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1 Introduction

The ability of financial system stress to trigger sharp macroeconomic downturns has

made systemic risk a focal point of research and policy. Many systemic risk measures

have been proposed in the aftermath of the 2007-2009 financial crisis. In this paper

we have three complementary objectives for establishing an understanding of systemic

risk measures and their empirical association with real macroeconomic outcomes.

Our first goal is to provide a basic quantitative description of a compendium of

existing systemic risk measures. While individual measures are explored in separate

papers, there has been little empirical analysis of them as a group. We examine 19

previously proposed measures of systemic risk in the US and 10 measures for the UK

and Europe.1 In building these measures, we use the longest possible data history,

which in some cases allows us to use the entire postwar sample in the US. To the

extent that systemically risky episodes are rarely observed phenomena, our long time

series and international panel provide empirical insights over several business cycles,

in contrast to other literature’s emphasis on the last five years in the US.

The absence of a clear criterion to judge the performance of systemic risk measures

has made it difficult to establish empirical patterns among the many papers in this

area. Of course, there are numerous potential criteria one could consider, such as

the usefulness for risk management by financial institutions or the ability to forecast

asset price fluctuations. We focus our analysis on the interactions between systemic

risk and the macroeconomy to highlight which measures are valuable as an input to

regulatory or policy choices. Therefore, our second objective is to evaluate systemic

risk measures with respect to a specific empirical criterion: How well do risk measures

forecast a change in the distribution of future macroeconomic shocks? Our hope is
1Bisias et al. (2012) provide an excellent survey of systemic risk measures. Their overview is

qualitative in nature – they collect detailed definitions of measures but do not analyze data. Our goal
is to provide a quantitative description of risk measures and study their association with economic
downturns.
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to identify a subset of systemic risk measures, if any, that are informative regarding

future production, employment or consumption. This would allow us to shed light on

the links between financial distress and macroeconomic risks.

To operationalize this criterion we use predictive quantile regression, which esti-

mates how a specific part of the macroeconomic shock distribution responds to systemic

risk. We argue that a quantile approach is appropriate for evaluating the potentially

asymmetric and nonlinear association between systemic risk and the macroeconomy

that has been emphasized in the theoretical literature.2 These theories predict that

distress in the financial system can amplify adverse fundamental shocks and result

in severe downturns or crises, while the absence of stress does not necessarily trigger

a macroeconomic boom.3 Quantile regression is a flexible tool for investigating the

impact of systemic risk on macroeconomic shocks’ tail, and in particular lower tail,

behavior, separately from their central tendency.

Our third goal is to determine whether statistical dimension reduction techniques

help detect a robust relationship between the large collection of systemic risk measures

and the macroeconomy, above and beyond the information in potentially noise-ridden

individual measures. Dimension reduction techniques have been widely studied in

the least squares macro-forecasting literature, and we extend these to the quantile

regression setting. We pose the following statistical problem. Suppose all systemic risk

measures are imperfectly measured versions of an unobservable systemic risk factor.

Furthermore, suppose that the conditional quantiles of macroeconomic variables also

depend on the unobserved factor. How may we identify this latent factor that drives

both measured systemic risk and the distribution of future macroeconomic shocks?
2See, for example, Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Bernanke, Gertler and

Gilchrist (1999), Brunnermeier and Sannikov (2010), Gertler and Kiyotaki (2010), Mendoza (2010),
and He and Krishnamurthy (2012).

3Throughout the paper we focus on the systemic risk measures’ connection to lower tail and median
macroeconomic outcomes. In the appendix we provide evidence that systemic risk measures are not
strongly related to the upper tail of macroeconomic outcomes. This provides support for the emphasis
we and the rest of the literature place on the idea that systemic risk is an inherently asymmetric and
nonlinear phenomenon.
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We propose two dimension reduction estimators that solve this problem and produce

systemic risk indexes from the cross section of systemic risk measures.

The first estimator is principal components quantile regression (PCQR). This two

step procedure first extracts principal components from the panel of systemic risk

measures and then uses these factors in predictive quantile regressions. We prove that

this approach consistently estimates conditional quantiles of macroeconomic shocks

under mild conditions.4 We then propose a second estimator called partial quantile

regression (PQR) that is an adaptation of partial least squares to the quantile setting.

We prove the new result that PQR produces consistent quantile forecasts with fewer

factors than PCQR and we verify by simulation that these asymptotic results are

accurate approximations of finite sample behavior.5

A set of new stylized facts emerge from our empirical investigation. First, we

find that a select few systemic risk measures possess significant predictive content

for the downside quantiles of macroeconomic shocks such as innovations in industrial

production or the Chicago Fed National Activity Index.6 Measures of financial sector

equity volatility perform well in a variety of specifications; other variables, including

leverage and liquidity measures, work well sometimes. This result highlights that

systemic risk is a multifaceted phenomenon.

Next, we find that dimension-reduced systemic risk indexes detect a robust rela-
4The use of principal components to aggregate information among a large number of predictor

variables is well-understood for least squares forecasting – see Stock and Watson (2002) and Bai and
Ng (2006). The use of principal components in quantile regression has been proposed by Ando and
Tsay (2011).

5The key difference between PQR and PCQR is their method of dimension reduction. PQR
condenses the cross section according to each predictor’s quantile covariation with the forecast target,
choosing a linear combination of predictors that is a consistent quantile forecast. On the other hand,
PCQR condenses the cross section according to covariance within the predictors, disregarding how
closely each predictor relates to the target. Dodge and Whittaker (2009) discuss a version of PQR
but do not analyze its sampling properties.

6We predict macroeconomic variables as most recently reported, not their first vintage values.
This is because we care about accurately predicting the true macroeconomic state, and arguably the
most recent vintage of macroeconomic data most accurately measures the true state. Importantly,
our predictors come from financial markets data that were known in realtime and are not subject to
subsequent revision. In the appendix we consider using realtime macroeconomic data and find our
conclusions are qualitatively unchanged.
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tionship between systemic risk measures and the probability of future negative macroe-

conomic shocks. In particular, PQR achieves significant forecast improvements across

macroeconomic variables in a wide range of specifications.

By and large, we find that systemic risk measures are more informative about

macroeconomic shocks’ lower tail than about their central tendency. This is evident in

our baseline forecast superiority tests. But we also see it through tests of the equality

of quantile regression coefficients at the 50th and 20th percentiles. Almost uniformly the

relationship of systemic risk with macroeconomic shocks’ lower quantiles is significantly

stronger than with their median.

We highlight that financial sector equity volatility exhibits strong univariate predic-

tive power for the lower quantiles of future real outcomes. In contrast, equity volatility

in non-financial sectors appears to have little, if any, predictive power. This suggests

that economic mechanisms connecting stock market volatility to the real economy, such

as the uncertainty shocks mechanism in Bloom (2009), may blur an important distinc-

tion between uncertainty in the financial sector and uncertainty in other industries.

