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1. Introduction

The goal of most empirical work in economics is to measure the sign and magnitude of causal

effects. Heckman (1999) defines a causal effect as follows.

Just as the ancient Hebrews were ‘the people of the book’economists are ‘the people

of the model.’ ...Within a model, the effects on outcomes of variation in constraints

facing agents are well defined. Comparative statics exercises formalize Marshall’s notion

of a ceteris paribus change which is what economists mean by a causal effect.

Correct empirical estimation of signs of causal effects is important given that a theory can be

viewed as falsified if it incorrectly predicts a sign. Angrist and Pischke (2010) herald the search for

sources of independent random assignment (or valid instruments) as amounting to a “credibility

revolution”in empirical estimation of causal effects. Their textbook, Mostly Harmless Economet-

rics, states, “The goal of most empirical research is to overcome selection bias, and therefore to have

something to say about the causal effect of a variable.”Indeed, an extant empirical literature span-

ning the fields of public finance, finance, labor, macroeconomics and environmental economics seeks

to identify and exploit exogenous policy treatments, with satisfaction of the exclusion restriction

equated with “credibility.”

In this paper, we show that in a broad and important class of economic environments, indepen-

dent random assignment is insuffi cient for treatment responses to equal causal effects. Specifically,

in dynamic environments in which policy variables evolve over time stochastically, treatment re-

sponses do not generally equal the causal effects empiricists seek to estimate. Critically, this is

shown to be true even if policy variables are independent random variables. Worse still, absent

a description of the data generating process beyond satisfaction of the exclusion restriction, the

nature of the bias is unpredictable. Treatment responses can understate, overstate, and even have

signs opposite to causal effects. Moreover, the biases are shown to be quite large under plausible

parameterizations. As a final problem, we show that in terms of forecasting the economy’s response

to future changes in policies, it is not only invalid to extrapolate across policy generating processes,

as argued by Lucas (1976), but also within the same policy generating process. This is a severe

limit on external validity.
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These findings are far from theoretical curiosities. Rather, they cast doubt on the credibility,

utilization, and interpretation of the types of elasticity estimates that are used to shape government

policy decisions. As just one example, in surveying empirical evidence following the Tax Reform Act

of 1986, Slemrod (1990) concludes “the short-term response has in most cases been less dramatic

than many economists had expected.” Similarly, Slemrod (1992) describes a consensus view of a

“downward revaluation of the responsiveness to taxation of real variables.”Based on this evidence,

Slemrod (1992) and Aaron (1992) call for increased focus on the distributional consequences of

taxation and less concern over excess burdens. Our arguments show that, even if one sets aside

issues of policy endogeneity, such normative conclusions are premature since it is impossible to infer

the economic meaning of an elasticity estimate absent a full description of the policy generating

process.

We demonstrate our arguments by way of a model economy designed to serve as a perfect

laboratory for conducting tests-of-tests. In particular, our model economy is hard-wired with

“ideal”independent policy variable transitions. In this economy, we actually know the true theory-

implied causal effects. Therefore, we are able to conduct simulated natural experiments in which

treatment responses are measured and test statistics computed in relation to known-to-be-correct

null hypotheses.

To illustrate how statistical inference can go awry in dynamic settings despite independent

assignment, suppose the policy variable of interest, say tax depreciation rates, can take on three

possible values. The theory-implied causal effect of accelerated depreciation on investment is un-

ambiguously positive. However, the treatment response to an acceleration in the rate of tax depre-

ciation can actually be negative. For example, suppose firms think there is a high probability of

a high rate of tax depreciation rate being legislated. This expectation will be capitalized into the

shadow value of installed capital, and firms will invest at a high rate. If a somewhat less generous

tax depreciation schedule becomes law, the shadow value of capital will fall and firms will cut in-

vestment. Conversely, consider the same modest legislated increase in the rate of tax depreciation,

but suppose firms had instead expected a deceleration. Here the treatment response will actually

tend to overshoot the causal effect since firms would have invested at a low rate under the prior

law in expectation of bad news.

Central to our argument is notion that treatment responses can only be understood and inter-
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preted in relation to the underlying policy generating process, with satisfaction of the exclusion

restriction shedding little light on the economic meaning of empirical estimates. In fact, implicit in

much of the literature is the view that “more change is better.”For example, Slemrod (1992) writes,

“Fortunately (for the progress of our knowledge, not for policy), since 1978 the taxation of capital

gains has been changed several times, providing much new evidence on the tax responsiveness of

realizations.”Similarly, in his analysis of the effect of the Clean Air Act, Greenstone (2001) writes,

“The Amendments introduce substantial cross-sectional and longitudinal variation in regulatory

intensity at the county level.”Cummins, Hassett and Oliner (1994) examine the response of real

investment to 13 changes in the U.S. corporate income tax from 1962 until 1986. Romer and Romer

(2010) identify 54 exogenous tax shocks during the post-war period.

Our results indicate that a desire to find natural experiments with numerous policy shocks is

generally misplaced. Although time-series variation is useful in a purely statistical sense, in that

it allows one to control for fixed effects and lowers standard errors, such variation must also be

understood as arising from an underlying stochastic policy process with frequent transitions and

high variance. Data on business activity, say, must be understood as generated by firms making

optimal decisions when confronted with the same stochastic process exploited by the econometri-

cian. Since, as we show, frequent policy transitions often drive treatment responses further from

causal effects, the net result can be a biased estimate with a tight confidence interval.

After pointing out the pitfalls associated with the analysis of treatment responses armed only

with exclusion restrictions, the paper turns next to a constructive analysis of auxiliary assumptions

needed to ensure valid inference in dynamic settings. As a first result, we show that treatment

responses converge to causal effects if all possible policy transition rates tend to zero. In other

words, all possible policy changes must come as a near-complete surprise and be viewed as near-

permanent. However, reliance on unanticipated permanent policy transitions is troubling as an

auxiliary assumption. After all, if the empiricist is on the lookout for events taking place with

infinitesimal probability, she will be waiting a rather long time for evidence. In addition, it is not

clear why policymakers should be interested in historic responses to changes in a policy variable if

there is infinitesimal probability of that same policy variable being changed in the future. Finally,

as the work cited above illustrates, it is apparent that much empirical work in the policy arena is

concerned with policy variables with non-trivial transition probabilities.
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Given the inherent limitations in relying upon rare events for identification, it would be useful

if valid inference of causal effects could be obtained under a broader class of policy generating

processes. Therefore, the paper next turns to a general statement of auxiliary assumptions required

for valid inference. Conveniently, it is shown that treatment responses are equal to causal effects if

and only if the expected change in the policy variable is equal to zero. That is, each policy state must

be absorbing or, if a transition out of a given state is possible, the mean change must be zero. The

intuition for this result is simple. Causal effects measure responses to hypothetical policy changes

that are completely unanticipated and permanent. Under the stated auxiliary assumptions, policy

variables are martingales, and so the shadow value of capital and labor extrapolates the current

policy state into perpetuity. That is, firms act as if the current policy state will last forever even

though they know that it generally will not.

As a final constructive step, we show how causal effects can be inferred from treatment re-

sponses for all possible policy generating processes, not just those meeting the auxiliary assump-

tions described above. We also show how treatment responses can be extrapolated across different

transitions under the same policy generating process, or across different policy generating processes.

Our paper draws inspiration from Lucas (1976). Our analysis differs along a number of di-

mensions. Most importantly, Lucas does not analyze the relation between exogenous natural ex-

periments and causal effects, nor does he discuss the potential for overshooting, sign reversals,

or invalid test statistics in natural experiments. Further, Lucas does not derive conditions under

which treatment responses correctly gauge causal effects in natural experiments. Of course, Lucas’

work are pre-dates the “credibility revolution.”As in Lucas (1976), we show the limits of external

validity of empirical evidence, here of the experimental variety. Moving beyond his critique in

relation to forecasting the effects of future policy changes, we show there is no reason to think

elasticities can be extrapolated within the same policy generating process, while Lucas discussed

problems in extrapolating elasticities across policy generating processes. Constructively, we show

how to extrapolate observed treatment responses between and within policy processes, as well as

back to causal effects.

In related work, Abel (1983) analyzes the effect of permanent versus temporary tax policies

in a perfect foresight economy. One can view our work as extending his analysis to an economy

featuring uncertainty and idealized exogenous regime-shifting policies with multiple states. As we
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show, allowing for the realistic possibility of more than two policy states is critical to understanding

how treatment responses can have the wrong sign, overshoot causal effects, or fail as forecasters of

future policy responses. More generally, we argue that the common practice of positing a dichotomy

between unanticipated versus anticipated policy changes, or between temporary and permanent

changes, is too coarse an approximation of reality to capture the types of biases that can emerge.

Further, such coarse categorizations prevent the type of quantitative bias corrections we show to

be feasible.

Auerbach (1986) and Auerbach and Hines (1988) present investment Euler equations under

stochastic tax rates. Hassett and Metcalf (1999) present a real options model with a one-off invest-

ment which they use to assess whether uncertainty regarding investment tax credits encourages or

discourages investment. Gourio and Miao (2008) numerically compare the effects of permanent and

temporary dividend tax cuts. The model presented here draws on the q-theoretic model of Abel

and Eberly (1997) which is particularly convenient given that it yields analytic solutions even as

we extend it to a more complex setting with regime shifts.

Our critique of the random assignment literature is related to, but distinct from the critique

made by Heckman (1997) and Keane (2010) who argue that individuals and households can be

expected to endogenously undermine random assignment—especially when the randomly assigned

treatment is burdensome. In our laboratory economy, firms are incapable of avoiding the respective

policy treatments. Still, they adjust their behavior in a way that can lead to biased statistical

inference regarding causal effects.

Related concerns have been expressed about the interpretability and economic content of es-

timates arising from instrumental variables (IV) in the context of a single treatment applied to a

cross-section of heterogeneous agents. Heckman (1997) points out that the probability limit of IV

estimators can depend on the choice of instrument. Our critique is different in that it applies when

there is no instrumentation and no cross-sectional heterogeneity.

The remainder of the paper is as follows. Section 2 develops a theory of dynamic investment and

labor hiring and derives causal effects. Section 3 describes our simulated laboratory for tests-of-

tests. Section 4 evaluates the potential for biases in standard treatment response estimators and test

statistics. Section 5 describes limits on biases and specifies auxiliary assumptions ensuring equality

of treatment responses and causal effects. Section 6 derives bias corrections for environments where
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the auxiliary assumptions are violated.

