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Consider a risk-averse entrepreneur who has access to a profitable venture with an initial capital

stock K0. This entrepreneur needs to raise start-up funds and on occasion additional working

capital from investors. In a first-best Modigliani-Miller environment the entrepreneur would be

able to diversify away her idiosyncratic risk, fully pledge the market value of her venture, and

raise the funds from investors against a promised competitive risk-adjusted return. However, if the

entrepreneur is essential to the venture and cannot irrevocably dedicate her human capital to the

firm, the promised return may not be credible. We show that this inalienability of the entrepreneur’s

human capital, or what is also commonly referred to as key-man risk, has critical implications not

only for the firm’s financing capacity, investment and compensation, but also for its liquidity and

risk management policy. The more liquidity or the larger borrowing capacity the firm has, the

greater is its ability to retain talent by making credible future compensation promises. In addition,

by managing the firm’s exposures to idiosyncratic and aggregate risk the firm can reduce the cost

of retaining talent and lower the firm’s cost of financing.

In sum, our paper offers a new theory of corporate liquidity and risk management based on the

inalienability of risky human capital. Even when there are no capital market frictions, corporations

add value by optimally managing risk and liquidity because doing so allows them to reduce the

cost of key-man risk to investors. This rationale for corporate risk and liquidity management is

particularly relevant for technology firms where key-man risk is acute.

The main building blocks of our model are as follows. The entrepreneur has constant relative

risk-averse preferences and seeks to smooth consumption. The firm’s operations are exposed to

both idiosyncratic and aggregate risk. The firm’s capital is illiquid and is exposed to stochastic

depreciation. It can be accumulated through investments that are subject to adjustment costs. The

entrepreneur faces risk with respect to both the firm’s performance and her outside options. To

best retain the entrepreneur, the firm optimally compensates her by smoothing her consumption

and limiting her risk exposure. But to be able to do so the firm must manage its liquidity and

risk allocation. The firm’s optimized balance sheet is composed of illiquid capital, K, and cash or

marketable securities, S, on the asset side. The liability side is composed of equity and a line of

credit (when S is negative), with a limit that depends on the entrepreneur’s outside option.

The solution of this problem has the following key elements. The entrepreneur manages the

firm’s risk by choosing optimal loadings on the idiosyncratic and market risk factors. The firm’s

liquidity is augmented through retained earnings from operations and through returns from its

portfolio of marketable securities, including its hedging and insurance positions. The scaled state

variable is the firm’s liquidity-to-capital ratio s = S/K. When liquidity is abundant (s is large) the

firm is essentially unconstrained and can choose its policies to maximize its market value (or equiv-

alently the entrepreneur’s net worth.) The firm’s investment policy then approaches the Hayashi

(1982) risk-adjusted first-best benchmark, and its consumption and asset allocations approach the

generalized Merton (1971) consumption and mean-variance portfolio rules. In particular, the en-

trepreneur is completely insulated from idiosyncratic risk.

In contrast, when the firm exhausts its credit limit, its objective is exclusively to ensure that the
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entrepreneur gets at least as much as her outside option, which is achieved by optimally preserving

liquidity s and eliminating the volatility of s at the endogenously determined debt limit s. As one

would expect, preserving liquidity requires cutting investment and consumption, engaging in asset

sales, and lowering the systematic risk exposure of the entrepreneur’s net worth. More surprisingly,

preserving financial slack also involves retaining some exposure to idiosyncratic risk. That is,

relative to the first-best, the entrepreneur’s net worth is over-exposed to idiosyncratic risk and

under-exposed to systematic risk, as this helps reduce (or even eliminate) the volatility of s.

In short, the risk management problem for the firm boils down to a compromise between achiev-

ing mean-variance efficiency for the entrepreneur’s net worth and preserving the firm’s financial

slack. The latter is the dominant consideration when liquidity s is low.

The first model to explore the corporate finance consequences of inalienable human capital is

Hart and Moore (1994). They consider an optimal financial contract between an entrepreneur and

and outside investors to finance a single project, with a finite horizon, and no cash-flow uncertainty.

Both the entrepreneur and investors are assumed to have linear utility functions. They argue that

the inalienability of the entrepreneur’s human capital implies that debt is an optimal financial

contract.

We generalize the Hart and Moore model in several important directions. Our first generaliza-

tion is to consider an infinitely-lived firm, with ongoing investment subject to adjustment costs,

and an entrepreneur with a strictly concave utility function. The firm’s financing constraint is

always binding in Hart and Moore (1994), but in our model the financing constraint is generically

non-binding. Because it is optimal to smooth investment and consumption, the firm does not want

to run through its stock of liquidity in one go. This naturally gives rise to a theory of liquidity

management even when there is no uncertainty. We describe this special case in Section VII. Our

second generalization is to introduce both idiosyncratic and aggregate risk, which leads to a theory

of corporate risk management that ties together classical intertemporal asset pricing and portfolio

choice theory with corporate liquidity demand. Investors set the market price of risk, which the

entrepreneur takes as given to determine the firm’s optimal risk exposures and how they should

vary with the firm’s stock of liquidity. By generalizing the Hart and Moore model to include ongo-

ing investment, consumption smoothing, uncertainty, and risk aversion for both entrepreneur and

investors, we are able to show that inalienability of human capital not only gives rise to a theory of

debt capacity, but also a dynamic theory of liquidity and risk management, which is fundamentally

connected to the entrepreneur’s optimal compensation.

Corporate risk management in our analysis is not about achieving an optimal risk-return profile

for investors, they can do that on their own, but about offering optimal risk-return profiles to risk-

averse, under-diversified, key employees (the entrepreneur in our setting) with inalienable human

capital constraint. In our setup the firm is, in effect, both the employer and the asset manager

for its key employees. This perspective on corporate risk management is consistent with Duchin

et al. (2016), who find that non-financial firms invest 40% of their liquid savings in risky financial

assets. They find that the less constrained firms invest more in the market portfolio, which is
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consistent with our predictions. In addition, when firms are severely financially constrained, we

show that they cut compensation, reduce corporate investment, engage in asset sales, and reduce

hedging positions, with the primary objective of surviving by honoring liabilities and retaining key

employees. These latter predictions are in line with the findings of Rampini, Sufi, and Viswanathan

(2014), Brown and Matsa (2016), and Donangelo (2016).

Corporate liquidity management in our model is not about avoiding costly external financing,

but about compensation smoothing, which requires in particular maintaining liquidity buffers in

low productivity states. This motive generally outweighs the countervailing investment financing

motive of Froot, Scharfstein, and Stein (1993), which prescribes building liquidity buffers in high

productivity states, where investment opportunities are good. If the firm finds itself in the low

productivity state, we show that it is optimal for the entrepreneur to take a pay cut, consistent

with the evidence on executive compensation and corporate cash holdings (e.g. Ganor, 2013). It

is possible for the firm to impose a pay cut because in a low productivity state the entrepreneur’s

outside options are also worth less. It is also optimal to sell insurance in a low productivity state

to generate valuable liquidity. The optimality of selling insurance when productivity is low is not

driven by risk shifting incentives as in Jensen and Meckling (1976), but rather by the firm’s need

to replenish liquidity. Asset sales in response to a negative productivity shock (also optimal in our

setting) are commonly emphasized (Campello, Giambona, Graham, and Harvey, 2011). But our

analysis further explains why it is also optimal to sell insurance and cut pay in response to low

productivity shocks.

Our theory is particularly relevant for human-capital intensive, high-tech, firms. These firms

often hold substantial cash and employee stock-option pools. We explain why these pools may be

necessary to make future compensation promises credible and thereby retain highly valued employ-

ees. When stock options vest and are exercised, companies generally engage in stock repurchases so

as to avoid excessive stock dilution. But such repurchase programs require funding, which partly

explains why these companies hold such large liquidity buffers.

We show that the firm’s optimal liquidity and risk management problem can also be reformu-

lated as a dual optimal contracting problem between a well diversified risk-averse investor and an

entrepreneur with inalienable human capital. In the contracting formulation, the state variables

are the certainty equivalent wealth W that the investor promises to the entrepreneur and the firm’s

capital stock K. Analogous to our primal formulation, the ratio, w = W/K, is the scaled state

variable that describes how constrained the firm is.

As Table I below summarizes, this dual contracting problem is equivalent to the entrepreneur’s

liquidity and risk management problem: s = −p(w), where p(w) is the investor’s scaled value in the

contracting problem, and w = m(s), where m(s) is the entrepreneur’s scaled certainty-equivalent

wealth in the liquidity and risk management problem. A key observation here is that the credit

constraint s ≥ s is the outcome of an optimal financial contracting problem under an inalienability

constraint for the entrepreneur given by w ≥ w.

[Place Table I about here]
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Ai and Li (2015) consider a closely related contracting problem. They characterize optimal CEO

compensation and corporate investment under limited commitment, but they do not consider the

implementation of the contract through corporate liquidity and risk management policies. Their

formulation differs from ours in two other important respects. First, they assume that investors are

risk neutral, so that they cannot make a meaningful distinction between idiosyncratic and aggregate

risk. Second, their limited-commitment assumption does not take the form of an inalienability-of-

human-capital constraint. In their setup, the entrepreneur is assumed to abscond with the firm’s

capital, and when she does so she can only continue operating under autarky. In our setup the

entrepreneur is free to leave and can therefore offer her human capital to another firm under

an optimal contract. Ai and Li’s limited-commitment assumptions lead them to substantially

different predictions. First, autarky is such a severe punishment (because the entrepreneur is

then fully exposed to the firm’s operating risk) that the limited commitment constraint barely

binds and may not result in any distortions in investment and consumption. Even for a relatively

low risk aversion coefficient for the entrepreneur the first-best outcome is attainable. Second, for

low risk aversion, the dynamics for the entrepreneur’s consumption are such that consumption is

constant as long as the limited commitment constraint does not bind and adjusts up only when

the constraint is binding. In contrast, in our model the inalienability-of-human-capital constraint

distorts consumption, investment and risk-exposures even for high coefficients of risk aversion of

the entrepreneur. Moreover, these policies respond smoothly to changes in the firm’s liquidity. We

provide a detailed discussion of the difference between the autarky and recontracting assumptions

in Section V.F.

Rampini and Viswanathan (2010, 2013) develop a limited-commitment-based theory of risk

management that focuses on the tradeoff between exploiting current versus future investment op-

portunities. If the firm invests today it may exhaust its debt capacity and thereby forego future

investment opportunities. If instead the firm foregoes investment and hoards its cash it is in a

position to be able to exploit potentially more profitable investment opportunities in the future.

The difference between our theory and theirs is mainly due to our assumptions of risk aversion for

the entrepreneur and investors, our modeling of limited commitment in the form of risky inalienable

human capital, and our assumption of physical capital illiquidity via q theory of investment. We

focus on a different aspect of corporate liquidity and risk management, namely the management of

risky human capital and key-man risk. In particular, we emphasize the benefits of risk management

to help smooth consumption of the firm’s stakeholders (entrepreneur, managers, key employees).

Berk, Stanton and Zechner (2010) analyze a model where the firm trades off the tax benefits

of debt with the cost of under-insuring risk-averse employees. Building on Merton’s intertempo-

ral portfolio choice framework, Wang, Wang, and Yang (2012) study a risk-averse entrepreneur’s

optimal consumption-savings, portfolio choice, and capital accumulation decisions when facing

uninsurable capital and productivity risks. Unlike Wang, Wang, and Yang (2012), our model fea-

tures optimal liquidity and risk management policies that arise endogenously from an underlying

financial contracting problem.
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Our theory has elements in common with the literature on contracting under limited com-

mitment following Harris and Holmstrom (1982). They analyze a model of optimal insurance for

a risk-averse worker, who is unable to commit to a long-term contract. Lustig, Syverson and

Nieuwerburgh (2011) build on Harris and Holmstrom (1982) by incorporating organizational capi-

tal. Eisfeldt and Papanikolaou (2013) consider the asset-pricing implications of limited commitment

and organizational capital risk.

In terms of methodology, our paper builds on the dynamic contracting in continuous time work

of Holmstrom and Milgrom (1987), Schaettler and Sung (1993), and Sannikov (2008), among others.

Our model is evidently related to the dynamic corporate security design literature in the vein of

DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet (2007), and DeMarzo and

Fishman (2007b).1 As in DeMarzo and Sannikov (2006), Biais, Mariotti, Rochet, and Villeneuve

(2010), and DeMarzo, Fishman, He, and Wang (2012), our continuous-time formulation allows us to

provide sharper closed-form solutions for consumption, investment, liquidity and risk management

policies, up to an ordinary differential equation (ODE) for the investors’ scaled value p(w). These

papers also focus on the implementation of the optimal contracting solution via corporate liquidity

(cash and credit line) and (inside and outside) equity. Two key differences are: (1) risk aversion and

(2) systematic and idiosyncratic risk, which together lead to a theory of the firm’s off-balance-sheet

(zero-NPV) futures and insurance positions in addition to the “marketable securities” entry on

corporate balance sheets. A third difference is that these papers focus on dynamic moral hazard,

which is different from our focus on inalienability of risky human capital. A fourth difference is our

generalization of the q-theory of investment to settings with inalienable human capital.2

Our theory is also related to the liquidity asset pricing theory of Holmstrom and Tirole (2001).

We significantly advance their agenda of developing an asset pricing/portfolio choice theory based

on corporate liquidity. They consider a three-period model with risk neutral agents, where firms

are financially constrained and therefore have higher value when they hold more liquidity. Their

assumptions of risk neutrality and no consumption smoothing limit the integration of asset pricing

and corporate finance theories.

There is also an extensive macroeconomics literature on limited commitment.3 Green (1987),

Thomas and Worrall (1990), Marcet and Marimon (1992), Kehoe and Levine (1993) and Kocher-

lakota (1996) are important early contributions on optimal contracting under limited commitment.

Alvarez and Jermann (2000) extend welfare theorems to economies with limited commitment. Our

entrepreneur’s optimization problem is related to the agent’s dynamic optimization problem in

Alvarez and Jermann (2000) and Chien and Lustig (2010) to allow for recontracting after default.

While their focus is on optimal consumption allocation, we focus on consumption, liquidity and

risk allocation, as well as corporate investment.

Albuquerque and Hopenhayn (2004), Quadrini (2004), Clementi and Hopenhayn (2006), and

Lorenzoni and Walentin (2007) characterize financing and investment decisions under limited com-

mitment or asymmetric information. Kehoe and Perri (2002) and Albuquerque (2003) analyze the

implications of limited commitment for international business cycles and foreign direct investments.
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Miao and Zhang (2015) develop a duality-based solution method for limited-commitment problems.

Our analysis also contributes to the executive compensation literature, (see Frydman and Jenter,

2010, and Edmans and Gabaix, 2016, for recent surveys). Our model brings out an important

positive link between (a.) executive compensation and (b.) corporate liquidity and risk management,

and helps explain why companies typically cut compensation and investment, and reduce risk

exposures when liquidity is tight. DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and

Rochet (2007), and DeMarzo, Fishman, He, and Wang (2012) also provide financial implementation

with cash and/or credit line and link to executive compensation.4

Finally, our paper is clearly related to the voluminous economics literature on human capital

that builds on Ben-Porath (1967) and Becker (1975).

I. The Model

We consider an intertemporal optimization problem faced by a risk-averse entrepreneur, who

cannot irrevocably promise to operate the firm indefinitely under all circumstances. This inalien-

ability problem for the entrepreneur results in endogenous financial constraints distorting her con-

sumption, savings, investment, and exposures to systematic and idiosyncratic risks. To best high-

light the central economic mechanism arising from the inalienability of human capital, we remove

all other financial frictions from the model and assume that financial markets are otherwise fully

competitive and all state-contingent claims can be traded frictionlessly.

A. Production Technology and Preferences

Production and Capital Accumulation. The firm’s capital stock K evolves according to a

controlled Geometric Brownian Motion (GBM) process:

dKt = (It − δKKt)dt+ σKKt

(√
1− ρ2dZh,t + ρdZm,t

)
, (1)

where I is the firm’s rate of gross investment, δK ≥ 0 is the expected rate of depreciation, and σK is

the volatility of the capital depreciation shock.5 Without loss of generality, we decompose risk into

two orthogonal components: an idiosyncratic shock represented by the standard Brownian motion

Zh and a systematic shock represented by the standard Brownian motion Zm.6 The parameter

ρ measures the correlation between the firm’s capital risk and systematic risk, so that the firm’s

systematic volatility is equal to ρσK and its idiosyncratic volatility is given by

νK = σK
√

1− ρ2 . (2)

The capital stock includes both physical capital and intangible capital (such as, patents, know-how,

brand value, and organizational capital).

As in Hart and Moore (1994), production requires combining the entrepreneur’s inalienable

human capital and the firm’s physical assets. When either the entrepreneur’s human capital or
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the firm’s physical capital is missing, no output is produced and no value creation is possible. In

other words, value is created by matching the entrepreneur’s human capital and the firm’s physical

capital stock. The entrepreneur’s human capital is captured by a parameter denoted by A. Human

capital is more valuable when it is deployed on a larger capital stock Kt. Specifically we assume

that the firm’s output produced by the match is given by AKt. This formulation encapsulates the

idea that the added value of the entrepreneur’s human capital is risky to the extent that the firm’s

capital Kt is risky. We generalize our model to introduce shocks to productivity A in Section VI.

An important simplifying assumption throughout our analysis is that the entrepreneur’s human

capital is always best matched with the firm’s physical capital stock, so that there is no separation

under the optimal contract.7

Investment involves an adjustment cost as in the standard q-theory of investment, so that the

firm’s free cash flow (net of capital costs but before consumption) is given by:

Yt = AKt − It −G(It,Kt), (3)

where the price of the investment good is normalized to one and G(I,K) is the standard adjustment

cost function. Note that Yt can take negative values, which simply means that additional financing

may be needed to close the gap between contemporaneous revenue, AKt, and total investment

costs.