Finally, we find that systemic risk indicators predict policy decisions. A rise in

systemic risk predicts an increased probability of a large drop in the Federal Funds

rate, suggesting that the Federal Reserve takes preventive action at elevated risk levels.

However, while the Federal Funds rate responds to systemic risk, it does not fully

counteract its downside effects, since our previously discussed results show a strong

association between systemic risk and the low quantiles of macroeconomic outcomes.

This raises an important issue facing attempts to measure the impact of systemic

risk on the macroeconomy. When policy-makers are able to take actions which ame-

liorate perceived systemic risks, we may be unable to detect an association between

systemic risk measures and real outcomes even if an association would be apparent

in the absence of policy response. Our results should thus be viewed as quantifying

the association between systemic risk and the macroeconomy that is detectable after
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policy-makers have had the opportunity to react.

Overall, our empirical results reach a positive conclusion regarding the empirical

systemic risk literature. When taken altogether, systemic risk measures indeed contain

useful predictive information about the probability of future macroeconomic down-

turns. This conclusion is based on out-of-sample tests and is robust across different

choices of lower quantile, macroeconomic variables, and geographic region.

The remainder of the paper proceeds as follows. Section 2 defines and provides a

quantitative description of a set of systemic risk measures in the US and Europe. In

Section 3, we examine the power of these measures for predicting quantiles of macroe-

conomic shocks using univariate quantile regressions. In Section 4, we define PCQR

and PQR estimators, discuss their properties, and use them to form predictive systemic

risk indexes. Section 5 discusses stylized facts based on our empirical results. Section 6

concludes. The appendices contain proofs and Monte Carlo evidence regarding PCQR

and PQR estimators and other supporting material.

2 A Quantitative Survey of Systemic Risk Measures

2.1 Data Sources for Systemic Risk Measures

This section outlines our construction of systemic risk measures and provides a brief

summary of comovement among measures. US measures are based on data for financial

institutions identified by 2-digit SIC codes 60 through 67 (finance, insurance and real

estate).7 We obtain equity returns for US financial institutions from CRSP and we

obtain book data from Compustat.

We also construct measures for Europe. Our “EU” measures pool data on financial

institution equity returns from France, Germany, Italy and Spain, which are the largest

continental European Union economies. Our “UK” measures are for the United King-
7This definition of financial sector corresponds to that commonly used in the literature (see, e.g.,

Acharya et al. (2010)).
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dom. UK and EU returns data are obtained from Datastream.8 We do not construct

measures that require book data for the UK and EU, nor do we have data for some

other counterparts to US measures such as the default spread. In these cases, for the

tables below we use the US versions of the variable.

2.2 Overview of Measures

Bisias et al. (2012) categorize and collect definitions of more than 30 systemic risk

measures. In large part, we build measures from that survey to the extent that we

have access to requisite data, and refer readers to Appendix B.1 and to Bisias et al.

(2012) for additional details. In addition to measures surveyed by Bisias et al. (2012),

we also consider the CatFin value-at-risk measure of Allen, Bali and Tang (2012) and

the Gilchrist and Zakrajsek (2012) credit spread measure. Below we provide a brief

overview of the measures that we build grouped by their defining features.

We are interested in capturing systemic risk stemming from the core of the finan-

cial system, and thus construct our measures using data for the 20 largest financial

institutions in each region (US, UK, and EU) in each period.9 Whenever the systemic

risk measure is constructed from an aggregation of individual measures (for example in

the case of CoVaR, which is defined at the individual firm level), we compute the mea-

sure for each of the 20 largest institutions in each period and take an equal weighted

average. The only exception is size concentration of the financial sector for which we

use the largest 100 institutions (or all institutions if they number fewer than 100).

Table 1 shows the available sample for each measure by region.
8Datastream data requires cleaning. We apply the following filters. 1) When a firm’s data series

ends with a string of zeros, the zeros are converted to missing, since this likely corresponds to a firm
exiting the dataset. 2) To ensure that we use liquid securities, we require firms to have non-zero
returns for at least one third of the days that they are in the sample, and we require at least three
years of non-zero returns in total. 3) We winsorize positive returns at 100% to eliminate large outliers
that are likely to be recording errors.

9If less than 20 institutions are available, we construct measures from all available institutions, and
if data for fewer than ten financial institutions are available the measure is treated as missing.
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2.2.1 Institution-Specific Risk

Institution-specific measures are designed to capture an individual bank’s contribution

or sensitivity to economy-wide systemic risk. These measures include CoVaR and

∆CoVaR from Adrian and Brunnermeier (2011), marginal expected shortfall (MES)

from Acharya, Pedersen, Philippon and Richardson (2010), and MES-BE, a version of

marginal expected shortfall proposed by Brownlees and Engle (2011).

2.2.2 Comovement and Contagion

Comovement and contagion measures quantify dependence among financial institution

equity returns. We construct the Absorption Ratio described by Kritzman et al. (2010),

which measures the fraction of the financial system variance explained by the first K

principal components (we use K = 3). We also construct the Dynamic Causality Index

(DCI) from Billio et al. (2012) which counts the number of significant Granger-causal

relationships among bank equity returns, and the International Spillover Index from

Diebold and Yilmaz (2009) which measures comovement in macroeconomic variables

across countries.10

2.2.3 Volatility and Instability

To measure financial sector volatility, we construct two main variables. First, we

compute the average equity volatility of the largest 20 financial institutions and take

its average as our “volatility” variable. In addition, we construct a “turbulence” variable,

following Kritzman and Li (2010), which considers returns’ recent covariance relative

to a longer-term covariance estimate.

Allen, Bali and Tang (2012) propose CatFin as a value-at-risk measure derived by

looking at the cross section of financial firms at any one point in time. Such a VaR
10We do not include the volatility connectedness measure of Diebold and Yilmaz (forthcoming).

Arsov et al. (2013) shows that this is a dominant leading indicator of financial sector stress in the
recent crisis. Unfortunately, the Diebold-Yilmaz index is only available beginning in 1999 and thus
does not cover a long enough time series to be included in our tests.
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measure for financial firms is well-suited to provide an alternative measure of financial

sector volatility.11

Motivated by the fact that loan ratios forecast GDP growth in crises (Schularick

and Taylor (2012)), we calculate aggregate book leverage and market leverage for the

largest 20 financial institutions. We also compute size concentration in the financial

industry (the market equity Herfindal index), which captures potential instability in

the sector.

2.2.4 Liquidity and Credit

Liquidity and credit conditions in financial markets are measured by Amihud’s (2002)

illiquidity measure (AIM) aggregated across financial firms, the TED spread (LIBOR

minus the T-bill rate),12 the default spread (BAA bond yield minus AAA bond yield),

the Gilchrist-Zakrajsek measure of the credit spread (GZ, proposed in Gilchrist and

Zakrajsek (2012)) and the term spread (the slope of the Treasury yield curve).

