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1 Introduction

Most innovative new products are brought to the market because their makers believe they

provide new value. However, once in the hands of consumers, there is always some chance that

the product will not operate as hoped. The consequences of this failure range from consumer

regret about product choice to death. When this risk matters for welfare, products often

must go through pre-market testing and become approved/certified by a formal body before

entering the marketplace. The standards that the regulatory body uses to approve products

has the potential to fundamentally alter market outcomes. We argue that a key decision the

regulator makes in setting its approval criteria is the information the manufacture is required to

generate in order for the product to be approved. As first highlighted by Peltzman (1973) in the

context of pharmaceuticals, higher informational standards increase product-specific learning

and lower consumption risk but also result in delayed access, fewer products, and higher entry

costs conditional on approval. Today such certification processes are commonplace and a source

of controversy in areas as diverse as electronics, airplanes, automobiles, finance, health care,

and toys.1

This paper uses new data and exploits exogenous regulatory differences between the US

and EU to quantify the tradeoff between access and information for medical devices introduced

between 2004-2013. In the US, medical devices are regulated by the Food and Drug Adminis-

tration (FDA) while in the EU device approval is performed by organizations that contract with

the EU called Notified Bodies. Importantly, the different regions apply different standards to

medical device approval. Very roughly, the US applies a “safe and effective” standard while the

EU only certifies safety of the product. This difference is material. Meeting the “effectiveness”

standard often requires manufacturers to generate product performance information through

large-scale randomized clinical trials. These trials are costly in both time and expense. As a

result, medical device manufactures (many of which are US based) typically introduce products

in the EU well before they seek FDA approval, if they decide to enter the US at all. According

to the Boston Consulting Group, between 2005 and 2011, the average high risk and likely high

value medical device was introduced in the US four years later than in the EU. The differences

between the US and the EU in the medical device approval process have led to calls for reform

in both regions. In the US, the FDA has faced attacks from both sides, with some claiming

that a slower, tougher approval process is crippling innovation; and others claiming that the

approval process is too lax, allowing too many dangerous devices into the market.2 Also, as

rising incomes in the developing world lead to both greater incidence of “western” diseases and

greater ability to afford the most advanced technologies, the debate on how to regulate medical

1See, for example in electronics “European Environmental Rules Propel Change in U.S.”, The New York
Times, July 06, 2004; in airplanes “Boeing Acknowledges Tests Underestimated 787 Battery Risks”, The New
York Times, April 23, 2013; in automobiles “U.S. Sues Chrysler After Auto Maker Refuses to Recall Cars”, The
New York Times, June 5, 1996; in finance “An FDA for Securities Could Help Avert Crises”, Bloomberg, April
2, 2012; in toys “Toy Makers Fight for Exemption From Rules”, The New York Times, September 28, 2010.

2For an example arguing the FDA is too lax “Report Criticized F.D.A. on Device Testing”, The New York
Times, January 15, 2009; and too tight “FDA Seeks to Toughen Defibrillator Regulations”, The New York
Times, March 22, 2013.
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devices has taken on global significance, drawing the interest of the UN and WHO.3

Despite the importance of information from product testing and the access/risk tradeoff in

markets where research and development leads to new products with uncertain quality, em-

pirical research has been limited by two major difficulties: (1) finding exogenous variation in

regulatory regimes that can identify the tradeoff between these competing forces; (2) assembling

data and a corresponding empirical framework that can quantify the returns from increased

information relative to the costs of decreased access. In this study we address the first chal-

lenge by exploiting the fact that the EU approval process requires less information from the

manufacturers and as a consequences is both faster and less costly than the US process for any

given device. This difference is largely due to historical political processes and is uncorrelated

with market demand for devices. As depicted in the timeline in Figure 1, this has the dual ad-

vantage of allowing us to observe outcomes for the same devices under two regulatory regimes

with different pre-market testing requirements; and it also allows us to observe EU outcomes

for devices concurrently undergoing US trials and not.

Figure 1: Timeline of EU/US testing and market introduction. All devices enter the
EU after safety trials. Some devices that wish to enter the US then run longer, larger efficacy
trials (concurrent with being used in the EU market).
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To address the second challenge of measuring learning, access, and risk, we acquire monthly

data on product-level prices, quantities, and diagnostic procedures in the US and EU. These

data are collected at the hospital level which we then aggregate to the geographic area. The

data come from Millennium Research Group (MRG), a medical device market research firm.

Our analysis focuses on the market for coronary stents. We chose this segment as the coronary

stent market is large and important with excellent market data and with constant innovations

introduced over time. Coronary stents treat ischemic heart disease—the narrowing of the

coronary artery caused by fatty deposits. Ischemic heart disease is the leading cause of global

3“UN: Western Diseases a Growing Burden on Developing World,” The Wall Street Journal, May 14, 2010.
“Global Forum to Improve Developing Country Access to Medical Devices,” press release, WHO, September 9,
2010.
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death accounting for 7 million fatalities in 2010 (Lozano, 2012). In 2013 total, world-wide sales

of coronary stents exceeded $7.9 billion with the vast majority of those sales occurring in the US

and the EU.4 We will be examining the introduction decisions for second and third generation

stents, so the costs of introduction will be running the required clinical tests and uncertainty

will be about relative quality at the individual product level (as opposed to new-to-the-world

products that may face hurdles to reimbursement by payors and uncertainty regarding the

fundamental technology itself).

We begin the analysis by constructing a theoretical model where products are exogenously

invented with uncertain quality, market entry is regulated, and consumers learn about product

quality over time. The key feature of our model is that the rate of learning in premarket clinical

trials can be greater than the rate of learning after market entry. This introduces a tradeoff

where more regulation leads to more information generation, learning and less risk, but also

delays access and raises entry costs for new products. The model clarifies patterns in the data

that one should expect as a function of the distribution of product qualities invented, the rates

of learning, consumer preferences, and regulatory rules.

Our data analysis then documents multiple patterns consistent with the predictions of the

model. We show that the EU enjoys greater access to the best new medical technologies, while

also bearing greater risk by allowing entry of a wider range of device qualities, earlier in each

device’s lifecycle. The greater access in the EU is evident in the fact that on average 49 percent

of the stents used in the EU are unavailable in the US at that point in time. The greater risk

in the EU is suggested by the facts that on average products in the EU experience less usage

overall and higher volatility in usage patterns when first introduced, with this usage discount

and variance decreasing and stabilizing over the first two years on the market. The US, by

contrast, exhibits no such patterns. We employ a series of reduced form analyses to establish

that the patterns we observe in the EU market are driven entirely by information spillovers from

US clinical trials. By focusing on within-product variation and comparing the same products

launched in different regions (the US and EU) and also EU patterns for products that are and

are not undergoing US trials we are able to rule out alternative mechanisms such as selection

on product quality, non-learning models of product diffusion, learning from observational use

vs. learning from clinical trials, and selection on product uncertainty.

In order to develop welfare measures and address policy questions regarding optimal reg-

ulation, we estimate the structural parameters of the model. We combine the data with our

learning model of product choice to estimate the distribution of product qualities and risk as

well as the speed of learning and preferences of consumers in the marketplace. Consistent with

the reduced form evidence, the demand parameter estimates indicate that FDA required clin-

ical trials generate significant information while there is practically no observational learning

via experience in the marketplace. Furthermore, the estimates indicate that without clinical

trials, the stent market would virtually fail with very few patients selecting a stent due to the

risk of receiving a low quality device.

4Source: BCC Research 2015, “Stents: Technologies and Global Markets.”
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To estimate optimal regulatory policy, we take a partial identification approach instead of

specifying full pricing and dynamic entry/exit models. We develop simple to compute cases

that bound total surplus as a function of regulatory policy, and use these bounds to generate a

partially identified set of regulatory policies. The results imply that total surplus is maximized

when the average premarket clinical trial is at least seven months longer than the current EU

requirements. Around the optimal regulatory policy, total surplus is relatively insensitive to the

time spent in premarket testing, implying that US regulatory policy is statistically equivalent

to the optimal policy.

Some FDA reform proposals advocate for more relaxed pre-market requirements but en-

hanced post-market surveillance. The logic behind this proposal is straightforward. It would

decrease entry costs and entry lags yet would, in principle, maintain the risk reduction of

stricter pre-market regulations. We examine the welfare impact of this policy in the context of

our model and find that if post-approval learning rates approach those we observe from clinical

trials at a comparable cost, the benefits from such a policy change are substantial. In the

extreme case where post-approval learning is fully informative and not too costly, the optimal

policy is to require no pre-approval trials at all, which would yield a welfare increase of 24

percent.

Because our data collection, research design, and modeling efforts are focused on the issue

of information generation, risk, and access, our analysis should be interpreted as holding the

other roles of the regulator as fixed. That is, regulatory bodies also set standards for what

constitutes acceptable evidence and verifying the information produced in trials. We take the

set of new technologies that could enter the market as exogenous and abstract away from the

potentially important feedback effects from the device regulatory regime to the incentives to

invest in new technologies. In this sense our paper is related to the larger literature on quality

information disclosure (e.g. Dranove and Jin 2010), but whereas the focus there is typically

on the difference between no disclosure and some disclosure, our focus is on the amount of

information required, given a basic disclosure regime. We measure how this disclosure affects

market structure and welfare through entry and consumption decisions.

We believe this focus on market structure in our paper is complementary to recent empirical

research on other regulatory tools that affect product entry incentives, such as patent breadth

and length (Budish, Roin, and Williams 2015) and price regulations (Filson 2012). Whereas the

focus of that literature has been on innovative activity with stylized monopoly market struc-

tures, we show that the welfare impact of regulation on market structure and buyer decisions

can be large as well. There are important complementarities between the value of new med-

ical technologies and the regulatory approval product regime. New medical technologies with

uncertain quality can only achieve their welfare potential if the necessary studies to document

the product’s clinical performance are performed. In our setting, the FDA approval process

provides the necessary incentives to do those studies.

More broadly, our work builds on recent empirical research on optimal regulation (Tim-

mins 2002; Seim and Waldfogel 2013 Miravete, Seim, and Thurk 2014) and consumer learning
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(Roberts and Urban 1988; Erdem and Keane 1996; Ackerberg 2003; Crawford and Shum 2005;

Ching 2010), and to our knowledge is the first to combine these two. This combination is essen-

tial in allowing us to build on the pioneering work of Peltzman (1973) where he uses pre-/post-

analysis to argue that the 1962 FDA act which require clinical trials for pharmaceuticals prior

to their introduction to the market harmed consumers by reducing access to drugs without in-

creasing product information. As we rely on established models and frequently available data,

we provide an approach that future researchers might find useful in the area of entry regulation

via product approval/certification processes.

Our analysis of the impact of different regulatory regimes not only speaks to the broad

questions of the economics of product quality regulation, but also informs policy with poten-

tially large welfare consequences. The amount of economic activity regulated by the FDA and

the Notified Bodies is significant. In the US the medical device market sales exceeded $150B in

2010 or 6 percent of total national health expenditures and approximately $130B (7.5 percent)

in the EU.5 Further, the introduction of new medical technologies are responsible for significant

reductions in mortality; and in so far as different regulatory regimes affect the availability of

these technologies, their welfare impact extends beyond their direct impact on commerce.