We further assume that the adjustment cost G(I,K) is homogeneous of degree one in I and K

(a common assumption in the q-theory of investment) and express G(I,K) as follows:

G (I,K) = g(i)K, (4)

where i = I/K denotes the investment-capital ratio and g(i) is increasing and convex in i. As

Hayashi (1982) has shown, under this homogeneity property Tobin’s average and marginal q are

equal in the first-best benchmark.8 However, under inalienability of human capital an endogenous

wedge between Tobin’s average and marginal q will emerge in our model.9

Preferences. The infinitely-lived entrepreneur has a standard concave utility function over pos-

itive consumption flows {Ct; t ≥ 0} given by:

Jt = Et

[∫
∞

t
ζe−ζ(v−t)U(Cv)dv

]
, (5)

where ζ > 0 is the entrepreneur’s subjective discount rate, Et [ · ] is the time-t conditional expecta-

tion, and U(C) takes the standard constant-relative-risk-averse utility (CRRA) form:

U(C) =
C1−γ

1− γ
, (6)
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with γ > 0 denoting the coefficient of relative risk aversion. We normalize the flow payoff with ζ

in (5), so that the utility flow is given by ζU(C).10

B. Complete Financial Markets

We assume that financial markets are perfectly competitive and complete. By using essentially

the same argument as in the Black-Merton-Scholes option pricing framework, we can dynamically

complete markets with three long-lived assets (Harrison and Kreps, 1979 and Duffie and Huang,

1985): Given that the firm’s production is subject to two shocks, Zh and Zm, financial markets are

dynamically complete if the following three non-redundant financial assets can be dynamically and

frictionlessly traded:

a. A risk-free asset that pays interest at a constant risk-free rate r;

b. A hedging contract that is perfectly correlated with the idiosyncratic shock Zh. There is

no up-front cost to enter this hedging contract as the risk involved is purely idiosyncratic

and thus the counter-party earns no risk premium. The transaction at inception is therefore

off-the-balance sheet. The instantaneous payoff for each unit of the contract is νKdZh,t .

c. A stock market portfolio. The incremental return dRm,t of this asset is

dRm,t = µmdt+ σmdZm,t , (7)

where µm and σm are constant drift and volatility parameters. As this risky asset is only

subject to the systematic shock we refer to it as the market portfolio.

Dynamic and frictionless trading with these three securities implies that the following unique

stochastic discount factor (SDF) exists (e.g., Duffie, 2001):

dMt

Mt
= −rdt− ηdZm,t , (8)

where M0 = 1 and η is the Sharpe ratio of the market portfolio given by:

η =
µm − r

σm
. (9)

The SDF M follows a geometric Brownian motion where the drift is equal to the negative risk-free

rate, as required under no arbitrage. By definition the SDF is only exposed to the systematic shock

Zm. Fully diversified investors will only demand a risk premium for their exposures to systematic

shocks.

Dynamic Trading. Let {St; t ≥ 0} denote the entrepreneur’s liquid wealth process. When

St > 0, the entrepreneur’s savings are positive and when St < 0, she is a borrower. The entrepreneur

continuously allocates St between the risk-free asset and the stock market portfolio Φm,t whose
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return is given by (7). Moreover, the entrepreneur chooses a pure idiosyncratic-risk hedging position

Φh,t. Her liquid wealth St then evolves as follows:

dSt = (rSt + Yt −Ct)dt+Φh,tνKdZh,t +Φm,t[(µm − r)dt+ σmdZm,t] . (10)

The first term in (10), rSt+Yt−Ct, is simply the sum of the interest income rSt and net operating

cash flows, Yt − Ct, the second term, Φh,tνKdZh,t, is the exposure to the idiosyncratic shock Zh,

which earns no risk premium, and the third term, Φm,t[(µm − r)dt+ σmdZm,t], is the excess payoff

from the market portfolio.

In the absence of any risk exposure rSt + Yt − Ct is simply the rate at which the entrepreneur

saves as in standard permanent-income models. However, in general, saving all liquid wealth S at

the risk-free rate is sub-optimal. By dynamically engaging in risk taking and risk management,

through the risk exposures Φh and Φm, the entrepreneur will do better.

Next, we use dynamic programming to characterize the firm’s liquidity and risk management

policies.

C. Dynamic Programming

Let J(K,S) denote the entrepreneur’s value function. The entrepreneur’s liquid wealth S

and illiquid productive capital K play different roles and accordingly both serve as natural state

variables. By the standard dynamic programming argument, the solution for J(K,S) in the interior

region is characterized by the following Hamilton-Jacobi-Bellman (HJB) equation:

ζJ(K,S) = max
C,I,Φh,Φm

ζU(C) + (rS +Φm(µm − r) +AK − I −G(I,K)− C)JS(K,S)

+ (I − δKK)JK(K,S) +
σ2
KK2

2
JKK(K,S)

+
(
ν2KΦh + ρσKσmΦm

)
KJKS(K,S) +

(νKΦh)
2 + (σmΦm)2

2
JSS(K,S) . (11)

The first term on the right side of (11) represents the entrepreneur’s utility over consumption; the

second term is the product of the marginal value of liquidity, JS(K,S), and the savings rate for

S; the third term is the product of net investment, (I − δKK), and the marginal value of capital

JK(K,S)); the last three terms (involving JKK(K,S), JKS(K,S) and JSS(K,S)) correspond to the

quadratic-variation and co-variation effects of K and S.

The entrepreneur chooses consumption C, investment I, idiosyncratic-risk hedge Φh, and market-

portfolio allocation Φm, to maximize her lifetime utility. With a concave utility function U(C),

optimal consumption is determined by the first-order condition (FOC):

ζU ′(C) = JS(K,S) , (12)

which equates the marginal utility of consumption ζU ′(C) with JS(K,S), the marginal value of
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liquid wealth. The FOC for investment I,

(1 +GI(I,K)) JS(K,S) = JK(K,S) , (13)

is somewhat less obvious. It equates: (a.) the marginal cost of investing in illiquid capital, given

by the product of the marginal cost of investing (1 +GI) and the marginal value of liquid savings

JS(K,S), with (b.) the entrepreneur’s marginal value of investing in illiquid capital JK(K,S).

The optimal stock-market portfolio allocation Φm satisfies the following FOC:

Φm = − η

σm

JS(K,S)

JSS(K,S)
− ρσK

σm

KJKS(K,S)

JSS(K,S)
. (14)

The first term in (14) is in the spirit of Merton’s mean-variance demand and the second term is the

hedging demand with respect to the firm’s systematic risk exposure. Similarly, the optimal hedge

against idiosyncratic risk Φh is given by the following FOC:

Φh = −KJKS(K,S)

JSS(K,S)
. (15)

Note that the numerators in both (14) and (15) involve the cross partial, JKS(K,S).

Equations (11), (12), (13), (14), and (15) jointly characterize the interior solution of the firm’s

optimization problem.

The Entrepreneur’s Certainty-Equivalent Wealth M(K,S). A key step in our derivation

is to establish that the entrepreneur’s value function J(K,S) takes the following form:11

J(K,S) =
(bM(K,S))1−γ

1− γ
, (16)

where M(K,S) is the entrepreneur’s certainty-equivalent wealth and b is the constant:12

b = ζ

[
1

γ
− 1

ζ

(
1− γ

γ

)(
r +

η2

2γ

)] γ

γ−1

. (17)

In words, M(K,S) is the dollar amount that the entrepreneur would demand to permanently give

up her productive human capital and retire as a Merton-style consumer living under complete

markets. By linking the entrepreneur’s value function J(K,S) to her certainty-equivalent wealth

M(K,S) we are able to transform the entrepreneur’s payoff from the value function, J(K,S), to

the certainty-equivalent wealth, M(K,S).

This transformation is conceptually important, as it allows us to measure payoffs in dollars and

thereby to make the economics of the entrepreneur’s problem more intuitive. In particular, it is only

possible to determine the marginal value of liquidity, MS(K,S), after making the transformation

from J(K,S) to M(K,S). As we will show, the economics of the entrepreneur’s problem and

the solution of the entrepreneur’s liquidity and risk management problem are closely tied to the

11



marginal value of liquidity MS(K,S).

Reduction to One Dimension. An additional simplifying step is to exploit the model’s ho-

mogeneity property to reduce the entrepreneur’s problem to one dimension. Scaling the vari-

ables expressed in dollar units by Kt, we use lower-case letters to denote the following variables:

consumption ct = Ct/Kt, investment it = It/Kt, liquidity st = St/Kt, idiosyncratic-risk hedge

φh,t = Φh,t/Kt, and market-portfolio position φm,t = Φm,t/Kt. We also express the entrepreneur’s

certainty equivalent wealth M(Kt, St) as follows:

M(Kt, St) = m(st) ·Kt. (18)

Endogenous Risk Aversion γe. To better interpret our solution it is helpful to introduce the

following measure of endogenous relative risk aversion for the entrepreneur, denoted by γe and

defined as follows:

γe ≡ −JSS
JS

×M(K,S) = γm′(s)− m(s)m′′(s)

m′(s)
. (19)

In (19) the first identity sign gives the definition of γe and the second equality follows from the

homogeneity property. What economic insights does γe capture and why do we introduce γe? First,

inalienability of human capital results in a form of endogenous market incompleteness. Therefore,

the entrepreneur’s endogenous risk aversion is captured by the curvature of her value function

J(K,S) rather than her utility function U( · ). We can characterize the entrepreneur’s coeffi-

cient of endogenous absolute risk aversion with the standard definition via her value function:

−JSS(K,S)/JS(K,S). But how do we link this absolute risk aversion measure to a relative risk

aversion measure? We need to multiply absolute risk aversion, −JSS(K,S)/JS(K,S), with an ap-

propriate measure of the entrepreneur’s wealth. There is no well-defined market measure of the

entrepreneur’s total wealth under inalienability. However, the entrepreneur’s certainty equivalent

wealth M(K,S) is a natural measure. This motivates our definition of γe in (19).13 We will show

that the inalienability of human capital causes the entrepreneur to be under-diversified and hence

effectively more risk averse, so that γe(s) > γ.14 The second equality in (19) confirms this result,

as her certainty equivalent wealth m(s) is concave in s with m′(s) > 1, which we establish below.

Next, we characterize the evolution of s given the policy functions φh(s), φm(s), c(s), and i(s).

Dynamics of the Liquidity Ratio {st : t ≥ 0}. Given policies c(s), i(s), φh(s), and φm(s), we

can express the dynamics for the liquidity ratio st using Ito’s formula as:

dst = d(St/Kt) = µs(st)dt+ σs
h(st)dZh,t + σs

m(st)dZm,t , (20)

12



where the idiosyncratic volatility function for st, σ
s
h( · ), and the systematic volatility function for

st, σ
s
m( · ), are respectively given by:

σs
h(s) = (φh(s)− s) νK , (21)

σs
m(s) = φm(s)σm − ρσKs , (22)

and the drift function for st, µ
s( · ), is given by:

µs(st) = y(st) + φm(st)(µm − r)− c(st) + (r + δK − i(st))st − (νKσs
h(st) + ρσKσs

m(st)) , (23)

where yt = Yt/Kt is the scaled free-cash flow (before consumption):

y(st) = A− i(st)− g(i(st)) . (24)

Next, we discuss the first-best solution in Section II and the inalienability solution in Section

III. A key difference between the two is the determination of the endogenous debt capacity, which

corresponds to the left boundary conditions. Inalienability causes debt capacity to be much lower

than the first-best level, which in turn causes policy functions to be non-linear, as we demonstrate

in Section III.

II. First-Best Solution

We report the first-best closed-form solution and provide a brief discussion of key economic

insights. Appendix A provides the proof. Under the first-best, markets are (dynamically) complete

and the entrepreneur’s certainty-equivalent wealth coincides with the mark-to-market valuation of

her net worth. Moreover, entrepreneur’s consumption and production decisions can be separated.15

Investment, Tobin’s q, CAPM β, and Gordon Growth Formula. The market value of the

firm’s capital stock is QFB
t = qFBKt, where qFB is the endogenously determined Tobin average q.

The FOC for investment implies:

qFB = 1 + g′(iFB) , (25)

which equates Tobin’s q to the marginal cost of investing, 1+g′(i). Adjustment costs create a wedge

between the value of installed capital and newly purchased capital, so that qFB 6= 1 in general.

Under the first best, financing policies are irrelevant. Therefore, consider a firm whose only

asset is its capital stock. Then, this firm’s value is QFB
t . Tobin’s average q, qFB, also satisfies the

following present value formula:

qFB = max
i

A− i− g(i)

rK − (i− δK)
, (26)

13



where rK is the expected rate of return for the firm whose only asset is its capital stock:

rK = r + ρησK = r + βFB × (µm − r) . (27)

Because of the SDF given in (8) and our model’s homogeneity property, the CAPM holds in our

model for the firm whose only asset is its capital stock and βFB in (27) is the CAPM β for this

firm:

βFB =
ρσK
σm

. (28)

Equation (26) is the Gordon growth formula with an endogenously determined growth rate.

The numerator is the scaled free-cash flow y = A − i − g(i) and the denominator is given by the

difference between the cost of capital rK and the free-cash flow’s expected growth rate (iFB − δK).

Equation (26) shows that the production side of our model generalizes Hayashi (1982) to situations

where a firm faces both idiosyncratic and systematic risk, and where systematic risk commands a

risk premium.

We can equivalently write the formula (26) as follows:

qFB = max
i

A− i− g(i)

r − (i− δ)
, (29)

where δ is the risk-adjusted depreciation rate:

δ = δK + ρησK . (30)

Note that (29) is the Gordon growth formula under the risk-neutral measure.16

Having characterized investment and the value of capital, we next turn to consumption and

dynamic risk management. This part of our model is a generalized version of Merton (1969).

Consumption, Hedging, and Portfolio Choices. Because markets are dynamically complete,

the entrepreneur’s total wealth, MFB
t , is equal to the sum of wealth St and the market value of

capital QFB
t :

MFB
t = St +QFB

t = (st + qFB)Kt = mFB(st)Kt . (31)

Scaled consumption is proportional to scaled net worth:

cFB(s) = χmFB(s) = χ
(
s+ qFB

)
, (32)

where χ is Merton’s marginal propensity to consume (MPC) given by:

χ = r +
η2

2γ
+ γ−1

(
ζ − r − η2

2γ

)
. (33)

Because markets are complete and MM conditions hold, the entrepreneur’s endogenous relative risk

aversion, defined in equation (19), is equal to γ.
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The FOC for φFB
h (st) then yields

φFB
h (s) = −qFB . (34)

The entrepreneur completely neutralizes her idiosyncratic risk exposure (due to her long position

in the business venture) by going short and setting φFB
h (s) = −qFB, leaving her net worth MFB

with a zero net exposure to idiosyncratic risk Zh.

Similarly, the FOC for φFB
m (st) yields

φFB
m (s) =

η

γσm
mFB(s)− βFBqFB . (35)

The first term achieves the target mean-variance aggregate risk exposure for her net worth MFB

and the second term in (35), −βFBqFB, fully offsets the entrepreneur’s exposure to the aggregate

shock through the firm’s operations.

Total Wealth and Debt Capacity. Total wealth, Mt, evolves via the following GBM process:

dMFB
t = MFB

t

[(
r − χ+

η2

γ

)
dt+

η

γ
dZm,t

]
, (36)

The entrepreneur’s net worth has zero net exposure to the idiosyncratic shock Zh,t under the first-

best. The debt capacity under the first-best is qFB per unit of capital, so that s ≥ −qFB and

m(s) ≥ m(−qFB) = 0. Because the entrepreneur has access to a credit line up to qFB per unit of

capital at the risk-free rate r, she can achieve first-best consumption smoothing and investment,

attaining the maximal value of capital at qFBKt and the maximal net worth mFB(s) given in (31).

Next we turn to the inalienability solution.

III. Inalienable-Human-Capital Solution

In this section, we simplify the policy functions, derive the ODE for m(s), and characterize the

debt capacity under inalienable human capital.

A. Optimal Policy Functions and the ODE for m(s)

Substituting the value function given by (16) into the optimality conditions (12), (13), (15),

and (14) and using (18), we obtain the following policy functions in terms of the liquidity ratio s.

Consumption Ct and Corporate Investment It. The consumption policy is given by:

c(s) = χm′(s)−1/γm(s) , (37)

where χ = ζ
1

γ b
γ−1

γ is the marginal propensity to consume (MPC) under the first-best and given

by (33). Under inalienability, consumption is nonlinear and depends on both the entrepreneur’s

15



certainty equivalent wealth, m(s), and the marginal value of wealth, m′(s). Note that the en-

trepreneur’s consumption is increasing in liquidity s. This can be seen by differentiating c(s) with

respect to s and noting that m(s) is concave in s:

c′(s) = χ

[
m′(s)

1− 1

γ − 1

γ
m′′(s)m′(s)

−

(
1+ 1

γ

)

m(s)

]
> 0. (38)

In Section V.D, we illustrate how the inalienability-of-human-capital constraint can generate very

large marginal propensities to consume for the entrepreneur when the entrepreneur is close to

exhausting her borrowing capacity.

Similarly, investment i(s) is given by

1 + g′(i(s)) =
m(s)

m′(s)
− s , (39)

which also depends on m(s) and m′(s). As one may expect, i(s) is increasing in s. To see this,

differentiating i(s) with respect to s yields:

i′(s) = −1

θ

m(s)m′′(s)

m′ (s)2
> 0. (40)

The positive investment-liquidity sensitivity again follows from the concavity of m(s).