2.2.5 Measures Not Covered

Due to data constraints, particularly in terms of time series length, we do not include

measures of linkages between financial institutions (such as interbank loans or derivative

positions), stress tests, or credit default swap spreads.

2.3 Macroeconomic Data

Our analysis focuses on real macroeconomic shocks measured by industrial production

(IP) growth in the US, UK and EU. These data come from the Federal Reserve Board
11Allen, Bali and Tang’s (2012) CatFin measure is the simple average of three different approaches

to estimating the financial sector’s VaR in any particular month. Those authors note that the three
components are highly correlated. The version of CatFin used here is a simple average of two of their
approaches – the nonparametric estimator and the pareto-distribution estimator – which we find have
a correlation above 99%, as noted by Allen, Bali and Tang (2012).

12Our TED spread begins in 1984. LIBOR was officially reported beginning in 1984, when the
British Bankers’ Association and Bank of England established the official BBAIRS terms. For this
reason, Blooomberg and the St. Louis Fed’s FRED report LIBOR beginning in 1984.
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for the US and OECD for the UK and EU.13 Our sample for the US is the entire

postwar era 1946-2011.14 For the UK, data begin in 1978. Our EU sample begins in

1994.

In robustness checks, we consider US macroeconomic shocks measured by the

Chicago Fed National Activity Index (CFNAI) and its subcomponents: production

and income (PI), employment, unemployment and hours (EUH), personal consump-

tion and housing (PH) and sales, and orders and inventory (SOI). These data come

from the Federal Reserve Bank of Chicago and are available beginning in 1967.

Our focus is on how systemic risk affects the distribution of future macroeconomic

shocks. We define macro shocks as innovations to an autoregression in the underlying

macroeconomic series.15 This strips out variation in the target variable that is fore-

castable using its own history, following the forecasting literature such as Bai and Ng

(2008b) and Stock and Watson (2012). We choose the autoregressive order based on

the Akaike Information Criterion (AIC) for each series – typical orders are between

3 and 6 in our monthly data – and perform the autoregression estimation (includ-

ing the AIC-based model selection) recursively out-of-sample.16 Finally, we aggregate

monthly shocks into a quarterly shock by summing monthly innovations in order to

put the targets on a forecast horizon that is relevant for policy-makers. Further details

are available in Appendix B.2.

Preliminary autoregressions absorb much of the standard business-cycle variation

in our forecast targets. Ideally, this allows us ideally to focus attention on macroeco-
13For the EU, we use the OECD series for the 17 country Euro zone.
14Industrial production begins in the 1910’s, but following the bulk of macroeconomic literature

we focus on the US macroeconomy following World War II. In the appendix, we perform robustness
checks using realtime vintage data of US industrial production in place of revised data. Revised data
offer the most accurate evaluation of the association between risk measures and macro outcomes. We
perform robustness tests with vintage data in order to further evaluate the usefulness of our results
for policy-makers who must make decisions in realtime.

15An alternative to pre-whitening is to conduct Granger causality tests that control for lags of the
dependent variable. Appendix B.3 shows that Granger causality tests broadly agree with our findings
based on autoregression residuals.

16Using the full-sample AR estimate in out-of-sample quantile forecasts has little effect on our
results, as the recursively-estimated AR projection is stable after only a few years of observations.

9



nomic downturns whose origins reside in financial markets and financial distress when

we conduct our main analysis.17

2.4 Summary of Comovement Among Systemic Risk Measures

Figure 1 plots the monthly time series of select measures in the US.18 All measures

spiked during the recent financial crisis, which is not surprising given that many of

these measures were proposed post hoc. In earlier episodes, many systemic risk mea-

sures reached similar levels to those experienced during the recent crisis. During the oil

crisis and high uncertainty of the early and mid 1970’s, financial sector market lever-

age and return turbulence spike. All the measures display substantial variability and

several experience high levels in non-recessionary climates. Many of the spikes that do

not seem to correspond to a financial crisis might be considered “false positives.” One

interpretation of the plot is that these measures are simply noisy. Another interpreta-

tion is that these measures sometimes capture stress in the financial system that does

not result in full-blown financial crises, either because policy and regulatory responses

diffused the instability or the system stabilized itself (we discuss this further in Section

5.3). Yet another interpretation is that crises develop only when many systemic risk

measures are simultaneously elevated, as during the recent crisis.

Table 2 shows correlations among different measures for the US, UK and EU.

Most correlations are quite low. Only small groups of measures comove strongly. For

example, turbulence, volatility, and the TED spread are relatively highly correlated.

Similarly, CoVaR, ∆CoVaR, MES, GZ and Absorption tend to comove. The other

measures display low or even negative correlations with each other, suggesting that

many measures capture different aspects of financial system stress or are subject to
17We also performed our analysis with more thorough pre-whitening in the form of autoregres-

sions augmented to include lagged principal components from Stock and Watson’s (2012) data. This
produced minor quantitative changes to our results and does not alter any of our conclusions.

18The plotted measures are standardized to have the same variance (hence no y-axis labels are
shown) and we only a show a subset of the series we study for readability.
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substantial noise. If low correlations are due to the former, then our tests for association

between systemic risk measures and macroeconomic outcomes can help distinguish

which aspects of systemic risk are most relevant from a policy standpoint.

Finally, some measures of systemic risk may be interpreted as contemporaneous

stress indicators and others as leading indicators of systemic risk. We describe lead-lag

relations between these variables by conducting two-way Granger causality tests. Table

3 reports the number of variables that each measure Granger causes (left column) or

is Granger caused by (right column). GZ, default spread, turbulence, CoVaR, CatFin

and volatility appear to behave as leading indicators in that they frequently Granger

cause other variables and not the reverse. The term spread, the international spillover

index, MES, MES-BE and DCI tend to lag other measures and thus may be viewed as

coincident indicators of a systemic shock. These associations appear consistent across

countries.

3 Systemic Risk Measures and the Macroeconomy

The previous section documents heterogeneity in the behavior of systemic risk mea-

sures. Without a clear criterion it is difficult to compare their relative merits.

We propose a criterion for evaluating systemic risk measures based on the rele-

vance of each of these measures for forecasting real economic outcomes. In particular,

we investigate which systemic risk measures give policy-makers significant information

about the distribution of future macroeconomic shocks. We believe this criterion pro-

vides a new but natural method for evaluating policy relevance when selecting among

a pool of candidate systemic risk measures.

The basic econometric tool for our analysis is predictive quantile regression, which

we use to judge the relationship of a systemic risk measure to future economic activity.

We view quantile regression as a flexible statistical tool for investigating potentially

nonlinear dynamics between systemic risk and economic outcomes. Such a reduced-
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form statistical approach has benefits and limitations. Benefits include potentially

less severe specification error and, most importantly, the provision of new empirical

descriptions to inform future theory. A disadvantage is the inability to identify “funda-

mental” shocks or specific mechanisms as in a structural model. Hansen (2013) provides

an insightful overview of advantages to systemic risk modeling with and without the

structure of theory.