2. Neoclassical Theory of Investment and Labor Demand

In order to set the stage for our tests-of-tests, we must first derive causal effects of government

policies based on some underlying theory. To this end, this section articulates a neoclassical q-theory

of capital and labor demand for firms facing taxation and regulation. The model of Abel and Eberly

(1997) is extended to incorporate three government policy variables: tax depreciation schedules;

minimum wages; and environmental taxes on variable fuel inputs. The aim is to compute the causal

effects (Marshallian comparative statics) of these policy variables as implied by the underlying

theory. In subsequent sections we assess whether empirical estimates obtained via natural policy

experiments actually recover these causal effects.

2.1. Technology

Consider a competitive firm producing an output flow each instant utilizing the Cobb-Douglas

production function ζnαs1−α. The productivity variable is ζ > 0, which can be stochastic or con-

stant. The production input n is fuel. It is perfectly flexible and has an effective unit price p > 0.

The government can vary p by imposing a fuel surcharge. The production input s is a stock variable

which can only be adjusted at a cost. Depending on the application, we will think of s as being

either physical capital or the number of workers on the firm’s payroll. The variable s depreciates

at rate δ ≥ 0. For applications in which labor is the stock variable, δ is interpreted as the rate

at which workers quit. There is a flow cost w ≥ 0 associated with each unit of the stock variable

employed by the firm.

The price-taking firm sells its output at a price ρ which is stochastic. Let y ≡ ρζ and let z

denote a standard Wiener process. Uncertainty regarding productivity and output price is captured

by the fact that y evolves as a geometric Brownian motion, with

dy = mydt+ νydz. (1)

In applications with a cross-section, each firm will be endowed with an independent Wiener process.

Operating profits are denoted π, with

π ≡ max
n

ynαs1−α − pn− ws. (2)
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It follows that instantaneous operating profits can be expressed as:

π(s, x) = [xκ(p)− w]s, (3)

with

κ(p) ≡ (1− α)αα/(1−α)p−α/(1−α) (4)

x ≡ y
1

1−α .

Note that the profitability factor κ depends only on the deep structural parameter α and the fuel

price p. For simplicity, the remainder of the paper treats the government as directly determining

κ, and we will speak of κ as the fuels tax policy variable, with κ understood to be decreasing in

the effective fuel price p according to equation (4).

It is most simple to let x replace y as a state variable.1 From Ito’s lemma it follows that x also

evolves as a geometric Brownian motion, with

dx = µxdt+ σxdz (5)

where

µ ≡ m

1− α +
1

2

αν2

(1− α)2
(6)

σ ≡ ν

1− α.

It is worth noting that the drift µ of the state variable x is increasing in the volatility ν of the

firm’s output price. Ultimately, this will imply optimal instantaneous accumulation is increasing

in price volatility, a standard effect in real options models.

The firm regulates its holdings of the stock variable s through its instantaneous accumulation

policy a. The stock variable evolves according to:

ds = (a− δs)dt (7)

s0 > 0.

Following Abel and Eberly (1997), it is assumed s0 is suffi ciently large so that full depletion of

the stock can be ignored. Each unit of the stock variable can be purchased and sold at a price ψ.
1Abel and Eberly (1997) treat y as the state variable.
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The price ψ is treated as strictly positive in those applications where the stock variable is physical

capital and is treated as zero when the stock variable is labor. For simplicity we follow Abel and

Eberly, in assuming the firm faces quadratic costs to adjusting the stock variable equal to γa2,

where γ > 0. However, as described below, our results generalize to a broader class of adjustment

cost functions.

The firm pays tax at rate τ ≥ 0 on operating profits less depreciation deductions. Depreciation

for tax purposes may differ from economic depreciation. The tax depreciation rate is ξδ, with ξ > 1

corresponding to accelerated depreciation.

The instantaneous cash flow (c) accruing to shareholders is equal to operating profit less taxes

less accumulation costs:

c(s, x, a) = (κx− w)s− τ(κx− w − ξδψ)s− ψa− γa2 (8)

= [(1− τ)(κx− w) + τξδψ]s− ψa− γa2.

All agents are risk-neutral and discount cash flows at rate r > 0.

2.2. Optimal Accumulation

The firm chooses its accumulation policy each instant to maximize the sum of expected capital

gains and cash flows. Applying Ito’s lemma, we have the following Bellman equation:

rV (s, x) = max
a

(a−δs)Vs(s, x)+µxVx(s, x)+
1

2
σ2x2Vxx(s, x)+[(1−τ)(κx−w)+τξδψ]s−ψa−γa2.

(9)

We conjecture and then verify the value function is of the form:

V (s, x) = sq(x) +G(x). (10)

Notice, the conjectured value function splits firm value into two terms. The term sq(x) measures

the value of cash flows generated by units of the stock variable held by the firm. The term G

measures the net present value generated by the optimal exercise of future growth and contraction

options.

To pin down the optimal instantaneous control policy, we can isolate those terms in the Bellman

equation that involve the accumulation variable a. The optimal policy solves:

max
a

aVs(s, x)− ψa− γa2. (11)
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Under the conjectured specification of the value function, Vs(s, x) = q(x), and the optimal accu-

mulation policy is:

a(x) =
q(x)− ψ

2γ
. (12)

Evaluated at the optimal policy, the instantaneous net gain attributable to accumulation is:

aq − ψa− γa2 = (q − ψ)2Γ (13)

Γ ≡ 1

4γ
.

Substituting into the Bellman equation the conjectured value function, as well as the expression

for the instantaneous gain from optimal accumulation given in equation (13), we obtain:

rsq(x) + rG(x) = −δsq(x) + µxsqx(x) + µxGx(x) +
1

2
σ2x2sqxx(x) +

1

2
σ2x2Gxx(x) (14)

+[(1− τ)(κx− w) + τξδψ]s+ [q(x)− ψ]2Γ.

Since the Bellman equation must hold point-wise on the state space as characterized by (s, x)

pairs, the derivatives with respect to s of the left and right side of the preceding equation must

match. We then have the following differential equation describing the evolution of the shadow

value of the stock variable:

(r + δ)q(x) = µxqx(x) +
1

2
σ2x2qxx(x) + (1− τ)κx+ τξδψ − (1− τ)w. (15)

From the preceding ordinary differential equation and the Feynman-Kac formula it follows that:

q(x0) = E

[∫ ∞
0

e−(r+δ)t[(1− τ)κxt + τξδψ − (1− τ)w]dt | F0

]
. (16)

That is, q is simply the discounted value of the expected net marginal product, with the discount

rate set to r + δ to account for depreciation of capital and worker quits.

As in Abel and Eberly (1997) we rule out bubbles causing valuations to explode as x goes to

zero or infinity. We obtain the following solution to equation (15):

q(x) =
(1− τ)κx

r + δ − µ +
τξδψ − (1− τ)w

r + δ
. (17)

Substituting the shadow value into the optimality condition (12), we obtain the following analytical

expression for the optimal policy:

a(x; ξ, w, κ) =
1

2γ

[(
(1− τ)κ

r + δ − µ

)
x+

τξδψ − (1− τ)w

r + δ
− ψ

]
. (18)
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A complete model solution requires computing the value of growth options (G). However, since

our objective is to analyze causal effects, the policy function in equation (18) is suffi cient. The

growth option value is derived in the appendix.

2.3. Theory-Implied Causal Effects

We are interested in determining the causal effects (Marshallian comparative statics) as implied

by the theory, which is here just the classical q-theory of investment under quadratic adjustment

costs. We have the following comparative statics:

∂

∂ξ
a(x; ξ, w, κ) =

1

2γ

τδψ

r + δ
> 0 (19)

∂

∂w
a(x; ξ, w, κ) = − 1

2γ

(1− τ)

r + δ
< 0

∂

∂κ
a(x; τ , ξ, w, κ) =

1

2γ

[
(1− τ)x

r + δ − µ

]
> 0.

It is worth noting that each causal effect is linear in its respective government policy parameter

since the second derivatives are equal to zero. Thus, the causal effect of a discrete change in each

policy parameter is invariant to its initial point and proportional to the size of the change.

Based on the preceding comparative statics the empiricist or theorist might offer the following

list of Causal Effects.

Causal Effects under the Q-Theory with Quadratic Adjustment Costs: Investment increases

linearly with the depreciation rate allowed for tax purposes; Hiring decreases linearly with the mini-

mum wage; Investment and hiring increase linearly with the profitability factor κ which is inversely

related to the environmental surcharge on fuel inputs according to equation (4).

3. The Model Laboratory

Our primary objective is to assess whether standard econometric tests will correctly detect the

sign and magnitude of causal effects implied by an underlying theory, here the canonical q-theory

of capital and labor demand. Conveniently, we can use the model itself as an idealized laboratory

for conducting tests-of-tests. After all, in contrast to real-world environments, here we actually

know the true theory-implied causal effects as expressed analytically in equation (19).

In reality, endogeneity of government policy variables is a diffi cult hurdle to clear in correct

empirical estimation of causal effects. However, we have the luxury of being able to stipulate a

11



stochastic environment of our own choosing. Since the problems associated with policy endogeneity

are apparently well-understood, we rule it out by construction. We simply give the econometrician

her “identifying assumption”of random assignment for free. In particular, we consider an economy

in which the evolution of government policy variables is described by an independent stochastic

process.

3.1. The Policy Generating Process

We assume government policy variables follow an independent N -state continuous-time Markov

chain.2 Government policy toward business is described by the tax depreciation schedule (ξ),

minimum wage (w), and the firm profitability parameter κ (which is inversely related to the fuel

per equation (4)). We assume that in all possible policy regimes there is an excess supply of workers

at the minimum wage so that the sole determinant of employment is the demand for labor. The

government policy vector in regime i is (ξi, wi, κi) with i = 1, ..., N , and N ≥ 2. In each of our

thought experiments, only one of the three policy variables will be treated as time-varying, since

causal effect analysis entails holding fixed other policy variables.

We adopt an indexing convention that ranks policies according to their favorableness. In par-

ticular:

w1 < ... < wN

ξ1 > ... > ξN

κ1 > ... > κN .

That is, state 1 is the best state and state N is the worst state if one ranks the states according to

their implications for the firm’s present-date instantaneous after-tax cash flow.

We recall some basic properties of continuous-time Markov chains. The parameter λij ≥ 0

denotes the transition rate from regime i to regime j. Let

Λi ≡
∑
j 6=1

λij .

The amount of time the policy vector remains in state i before transitioning to another state is an

exponentially distributed random variable with parameter Λi. If Λi > 0, the expected life of regime

2See Ross (1996) for a detailed exposition.
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i is computed as 1/Λi. If Λi = 0, then state i is absorbing. If Λi is tending to ∞, then state i is

said to be ephemeral.3 Conditional upon a transition out of state i taking place, the probability of

transitioning into state j is

Pij ≡
λij∑
j 6=i λij

.

3.2. Model Solution

Having described the environment, we turn next to a characterization of optimal accumulation.