Idiosyncratic Risk Hedge Φh,t and Market Portfolio Allocation Φm,t. Simplifying (14) and

(15) gives the following optimal idiosyncratic risk hedge φh(s):

φh(s) = −
(
γ m(s)

γe(s)
− s

)
. (41)

As we show in Section V, φh(s) < 0 for all s. Because the entrepreneur is exposed to idiosyncratic

risk through the firm’s operations, she optimally reduces this exposure by taking a short position

in the hedging asset. However, with inalienability the hedging demand φh(s) does not completely

eliminate the entrepreneur’s exposure to idiosyncratic risk. Indeed, note that since γe(s) > γ under

inalienability, (41) implies that incomplete idiosyncratic risk hedging is optimal.

The optimal market portfolio allocation φm(s) is given by

φm(s) =
η

σm

m(s)

γe(s)
− ρσK

σm

(
γ m(s)

γe(s)
− s

)
=

µm − r

σ2
m

m(s)

γe(s)
− βFBφh(s) , (42)

where βFB is the CAPM beta for the market value of capital under the first-best as given in (28),

and γe( · ) is the entrepreneur’s effective risk aversion given by (19). The first term in (42) reflects

the mean-variance demand for the market portfolio, which differs from the standard Merton model

in two ways: (1.) risk aversion γ is replaced by the effective risk aversion γe(s) and (2.) net worth

is replaced by certainty equivalent wealth m(s).

The second term in (42) gives the hedging demand with respect to systematic risk Zm. This
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systematic risk hedging demand term is proportional to the idiosyncratic risk hedging demand,

φh(s), where the proportionality coefficient is βFB .

The optimal market portfolio allocation φm(s), balances achieving mean-variance efficiency for

the entrepreneur’s certainty equivalent wealth, as is reflected in the first term in (42), and maxi-

mizing the firm’s financing capacity, as is reflected in the second term in (42). Overall, maximizing

financing capacity amounts to both increasing the idiosyncratic risk exposure, |φh(s)|, and reducing

the systematic risk exposure, |φm(s)|, away from the first best, as s moves closer to s.

ODE for m(s). Substituting the policy functions for c(s), i(s), φh(s), and φm(s) and the value

function (16) into the HJB equation (11) and using the homogeneity property, we obtain the

following ODE for m(s):

0 =
m(s)

1− γ

[
γχm′(s)

γ−1

γ − ζ
]
+ [rs+A− i(s)− g(i(s))]m′(s) + (i(s)− δ)(m(s) − sm′(s))

+

(
γσ2

K

2
− ρησK

)
m(s)2m′′(s)

γe(s)m′(s)
+

η2m′(s)m(s)

2γe(s)
. (43)

B. Inalienable Human Capital and Endogenous Debt Capacity

The entrepreneur has the option to walk away at any time from her current firm of size Kt,

thereby leaving behind all her liabilities. Her next-best alternative is to manage a firm of size αKt,

where α ∈ (0, 1) is a constant. That is, under this alternative, her talent creates less value, as

α < 1. Therefore, as long as the entrepreneur’s liabilities are not too large the entrepreneur prefers

to stay with the firm.17

The inalienability of her human capital gives rise to an endogenous debt capacity, denoted by

St, that satisfies:

J(Kt, St) = J(αKt, 0). (44)

That is, St equates the value for the entrepreneur J(Kt, St) of remaining with the firm and her

outside option value J(αKt, 0) associated with managing a smaller firm of size αKt and no liabilities.

Given that it is never efficient for the entrepreneur to quit on the equilibrium path, J(K,S) must

satisfy the following condition:

J(Kt, St) ≥ J(Kt, St) . (45)

We can equivalently express the inalienability constraint given by (44) and (45) as:18

St ≥ St = S(Kt) , (46)

where S(Kt) defines the endogenous credit capacity as a function of the capital stock Kt. When

St < 0, the entrepreneur draws on a line of credit (LOC) and services her debt at the risk-free rate

r up to S(Kt). Note that debt is risk-free because (46) ensures that the entrepreneur does not walk

away from the firm in an attempt to evade her debt obligations.
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Substituting the value function, J(K,S), given in (44) and simplifying the value-matching

condition given in (44), we further obtain the following condition for m(s) at s = s:

m(s) = αm(0) . (47)

Note that when α = 0 the entrepreneur has no outside option, so that m(s) = 0, corresponding

to the first-best case. By optimally setting s = −qFB we attain the first-best outcome where

the entrepreneur can potentially pledge the entire market value of capital, qFB, which is equal

to Tobin’s average q under the first-best. At the other extreme, when α = 1, the entrepreneur’s

outside option is as good as her current employment. No long-term contract can then retain the

entrepreneur, so that the model has no solution. Therefore, in order for the inalienability of human

capital problem to have an interesting and non-degenerate solution, it is necessary to require that

0 < α < 1. For these values of α, (47) implies that m(s) > 0.19

We simplify the credit constraint given in (46) by expressing it in terms of scaled liquidity s,

st ≥ s . (48)

As in the household buffer-stock savings literature (e.g., Deaton (1991)), the risk-averse entrepreneur

manages her liquid holdings s with the objective of smoothing her consumption. Setting st = s

for all t is too costly and suboptimal in terms of consumption smoothing. Although the credit

constraint (48) rarely binds, it has to be satisfied with probability one. Only then can we ensure

that the entrepreneur always stays with the firm.

Given that {st : t ≥ 0} is a diffusion process and hence is continuous, in order to satisfy the

inalienability constraint (48), it is necessary that both the idiosyncratic and systematic volatility

at s be equal to zero:

σs
h(s) = 0 and σs

m(s) = 0 . (49)

Otherwise, the probability of crossing a candidate debt limit of s to its left is strictly positive,

violating the credit constraint (48). By substituting φh(s) given by (41) and φm(s) given by(42)

into the volatility functions, (21) and (22), we can equivalently express (49) as:

m(s)

γe(s)
= 0 . (50)

In other words, at the endogenously determined s, either the entrepreneur’s scaled certainty equiv-

alent wealth is zero, m(s) = 0, or the entrepreneur is effectively infinitely risk averse, γe(s) = ∞.20

With inalienable human capital, m(s) > 0, so that the volatility boundary conditions (50) can only

be satisfied if γe(s) = ∞, which is equivalent to

m′′(s) = −∞ . (51)

That is, the inalienability condition (47) implies that the curvature of m(s) approaches infinity
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when the entrepreneur runs out of liquidity at the endogenous boundary s = s. Preserving her

long-term relationship with the firm at s is then so valuable that the entrepreneur does not want

to take the chance that s crosses s, implying that the entrepreneur is infinitely risk averse to the

volatility in s.

Finally, when the entrepreneur is infinitely wealthy, she has no reason to quit and hence

lim
s→∞

m(s) = mFB(s) = s+ qFB . (52)

That is, the boundary condition at the right end of s under inalienability is the first-best solution.

Summary. We summarize the solution for the inalienability case in the theorem below.

THEOREM 1: When 0 < α < 1, the solution to the inalienability problem is such that m(s) solves

the ODE (43) subject to the FOCs (37) for consumption c(s), (39) for investment i(s), (41) for

idiosyncratic risk hedge φh(s), (42) for market portfolio allocation φm(s), and the conditions (47)

and (51) at the endogenous left boundary, s, and (52) when s → ∞.

IV. Equivalent Optimal Contract

We consider next the long-term contracting problem between an infinitely-lived, fully diversi-

fied, risk-averse investor (the principal) and an infinitely-lived, financially constrained, risk-averse,

entrepreneur (the agent). The output process Yt is publicly observable and verifiable. In addition,

the entrepreneur cannot privately save.21 The contract specifies an investment process {It; t ≥ 0}
and a compensation {Ct; t ≥ 0} process, both of which depend on the entire history of idiosyncratic

and aggregate shocks {Zh,t, Zm,t; t ≥ 0}.
Because the risk-averse investor is fully diversified and markets are complete, the investor choos-

es investment {It; t ≥ 0} and compensation {Ct; t ≥ 0} to maximize the risk-adjusted discounted

value of free cash flows:

F (K0, V0) = max
C, I

E0

[∫
∞

0
Mt(Yt − Ct)dt

]
, (53)

where K0 is the initial capital stock and V0 is the entrepreneur’s initial utility. Given that the

investor is fully diversified, we use the same SDF, M which is given in (8), to evaluate the present

value of cash flows (Yt − Ct). Note that it is possible that Yt < Ct. The contracting problem is

subject to the entrepreneur’s inalienability constraints at all future dates t ≥ 0 and the participation

constraint at time 0. We denote by V (Kt) the entrepreneur’s endogenous outside utility payoff, so

that the inalienability constraint at time t is given by:

Vt ≥ V (Kt) , t ≥ 0, (54)

where Vt is the entrepreneur’s promised utility specified under the contract.
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A. Recursive Formulation

We proceed in three steps to transform the optimal contracting problem into a recursive form:

(1) we define the entrepreneur’s promised utility V and the principal’s value F (K,V ) in recursive

form; (2) we map promised utility V into promised certainty-equivalent wealth W ; and (3) we

simplify the contracting problem into a one-dimensional problem. While step (1) is standard in the

recursive contracting literature, step (2) is less common but is essential to allow us to connect the

contracting problem to the liquidity and risk management problem analyzed before. Derivations

for results in this section are provided in Appendix B.

The Investor’s Value Function F (Kt, Vt). By using the martingale representation theorem,

we show that the expected change of the entrepreneur’s promised utility satisfies

Et [ζU(Ct)dt+ dVt] = ζVtdt , (55)

where ζU(Ct)dt is the utility of current compensation and dVt is the change in promised utility.

The realized change of the entrepreneur’s promised utility, dV , implied by (55), can be written as

the sum of: i) the expected change Et [dVt] (the drift term); ii) a martingale term driven by the

idiosyncratic shock, Zh; and iii) a martingale term driven by the systematic shock, Zm:

dVt = ζ(Vt − U(Ct))dt+ zh,tVtdZh,t + zm,tVtdZm,t , (56)

where {zh,t; t ≥ 0} and {zm,t; t ≥ 0} respectively control the idiosyncratic and systematic volatilities

of the entrepreneur’s promised utility V .

We can then write the investor’s value function F (Kt, Vt) in terms of: i) the entrepreneur’s

promised utility Vt; and, ii) the venture’s capital stock Kt. The contracting problem specifies

investment It, compensation Ct, idiosyncratic risk exposure zh,t and systematic risk exposure zm,t

to maximize the investor’s risk-adjusted present discounted value of free cash flows. The following

HJB equation for the investor’s value F (K,V ) holds:

rF (K,V ) = max
C, I, zh, zm

(Y − C) + (I − δK)FK + [ζ(V − U(C))− zmηV ]FV

+
σ2
KK2FKK

2
+

(z2h + z2m)V 2FV V

2
+ (zhνK + zmρσK)KV FV K .(57)

From Promised Utility Vt To Promised Certainty-Equivalent Wealth Wt. To link the

optimal contract to the optimal liquidity and risk management policies derived in the preceding

section, we need to express the entrepreneur’s promised utility in dollars (units of consumption)

rather than in utils. Let W denote the promised (certainty-equivalent) wealth, the amount that

the entrepreneur would demand to permanently give up her productive human capital, walk away

from the long-term contracting relationship, and retire as a Merton-style consumer living under

complete markets.
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We show that Wt can be linked to the promised utility, Vt, via Vt = V (Wt), where

V (Wt) = U(bWt) , (58)

where U( · ) is given in (6) and b is given in (17). Differentiating (58), we obtain V ′(Wt) = bU ′(bWt)

and V ′′(Wt) = b2U ′′(bWt). In addition, the following SDE for Wt holds:

dWt =
1

V ′(Wt)
[ζ(Vt − U(Ct))dt+ zh,tVtdZh,t + zm,tVtdZm,t]−

(z2h,t + z2m,t)V
2
t V

′′(Wt)

2(V ′(Wt))3
dt

=

[
ζ(U(bWt)− U(Ct))

V ′(Wt)
−

(x2h,t + x2m,t)K
2
t V

′′(Wt)

2V ′(Wt)

]
dt+ xh,tKt dZh,t + xm,tKt dZm,t , (59)

where

xm,t =
zm,t V (Wt)

Kt V ′(Wt)
and xh,t =

zh,t V (Wt)

Kt V ′(Wt)
. (60)

Note that xh,t and xm,t are the idiosyncratic and systematic volatilities of Wt (scaled by con-

temporaneous Kt). As will become clear, xm,t and xh,t are closely tied to the firm’s optimal risk

management policies φh,t and φm,t analyzed earlier.

Reduction to One Dimension. We can reduce the contracting problem to one dimension,

with the scaled wealth wt = Wt/Kt as the unique state variable, by re-writing the investor’s value

F (Kt, Vt) as follows:

F (Kt, Vt) ≡ F (Kt, U(bWt)) = P (Kt,Wt) = p(wt) ·Kt . (61)

It is then sufficient to solve for p(w) and characterize the scaled consumption, investment, idiosyn-

cratic risk hedge, and stock market allocation rules as functions of w.

The Principal’s Endogenous Risk Aversion γp. It is again helpful to introduce a measure

of endogenous risk aversion for the principal. Let γp denote the principal’s risk-aversion under the

contract:

γp,t ≡
WtPWW (Kt,Wt)

PW (Kt,Wt)
=

wt p
′′(wt)

p′(wt)
> 0 . (62)

The identity sign gives the definition of γp, and the equality sign follows from the homogeneity

property.22 As w is a liability for the investor we have p′(w) < 0. This is why, unlike in the

standard definition of risk aversion, there is no minus sign in (62).

Under the first-best, the investor’s value is linear in w, so that p′′(w) = 0 and the principal’s

effective risk aversion γFB
p (w) is zero for all w. Under inalienability, we can show that the investor’s

endogenous risk aversion γp(w) > 0 since p(w) is decreasing and concave.
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B. Optimal Policy Functions

Consumption Ct and Corporate Investment It. Substituting (61) into (B5) and (B6), we

obtain the following consumption and investment functions. Optimal consumption is Ct = c(wt)Kt,

where c(w) is given by:

c(w) = χ
(
−p′(w)

)1/γ
w , (63)

and again χ is the MPC under the first best given in (33). Under inalienability, consumption de-

pends on both w and the investor’s marginal value of liquidity p′(w). Similarly, optimal investment

is It = i(wt)Kt, where i(w) is given by the following FOC:

1 + g′(i(w)) = p(w)− wp′(w) . (64)

The left side of (64) is the marginal cost of investing and the right side of (64) is the marginal value

of capital PK(K,W ) = p(w)− wp′(w).

Idiosyncratic Risk Exposure xh(w) and Systematic Risk Exposure xm(w). Substituting

the principal’s endogenous coefficient of risk aversion γp(w) given in (62) into the optimal risk

exposures, given in (B7) and (B8), and simplifying, we obtain the following simple and economically

transparent expressions for xh(wt) and xm(wt). First, the idiosyncratic risk exposure is

xh(w) =
γp(w)

γp(w) + γ
νKw . (65)

This equation is reminiscent of the classic co-insurance formula, which involves the ratio between the

principal’s endogenous risk aversion, γp(w), and the sum of the two parties’ risk-aversion coefficients.

Second, the systematic risk exposure is

xm(w) =
ηw

γp(w) + γ
+ ρσKw

γp(w)

γp(w) + γ
, (66)

where the first term is the mean-variance demand and the second term corresponds to the systematic

risk hedging demand.

Under the first best, we have xFB
h (w) = 0 and xFB

m (w) = η w/γ, since γFB
p (w) = 0. The result

that xFB
h (w) = 0 means that the entrepreneur’s promised net worth Wt has no net exposure to

idiosyncratic risk Zh,t. The result that x
FB
m (w) = η w/γ is the contracting version for the standard

mean-variance demand for the entrepreneur’s net worth W .

In contrast, under inalienability optimal co-insurance involves the agent taking on some idiosyn-

cratic risk as well as reducing her market risk exposure a bit from the first-best level,23 as can be

seen in the expressions for xh(w) in (65) and xm(w) in (66).
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C. Dynamics of Scaled Promised Wealth w

Applying Ito’s formula to wt = Wt/Kt, we obtain the following dynamics for w:

dwt = d (Wt/Kt) = µw(wt)dt+ σw
h (wt)dZh,t + σw

m(wt)dZm,t , (67)

where the idiosyncratic and systematic volatilities for w, σw
h ( · ) and σw

m( · ), are given by

σw
h (w) = −νK

γ w

γp(w) + γ
< 0 , (68)

σw
m(w) =

(
η

γ
− ρσK

)
γ w

γp(w) + γ
. (69)

Note that both σw
h (w) and σw

m(w) are proportional to w/(γp(w) + γ). Finally, the drift function

µw( · ) of wt is given by:

µw(w) =
ζ

1− γ

(
w +

c(w)

ζp′(w)

)
−w(i(w)−δK)+

γ(x2h(w) + x2m(w))

2w
−(νKσw

h (w)+ρσKσw
m(w)) . (70)

D. ODE for p(w)

Substituting F (K,V ) = p(w) ·K into the HJB equation (57), solving for p(w), and substituting

for the policy functions c(w), i(w), xh(w) and xm(w), we obtain the following ODE for the investor’s

value p(w):

rp(w) = A− i(w) − g(i(w)) +
χγ

1− γ

(
−p′(w)

)1/γ
w + (i(w) − δ)(p(w) − wp′(w))

+
ζ

1− γ
wp′(w) +

(
γσ2

K

2
− ρησK

)
w2p′′(w)

γp(w) + γ
− η2

2

wp′(w)

γp(w) + γ
, (71)

where i(w) is given by (64) and γp(w) is given by (62). Again, this ODE for p(w) characterizes the

interior solution for both the first-best and inalienability cases. The only difference between the

two problems is reflected in the inalienability constraint to which we turn next.