The remainder of the paper is organized as follows: The next section discusses the institu-

tional background of medical device regulation in the US and EU. Section 3 develops a general

model that captures the tradeoffs involved in regulating market entry of products with uncer-

tain quality and derives testable predictions. Section 4 then tests these predictions in the data,

finding evidence in support of the model. Section 5 takes a structural approach, explicitly

estimating the parameters of the model. Section 6 derives welfare estimates for current as

well as counterfactual regulatory regimes. Section 7 concludes and discusses ways one might

think about extrapolating our results to devices beyond those for which we have data and the

potential for extending our approach to other products and industries.

2 Medical Device Regulation in the US and the EU

Medical device is a term that applies to a broad set of product categories, ranging from crutches

to pacemakers to CT scanners. In this study we will focus on coronary stents, which are

themselves a blockbuster device in terms of sales and health impact, but are also typical of

implantable devices that are deemed “necessary for the sustainment of life” and thus regulated

as Class III devices in the US and EU. It is for this class of devices that EU and US regulatory

approaches diverge most widely, creating the variation we leverage in our study.

Before detailing these regulatory differences, however, it is useful to keep in mind some

basic facts about the structure of decision making and players in the markets for these impor-

tant implantables. First, hospitals generate revenue by performing a procedure (such as an

angioplasty with stent), and the price for purchasing the device is a necessary cost the hospital

must incur. The physician who performs the procedure will typically be compensated either

5Donahoe and King, 2012; Medtech Europe, 2013
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as a salaried employee of the hospital, or on a fee-for-service basis for the procedure, where

in either case importantly the financial benefits to the physician are unrelated to the specific

brand of device used. Physicians typically have strong preferences about which brand of de-

vice is best to use for a given patient/lesion type (devices in this class are often referred to

as “physician preference items”) because devices are differentiated in physical characteristics

of the implanted device itself (for a stent examples are shape, strength, flexibility, and type of

drug/polymer) and also characteristics that effect ease of implantation (for stents unexpanded

size and flexibility, and controls and capabilities of the catheters and balloons used in deliv-

ery). The supply side of the market is thus a differentiated oligopoly, and prices are typically

negotiated between manufacturers and hospitals or hospital systems.

For the purposes of this study the most important features of the stent market to note

are the constant innovations over time in terms of both vertical quality advances that make

similar yet better products for the mass market, and also horizontally differentiated products

designed to address less common niche markets such as small vessel and bifurcated lesions.

Interventional cardiologists are a relatively small community who stay engaged with current

and upcoming technology developments through journals and several well-attended meetings

each year (TCT each October, ACC in March, and ESC in August each year, as well as

numerous regional affiliated conferences throughout the year) at which the most recent results

of in-progress clinical trials are reported. The result is an active community that both cares

and knows about the most recent technologies and evidence for these technologies.

2.1 Similarities and Differences in US and EU Regulation

Medical device regulation in the US began with the passage of the Medical Device Amendments

Act of 1976. This law established the regulator pathway for medical devices in the US, placing

oversight authority within the Food and Drug Administration (FDA). The criteria the FDA

is mandated to use is “safe and effective.” Prior to the passage of the Act, there was little

regulatory oversight of the medical device sector. The Act established three classification of

devices (I, II and III) which are assigned based on the perceived risks associated with using the

device. Class III devices are defined as those used in in supporting or sustaining human life,

of substantial importance in preventing impairment of human health, or presents a potential

unreasonable risk of illness or injury. Class I and Class II devices are lower risk devices for

which there is a sufficient body of evidence demonstrating a performance standard for the

design and manufacturing of the device.

There are two basic regulatory pathways within the FDA to bring a device to market: Pre-

Market Approval (PMA) and the 510(k). The PMA process applies to Class III devices, while

the 510(k) process generally applies to Class II and some Class I devices. Under the 510(k)

process the manufacturer needs to demonstrate that the device is ‘substantially equivalent’

to a predicate device. Generally, bench testing data and perhaps a very small clinical study

is all that is necessary for a device to demonstrate equivalency. While there is no standard

timetable for 510(k) clearance, a straightforward clearance can typically be obtained within
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several months.

However, the approval process is much more complicated and costly for PMA devices.

Approval of a PMA device generally requires the sponsor to provide data from a pivotal study.

These are large, multi center, randomized clinical trials. These studies involve hundreds to

thousands of patients and cost tens of millions of dollars to complete. In 2012, only 37 PMAs

were approved by the FDA.

In the EU the device approval process for Class III devices is very different than in the

US.6 Medical devices are regulated by three EU Directives. The main directive is the Medical

Devices Directive which passed in June, 1993 and has been adopted by each EU member

state. A medical device is approved for marketing in the EU once it receives a ‘CE mark’

of conformity. The CE mark system relies heavily on third parties know as “notified bodies”

to implement regulatory control over devices. Notified bodies are independent, commercial

organizations that are designated, monitored and audited by the relevant member states via

“competent authorities.” Currently, there are more than 70 active notified bodies within the

EU. A firm is free to choose any notified body designated to cover the particular type of device

under review.7 To obtain an CE mark a Class III medical device needs to only demonstrate

safety and performance. Compliance with this standard usually can be demonstrated with

much simpler and cheaper clinical trials than required by the FDA. In both the US and EU,

new-to-the-world devices may face the additional hurdle of gaining payor reimbursement, but

the devices we study are second and third generation products, so coverage determination has

already been made prior to their introduction.

The differences in the two regulatory regimes is largely a consequence of different histories

that lead up to the passing of the primary medical device legislation in the two regions. The

Medical Device Directive, the centerpiece of the EU medical device regulatory framework, was

passed in 1993 when there was keen interest in a new approach to harmonizing regulatory

frameworks across the member states. The EU had just undertaken a long and frustrating

harmonization process for food and drugs. This new approach sought to avoid detailed and

bureaucratic government approval processes, particularly duplicative approvals. This frame-

work was also applied to other products including toys, pressure vessels and personal protective

equipment. In contrast, the US medical device regulatory framework was established after the

Dalkon Shield injured several thousand women which garnered significant public outcry. The

FDA already had oversight on some aspects of medical devices and expanding that role was the

most viable political option. At that time, a non-governmental approach to device regulation

was never seriously considered by the Congress.

The gap between the two regulatory systems is the focus of a number of consulting, lobbying,

and government reports. For example, a series of Boston Consulting Group reports shows that

there is no difference in recalls between devices that are marketed in both the US and the EU.

6Actually, there are four different classes of medical devices in the EU(Classes I, IIa, IIb and III). Class III
devices in the EU closely map into Class III devices in the US.

7See Guidelines Relating to Medical Devices Directives, http://ec.europa.eu/health/medical-
devices/documents/guidelines/.
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Of course, as we show below, the mix of devices that are introduced into the US is different and

thus it is unclear what this study says about the impact of counterfactual regulations on device

safety. In fact, the FDA countered the BCG report with their own case study of 10 devices

that were approved in the EU, not approved by the FDA, and lead to significant adverse events

in patients. The FDA study only focused on the negative consequences of the EU’s relatively

lax regulatory standards and does not acknowledge the benefits of greater access to devices in

the EU.

While the consequences of the different regulatory regimes has generated significant policy

debate, what is less controversial is that there are significant lags between the US and the EU

in device introduction. Conditional on entry into both the US and the EU, BCG documents

that medical devices are introduced into the US approximately four years after the EU.8 In

the next section we develop a theoretical framework for assessing the trade-offs inherent in the

different regulatory approaches. A notable advantage of our model is that the key parameters

can be directly estimated from commonly available data, and thus the welfare of counterfactual

policies can be assessed.

3 A Model of Quality Uncertainty, Learning, Entry Regulation,

and Consumer Choice

We now develop a model that captures the tradeoff between risk and access involved in regulat-

ing market entry of products with uncertain quality. In our model, products are developed with

uncertain quality; this uncertainty is potentially resolved over time via exogenous signals (e.g.

from clinical trials or other research); a regulator restricts entry by requiring costly premar-

ket clinical trials to accelerate learning; and risk-averse consumers choose from the available

products in the market at a point in time.

Our model captures many of the salient features of medical device markets and the role of

the regulator. However, the medical device sector is complicated and there are notable insti-

tutional features that we purposefully de-emphasize in order to keep the model tractable and

parsimonious. As we have modeled, medical device quality is uncertain, but this uncertainty is

symmetric among manufacturers, regulators, and consumers. If manufacturers are differentially

informed about their devices quality, device regulation could solve a lemons problem (Leland

1979). At the extensive margin of whether to have any regulation at all, the lemons problem is

surely relevant. However, our focus is on the appropriate standards of that regulation not on

whether the regulation should exist at all. The variation that we exploit aligns with this focus.

The EU is more lax in their standard relative to the US yet we are unaware of any significant

evidence that the device market in the EU ‘unravels’ more than in the US. In fact, the presence

of many more device offerings in the EU suggests that the variation in regulations between the

US and EU is not a margin that would induce a lemons type market failure. This may be due

to the fact that the relatively small number of interventional cardiologist who use the devices

8BCG (2012) Regulation and Access to Innovative Medical Technologies.
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we study tend to stay well-informed about the most recent clinical updates for the products on

the market (two days each at the three major conferences are devoted to reporting such data).

We also do not model the possibility that the regulator will reject a device. We do, however,

allow for manufacturers’ optimal entry decisions in the face of clinical trial and entry costs

conditional on developing the device. This amounts to an implicit assumption that no firm

would enter with a product the regulator would want to reject, which is exactly the case under

our symmetric information assumption.9

The next several subsections lay out the model. Section 3.1 describes how market par-

ticipants learn about product quality over time, Section 3.2 describes consumer behavior and

how it is affected by uncertainty about product quality, Section 3.3 turns to supplier pricing

and entry, and finally Section 3.4 lays out the role for a regulator to affect total surplus via

information requirements and their effect on risk and access.

3.1 Consumer Learning

In our framework, consumers (and manufacturers and regulators) are uncertain about the

quality of newly developed stents. Information on the quality of a given a stent accrues to

the market over time from two sources, and the quality of the information from each source is

potentially different. First, products undergo clinical trials, and information from these trials

diffuses to physicians through updates reported at major cardiology meetings throughout the

year and published articles in medical journals. Second, usage of the product may generate

observational learning which is then shared and diffuses to the market.

Specifically, we assume innovative new devices j are each developed with quality Qj accord-

ing to a distribution Ft(Q):10

Qj ∼ Ft(Q) := N(Qt, σ
2
Q). (1)

where the subscript t allows for technological advancement over time.11

Over time, unbiased but noisy signals A arrive regarding the product’s quality as new

information from ongoing clinical trials and real world usage are generated, released, and

diffused into the market. Letting age a denote the time since product j was introduced into

9The FDA does not report data on the number of PMA applications that are rejected. However, there are
frequent communications between the FDA staff and the device manufacturer over a given application and the
evidence the FDA needs to see prior to granting approval. Thus, our impression is that there are few devices
that submit a full PMA applications that are rejected as the process is costly for the manufacturer and they have
a relative precise estimate of the likelihood of approval prior to submission. This differs from the pharmaceutical
context where there is often disagreement between the manufacturer and regulator regarding the weighting of
any positive treatment effect vs. potential negative side effects. Due to their local and mechanical nature,
devices typically have few if any severe side effects.