To begin, we recognize that equation (8), which described the instantaneous cash flow accruing to

shareholders under constant government policies, must be rewritten to account for regime-shifts.

Instantaneous cash flow in regime i is:

ci(s, x, a) = [(1− τ)(κix− wi) + τξiδψ]s− ψa− γa2. (20)

The value of the firm in policy regime i is denoted V i. Accounting for the possibility of regime

changes, we replace the original Bellman equation (9) with the following system of N Bellman

equations:

rV 1(s, x) = max
a

(a− δs)V 1
s (s, x) + µxV 1

x (s, x) +
1

2
σ2x2V 1

xx(s, x) +
∑
j 6=1

λ1j [V
j(s, x)− V 1(s, x)](21)

+[(1− τ)(κ1x− w1) + τξ1δψ]s− ψa− γa2

...

rV N (s, x) = max
a

(a− δs)V N
s (s, x) + µxV N

x (s, x) +
1

2
σ2x2V N

xx(s, x) +
∑
j 6=N

λNj [V
j(s, x)− V N (s, x)]

+[(1− τ)(κNx− wN ) + τξNδψ]s− ψa− γa2.

Notice, the sole change from the original program in equation (9) is the need to account for the

possibility of instantaneous regime changes leading to concomitant capital gains to shareholders.

Following the same procedure as in the model with constant government policies, we conjecture

and then verify value functions that are separable between the value of assets in place and growth

options. We conjecture the solution to the Bellman system (21) has the following functional form:

V 1(s, x) = q1(x)s+G1(x); ...;V N (s, x) = qN (x)s+GN (x). (22)

3Ross (1996) calls such states "instantaneous states."
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To pin down the optimal control policy, we isolate terms in the Bellman equation system

involving the accumulation variable. It follows that an optimal control policy solves:

ai(x) ∈ arg max
a

aV i
s (s, x)− ψa− γa2; i = 1, ..., N. (23)

Under the value function conjectured in equation (22), we have V i
s (s, x) = qi(x) and the optimal

regime-contingent accumulation policy is:

ai(x) =
qi(x)− ψ

2γ
; i = 1, ..., N. (24)

Notice, equation (24) implies that investment and hiring will jump each time there is a policy

transition giving rise to a jump in the shadow value.

Evaluated at the optimal policy, the instantaneous net gain attributable to accumulation is:

ai(x)qi(x)− ψai(x)− γ[ai(x)]2 = [qi(x)− ψ]2Γ. (25)

Substituting the optimized accumulation gain from equation (25) and the conjectured value

functions into the original system of Bellman equations, we can rewrite the Bellman system as:r + δ +
∑
j 6=1

λ1j

 q1(x)s+

r +
∑
j 6=1

λ1j

G1(x) (26)

= µx[sq1
x(x) +G1

x(x)] +
1

2
σ2x2[sq1

xx(x) +G1
xx(x)] +

∑
j 6=1

λ1j [q
j(x)s+Gj(x)]

+[(1− τ)(κ1x− w1) + τξ1δψ]s+ [q1(x)− ψ]2Γ

...r + δ +
∑
j 6=N

λNj

 qN (x)s+

r +
∑
j 6=N

λNj

GN (x)

= µx[sqNx (x) +GNx (x)] +
1

2
σ2x2[sqNxx(x) +GNxx(x)] +

∑
j 6=N

λNj [q
j(x)s+Gj(x)]

+[(1− τ)(κNx− wN ) + τξNδψ]s+ [qN (x)− ψ]2Γ.

Since the Bellman equations must be satisfied point-wise, the derivatives with respect to s of

the preceding equations must match for each i. Thus, the following system of N equations must be
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satisfied:r + δ +
∑
j 6=1

λ1j

 q1(x) = µxq1
x(x) +

1

2
σ2x2q1

xx(x) +
∑
j 6=1

λ1jq
j(x) + (1− τ)(κ1x− w1) + τξ1δψ (27)

...r + δ +
∑
j 6=N

λNj

 qN (x) = µxqNx (x) +
1

2
σ2x2qNxx(x) +

∑
j 6=N

λNjq
j(x) + (1− τ)(κNx− wN ) + τξNδψ.

Applying the Feynman-Kac formula to an arbitrary differential equation in the preceding system

allows us to write:

qi(x0) = E

∫ ∞
0

e−(r+δ+Λi)t

(1− τ)(κixt − wi) + τξiδψ + Λi
∑
j 6=i

Pijq
j(xt)

 dt | F0

 (28)

= E

∫ ∞
0

 ∫ T
0 e−(r+δ)t ((1− τ)(κixt − wi) + τξiδψ) dt

+e−(r+δ)T
∑

j 6=i Pijq
j(xT )

 (Λie
−ΛiT )dT | F0

 .
The second expression for the shadow value offered above follows directly from the first via inte-

gration by parts. It states that the shadow value is just an expectation over the current regime

life, which is exponentially distributed, of the net marginal product up to the regime change plus

the expectation of the new shadow value after the regime change.

We conjecture a no-bubbles solution to system (27) that is linear in x, as was the case in the

constant government policy model. Specifically, accounting for regime shifts, we now conjecture:

qi(x) = xdi +Di; i = 1, ..., N. (29)

Substituting the conjectured linear solutions into the system of equations described in (27), it follows

that the unknown constants can be found as solutions to systems of linear equations. Specifically,

we have: 
q1(x)

...

qN (x)

 = [T(R̃)]−1


(1− τ)κ1

...

(1− τ)κN


︸ ︷︷ ︸

x

≡d

+ [T(R̂)]−1


τδψξ1 − (1− τ)w1

...

τδψξN − (1− τ)wN


︸ ︷︷ ︸

≡D

. (30)
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where T(R) denotes the following augmented transition matrix :

T(R) ≡


R+

∑
j 6=1 λ1j −λ12 ... −λ1N

−λ21 R+
∑

j 6=2 λ2j ... −λ2N

... ... ... ...

−λN1 −λN2 ... R+
∑

j 6=N λNj

 (31)

and:

R̃ ≡ r + δ − µ

R̂ ≡ r + δ.

For example, if there are only two possible policy states, the preceding shadow value expressions

can be written as:

qi(x) =

(
κi

r + δ − µ +
λij(κj − κi)

(r + δ − µ)(r + δ − µ+ λij + λji)

)
(1− τ)x (32)

+
τδψξi − (1− τ)wi

r + δ
+
λij [(1− τ)(wi − wj)− τδψ(ξi − ξj)]

(r + δ)(r + δ + λij + λji)
.

Naturally, the preceding equation shows that the current-state shadow value is influenced by the

probability of transitioning into the other state, a transition that would lead to a jump in q.

To complete the model solution, we must also compute the value function for growth options

(G). However, since our objective is to analyze causal effects in relation to treatment responses,

the policy function in equation (24) and the shadow value vector (30) are suffi cient. Derivation of

the growth option value is provided in the appendix.

4. Evaluating Natural Experiment Econometrics

This section considers the interpretation of empirical evidence and hypothesis tests obtained

from natural policy experiments. Recall, in Section 2 we derived the causal effects implied by

the underlying theory, here the neoclassical q-theory. Section 3 considered the behavior of firms

embedded in an economy in which the econometrician enjoys access to exogenous policy assign-

ments. This section considers whether the econometrician will be able to recover the causal effects

implied by the theory. In addition, we will also examine the validity of using an observed treatment

response, perhaps for a cross-section of firms, to forecast future treatment responses.
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From equation (24) it follows that the optimal accumulation policy takes the form
a1(x)

...

aN (x)

 =
1

2γ



q1(x)

...

qN (x)

−

ψ

...

ψ


 (33)

with equation (30) providing analytical expressions for the vector of regime-contingent shadow

values.

The treatment response associated with a transition from state i to j is denoted TRij . Let:

TRij(x) ≡ aj(x)− ai(x) =
1

2γ
[qj(x)− qi(x)]. (34)

In fact, it is already apparent at this stage in the analysis that it is generally invalid to use the

treatment response in one economy to forecast the treatment response in another economy, even

if the policy change is the same and the economies have identical real technologies. To see this,

note that equation (30) implies that the jump in the shadow value and optimal accumulation in

the event of a policy change depends upon the underlying policy transition matrices, which are

likely to differ across economies. This is the natural-experiment corollary of the argument made by

Lucas (1976) regarding limits on extrapolation. We return to this issue in Section 6.

Consider now the estimation of causal effects. Recall, Section 2 showed that causal effects

are linear in the underlying theory. Therefore, the causal effect associated with a policy change is

properly computed by multiplying the relevant partial derivative in equation (19) with the respective

policy variable change. Variable-by-variable, we have the following theory-implied causal effects:

ξ : CEij ≡
1

2γ

(
τδψ

r + δ

)
(ξj − ξi) (35)

w : CEij ≡ −
1

2γ

(
1− τ
r + δ

)
(wj − wi)

κ : CEij ≡
x

2γ

[
1− τ

r + δ − µ

]
(κj − κi).

It is worth noting that the causal effect magnitudes in equation (35) can actually be computed

by replacing the true transition rates in equation (30) with zeroes (λij = 0 for all i and j). That is,

causal effects can be computed by acting “as if”each policy state is absorbing. Of course, if each

state were actually absorbing there would be no policy transitions to learn from.
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4.1. Binary Treatments and the Problem of Attenuation Bias

We begin by considering the simplest possible setting, one featuring binary policy treatments.

For example, this setting is akin to that studied by Greenstone (2001) in his analysis of the effect

of environmental regulations on firm activity. Assume that each instant firms are assigned to one

of two regulatory categories, Attainment or Non-Attainment, based upon measured pollutants in

the jurisdiction of their respective factories. Measured pollutants evolve exogenously as a result of

weather patterns and air flows. Finally, suppose that Non-Attainment status results in a constant

fuel surcharge per-unit. As shown in equation (4), such fuel input surcharges would transform

the profitability scalar κ into a binary random variable with the profitability factor under Non-

Attainment (κ2) falling below that under Attainment (κ1).

Although not reported directly by Greenstone (2001), his paper is rare in the quasi-experimental

literature in that one can infer the transition probabilities that are consistent with his reported sam-

ple statistics. The implied instantaneous rate of transitioning from Attainment to Non-Attainment

status in his sample is λ12 = .042 while the implied instantaneous rate of transitioning from Non-

Attainment to Attainment status is λ21 = .42.