E. Inalienability Constraint

The entrepreneur’s outside option at any time is to manage a new firm with effective size

αKt but with no legacy liabilities. Other than the size of the capital stock K, the new firm’s

production technology is identical to the one that she has just abandoned. Let Ṽ ( · ) and W̃ ( · ) be
the entrepreneur’s utility and the corresponding certainty-equivalent wealth in this new firm, and

suppose as before that investors in the new firm make zero net profits under competitive markets.

Then, from (61) we obtain the following condition:

F (αKt, Ṽ (αKt)) = P (αKt, W̃ (αKt)) = 0 . (72)
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When the entrepreneur is indifferent between leaving her employer or not we have

W (Kt) = W̃ (αKt) , (73)

where W (Kt) is the lowest possible value for the entrepreneur’s promised wealth such that her

inalienability constraint is satisfied. Equation (73) is equivalent to:

wt ≡ W (Kt)/Kt = W̃ (αKt)/Kt = αW̃ (αKt)/(αKt) = αw̃t , (74)

where the last equality follows from the assumption that the new firm’s capital is a constant

fraction, α, of the original firm’s contemporaneous capital stock. The homogeneity property and the

condition given in (72) together imply that p(w̃) = 0. Thus, substituting wt = αw̃t into p(w̃t) = 0

we obtain the following simple expression for the inalienability constraint (where 0 < α < 1):

p(w/α) = 0 . (75)

Note that inalienability implies that the entrepreneur’s minimum wealth must be strictly positive,

w > 0. For the first-best case, however, w = 0.

In both the first-best and inalienability cases the volatility functions σw
h (w) and σw

m(w) are equal

to zero at w to ensure that w never crosses w to the left (w ≥ w):

σw
h (w) = 0 and σw

m(w) = 0 . (76)

Equations (68) and (69) imply that the boundary conditions given in (76) are equivalent to:

γ w

γp(w) + γ
= 0 . (77)

Equation (77) holds when either w = 0 (for the first-best case) or γp(w) = ∞ (under inalienability),

which is equivalent to

p′′(w) = −∞ . (78)

That is, inalienability causes the principal to be infinitely risk averse with respect to w at w! Even

though the principal is well diversified, he is endogenously infinitely risk averse at w with respect to

his investment with the entrepreneur. As w approaches w, p(w) is strictly positive and reaches its

maximum value (recall that p(w) = −s > 0). Preserving his long-term relationship and investment

with the entrepreneur at w is then so valuable that the investor does not want to take the chance

that w crosses w, implying that the principal is infinitely risk averse to the volatility in w.

As for the primal liquidity and risk management problem, our contracting analysis reveals that

the boundary conditions under inalienability are fundamentally different from those for the first-

best: under inalienability γp(w) = ∞, while under the first-best γp(w) = 0 for all w. The first-best

solution confirms the conventional wisdom for hedging, which calls for the complete elimination
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of idiosyncratic risk exposures for the risk-averse entrepreneur. This conventional wisdom applies

only to a complete-markets, Arrow-Debreu, world. With inalienability, this conventional wisdom

no longer holds.

We summarize the contracting solution under inalienability in the theorem below.

THEOREM 2: When 0 < α < 1, the optimal contract under inalienability is such that p(w) solves

the ODE (71) subject to the FOCs (63) for c(w), (64) for i(w), (65) for idiosyncratic risk exposure

xh(w), (66) for systematic risk exposure xm(w), and the boundary conditions (75) and (78). In

addition, the drift µw(w) given in (70) must be non-negative at w, so that w is weakly increasing

at w with probability one.

Finally, to complete the characterization of the optimal contracting solution we set the en-

trepreneur’s initial reservation utility V ∗

0 such that F (K0, V
∗

0 ) = 0 to be consistent with the general

assumption that capital markets are competitive.

F. Equivalence

By equivalence, we mean that the resource allocations {Ct, It; t ≥ 0} under the two problem

formulations are identical for any path {Zh,Zm }. We demonstrate this equivalence in Appendix

(B.B), by verifying that the following holds:

s = −p(w) and w = m(s) , (79)

The preceding equation implies that −p ◦ m(s) = s. In other words, the state variable s in the

primal liquidity and risk management problem is shown to be equal to −p(w), the negative of the

value function in the dual contracting problem. Correspondingly the scaled wealth function m(s) in

the primal problem is equal to w, the scaled promised wealth, the state variable in the contracting

problem.

[Place Table II about here]

Table II provides a detailed side-by-side comparison of the two problem formulations along all

three relevant dimensions of the model: (a.) the state variable, (b.) the policy rules, and (c.) the

value functions for both the inalienability and first-best cases. Panels A, B, and C offer a side-by-

side mapping for the state variable, value function, and policy rules under the two formulations.

The differences between the inalienability and first-best cases are entirely driven by the conditions

pinning down the firm’s borrowing capacity, as we highlight in Panels D and E.

Panel D describes the conditions for the borrowing capacity in the inalienability case (0 < α <

1). The entrepreneur’s inalienability of human capital implies that m(s) = αm(0) given in (47) and

p(w/α) = 0 given in (75) have to be satisfied at the respective free boundaries s and w in the two

formulations. Given these inalienability constraints, the volatility conditions can only be satisfied

if the curvatures of the value functions, m(s) and p(w), approach −∞ at the left boundaries. We

also verify that the drift conditions at the left boundaries hold.

25



Panel E summarizes the first-best case, where α = 0. The investor’s value is given by the

difference between the market value of capital, qFB, and the promised wealth to the entrepreneur,

wt: pFB(wt) = qFB − wt. Equivalently, wt = mFB(st) = st + qFB. The first-best policy rules

such as consumption, investment, under the two formulations are consistent. For consumption, we

have c
FB(wt) = χwt = χmFB(st) = cFB(st). For investment, both formulations yield the same

constant investment-capital ratio, iFB . The optimal idiosyncratic risk exposure xFB
h (w) = 0 shuts

down the idiosyncratic risk exposure of Wt, which is equivalent to setting the idiosyncratic risk

hedge φFB
h (s) = −qFB in the primal formulation, thus eliminating idiosyncratic risk for Mt. The

optimal systematic risk exposure xFB
m (w) = η w/γ yields the aggregate volatility of η/γ for Wt,

which is consistent with the fact that φFB
m (s) given in (35) implies an aggregate volatility of η/γ

for Mt. Last but not least, the borrowing limits in the two formulations are also consistent, in

that wFB = 0 if and only if sFB = −qFB: the condition that the lower boundary for w is zero is

equivalent to the property that the entrepreneur can at any time t borrow up to the entire market

value of capital qFBKt.

V. Quantitative Analysis

In this section, we present our main qualitative and quantitative results. For simplicity, we

choose the widely-used quadratic adjustment cost function, g(i) = θi2/2, for which we have explicit

formulae for Tobin’s q and optimal i under the first-best:24

qFB = 1 + θiFB and iFB = r + δ −
√

(r + δ)2 − 2
A− (r + δ)

θ
. (80)

Our model is parsimonious with eleven parameters. We set the entrepreneur’s coefficient of

relative risk aversion to γ = 2, the equity risk premium (µm − r) to 6%, and the annual volatility

of the market portfolio return to σm = 20%, implying a Sharpe ratio of η = (µm − r)/σm = 30%.

We choose the annual risk-free rate to be r = 5% and set the entrepreneur’s discount rate at

ζ = r = 5%. These are standard parameter values in the asset pricing literature.

For the production-side parameters, we take the estimates in Eberly, Rebelo, and Vincent (2009)

and set the annual productivity A at 20% and the annual volatility of capital shocks at σK = 20%.

We set the correlation between the market portfolio return and the firm’s depreciation shock at

ρ = 0.2, which implies that the idiosyncratic volatility of the depreciation shock is νK = 19.6%.

We fit the first-best values of qFB and iFB to the sample averages by setting the adjustment cost

parameter at θ = 2 and the (expected) annual capital depreciation rate at δK = 11%, both of which

are in line with estimates in Hall (2004) and Riddick and Whited (2009). These parameters imply

that qFB = 1.264, iFB = 0.132, and βFB = 0.2. Finally, we set the inalienability parameter at

α = 0.8. The parameter values for our baseline calculation are summarized in Table III.

[Place Table III about here]
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A. Firm Value and Endogenous Debt Capacity

We begin by linking the value functions of the two optimization problems, p(w) and m(s).

Liquidity Ratio s and Certainty-Equivalent Wealth m(s). Panels A and C of Figure 1 plot

m(s) and the marginal value of liquidity m′(s), respectively. Under the first-best, the entrepreneur’s

scaled net worth is simply given by the sum of her financial wealth s and the market value of the

capital stock: mFB(s) = s + qFB = s + 1.264. Note that mFB(s) ≥ 0 implies that s ≥ −qFB, so

that the debt limit under the first-best is sFB = −qFB.

As one would expect, m(s) < mFB(s) = qFB + s due to inalienability. Moreover, m(s) is

increasing and concave. The higher the liquidity s the less constrained is the entrepreneur, so that

m′(s) decreases. In the limit, as s → ∞, m(s) approaches mFB(s) = qFB + s and m′(s) → 1.

The equilibrium credit limit under inalienability is s = −0.208, meaning that the entrepreneur’s

maximal borrowing capacity is 20.8% of the contemporaneous capital stock K, which is as little as

one-sixth of the first-best debt capacity. The corresponding scaled certainty-equivalent wealth is

m(−0.208) = 0.959. When the endogenous financial constraint binds at s = −0.208, the marginal

certainty equivalent value of liquidity m′(s) is highest and is equal to m′(−0.208) = 1.394. Figure

1 clearly illustrates that the first-best and inalienability cases are fundamentally different.25

[Place Figure 1 about here]

Promised Wealth w and Investors’ Value p(w). Panels B and D of Figure 1 plot p (w) and

p′ (w), respectively. Under the first-best, compensation to the entrepreneur is simply a one-to-

one transfer from investors: pFB(w) = qFB − w = 1.264 − w. With inalienable human capital,

p(w) < qFB − w, and p(w) is decreasing and concave. As w increases the entrepreneur is less

constrained. In the limit, as w → ∞, p(w) approaches qFB−w, and p′(w) → −1. The entrepreneur’s

inability to fully commit not to walk away ex post imposes a lower bound w on w. For our parameter

values, w = 0.959. Note that w = 0.959 = m(s) = m(−0.208). This result is no coincidence and

is implied by our equivalence result between the two optimization problems. The entrepreneur

receives at least 95.9% in promised certainty-equivalent wealth for every unit of capital stock,

which is strictly greater than α = 0.8 since the capital stock generates strictly positive net present

value under the entrepreneur’s control.

Panels A and B of Figure 1 illustrate how (s,m(s)) is the “mirror-image” of (−p(w), w). To be

precise, rotating Panel B counter-clock-wise by 90o (i.e., turning the original x-axis for w into the

new y-axis m(s)) and then adding a minus sign to the horizontal x-axis (i.e., setting −p(w) = s), we

produce Panel A. Panel C shows that the entrepreneur’s marginal value of liquidity m′(s) is greater

than 1, which means that the liquid asset is valued more than its face value by the financially

constrained entrepreneur. Panel D illustrates the same idea viewed from the investor’s perspective:

the marginal cost of a monetary transfer to is less than one for the investor, −1 < p′(w) < 0,

because compensating the entrepreneur relaxes her financial constraint which in turn generates
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value. Despite being fully diversified the investor behaves in an under-diversified manner due to

the entrepreneur’s inalienability constraints. This is reflected in the concavity of the investor’s

value function p(w).

B. Idiosyncratic Risk Management

[Place Figure 2 about here]

Panels A and B of Figure 2 plot the idiosyncratic-risk hedging demand φh(s) and xh(w) in the

two formulations. Note that φh(s) and xh(w) respectively control the idiosyncratic volatilities of

total liquid wealth S and certainty equivalent wealth W , as seen in (10) and (59). In Panels C and D

of Figure 2, we plot the idiosyncratic volatilities of respectively scaled liquidity s, σs
h(s), and scaled

wealth w, σw
h (w), which are directly linked to the risk management policies φh(s) and xh(w). A key

observation is that the volatility of S is different from the volatility of scaled liquidity, s = S/K.

Equation (21), which states σs
h(st) = (φh(st)− st) νK , makes clear that σs

h(st) is affected by the

hedging position φh(st)νK , which drives changes in S, and by −stνK , through the idiosyncratic risk

exposure of K, which influences compensation through the inalienability constraint. Proceeding

in the same way for the contracting formulation, we obtain the following expression linking xh(w)

and σw
h (w):

σw
h (wt) = − γ

γp(wt)
xh(wt) . (81)

Consider now the first-best solution given by the dotted lines in Figure 2. Panel A shows that

the first-best idiosyncratic-risk hedging demand is constant: φh(st) = −qFB = −1.264. Panel B

confirms the same result, as xFB
h (wt) = 0 for all wt, which establishes the classic first-best result

that optimal hedging for a risk-averse entrepreneur involves a zero net exposure to idiosyncratic

shocks. Stated equivalently, the first-best idiosyncratic risk hedging policy completely insulates the

entrepreneur’s net worth MFB
t = St + qFBKt from the idiosyncratic shock Zh, as one can see from

the dynamics of M given in (36).

Panels C and D reveal a less obvious but important insight for the first-best case, namely that

complete idiosyncratic risk hedging of net worth implies neither zero volatility for s nor for w in

general. It is only when the entrepreneur has fully exhausted her debt capacity, when st = −qFB

(and equivalently wt = 0), that the volatility of scaled s and of w are zero: σs
h(st) = σw

h (wt) = 0.

When st > −qFB (and wt > 0), the first-best solution is such that |σs
h(st)| and |σw

h (wt)| strictly
increase with respectively st = St/Kt and wt = Wt/Kt, because of the impact of the idiosyncratic

shock Zh on the firm’s capital stock.

Consider next the inalienability case. Panels A and B strikingly reveal how different the hedging

policy under inalienability is from the first-best. Because the endogenous debt limit |s| = 0.208

(and w = 0.959) under inalienability is much tighter than the first-best limit, |sFB| = qFB = 1.264

(and wFB = 0), the entrepreneur is severely constrained in her ability to hedge out the idiosyncratic

risk exposure of her certainty equivalent wealth M .
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A key optimality condition is that the entrepreneur has to honor her liabilities with probability

one, which requires that σs
h(s) = 0 and σw

h (w) = 0. This equilibrium condition of zero volatility

together with the inalienability conditions m(s) = αm(0) and p(w/α) = 0 imply endogenous infinite

risk aversion at s and w, meaning that γe(s) = ∞ and γp(w) = ∞ as shown in Figure 3.26

[Place Figure 3 about here]

Zero idiosyncratic volatility for s at s (and equivalently for w at w) is achieved by setting the

hedging position to φh(s) = s (and equivalently xh(w) = νKw). These expressions encapsulate

the following general insight about hedging key-man risk. Suppose that the entrepreneur’s scaled

liquidity is at its limit, st = s, and consider the consequences of a positive idiosyncratic shock

dZh,t. Among other effects, such a shock increases the outside value of the entrepreneur’s human

capital and increases the entrepreneur’s incentives to leave the firm.27 How can the entrepreneur

hedge against this risk so as to continue honoring her outstanding debt liabilities? By setting

φh(s) = s at the credit limit s, as we explain next. Let Zh,t+∆ = Zh,t +
√
∆ denote the outcome

of a positive shock over a small time increment ∆. We can calculate the resulting liquidity ratio

st+∆ as follows:28

st+∆ ≡ St+∆

Kt+∆
≈ St + φh,tKt νK

√
∆

(1 + νK
√
∆)Kt

=
st + φh,tνK

√
∆

(1 + νK
√
∆)

, (82)

where the numerator uses (10) for dSt and the denominator uses (1) for dKt. To ensure that the

credit constraint is satisfied at t + ∆ we have to set st+∆ = st = s in (82), which means that

φh(s) = s < 0. Had the entrepreneur chosen a larger hedging position, say |φh(s)| > |s|, or in

the extreme scenario |φh(s)| = |φFB
h | = qFB, we would have st+∆ < st = s < 0, violating the

equilibrium condition s ≥ s. Following essentially the same argument for w = W/K, we can verify

that xh(w) = νKw > 0, which implies that the entrepreneur’s net worth W is overexposed to

idiosyncratic risk relative to the first-best.

In words, the hedging positions at s and w are set so as to exactly offset the impact of the

idiosyncratic shock Zh on Kt in st = St/Kt and wt = Wt/Kt and thereby turn off the volatilities

of s at s and w at w. These hedging positions, in turn, significantly expose the entrepreneur’s net

worth W to idiosyncratic risk.

Turning now to the right end of the support for s and w, we observe that as s → ∞ (and

equivalently w → ∞), the inalienability constraint becomes irrelevant. As a result, the entrepreneur

achieves perfect risk sharing: lims→∞ φh(s) = φFB
h = −qFB and limw→∞ xh(w) = xFB

h = 0 .