10For simplicity, we assumed the prior and signal process to be normally distributed. In principle, we could
relax this assumption. However, sample size limitations make taken a more non-parametric route undesirable,
and we find that the simple normal model fits the data quite well with a small number of parameters.

11We abstract away from any feedback effects from the regulatory regime on the incentive of device manu-
facturers to invest in developing new products and assume that the quality distribution is exogenous.
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the market (not calendar time), Aja is given by:12

Aja = Qj + νja where νja ∼
{

N(0, σ2
Ac) if in clinical trials

N(0, σ2
A) if not

(2)

Given these signals, beliefs about product quality are updated via Bayes’ rule, and due to

the normally distributed prior and signal, posterior beliefs are also distributed normal with

mean:

Qja+1 =
σ2
ja

σ2
ja + σ2

Aja+1

Aja+1 +
σ2
Aja+1

σ2
ja + σ2

Aja+1

Qja (3)

and variance:

σ2
ja+1 =

σ2
Aja+1

σ2
ja + σ2

Aja+1

σ2
ja. (4)

With this uncertainty and learning as a backdrop, the regulator must decide on the required

length of clinical trials, trading off the costs of later access versus the benefits of more informa-

tion and thus reduced risk. Once a product has been subjected to the required clinical trials,

it is released to the market and consumers (doctors and patients) make decisions about which

product to use given the current available choice set and information. Because the regulator

weighs the implications for total surplus in its decision, we begin with the consumers’ problem

and work backwards.

3.2 Consumer Choice

Given beliefs regarding a stent’s quality and the uncertainty over that quality, we assume

consumers select the stent that yields the highest expected utility. For each patient/doctor

combination i the indirect expected utility function from using device j at time t (where the t

subscript refers to the calendar month, which will be associated with different product age a

for different products) takes the form

uijt = Qjt −
ρ

2
σ2
jt + ǫijt, (5)

where ρ is the coefficient of risk aversion, and ǫijt is an i.i.d. error term capturing the deviation

of doctor preferences and/or patient appropriateness for device j relative to the population

average. In our empirical exercise, we do not find price to be a statistically or economically

significant determinant of demand. This is not surprising since the vast majority of patients

receiving a stent are insured and physicians generally do not have an incentive to consider

device cost in their product selection decision. For this reason, we leave price out of the

demand specification.13

12We assume that information release from a clinical trial accrues to the market with a consistent signal each
month. This fits with the regular release of interim results at major meetings and in journal articles. We have
examined and found no evidence of a discrete demand response in the EU upon US trial completion or FDA
approval.

13See Appendix D for regressions with price. Prices for stents are generally set via bargaining between the
relevant hospital authority and the device manufacturer, and thus a pricing equilibrium exists even though

11



Assuming consumers choose the product j that maximizes expected utility from the set of

products available Jt, the set of patients for whom a doctor chooses product j (in month t) is

then Ajt := {i|j = argmaxk∈Jt uikt}. Then expected quantities are then given by the market

size Mt and the choice probabilities:

qjt = Mtsjt = MtPr[j = argmax
k∈Jt

uikt] = Mt

∫

Ajt

ft(ǫ)dǫ =
eQjt−

ρ
2
σ2
jt

∑

k∈Jt
eQkt−

ρ
2
σ2
kt

, (6)

where the last equality obtains from the standard “logit” assumption that ǫ is distributed i.i.d.

extreme value type I with unit variance. The choice set always includes an outside option j = 0,

with utility normalized to zero, representing the best non-stent treatment for that patient.

Total surplus per patient (relative to the best non-stent alternative; not including fixed

costs) can then be obtained by summing over patient utility:

TS(Jt) =

∫

Ajt

uijtft(ǫ)dǫ = ln





∑

j∈Jt

eQjt−
ρ
2
σ2
jt



 , (7)

where the final equality obtains from the logit distributional assumption on ǫ.

3.3 Bounds on Supply Effects on Total Surplus

We are interested in total surplus as the object that the regulator should seek to maximize in

its choice of the optimal length of clinical trials T c. Total surplus is a function of the choice set

Jt, which in turn is a function of supplier entry behavior, given costs of trials required for entry

φe(T c) and expected profits after entry, conditional on the expected behavior of other firms.

A fully specified supply model requires models of pricing and entry/exit dynamics. In the case

of our analysis, both of these modeling efforts would entail a combination of approximating

assumptions and work at the frontier of both the business-to-business contracting and dynamic

oligopoly literatures. For pricing, we would need to either construct an approximate expected

price function at our region-time level of analysis, or build on the hospital-time level analysis

in Grennan (2013, 2014) to allow for strategic choice in who contracts with whom (Lee and

Fong 2013), an important feature of the EU market during the time frame we study. For

dynamic entry and exit, we face a problem with a large and continuous state space, requiring

approximations of the type explored in recent papers such as Ifrach and Weintraub (2014).

Because constructing such models involves a substantial refocusing of the contributions of this

paper to arrive at point estimates that would be caveat to a number of additional modeling

and approximating assumptions, we instead take a bounds approach to partially identify the

answers to our policy questions of interest.

We construct bounds on the total surplus generated under any regulatory policy TS(T c)

that rely on weak assumptions on supply side behavior:

consumer demand is perfectly inelastic. See Grennan (2013) (which also finds an economically small response of
demand to price) for more discussion on the role of bargaining in determining stent prices.
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Supply Assumption 1 (EU Entry Costs): EU entry costs are low enough such that all

products developed with positive expected profits after EU testing enter.

Supply Assumption 2 (Entry Policy): The equilibrium entry policy of firms is increasing

in own expected profits: πj > π′
j ⇒ Pr[Enterjt|πj ] > Pr[Enterjt|π′

j ]

Supply Assumption 3 (Pricing): Prices are bounded by the marginal contribution of the

product: pj − cj ≤ TS(J )− TS(J \ {j}).

Under these three assumptions, we can construct upper and lower bounds for total surplus.

The upper bound is given by the case where there are no direct fixed costs of longer clinical

trials, so all firms enter in equilibrium, and the only impact of increasing trial length on market

structure is to delay access to the newest technologies (in addition to increasing learning). The

lower bound is given by assuming that the cost of trials is $1.6M per month, but with firms’

entry decisions made under the assumption that other firms enter as if entry costs are zero.

Less firms will enter than in a full equilibrium model because this case doesn’t allow expected

market shares and prices to increase as fixed costs increase and the market becomes more

concentrated. Full proofs for both of these bounds are provided in Appendix A.1.

The advantage of these particular bounds is their simplicity of computation. Expected

profits and thus entry decisions can be computed directly from the data, and then total surplus

can be computed using the estimated demand model for the set of products that enter. How

informative these bounds will be depends on the size of trial costs relative to the distribution of

product qualities in the data. The bounds will be equal to each other and the full equilibrium

model at T c = 0 (the case of no US trials beyond EU requirements), then diverge as increasing

entry costs drive a wedge between the entry assumed in the bounds and the entry that would

obtain in a full equilibrium.

3.4 Modeling the Regulator’s Tradeoffs

The total surplus equation (7) captures the primary tradeoff between access and risk: the longer

time T c that products spend in premarket clinical trials, the lower the risk from uncertainty

about product quality in the market σjt, but the less new technologies available in the consumer

choice set Jt at any point in time and greater costs of entry. This tradeoff can be formalized

by writing total surplus as a function of time spent in premarket clinical trials and considering

the marginal return to increasing the amount of time spent in premarket testing to T c+1 over

any time period t = 1, ..., τ :

TS(T c + 1)− TS(T c) =

τ
∑

t=1

ln





∑

j∈Jt(T c+1) e
Qjt−

ρ
2
σ2
jt(T

c+1)

∑

j∈Jt(T c) e
Qjt−

ρ
2
σ2
jt(T

c)



− φe |J e
t (T

c + 1) \ J e
t (T

c)| ,

(8)

where J e
t (T

c) is the set of firms who enter in period t, given testing requirements T c. From the

social planner / regulator’s perspective, the optimal length of a clinical trial sets (8) to zero.
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One way to very clearly see the tradeoff between access and risk as a function of trial

requirements is to consider the simplest scenario where there is no observational learning once

a product enters the market and no direct cost of premarket testing. In this case, the per-

period marginal return to increasing premarket testing simplifies (proof of this special case and

simplification in Appendix A.2) to:

TS(T c + 1)− TS(T c)

τ
=

ρ

2
(σ2

T c − σ2
T c+1)−

1

τ
ln

(
∑

j∈Jτ (T c) e
Qjt

∑

j∈J0(T c) e
Qjt

)

. (9)

The first term captures the per period utility gain from decreased risk (and is determined by

the unconditional uncertainty in product quality σQ and the rate of learning in trials σAc). The

second term captures the total surplus generated by the rate of technological improvement in

product quality over time (which will be determined by the rate of drift in product quality over

time Qt and the expansion of variety in the choice set Jt).

3.5 Model Predictions to Take to the Data

The model has several testable implications that we can take to the data. In order to map

the model into the data, we make a revealed preference assumption and match the choice

probabilities implied by utility maximization to the market share data, and invert the system

as in Berry (1994) to recover the mean utility estimates for each product in each month:

ln(sjt/s0t) = δjt := Qjt −
ρ

2
σ2
jt . (10)

The model then implies the following:

Prediction 1 (Time and Monetary Costs of More Stringent Regulation): If the US

requires longer clinical trials (T c,US > T c,EU ), this implies that for the set of products

introduced in both the EU and US, US entry should lag EU entry. Further, if trials have

non-negligible direct costs, then the US should experience less entry than the EU.

Prediction 2 (Learning): Learning implies that product-specific quality estimates converge

with age (|δja − δja+1| ցa→∞ 0).

Prediction 3 (Risk Aversion): If consumers (doctors making decisions on behalf of their

patients) are risk averse (ρ > 0), then product usage (on average for a given age to

remove signal noise) should increase as learning occurs ( 1
Ja

∑Ja
j=1,a=a δja րa→∞ Q).

The summary statistics and reduced-form analysis in the next Section will use these pre-

dictions in exploring how much more stringent the US regulatory policy actually is relative to

the EU, and the implications for learning, risk, and access in the market.
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4 Data and Preliminary Analysis of Access/Risk in US and EU

In this Section we introduce the data on product entry, usage, and pricing that we use in our

analysis. We then proceed to document the basic patterns in the data as they relate to our

model and the mechanisms behind product learning, risk, and access.