3.1 Quantile Regression

Before describing our empirical results, we offer a brief overview of the economet-

ric tools and notation that we use. Denote the target variable as yt+1, a scalar real

macroeconomic shock whose conditional quantiles we wish to capture with systemic

risk measures. The τ th quantile of yt+1 is its inverse probability distribution function,

denoted

Qτ (yt+1) = inf{y : P (yt+1 < y) ≥ τ}.

The quantile function may also be represented as the solution to an optimization prob-

lem

Qτ (yt+1) = arg inf
q
E[ρτ (yt+1 − q)]

where ρτ (x) = x(τ − Ix<0) is the quantile loss function.

Previous literature shows that this expectation-based quantile representation is

convenient for handling conditioning information sets and deriving a plug-in M-estimator.

In the seminal quantile regression specification of Koenker and Bassett (1978), the con-

ditional quantiles of yt+1 are affine functions of observables xt,

Qτ (yt+1|It) = βτ,0 + β′τxt. (1)

An advantage of quantile regression is that the coefficients βτ,0,βτ are allowed to differ
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across quantiles.19 Thus quantile models can provide a richer picture of the target

distribution when conditioning information shifts more than just the distribution’s

location. As Equation 1 suggests, we focus on quantile forecasts rather than con-

temporaneous regression since leading indicators are most useful from a policy and

regulatory standpoint.20

Forecast accuracy can be evaluated via a quantile R2 based on the loss function

ρτ ,

R2 = 1−
1
T

∑
t[ρτ (yt+1 − α̂− β̂Xt)]

1
T

∑
t[ρτ (yt+1 − q̂τ )]

.

This expression captures the typical loss using conditioning information (the numer-

ator) relative to the loss using the historical unconditional quantile estimate (the de-

nominator). The in-sample R2 lies between zero and one. Out-of-sample, the R2 can

go negative if the historical unconditional quantile offers a better forecast than the

conditioning variable. In sample, we report the statistical significance of the predictive

coefficients as found by Wald tests (or t-statistics for univariate regressions) using stan-

dard errors from the residual block bootstrapped with block lengths of six months and

1,000 replications. Out of sample, we arrive at a description of statistical significance

for estimates by comparing the sequences of quantile forecast losses based on condi-

tioning information, ρτ (yt+1 − α̂ − β̂Xt), to the quantile loss based on the historical

unconditional quantile, ρτ (yt+1 − q̂τ ), following Diebold and Mariano (1995) and West

(1996).21

Our benchmark results focus attention on the 20th percentile, or τ = 0.2. This
19Chernozhukov, Fernandez-Val and Galichon (2010) propose a monotone rearranging of quantile

curve estimates using a bootstrap-like procedure to impose that they do not cross in sample. We focus
attention on only the 10th, 20th and 50th percentiles and these estimates never cross in our sample.

20Corollary 5.12 of White (1996) shows the consistency of quantile regression in our time series
setting, as discussed by Engle and Manganelli (2004).

21In the appendix, we also consider testing for the correct conditional 20th percentile coverage fol-
lowing Christoffersen (1998). We find somewhat similar results, in terms of accuracy and significance,
for the various measures and indexes we construct using this alternative criteria. Our approach is
also related to Diebold, Gunther and Tay (1998), who develop techniques to evaluate density forecasts
with an application to high frequency financial data. We focus on a single part of the target density
primarily due to the limited number of data points in our monthly sample.
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choice represents a compromise between the conceptual benefit of emphasizing extreme

regions of the distribution and the efficiency cost of using too few effective observations.

In robustness checks we show that results for the 10th percentile are similar. We also

estimate median regressions (τ = 0.5) to study systemic risk impacts on the central

tendency of macroeconomic shocks.22

3.2 Empirical Evaluation of Systemic Risk Measures

Table 4 Panel A reports the quantile R2 from in-sample 20th percentile forecasts of IP

growth shocks in the US, UK and EU using the collection of systemic risk measures.

Our main analysis uses data from 1946-2011 for the US, 1978-2011 for the UK, and

1994-2011 for the EU.

In sample, a wide variety of systemic risk measures demonstrate large predictive

power for the conditional quantiles for IP growth shocks in various countries. This

picture changes when we look out-of-sample.

Table 5 Panel A reports recursive out-of-sample predictive statistics. The earliest

out-of-sample start dates are 1950 for the US, 1990 for the UK, and 2000 for the EU

(due to the shorter data samples outside the US). We take advantage of the longer US

time series to perform subsample analysis, and report results for out-of-sample start

dates of 1976 and 1990 for later comparison with the US CFNAI results and UK IP

results, respectively.

Only financial sector volatility and CatFin are significant for every region and start

date. Focusing on the US, Table 5 Panel A shows that book and market leverage, GZ,

volatility and turbulence are significantly informative out-of-sample for all split dates.

Table 6 Panel A investigates the robustness of this observation to macroeconomic

shocks measured by the CFNAI series. Since the CFNAI begins later, we consider

out-of-sample performance starting in 1976. There we see that only financial sector
22In the appendix we also consider some upper tail (τ = 0.8) quantile regressions to highlight the

nonlinear realtionship between systemic risk and future macroeconomic shocks.
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turbulence provides significant out-of-sample predictive content for the total CFNAI

index and each of its component series.

Table 7 Panel A reports that US results are broadly similar if we study the 10th

rather than the 20th percentile of IP growth. AIM, book and market leverage, inter-

national spillover, GZ, CatFin, volatility and turbulence continue to show significant

predictive power. Table 8 Panel A reports that market leverage, CatFin and turbu-

lence also demonstrate predictive power for the 10th percentile across shocks measured

by the CFNAI. Our benchmark findings based on the 20th percentile are thus broadly

consistent with a reasonable alternative of lower tail quantile.

Turning to the central tendency of macroeconomic shocks, Table 9 Panel A shows

that systemic risk measures broadly demonstrate less forecast power for the median

shock. The default spread, GZ, volatility and turbulence possess some predictive power

for the median, but substantially less than for the 10th and 20th percentiles.

In summary, we find that few systemic risk measures possess robust power to fore-

cast downside macroeconomic quantiles. Notably robust performers are the measures

of financial sector volatility, but even these are not robust in every specification. To

the extent that we find any forecasting power, it is stronger for the lower quantiles of

macroeconomic shocks than for their central tendency.

4 Systemic Risk Indexes and the Macroeconomy

Individually, many systemic risk measures lack a robust statistical association with

macroeconomic downside risk. This could be because measurement noise obscures the

useful content of these series, or because different measures capture different aspects of

systemic risk. Is it possible, then, to combine these measures into a more informative

systemic risk index?