With inalienability, the idiosyncratic risk hedge |φh(s)| = |s| at the debt limit is much lower than

when the entrepreneur is unconstrained. More generally, when s moves away from the debt limit

s, |φh(s)| in effect becomes a ‘weighted average’ of the first-best policy of maximizing net worth

and the zero-volatility policy for s at the debt limit, with an increasing weight put on the first-best

policy as s increases. Correspondingly, Panel B shows that as the entrepreneur’s promised scaled

certainty equivalent wealth w increases, the entrepreneur becomes less exposed to idiosyncratic
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risk, i.e., xh(w) decreases with w and eventually approaches zero as w → ∞.29 To summarize,

the ‘key-man’ risk management problem for the firm boils down to a compromise between the

maximization of the entrepreneur’s net worth, which requires full insurance against idiosyncratic

risk, and the maximization of the firm’s financing capacity, which involves reducing the volatility of

scaled liquidity and hence exposing the entrepreneur to idiosyncratic risk. This compromise can be

seen as a general principle of idiosyncratic risk management for financially constrained firms that

emerges from our analysis.30

C. Optimal Equity Market Exposure

Panels A and B of Figure 4 plot the entrepreneur’s market portfolio allocation φm(s) and the

entrepreneur’s systematic risk exposure xm(w) in the two formulations. Recall that φm and xm

respectively control the systematic volatilities of liquid wealth S and certainty equivalent wealth

W , as seen in (10) and (59). Panels C and D of Figure 4 plot the systematic volatility of scaled

liquidity s, σs
m(s), and of scaled w, σw

m(w), respectively.

Again, we show that the policies φm(s) and xm(w), plotted in Panels A and B, are directly

linked to the corresponding volatilities, σs
m(s) and σw

m(w), plotted in Panels C and D. Equation

(22), which states σs
m(st) =

(
φm(st)− βFBst

)
σm , makes clear that σs

m(st) is affected by the market

allocation term, φm(st)σm, and by −stβ
FBσm = −stρσK , which comes from the systematic risk

exposure of K. Proceeding in the same way for the contracting problem, we obtain the following

expression linking xm(w) and σw
m(w):

σw
m(wt) = xm(wt)− ρσKwt . (83)

Again, the key observation is that the systematic volatility of W , which is equal to xm(wt)Kt, is

different from σw
m(wt), the systematic volatility for w = W/K.

Consider now the first-best solution given by the dotted lines in Figure 4. Panels A and B plot

the classic Merton (1969) portfolio allocation result, which is linear in s and w. Panels C and D

reveal a less emphasized insight, which however is important for our risk management analysis,

namely that the systematic volatilities for scaled s and w, σs
m(st) and σw

m(wt), are also linear in

s and w, respectively. It is only when the entrepreneur has fully exhausted her debt capacity at

st = −qFB (and wt = 0), that we have σs
m(st) = σw

m(wt) = 0.

Consider next the inalienability case. Panels A and B again reveal how different the risk

exposures are from the first-best. Recall that the debt limit under inalienability |s| = 0.21 (and

w = 0.96) is much tighter than the first-best debt limit, |sFB | = qFB = 1.264 (and wFB = 0). As a

result, the entrepreneur is endogenously more risk averse, γe(s) > γ, as shown in Panel A of Figure

3 and m(s) is lower than the first-best level for all s. Equivalently, in the contracting problem the

principal is also endogenously more risk averse, γp(w) > 0, as shown in Panel B of Figure 3 and

p(w) is lower than the first-best level for all w. It follows that the entrepreneur allocates less of

her net worth to the stock market for any s, and equivalently the principal exposes the agent to
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less systematic risk for any w. At the debt limit, in particular, the endogenous risk aversion for

both the entrepreneur and the principal approach infinity, γe(s) = ∞ and γp(w) = ∞, so that the

systematic volatilities for both s and w approach zero: σs
m(s) = σw

m(w) = 0.

It is important to note that zero systematic volatilities are achieved by setting φm(s) = βFBs

and xm(w) = ρσKw, as can be seen from (22) and (83). Remarkably, while the mean-variance

term vanishes at the debt limit, the hedging term does not, because the entrepreneur still needs to

immunize the systematic risk exposures of s and w that come from K.31

At the other end of the support, as s → ∞ (and equivalently as w → ∞) and the inalienability

constraint becomes irrelevant, we see that the entrepreneur achieves the first-best: lims→∞ φm(s) =

φFB
m (s) and limw→∞ xm(w) = xFB

m (w) = ηw/γ . In general, for any given s, |φm(s)| is a ‘weighted

average’ of the first-best policy of maximizing net worth and the zero-volatility policy for s at the

debt limit, with an increasing weight being put on the first-best policy as s increases (the same is

true for xm(w) as w increases.)

In sum, the risk management problem for the firm boils down to a compromise between achiev-

ing mean-variance efficiency for the entrepreneur’s net worth and maximizing the firm’s financing

capacity. To expand its financing capacity the firm must reduce the volatility of s when s is low,

which involves scaling back |φh(s)| and |φm(s)|. Overall, this strategy amounts to both reducing

the systematic risk exposure and increasing the idiosyncratic risk exposure of the entrepreneur’s net

worth. This last result can be seen more directly from the risk exposures of the agent’s net worth

under the optimal contract. Indeed, the optimal contract requires that xm(w) < xFB
m (w) = η w/γ

and xh(w) > xFB
h (w) = 0, as can be seen from Panels B in Figures 2 and 4.

[Place Figure 4 about here]

D. Investment and Compensation

[Place Figure 5 about here]

Investment and its Sensitivity to Liquidity. Figure 5 plots corporate investment and its

sensitivity. Panels A and C plot i(s) and i′(s) for the primal problem, and Panels B and D plot

i(w) and i
′(w) for the contracting problem, respectively. The dotted lines describe the constant

iFB = 0.132 under the first-best benchmark. Under inalienability, the investment-capital ratio is

lower than iFB = 0.132 under all circumstances, and it increases from −0.043 to iFB = 0.132

when s increases from s = −0.208 towards ∞, or equivalently when w increases from w = 0.959

towards ∞, as can be seen from Panels A and B, respectively. As the firm’s financial slack s (and

equivalently w) increases, under-investment distortions are reduced. Note also that a sufficiently

constrained firm optimally sells assets, it < 0, in order to replenish valuable liquidity.

Finally, we note that in our model there is a debt over-hang effect even though debt is risk-free.

The reason is that debt reduces valuable financial slack thus crowding out future investments.

31



[Place Figure 6 about here]

Consumption and the Marginal Propensity to Consume (MPC). The entrepreneur’s

FOC for consumption is the standard condition: ζU ′(C) = JS(K,S). Panels A and C of Figure

6 plot c(s) and the MPC c′(s). The dotted lines in Panels A and C describe Merton’s linear

consumption rule under the first-best: cFB(s) = χ(s+qFB), where the constant MPC is χ = 6.13%

and qFB = 1.264. Under inalienability the entrepreneur under-consumes: ct is lower than cFB(s)

under all circumstances. But, the higher the financial slack s the higher is the entrepreneur’s

consumption. It is striking that financially constrained entrepreneurs with s close to s = −0.208

have substantially larger MPCs than suggested by Friedman’s permanent-income hypothesis. For

example, when s = −0.2, the MPC is c′(−0.2) = 19.6%, which is much higher than the MPC

χ = 6.13% given by the standard permanent-income hypothesis. This prediction is consistent with

empirical evidence in Parker (1999) and Souleles (1999).

The dual contracting problem conveys the same insights as the entrepreneur’s liquidity and

risk management problem. Panels B and D of Figure 6 show that c(w) is lower than the first-best

consumption rule due to the inalienability constraint, and c(w) is increasing and concave in w.

E. Comparative Statics with respect to α

[Place Figure 7 about here]

The value of α measures the degree of the inalienability of the entrepreneur’s human capital.

The higher the value of α, the more inalienable the entrepreneur’s human capital. Figure 7 com-

pares the solution for the baseline parameter values where α = 0.8 with the case where α = 0.4.

When α decreases from 0.8 to 0.4, the debt capacity increases significantly from 21% to 69% of

the capital stock, i.e., (s changes from −0.21 to −0.69. As a result, with less inalienable human

capital (lower α), m(s) increases, the marginal value of liquidity, m′(s), decreases, both the id-

iosyncratic and systematic risk positions, |φh(s)| and |φm(s)|, increase, and both consumption and

investment increase. Consistent with these predictions, Jeffers (2018) finds that stronger labor-

contract enforcement through tighter non-compete clauses is associated with higher investment at

human-capital-intensive firms.

F. Which Outside Option: Recontracting or Autarky?

When limited commitment is due to the inalienability of human capital it is natural to assume

that the entrepreneur’s outside option is employment at another firm, which involves recontract-

ing.32 At the new firm, the entrepreneur can combine her human capital with the new firm’s capital

stock under a new optimal contract. The point is that the mere decision to quit does not mean that

the entrepreneur has to hide and can no longer engage in any contracts. In contrast, when limited

commitment takes the form of absconsion it is more natural to assume that the entrepreneur has

to continue in autarky33. The absconsion/autarky perspective is more common in the literature.
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Why does it matter whether the outside option is autarky or recontracting? We address this

question in this section and show that even for reasonable coefficients of relative risk aversion,

autarky is such an unappealing and costly option for the entrepreneur that the first-best allocation

can be supported. That is, the autarky outside option loses its bite in generating plausible economic

predictions.

[Place Figure 8 about here]

Autarky means that the entrepreneur is shut out of capital markets and therefore has to divide

operating revenues AKt into consumption and investment (including adjustment costs), so that

AKt = Ct + It + Gt. As we show, autarky is a severe punishment even for an entrepreneur with

moderate risk aversion, as she is then fully exposed to the firm’s operating shocks and cannot

diversify them away. Ex ante limited commitment under these circumstances may not result in

much or any distortion in investment and consumption. We illustrate this key insight in Panels A

and B of Figure 8 by plotting m(s) and m′(s) for both γ = 2 and γ = 5, when the outside option

is autarky.

As risk aversion γ increases from 2 to 5, s changes from −0.756 to −qFB = −1.264. Panel B

shows furthermore that when γ = 2 the marginal value of liquidity m′(s) decreases from 1.544 to

unity as s increases from s = −0.756 to ∞. In contrast, when γ = 5, the marginal value of liquidity

equals unity (m′(s) = 1) for all s (see the dashed line in Panel B), achieving the first best. That

is, the first best is attainable with γ = 5 under autarky because the punishment is so severe. The

limited commitment constraint never binds in equilibrium under autarky when γ = 5. This reduces

the empirical relevance of the limited commitment model with autarky.

In contrast, under our recontracting formulation the first best is far from attainable. The reason

is that the entrepreneur’s risk aversion has comparable quantitative effects on her value function

and her outside option value. Panels C and D of Figure 8 report m(s) and m′(s) with γ = 2

and γ = 5 for our recontracting formulation. We find that changes in risk aversion have almost

no impact on debt capacity: s barely changes from −0.208 to −0.203 as we increase γ from 2

to 5. Finally, observe that inalienability imposes a much tighter debt limit than under autarky.

For example, even when γ = 2, the debt capacity under recontracting is 0.208, which is less than

one-third of the debt capacity under autarky, 0.756.

Comparisons with Ai and Li (2015). The reformulation of our model with autarky as the

outside option is closely related to the contracting problem analyzed by Ai and Li (2015). They

consider a contracting problem between an infinitely-lived risk-neutral principal and a risk-averse

agent with CRRA preferences, who is subject to a limited-commitment constraint with autarky as

the outside option. The contracting formulation of our model differs from Ai and Li (2015) in several

other respects. First, in our model both the principal and the entrepreneur are risk-averse and are

exposed to both aggregate and idiosyncratic shocks. Given that the principal is risk-neutral in Ai

and Li (2015), the distinction between aggregate and idiosyncratic shocks is not meaningful in their

setup.34 As we have shown, aggregate and idiosyncratic shocks have very different implications for
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consumption, investment, portfolio choice, and risk management. Second, the state variable that we

choose to work with in our contracting problem is the entrepreneur’s promised certainty-equivalent

wealth, while in Ai and Li (2015) it is the agent’s promised utility. In other words, our units are

dollars while Ai and Li’s units are the agent’s utils. It is only by expressing the entrepreneur’s

compensation in dollars that we can interpret the entrepreneur’s future promised compensation as

a liquidity buffer and measure how financially constrained the firm is with the investor’s marginal

value of liquidity p′(w).

Third, the entrepreneur’s consumption in our problem is stochastic, while in Ai and Li the

agent’s consumption is deterministic for a given time interval (t, t+ s) where the constraints do not

bind at any time v in this interval. This result follows from the following optimality condition:

e−ζs

(
Ct+s

Ct

)
−γ

=
Mt+s

Mt
= exp

[
−
(
r +

η2

2

)
s− η(Zm,t+s −Zm,t)

]
. (84)

which states that the entrepreneur’s marginal rate of substitution (under full spanning) must equal

to the investors’ SDF. Simplifying (84) yields:

Ct+s = Cte
−(ζ−r)s/γ exp

[
1

γ

(
η2s

2
+ η(Zm,t+s −Zm,t)

)]
. (85)

In Ai and Li (2015), consumption is deterministic, Ct+τ = Cte
−(ζ−r)τ/γ , as η = 0 in their model.35

VI. Persistent Productivity Shocks

We further extend the model by introducing persistent productivity shocks. The firm faces two

conflicting forces in the presence of such shocks. First, as Froot, Scharfstein, and Stein (1993) have

emphasized, the firm will want to have sufficient funding capacity to take maximal advantage of the

investment opportunities that become available when productivity is high. To do so, the firm may

want to take hedging positions that allow it to transfer funds from the low to the high productivity

state. Second, the firm also wants to smooth the entrepreneur’s compensation across productivity

states, allowing the entrepreneur to consume a higher share of earnings in the low than in the high

productivity state. To do so, the firm will need to ensure that it has sufficient liquidity and funding

capacity in the low productivity state. This may require taking hedging positions such that funds

are transferred from the high to the low productivity state.

Which of these two forces dominates? We show that even for extreme parameter values for

the productivity shocks the consumption/compensation smoothing effect dominates. One reason is

that, when productivity is high, the firm’s endogenous credit limit is also high, so that transferring

funds from the low to the high productivity state is less important. In contrast, the consumption

smoothing benefits of transferring funds from the high to the low productivity state are significant.

We model persistent productivity shocks {At; t ≥ 0} as a two-state Markov switching process,

At ∈
{
AL, AH

}
with 0 < AL < AH . We denote by λt ∈

{
λL, λH

}
the transition intensity from one
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state to the other, with λL denoting the intensity from state L to H, and λH the intensity from

state H to L. The counting process {Nt; t ≥ 0} (starting with N0 = 0) keeps track of the number

of times the firm has switched productivity {As : s ≤ t} up to time t; it increases by one whenever

the state switches from either H to L or from L to H: dNt = Nt−Nt− = 1 if and only if At 6= At−,

and dNt = 0 otherwise.

In the presence of such shocks the entrepreneur will want to purchase or sell insurance against

stochastic changes in productivity. We characterize the optimal insurance policy against such shocks

and how investment, compensation, risk management, and debt capacity vary with productivity.

For brevity, we only consider the case where productivity shocks are purely idiosyncratic.36

Productivity Insurance Contract. Consider the following insurance contract offered at current

time t−. Over the time interval dt = (t−, t), the entrepreneur pays the unit insurance premium

ξt−dt to the insurance counterparty in exchange for a unit payment at time t if and only if At 6=
At− (i.e., dNt = 1). That is, the underlying event for this insurance contract is the change in

productivity. Under our assumptions of perfectly competitive financial markets and idiosyncratic

productivity shocks, the actuarially fair insurance premium is given by the intensity of the change

in productivity state: ξt− = λt−.

Let Πt− denote the number of units of insurance purchased by the entrepreneur at time t−. We

refer to Πt− as the insurance demand. If Πt− < 0, the firm sells insurance and collects insurance

premia at the rate of λt−Πt−. Then, St evolves as follows:

dSt = (rSt + Yt − Ct +Φm,t(µm − r)− λt−Πt−) dt+Φh,tνKdZh,t +Φm,tσmdZm,t +Πt−dNt . (86)

Note that the only differences between (86) and (10) are the insurance premium payment λt−Πt−

and the contingent liability coverage Πt−dNt.

The solution for the firm’s value is a pair of state-contingent value functions J(K,S;AL) ≡
JL(K,S) and J(K,S;AH ) ≡ JH(K,S), which solve two inter-linked HJB equations, one for each

state.37 The HJB equation in state L is:38

ζJL(K,S) = max
C,I,Φh,Φm,ΠL

ζU(C) + (I − δKK)JL
K +

σ2
KK2

2
JL
KK

+
(
rS +Φm(µm − r) +ALK − I −G(I,K)− C − λLΠL

)
JL
S

+
(
ν2KΦh + ρσKσmΦm

)
KJL

KS +
(νKΦh)

2 + (σmΦm)2

2
JL
SS

+λL[JH(K,S +ΠL)− JL(K,S)] . (87)

Two important features differentiate (87) from the HJB equation (11). First, the drift term involv-

ing the marginal utility of liquidity JL
S now includes the insurance payment −λLΠL. Second, the

last term in (87) captures the adjustment of S by the amount ΠL and the corresponding change in

the value function following a productivity change from AL to AH .
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The inalienability constraint must hold at all t for both productivity states, so that

St ≥ S(Kt;At) , (88)

or equivalently,

st ≥ s(At) . (89)

Naturally, the firm’s time-t credit limit |s(At)| depends on its productivity At. We use sH and sL

to denote s(At) when At = AH and At = AL, respectively.