The data used in this study consists of quantities and prices at the product-hospital-month

level, collected by Millennium Research Group’s (MRG) MarketTrack survey of hospitals across

the US and EU from 2004-2013. This survey—covering approximately 10 percent of total

market activity—is the main source of detailed market intelligence in the medical device sector,

and its goal is to produce representative estimates of the distribution of market shares and prices

by region. Though we use the hospital level data for some relevant summary statistics, for the

majority of our analysis we aggregate the data to the region-month (US and EU) level in order

to obtain accurate measures of market entry and overall usage of each device within a region,

which is the relevant unit of observation for this study. In principle we could perform the

analysis at the country level. However, because of MRG’s sampling hospital sampling strategy,

country level measures of market shares would likely contain significantly more measurement

error than the regional measures. The demand models we estimate are not well suited to data

with significant measurement error in the market share information and primarily for that

reason the unit of analysis is the region.

In addition to the detailed market data, we also collected clinical trial data from various

journal articles, conference abstracts, press releases, and product catalogs for a subset of prod-

ucts for which we could locate such data online. This data provides further evidence regarding

the size and length of trials required for US versus EU entry.

4.1 The EU has Access to More, Newer Technologies

Our model and qualitative institutional knowledge predict that the EU enjoys greater access to

a broader variety of devices and these devices are available earlier than in the US. However, EU

consumers will posses less information on the quality of these products and hence face greater

risk from lower quality products. Below we show that these predictions are borne out in the

summary statistics.

The top third of Table 1 presents summary statistics for our clinical trial data. We were able

to find such data for 48 percent of the products entering the US and 16 percent of the products

that enter the EU only. Conditional on publishing a clinical trial online, the informational

content of the EU-only products is much less than products that are introduced in the US:

On average, US clinical trials enrolled over 1,200 patients and lasted almost 3 years, while the

EU-only products enrolled a third of the patients and the trials were 66 percent shorter in

duration.

The bottom two thirds of Table 1 and Figure 2 show how these pre-market testing require-

ments are correlated with market structure and product usage in the US and the EU over

our sample period. The EU has over three times as many manufacturers and products in the
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Table 1: US and EU differences in clinical trial size and length, and resulting
differences in market structure. The US has longer, larger clinical trials, less manufacturers
and products, and later entry dates than the EU for the subset of products that enter the US.

US EU

Clinical trial data:
Mean clinical trial size (patients) 1252 471
Mean clinical trial length (months) 32 11

Market structure data:
Mean manufacturers in market 4 21
Mean products in market 11 39
Total products in market (2004-13) 21 109

Mean months from EU to US entry 10 -
Mean months from EU to US entry (DES) 17 -

Figure 2: EU market share of products not available in US. On average over the
sample period 49 percent of stents used in the EU were not currently available in the US; and
23 percent were never available in the US.
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market. For those products that eventually enter the US, the average lag time between EU and

US introduction is 10 months (17 months for the more technologically advanced DES). Many

of the products to which the EU has greater access are important, frequently-used products.

In the average month, 49 percent of the stents used in the EU are unavailable in the US at

that point in time, and 23 percent will never be available in the US. Our subsequent analysis

will show this is a mixed blessing, with some greater access to new high-quality products, and

some usage of uncertain products that turn out to be low quality ex-post.
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4.2 The EU Grants Access to More Technologies with Lower and More

Uncertain Quality

The data on clinical trials suggests that less information is generated for devices in the EU. We

also documented that the EU has access to more devices. In the context of our model, these

two observations imply that this greater access enjoyed by the EU comes along with greater

risk in the form of more low quality devices and more uncertainty regarding device quality at

the time market access is granted. Below, we document the presence of these patterns in our

data.

Figure 3: EU vs. US. Left panel (a) plots mean across products of the mean utilities
1

Ja

∑Ja

j=1
ln(sj/s0) by age since introduction into each region. Right panel (b) plots mean

absolute differences 1

Ja

∑

j | ln(sja/s0a)− ln(sja+1/s0a+1)| by age, which should be larger with
more uncertainty, and converge toward zero with learning.

(a) Meanj|a ln(sjt/s0t)

−
8

−
7
.5

−
7

−
6
.5

−
6

−
5
.5

−
5

−
4
.5

−
4

−
3
.5

In
c
lu

s
iv

e
 S

h
a
re

 (
M

e
a
n
)

0 12 24 36
Age Since Introduction to Region (Months)

EU US

(b) Meanj|a | ln(sjt/s0t)− ln(sjt+1/s0t+1)|
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Figure 3 begins to explore the idea that EU consumers bear more risk than those in the

US by introducing a larger number of devices earlier in their life cycles with less information

imparted about the quality of those devices. Panel (a) shows that in the EU the mean across

products of a given age of the mean utility estimates 1
Ja

∑

j ln(sja/s0a) is lower upon introduc-

tion and gradually increases with age, plateauing after approximately two years in the market.

The pattern in the US is different. There the mean of the mean utility estimate does not vary

with product age and is higher on average.

Panel (b) plots mean absolute differences of the mean utility estimates over time 1
Ja

∑

j | ln(sja/s0a)−
ln(sja+1/s0a+1)|, which should asymptote toward zero as learning moves the quality estimate,

Qja, toward true quality, Qj . Again, this statistic is decreasing in the EU and constant over

the product lifetime in the US.

These inclusive share patterns are consistent with greater uncertainty regarding product

quality early in the product lifetime in the EU which is gradually resolved over time via learning.

The fact that the mean inclusive share in the EU is lower early on aligns with our model

if consumers are risk averse and are discounting products whose quality is more uncertain.
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However, these plots with the raw data leave open several alternative explanations, which are

explored further in the next section.

4.3 Evidence of Learning Versus Diffusion or Selection

While the patterns in the raw data in Figure 3 are consistent with our model of learning, they

are also potentially consistent with several alternative mechanisms: drivers of product diffusion

other than learning, observational learning flowing from the EU to US, and product selection

on uncertainty or on quality via early exit. Figures 4 and 5 rule out these alternatives in favor

of the mechanism of EU learning through US clinical trials.

All of the patterns in these figures are constructed after subtracting product means, so

that all patterns are driven by within-product variation over time. In particular, this rules out

any composition effect whereby increasing usage with product age is driven by worse products

exiting the market at a younger age.

Figure 4: Same products, EU vs. US. Left panel (a) plots mean across products of the

mean utilities 1

Ja

∑Ja

j=1
ln(sj/s0) by age since introduction into each region. Right panel (b)

plots mean absolute differences 1

Ja

∑

j | ln(sja/s0a)− ln(sja+1/s0a+1)| by age, which should be
larger with more uncertainty, and converge toward zero with learning.

(a) Meanj|a ln(sjt/s0t) (within product)
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Figure 4 compares patterns for the exact same products in the EU vs. US. The fact that

mean of mean utility estimates in panel (a) is flat in the US rules out that the increasing usage

with age is driven by marketing, sales or distribution efforts that are specific to product launch

in a new region—if it were such a non-learning diffusion story the US would exhibit a similar pat-

tern (and the learning effect could then be estimated as the difference between the shapes of US

and EU curves). Panel (b) plots mean absolute differences 1
Ja

∑

j | ln(sja/s0a)−ln(sja+1/s0a+1)|,
which which in the EU starts near 0.7 logit utils and converges fairly rapidly over the first 6-12

months on the market before leveling off around 0.2 (that it does not asymptote to 0 sug-

gests there is some unobservable source of noise in the product usage data that we have not

modeled). By contrast, in the US this same quantity stays level at 0.2 the entire time after
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introduction. That the volatility and mean usage in the EU converge to US levels when we

restrict the sample to the same products in both regions is consistent with learning occurring

during the time these products are in the EU, and risk-averse users responding to this learning.

Figure 5 explores whether the source of this learning is from observational usage in the EU or

from US clinical trials.

Figure 5: EU only, products in trials vs. not. Left panel (a) plots mean across products

of the mean utilities 1

Ja

∑Ja

j=1
ln(sj/s0) by age since EU introduction. Right panel (b) plots

mean absolute differences 1

Ja

∑

j | ln(sja/s0a)− ln(sja+1/s0a+1)| by age, which should be larger
with more uncertainty, and converge toward zero with learning.

(a) Meanj|a ln(sjt/s0t) (within product)
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(b) Meanj|a | ln(sjt/s0t)− ln(sjt+1/s0t+1)|
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Figure 5 compares products in the EU: (1) that undergo clinical trials for US release (a

set that is the same as the EU products that eventually enter the US shown in the previous

figure, plus a few products that undergo US trials but are not introduced to the US); and

(2) that never undergo trials beyond those required for EU introduction. The mean of mean

utility estimates in panel (a) reveal that all of the evidence of learning is driven by those

products in clinical trials. The curve is flat for products not in trials, which not only rules

out observational learning for these products, but also rules out diffusion driven by marketing,

sales, or distribution of new-to-the-world products. The mean absolute differences in panel

(b) reconfirm that the learning in the EU is driven by the products undergoing clinical trials.

Importantly, they also refute the argument of selection on uncertainty, as the EU products not

in trials begin near 0.7 (the same as the products in trials), but remain flat near 0.7 over time,

suggesting that there is plenty of uncertainty for these products, but no learning.

Thus the evidence from the data is consistent with our model in which there is uncertainty

about new product quality, learning occurs over time, and risk-averse decision makers factor

uncertainty about quality into their product choice. The data also suggests that there is

very little observational learning outside of clinical trials. This is perhaps not surprising as the

interventional cardiologist who selects and inserts the stent is generally not performing any long-

term monitoring. Thus, they are not well positioned to accumulate information about a stents
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performance from their own experience or other interventional cardiologists’ experience. We

will return to the potential value that might be created if this type of “post-market surveillance”

were increased.

4.4 Regulatory Differences Are Not Driven by Differences in Disease Inci-

dence or Treatment Preferences

In theory it could be that the differences in usage patterns between the US and EU are driven

by differences in disease incidence, preferences for angioplasty and stents, or variation in price

setting regimes between the US and EU. However, all the evidence that we have been able

to gather indicates that these explanations do not plausibly explain the patterns in the data

described above. For example, the average ischemic heart disease mortality rate is very similar

between the US and the EU, suggesting that the disease incidence is also similar. The 2010

mortality rate in the US for ischemic heart disease was 126.5 deaths per 100,000; and the

corresponding figure for the EU is 130.0 per 100,000.14 This modest differential seems unlikely

to account for the stark differences of entry rates between the two regions.

Figure 6: Comparison of diagnostic procedure patterns, EU vs. US. Left panel (a)
plots the distribution of number of diagnostic procedures across hospitals—the US and EU are
nearly identical. Right panel (b) plots the distribution across hospitals of the probability that
a diagnostic procedure results in stenting—the EU is shifted slightly to the right of the US,
with a mean of 32 versus 28 percent.
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Prior to performing an angioplasty in which a stent may be inserted, the patient must

undergo a diagnostic angiography. In this procedure, the blood flow through the coronary

artery is visualized and this information is used to determine whether the patient should receive

a stent or some other medical intervention. If the difference in the number of stents available

between the EU and the US was driven by higher demand for stents, then it should show up

in the data with the EU performing a larger number of angiographies or having a higher rate

14OECD Health at a Glance, 2013.
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of stenting conditional on the angiography rate. Figure 6 documents the distributions of the

number of diagnostic angiographies performed across the hospitals in our data and percent of

those diagnostic procedures resulting in a stenting procedure across hospitals in the US and

EU samples. The distributions are close to identical statistically, with the EU having a few

more small volume hospitals and hospitals that are more likely to place a stent conditional

upon a diagnostic procedure. In the EU, 32 percent of patients received a stent conditional

on an angiography while in the US that figure was 28 percent. Like the evidence on heart

disease prevalence, this small difference seems unlikely to explain the large disparity in entry

rates between the two regions.

