggesting that the disease incidence is also similar.

The 2010 mortality rate in the US for ischemic heart disease was 126.5 deaths per 100,000;

and the corresponding figure for the EU is 130.0 per 100,000.57 This modest differential

seems unlikely to account for the stark differences of entry rates between the two regions.

Prior to performing an angioplasty in which a stent may be inserted, the patient must

undergo a diagnostic angiography. In this procedure, the blood flow through the coronary

artery is visualized and this information is used to determine whether the patient should

receive a stent or some other medical intervention. If the difference in the number of stents

available between the EU and the US was driven by higher demand for stents, then it should

57OECD Health at a Glance, 2013.
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Figure 13: Comparison of diagnostic procedure patterns, EU vs. US. Left
panel (a) plots the distribution of number of diagnostic procedures across hospitals—the
US and EU are nearly identical. Right panel (b) plots the distribution across hospitals of
the probability that a diagnostic procedure results in stenting—the EU is shifted slightly
to the right of the US, with a mean of 32 versus 28 percent.
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show up in the data with the EU performing a larger number of angiographies or having

a higher rate of stenting conditional on the angiography rate. Figure 13 documents the

distributions of the number of diagnostic angiographies performed across the hospitals in

our data and percent of those diagnostic procedures resulting in a stenting procedure across

hospitals in the US and EU samples. The distributions are close to identical statistically,

with the EU having a few more small volume hospitals and hospitals that are more likely

to place a stent conditional upon a diagnostic procedure. In the EU, 32 percent of patients

received a stent conditional on an angiography while in the US that figure was 28 percent.

Like the evidence on heart disease prevalence, this small difference seems unlikely to explain

the large disparity in entry rates between the two regions.

Figure 14 documents that DES usage as a percentage of all stents used is lower in the EU

but follows similar patterns to the US over time. If the increased DES entry in the EU was

driven by higher demand, we would expect the opposite pattern. Figure 14 also shows that

the prices and hence profits per stent sold are lower in the EU. This is true for both BMS

and DES and is true over our entire sample period. Both of these patterns are likely the

result of lower reimbursement levels for stent procedures overall, lower DES reimbursement

levels in particular, and more competing devices in the EU market. These findings suggest

that conditional upon FDA approval, average variable profit in the US is higher making it a
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Figure 14: Comparison of usage and price patterns EU vs. US.
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more attractive entry target than the EU. This, in turn, suggests that the differential entry

rates is driven by differences in regulation and not underlying demand.

D Demand/Learning Estimation: Supplementary Details

D.1 Demand/learning estimation algorithm

The estimation approach is to construct a generalized method of moments estimator that

matches the observed market shares in the data (and knowledge of which products are in

clinical trials when) to the demand and learning model. The Matlab code for this estimator

is available in the electronic archive code4RegulatingInnovation.zip. This appendix outlines

the main steps of the algorithm.

1. Construct an initial estimator for σQ using the empirical equivalent from the Qj from

the estimator using age by trial status fixed effects instead of the learning model.

2. Guess initial values for learning precisions (σEU , σA, σAc) and hospital heterogeneity

(σdesH , σbmsH , γH).

3. Compute the full vector of σ2
jt implied by σ2

Q, the learning precision parameters, and

which products are in trials when.

4. Least squares then gives an estimator for the linear parameters (ρ,Qj, θ
p, λg).

5. Repeat 2-4 until minimize the GMM objective function.
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6. Recompute σQ using the empirical equivalent from the Qj from this stage.

7. Repeat 2-6 until σQ converges.

D.2 Robustness and Alternative Structural Demand Models

Table 5 displays results for several robustness checks on our demand/learning model spec-

ification. The first two columns use age fixed effects, interacted with a dummy variable

indicating whether the product is in US clinical trials, to provide a less parametric way to

capture how demand changes over time with age and trial status. The first column (NL)

estimates a simple nested logit model, shutting down any variation in preferences across

hospitals. The second column (NLQW) estimates the Quan and Williams (2017) model.

The results show how across hospital heterogeneity is important for fitting the data as the

criterion function reaches a lower minimum with this added flexibility. As expected, this

acts as a selection correction for the product-hospital-months with zero shares, which shifts

the product fixed effect estimates.

The third column (NLQWNN) adds the structure of the Normal-Normal learning model

in place of the age and trial status fixed effects. There are two primary differences: (1) the

learning model parameterization forces learning to be smooth over time (vs. the nonpara-

metric fixed effects); and (2) the learning model uses the rational expectations assumption to

link the product fixed effect estimates Qj to how demand evolves with age and trial status.