The entrepreneur determines her optimal insurance demand ΠL in state L by differentiating

(87) with respect to ΠL and setting ΠL to satisfy the FOC:

JL
S (K,S) = JH

S (K,S +ΠL) , (90)

provided that the solution ΠL to the above FOC satisfies the (state-contingent) condition:

S +ΠL ≥ SH . (91)

Otherwise, the entrepreneur sets the insurance demand so that ΠL = SH − S , in which case the

firm will be at its maximum debt level SH when productivity switches from AL to AH .39

[Place Figure 9 about here]

Quantitative Analysis. We consider two sets of (annualized) parameter values. The first set is

such that AH = 0.25, AL = 0.14, and λL = λH = 0.2, with all other parameter values as in Table

III. The transition intensities (λH , λL) = (0.2, 0.2) imply that the expected duration of each state

is five years. The second set of parameter values is identical to the first, except that AL = 0.05.

That is, productivity in the low state, AL, is much lower (0.05 instead of 0.14).

Figure 9 plots the entrepreneur’s insurance demand πH(s) as the solid line, and πL(s) as the

dashed line. Panel A plots the insurance demand in both states when productivity differences are

(AH −AL)/AH = (0.25 − 0.14)/0.25 = 44%, while Panel B plots the insurance demand when pro-

ductivity differences are very large, (AH−AL)/AH = (0.25−0.05)/0.25 = 80%. Remarkably, under

both sets of parameter values the firm optimally buys insurance in state H, πH(s) > 0, and sells

insurance in state L, πL(s) < 0. This result is not obvious a priori, for when productivity differ-

ences are large the benefit from transferring liquidity from state L to H and thereby taking better

advantage of investment opportunities when they arise, could well be the dominant consideration

for the firm’s risk management. But that turns out not to be the case. Even when productivity

differences are as large as 80%, the dominant consideration is still to smooth the entrepreneur’s

consumption. Moreover, a comparison of Panels A and B reveals that for the larger productivity

differences, the insurance demand is also larger, with πH(s) exceeding 0.2 everywhere in Panel B,
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but remaining below 0.2 in Panel A, and πL(s) attaining values lower than −0.25 in Panel B (when

s+ πL ≥ sH is not binding), while πL(s) is always larger than −0.2 in Panel A.40

[Place Figure 10 about here]

Figure 10 shows that m(s), consumption c(s), investment i(s), and debt capacity |s| are higher

in state H than in state L, as one would expect. Similarly, both the size of the idiosyncratic risk

hedging position and of stock market exposures, |φh(s)| and |φm(s)|, are higher in state H than in

state L. However, a somewhat subtle result is that marginal value of liquidity schedules, m′(s), for

state H and L, cross.

VII. Deterministic Formulation à la Hart and Moore (1994)

Our contracting problem is also closely related to Hart and Moore’s contracting problem under

inalienability. Hart and Moore (1994) consider a special case with a single deterministic project

and linear preferences for both the investor and the entrepreneur. They emphasize the idea that

debt financing is optimal when the entrepreneur’s human capital is inalienable. Our more general

framework reveals that the optimality of debt financing is not a robust result. Instead, the robust

ideas are that inalienability gives rise to: i) an endogenous financing capacity; and ii) an optimal

corporate liquidity and risk management problem.

To highlight the critical role of liquidity management, it is instructive to consider the special

case of our model where there are no shocks, so that σK = 0 and η = 0, as in Hart and Moore

(1994). Although output and capital accumulation become deterministic, this special case of our

model is still more general than Hart and Moore (1994) in two respects: 1) the entrepreneur has a

strictly concave utility function and therefore a strict preference for smoothing consumption; 2) the

firm’s operations are not fixed by a one-time lump-sum investment, but can be adjusted over time

through capital accumulation (or decumulation). That is, our model can be viewed as a convex

version of Hart and Moore (1994), as the additional controls in our deterministic formulation are

consumption and investment, both of which are convex and characterized by FOCs.

With σK = 0 and η = 0, the liquidity ratio st evolves at the rate of:

µs(st) ≡ dst/dt = (r + δ − it)st +A− it − g(it)− ct , (92)

given a contract {ct, it; t ≥ 0}. To ensure that the entrepreneur stays with the firm and the financing

capacity is maximized, µs(s) = 0 has to hold. The ODE given in (43) can be simplified to:

0 =
m(s)

1− γ

[
γχm′(s)

γ−1

γ − ζ
]
+ [rs+A− i(s)− g(i(s))]m′(s) + (i(s)− δ)(m(s) − sm′(s)) , (93)

where χ = r + γ−1 (ζ − r) and lims→∞m(s) = qFB + s.
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Under the first-best, with it = iFB and ct = cFB, the drift of s, µs
FB(st), is then:

µs
FB(st) =

(
r + δ − iFB

) (
st + qFB

)
− cFB = −

(
iFB − δ + γ−1(ζ − r)

)
mFB(st), (94)

where the first equality uses (29) and the second uses (32) and (33). It immediately follows that

the first-best drift is negative, µs
FB(st) ≤ 0, if and only if the following condition holds:

iFB ≥ δ − γ−1(ζ − r) . (95)

When does condition (95) hold? Under the auxiliary assumption that the entrepreneur’s discount

rate ζ equals the interest rate r, (95) holds if and only if the firm’s first-best net investment policy

is positive: iFB ≥ δ. In other words, condition (95) requires the firm to grow under the first-best

policy, which is the natural case to focus on. The alternative case is when (95) is not satisfied.

Then the firm’s size is decreasing over time even under the first-best policy. In this latter case,

the inalienability of human capital constraint is irrelevant and the first-best outcome (optimal

downsizing) is attained.41 We summarize this discussion in the proposition below.

PROPOSITION 1: When (95) is satisfied the drift of s equals zero at the endogenous debt limit s:

µs(s) = 0 . When (95) is not satisfied, the first-best outcome is obtained.

[Place Figure 11 about here]

Figure 11 plots the solution when A = 0.185. Note that iFB = 0.136, which is greater than

δ = δK = 0.11. Hence, (95) is satisfied and the first-best is unattainable. The firm underinvests and

under-compensates the entrepreneur relative to the first best, since the marginal value of liquidity

is greater than one, m′(s) > 1. Liquidity st decreases over time and reaches s, the permanently

absorbing state. In our example, s = −0.249. Starting at s0 = 0, it takes 25.77 years to reach

the absorbing state where the borrowing constraint binds permanently at s25.77 = s = −0.249.

Similarly, due to the friction of limited commitment the marginal value of liquidity is greater than

one, m′(s) = m′(−0.249) = 1.038 > 1. Panels C and D show that the entrepreneur reduces her

consumption and investment smoothly even with no risk. Since m′(s) > 1, the MPC is greater

than that under first-best case.

VIII. Two-Sided Limited Commitment

In our baseline model, the firm’s optimal policy requires that investors incur losses with positive

probability. As Figure 1 illustrates, investors make losses, p(w) < 0, when w > 1.18. But investors’

ex ante commitment to continue compensating the entrepreneur ex post even when doing so incurs

large losses for investors may not be credible. What if investors cannot commit to such loss-making

promises to the entrepreneur ex post? We next explore this issue and characterize the solution

when neither the entrepreneur nor investors are able to commit.
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Suppose that investors can only commit to making losses ex post up to a fixed fraction ℓ of the

total capital stock, so that p(wt) ≥ −ℓ at all t. For expositional simplicity we set ℓ = 0. Then, the

main change relative to the one-sided commitment problem analyzed so far is that there is also an

upper boundary s = −p(w) = 0. Note that under two-sided limited commitment with ℓ = 0, the

firm will never be in the positive savings region. As a result, the following new conditions hold at

s = 0:

σs
h(0) = σs

m(0) = 0 . (96)

Using the same argument as for (49), we may express (96) as m′′(0) = −∞ , and we verify that

µs(s) given in (23) is weakly negative at s = 0, so that s ≤ s = 0 with probability one.

[Place Figure 12 about here]

Panel A of Figure 12 shows that investors’ lack of commitment significantly destroys value. For

example, at s = 0, under full commitment by investors, m(0) = 1.198, which is 42% higher than

m(0) = 0.843, the value under two-sided limited commitment. With two-sided limited commitment,

s lies between s = −0.25 and s = 0, so that the entrepreneur has a larger credit limit of |s| = 0.25

instead of |s| = 0.208, the debt capacity under one-sided limited commitment. However, a firm with

a larger debt capacity is not necessarily less financially constrained, since investors’ limited-liability

constraint limits the entrepreneur’s self-insurance capacity.

Interesting, the marginal value of liquidity under two-side limited commitment is lower than

unity: m′(s) < 1, which is quite different from the one-sided case where m′(s) > 1. While an

increase of liquidity mitigates the entrepreneur’s inalienability, it makes the investor’s limited-

commitment more likely to bind in the future, so the net effect of increasing s onm′(s) is ambiguous.

Value destruction arises from the direct effect of the entrepreneur’s inability to hold liquid savings

(s cannot be strictly positive), and also the indirect effect of distorting consumption decisions and

investment. Panel C shows that the entrepreneur is under-compensated relative to the first best.

Panel D shows that i(s) under two-sided limited-commitment fundamentally differs from that under

one-sided limited-commitment. For example, at s = 0, i(0) = 0.331 under one-sided commitment,

which is six times higher than i(0) = 0.053 under two-sided limited commitment.

Compared with the first-best, the firm under-invests when s < −0.13, but over-invests when

−0.13 < s ≤ 0. Whether the firm under-invests or over-invests depends on the net effects of

the entrepreneur’s and investors’ limited-commitment constraints. For sufficiently low values of s

(when the entrepreneur is deep in debt) the entrepreneur’s constraint matters more and hence the

firm under-invests. When s is sufficiently close to zero, investors’ limited-liability constraint has a

stronger influence on investment. To ensure that s ≤ 0 the entrepreneur needs to transform liquid

assets into illiquid capital even though this may compromise investment efficiency. This mechanism

causes the firm to over-invest relative to the first-best.

Phrased in terms of the equivalent contracting problem, the intuition is as follows. Given that

the entrepreneur cares about her total compensation W = w · K and given that investors are

constrained by their ability to promise the entrepreneur w beyond an upper bound w, (in this case,

39



w = m(0) = 0.843), investors reward the entrepreneur along the extensive margin, firm size K,

which allows the entrepreneur to accumulate more human capital and earn higher compensation

payoffs through over-investment.

Panels E and F plot the idiosyncratic risk hedge φh(s) and the market portfolio allocation φm(s).

Neither φh(s) nor φm(s) is monotonic in s under two-sided limited-commitment. The reason is that

the volatilities σs
h(s) and σs

m(s) for s must be turned off at both s = −0.25 and s = 0 in order to

prevent separation by the entrepreneur and investors (see Panels G and H.) This is achieved by

setting φh(s) = s = −0.25, φm(s) = βFBs = −0.05, and φh(0) = φm(0) = 0, as implied by the

volatility boundary conditions for σs
h(s) and σs

m(s) at s and s.

IX. Conclusion

Talent retention is a major challenge for many companies, especially so for technology compa-

nies. It is obviously a central issue for human resource management. But, less obviously, it also

has implications for corporate financial management, as our analysis has underscored. We have

shown how human capital flight risk not only affects firms’ compensation policy, but also their

investment, financing capacity, liquidity and risk management policies. More liquidity and spare

borrowing capacity buttress the firm’s future compensation promises and allow the firm to retain

talent in a more cost-efficient way.

Human capital flight risk provides a novel rationale for corporate risk management policies.

The firm’s goal in our analysis is not so much to improve the risk exposure of investors, but to offer

constrained efficient risk exposures to its employees who have all their human capital tied up with

the firm. Our theory helps explain in particular why when retained earnings rise firms choose to

invest an increasing fraction of these earnings in risky financial assets (Duchin et al., 2016).

In sum, the corporate risk management problem in our model boils down to a compromise

between (a.) the maximization of key employees’ or the entrepreneur’s net worth, which requires

full insurance against idiosyncratic risk as well as a mean-variance efficient risk exposure to the stock

market, and (b.) the maximization/preservation of the firm’s borrowing capacity, which involves

reducing the volatility of retained earnings per unit of capital. When the firm is close to depleting

its line of credit, the priority is to survive. From a liquidity and risk management perspective,

this means that the firm cuts back on expenditures, reduces compensation, and sells insurance in

order to generate liquidity for survival. In contrast, when liquidity is plentiful the firm adapts its

corporate policies so as to optimize the (mean-variance) preferences of its key employees.

Although our framework is already quite rich, we have imposed a number of strong assumptions,

which are worth relaxing in future work. For example, one interesting direction is to allow for

equilibrium separation between the entrepreneur and investors. This could arise, when after a

productivity shock the entrepreneur is no longer the best user of the firm’s capital stock. Investors

may then want to redeploy their capital to other more efficient uses and the entrepreneur may

also find her human capital more productive elsewhere. By allowing for equilibrium separation
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our model could then be applied to study questions such as the life-span of entrepreneurial firms,

managerial turnover, and how the choice of investment in firm-specific versus general human capital

is affected by the firm’s financial flexibility.

41



Appendix A. The Entrepreneur’s Optimization Problem

We conjecture that the entrepreneur’s value function J(K,S) takes the following form:

J(K,S) =
(bM(K,S))1−γ

1− γ
=

(bm(s)K)1−γ

1− γ
, (A1)

where b is a constant that will be determined later. We then have:

JS = b1−γ(m(s)K)−γm′(s), (A2)

JK = b1−γ(m(s)K)−γ(m(s)− sm′(s)), (A3)

JSK = b1−γ(m(s)K)−1−γ
(
−sm(s)m′′(s)− γm′(s)(m(s)− sm′(s))

)
, (A4)

JSS = b1−γ(m(s)K)−1−γ
(
m(s)m′′(s)− γm′(s)2

)
, (A5)

JKK = b1−γ(m(s)K)−1−γ
(
s2m(s)m′′(s)− γ(m(s)− sm′(s))2

)
. (A6)

Substituting these terms into the HJB equation (11) and simplifying, we obtain:

0 = max
c,i,φh,φm

ζm(s)

(
c

bm(s)

)1−γ
− 1

1− γ
+ (i− δK)(m(s)− sm′(s))

+(rs+ φm(µm − r) +A− i− g(i)− c)m′(s) +
σ2
K

2

(
s2m′′(s)− γ(m(s)− sm′(s))2

m(s)

)

+
(
ν2Kφh + ρσKσmφm

)(
−sm′′(s)− γm′(s)(m(s)− sm′(s))

m(s)

)

+
(νKφh)

2 + (σmφm)2

2

(
m′′(s)− γm′(s)2

m(s)

)
. (A7)

The first order conditions for consumption and investment in (12) and (13) then become:

ζU ′(c) = b1−γm(s)−γm′(s), (A8)

1 + g′(i) =
m(s)

m′(s)
− s . (A9)

From the first order conditions (15) and (14), we obtain (41) and (42).

Finally, substituting these policy functions for c(s), φh(s), and φm(s) into (A7), we obtain the

ODE for m(s):

0 =
m(s)

1− γ

[
γχm′(s)

γ−1

γ − ζ
]
+ [rs+A− i(s)− g(i(s))]m′(s) + (i(s)− δ)(m(s) − sm′(s))

−
(
γσ2

K

2
− ρησK

)
m(s)2m′′(s)

m(s)m′′(s)− γm′(s)2
+

η2m′(s)2m(s)

2(γm′(s)2 −m(s)m′′(s))
, (A10)

where χ is defined by

χ ≡ b
γ−1

γ ζ
1

γ . (A11)
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And then substituting γe given by (19) into (A10), we obtain the ODE given in (43).

Appendix A. First-Best

Under the first best, the value function is given by mFB(s) = s + qFB. Substituting this

expression for mFB(s) into the ODE (A10) we obtain:

0 =
s+ qFB

1− γ
[γχ− ζ] +

[
rs+A− iFB − g(iFB)

]
+ (iFB − δ)qFB +

η2(s+ qFB)

2γ

=

(
γχ− ζ

1− γ
+

η2

2γ
+ r

)
(s+ qFB) +

[
A− iFB − g(iFB)− (r + δ − iFB)qFB

]
. (A12)

As (A12) must hold for all mFB(s) = s+ qFB, we must have

χ = r +
η2

2γ
+ γ−1

(
ζ − r − η2

2γ

)
, (A13)

as given by (33), and

0 = A− iFB − g(iFB)− (r + δ − iFB)qFB, (A14)

so that (29) holds. In addition, using (A11), we obtain the expression (17) for the coefficient b.

Next, substituting m(s) = mFB(s) = s+ qFB into (A8) and (A9) gives the first-best consumption

rule (32) and investment policy (25). To ensure that the optimization problem is well posed, we

require positive consumption and a positive Tobin’s q, i.e. χ > 0 and qFB > 0, which imply:

Condition 1 : r +
η2

2γ
+ γ−1

(
ζ − r − η2

2γ

)
> 0 , (A15)

Condition 2 : iFB < r + δ , (A16)

where iFB is the solution of (29). Substituting m(s) = mFB(s) = s + qFB into (41) and (42)

respectively, we obtain the first-best idiosyncratic risk hedge φFB
h (s) given in (34) and the market

portfolio allocation φFB
m (s) given in (35).