In this section we propose a statistical model in which the conditional quantiles of

yt+1 depend on a low-dimension unobservable factor ft, and each individual systemic
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risk variable is a noisy measurement of ft. This structure embodies the potential for

dimension reduction techniques to help capture information about future macroeco-

nomic shocks present in the cross section of individual systemic risk measures. The

factor structure is similar to well-known conditional mean factor models (e.g. Sargent

and Sims (1977), Geweke (1977), Stock and Watson (2002)). The interesting feature of

our model, as in Ando and Tsay (2011), is that it links multiple observables to latent

factors that drive the conditional quantile of the forecast target.

We present two related procedures for constructing systemic risk indexes: princi-

pal components quantile regression and partial quantile regression. We show that they

consistently estimate the latent conditional quantile driven by ft, and we verify that

these asymptotic results are accurate approximations of finite sample behavior using

numerical simulations. We also show that they are empirically successful, demonstrat-

ing robust out-of-sample forecasting power for downside macroeconomic risk.

4.1 A Latent Factor Model for Quantiles

We assume that the τ th quantile of yt+1, conditional on an information set It, is a

linear function of an unobservable univariate factor ft:23

Qτ (yt+1|It) = αft.

This formulation is identical to a standard quantile regression specification, except that

ft is latent. Realizations of yt+1 can be written as αft + ηt+1 where ηt+1 is the quantile

forecast error. The cross section of predictors (systemic risk measures) is defined as

the vector xt, where

xt = ΛF t + εt ≡ φft + Ψgt + εt.

23We omit intercept terms to ease notation in the main text; our proofs and empirical implementa-
tions include them.
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Idiosyncratic measurement errors are denoted by εt. We follow Kelly and Pruitt (2013,

forthcoming) and allow xt to depend on the vector gt, which is an additional factor

that drives the risk measures but does not drive the conditional quantile of yt+1.24

Thus, common variation among the elements of xt has a portion that depends on ft

and is therefore relevant for forecasting the conditional distribution of yt+1, as well

as a forecast-irrelevant portion driven by gt. For example, gt may include stress in

financial markets that never metastasizes to the real economy or that is systemically

remedied by government intervention. Not only does gt serve as a source of noise when

forecasting of yt+1, but it is particularly troublesome because it is pervasive among

predictors.

4.2 Estimators

The most direct approach to quantile forecasting with several predictors is multiple

quantile regression. As in OLS, this approach is likely to lead to overfitting and poor

out-of-sample performance amid a large number of regressors. Therefore we propose

two dimension reduction approaches that consistently estimate the conditional quan-

tiles of yt+1 as the numbers of predictors and time series length simultaneously become

large. We first prove each estimator’s consistency and then test their empirical perfor-

mance.

One can view our latent factor model as being explicit about the measurement

error that contaminates each predictor’s reading of ft. The econometrics literature

has proposed instrumental variables solutions and bias corrections for the quantile

regression errors-in-variables problem.25 We instead exploit the large N nature of the

predictor set to deal with errors-in-variables. Dimension reduction techniques aggregate
24We assume a factor normalization such that ft is independent of gt. For simplicity, we treat ft

as scalar, but this is trivially relaxed.
25Examples of instrumental variables approaches include Abadie, Angrist and Imbens (2002), Cher-

nozhukov and Hansen (2008), and Schennach (2008). Examples of bias correction methods include
He and Liang (2000), Chesher (2001), and Wei and Carroll (2009).
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large numbers of individual predictors to isolate forecast-relevant information while

averaging out measurement noise.

For the sake of exposition, we place all assumptions in Appendix A.1. They include

restrictions on the degree of dependence between factors, idiosyncracies, and quantile

forecast errors in the factor model just outlined. They also impose regularity conditions

on the quantile forecast error density and the distribution of factor loadings.

In addition to these sophisticated dimension reduction forecasters, we also consider

using a simple mean of the available systemic risk measures. This will not be a consis-

tent estimator of a latent factor in our model, but it is a straightforward benchmark

against which to compare.

4.2.1 Principal Components Quantile Regression (PCQR)

The first estimator is principal component quantile regression (PCQR). In this method,

we extract common factors from xt via principal components and then use them in an

otherwise standard quantile regression (the algorithm is summarized in Table 10).

PCQR produces consistent quantile forecasts when both the time series dimension

and the number of predictors become large, as long as we extract as many principal

components as there are elements of F t = (ft, gt
′)′.

Theorem 1 (Consistency of PCQR). Under assumptions 1-3, the principal components

quantile regression predictor of Qτ (yt+1|It) = α′F t = αft is given by α̂′F̂ t, where F̂

represents the first K principal components of X ′X/(TN), K = dim(ft, gt), and α̂ is

the quantile regression coefficient on those components. For each t, the PCQR quantile

forecast satisfies

α̂′F̂ t − α′ft
p−−−−−→

N,T→∞
0.

The proof of Theorem 1 is in Appendix A.2. The theorem states that our estimator

is consistent not for a particular regression coefficient but for the conditional quantile

of yt+1. As a key to our result, we adapt Angrist, Chernozhukov and Fernandez-Val’s
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(2006) mis-specified quantile regression approach to the latent factor setting. From

this we show that measurement error vanishes for large N, T .26

4.2.2 Partial Quantile Regression (PQR)

For simplicity, our factor model assumes that a scalar ft comprises all information rele-

vant for the conditional quantile of interest. But PCQR and Theorem 1 use the vector

F̂ t because PCQR is only consistent if the entire factor space (ft, gt
′) is estimated.

This is analogous to the distinction between principal components least squares re-

gression and partial least squares. The former produces a consistent forecast when the

entire factor space is spanned, whereas the latter is consistent as long as the subspace

of relevant factors is spanned (see Kelly and Pruitt (forthcoming)).

Our second estimator is called partial quantile regression (PQR) and extends the

method of partial least squares to the quantile regression setting. PQR condenses

the cross section of predictors according to their quantile covariation with the forecast

target, in contrast to PCQR which condenses the cross section according to covariance

within the predictors. By weighting predictors based on their predictive strength, PQR

chooses a linear combination that is a consistent quantile forecast.

PQR forecasts are constructed in three stages as follows (the algorithm is sum-

marized in Table 10). In the first pass we calculate the quantile slope coefficient of

yt+1 on each individual predictor xi (i = 1, ..., N) using univariate quantile regression

(denote these estimates as γ̂i).27 The second pass consists of T covariance estimates.

In each period t, we calculate the cross-sectional covariance of xit with i’s first stage

slope estimate. This covariance estimate is denoted f̂t. These serve as estimates of the

latent factor realizations, ft, by forming a weighted average of individual predictors
26It is possible to expand the consistency result and derive the limiting distribution of quantile

forecasts, which can then be used to conduct in-sample inference. In-sample inference is not relevant
for our empirical analysis, which focuses on out-of-sample forecasting.