Under rational expectations, the fixed effect estimates must be consistent with the prior

distributions FUStrials(Q) and F not(Q), and the precision parameters in the learning model

(1/σ2
EU , 1/σ2

Ac , 1/σ2
A) link the prior to how the variance and levels moments of product usage

evolve with age and trial status.

Figure 15 plots the age fixed effects in NLQW and uncertainty discounts −ρ
2
σ2
jt in

NLQWNN versus age. The left panel shows the products in US trials; the right panel

products not in US trials. The patterns show that: (1) With regards to the smooth param-

eterization of the learning model, the fit is still quite close to the pattern of the age fixed

effects, so the parametric form imposes very little on the data (this can be seen in the figures

and also in the min(GMMcriterion) (fitting the aggregate usage, aggregate volatility, and hos-

pital moments) and RMSE(ξjt) (of aggregate usage moments only) in the table being close

for the two models). (2) The rational expectations assumption allows the model to extract

much more information from the data – the prior is now linked to the fixed effects, and so we

can infer the amount of learning from EU trials/approval from the gap between that and the

variation in usage patterns at age = 1. Pinning uncertainty to these two points then allows
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Table 5: Estimates of physician preference and learning model parameters

NL NLQW NLQWNN σA (qjt−1) H Lags
θp (utils/$1000) 0.21 0.20 0.10 0.10 0.11

(0.03) (0.04) (0.04) (0.04) (0.05)

λdes 0.88 0.84 0.81 0.81 0.81
(0.02) (0.02) (0.02) (0.02) (0.02)

λbms 0.91 0.88 0.82 0.82 0.81
(0.01) (0.01) (0.01) (0.01) (0.01)

σdesH 0.14 0.19 0.19 0.19
(0.03) (0.04) (0.04) (0.04)

σbmsH 0.07 0.18 0.18 0.18
(0.01) (0.02) (0.02) (0.03)

ρ · θp (1/$1000) 3.36 3.29 3.66
(1.70) (2.30) (1.99)

1/σ2
EU 18.82 18.75 18.52

(2.16) (2.09) (2.74)

1/σ2
Ac 1.73 1.70 1.88

(0.51) (0.60) (0.70)

1/σ2
A 0.00 0.00 0.00

(0.00) (0.15) (0.13)

γH

βq ( 1
σ2
A

/100) 0.00

(0.00)

µlag (months) 0.00
(0.10)

Qj -2.06 -2.58 -2.37 -2.37 -2.41
(0.05) (0.06) (0.10) (0.35) (0.31)

σQ|UStrials 0.27 0.30 0.26 0.26 0.27
(0.02) (0.02) (0.01) (0.01) (0.02)

σQ|not 0.30 0.36 0.34 0.34 0.34
(0.02) (0.03) (0.01) (0.01) (0.02)

age× UStrials FE Y Y N N N
min(GMMcriterion) 101.47 15.47 15.53 15.54 15.54
RMSE(ξjt) 0.413 0.401 0.281 0.279 0.297
Estimates for demand model ln(sjt/s0t) = λgj ln(sj|gt)− θ

ppjht +Qj − ρ
2
σ2
jt + ξjt with separate nests for DES and BMS.

NJHT = 407, 191 product-hospital-months and NJT = 4, 888 product-months. Standard errors in parentheses and are
clustered by month (NT = 114).

us to infer the amount of uncertainty remaining as learning does or doesn’t occur, and it then

requires the product quality estimates Qj to adjust for this. Finally, the NN learning model

separates learning/uncertainty and risk aversion parameters – these structural parameters

have a clear interpretation that allows for validation of the results, and they allow estimation

of counterfactuals where the nature of uncertainty/learning might change due to regulatory

changes.

Returning to Table 5, the final two columns show the results for two extensions of our

model. Column 4 allows observational learning in the market place to be a function of past
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Figure 15: Comparison of estimates from fixed effect and learning models.
Plots the estimated discount due to uncertainty versus product age in Normal-Normal
learning model −ρ

2σ
2
jt vs. model with age and age× UStrials fixed effects.
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demand, σA (qjt−1), in order to check that the lack of market learning that we estimate is not

being driven by low usage levels. This is similar in spirit to our “overlapping Qj,age=1” test

in the reduced form section, and like that test, we do not find any evidence of observational

learning for products not in US trials, even for those that are used in large quantities.