Figure 1 plots the optimal investment policy functions (a(x)) arising from assignment to Attain-

ment versus Non-Attainment status under the assumption that assignment to the latter category

results in an increase in the fuel price suffi cient to bring about a 30% reduction in κ. The figure

considers two policy generating processes: the real-world policy generating process approximated

by transition parameters λ12 = .042 and λ21 = .42 versus a hypothetical setting in which each

assignment category is absorbing. Recall, the latter setting captures the causal effect of the con-

templated regulation-induced decrease in operating profits. In particular, for each value of the

stochastic demand factor x, the causal effect is computed as the wedge between investment under

Attainment versus Non-Attainment status when both categories are absorbing.

As shown in Figure 1, the causal effect of environmental regulation is much larger than mea-

sured treatment responses. In particular, one can see that firm investment under the temporary

designation of Non-Attainment status is far from the level of investment the firm would implement

if the designation were permanent. And this is to be expected given that the expected duration of

Non-Attainment status is only 2.5 years. After all, optimal investment depends upon the expected
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future marginal product of capital taking into account future changes in status. In fact, in the

present setting the treatment response to a transition from Non-Attainment to Attainment status

can be expressed as a percentage of the causal effect as follows:

TR21(x) =

(
1− λ12 + λ21

r + δ − µ+ λ12 + λ21

)(
1

2γ

)[
(1− τ)(κ1 − κ2)

r + δ − µ

]
x (36)

=

(
1− λ12 + λ21

r + δ − µ+ λ12 + λ21

)
× CE21(x).

The preceding equation follows directly from the formula for the shadow value of capital under

binary assignment given in equation (32), with treatment responses equal to ∆q/2γ. Using the

transition parameters derived from Greenstone (2001), if one assumes a discount rate of 10%, a

depreciation rate of 10% and a drift of 0%, the treatment response is less than one-third of the

causal effect. A policymaker would need to take account of this large difference if she were to

contemplate the imposition of permanent environmental regulations.

Moving away from the particular example of environmental regulations, the following lemma

offers a simple formula for calculating treatment responses relative to causal effects for settings in

which policy treatments are binary.

Lemma 1 If there are two possible policy states, the treatment response is

TRij(x) =

1− λij + λji
r + δ − µ+ λij + λji︸ ︷︷ ︸

Attenuation


(

1

2γ

)(
1

r + δ − µ

)
(1− τ)(κj − κi)x︸ ︷︷ ︸

CEij

+

1− λij + λji
r + δ + λij + λji︸ ︷︷ ︸

Attenuation


(

1

2γ

)(
1

r + δ

)
[δψτ(ξj − ξi)− (1− τ)(wj − wi)]︸ ︷︷ ︸

CEij

.

The preceding lemma follows directly from the formula for the shadow value under binary

assignment given in equation (32), with treatment responses equal to ∆q/2γ. The lemma leads to a

number of observations. First, with binary assignment, there is always a proportional attenuation

bias, with severity depending on the sum of the transition rates. Second, it is apparent that if

either regime is ephemeral, the treatment response will be infinitesimal and the attenuation bias is

roughly 100% of the causal effect. Conversely, if both regimes are near-permanent, then treatment

responses will approximate causal effects.
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Third, the treatment response formula reveals that with binary assignment attenuation bias

is quite severe even if one considers settings with relatively long expected policy durations. For

example, suppose one considers the conservative case of expected policy durations equal to 10 years

(λij = λji = 0.10). In this case, attenuation bias exceeds one-half of causal effects under standard

parameterizations featuring r + δ < 0.20. Similarly, the size of the attenuation bias exceeds one-

half under plausible parameterizations if one considers, say, a permanent transition out of a policy

regime with a five-year expected duration or an unexpected transition to a new regime with a

five-year life. Although Slemrod (1990) is not clear regarding the basis for his priors regarding the

expected size of responses to TRA86, these back-of-the-envelope calculations suggest that small

responses to the legislation might well have been expected given the fact that firms at the time

surely attached a high probability to some version of tax reform being implemented.

In fact, the problem of attenuation bias extends beyond settings with binary policy treatments.

For example, consider next a setting in which all transition rates are equal. In particular, suppose

that for all i and j with i 6= j we have λij = λ > 0. In this case, each policy regime has an expected

life equal to the inverse of (N − 1)λ. And if a transition out of an arbitrary state i takes place,

the conditional probability of each other regime is 1/(N − 1). That is, transitions are uniformly

distributed over each of the remaining states. We have the following lemma.

Lemma 2 If all transition rates are equal to λ, with N policy states the treatment response is

TRij(x) =

1− Nλ

r + δ − µ+Nλ︸ ︷︷ ︸
Attenuation

( 1

2γ

)(
1

r + δ − µ

)
(1− τ)(κj − κi)x︸ ︷︷ ︸

CEij

+

1− Nλ

r + δ +Nλ︸ ︷︷ ︸
Attenuation

( 1

2γ

)(
1

r + δ

)[
δψτ(ξj − ξi)− (1− τ)(wj − wi)

]
.︸ ︷︷ ︸

CEij

As shown in the appendix, the preceding lemma follows from direct calculation of the shadow

value using equation (30) and the fact that ∆a = ∆q/2γ. A number of observations emerge. First,

an obvious implication of Lemma 2 is that as Nλ tends to infinity, and expected policy durations

tend to zero, so too do treatment responses. Conversely, as Nλ tends to zero, and expected

policy durations tend to infinity, the treatment responses approximate causal effects. Second,
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it is noteworthy that in the setting considered with uniform random assignment, the treatment

response associated with a transition from regime i to j only depends upon the magnitude of policy

variables in these two regimes. This may seem surprising given that the shadow value capitalizes

the possibility of entering all other regimes. However, in the special case of identical transition

rates, the capitalized value of transitioning into each of the remaining regimes enters symmetrically

into both qi and qj so that qj − qi is invariant to the magnitude of policy parameters in the other

regimes. As discussed below, this case is atypical in that it will generally be the case that TRij

depends on the probabilities and magnitudes of counterfactual policy variables.

4.2. Overshooting and Incorrect Signing of Causal Effects

The settings described in the previous subsection, featuring binary assignment or equality of all

transition rates, are comforting inasmuch as the empiricist can claim treatment responses measured

in such environments are “conservative”estimates of causal effects. Of course, it is not clear why

one would want conservative estimates. After all, conservative estimates of elasticities lead to

downward bias in the estimated deadweight loss arising from government interventions. Further,

magnitudes, as distinct from signs, are often used as a basis for falsifying underlying theories.

Therefore, downward biases open up the possibility of false-falsifications. Finally, and perhaps

most importantly, it is apparent that the settings described in the previous setting are atypical. It

is seldom the case that policy variables are binary, and it is seldom the case that policy transitions

are uniformly distributed.

These arguments notwithstanding, one might hope that the settings considered in the preceding

subsection might still be instructive about the nature of the wedge between treatment responses

and causal effects. After all, conventional wisdom holds that agents will respond less aggressively

to transient government policies, so attenuation bias may be expected to be a general feature of

natural policy experiments. To explore these issues, consider an economy with three possible tax

depreciation rates: ξ1 = 1.5; ξ2 = 1 and ξ3 = 0.5. Consider then treatment responses and test

statistics under the following transition rate configurations.
· λ12 λ13

λ21 · λ23

λ31 λ32 ·

 =


· .1 .1

.1 · .1

.1 .1 ·


A

;


· .02 .02

.02 · .2

.02 .02 ·


B


· .1 .1

.1 · .1

.19 .01 ·


C

;


· .01 .01

.01 · .01

.24 .01 ·


D
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Table 1 and Figure 2 describe the results from 1000 simulated experiments using these pol-

icy transition matrices. In each experiment there are 1000 firms with i.i.d. treatment response

parameters. The treatment response of an arbitrary firm m is:

TRmij = Ωm(qj − qi) (37)

Ωm ≡ 1

2γm

with each random variable Ωm drawn from a truncated normal distribution with mean µΩ = 2.6

and standard deviation σΩ = 1.2. The expected causal effect in each experiment is 26 (= 10µΩ),

with the change in q equal to 10 on a causal effect basis (unanticipated and permanent change).

Each panel in Figure 2 is performed in relation to the different policy transition matrices described

immediately above. The null hypothesis for each t-statistic is the true expected causal effect of 26.

A valid estimator will cause the test statistic to have t-distribution with mean zero and variance 1.

Effectively, we have a matched pairs sample since we measure each firm’s investment the instant

before and the instant after the policy change.

Consider first the Matrix A [Panel A] results. Here the policy generating process features equal

transition rates for all regimes and so there is an attenuation bias of equal magnitude for all possible

policy transitions. Importantly, attenuation bias shifts the t-statistic downward so that the null

hypothesis, which is known to be true, is rejected too often.

An empiricist might view attenuation as a relatively benign form of bias, since the treatment

responses still have the right sign, with attenuation bias implying that the treatment responses

may be viewed as conservative estimates. However, Panel B of Figure 2 shows that it is actually

possible for treatment responses to exceed causal effects, contrary to the conventional notion that

transience diminishes responsiveness. The figure depicts firm responses to positive news in the

form of a transition from state 2 to state 1. The overshooting effect can be understood as follows.

In Economy B there is an asymmetry in that in the event of occupying the intermediate tax

depreciation state (2), a transition to the slowest tax depreciation state (3) is more likely than a

transition to the fast tax depreciation state (1). In this case, firms choose a low rate of investment

in state 2, factoring in the likelihood of higher future taxes. Therefore, in the event of a transition to

state 1, investment increases dramatically. This example illustrates that a “policy surprise”is not

necessarily conducive to correct causal inference. After all, in the present setting, it is the actually
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the surprising nature of the transition from state 2 to 1 that is responsible for overshooting. This

overshooting leads to a tendency to over-reject the null hypothesis, which is known to be true.

The two parts of Panel C illustrate the potential for asymmetric responses. In particular, one

sees that the treatment response associated with a transition from state 3 to 2 differs from the

response associated with a transition from state 2 to 1. And this holds despite the fact that the

true causal effects for these transitions are equal by construction. It follows then that it would

be invalid to directly extrapolate treatment responses across these two transitions. That is, the

historic response to one transition is not directly informative about how the economy will respond

to a future transition of equal size, despite the fact that causal effects under the stated theory

are, in fact, linear. This can be viewed as a more severe limit on extrapolation than argued by

Lucas (1976), as here we see it is invalid to extrapolate across transitions within the same policy

generating process.

Still, the empiricist may still take comfort from the fact that all examples furnished up to this

point have the feature that treatment responses have the correct sign. However, Panel D shows

that random assignment itself is insuffi cient to guarantee that treatment responses will correctly

measure the sign of causal effects. In particular, in Economy D investment actually decreases when

the tax depreciation rate transitions from low (state 3) to medium (state 2). The intuition for this

effect is as follows. In Economy D, the low tax depreciation rate regime has a fairly low expected life

of four years. Further, conditional upon a transition out of that regime, there is only a 4% chance

of a transition to the medium rate regime. In such an environment, firms will invest at a high

rate even in the worst regime. The firms will be disappointed then and find it optimal to reduce

investment if there is a transition from state 3 to 2 rather than from 3 to 1. The importance of

this example, and the countless others one can construct featuring sign reversals, is that even with

ideal random assignment empirical estimation is susceptible to the problem of false-falsification of

underlying theories.