27In a preliminary step all predictors are standardized to have equal variance, as is typically done
in other dimension reduction techniques such as principal components regression and partial least
squares.
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with weights determined by first-stage slopes. The third and final pass estimates a

predictive quantile regression of yt+1 on the time series of second-stage cross section

factor estimates. Denote this final stage quantile regression coefficient as α̂.

PQR uses quantile regression in the factor estimation stage. Similar to Kelly

and Pruitt’s (forthcoming) argument for partial least squares, this is done in order

to extract only the relevant information ft from cross section xt, while omitting the

irrelevant factor gt. Factor latency produces an errors-in-variables problem in the

first stage quantile regression, and the resulting bias introduces an additional layer

of complexity in establishing PQR’s consistency. To overcome this, we require the

additional Assumption 4. This assumption includes finiteness of higher moments for

the factors and measurement errors ft, gt, and εit, and symmetric distributions for

the target-irrelevant factor gt and its loadings, ψi. Importantly, we do not require

additional assumptions on the quantile forecast error, ηt+1.

Theorem 2 (Consistency of PQR). Under Assumptions 1-4, the PQR predictor of

Qτ (yt+1|It) = αft is given by α̂f̂t, where f̂t is the second stage factor estimate and α̂

is the third stage quantile regression coefficient. For each t, the PQR quantile forecast

satisfies

α̂f̂t − αft
p−−−−−→

N,T→∞
0.

The proof of Theorem 2 is in Appendix A.3.

Finally, simulation evidence in Appendix A.4 demonstrates that both consistency

results are accurate approximations of finite sample behavior. In the next section, we

refer to PCQR and PQR factor estimates as “systemic risk indexes” and evaluate their

forecast performance versus individual systemic risk measures.
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4.3 Empirical Evaluation of Systemic Risk Indexes

To make sure that we have a large enough cross section of systemic risk measures for

the UK and EU, we construct their Multiple QR, Mean, PCQR (using either 1 or 2

PCs) and PQR forecasts using US systemic risk measures that are missing for these

countries (for example, the default spread). Given the interconnectedness of global

financial markets, these measures may be at least partly informative about financial

distress in the UK and the EU as well. Admittedly, our cross-sectional size is not very

large. But our hope is that we will nonetheless benefit from cross-sectional aggregation

in a manner reminiscent of our econometric theory – ultimately, whether or not this is

the case is an empirical question that we now answer.

Panel B of Table 4 shows that joint use of many systemic risk measures produces a

high in-sample R2 when predicting the 20th percentile of future IP growth shocks in the

US, UK and EU. The table shows that Multiple QR (that simultaneously includes all

the systemic risk variables) works best by this metric. But Table 5 Panel B illustrates

the expected results of in-sample overfit: Multiple QR’s out-of-sample accuracy is

extremely poor.

In contrast, PQR provides significant out-of-sample performance for the lower tail

of future IP growth shocks in every region and every sample split. The forecast im-

provement over the historical quantile is 1-5% in the UK and EU. In the US, the

forecast improvement is 6-15%.28

Figure 2 plots fitted quantiles for the sample beginning in 1975. The thin red line

is the in-sample historical 20th percentile. The actual shocks are plotted alongside their

forecasted values based on information three months earlier (i.e., the PQR data point

plotted for January 2008 is the forecast constructed using information known at the

end of October 2007). NBER recessions are shown in the shaded regions. The PQR-
28In appendix Table A5 we drop data after 2007 and continue to find significant out-of-sample fore-

casts, suggesting that our results are not driven solely by the most recent financial crisis. Furthermore,
we find in appendix Table A6 that our results are qualitatively unchanged by using vintage IP data.
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predicted conditional quantile (the solid black line) exhibits significant variation over

the last four decades, but much more so prior to the 1990’s. It is interesting to note

that the PQR systemic risk index predicted a large downshift in the 20th percentile of

IP growth after the oil price shock of the 1970’s and the recessions of the early 1980’s.

While the 2007-2009 financial crisis led to a downward shift in the lower quantile of IP

growth, this rise in downside risk is not without historical precedent.

Table 6 Panel B shows that the PQR index also extracts positive forecasting power

for the CFNAI and each subcomponent. For two of the series this forecast improvement

is significant. Table 7 Panel B shows that the PQR index successfully forecasts the

10th percentile IP growth shocks out-of-sample – the R2 starting in 1976 is 16.5%. For

the 10th percentile of CFNAI shocks in Table 8 Panel B, the PQR index demonstrates

predictability that is statistically significant in four out of five series. The PQR forecast

of the total CFNAI index achieves an R2 of 7%.

Finally, we evaluate the ability of systemic risk indexes to forecast the central

tendency of macro shocks. Table 9 Panel B shows that neither PCQR nor PQR provide

significant out-of-sample information for the median of future IP growth.29

In summary, the compendium of systemic risk measures, when taken together,

especially in the PQR algorithm, demonstrates robust predictive power for the lower

tail of macroeconomic shocks. This relationship is significant when evaluated over the

entire postwar period in the US, as well as in more recent sample periods in the US,

UK and EU. And while systemic risk is strongly related to lower tail risk, it appears

to have little effect on the center of the distribution. This fact highlights the value of

quantile regression methods, which freely allow for an asymmetric impact of systemic

risk on the distribution of future macroeconomic outcomes.30

29The median is reasonably well forecasted by the historical sample mean.
30We also analyze the upper tail (80th percentile forecasts) of macroeconomic shocks in Table A1

and find less out-of-sample forecasting power than for the lower tail.
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5 Stylized Facts

Our main question in this paper is whether systemic risk measures are informative

about the future distribution of macroeconomic shocks. Three central facts emerge

from our analysis.

5.1 Systemic Risk and Downside Macroeconomic Risk

First, systemic risk indexes are significantly related to macroeconomic lower tail risk,

but not to the central tendency of macroeconomic variables. The preceding tables

report significant predictability for the 20th percentile, but find little evidence of pre-

dictability for the median. In Table 11, we formally test the hypothesis that the 20th

percentile and median regression coefficients are equal.31 If the difference in coefficients

(20th percentile minus median) is negative, then the variable predicts a downward shift

in lower tail relative to the median.32

Of the 22 systemic risk measures and indexes in the table, 19 are stronger predictors

of downside risk than central tendency. Of these, 16 are statistically significant at the

5% level. These results support macroeconomic models of systemic risk that feature

an especially strong link between financial sector stress and the probability of a large

negative shock to the real economy, as opposed to a simple downward shift in the

distribution.33

5.2 Financial Volatility Measures and Economic Downturns

The second stylized fact is that financial sector equity return volatility variables are

the most informative individual predictors of downside macroeconomic risk.
31We sign each predictor so that it is increasing in systemic risk and normalize it to have unit

variance.
32The t-statistics for differences in coefficients are calculated with a residual block bootstrap using

block lengths of six months and 1,000 replications.
33Consistent with Table A1, the corresponding t-statistics for the equality of the 80th percentile and

median coefficients are broadly insignificant.
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The macroeconomic literature on uncertainty shocks, most notably Bloom (2009),

argues that macroeconomic “uncertainty” (often measured by aggregate equity market

volatility) is an important driver of the business cycle. Bloom shows that rises in

aggregate volatility predict economic downturns.34 Is our finding that financial sector

volatility predicts downside macroeconomic risks merely picking up the macroeconomic

uncertainty effects documented by Bloom’s analysis of aggregate volatility? Or, instead,

is the volatility of the financial sector special for understanding future macroeconomic

conditions?