The final column, HLags, reports the estimates for a model that allows different hospitals

to learn with different random lags from each information shock. The goal is to allow for

the patterns in the data to potentially be generated by an information diffusion process that

is not intrinsically linked to information generation (in which case we might be conflating

this diffusion process with the trial information generation process, which is the process the

regulator controls most directly). Specifically, each hospital receives each signal with a delay

of a number of months drawn from a Poisson(µlag) distribution, and we estimated µlag using

simulated GMM. Similar to the hospital signal correlation parameter in our preferred model,

this lag parameter is identified by the difference in the aggregate vs. hospital level patterns

of usage. The estimate does not suggest that learning lag heterogeneity across hospitals

explains the patterns in the data.

D.2.1 Estimated product quality distributions

One advantage of the GMM algorithm vs. ML (besides the ability to use instruments, which

is of course important) is that it allows a nonparametric distribution of product quality

estimates. Figure 16 plots the distribution of Qj,age=0 (left panel (a)) and Qj (right panel

67



(b)). The results help to validate several of the maintained assumptions. The distributions

are not perfectly normal, but appear to be symmetric and reasonably approximated by

normals (especially since the tails are inherently difficult to estimate). Also, it does seem

that the UStrials distribution may indeed be best thought of as a different distribution with

a slightly higher mean and smaller variance. But the distribution does not appear to have a

different shape in a way that would make the two groups difficult to compare or that would

suggest an asymmetric information signaling equilibrium.

Figure 16: Estimated Quality Distributions. Density plots of the product fixed
effect parameters {Qj} and market expectations upon EU entry {Qj,age=1}.
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E Counterfactuals: Supplementary Details

E.1 Partial equilibrium effect of risk: dependence on quality relative to outside

option

Table 6 replicates Table 3in the paper body, allowing the mean qualities to vary by shifting

the entire quality distribution by plus or minus a standard deviation of the logit horizontal

error term. As referred to in the paper, the effects of decreasing risk become more dramatic

as mean quality increases relative to the outside option.

E.2 Algorithms for computing equilibrium counterfactual bounds

The Matlab code for the counterfactuals is available in the electronic archive code4RegulatingInnovation.zip.

This appendix outlines the main steps of the algorithms.
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Table 6: The effect of uncertainty on number of stenting procedures, surplus per
stent implanted, and expected ex post loss.

σQ = σaEU=0 = σT c=6 = σT c=12 = σT c=18 = σT c=24 = σT c=30 =
0.312 0.185 0.160 0.143 0.131 0.121 0.113

Baseline Qj 1− s0 (%) 12.5 24.0 26.4 27.9 29.0 29.7 30.3
(2.5) (1.4) (1.3) (1.3) (1.3) (1.4) (1.4)

TS
1−s0 ($) 5776 6103 6184 6238 6276 6304 6327

(176) (167) (167) (168) (169) (170) (171)

E[Qj −Qjt|j∗] ($) -1096 -560 -429 -348 -292 -252 -221
(127) (23) (37) (41) (41) (39) (37)

Qj +
√
π/6 1− s0 (%) 33.8 52.9 56.1 58.0 59.2 60.1 60.8

(5.0) (1.8) (1.6) (1.6) (1.6) (1.6) (1.6)
TS
1−s0 ($) 6525 7458 7663 7795 7887 7955 8007

(301) (233) (230) (232) (234) (236) (238)

E[Qj −Qjt|j∗] ($) -1083 -554 -425 -344 -289 -249 -219
(127) (23) (36) (40) (40) (39) (37)

Qj −
√
π/6 1− s0 (%) 3.9 8.1 9.1 9.8 10.2 10.6 10.9

(0.9) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6)
TS
1−s0 ($) 5533 5611 5634 5651 5663 5672 5679

(137) (138) (138) (139) (139) (139) (139)

E[Qj −Qjt|j∗] ($) -1102 -563 -432 -350 -294 -254 -223
(127) (23) (37) (41) (41) (40) (38)

E.2.1 Optimal regulation counterfactual algorithm

The advantage of the upper and lower bounds we have defined on total surplus is that

they can be calculated using only the data and demand/learning model estimates. For each

potential T c = 0, 1, ..., 30 we calculate the upper and lower bounds as follows:

Upper Bound

1. Given T c, restrict sample to products that would be active in each month J UB(T c).

2. Use demand/learning and pricing models to compute equilibrium prices, quantities,

and surplus measures.

Lower Bound

1. Simulate expected profits for each firm in J UB(T c) at the time of EU entry, given Qj0.

2. Given χT c = 1.6E6T c, restrict sample to products that would enter, under the naive

assumption that firms assume other products enter as if χ = 0 (i.e. single agent entry,

assuming J UB(T c)). The set of firms that would enter is J LB(T c).