In order for treatment responses to overshoot causal effects, or have the wrong sign, it must be

the case that the number of policy states is suffi ciently high. After all, if follows from Lemma 1

that if the policy variable is binary, treatment responses have the correct sign and are attenuated

relative to causal effects. However, as shown in the appendix, if the policy variable can take on

three or more values, one cannot rule out the possibility of an incorrect sign or overshooting absent
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auxiliary assumptions placing restrictions on the policy generating process. We have the following

lemma.

Lemma 3 If there are at least three policy states, there exists a continuum of transition rates such

that a proper subset of treatment responses are opposite in sign to their respective causal effects.

Furthermore, there exists a continuum of policy transition intensities such that a proper subset of

treatment responses are greater than their respective causal effects.

It is instructive to consider analytically a policy process generating a sign reversal. To this

end, suppose the only policy variable varying over time is the minimum wage, which can take on

three possible values, wh > wm > wl. For simplicity, assume the only positive transition rates are

λhl and λhm. That is, the medium and low minimum wage regimes are absorbing. Equation (30)

implies that under this policy generating process the shadow value of workers in the medium and

high minimum wage states are:

qm(x) =
(1− τ)κx

R̃
+
τξδψ − (1− τ)wm

R̂
(38)

qh(x) =
(1− τ)κx

R̃
+
τξδψ

R̂
− 1− τ
R̂
(
R̂+ λhl + λhm

)(λhlwl + λhmwm + R̂wh).

Firms will actually find it optimal to reduce hiring in the event of a reduction in the minimum

wage from wh to wm, implying a treatment response opposite in sign from the causal effect, provided

that λhl is suffi ciently high. In particular:

λhl >
R̂(wh − wm)

wm − wl
⇒ qh(x) > qm(x)⇒ TRhm < 0. (39)

Intuitively, in the present example, firms will reduce hiring in response to a small reduction in the

minimum wage if they had attached a suffi ciently high probability to a larger cut in the minimum

wage. It is interesting to note that the critical value of λhl such that a sign reversal occurs is

actually independent of λhm. That is, a sign reversal can occur regardless of the relative likelihood

of transitioning to wm and wl. Similarly, the sign reversal can occur if the transition from wh to

wm is expected (high λhm) or unexpected (low λhm). Thus, it is apparent that a loose rule of

thumb such as looking for “surprises/non-surprises” is inadequate. It is also worth noting that

the critical value of λhl such that sign reversals occur (equation (39)) is increasing in the value of
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the counterfactual wage wl. This implies that firms will cut employment in response to mid-size

reduction in the minimum wage if they attach a high probability to a large reduction. But they

will also cut employment in response to a mid-size reduction in the minimum wage if they attach a

low probability to a very large reduction. Finally, it is worth recalling that Lemma 2 showed that

with uniform policy assignment the treatment response associated with an arbitrary transition from

regime i to j is independent of the value of policy variables in all counterfactual states k /∈ {i, j}.

However, the present example shows this is not a general property. Rather, understanding the

potential for bias requires explicit description of the probability and nature of all states, including

unrealized counterfactual states.

Let us next consider analytically a policy generating process such that the treatment response

overstates the causal effect. Again, assume the only policy variable that varies over time is the

minimum wage, which takes on three possible values, wh > wm > wl. For simplicity, assume the

high and low minimum wage regimes are absorbing, so that the only positive transition rates are

λml and λmh. We are interested in conditions such that the employment response to a cut in the

minimum wage from wm to wl exceeds the causal effect, or:

TRml =
1

2γ
[ql(x)− qm(x)] >

(
1

2γ

)
(1− τ)(wm − wl)

R̂
≡ CEml. (40)

Using equation (30) to compute the shadow values in the preceding equation, one finds that the

treatment response exceeds the causal effect if the conditional expectation of the change in the

minimum wage is positive. That is, in the present example:(
λmh

λml + λmh

)
(wh − wm) +

(
λml

λml + λmh

)
(wl − wm) > 0⇒ TRml > CEml. (41)

Intuitively, under the stated inequality, a reduction in the minimum wage has a disproportionate

effect on employment given that the shadow value of workers in the medium state was dispropor-

tionately influenced by the high wage scenario. It is also worth noting that the preceding inequality

is unaffected if one multiplies λml and λmh by some scalar k > 0. Thus, overshooting can occur

even if a transition is unexpected (k small) or expected (k large).

Thus far, this subsection has considered treatment responses associated with one-step jumps in

policy variables. One might hope that treatment responses become reliable estimators of causal ef-

fects provided that policy changes are suffi ciently large. As shown in the appendix, size of treatment

does not imply immunity from bias.
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Lemma 4 If there are at least four policy states, there exist policy transition rates such that the

treatment response associated with a transition from the worst to best state (best to worst state) is

negative (positive).

As shown in the next subsection, it would be an overstatement to claim that “anything can

happen”in the realm of natural policy experiments. However, all of the examples provided in this

section illustrate starkly that a wide range of potential biases can arise in such settings, despite

orthogonality of policy assignment. In particular, absent specification of restrictions on the policy

generating process, one cannot guarantee that treatment responses have the right sign and that

treatment responses do not overstate causal effects. It is apparent then that auxiliary assumptions

are necessary.

Before proceeding, it is worth noting that the types of biases demonstrated in this section are

not reliant on a quadratic adjustment cost function. Rather, the same biases would also occur if

one posited that adjustment costs took the form of some other convex function of a. To see this,

note that the source of bias is the wedge between the shadow value of the stock variable under

transitory policies versus its shadow value under permanent policy assignment, while the shadow

value is itself invariant to the adjustment cost function here.

5. Bias Mitigation and Auxiliary Assumptions

The previous section showed that a range of biases can emerge in natural policy experiments

even with exogenous assignment: attenuation bias, overshooting, and sign reversals. We begin this

section by describing some limits on these biases. We then move on to a statement of necessary

and suffi cient conditions for treatment responses to equal causal effects.

5.1. Limits on Bias in Natural Experiments

This subsection considers some limitations on the nature and severity of bias that can arise in

natural policy experiments. Consider first the problem of attenuation bias. One natural question

to ask is whether there exists any policy generating process such that all treatment responses are

equal to zero. The answer is no, as shown in the following lemma.

Lemma 5 There is no set of policy transition rates such that all treatment responses are equal to

zero.
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Of course, the preceding lemma provides only a modicum of comfort in relation to the problem

of attenuation bias. After all, the lemma still allows for the possibility of severe downward bias.

And further, when it comes to attenuation bias, there is no guarantee that biases cancel out when

averaged across the various possible transitions. To see this, recall that Lemma 1 showed that both

possible treatment responses are biased downward in settings with binary assignment. Similarly,

Lemma 2 showed that all possible treatment responses are biased downward under uniform policy

assignment.

Consider next the problem of treatment responses overstating causal effects. Here the set of

damage controls is a bit more extensive. For example, the following lemma shows that regardless of

the assumed transition rates, overshooting cannot possibly occur in the case of worst-to-best state

transitions.

Lemma 6 The treatment response associated with a transition from the worst to best state is always

less than its respective causal effect.

The preceding lemma follows from the fact that with time-varying policies, the shadow value

in the best (worst) state cannot be greater than (less than) the shadow value under permanently

best (worst) state government policies (formula (28)). Therefore, the change in accumulation in the

event of a policy transition cannot exceed the jump that would occur in the event of a completely

unanticipated and permanent shift in government policies from the worst to best state.

Intuition suggests that there might be other factors mitigating the extent to which treatment

responses will overshoot causal effects. To motivate the argument, suppose there are three policy

states with, say, low, medium and high minimum wages. Suppose also that the low and high

minimum wage states are absorbing. In this case, the worker shadow values in those two states

are equal to their shadow values under permanent assignment. Suppose now that the inequality in

equation (41) is satisfied. Then in the medium wage state the conditional expectation of the wage

change is positive. This implies the shadow value of workers in the medium state is less than its

value under permanent assignment to that state, implying low hiring in this state. Consequently,

the treatment response to a transition from medium to low minimum wages will overshoot the

causal effect. However, this same argument implies the treatment response to a transition from

medium to high minimum wages will actually understate its respective causal effect (in absolute
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value terms). The following lemma shows this pattern is more general.

Lemma 7 If there exists a transition from state j to a (better) state i < j with treatment response

exceeding its respective causal effect by k > 0, then the sum of the treatment responses for transitions

from state i to the best state (1) and from the worst state (N) to j must fall below the sum of their

respective causal effects by at least k.

Consider finally the problem of sign reversals. Lemma 3 showed that there exist transition

rates such that for some transitions the sign of the treatment response will differ from causal

effects. Moreover, Lemma 4 showed sign reversals can occur even for worst to best state transitions.

However, sign reversals cannot be universal. In particular, the next lemma implies that there is no

set of transition rates such that each treatment response differs in sign from its respective causal

effect.

Lemma 8 There is at least one state such that the treatment response associated with a transition

from it to the best state is positive, and there is at least one state such that the treatment response

associated with a transition to it from the worst state is positive.

5.2. Necessary and Suffi cient Conditions for No-Bias

The examples and proofs in Section 4 demonstrate that exogenous random assignment is not a

suffi cient condition for equality of treatment responses and causal effects. This subsection considers

the types of auxiliary assumptions needed to ensure either rough or exact equivalence between

treatment responses and causal effects.

We begin with an examination of conditions that ensure a rough equivalence between treatment

responses and causal effects. To motivate these conditions, it is worth returning to the method

used to derive causal effects in the underlying theory. Recall, the causal effects in equation (19)

were obtained by differentiating the optimal policy function with respect to policy variables that

were treated as parameters. One can think of such exercises as allowing one to compare firm

behavior in one parameterized economy with firm behavior in another parameterized economy.

Alternatively, one can think of such exercises as measuring how firms would respond to a completely

unanticipated and permanent change in a policy variable. Therefore, one would expect treatment
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responses to approximate causal effects in the event that the policy generating process featured

almost completely unanticipated policy changes which are near-permanent. Consistent with this

intuition, we have the following lemma.

Lemma 9 As each transition rate tends to zero, each treatment responds tends to its respective

causal effect.

The preceding lemma follows from the fact that as each transition rate tends to zero, shadow

values under regime-shifting policies (equation (28)) tend to the shadow values under permanent

policies (equation (16)).