Figure 7: Comparison of usage and price patterns EU vs. US. Left panel (a) plots the
percentage of stents used that are DES over time—the US uses DES 72 percent of the time on
average, while the EU averages 49 percent, but both follow the same qualitative pattern over
time. Right panel (b) plots quantity-weighted mean prices for DES and BMS over time—all
prices fall over time, but EU prices for both technologies are on average 60 percent of those in
the US.
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Figure 7 documents that DES usage as a percentage of all stents used is lower in the EU

but follows similar patterns to the US over time. If the increased DES entry in the EU was

driven by higher demand, we would expect the opposite pattern. Figure 7 also shows that the

prices and hence profits per stent sold are lower in the EU. This is true for both BMS and

DES and is true over our entire sample period. Both of these patterns are likely the result

of lower reimbursement levels for stent procedures overall, lower DES reimbursement levels

in particular, and more competing devices in the EU market. These findings suggest that

conditional upon FDA approval, average variable profit in the US is higher making it a more

attractive entry target than the EU. This, in turn, suggests that the differential entry rates is

driven by differences in regulation and not underlying demand.
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5 Identification, Estimation, and Results

The statistics presented in the previous Section 4 align with the predictions of the model of

regulation and learning developed in Section 3 and suggest that the EU is indeed less stringent

than the US in regulating the entry of new medical devices. In this Section we estimate

the parameters of our model in order to better understand and quantify the broad impact

of product regulation policies on welfare. Using the quantity date from the EU 2004-13, we

estimate the distribution of product quality for innovations that could be introduced in the

US and EU, the rates of learning over time, and risk aversion. We then use the parameter

estimates to explore the economic and policy implications of our model. Specifically, we quantify

the welfare generated under different premarket clinical testing requirements (including those

observed in the EU and US) and under a proposed alternative policy that would relax premarket

requirements but increase the rate of observational learning through increased post-market

approval data collection and reporting.

The parameters of the utility function—and by extension the parameters of the device qual-

ity distribution and learning process—can be estimated by a revealed preference assumption

and data on device market shares in each month. Matching the choice probabilities implied by

utility maximization and the market share data, and inverting the system as in Berry (1994)

to recover the mean utility parameters gives

ln(sjt/s0t) = δjt := Qjt −
ρ

2
σ2
jt := Qj −

ρ

2
σ2
jt + ξjt , (11)

where the unobservable ξjt in the final equation includes any errors in the current expected

quality estimate Qjt. The main challenge here is that none of the variables on the right hand

side of this equation are directly observed in the data. Our strategy will be to use variation

over time and across products to estimate the product qualities Qj , the mean Q and variance

σ2
Q of the product quality distribution, the signal variances σ2

A and σ2
Ac , and the risk aversion

parameter ρ.

5.1 Identification and Estimation of Demand and Learning

We estimate the parameters via a generalized method of moments algorithm (detailed in Ap-

pendix C). A simple and semi-parametric way to estimate Equation (11) would be to regress

the inclusive shares ln(sjt/s0t) on product and age fixed effects (age fixed effects interacted with

whether a product is in clinical trials or not to allow for differential learning rates from trials

and observation). The age fixed effects would then capture the combined effect of learning and

risk aversion on utility. However, because we are interested in questions that involve market

reactions to different learning rates and levels of risk, we need to add structure via the learn-

ing model to disentangle these forces. Comparison to the fixed-effect model provides a useful

benchmark for assessing the fit of the more parsimonious and parametric learning model.

As with most empirical learning models, the identification of the signal precision depends on

fitting the model to the shape of how choice behavior changes with the age of the product. The
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risk aversion parameter is then identified as the multiplicative shifter that best fits that shape

to the observed choices. In our simple learning model, identification is even clearer because

learning is identified by the fact that product-specific quality estimates converge over time. Risk

aversion is then identified by how choice probabilities increase (or don’t) as learning decreases

uncertainty. This can be seen in the first panel of Figure 8, where the distance between the

light blue dotted lines—which are each standard deviation of inclusive shares for a given age

(net of product fixed effects) away from the mean—decreases with age, identifying learning.

And as this variation decreases, the mean inclusive share increases, identifying risk-aversion.

Figure 8: Identifying learning (and risk aversion) for clinical trial vs. observational
learning. Plots of mean across products (product means removed) of mean utility estimates
1

Ja

∑Ja

j=1,a=a(ln(sjt/s0t)−Qj)—and plus and minus one standard deviation of inclusive share
across products—by age since EU introduction. Left panel (a) uses only products undergoing
clinical trials for US introduction. Right panel (b) uses all other products, where learning is
only observational.

(a) Products in Clinical Trials

−
3

−
2

−
1

0
1

In
c
lu

s
iv

e
 S

h
a
re

0 12 24 36
Age Since EU Introduction (Months)

Mean Over Products +/− Standard Deviation

(b) Observational Only
−

3
−

2
−

1
0

1
In

c
lu

s
iv

e
 S

h
a
re

0 12 24 36
Age Since EU Introduction (Months)

Mean Over Products +/− Standard Deviation

Comparing the two panels in Figure 8 shows how we are able to separately estimate the

rates of learning in FDA required clinical trials σAc and observationally σA because we observe

all products post market approval in the EU, and a subset of these products are concurrently

involved in clinical trials required for eventual FDA approval. For the products in the right

panel where learning is only observational or through non-FDA required trials, there is little

if any of the narrowing of variance or increase in mean observed for the products in clinical

trials. The learning and risk parameters are estimated using the within-product variation, as

they are all conditional on the product fixed effects whose parameters provide estimates of the

product qualities Qj .

We use the empirical distribution of the product fixed effects estimated from the EU data

to estimate the mean Q and variance σ2
Q of the distribution of product qualities developed.

This amounts to an assumption that all products that a firm might want to introduce to the

market are in fact introduced in the EU. This is plausible as the EU has some products with

very low market shares and profits, suggesting that the fixed cost of EU trials and introduction
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(conditional on having already developed the innovative product) are quite low.

5.2 Results of Demand and Learning Estimation

The parameter estimates from the model are presented in Table 2. The first observation is

that there is meaningful underlying variation in product quality that exposes consumers to

risk—at σQ = 1.23 the variation in product quality is nearly as large as the match-specific logit

standard deviation of π/
√
6 = 1.28. These estimates imply that, without information revealed

through testing, consumers selecting a new product for insertion face a significant probability

that the product is significantly worse than the mean product quality.

Table 2: Structural parameter estimates of demand/learning model: mean over
all periods and variance of the product quality distribution F (Q) ∼ N(Qt, σ

2
Q); precision of

learning signals from clinical trials σ2
Ac and observational σ2

A; coefficient of risk aversion ρ in
doctor choice behavior.

Q σQ 1/σ2
A 1/σ2

Ac ρ

-5.63 1.23 0.01 0.71 4.47
(0.023) (0.002) (0.001) (0.024) (0.116)

N = 4490 product-months. Standard errors clustered by month (NT = 114).

The second observation is that the learning rates vary dramatically according to whether

the product is in an FDA required clinical trial or not. Interestingly, the parameter estimates

indicate that there is virtually no experiential or non-FDA clinical trial market learning occur-

ring. The estimate of 1/σ2
A is an economical and statistical zero. By contrast, the precision of

clinical trial learning 1/σ2
Ac is 0.71, corresponding to approximately 18 months of clinical trials

for learning to exceed 95 percent completeness.

5.2.1 Comparison of model estimates to external sources

The model estimates provide several opportunities for validation with other data and research.

One such comparison we find particularly reassuring is that the implied coefficient of risk

aversion is quite sensible and aligns with the estimates of this parameter from the literature.

The parameter estimate in Table 2 is not directly interpretable as it is in logit utility units.

However, if we convert that estimate into a dollar equivalent by normalizing the total surplus

per stenting procedure to $50,000 (the estimated dollars in quality adjusted life years from the

procedure), then the estimated risk aversion parameter is ρ$−1 = 1.03 · 10−4.15 This is within

the range of estimates of risk aversion in well-designed studies such as Cohen and Einav (2007).

Another opportunity to validate our model with external data is to compare the price data

to the marginal contributions (sometimes also called added values) implied by our estimated

15Because we find that price does not influence stent demand, we do not have the standard price coefficient
available to scale demand estimates from logit utils to dollars. Instead we take advantage of the fact that like
many medical technologies, the procedure of angioplasty with a stent has been subject to numerous studies
attempting to value the average quality adjusted life years added by the procedure in dollar terms. We use
$50,000 (published estimates range from $32,000 to $80,000) to calibrate the mean total surplus generated per
procedure into dollars. Source: Cost Effectiveness Analysis Registry (https://research.tufts-nemc.org).
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demand model, given by AVj := TS(J )−TS(J \{j}), the increase in total surplus from adding

each product j to the choice set. Our demand model estimates imply an average added value of

$1609 for DES and $831 for BMS. These can be compared to average prices in the data of $1077

for DES and $558 for BMS in the EU during our sample. Models of negotiated prices such as

the Nash Equilibrium of Nash Bargaining used for stents in Grennan (2013, 2014) suggest that

price should be equal to marginal cost plus a markup where the supplier receives a fraction

of the added value that depends on his bargaining parameter vs. the bargaining parameter of

the buyer. Though we do not specify a full supply side model, for the purpose of comparing

our demand estimates to prices, we calculate that setting costs equal to the lowest observed

prices of $571 for DES and $168 for BMS implies bargaining splits where the supplier captures

31-47 percent of the added value, whichs seem plausible and is close to the range estimated in

Grennan (2013, 2014) for the US stent market. Thus our demand model estimates, calibrated

into dollars using studies that estimate the dollar value of quality adjusted life years associated

with angioplasty with stent procedures, yields both added value and risk aversion measures

that fall near those in related literature.

5.2.2 Model fit and comparison with fixed effects least-squares estimates

Figure 9: Comparison of estimates from fixed effect and learning models. Left panel
(a) plots the estimated distribution of product qualities from the parametric learning model
and age fixed effects model. Right panel (b) plots the estimated discount due to uncertainty
versus product age for the two models.
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Figure 9 shows the estimated distribution of product qualities Qj and uncertainty discounts

−ρ
2σ

2
jt for both the learning model and the more flexible model with product and age fixed

effects. The message here is that despite its parsimony, the simple learning model fits the data

well and its fit is comparable to the much more nonparametric fixed effects model (R2 of 0.95

vs. 0.98), so our results are not driven by the functional form of the learning model.
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5.3 Uncertain Quality and Market Outcomes

Our model implies that imperfect information in conjunction with risk aversion leads to welfare

loss. The magnitude of that welfare loss depends upon the mean quality level, the variance in

that quality level and the amount of information the consumer possesses. Note that this welfare

loss is driven from symmetric yet imperfect information and is not driven by informational

asymmetries which is a central concern in much of the quality information literature.