The expected return for QFB
t , µFB, satisfies the CAPM where

µFB =
A− iFB − g(iFB)

qFB
+
(
iFB − δK

)
= r + δ − iFB +

(
iFB − δK

)
= r + βFB (µm − r) , (A17)

and βFB is given by (28). The value of capital QFB
t follows a GBM process given by:

dQFB
t = QFB

t

[(
iFB − δK

)
dt+ (νKdZh,t + ρσKdZm,t)

]
, (A18)

with the drift
(
iFB − δK

)
, idiosyncratic volatility νK , and systematic volatility ρσK . These coeffi-

cients are identical to those for {Kt : t ≥ 0}. Next, we apply Ito’s formula to MFB
t = St +QFB

t =
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St + qFBKt and obtain the following dynamics:

dMFB
t = MFB

t

[(
r +

η2

γ
− χ

)
dt+

η

γ
dZm,t

]
. (A19)

Appendix B. Inalienable Human Capital

From the monotonicity property of J(K,S) in S, it follows that the condition given in (45)

reduces to St ≥ St = S(Kt) given in (46). Then substituting the value function (16) into (44),

we obtain M(K,S) = M(αK, 0), which implies (47). The boundary conditions given in (49) are

necessary to ensure that the entrepreneur will stay with the firm, which implies that

φh(s) = s and φm(s) = s βFB . (A20)

Applying (A20) to (41) and (42), we show that (49) is equivalent to lims→sm
′′(s) = −∞ as given

in (51).

Appendix B. Equivalent Optimal Contract

Appendix A. Solution of the Contracting Problem

HJB Equation for F (K,V ). Using Ito’s formula, we have

d(MtF (Kt, Vt)) = MtdF (Kt, Vt) + F (Kt, Vt)dMt+ < dMt, dF (Kt, Vt) > , (B1)

where

dF (Kt, Vt) = FKdKt +
FKK

2
< dKt, dKt > +FV dVt +

FV V

2
< dVt, dVt > +FV K < dVt, dKt >

=

[
(I − δKK)FK +

σ2
KK2FKK

2
+ ζ (V − U(C))FV

]
dt

+

[
(z2h + z2m)V 2FV V

2
+ (zhνK + zmρσK)KV FV K

]
dt

+V FV (zhdZh,t + zmdZm,t) + σKKFK

(√
1− ρ2dZh,t + ρdZm,t

)
. (B2)

Using the SDF M given in (8) and the following martingale representation,

Et[d(MtF (Kt, Vt))] +Mt(Yt − Ct)dt = 0 , (B3)

we obtain (57), which is the HJB equation for the optimal contracting problem.
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Optimal Policy Functions and ODE for p(w). Applying Ito’s formula to (61) and trans-

forming (57) for F (K,V ) into the HJB equation for P (K,W ), we obtain:

rP (K,W ) = max
C,I,xh,xm

{
Y − C +

(
ζ(U(bW )− U(C))

bU ′(bW )
− xmηK

)
PW + (I − δKK − ρησKK)PK

+
σ2
KK2

2
PKK +

(x2h + x2m)K2

2

PWW bU ′(bW )− PW b2U ′′(bW )

bU ′(bW )

+(xhνK + xmρσK)K2PWK

}
. (B4)

The FOCs for C, I, xh and xm are given by

U ′(bW ) = −ζ

b
PW (K,W )U ′(C) , (B5)

1 +GI(I,K) = PK(K,W ) , (B6)

xh = − νKPWK

PWW − PW bU ′′(bW )/U ′(bW )
, (B7)

xm = − ρσKPWK

PWW − PW bU ′′(bW )/U ′(bW )
+

ηPW

K[PWW − PW bU ′′(bW )/U ′(bW )]
. (B8)

By substituting P (K,W ) = p(w)K into (B5)-(B8), we obtain the optimal consumption, investment,

and risk management policies given by (63)-(66), respectively. By substituting P (K,W ) = p(w)K

and the corresponding optimal policies (63)-(66) into the PDE (B4), we find that the investor’s

value p(w) satisfies ODE (71).

Dynamics of the Entrepreneur’s Promised Scaled Wealth w. Using Ito’s formula, we

have the following dynamics for W :

dWt =
∂W

∂V
dVt +

1

2

∂2W

∂V 2
< dVt, dVt > , (B9)

where we use < dVt, dVt > to denote the quadratic variation of V , ∂W/∂V = 1/V ′(W ), and
∂2W
∂V 2 = − V ′′(W )

(V ′(W ))3
. Substituting the dynamics of V given by (56) into (B9) yields (59). Using the

dynamics for W and K, and applying Ito’s formula to wt = Wt/Kt, we can write the dynamic

evolution of the certainty equivalent wealth w as given by (67).

Appendix B. Equivalence

The optimization problem for the entrepreneur is equivalent to the dynamic optimal contracting

problem for the investor in (53) if and only if the borrowing limits, S(K), are such that:

S(K) = −P (K,W ) , (B10)

where P (K,W ) is the investor’s value when the entrepreneur’s inalienability constraint binds. We
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characterize the implementation solution by first solving the investor’s problem in (57) and then

imposing the constraint (B10).

The optimal contracting problem gives rise to the investor’s value function F (K,V ), with the

promised utility to the entrepreneur V as the key state variable. The investor’s value F (K,V ) can

be expressed in terms of the entrepreneur’s promised certainty-equivalent wealth W , P (K,W ). The

optimization problem for the entrepreneur gives rise to the entrepreneur’s value function J(K,S),

with S = −P (K,W ) as the key state variable. Equivalently, the entrepreneur’s objective is her

certainty equivalent wealth M(K,S) and the relevant state variable is her savings S = −P .

The following relations between s and w hold:

s = −p(w) and m(s) = w . (B11)

The standard chain rule implies:

m′(s) = − 1

p′(w)
and m′′(s) = − p′′(w)

p′(w)3
. (B12)

Next, we demonstrate the equivalence between the two problems by showing first that by substitut-

ing s = −p(w) into the ODE for m(s), we obtain the ODE for p(w), and vice versa. Substituting

(B11) and (B12) into the ODE (43) for m(s), we obtain the ODE (71) for p(w). Substituting (B11)

and (B12) into consumption and investment policies (37) and (39) in the liquidity and risk manage-

ment problem, we obtain the optimal consumption and investment policies, (63) and (64), in the

contracting problem. Substituting (B11) and (B12) into (47) and (51), the boundary conditions

for m(s), we obtain (75) and (78), the boundary conditions for p(w).

Appendix C. Autarky as the Entrepreneur’s Outside Option

Let Ĵ(Kt) denote the entrepreneur’s value function under autarky defined as follows,

Ĵ(Kt) = max
I

Et

[∫
∞

t
ζe−ζ(v−t)U(Cv)dv

]
. (B13)

Under autarky, the entrepreneur’s consumption Ct satisfies: output Yt, in that

Ct = Yt = AtKt − It −G(It,Kt) . (B14)

The following proposition summarizes the main results.

PROPOSITION 2: Under autarky, the entrepreneur’s value function Ĵ(K) is given by

Ĵ(K) =
(bM̂(K))1−γ

1− γ
, (B15)
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where b is given by (17) and M̂(K) is the certainty equivalent wealth under autarky given by

M̂(K) = m̂K , (B16)

where

m̂ =
(ζ(1 + g′(̂i))(A− î− g( î) )−γ)

1

1−γ

b
, (B17)

and î is the optimal investment-capital ratio solving the following implicit equation:

ζ =
A− î− g(̂i)

1 + g′(̂i)
+ (̂i− δK)(1− γ)− σ2

Kγ(1− γ)

2
. (B18)

Proof of Proposition 2. The value function Ĵ(K), satisfies the following HJB equation:

ζĴ = max
I

ζ
C1−γ

1− γ
+ (I − δKK)ĴK +

σ2
KK2

2
ĴKK . (B19)

Using Ĵ(K) = (bM̂ (K))1−γ

1−γ and c = A− i− g(i), we have

ζ = max
i

ζ

(
A− i− g(i)

m̂b

)1−γ

+ (i− δK)(1− γ)− σ2
Kγ(1− γ)

2
. (B20)

Using the FOC for i, we obtain (B17). Substituting (B17) into (B20), we obtain î given by (B18).

Note that the entrepreneur’s value function J(K,S) satisfies the following condition:

J(Kt, St) ≥ Ĵ(Kt) , (B21)

which implies that M(Kt, St) ≥ M̂(Kt) and M(Kt, St) = M̂(Kt). By using the homogeneity

property in K, we can also establish that the lower boundary s satisfies m(s) = m̂ .

Appendix C. Persistent Productivity Shocks

By using the dynamics given in (86), we obtain the HJB equation for the value function JL(K,S)

in State L, which is given by (87), and the following HJB equation for JH(K,S) in State H:

ζJH(K,S) = max
C,I,Φh,Φm,ΠH

ζU(C) + (I − δKK)JH
K +

σ2
KK2

2
JH
KK

+
(
rS +Φm(µm − r) +AHK − I −G(I,K)− C − λHΠH

)
JH
S

+
(
ν2KΦh + ρσKσmΦm

)
KJH

KS +
(νKΦh)

2 + (σmΦm)2

2
JH
SS

+λH [JL(K,S +ΠH)− JH(K,S)] . (C1)

We then obtain the following main results:
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PROPOSITION 3: In the region s > sL, mL(s) satisfies the following ODE:

0 = max
iL, πL

mL(s)

1− γ

[
γχmL′(s)

γ−1

γ − ζ
]
+
[
rs+AL − iL − g(iL)− λLπL(s)

]
mL′(s)

−
(
γσ2

K

2
− ρησK

)
mL(s)2mL′′(s)

mL(s)mL′′(s)− γmL′(s)2
+

η2mL′(s)2mL(s)

2(γmL′(s)2 −mL(s)mL′′(s))

+(iL − δ)(mL(s)− smL′(s)) +
λLmL(s)

1− γ

((
mH(s+ πL)

mL(s)

)1−γ

− 1

)
, (C2)

subject to the following boundary conditions:

lim
s→∞

mL(s) = qFB
L + s , mL(sL) = αmL(0) , and mL′′

(sL) = −∞ , (C3)

where qFB
L is provided below in Proposition 4. The insurance demand πL(s) solves:

dmH(s+ πL)

ds
=

dmL(s)

ds

(
mL(s)

mH(s+ πL)

)−γ

, (C4)

as long as πL(s) satisfies πL(s) ≥ sH − s . Otherwise, the entrepreneur sets πL(s) = sH − s . We

have another set of analogous equations and boundary conditions for mH(s) and πH(s) in state H.

The following proposition summarizes the solutions for the first-best case.

PROPOSITION 4: Under the first best, the firm’s value QFB
n (K) in state n = {H,L} is propor-

tional to K: QFB
n (K) = qFB

n K, where qFB
H and qFB

L jointly solve:

(
r + δ − iFB

L

)
qFB
L = AL − iFB

L − g(iFB
L ) + λL

(
qFB
H − qFB

L

)
, (C5)

(
r + δ − iFB

H

)
qFB
H = AH − iFB

H − g(iFB
H ) + λH

(
qFB
L − qFB

H

)
, (C6)

and where iFB
L and iFB

H satisfy: qFB
L = 1+ g′(iFB

L ) and qFB
H = 1+ g′(iFB

H ) . The insurance demands

in state L and H are respectively given by: πL = qFB
H − qFB

L and πH = qFB
L − qFB

H .

Appendix D. Monotonicity and Concavity of the Value Function

Lemma 1. The value function J(K,S) is strictly increasing in S.

Proof: To see that J(K,S) is strictly increasing in S, consider S1,0 < S2,0 where Sj,0 ≥ sKj,0

for j = 1, 2. We set K1,0 = K2,0 = K0. Let {C1,t, I1,t,Φ1,h,t,Φ1,m,t}∞t=0 be the optimal policy

with the given initial condition (K0, S1,0). Let Ĵ(K0, S2,0) be the value function associated with an

alternative policy {Ĉ2,t, Î2,t, Φ̂2,h,t, Φ̂2,m,t}∞t=0 to be described below subject to the initial condition

(K0, S2,0). Let {Kj,t, Sj,t}∞t=0 for j = 1, 2 denote the implied liquidity and physical capital processes

subject to the initial conditions (K0, Sj,0) for any admissible policy including both the optimal and

candidate policies. We establish the following properties for {Ĉ2,t, Î2,t, Φ̂2,h,t, Φ̂2,m,t}∞t=0:

1. S2,t ≥ sK2,t for all t ≥ 0;
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2. The value function, Ĵ(K0, S2,0), implied by this alternative policy is larger than J(K0, S1,0).

To construct {Ĉ2,t, Î2,t, Φ̂2,h,t, Φ̂2,m,t}∞t=0, we first define another policy, {C ′

t, I
′

t,Φ
′

h,t,Φ
′

m,t}∞t=0,

as follows:

C ′

t = λC1,t, and I ′t = I1,t ,Φ
′

h,t = Φ1,h,t, Φ
′

m,t = Φ1,m,t, for all t ≥ 0 , (D1)

where λ > 1 and {C1,t, I1,t,Φ1,h,t,Φ1,m,t}∞t=0 is the optimal policy defined earlier. Let τ̂ be the

stopping time such that S2,t = S1,t for the first time under the policy {C ′

t, I
′

t,Φ
′

h,t,Φ
′

m,t}∞t=0 with

the initial condition (K0, S2,0). We now define {Ĉ2,t, Î2,t, Φ̂2,h,t, Φ̂2,m,t}∞t=0 as follows:

Ĉ2,t =




C ′

t = λC1,t , for t ≤ τ̂ ,

C1,t , for t > τ̂ ,
(D2)

and

Î2,t = I1,t , Φ̂2,h,t = Φ1,h,t, Φ̂2,m,t = Φ1,m,t, for all t ≥ 0 . (D3)

With this constructed policy {Ĉ2,t, Î2,t, Φ̂2,h,t, Φ̂2,m,t}∞t=0, the dynamics for S1,t and S2,t when

t ≤ τ̂ are given by

dS1,t = (rS1,t − C1,t)dt+ Ytdt+Φ1,h,tνKdZh,t +Φ1,m,t[(µm − r)dt+ σmdZm,t] , (D4)

dS2,t = (rS2,t − λC1,t)dt+ Ytdt+Φ1,h,tνKdZh,t +Φ1,m,t[(µm − r)dt+ σmdZm,t] . (D5)

Since S1,τ̂ = S2,τ̂ and S1,t and S2,t have the same dynamics when t ≥ τ̂ , we have S2,t = S1,t for all

t ≥ τ̂ . In addition, K1,t = K2,t for all t ≥ 0 since K1,0 = K2,0 and Î2,t ≡ I1,t for all t ≥ 0.

Condition 1 is satisfied under {Ĉ2,t, Î2,t, Φ̂2,h,t, Φ̂2,m,t}∞t=0 because S2,t ≥ S1,t ≥ sK1,t = sK2,t .

Condition 2 is also satisfied under {Ĉ2,t, Î2,t, Φ̂2,h,t, Φ̂2,m,t}∞t=0 because λ > 1 implies

J(K0, S1,0) < E0

[∫ τ̂

0
ζe−ζtU(λC1,t)dt+

∫
∞

τ̂
ζe−ζtU(C1,t)dt

]
= Ĵ(K0, S2,0) . (D6)

By definition, J(K0, S2,0) is the value function under the optimal policy with the initial condition

(K0, S2,0), Ĵ(K0, S2,0) ≤ J(K0, S2,0) thus holds. We have proven that J(K0, S1,0) < J(K0, S2,0).

Lemma 2. The value function J(K,S) is concave in S.

Proof: We use the same notations as in the proof for Lemma 1 whenever feasible. Let

Sλ
0 = λS1,0 + (1− λ)S2,0 , (D7)

where 0 ≤ λ ≤ 1. Let Ĵ(K0, S
λ
0 ) be the value function associated with an alternative policy

{Cλ
t , I

λ
t ,Φ

λ
h,t,Φ

λ
m,t}∞t=0 to be described below subject to the initial conditions for (Kλ

0 , S
λ
0 ) where

Kλ
0 = K0 and Sλ

0 is given by (D7). Let {Kλ
t , S

λ
t }∞t=0 denote the implied liquidity and physical
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capital processes subject to the initial conditions (Kλ
0 , S

λ
0 ) for any admissible policy. We establish

the following properties implied by the policy {Cλ
t , I

λ
t ,Φ

λ
h,t,Φ

λ
m,t}∞t=0:

1. Sλ
t ≥ sKλ

t for all t ≥ 0;

2. The value function Ĵ(K0, S
λ
0 ) is weakly larger than λJ(K0, S1,0) + (1− λ)J(K0, S2,0).

We construct the policy {Cλ
t , I

λ
t ,Φ

λ
h,t,Φ

λ
m,t}∞t=0 as follows:

Cλ
t = λC1,t + (1− λ)C2,t + [λG(I1,t,K1,t) + (1− λ)G(I2,t,K2,t)−G(Iλt ,K

λ
t )]

≥ λC1,t + (1− λ)C2,t = Ĉλ
t , (D8)

Iλt = λI1,t + (1− λ)I2,t , (D9)

Φλ
h,t = λΦ1,h,t + (1− λ)Φ2,h,t , (D10)

Φλ
m,t = λΦ1,m,t + (1− λ)Φ2,m,t . (D11)

Note that the convexity of the capital adjustment cost function G(I,K) gives rise to the inequality

in (D8). First, we show that Condition 1 is satisfied. Equation (D9) implies that

dKλ
t = (Iλt − δKKλ

t )dt+ σKKλ
t

(√
1− ρ2dZh,t + ρdZm,t

)
, (D12)

where Kλ
t = λK1,t + (1− λ)K2,t. Similarly, (D8), (D10, and (D11) imply that

dSλ
t = (rSλ

t + Y λ
t − Cλ

t )dt+Φλ
h,tνKdZh,t +Φλ

m,t[(µm − r)dt+ σmdZm,t] , (D13)

where Y λ
t = AKλ

t − Iλt −G(Iλt ,K
λ
t ). Therefore, we have Sλ

t = λS1,t + (1− λ)S2,t for all t ≥ 0. The

constraints Sj,t ≥ sKj,t and additivity imply Sλ
t = λS1,t+(1−λ)S2,t ≥ λsK1,t+(1−λ)sK2,t = sKλ

t ,

which is Condition 1.