In reality, exogenous policy experiments are rare. Those meeting the auxiliary assumptions of

being nearly-completely unanticipated and near-permanent are even more rare. Therefore, it would

be useful to derive auxiliary assumptions with broader real-world applicability. Conveniently, we

have the following proposition.

Proposition 10 Necessary and suffi cient conditions for treatment responses to equal causal effects

for each policy transition are that the best and worst policy states are absorbing while remaining

states are either absorbing or feature policy variable changes with conditional expectation equal to

zero.

The intuition for the proposition is as follows. Causal effects can be evaluated by computing

how firms will respond to completely unanticipated and permanent changes in policy variables.

Therefore, treatment responses will equal causal effects if the shadow value of the state variable (in

each policy regime) under time-varying government policies is equal to the respective shadow value

under permanent government policies. With regime-shifts, shadow values capitalize the expected

future value of policy variables at all future dates. But note that under the conditions described in

Proposition 10, the expected value of the policy variable at each future date is the current value.

That is, policy variables are martingales. And if policy variables are martingales, the shadow

value of capital and labor effectively capitalize the current policy state as lasting into perpetuity.

This same argument explains the necessity of the extreme policy states being absorbing. After all,

starting at the extreme states, the policy variable can only change in one direction so the mean

change cannot be zero unless no change is possible. For example, starting in the worst policy state

29



for depreciation deductions, say zero deduction allowed (ξN = 0), the only possible change is an

acceleration of tax depreciation.

It is also worth noting at this stage that Lemma 9 and Proposition 10 actually hold for the more

general class of adjustment cost functions that are convex in accumulation (a), not just the specific

quadratic function we initially posited for analytical simplicity. This is because shadow values will

be invariant to adjustment costs in such cases, and it is the shadow value departure from its value

under permanent policy assignment that creates a wedge between treatment responses and causal

effects.

Figure 3 contains the results of 1000 simulated natural experiments consisting of 1000 i.i.d. firms

with heterogeneous adjustment costs. Heterogeneity in adjustment costs leads to heterogeneity in

treatment effects. The results of a similar analysis was depicted in Table 1 and Figure 2 but for

different policy generating processes. Figure 3 provides the distribution of simulated t-statistics

against the true null hypothesis under policy generating processes meeting the conditions described

in Lemma 9 and Proposition 10. Consistent with the analytical results, the tests will reject the

known-true null hypothesis at the right probability level.

Many of our results can be viewed a destructive in that they show the limits, perils and pitfalls

associated with causal inference via random assignment in dynamic settings. In fact, in some

cases empiricists caveat their findings with a paean to vaguely-defined notions of “expectations.”

In extreme case, they will look to avoid confronting policy expectations by arguing that policy

changes are unexpected and expected to be permanent. And indeed, Lemma 9 shows that if the

environment considered really does fit this rare event criterion, then treatment responses are a

good approximation of causal effects. However, Proposition 10 shows that it is not necessary for

empiricists to confine their attention to rare events. After all, the proposition shows that even

in settings with frequent changes in policy variables, treatment responses capture causal effects

provided the conditional mean change is zero. One expects that many policy experiments will fit

this description. However, it is also important to note that many policy variables will not have

this martingale property. For example, one might reasonably expect some policy variables to be

mean-reverting or to have reflecting barriers at extreme values.

A natural question to ask at this point is how severe the bias will be for policy generating

processes that only approximate the conditions described in Proposition 10. And further, one
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might be interested in some heuristics regarding the nature of the bias. To address these questions

we perform two simulated natural experiment studies. To begin, one might be interested in the

quantitative importance of violations of the absorbing-state condition stipulated in Proposition 10.

To address this question, we consider a setting in which the policy variable ξ has four states and

transitions only to its nearest neighbors. For intermediate states, the transition rate is λ for both

one-step up and one-step down moves. For the two extreme states, the transition rate for the

respective nearest neighbor is 2λ. Thus, the expected duration of each regime is 1/2λ. Note that

all conditions in Proposition 10 have been satisfied with the exception that the extreme states are

not absorbing.

Figure 4 shows the ratio of treatment response to causal effect as λ is varied. If λ is set equal

to zero, i.e. the policy generating process consists only of absorbing states, treatment responses

naturally coincide with causal effects. For all other values of λ, the figure shows there is attenua-

tion bias. Moreover, the bias increases rapidly with λ, as expected regime durations shorten. For

example, if λ is set to 0.2 (expected regime durations of 2.5 years), the attenuation bias ranges

between 40% and 70%. The extent of the bias also depends on the policy state. In particular, tran-

sitions between a boundary state and its neighbor exhibit the largest attenuation bias. Intuitively,

under the stated conditions the boundary states reflect mean policy variable changes that are not

equal to zero, and this magnifies bias. However, it is apparent that the attenuation bias resulting

from non-absorbing barriers spills over to the intermediate states despite the mean change in policy

variables being equal to zero in those states.

Yet another natural question to ask is the nature and direction of bias if the expected change

in policy variables is not zero. In order to analyze this question, consider again a setting with four

states, with only transitions to nearest neighbors being possible. However, let us now assume the

extreme states are absorbing while up and down transition rates for intermediate states differ so

that the expected change in the policy variable is negative. That is, a slow-down in tax depreciation

is expected in the intermediate states.

Figure 5 shows the ratio of treatment responses to causal effects in this simulated experiment.

Note that now the direction of the bias depends on the originating state. For transitions from state

3 to state 4 (the worst state), the figure shows a substantial attenuation bias. Intuitively, when

in state 3, firms expect the state to worsen and so have low investment. This behavior implies a
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small observed treatment response if the anticipated negative change occurs. Conversely, the figure

shows that the transition from state 2 to state 1 (the best state) is associated with a treatment

response in excess of the causal effect. Intuitively, when in state 2, firms invest at a low rate in

the expectation of a slow-down in tax depreciation. If a positive surprise occurs, the investment

response will be large.

6. Extrapolation of Treatment Responses

Section 5 considered a number of problems that can arise with inference in dynamic environ-

ments: wedges between treatment responses and causal effects; inability to extrapolate treatment

responses within the same policy generating process; and inability to extrapolate treatment re-

sponses across economies with differing policy generating processes. Regarding the first of these

problems, Lemma 9 and Proposition 10 provided a degree of relief as restrictions on the policy

process were described ensuring either rough (rare event transitions) or exact (mean zero changes)

equality between treatment responses and causal effects. These results notwithstanding, the issues

of extrapolating treatment responses within and across policy generating processes remain, as does

the problem of inferring causal effects when the policy variable being analyzed does not satisfy the

required auxiliary assumptions ensuring unbiasedness.

The inference and extrapolation problems confronting the econometrician can be thought of

as an application of the heterogeneous treatment effects model commonly used in the fields of

medicine, education and labor. To illustrate, suppose we know the policy generating process but

do not know how firms will respond to policy changes since we do not know the true distribution

of adjustment cost parameters. Suppose that nature provides us with “ideal”evidence in the form

of an exogenous transition of the policy variable of interest, say the tax depreciation rate, from ξi

to ξj . We are interested in answering three questions. First, how can the newly-acquired evidence

be used to forecast how firms in the same economy will respond to future changes in the policy

variable? Second, how can one extrapolate the evidence to another economy with an identical real

technology but differing in the underlying policy generating process? And finally, how can one map

the treatment response back to causal effects?

Treatment effects are heterogeneous since the treatment response for firm m is given by Ωm(qj−

qi), where Ωm = 1/2γm. One can think of qj − qi as measuring the size of a common government
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policy “treatment”expressed in units of shadow value, with heterogeneity in adjustment costs im-

plying heterogeneous firm responses. Heterogeneous effects is a situation that commonly confronts

empiricists. However, here there is an additional necessary step in performing inference since the

size of the treatment (qj − qi) actually depends on expectations regarding the future path of the

policy variable. Specifically, the size of treatment is determined via the policy transition matrix

and equation (30).

An unbiased estimator of µΩ is given by the mean treatment response (TRij) normalized by

size of the treatment. Using equation (30) we have:

µ̂Ω =
TRij
qj − qi

=
TRij

Dj −Di
. (42)

From the preceding equation it follows that a small response to policy changes can be imputed to

either high adjustment costs or small changes in the shadow value of capital.

At this point it is worth commenting on the study by Cummins, Hassett and Hubbard (1994),

who use firm responses to imputed changes in the shadow value of capital to infer adjustment

cost parameters and tax-response elasticities. Implicit in their shadow value imputation is the

assumption that each tax code change is unanticipated and expected to be permanent. This is a

troubling assumption given the frequency of tax code changes in their sample period. They argue

this assumption serves to overstate the change in shadow values and thus overstate adjustment

costs. However, the analysis of Section 4 shows that their imputation method may tend to overstate,

understate, or have sign that is opposite to the true change in shadow values, depending on the

true policy generating process. Thus, it is diffi cult to know the sign and direction of bias.

Armed with inference regarding adjustment costs via equation (42), it is possible to extrapolate

how firms will respond to a future change in tax depreciation rates from say ξh to ξk. We have:

T̂Rhk = µ̂Ω(qk − qh) =

[
qk − qh
qj − qi

]
TRij =

[
Dk −Dh

Dj −Di

]
TRij . (43)

The preceding calculation is a straightforward application of formula (30). Given its apparent

brevity, it is worth emphasizing that the last term in squared brackets in equation (43) generally

depends upon all transition rates and all possible realizations of the policy variable, not just those in

the set {h, i, j, k}. In other words, valid extrapolation of a given treatment response hinges upon a

correct characterization of the underlying policy generating process, including counterfactual states.
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As exceptional cases that prove the rule, when the auxiliary assumptions described in Lemma 9

and Proposition 10 are satisfied, the extrapolation problem is greatly simplified since we then have:

Dk −Dh

Dj −Di
=
ξk − ξh
ξj − ξi

⇒ T̂Rhk =

[
ξk − ξh
ξj − ξi

]
TRij . (44)

Formula (44) shows that if the underlying policy generating process meets the auxiliary assumptions

required for equality of treatment responses and causal effects, the extrapolation of treatment

responses within a policy generating process requires a simple adjustment for the relative size of

changes in the policy variable, with no need to explicitly account for expectations. Imputations

along the lines of formula (44) are commonplace. However, it is apparent that making such an

imputation requires making the case that auxiliary assumptions are met.