In order to quantify the importance of the imperfect information we examine the welfare and

market penetration implications of several different parameters of our model. Table 3 explores

the role of uncertainty in the market by using the demand model to calculate total surplus

per stent TS
1−s0

(calibrated to be equal to $50,000 in the observed EU data) and the percent

of patients undergoing a diagnostic angiography who choose some stent over the outside good

(1−s0). Here we are positing hypothetical markets where all products have uncertainty in their

quality, varying from the unconditional variance of the quality distribution σ2
Q (if there was no

testing/learning at all), to the estimated uncertainty upon first entering the EU σ2
aEU=0 (after

undergoing EU testing requirements), to varying lengths of US trials σ2
T c . The first set of rows

show results for the estimated quality distribution in the data (mean Q = −5.63), and also

reports the estimates for the actual EU data, which has quantity-weighted average uncertainty

across product months σ2
jt|EU = 0.30, similar to that of T c = 2.9 months of US clinical trials.

The subsequent two sets of rows explore the interaction of this uncertainty effect with the level

of product quality by shifting the product quality distribution one standard deviation of the

logit distribution π/
√
6 = 1.28 in each direction.

Table 3: The effect of uncertainty and mean quality on surplus per stent and
the total number of stenting procedures. Total surplus per stent and share of diagnostic
patients receiving stent (vs. alternative non-stent treatment) as a function of mean quality
in the market (rows: estimated mean quality and plus or minus one logit standard deviation)
and amount of uncertainty (columns: from unconditional product distribution to EU testing
to various lengths of US testing).

σ2
Q = σ2

aEU=0 = σ2
Tc=6 = σ2

Tc=12 = σ2
Tc=18 = σ2

Tc=24 = σ2
jt|EU =

1.51 0.80 0.18 0.10 0.07 0.05 0.30

Q = −5.63: TS
1−s0

($) 44,286 46,241 52,709 54,191 54,829 55,183 50,000

1− s0 (%) 2 10 31 35 37 38 24

Q = −6.91: TS
1−s0

($) 43,925 44,487 46,525 47,030 47,251 47,375

1− s0 (%) 1 3 11 13 14 15

Q = −4.35: TS
1−s0

($) 45,550 51,857 68,709 72,030 73,413 74,170

1− s0 (%) 8 29 61 66 68 69

Table 3 makes several important points. First, the stent market would fail without any

learning. This can be seen in the first column of the table in which the percentage of consumers

having a stent implanted is close to zero for all values of Q. Clinical testing provides the

necessary information to make this market operate.

Second, increasing the information available to consumers by a modest amount generates

significant improvements in welfare. Moving from a world in which there are no clinical trials

to one in which there is a FDA required clinical trial of 6 months leads to large increases in the
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number of procedures performed and the surplus created per procedure. Increasing the trial

length another 6 months generates significantly smaller welfare increases and correspondingly

smaller increases in the percentage of patients selecting a stent.

Third, the impact of information is dependent upon the mean quality levels of the stent

distribution. In particular, the higher the quality of the average stent, the more valuable

is clinical trial information. At first blush, this is somewhat counterintuitive as one make

think that if the mean stent is of low quality, avoiding that stent would generate significant

improvement in welfare. However, the converse is also true. If the average stent is of high

quality, the greater gain to selecting the right stent ex post and thus the more valuable is

clinical trial information in our setting.

6 Welfare Implications of Regulatory Policy

With the model and estimated structural parameters, we can examine the impact of different

regulatory regimes on welfare. There is a longstanding debate over the appropriate device

approval and clearance policy for medical devices and our estimates can shed much needed

light on this issue. We examine two different dimensions that could be influenced by regulatory

policy: (1) the amount of information T c that device manufacturers need to generate prior

to marketing their products and (2) the precision of observational post-market learning 1/σ2
A.

While the parameter values we explore are within the support of the EU and US data, the role

of the model is in predicting the equilibrium responses of firms and consumers at intermediate

values that we do not observe.

As discussed in Section 3.3, a fully specified supply model for this market is an undertaking

deserving of its own separate paper. Instead of solving the fully dynamic equilibrium which

would yield point estimates, we use our model to place upper and lower bounds on implications

from the full equilibrium model. First, we compute outcomes in the case where there are no

direct fixed costs of longer clinical trials, so all firms enter in equilibrium, and the only role

of increasing trial length on market structure is to delay access to the newest technologies (in

addition to increasing learning). This represents an upper bound on the total surplus generated

under any clinical trial requirement. Next, we compute outcomes assuming that the cost of

trials is $1.6M per month, but with firms’ entry decisions based on realized EU profits (Makower

et. al. (2010) survey that reports the average pivotal trial required by the FDA to cost 1.6

million dollars per month). Because this doesn’t allow expected market shares and prices to

increase as fixed costs increase and the market becomes more concentrated, this represents a

lower bound on the total surplus generated under any clinical trial requirement.

6.1 Optimal Premarket Clinical Testing

The first exercise we perform is examining the optimal regulatory standard for clinical trial

length. This addresses a fundamental question facing any industry where new products are

developed with uncertain quality and safety: How much testing is enough? Answering this
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question requires understanding the consequences of alternative testing requirements. One

way to summarize these consequences is to plot the expected surplus generated versus length

of trial required.

Figure 10: Optimal Regulation: Plot of total surplus per patient (measured in the percent
change from EU benchmark) versus length of (US sized) clinical trial required (in addition to
EU requirements). The two cases plotted provide bounds for the full dynamic equilibrium:
The case with zero direct costs of trials provides an upper bound where all products enter and
delay is the only cost of longer trials. The case with trial costs but where entry decisions are
based on realized EU profits provides a lower bound where firms do not take increased market
power into account as entry costs rise. The black vertical lines indicate the identified set of
optimal trial lengths. 95 percent confidence intervals, clustered by month, provided by dotted
lines.
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Figure 10 does just this, plotting expected total surplus per patient treated in the mar-

ket versus the required length of time spent in clinical testing (relative to the current EU

required clinical testing). More specifically, Figure 10 plots our estimates of the upper and

lower bounds with the corresponding confidence intervals, and uses these to place bounds on

the optimal regulatory policy. The results suggest that the optimal tradeoff of access vs. risk

is reached between T ∗
c = [7, 19] months of premarket clinical testing. An interesting feature

of the estimated total surplus as a function of time in premarket clinical testing is that it is

relatively flat for a wide range of trial lengths near the optimum.

Outside of the flat range, however, surplus drops rapidly with zero month trials resulting

in a 110 percent drop in surplus relative to the optimal. At first this seems to suggest that the

EU could make extremely large welfare gains by increasing its standards—until one realizes

that the EU is able to free-ride off of the information being generated in trials for US entry.

In effect, the EU is getting free post-approval learning which makes it’s market look closer to

one with US trials of approximately 2.9 months from a risk perspective. That is, conditional

on the US regulatory policy, the gain to the EU from increasing its standards is more modest,
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but still substantial at 20 percent or more.

Recall that in our data the mean lag between US and EU entry is 10 months for all products

and 17 months for DES. That is, we find that the current FDA policy falls within our confidence

interval for the optimal policy conditional on the rate of observational learning. This result

speaks directly to the current policy debate over the FDA medical device approval pathway

and supports the FDA argument that reductions in their standards for device approval will

reduce consumer welfare. Though of course we are comparing a different time and product

market, our results stand in contrast to the Peltzman (1973) influential analysis of the 1962

Kefauver-Harris Amendments to the Food, Drug, and Cosmetic Act which required proof of

efficacy and made the testing procedures required to prove that efficacy subject FDA oversight.

He concludes that the Kefauver-Harris Amendments led to a significant decrease in welfare.

Peltzman’s analysis, however, does not speak to the optimal informational requirements phar-

maceutical manufacturers should face when introducing a new molecular agent. To the best of

our knowledge, the our analysis is the first that provides an estimate of the optimal policy on

the amount of information creation.

6.2 Alternative Policy: Shorter Trials with Increased Post-market Learning

We estimated the post market approval observational learning rate is zero for the set of products

in our data. There are several potential reasons for the lack of post-market approval learning.

For some products, observational learning from real world use may make it difficult to infer

product quality (not having the randomization into treatment and control as in a clinical trial).

For other products, though—and likely for those in our sample—the problem is simply a lack

of systematic data collection and sharing of information.

One frequently proposed change to FDA regulatory policy is to relax requirements on

premarket clinical trials but increase requirements on post-market surveillance, including data

collection, analysis and reporting. This policy has a direct connection to our model in the sense

that it’s intention is to increase the rate of post-market approval observational learning—in the

language of our model, this means increasing the precision 1/σ2
A of the signals that arrive

outside of FDA required clinical trials. We analyze this policy by taking the estimated model,

varying σA, and calculating the corresponding optimal trial length T ∗
c (σA) and total surplus

generated TS(σA, T
∗
c (σA)). Figure 11 displays the results, again using our bounds to generate

a partially identified set of predictions.

When observational learning is as fast as FDA clinical trial learning, there is no reason to

run clinical trials at all. Total surplus is highest—24 percent higher than with no observational

learning—because there is no tradeoff to be made between access and learning. The value of

this increase is very large. Using baseline estimates of utilization and a value of $50,000 per

treatment yields an estimate of $7.6 billion per year in increased welfare from this increase in

post-market learning in the US.16

Not surprisingly, as the precision of observational learning decreases (relative to clinical

16In 2009, over 640,000 stent procedures were performed in the US (Auerbach, 2012).
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Figure 11: The Value of Post-Market Surveillance: Plots of optimal trial length (left
panel (a)) and total surplus (right panel (b)) as observational learning precision 1/σ2

A varies
from zero to the clinical trial precision 1/σ2

Ac . 95 percent confidence intervals, clustered by
month, provided by dotted lines.
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trial learning), it becomes optimal to require longer clinical trial periods prior to market access

in order to take advantage of the faster learning rate of clinical trials. The lesson from this

policy experiment is that there is merit to the argument that a requiring shorter trials with

post-approval testing would improve consumer welfare. The gains from this policy critically

depend on the rate and cost of learning via post-market surveillance.

6.3 Discussion and Implications

As discussed in the Introduction, there is an important literature measuring the optimal reg-

ulatory policies across settings as diverse as pharmaceuticals (Filson 2012; Budish, Roin, and

Williams 2015), liquor distribution (Seim and Waldfogel 2013; Miravete, Seim, and Thurk

2014), and water management (Timmins 2002). In general, the estimates show that the regu-

lator’s behavior departs from the socially optimal policy by anywhere from 10 to 50 percent.

Three of our main results add to this literature: First, to the best of our knowledge, our work is

the first to find a regulator (the FDA) whose policies may in fact be maximizing total surplus.

Second, our results are consistent with the previous literature in that we find an EU regula-

tory regime that is suboptimal. The EU could meaningfully increase welfare by increasing the

informational criteria required to receive market access. Third, we show that adding another

dimension of regulatory policies that improve market learning and reduce pre-market clinical

requirements could dramatically increase social welfare.