Next, we use the monotonicity and concavity of the utility function U(·) to prove Condition 2.

The value function under the candidate policy satisfies

Ĵ(K0, S
λ
0 ) = E

[∫
∞

0
ζe−ζtU(Cλ

t )

]
dt ≥ λE

[∫
∞

0
ζe−ζtU (C1,t) dt

]
+ (1− λ)E

[∫
∞

0
ζe−ζtU (C2,t) dt

]

= λJ(K0, S1,0) + (1− λ)J(K0, S2,0) , (D14)

where J(K,S) is the value function under the optimal policy and the inequality follows from

U(Cλ
t ) ≥ U(Ĉλ

t ) = U(λC1,t + (1 − λ)C2,t) ≥ λU(C1,t) + (1 − λ)U(C2,t) . We have thus proved the

concavity of the value function.
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Notes

1See also Biais, Mariotti, Rochet, and Villeneuve (2010), and Piskorski and Tchistyi (2010),

among others. Biais, Mariotti, and Rochet (2013) and Sannikov (2013) provide recent surveys of

this literature. For static security design models, see Townsend (1979) and Gale and Hellwig (1985),

Innes (1990), and Holmstrom and Tirole (1997).

2DeMarzo and Fishman (2007a), Biais, Mariotti, Rochet, and Villeneuve (2010), and DeMarzo,

Fishman, He and Wang (2012) incorporate investment into dynamic agency models.

3See Ljungqvist and Sargent (2004) Part V for a textbook treatment of limited-commitment

models.

4See Stulz (1984, 1996), Smith and Stulz (1985), and Tufano (1996) for early work on the link

between corporate hedging and executive compensation.

5Stochastic capital accumulation processes have been widely used in Corporate Finance, Asset

Pricing, and Macro. Cox, Ingersoll, and Ross (1985), Jones and Manuelli (2005), Albuquerque and

Wang (2008), and Brunnermeier and Sannikov (2014) are examples in general equilibrium with

agency and financial constraints.

6The subscripts h and m for the two standard Brownian motions refer to idiosyncratic hedgeable

risk and systematic market risk.

7Note that since there is no separation in equilibrium, we do not have to specify the firm’s

second best use of its physical capital.

8Lucas and Prescott (1971) analyze dynamic investment decisions with convex adjustment costs,

though they do not explicitly link their results to marginal or average q. Abel and Eberly (1994)

extend Hayashi (1982) to a stochastic environment and a more general specification of adjustment

costs.

9An endogenous wedge between Tobin’s average and marginal q also arises in cash-based models

such as Bolton, Chen, and Wang (2011) and optimal contracting models such as DeMarzo, Fishman,

He, and Wang (2012).

10This normalization is convenient in contracting models (see Sannikov, 2008). We can generalize

these preferences to allow for a coefficient of relative risk aversion that is different from the inverse

of the elasticity of intertemporal substitution, à la Epstein and Zin (1989). Indeed, as Epstein-
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Zin preferences are homothetic, allowing for such preferences in our model will not increase the

dimensionality of the optimization problem. Details are available upon request.

11Our conjecture is guided by the twin observations that: i) the value function for the standard

Merton portfolio-choice problem (without illiquid assets) inherits the CRRA form of the agent’s

utility function U( · ) and, ii) the entrepreneur’s problem is homogeneous in K and S.

12We infer the value of b from the solution of Merton (1971)’s closely related consumption and

portfolio choice problem under complete markets. Note also that for the special case where γ = 1

we have b = ζ exp
[
1
ζ

(
r + η2

2 − ζ
)]

.

13See Wang, Wang, and Yang (2012) for a similar definition in a different setting where markets

are exogenously incomplete.

14We will establish that under the first-best we have γe(s) = γ.

15The first-best case can be solved either via dynamic programming as we do here or via the

Arrow-Debreu complete-markets/Cox-Huang martingale approach. The intuition that consumption

and production decisions are independent are more transparent via the latter formulation. For

brevity, we omit in this paper. See Duffie (2001) for a textbook treatment.

16By that we mean that δ is the capital depreciation rate under the risk-neutral measure: The

gap δ− δK is equal to the risk premium ρησK for capital shocks. The two Gordon growth formulae

(26) and (29) are equivalent: The CAPM, implied by no arbitrage and the unique SDF given in

(8), connects the two formulae under the physical and the risk-neutral measures.

17In practice entrepreneurs can sometimes partially commit themselves and lower their outside

options by signing non-compete clauses. This possibility can be captured in our model by lowering

the parameter α, which relaxes the entrepreneur’s inalienability-of-human-capital constraints.

18 See Appendix A.B for technical details.

19Otherwise m(0) = m(s) = 0, which does not make economic sense.

20We verify that the drift µs(s) given in (23) is non-negative at s, so that s is weakly increasing

at s.

21This is a standard assumption in the dynamic moral hazard literature (Ch. 10 in Bolton and

Dewatripont, 2005). Di Tella and Sannikov (2016) develop a contracting model with hidden savings

for asset management.

22Here, the subscript p refers to the principal, while the subscript e in γe refers to the en-
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trepreneur’s endogenous effective risk aversion in the liquidity and risk management problem ana-

lyzed earlier.

23Note that the coinsurance weight
γp(w)

γp(w)+γ appears in (65) and (66).

24The necessary convergence condition is (r + δ)2 − 2A−(r+δ)
θ ≥ 0 .

25The first-best case is degenerate because the entrepreneur’s indifference conditionm(−qFB) = 0

implies zero-volatility of s at s = −qFB. But this is not true for the inalienability case. Besides

the indifference condition m(s) = αm(0), we also need to provide incentives for the entrepreneur to

choose zero volatility for s at the credit limit s, which requires the entrepreneur to be endogenously

infinitely risk averse at s, γe(s) = ∞, meaning that m′′(s) = −∞.

26This result can be seen from Panels B and D in Figure 1 where the slopes of m′(s) and p′(w)

approach −∞ at s and w. Mathematically, this follows from the definition of γe given in (19), σs
h(s)

given in (21), and m(s) = 0.207. Similar mathematical reasoning applies for γp =
wp′′(w)
p′(w) in (62).

27A negative shock has the opposite effect on the entrepreneur’s human capital and relaxes the

inalienability constraint. Hence, we focus on the positive shock.

28The (diffusion) risk term for any stochastic process locally dominates its drift effect as the

former is of order
√
∆ and the latter is of order ∆. We thus can drop the drift term in the limit

for this calculation.

29There is a natural analogy here with the general principle in moral hazard theory that the

agent’s compensation trades off incentive and risk sharing considerations. Following Holmstrom

(1979), this literature assumes that the agent’s utility function is separable in effort and wealth (or

consumption.) In our framework, exerting effort is analogous to staying with the firm. With this

analogy, we note that our model does not assume the standard separability as that the severity

of the agency problem depends on the distance of w to the debt limit w. We therefore obtain a

sharper result, namely that the more severe the agency problem is the less the agent is insured

against idiosyncratic risk. See Sannikov (2008) for a continuous-time version of the classical moral

hazard problem.

30Rampini, Sufi, and Viswanathan (2014) provide empirical evidence showing that more finan-

cially constrained firms hedge less. However, our analysis implies that more constrained firms have

less volatile s.

31Note that the zero systematic volatility condition for s (and equivalently for w) turns out to
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be identical to the zero idiosyncratic volatility condition for s (and equivalently for w).

32Unless, of course, the entrepreneur is prevented from working by a non-compete clause, which

we have ruled out. However, in general, non-compete clauses are of finite duration and hence in

theory, the employee still has options to re-contract in the future.

33 Absconsion means “to hide away” or “to conceal” according to the Merriam-Webster Dictio-

nary. If the entrepreneur were openly seen to use the pilfered capital elsewhere, she would be at

risk of legal recovery and enforcement actions. To avoid these actions she has to hide and therefore

cannot engage in any new contracts.

34In our model, the principal uses the SDF Mt = e−rt exp
(
−η2

2 t− ηZm,t

)
, while in Ai and Li

(2015), the principal uses Mt = e−rt. That is, the market price of risk is η > 0 in ours and η = 0

in theirs.

35With the additional assumption that ζ = r, consumption between t and t+τ is a sub-martingale

in our model, while it is constant in Ai and Li (2015).

36We have analyzed more general situations that incorporate systematic productivity shocks.

Generalizing our model to allow for a systematic risk premium requires an application of the

standard change of measure technique by choosing different transition intensities under the physical

measure and the risk-neutral measure. See for example, Bolton, Chen, and Wang (2013). As one

may expect, the generalized liquidity and risk management problem in this section also has an

equivalent optimal contracting formulation.

37For contracting models involving jumps and/or regime switching, see Biais, Mariotti, Rochet,

and Villeneuve (2010), Piskorski and Tchistyi (2010), and DeMarzo, Fishman, He and Wang (2012),

among others.

38In the Appendix C, we provide the coupled equivalent HJB equation for J(K,S;AH ) ≡

JH(K,S) in state H.

39There is an equivalent set of conditions characterizing ΠH , which we refer readers to the

Appendix C.

40These results are robust and hold for other more extreme parameter values, which for brevity

we do not report.

41For example, when productivity A = 0.18 (together with σK = 0 & η = 0), qFB = 1.17 and

iFB = 0.0852. Because δ = 11% and r = ζ = 5%, it is immediate to see that (95) is violated
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and hence µs
FB(st) > 0. That is, st increases over time even under first-best and thus her limited-

commitment constraint never binds. Of course, the net worth s + qFB is positive which implies

s ≥ s where s = −qFB = −1.17 in this case.
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Table I

Equivalence: Primal Optimization and Dual Contracting Problems

Primal Dual

Optimization Contracting

State Variable s w

Value Function m(s) p(w)
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Table II

Comparison of Primal and Dual Optimization Problems.

Primal Dual

Optimization Contracting

A. State Variable s w

Drift µs(s) given in (23) µw(w) given in (70)

Idiosyncratic Volatility σs
h(s) given in (21) σw

h (w) given in (68)

Systematic Volatility σs
m(s) given in (22) σw

m(w) given in (69)

Admissible Range s ≥ s w ≥ w

B. Value Function m(s) p(w)

Interior Region ODE given in (43) ODE given in (71)

Right Limit lims→∞ m(s) = s+ qFB limw→∞ p(w) = qFB
− w

C. Policy Rules

Compensation c(s) given in (37) c(w) given in (63)

Corporate Investment i(s) given in (39) i(w) given in (64)

Idiosyncratic Risk Hedge φh(s) given in (41) xh(w) given in (65)

Systematic Risk Exposure φm(s) given in (42) xm(w) given in (66)

D. Inalienability Case: 0 < α < 1

Inalienability Constraint m(s) = αm(0) p(w/α) = 0

Curvature Condition m′′(s) = −∞ p′′(w) = −∞

E. First-Best case: α = 0

Borrowing Limit s = −qFB w = 0
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Table III

Parameter Values

Parameters Symbol Value

Risk-free rate r 5%
The entrepreneur’s discount rate ζ 5%
Correlation ρ 20%
Excess market portfolio return µm − r 6%
Volatility of market portfolio σm 20%
The entrepreneur’s relative risk aversion γ 2
Capital depreciation rate δK 11%
Volatility of capital depreciation shock σK 20%
Quadratic adjustment cost parameter θ 2
Productivity parameter A 20%
Inalienability parameter α 80%

This table summarizes the parameter values for our baseline analysis in Section V. Whenever
applicable, parameter values are annualized.

62



s

← s=

−qF B

ooooooooooo

s

s= →

−qF B

w

w= →

qF Booooooooooo

w

w= →0

0

0

0

0

0

0

0

0
0

1

1

1

1

1

1

1

1

1

2

2

2

2

2

6

6

9

9

1.1

1.2

1.3

1.4

1.5

1.5

1.5

2.5

2.5

2.5

0.5

0.5

0.5

0.5

0.5

0.5

-0.5

-0.5

-0.5

-0.7

-0.8

-0.9

-1

-1

-1

-1

.

.

.

.

-

-

A. Scaled certainty-equivalent wealth: m(s) B. Investor′s scaled value: p(w)

C. Marginal value of liquidity: m′(s) D. Marginal value: p′(w)

Figure 1. Certainty equivalent wealth m(s) and investor’s value p(w). The dotted lines
depict the first-best results: m(s) = qFB+s and m′(s) = 1 for s ≥ −qFB = −1.264, p(w) = qFB−w
and p′(w) = −1 for w ≥ wFB = 0. The solid lines depict the inalienability case: m(s) is increasing
and concave where s ≥ s = −0.21, and p(w) is decreasing and concave where w ≥ w = 0.96. The
debt limit s is determined by m(s) = αm(0) and m′′(s) = −∞, and w is determined by p(w/α) = 0
and p′′(w) = −∞.
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Figure 2. Idiosyncratic risk management policies, φh(s) and xh(w), and idiosyncratic
volatilities for s and w, σs

h(s) and σw
h (w). The dotted lines depict the first-best results: φFB

h (s) =
−qFB = −1.264 and xFB

h (w) = 0. The solid lines depict the inalienability case: the entrepreneur
hedges less than under the first best, |φh(s)| < |φFB

h (s)| = qFB, and her idiosyncratic risk exposure
is thus positive, xh(w) > 0.
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Figure 3. Endogenous relative risk aversion for the entrepreneur and the investor,
γe(s) and γp(w). The dotted lines depict the first-best results: γFB

e (s) = γ = 2 and γFB
p (w) = 0.
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Figure 4. Systematic risk exposures, φm(s) and xm(w), and systematic volatilities for
s and w, σs

m(s) and σw
m(w). The dotted lines depict the first-best results. The solid lines depict

the inalienability case: the entrepreneur’s systematic risk exposures are lower than under the first
best, φm(s) < φFB

m (s) and xm(w) < xFB
m (w).
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Figure 5. Investment-capital ratio and its sensitivity. The dotted lines depict the first-best
results: qFB = 1.264 and iFB = 0.132. The solid lines depict the inalienability case: the firm
always under-invests and i(s) increases with s (equivalently i(w) increases with w.)
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Figure 6. Consumption-capital ratio and the MPC. The dotted lines depict the first-best
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FB(w). The solid lines depict the inalienability case: the
entrepreneur always under-consumes and c(s) is increasing and concave in s (equivalently c(w) is
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Figure 7. Comparative Statics with respect to α. The lower the value of α, the less
inalienable the entrepreneur’s human capital, the higher the debt capacity |s|, the less the firm
under-invests and under-compensates the entrepreneur, the higher the idiosyncratic risk hedging
demand, and the higher the entrepreneur’s exposure to the stock market.
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Figure 8. Recontracting versus autarky. Panels A and B plot the autarky case for γ = 2
and γ = 5. Panels C and D plot the recontracting case for γ = 2 and γ = 5. Under recontracting,
the solutions for γ = 2 and γ = 5 are similar. For example, s = −0.21 for γ = 2 and s = −0.20
for γ = 5. However, under autarky, when γ = 5, the solution features the first best and hence
s = −qFB, but when γ = 2, s = −0.76.
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Figure 9. Insurance demand under persistent productivity shocks: πH(s) and πL(s).
State-H productivity is AH = 0.25 in both panels. In Panel A, State-L productivity is AL = 0.14,
and sH = −0.217, and sL = −0.178, and πL(s) = sH − s when −0.178 < s < −0.129. In Panel
B, State-L productivity is AL = 0.05, and sH = −0.200, sL = −0.128, and πL(s) = sH − s when
−0.128 < s < 0.023.
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Figure 10. The case with persistent productivity shocks. Table III contains parameter val-
ues unless otherwise stated here: AH = 0.25, AL = 0.14, and λL = λH = 0.2. Under inalienability,
sH = −0.217, and sL = −0.178. Under the first best, qFB

H = 1.357, qFB
L = 1.115, iFB

H = 0.179,
iFB
L = 0.057.
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Figure 11. The deterministic case (σK = 0 and η = 0) where the firm is financially
constrained. Productivity A = 0.185 and other parameter values are given in Table III. Under
the first best, the firm’s debt capacity is −s = 0.25. The dotted lines depict the first-best results
with qFB = 1.271 and iFB = 0.136.

72



 

 

ooooooooo
−qF B

=- →

← =-

← =
−qF B

−qF B

ooooooooo
−qF B

−qF B −qF B

ooooooooo

ooooooooo

−qF B

ooooooooo

−qF B

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

11 2

25

1.2

0.04

0.08

0.1

0.1

0.12

0.2

0.2

0.3

0.4

0.4

0.50.5

0.50.5

0.50.5

0.50.5

0.8

0.8

-0.2

-0.4

-0.5-0.5

-0.5

-0.5

-0.5

-0.5-0.5

-0.5-0.5

-1-1

-1

-1

-1

-1-1

-1-1

-1.5

.

.

A. Scaled certainty-equivalent wealth: m(s)

D. Investment-capital ratio: i(s)

E. Idiosyncratic risk hedge: φh(s) F. Market portfolio allocation: φm(s)

B. Marginal value of liquidity: m′(s)

C. Consumption-capital ratio: c(s)

G. Idiosyncratic volatility of s: σs
h
(s) H. Systematic volatility of s: σs

m(s)

1-sided

2-sided

ss

ss

ss

s

s

s

s

s

Figure 12. Two-sided limited commitment. The endogenous upper boundary s = 0. Com-
pared with the first best, s lies in the range (s, s) = (−0.25, 0) under two-sided limited commitment.
The firm under-invests when s is close to s = −0.25 and over-invests when s is close to s = 0. The
credit limit under the two-sided limited commitment |s| = 0.25 is larger than the credit limit
|s| = 0.21 in our baseline case with only inalienable human capital.
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