Continuing with our working example, suppose instead we would like to forecast how firms in

Economy B will respond to a change in tax depreciation rates from, say, ξBh to ξ
B
k based upon the

evidence provided by the response of firms in Economy A to a change in tax depreciation rates from

ξAi to ξ
A
j . Importantly, the critique of Lucas (1976) can be directly addressed. We must simply use

the respective policy transition matrices for the two economies in conjunction with equation (30)

to compute the respective changes in shadow values. We then have:

T̂R
B

hk = [qBk − qBh ]µ̂Ω =

[
qBk − qBh
qAj − qAi

]
TR

A
ij =

[
DB
k −DB

h

DA
j −DA

i

]
TR

A
ij . (45)

Finally, let us confront the final problem of estimating causal effects based upon treatment

responses. This analysis can be accomplished by utilizing the equation (45), since it provides a

map between treatment responses generated by alternative policy generating processes. To infer

implied causal effects one can think of Economy B as an economy in which policy assignment is

permanent. Treating qBk − qBh as the change in shadow values under permanent assignment and

substituting into equation (45) we obtain:

ĈEij =

[
τδψ(ξj − ξi)

r + δ

]
µ̂Ω =

[
τδψ(ξj − ξi)

r + δ

] [
TRij

Dj −Di

]
. (46)

Applying this same algorithm to the analysis of changes in minimum wages and pollution taxes,

we arrive at the following proposition.

Proposition 11 The respective causal effects implied by responses to changes in tax depreciation
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schedules, minimum wages, and fuel taxes are

ĈEij =

[
τδψ(ξj − ξi)

r + δ

] [
TRij

Dj −Di

]
ĈEij = −

[
(1− τ)(wj − wi)

r + δ

] [
TRij

Dj −Di

]
ĈEij(x) =

[
(1− τ)(κj − κi)x

r + δ − µ

] [
TRij(x)

(dj − di)x

]
where equation (30) is used to obtain Dj −Di and dj − di.

7. Concluding Remarks

This paper analyzed the effect of idealized exogenous government policy shocks on optimal

firm behavior. We use the economy as a laboratory to assess natural policy experiments. It was

shown that independent policy assignment is insuffi cient for valid inference regarding causal effects.

With binary assignment, treatment responses substantially understate causal effects under plausi-

ble parameterizations. With more than two policy regimes, treatment responses can understate,

overstate, or have a sign that is opposite to causal effects. We also show that there are important

limits to the generalizability of historic treatment responses. In general, it is invalid to extrapo-

late treatment responses within, as well as across, policy generating processes. As a whole, these

results cast doubt on the economic meaning of a broad array of unconditional statements about

elasticities. Importantly, we derive the auxiliary assumptions required to ensure equality of treat-

ment responses and causal effects in dynamic settings (Lemma 9 and Proposition 10). Further, we

offer a general algorithm for the extrapolation of treatment responses accounting for the role of

expectations (Section 6).

It follows from our analysis that an apparent falsification of a given theory based on an incor-

rect sign prediction may be a false-falsification. In particular, in addition to the standard stated

“identifying”assumption of exogenous assignment, natural policy experiments must be understood

as predicated upon auxiliary identifying assumptions about policy generating processes. Of course,

this is a special example of the arguments of the philosopher W.V. Quine who pointed out that

an empirical falsification only allows one to either reject the underlying theory or to reject an

experimenter’s auxiliary assumptions. Unfortunately, these auxiliary assumptions have gone un-

recognized, unstated and unsatisfied in much of the quasi-experimental literature.
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In fact, despite the appearance of criticism, this paper simply takes the central argument of

Mostly Harmless Econometrics a necessary step further, arguing for a need to move beyond exo-

geneity. In particular, Angrist and Pischke (2009) state, “The description of an ideal experiment

also helps you formulate causal questions precisely. The mechanics of an ideal experiment highlight

the forces you’d like to manipulate and the factors you’d like to hold constant.” In the view of

many, exogenous assignment constitutes this ideal. Instead, we argue that exogenous assignment

must be seen as just one ingredient in the making of an ideal policy experiment in dynamic settings.
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Proofs and Derivations

Growth Option Value with Constant Government Policies

For brevity, let:

d ≡ (1− τ)κ

r + δ − µ ;D ≡ τξδψ − (1− τ)w

r + δ
; Θ ≡ D − ψ

Since the terms in the Bellman equation scaled by s cancel each other, satisfaction of the equation

demands the growth option value satisfies the following ODE:

rG(x) = µxGx(x) +
1

2
σ2x2Gxx(x) + (Γd2)x2 + (2ΘΓd)x+ Θ2Γ︸ ︷︷ ︸

Dividend

. (47)

It follows from the preceding equation and the Feynman-Kac formula that the growth option

value G is just equal to the value of a claim to a dividend stream that is linear-quadratic in x.

To value this linear-quadratic claim, conjecture a linear-quadratic value function G with unknown

constants and substitute this function into the preceding differential equation. One obtains:

G(x) =
1

4γ

[(
d2

r − 2µ− σ2

)
x2 +

(
2Θd

r − µ

)
x+

Θ2

r

]
. (48)

Growth Option Value with Regime Shifts

To derive the growth option value, return to the Bellman system (26) and confine attention

to the remaining terms that have not been zeroed out, those terms not scaled by s. We have the

following system pinning down growth option value:r +
∑
j 6=1

λ1j

G1(x) = µxG1
x(x) +

1

2
σ2x2G1

xx(x) +
∑
j 6=1

λ1jG
j(x) + [Γd2

1]x2 + [2Γd1Θ1]x+ [ΓΘ2
1] (49)

...r +
∑
j 6=N

λNj

GN (x) = µxGNx (x) +
1

2
σ2x2GNxx(x) +

∑
j 6=N

λNjG
j(x) + [Γd2

N ]x2 + [2ΓdNΘN ]x+ [ΓΘ2
N ]

Θi ≡ Di − ψ.

We conjecture a growth option value that is linear-quadratic in x, with regime shifts. The following

lemma follows directly by substituting the conjectured linear-quadratic solution into the system of

ODEs in equation (49).
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Lemma: The no-bubbles solution to the differential equationsr +
∑
j 6=1

λ1j

 J1(x) = µxJ1
x(x) +

1

2
σ2x2J1

xx(x) +
∑
j 6=1

λ1jJ
j(x) + φ1x

2 + φ̃1x+ φ̂1 (50)

...r +
∑
j 6=N

λNj

 JN (x) = µxJNx (x) +
1

2
σ2x2JNxx(x) +

∑
j 6=N

λNjJ
j(x) + φNx

2 + φ̃Nx+ φ̂N

is 
J1(x)

...

JN (x)

 = x2[T(r − 2µ− σ2)]−1


φ1

...

φN

+ x[T(r − µ)]−1


φ̃1

...

φ̃N

+ [T(r)]−1


φ̂1

...

φ̂N

 . (51)

Lemma 2

We have the following N ×N augmented transition matrix:

T(R) ≡


R+ (N − 1)λ −λ ... −λ

−λ R+ (N − 1)λ ... −λ

... ... ... ...

−λ −λ ... R+ (N − 1)λ

⇒ T−1 =
1

R(R+Nλ)


R+ λ λ ... λ

λ R+ λ ... λ

... ... ... ...

λ λ ... R+ λ

 .
(52)

The shadow values are:
q1(x)

q2(x)

...

qN (x)

 =
(1− τ)x

R̃(R̃+Nλ)


R̃+ λ λ ... λ

λ R̃+ λ λ

... ... ... ...

λ λ ... R̃+ λ




κ1

κ2

...

κN

 (53)

+
1

R̂(R̂+Nλ)


R̂+ λ λ ... λ

λ R̂+ λ λ

... ... ... ...

λ λ ... R̂+ λ




τδψξ1 − (1− τ)w1

τδψξ2 − (1− τ)w2

...

τδψξN − (1− τ)wN

 .

Taking differences across rows, the treatment response of the shadow value is:

qj(x)− qi(x) =

[
1− Nλ

R̃+Nλ

]
1

R̃
(κj − κi)(1− τ)x (54)

+

[
1− Nλ

R̂+Nλ

]
1

R̂

[
(τδψξj − (1− τ)wj)− (τδψξi − (1− τ)wi)

]
.
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And the result follows from the fact that ∆a = ∆q/2γ.�

Lemma 3

To prove both parts of the lemma, suppose there are N ≥ 3 states and assume there are three

states (l,m, h) that are absorbing as a system in that once the policy process enters any one of

these three states, the state never transitions to a state i /∈ {l,m, h}. Transition rates amongst

states outside {l,m, h} and into {l,m, h} can be set arbitrarily. In this case, the shadow value in

any of these three states can be computed by focusing on the system confined to {l,m, h}. To fix

notation, assume the states vary in the intensity of government intervention, with:

wh > wm > wl

ξh < ξm < ξl

κh < κm < κl.

To prove the first part of the lemma it is suffi cient to find transition rates for the three state

system with sign reversals. To this end, assume the medium and low states are absorbing. We

have:

T =


R 0 0

0 R 0

−λhl −λhm R+ λhl + λhm

⇒ T−1 =
1

R


1 0 0

0 1 0

λhl
R+λhl+λhm

λhm
R+λhl+λhm

R
R+λhl+λhm

 . (55)
This implies:

qm(x) =

(
x

R̃

)
(1− τ)κm +

(
1

R̂

)
[τδψξm − (1− τ)wm] (56)

qh(x) =
(1− τ)x

R̃
(
R̃+ λhl + λhm

) [λhlκl + λhmκm + R̃κh

]

+
1

R̂
(
R̂+ λhl + λhm

)
 λhl(τδψξl − (1− τ)wl) + λhm(τδψξm − (1− τ)wm)

+R̂(τδψξh − (1− τ)wh)


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For each policy variable that is time-varying, we list below conditions such that qh(x) > qm(x).

κ : λhl >
R̃(κm − κh)

κl − κm

ξ : λhl >
R̂(ξm − ξh)

ξl − ξm

w : λhl >
R̂(wh − wm)

wm − wl
.

To prove the second part of the lemma it is suffi cient to find transition rates for the three state

system with overshooting. To this end, assume that now it is the low and high states are absorbing.