It is important to note that our analysis holds the technology fixed and abstracts away from

the feedback effects of regulatory approval regime to firms incentive to invest in new products.

However, an important takeaway from our analysis is that the value of a technological inno-

vation to the marketplace depends to a large extent on the regulatory regime’s informational
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requirements for product testing. In fact, our estimates of the value of information for medical

technologies is large and comparable in magnitude to the estimates of the value of innovation

itself. The welfare implications of medical technology innovation has long played a central role

in health economics, but there is much less of an emphasis in the literature on the value of

information regarding these new technologies. Murphy and Topel (2006) show that medical

technology innovation has lead to massive improvements in welfare over the twentieth century.

They find gains on the order of $1.2 million per representative American in 2000. More recently,

Budish, Roin, and Williams (2015) estimate that increasing effective patent lengths for cancer

drugs would yield an $89 billion increase in welfare for patients diagnosed in 2003 by inducing

more investment in treating cancers where the effective patent life on new drugs is relatively

short. Coronary stents treat a narrower set of conditions than cancer drugs; but scaled for

market size, our finding that increasing post-market learning rates can increase welfare $7.6

billion per year suggest that the role of information can be comparable to the role of new

technology innovation in affecting welfare.

Thus a broader takeaway from our research is that the innovation process should be consid-

ered holistically from idea to consumer—the value of innovations can be significantly enhanced

or diminished by the information regulators require technology firms to produce and dissemi-

nate. In the case we study, the availability of new medical technologies with uncertain quality

can only achieve their welfare potential if firms undertake the necessary studies to document

the product’s clinical performance. For coronary stents, the market would shut down without

at least some initial testing as required by the EU, and benefits even more from the further

testing required by the US. Thus it seems that there are important complementarities between

the value of new medical technologies and the regulatory approval product regime, and our

work provides one of the first quantifications of that value.

7 Conclusion

The tradeoff between access and risk in regulating the market entry of new products is im-

portant in a variety of industries, and in particular in medical devices, where it is an active

topic of policy debate in almost every country in the world. In this paper we develop a model

with products introduced when quality is still uncertain, learning over time, and regulator (and

manufacturer) decisions regarding product testing and market entry. We show that the empir-

ical predictions of the model are borne out in market share data in the US and EU medical

device markets and are consistent with the beliefs that the US regulatory environment is more

restrictive than the EU. We then estimate the structural parameters of the model for use in

welfare analysis of policy analyses affecting: (1) the length of clinical trials required before

market entry and (2) observational learning after market entry.

For the set of devices on which we have data, we estimate that the US is close to the optimal

policy, but the EU is too lax (despite free-riding off of information generated by US trials). We

also estimate that if it is possible to achieve post-market learning rates close enough to those

we observe from clinical trials at a comparable cost, then embracing recent calls for more active
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“post-market surveillance” could further increase total surplus by as much as 24 percent.

Of course, our analysis is limited in the set of devices for which detailed market data is

available, and extrapolating to policy for all devices should be done with care. The theoretical

model we develop provides some guidance for how this extrapolation should depend on the

uncertainty in quality of new product introductions, the rate of technological improvement,

the learning rate in clinical trials, and the observational learning rate for any type of device

being considered. Because the model is quite general and flexible, and the type of data we

use is available for many markets, we hope that we have provided a starting point for analysis

of regulation and market structure in other industries where new product development and

testing play an important role.

We also hope that we have provided a building block that, in future research, could be used

to provide a more complete picture of how regulation affects market structure, innovation,

and ultimately welfare. While estimating the welfare effects of the access/risk tradeoff for an

exogenously given set of innovations is an important step towards better understanding this

phenomenon, a more complete understanding would allow for the regulatory regime to effect

the types of innovations firms develop for the market and vice-versa. A more dynamic analysis

of this type would require a significant extension to the theory, and would also require detailed

data on innovative activities of the firms in a market.
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Appendices

A Theory Appendix

A.1 Supply Bounds on Total Surplus

As discussed in Section 3.3 of the paper, developing a full supply model of entry/exit, con-

tracting, and pricing would add frontier modeling efforts in both the bargaining and dynamic

oligopoly literatures that would distract from the current focus on information and the tradeoff

between access and risk in regulating new products when quality of the innovations are uncer-

tain. Instead, we develop bounds on the total surplus TS(T c) generated under any regulatory

policy required pre-market clinical trials of length T c.

The key to constructing these bounds is that we only consider counterfactuals where the

entry costs are greater than those required to obtain EU approval, and we assume that EU

approval costs are sufficiently low that all potential entrants find it profitable to enter under

the current EU regime.

Proposition UB (Upper Bound on TS(T c)): The total surplus generated in equilibrium

when there are no direct fixed costs of longer clinical trials (φe(T c) = 0, ∀T c ≥ 0) provides

an upper bound for the surplus generated in equilibrium when entry costs are increasing

in trial length (φe(T c + 1) > φe(T c), ∀T c ≥ 0;φe(0) = 0).

In this case in any period t we have:

TSUB
t (T c) := TSt(0, T

c)

= ln





∑

j∈Jt(0,T c)

eQjt(T
c)− ρ

2
σ2
jt(T

c)





≥ ln





∑

j∈Jt(φe(T c),T c)

eQjt(T
c)− ρ

2
σ2
jt(T

c)



 (12)

≥ ln





∑

j∈Jt(φe(T c),T c)

eQjt(T
c)− ρ

2
σ2
jt(T

c)



− φe(T c)|Jt \ Jt−1| (13)

= TSt(φ
e(T c), T c).

The inequality in (13) holds for any nonnegative fixed cost of trials. The inequality in

(12) obtains from the fact that the choice set under nonnegative fixed costs is a weak

subset of the choice set under no fixed costs Jt(φ
e(T c), T c) ⊆ Jt(0, T

c) (and the fact that

in our model the utility parameters are not a function of the choice set itself). That this

will hold weakly is certain due to the assumption that all potential entrants enter in the

observed EU regime (which has cost zero and also T c = 0), and so in expectation all of

these same products would enter in the upper bound case. The subset will be strict in
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the case that φe(T c) is large enough so that some product j finds it unprofitable to enter.

Q.E.D.

Proposition LB (Lower Bound on TS(T c)): The total surplus generated in equilibrium

when entry costs are increasing in trial length (φe(T c + 1) > φe(T c), ∀T c ≥ 0;φe(0) = 0)

is bounded from below by the total surplus generated in equilibrium with these same

fixed costs, but where firms follow a naive entry strategy that assumes all other firms will

enter in equilibrium.

In this case in any period t we have:

TSLB
t (T c) := TSt((φ

e
j(T

c), 0−j), T
c)

= ln





∑

j∈Jt((φe
j(T

c),0−j),T c)

eQjt(T
c)− ρ

2
σ2
jt(T

c)



− φe(T c)|Jt(j,−j) \ Jt−1(j,−j)|

≤ ln





∑

j∈Jt(φe(T c),T c)

eQjt(T
c)− ρ

2
σ2
jt(T

c)



− φe(T c)|Jt \ Jt−1| (14)

= TSt(φ
e(T c), T c).

The inequality in (14) obtains from the fact that the choice set under the full equilibrium

is a subset of the choice set under the naive equilibrium and that there is never over entry

in either equilibrium (the social benefit of firm entry is always greater than the fixed cost

of entry). Under the assumption that all potential products entered in the zero cost case,

potential profits (after fixed costs) will always be weakly higher in the full equilibrium,

increasing the probability of entry. Under the additional assumption that there is never

over entry (which would be the case with any pricing model where a product cannot

capture more than it’s marginal contribution), the surplus gain is always greater than

the fixed cost of entry. Q.E.D.

These upper and lower bound scenarios are equivalent to each other and to the full equi-

librium at T c = 0. Both will become further from the true equilibrium as the costs of entry

increase.

A.2 Total Surplus with No Fixed Costs or Observational Learning

TSt(T
c + 1)− TSt(T

c) = ln





∑

j∈Jt(T c+1) e
Qjt−

ρ
2
σ2
jt(T

c+1)

∑

j∈Jt(T c) e
Qjt−

ρ
2
σ2
jt(T

c)



− φe |J e
t (T

c + 1) \ J e
t (T

c)|

= ln





∑

j∈Jt(T c+1) e
Qjt−

ρ
2
σ2
jt(T

c+1)

∑

j∈Jt(T c) e
Qjt−

ρ
2
σ2
jt(T

c)



 (15)

=
ρ

2

(

σ2(T c)− σ2(T c + 1)
)

− ln

(
∑

j∈Jt(T c) e
Qjt

∑

j∈Jt(T c+1) e
Qjt

)

(16)
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where (15) follows from no fixed costs, and (16) follows from no observational learning. Then

averaging over any period of time t = 1, ..., T and recognizing φe = 0 ⇒ Jt(T
c) = Jt+1(T

c +1)

so that the log sum term is telescoping yields (9).

B Data Appendix

B.1 Dataset construction

The dataset used in this paper is from Millennium Research Group’s Marketrack survey of

catheter labs, the source that major device manufacturers subscribe to for detailed market

research. The goal of the survey is to provide an accurate picture of market shares and prices

of medical devices. For our purposes, the key variables in the data are the price paid and

quantity used for each stent in each hospital in each month. In addition, the hospitals report

monthly totals for different procedures performed, such as diagnostic angiographies. The data

span January 2004 through June 2013 and cover the U.S. and E.U. markets.

There are three main challenges in constructing a usable dataset from the raw survey data.

First, the survey was not as concerned with collecting price data as it was with collecting

quantity data. Second, the survey measures stent usage rather than availability and our data

go back only to 2004, so it is not always possible to infer regulatory approval dates from the

data. Finally, there is some misreporting in the survey. The following tables illustrate how key

sample summary statistics compare across the cleaning steps for the E.U. and U.S. datasets.

These steps are summarized below; full detail can be found in the Stata code used to execute

them, cleaning-eu-data-3-sample.do and cleaning-us-data-3-sample.do.

EU dataset modifications
Diagnostic No. of stents No. of BMS No. of DES Average Stent-hospital- Hospital- Hospitals

procedures implanted products products stent age months months

Raw data 151 108 3.8 3.3 54.3 88,144 15,064 542

Rm. suspect q 161 98 3.3 2.8 54.5 61,098 13,477 540

Rm. if q¿2*diagnostics 152 107 3.8 3.3 54.3 86,672 14,812 537

Rm. suspect diagnostics 151 108 3.8 3.3 54.4 87,349 14,933 542

Rm. outlier p 148 106 3.8 3.3 54.4 81,646 14,149 532

Rm. unknown entry 150 108 3.8 3.3 54.0 87,516 14,995 541

Final sample 160 95 3.2 2.8 54.6 54,771 12,313 524

US dataset modifications
Diagnostic No. of stents No. of BMS No. of DES Average Stent-hospital- Hospital- Hospitals

procedures implanted products products stent age months months

Raw data 137 76 2.2 2.5 36.8 68,603 17,183 526

Rm. suspect q 147 68 1.9 2.1 37.8 44,218 14,631 509

Rm. if q¿2*diagnostics 138 76 2.2 2.5 36.7 67,783 16,982 517

Rm. suspect diagnostics 138 76 2.2 2.5 36.8 67,857 16,997 526

Rm. outlier p 136 75 2.2 2.5 37.1 66,293 16,720 525

Final sample 147 67 1.8 2.1 38.0 41,779 13,900 478

The table rows record the sample means for key summary statistics across various cleaning

steps. The summary statistics are means of quantities calculated at the hospital-month level.