3. Use demand/learning and pricing models to compute equilibrium prices, quantities,

and surplus measures.
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E.2.2 Observational learning counterfactual algorithm

Because we only specify bounds on total surplus for any trial length T c, we obtain only

bounds on the optimal trial length under any parameter values [T cLB(σA), T cUB(σA), ]. Thus for

each potential value of observational learning precision 1/σ2
A = 0, 1/10σ2

Ac , 2/10σ2
Ac , ..., 1/σ

2
Ac

we calculate the bounds on optimal trial time and surplus generated by these trial times as

follows:

1. Given 1/σ2
A, calculate the upper and lower bounds on surplus generated for T c =

0, 1, ..., 30 as done previously for the zero observational learning case.

2. T cLB(σA) will be the maximum T c such that the upper bound total surplus is less than

the maximum of the lower bound total surplus (among the T c below that at which the

lower bound surplus is maximized).

3. T cUB(σA) will be the minimum T c such that the upper bound total surplus is less than

the maximum of the lower bound total surplus (among the T c above that at which the

lower bound surplus is maximized).

4. The tightest bounds on surplus created in this case are simply the max of the upper

bound surplus and max of the lower bounds surplus.

E.3 Distribution of Profits Over Product Lifetime and Across Products

The counterfactual lower bounds with fixed costs of entry require calculation of expected

lifetime profits under the assumption that all firms who enter in the EU do enter in equilib-

rium. This number can be directly acquired from the EU data for the 41 of 109 products

that both enter and exit the market during our sample period. However, for the other 68

products whose lifetimes are truncated at the beginning or end, we need to extrapolate.

We perform this extrapolation by estimating the percent of cumulative lifetime profits the

average product has earned at each age. We then use this percent to extrapolate the missing

profits, for whatever age at which the truncation occurred. We do this unconditionally on any

covariates besides age. Our counterfactual estimates are robust to a variety of approaches to

this extrapolation. This is in part because the extrapolation is typically for the beginning or

end of lifetime tail of product profits, so that lifetime profit projections are not very sensitive

to the method we choose. And further the products that are marginal in our counterfactuals,

in the sense that they exit as entry costs increase, are also marginal in the computation of
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Figure 17: Distribution of Profits Over Age and Across Products.

(a) Cumulative Profits Over the Prod-
uct Lifecycle
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(b) Distribution of Lifetime Profits over
Products

0
.2

.4
.6

.8
Fr

ac
tio

n 
of

 P
ro

du
ct

s

0 200 400 600 800
Lifetime Profits ($ Millions)

mean s.d. 10ptile median 90ptile N
Products with full lifetime during sample period:
Months in sample 21.5 19.8 5 15 47 41
Profit per month ($1000s) 179 612 18 70 211 41
Products with censored lifetime:
Months in sample 53.1 34.9 10 46 100 68
Profit per month ($1000s) 1,347 2,119 41 262 4,067 68
Distribution of lifetime profits (extrapolated where necessary):
Lifetime Profit ($M) 72.6 141.5 1.3 10.5 304.3 109

consumer surplus in that which enter (and even to some extent how many enter) does not

greatly affect total welfare.

The distribution of estimated lifetime profits also makes it clear that many products with

quite low profitability enter the EU, supporting our assumption that the products in the EU

market represent a reasonable approximation to the set of products developed that firms

might consider testing and bringing to market.

E.4 Estimated Bounds on J (T c), PS(T c), FC(T c)

Each of our counterfactuals fully characterizes (bounds on) equilibrium outcomes, but we

include only CS and TS (for our primary fixed cost and existing Jan 2004 sample) in the

paper. Table ?? shows: (a) the distribution of expected profits at Qj0, (b) the number of

new products entering, (c) variable producer surplus, and (d) fixed cost expenditures on

trials, as discussed in the paper.
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Figure 18: Optimal Regulation: Red region provide 95 percent upper and lower
bounds.
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E.5 Post-Market Surveillance and Consumer Surplus

As noted in the paper, the CS metric generates tighter bounds and greater returns to optimal

pre-market policy. The CS metric is of special interest in the post-market surveillance case

because it is derived from only the risk-access tradeoff, not the fixed costs savings from less

trials. As a result, optimal pre-market trial length decreases less quickly with post-market

learning under the CS criterion.
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Figure 19: The Value of Post-Market Surveillance (Consumer Surplus): Plots
of optimal trial length (left panel (a)) and total surplus (right panel (b)) as observational
learning precision 1/σ2

A varies from zero to the clinical trial precision 1/σ2
Ac . 95 percent

confidence intervals, clustered by month, provided by dotted lines.
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(b) Consumer Surplus, CS(σA, T
c∗
CS(σA))
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