The transition matrix is:

T =


R 0 0

−λml R+ λml + λmh −λmh
0 0 R

⇒ T−1 =
1

R


1 0 0

λml
R+λml+λmh

R
R+λml+λmh

λmh
R+λml+λmh

0 0 1

 .
(57)

We have:
ql(x)

qm(x)

qh(x)

 =
(1− τ)x

R̃


1 0 0

λml
R̃+λml+λmh

R̃

R̃+λml+λmh

λmh
R̃+λml+λmh

0 0 1



κl

κm

κh

 (58)

+
1

R̂


1 0 0

λml
R̂+λml+λmh

R̂

R̂+λml+λmh

λmh
R̂+λml+λmh

0 0 1



τδψξl − (1− τ)wl

τδψξm − (1− τ)wm

τδψξh − (1− τ)wh

 .
We are interested in conditions such that the treatment response exceeds the causal effect for a

transition from the medium to low state:

ql(x)− qm(x) >
x(1− τ)κl

R̃
+
τδψξl − (1− τ)wl

R̂
− x(1− τ)κm

R̃
− τδψξm − (1− τ)wm

R̂
. (59)

Listed according to the policy variable being changed, the preceding condition is met under the

following conditions:

κ : λml(κl − κm) < λmh(κm − κh)

ξ : λml(ξl − ξm) < λmh(ξm − ξh)

w : λml(wm − wl) < λmh(wh − wm).�
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Lemma 4

Consider a setting with at least four states. Assume the best and worst states are part of an

absorbing system with two other states, in the sense that the state never exits these four states

once it enters one of the four. Index these states according to their rank within this group, with 1

being the best and 4 being the worst. Consider then the following augmented transition matrix:

T =


R+ λ 0 −λ 0

0 R 0 0

0 0 R 0

0 −λ 0 R+ λ

⇒ T−1 =
1

R


R

R+λ 0 λ
R+λ 0

0 1 0 0

0 0 1 0

0 λ
R+λ 0 R

R+λ

 . (60)

We have: 
q1

q2

q3

q4

 =
(1− τ)x

R̃



R̃

R̃+λ
0 λ

R̃+λ
0

0 1 0 0

0 0 1 0

0 λ

R̃+λ
0 R̃

R̃+λ




κ1

κ2

κ3

κ4

 (61)

+
1

R̂



R̂

R̂+λ
0 λ

R̂+λ
0

0 1 0 0

0 0 1 0

0 λ

R̂+λ
0 R̂

R̂+λ




τδψξ1 − (1− τ)w1

τδψξ2 − (1− τ)w2

τδψξ3 − (1− τ)w3

τδψξ4 − (1− τ)w4

 .

In the respective experimental cases, q1 < q4 provided λ is suffi ciently high to satisfy:

w : λ >
R̂(w4 − w1)

w3 − w2

κ : λ >
R̃(κ1 − κ4)

κ2 − κ3

ξ : λ >
R̂(ξ1 − ξ4)

ξ2 − ξ3

.�

Lemma 5

Consider first policy experiments involving changes in κ. The treatment response is zero across

all transitions only if the shadow value is constant across regimes. This holds only if there is some
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constant k such that the vector d =k1. But this implies the existence of an augmented transition

matrix T satisfying:

k1 = T−1(R̃)


(1− τ)κ1

...

(1− τ)κN

⇒ T(R̃)1 =


R̃

...

R̃

=
1

k


(1− τ)κ1

...

(1− τ)κN

 . (62)

This is a contradiction. Similarly, for policy experiments involving ceteris paribus changes in w or

ξ, the treatment response vector will be zero if and only if there is some constant k such that vector

D =k1. But this implies the existence of T satisfying:

k1 = T−1(R̂)


τδψξ1 − (1− τ)w1

...

τδψξN − (1− τ)wN

⇒ T(R̂)1 =


R̂

...

R̂

=
1

k


τδψξ1 − (1− τ)w1

...

τδψξN − (1− τ)wN

 (63)

a contradiction.�

Lemma 7

Let stars denote shadow values under permanent policies. From Lemma 6 if follows:

q1(x)− qN (x) ≤ q1
∗(x)− qN∗ (x). (64)

This inequality may be rewritten as:

[q1(x)−qi(x)]+[qj(x)−qN (x)]+[qi(x)−qj(x)] ≤ [q1
∗(x)−qi∗(x)]+[qj∗(x)−qN∗ (x)]+[qi∗(x)−qj∗(x)]. (65)

Rearranging terms, it follows:

[q1(x)−qi(x)]+[qj(x)−qN (x)] ≤ [q1
∗(x)−qi∗(x)]+[qj∗(x)−qN∗ (x)]−{[qi(x)−qj(x)]− [qi∗(x)−qj∗(x)]}.

(66)

Under the conditions stipulated in the lemma, it follows:

[q1(x)− qi(x)] + [qj(x)− qN (x)] ≤ [q1
∗(x)− qi∗(x)] + [qj∗(x)− qN∗ (x)]− 2γk. (67)

The result then follows by dividing the preceding equation by 2γ.�

Lemma 8
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We claim first that q1 must be greater than the shadow value in at least one other state. To

see this, suppose to the contrary that q1 is less than the shadow value in all other states, and let

qi denote the next lowest shadow value. Next note that since the instantaneous marginal product

is highest while the regime is 1, it must be that q1 is increasing in the expected passage time to a

first transition. But as this passage time goes to zero, the shadow value goes to

∑
j 6=1

P1jq
j(x0) ≥ qi(x0)⇒ q1(x0) > qi(x0). (68)

We next claim that qN must be less than the shadow value in at least one other state. To see this,

suppose to the contrary that qN is greater than the shadow value in all other states, and let qi

denote the second highest shadow value. Next note that since the instantaneous marginal product

is lowest while the regime is N , it must be that qN is decreasing in the expected passage time to a

first transition. But as this passage time goes to zero, the shadow value goes to

∑
j 6=N

PNjq
j(x0) ≤ qi(x0)⇒ qN (x0) < qi(x0).�

Proposition 10

Consider an array of distinct policies 1 to N with the indexing convention being that the shadow

value under permanent policies is decreasing in the index. A necessary and suffi cient condition for

each treatment response to equal its respective causal effect is that the difference between state-

contingent shadow values is equal to shadow values under permanent policies. Thus, there must

exist some k such that for all i:

qi(x) =
(1− τ)κix

r + δ − µ +
τδψξi − (1− τ)wi

r + δ
+ k. (69)

Therefore, we must identify conditions such that the following equilibrium conditions can be met

under this functional form:r + δ +
∑
j 6=1

λ1j

 q1(x) = µxq1
x(x) +

1

2
σ2x2q1

xx(x) +
∑
j 6=1

λ1jq
j(x) + (1− τ)(κ1x− w1) + τδψξ1 (70)

...r + δ +
∑
j 6=N

λNj

 qN (x) = µxqNx (x) +
1

2
σ2x2qNxx(x) +

∑
j 6=N

λNjq
j(x) + (1− τ)(κNx− wN ) + τδψξN .
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Substituting in the required functional form and canceling terms we obtain:

(r + δ) k =
∑
j 6=1

λ1j

[
(1− τ)κjx

r + δ − µ +
τδψξj − (1− τ)wj

r + δ
−
(

(1− τ)κ1x

r + δ − µ +
τδψξ1 − (1− τ)w1

r + δ

)]
(71)

(r + δ) k =
∑
j 6=2

λ2j

[
(1− τ)κjx

r + δ − µ +
τδψξj − (1− τ)wj

r + δ
−
(

(1− τ)κ2x

r + δ − µ +
τδψξ2 − (1− τ)w2

r + δ

)]
...

(r + δ) k =
∑

j 6=N−1

λN−1j

[
(1− τ)κjx

r + δ − µ +
τδψξj − (1− τ)wj

r + δ
−
(

(1− τ)κN−1x

r + δ − µ +
τδψξN−1 − (1− τ)wN−1

r + δ

)]

(r + δ) k =
∑
j 6=N

λNj

[
(1− τ)κjx

r + δ − µ +
τδψξj − (1− τ)wj

r + δ
−
(

(1− τ)κNx

r + δ − µ +
τδψξN − (1− τ)wN

r + δ

)]
.

First note that any solution to the preceding system entails k = 0 since the right-side of the first

equation is weakly negative while the right-side of the last equation is weakly-positive. It follows

that any candidate solution to the system entails:

λ1j = 0 : j = 2, ..., N

λNj = 0 : j = 1, ..., N − 1.

Further, it must be the case that:

0 =
∑
j 6=i

λij

[
(1− τ)κjx

r + δ − µ +
τξjδψ − (1− τ)wj

r + δ
−
(

(1− τ)κix

r + δ − µ +
τξiδψ − (1− τ)wi

r + δ

)]
: i = 2, ..., N−1

(72)

Expressed in terms of policy variable changes, the preceding equation can be written as:

∑
j 6=i

(
λij∑
j 6=i λij

)
(ξj − ξi) = 0 : i = 2, ..., N − 1 (73)

∑
j 6=i

(
λij∑
j 6=i λij

)
(κj − κi) = 0 : i = 2, ..., N − 1

∑
j 6=i

(
λij∑
j 6=i λij

)
(wj − wi) = 0 : i = 2, ..., N − 1.�
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Figure 1: Investment and Policy Transience. This figure shows the optimal investment policy

functions for Attainment and Non-Attainment status for two cases of policy generating processes.

In the permanent case, both states are absorbing. In the temporary case, the transition matrix is

based on estimates contained in Greenstone (2001).
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Figure 2: Distribution of Simulated t-Statistics under Alternative Processes. This figure

shows the distribution of simulated t-statistics under alternative policy generating processes. Each

t-stat is estimated under the null hypothesis of the true causal effect. In each case, the policy gener-

ating process of accelerated depreciation takes three states. Panel A shows the case of attenuation,

Panel B shows the case of overshooting, Panel C shows the case of Asymmetry (the behavior of

investment accumulation response between States 2 and 1, as well as between States 3 and 2), and

Panel D shows the case of the sign reversal.
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Figure 3: Distribution of Simulated t-Statistics for Ideal Policy Processes. This figure

shows the distribution of simulated t-statistics under two ideal policy processes. Panel A shows the

case of rare events, in which each state is absorbing. Panel B shows the case of a mean zero case

with absorbing barriers. In both cases, each t-stat is estimated under the null hypothesis of the

true causal effect and the policy generating vector of accelerated depreciation takes three states.

3

Maria
Rectangle

Maria
Typewritten Text
49



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ

T
R

(λ
)/

C
E

Figure 4: Treatment Response and Causal Effect: Four-State Example. 
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Figure 5: Treatment Response and Causal Effect: Four-State Example with Absorbing
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transition matrix features absorbing extreme states while other
states feature an expected slow-down of tax depreciation rates.
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Panel A Panel B Panel C: 2 to 1 Panel C: 3 to 2 Panel D

Mean TR 8.65 27.10 8.65 6.92 ‐2.64

Std TR 4.02 12.58 4.02 3.21 1.22

Median TR 7.83 24.53 7.83 6.26 ‐2.39

Mean T‐stat ‐136.69 2.74 ‐136.69 ‐187.90 ‐739.98

Std T‐stat 4.37 0.96 4.37 5.74 19.41

Median T‐stat ‐136.56 2.77 ‐136.56 ‐187.73 ‐739.55

Prob. Rejection 95% 1.00 0.79 1.00 1.00 1.00

Table 1: Distribution of Simulated Treatment Responses and t‐Statistics under Alternative 

Processes
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