To explore this question, we construct two volatility variables. These are the rolling

standard deviation of value-weighted equity portfolio returns for the set of either all

financial institution stocks or all non-financial stocks.35 We then compare quantile

forecasts of IP growth shocks based on each volatility variable.

Table 12 shows that non-financial volatility possesses no significant out-of-sample

predictive power for the tails or median of future macroeconomic shocks. Financial

volatility is a significant predictor of both central tendency and lower tail risk, but is

relatively more informative about the lower tail, as documented in Table 11.

Furthermore, we see that financial volatility’s informativeness does not extend to

the upper tail of future macroeconomic activity. In the first column of Table 11 there

is no significant out-of-sample predictability of IP growth shock’s 80th percentile.

These findings are consistent with the view of Schwert (1989), who uses a present

value model to argue that the “rational expectations/efficient markets approach implies

that time varying stock volatility (conditional heteroskedasticity) provides important

information about future macroeconomic behavior.” His empirical analysis highlights

comovement among aggregate market volatility, financial crises, and macroeconomic
34Recent papers such as Baker, Bloom and Davis (2012) and Orlik and Veldkamp (2013) expand

this line of research in a variety of dimensions.
35The volatility variable studied in preceding quantile regressions is the average equity volatility

across financial firms, an aggregation approach that is consistent with our aggregation of other firm-
level measures of systemic risk. The variable described here is volatility of returns on a portfolio of
stocks, which is directly comparable to the market volatility variable studied in Bloom (2009).
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activity. Our empirical findings offer a refinement of these facts. First, they indicate

that volatility of the financial sector is especially informative regarding macroeconomic

outcomes compared to volatility in non-financial sectors. Second, they suggest that

stock volatility has predictive power for macroeconomic downside outcomes (recessions)

in addition to central tendency.36

5.3 Federal Funds Policy and Systemic Risk

The third stylized fact we identify is that systemic risk indicators predict an increased

probability of monetary policy easing. To show this, we examine how the Federal Re-

serve responds to fluctuations in various systemic risk measures. Historically, monetary

policy was the primary tool at the disposal of policy-makers for regulating financial

sector stress. To explore whether policy responds to systemic risk indicators we there-

fore test whether the indicators predict changes in the Federal Funds rate. As in our

earlier analysis, we use quantile regression to forecast the median and 20th percentile of

rate changes. For brevity, we restrict our analysis to three predictor variables: financial

sector volatility, turbulence, and the PQR index of all systemic risk measures.

Results, reported in Table 13, show that in-sample forecasts of both the median

and 20th percentile of rate changes are highly significant. Out-of-sample, all three

measures have significant predictive power for the 20th percentile of rate changes. Fur-

thermore, the out-of-sample 20th percentile predictive coefficient is significantly larger

than the median coefficient, indicating that these predictors are especially powerful for

forecasting large policy moves.

If the Federal Funds rate reductions are effective in diffusing systemically risky con-

ditions before they affect the real economy, then we would fail to detect a relationship

between systemic risk measures and downside macroeconomic risk. But our earlier
36Schwert (2011) studies the association between stock volatility and unemployment in the recent

crisis and notes that the extent of comovement between these two variables was weaker during the
recent crisis than during the Great Depression.
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analysis shows that the lower tail of future macroeconomic shocks shifts downward

amid high systemic risk. This implies that monetary policy response is insufficient to

stave off adverse macroeconomic consequences, at least in the most severe episodes.

6 Conclusion

In this paper we quantitatively examine a large collection of systemic risk measures

proposed in the literature. We argue that systemic risk measures should be demon-

strably associated with real macroeconomic outcomes if they are to be relied upon for

regulation and policy decisions. We evaluate the importance of each candidate mea-

sure by testing its ability to predict quantiles of future macroeconomic shocks. This

approach is motivated by a desire to flexibly model the way distributions of economic

outcomes respond to shifts in systemic risk. We find that only a few individual mea-

sures capture shifts in macroeconomic downside risk, but none of them do so robustly

across specifications.

We then propose two procedures for aggregating information in the cross section

of systemic risk measures. We motivate this approach with a factor model for the

conditional quantiles of macroeconomic activity. We prove that PCQR and PQR pro-

duce consistent forecasts for the true conditional quantiles of a macroeconomic target

variable. Empirically, systemic risk indexes estimated via PQR underscore the infor-

mativeness of the compendium of systemic risk measures as a whole. Our results show

that, when appropriately aggregated, these measures contain robust predictive power

for the distribution of macroeconomic shocks.

We present three new stylized facts. First, systemic risk measures have an espe-

cially strong association with the downside risk, as opposed to central tendency, of

future macroeconomic shocks. The second is that financial sector equity volatility is

particularly informative about future real activity, much more so than non-financial

volatility. The third is that financial market distress tends to precede a strong monetary
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policy response, though this response is insufficient to fully dispel increased downside

macroeconomic risk. These empirical findings can potentially serve as guideposts for

macroeconomic models of systemic risk going forward.
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Table 1: Sample Start Dates
US UK EU

Absorption 1927 1973 1973
AIM 1926 - -
CoVaR 1927 1974 1974
∆CoVaR 1927 1974 1974
MES 1927 1973 1973
MES-BE 1926 1973 1973
Book Lvg. 1969 - -
CatFin 1926 1973 1973
DCI 1928 1975 1975
Def. Spr. 1926 - -
∆Absorption 1927 1973 1973
Intl. Spillover 1963 - -
GZ 1973 - -
Size Conc. 1926 1973 1973
Mkt Lvg. 1969 - -
Real Vol. 1926 1973 1973
TED Spr. 1984 - -
Term Spr. 1926 - -
Turbulence 1932 1978 1978

Notes: Measures begin in the stated year and are available through 2011 with the exception of Intl.
Spillover, which runs through 2009, and GZ, which runs through September 2010.