The means reported are of the total number of stents implanted; the total number of diagnostic

angiographies; the number of different bare-metal stents (BMS) used; the number of different
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drug-eluting stents (DES) used; and the weighted average age, in months, of the stents used.

The table also shows the total number of stent-hospital-month observations, number of hospital-

month observations, and number of hospitals in each sample.

The table rows correspond to different samples. The first row of each table summarizes

the raw E.U. and U.S. survey data. The second row drops hospital-months with suspect total

quantities. The criteria for dropping are threefold. First, we drop hospital-months for which

the total quantity of stents changes by (weakly) more than 50% relative to the previous month

in which the hospital appears in the data. Second, for “low-quantity” hospitals with mean

monthly stent quantities below 15, we drop hospital-months with usage strictly greater than

1.5 standard deviations from the hospital’s mean. For “high-quantity” hospitals with mean

monthly stent quantities (weakly) greater than 15, we drop hospital-months with usage strictly

greater than 3.0 standard deviations from the hospital’s mean. Third, for hospital-months

with flagged quantity changes that were accompanied by a 30% or greater change in diagnostic

angiography procedures, the hospital-months were undropped. Diagnostic angiography proce-

dures are performed prior to coronary stent implantation, so large changes in monthly stent

quantities should be accompanied be similarly large changes in angiographies.

The third and fourth rows of the table drop hospital-months with suspect diagnostic an-

giography counts. Diagnostic angiographies should be bounded below by some multiple of the

number of stents used; in our data and anecdotally according to clinicians, there are at least

two diagnostic angiography procedures per stent implant. The third row drops hospital-months

if their total quantity of stents exceeds twice the number of diagnostic angiographies in that

hospital-month. The angiography count itself could be suspect. The fourth row drops hospital-

months if the number of diagnostic angiographies is more than 2 standard deviations away

from the hospital’s mean and if the ratio of angiographies to stents was 2 standard deviations

from the hospital’s mean.

The fifth row of the table drops hospital-months with problematic prices. We drop hospital-

months with outlier prices based on a regression of log-price on the hospital’s number of BMS

products and number of DES products used that month, in addition to a hospital fixed-effect.

Hospital-months with products whose regression residuals were more than 2 standard deviations

from the mean of all residuals were dropped.

The sixth and penultimate row of the E.U. table drops hospital-months with positive quan-

tities for stents for which E.U. regulatory approval dates are not known. Since the age of the

product is an important component of our analysis, the products for which an entry date could

be pinned down with reasonable certainty must be removed from the analysis. This drop affects

only a few products. There are no products for which the U.S. approval dates could not be

ascertained, so this row is missing from the U.S. table.

The final row in each table reports summary statistics for the final sample, which drops all

observations that meet one or more of the dropping criteria described above.
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B.2 Evidence of learning from individual products

Averaging across products conditional on age provides patterns in the data that have direct

relation to expected patterns in our model. However, these averages cloud heterogeneity in

learning across products. A look at the patterns for a few individual products illustrate how

learning does not always bring good news and lack of learning brings a volatile mix of good

and bad over time.

Figure 12: Learning patterns for selected individual products. Three representative
products that receive good and bad news from trials or not much (useful) news at all. Left
panel (a) plots mean utility estimate for each product ln(sja/s0a) by age since introduction
into the EU. Right panel (b) plots absolute differences | ln(sja/s0a)− ln(sja+1/s0a+1)| by age,
which should be larger with more uncertainty, and converge toward zero with learning.
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B.3 Distribution of Profits Over Product Lifetime and Across Products

The counterfactual lower bounds with fixed costs of entry require calculation of expected life-

time profits under the assumption that all firms who enter in the EU do enter in equilibrium.

This number can be directly acquired from the EU data for the 41 of 109 products that both

enter and exit the market during our sample period. However, for the other 68 products whose

lifetimes are truncated at the beginning or end, we need to extrapolate.

Table 4: Product age and profitability.

mean s.d. 10ptile median 90ptile N
Products with full lifetime during sample period:
Months in sample 21.5 19.8 5 15 47 41
Profit per month ($1000s) 179 612 18 70 211 41
Products with censored lifetime:
Months in sample 53.1 34.9 10 46 100 68
Profit per month ($1000s) 1,347 2,119 41 262 4,067 68

We perform this extrapolation by estimating the percent of cumulative lifetime profits the
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average product has earned at each age. We then use this percent to extrapolate the missing

profits, for whatever age at which the truncation occurred. We do this unconditionally on any

covariates besides age. Our counterfactual estimates are robust to a variety of approaches to

this extrapolation. This is in part because the extrapolation is typically for the beginning or

end of lifetime tail of product profits, so that lifetime profit projections are not very sensitive

to the method we choose. And further the products that are marginal in our counterfactuals,

in the sense that they exit as entry costs increase, are also marginal in the computation of

consumer surplus in that which enter (and even to some extent how many enter) does not

greatly affect total welfare.

Figure 13: Distribution of Profits Over Time and Across Products.

(a) Cumulative Profits Over the Product Life-
cycle

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
C

u
m

u
la

ti
v
e
 P

e
rc

e
n
t 
L
if
e
ti
m

e
 P

ro
fi
ts

0 12 24 36 48
Age Since EU Introduction (Months)

Mean Over Products Standard Errors

(b) Distribution of Lifetime Profits over Prod-
ucts

0
.2

.4
.6

.8

F
ra

c
ti
o
n
 o

f 
P

ro
d
u
c
ts

0 200 400 600 800

Lifetime Profits ($ Millions)

C Estimation and Counterfactual Algorithms

C.1 Demand/learning estimation algorithm

The estimation approach is to construct a generalized method of moments estimator that

matches the observed market shares in the data (and knowledge of which products are in

clinical trials when) to the demand and learning model. The Matlab code for this estimator is

available in the electronic archive code4RegulatingInnovation.zip. This appendix outlines the

main steps of the algorithm.

1. Compute mean utilities δjt = ln(sjt/s0t) for all product-months.

2. Construct an initial estimator for uncertainty immediately after EU testing σ2
ja=1 using

the empirical equivalent from the distribution of δjt.

3. Guess initial values for learning precisions σA := (σA, σAc).
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4. Compute the full vector of σ2
jt implied by σ2

ja=1, the learning precision parameters, and

which products are in trials when.

5. Least squares then gives an estimator for ρ and the product qualities Qj as a function of

the learning parameters, where [Qj ; ρ](σA) = (X ′X)−1X ′δ with X = [1j ,−1
2σ

2
jt]. (Here

Qj represents the vector of coefficients on product dummy variables, and 1j the matrix

of product dummy variables.)

6. We need to make sure that the distribution of Qjt := δjt +
ρ
2σ

2
jt is consistent with the

σ2
ja=1 by recomputing σ2

ja=1(Qjt) and repeating 4-6 until σ2
ja=1 converges.

7. Compute the residuals ξjt = δjt −Qj +
ρ
2σ

2
jt.

8. Evaluate GMM objective function based on E[ξ′Z] = 0 where Z =

[

1
ajt

1
a2jt

]

.

9. Repeat 4-8 until we find the value of σA that minimizes the GMM objective function.

C.2 Optimal regulation counterfactual algorithm

The advantage of the upper and lower bounds we have defined on total surplus is that they can

be calculated using only the data and demand/learning model estimates. For each potential

T c = 0, 1, ..., 24 we calculate the upper and lower bounds as follows:

Upper Bound

1. Given T c, restrict sample to products that would be active in each month.

2. Use demand/learning model to compute total surplus over the sample period.

Lower Bound

1. Given T c, restrict sample to products that would be active in each month.

2. Given φe = T c × 1.6E6, restrict sample to products that would enter, under the naive

assumption that firms assume other products enter as if φe = 0.

3. Use demand/learning model to compute total surplus over the sample period, remember-

ing to subtract fixed costs when products enter.

C.3 Observational learning counterfactual algorithm

Because we only specify bounds on total surplus for any trial length T c, we obtain only bounds

on the optimal trial length under any parameter values [T c
LB(σA), T c

UB(σA), ]. Thus for each

potential value of observational learning precision 1/σ2
A = 0, 1/10σ2

Ac , 2/10σ2
Ac , ..., 1/σ2

Ac we

calculate the bounds on optimal trial time and surplus generated by these trial times as follows:
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1. Given 1/σ2
A, calculate the upper and lower bounds on surplus generated for T c = 0, 1, ..., 24

as done previously for the zero observational learning case.

2. T c
LB(σA) will be the maximum T c such that the upper bound total surplus is less than

the maximum of the lower bound total surplus (among the T c below that at which the

lower bound surplus is maximized).

3. T c
UB(σA) will be the minimum T c such that the upper bound total surplus is less than

the maximum of the lower bound total surplus (among the T c above that at which the

lower bound surplus is maximized).

4. The tightest bounds on surplus created in this case are simply the max of the upper

bound surplus and max of the lower bounds surplus.

D Robustness Checks

D.1 Demand regressions with price

Price is neither a statistically nor an economically significant determinant of demand. The table

below reports coefficients on price from a regression of product-month–level stent utilization

on price, product fixed effects, and product age (months since market entry) fixed effects. The

coefficient on price is reported in the first row of the table. It is consistently small (relative to

the fixed coefficients, not shown) and insignificant.

The first column reports OLS results. Column 2 reports IV results, with price instrumented

by one-month price lags at the product level. Column 4 reports IV results, with price instru-

mented by the total number of other stents on the market that month and the number of other

stents in the product’s DES/BMS category. Finally, column 6 reports IV results with both

sets of instruments. All IV specifications pass the weak instrument test. The specification

using number of competitors as instruments yields a price coefficient point estimate that is al-

most identical to the economically small estimate in Grennan (2013), but price does not reach

statistical significance in any of the specifications using this data.

41



Table 5: Fixed effects demand models with price

OLS IV1 FS1 IV2 FS2 IV3 FS3
Price (1,000s) 0.01 -0.01 -0.28 -0.01

(0.09) (0.18) (0.98) (0.18)
Instruments:

Lagged price (1,000s) 0.45∗∗∗ 0.45∗∗∗

(0.03) (0.03)

No. competing stents -0.0021 -0.0005
(0.0015) (0.0014)

No. DES/BMS 0.0074∗∗∗ 0.0038∗

(0.0019) (0.0017)
Observations 4490 4437 4437 4490 4490 4437 4437
Standard errors in parentheses

FS columns report first-stage results for the preceding IV columns.

IV1: lagged price. IV2: number of competing stents. IV3: lagged price and number of competing stents.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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