34



Table 2: Correlations Among Systemic Risk Measures
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

Panel A: US

Absorption (1) 1.00

AIM (2) -0.03 1.00

CoVaR (3) 0.60 0.19 1.00

∆CoVaR (4) 0.69 0.04 0.95 1.00

MES (5) 0.64 0.13 0.93 0.93 1.00

MES-BE (6) 0.35 -0.09 0.38 0.41 0.47 1.00

Book Lvg. (7) 0.22 -0.05 0.12 0.08 0.09 -0.06 1.00

CatFin (8) 0.34 0.32 0.61 0.49 0.54 0.34 0.11 1.00

DCI (9) 0.13 -0.07 0.35 0.36 0.39 0.28 0.07 0.24 1.00

Def. Spr. (10) 0.25 0.33 0.67 0.53 0.55 0.34 -0.25 0.57 0.24 1.00

∆Absorption (11) -0.53 -0.01 -0.26 -0.30 -0.32 -0.15 -0.04 0.13 -0.03 -0.06 1.00

Intl. Spillover (12) 0.42 -0.13 0.40 0.45 0.45 0.25 0.12 0.19 0.17 0.34 -0.15 1.00

GZ (13) 0.73 -0.12 0.75 0.71 0.71 0.36 0.33 0.63 0.26 0.37 -0.23 0.31 1.00

Size Conc. (14) 0.01 0.29 0.32 0.15 0.25 -0.01 0.41 0.29 0.13 0.36 -0.03 -0.07 0.45 1.00

Mkt Lvg. (15) -0.10 0.11 0.23 0.21 0.19 -0.08 0.29 0.24 0.52 0.45 0.10 0.29 0.15 -0.01 1.00

Real Vol. (16) 0.35 0.25 0.70 0.57 0.63 0.43 0.13 0.90 0.28 0.61 0.08 0.19 0.69 0.29 0.18 1.00

TED Spr. (17) 0.10 0.05 0.19 0.20 0.20 0.34 -0.34 0.48 0.12 0.38 0.02 -0.16 0.24 -0.20 0.09 0.49 1.00

Term Spr. (18) 0.29 0.01 0.35 0.37 0.33 0.34 -0.22 0.13 0.20 0.40 -0.12 0.31 0.16 0.09 -0.08 0.14 -0.07 1.00

Turbulence (19) 0.11 -0.04 0.19 0.16 0.17 0.21 0.10 0.44 0.12 0.16 0.03 0.06 0.41 0.02 0.16 0.49 0.54 -0.06 1.00

Panel B: UK

Absorption (1) 1.00

CoVaR (2) 0.57 1.00

∆CoVaR (3) 0.69 0.97 1.00

MES (4) 0.62 0.92 0.93 1.00

MES-BE (5) 0.45 0.49 0.54 0.66 1.00

CatFin (6) 0.29 0.64 0.60 0.61 0.61 1.00

DCI (7) 0.40 0.34 0.37 0.45 0.39 0.18 1.00

∆Absorption (8) -0.50 -0.31 -0.37 -0.35 -0.14 0.15 -0.23 1.00

Size Conc. (9) 0.05 0.26 0.25 0.42 0.52 0.32 0.28 -0.01 1.00

Real Vol. (10) 0.34 0.69 0.65 0.66 0.67 0.95 0.21 0.12 0.35 1.00

Turbulence (11) 0.10 0.40 0.35 0.36 0.47 0.66 0.03 0.06 0.14 0.69 1.00

Panel C: EU

Absorption (1) 1.00

CoVaR (2) 0.68 1.00

∆CoVaR (3) 0.77 0.96 1.00

MES (4) 0.78 0.94 0.96 1.00

MES-BE (5) 0.53 0.50 0.63 0.62 1.00

CatFin (6) 0.23 0.38 0.30 0.33 0.13 1.00

DCI (7) 0.39 0.51 0.53 0.54 0.39 0.19 1.00

∆Absorption (8) -0.51 -0.34 -0.38 -0.41 -0.26 0.28 -0.20 1.00

Size Conc. (9) -0.02 0.19 0.17 0.08 -0.01 -0.16 0.20 -0.10 1.00

Real Vol. (10) 0.33 0.57 0.51 0.51 0.33 0.87 0.33 0.18 -0.05 1.00

Turbulence (11) 0.02 0.11 0.09 0.08 0.15 0.31 0.14 0.09 -0.07 0.42 1.00

Notes: Correlation is calculated using the longest available coinciding sample for each pair.
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Table 3: Pairwise Granger Causality Tests
US UK EU

Causes Caused by Causes Caused by Causes Caused by
Absorption 7 4 1 1 1 6
AIM 1 3 - - - -
CoVaR 9 5 5 4 4 4
∆CoVaR 7 7 4 4 4 4
MES 6 10 4 7 3 6
MES-BE 2 11 3 9 1 6
Book Lvg. 0 0 - - - -
CatFin 10 8 6 6 3 4
DCI 1 7 0 7 3 0
Def. Spr. 9 4 - - - -
∆Absorption 4 0 5 0 4 0
Intl. Spillover 0 8 - - - -
GZ 8 1 - - - -
Size Conc. 1 0 1 0 0 0
Mkt Lvg. 2 0 - - - -
Real Vol. 9 6 7 3 7 5
TED Spr. 5 1 - - - -
Term Spr. 1 10 - - - -
Turbulence 7 4 7 2 6 1

Notes: For each pair of variables, we conduct two-way Granger causality tests. The table reports the
number of other variables that each measure significantly Granger causes (left column) or is caused
by (right column) at the 2.5% one-sided significance level (tests are for positive causation only). Tests
are based on the longest available coinciding sample for each pair.

36



Table 4: In-Sample 20th Percentile IP Growth Forecasts
US UK EU

Panel A: Individual Systemic Risk Measures

Absorption 0.10 1.94∗∗ 7.30∗∗∗

AIM 3.75∗∗∗ 0.56 0.63

CoVaR 3.07∗∗∗ 4.81∗∗∗ 6.04∗∗∗

∆CoVaR 1.27∗∗∗ 4.09∗∗∗ 6.30∗∗∗

MES 1.53∗∗∗ 3.09∗∗∗ 5.25∗∗∗

MES-BE 0.14 2.22∗∗ 5.26∗∗∗

Book Lvg. 1.06 0.27 0.40

CatFin 5.65∗∗∗ 4.04∗∗∗ 12.66∗∗∗

DCI 0.14∗ 0.37 6.93∗∗∗

Def. Spr. 2.11∗∗∗ 9.90∗∗∗ 14.84∗∗∗

∆Absorption 0.18∗∗ 0.08 0.40

Intl. Spillover 0.55∗∗ 1.58∗∗∗ 2.36∗

GZ 8.05∗∗∗ 5.06∗∗∗ 19.44∗∗∗

Size Conc. 0.04 6.54∗∗∗ 12.01∗∗∗

Mkt. Lvg. 10.42∗∗∗ 0.76∗∗ 2.77∗∗

Volatility 3.81∗∗∗ 7.63∗∗∗ 10.83∗∗∗

TED Spr. 7.73∗∗∗ 3.31∗∗ 8.19∗∗∗

Term Spr. 1.65∗∗ 0.07 3.07∗∗∗

Turbulence 3.85∗∗∗ 2.42∗∗∗ 5.55∗∗∗

Panel B: Systemic Risk Indexes

Multiple QR 32.69 23.54 41.40

Mean 0.20 1.92∗∗∗ 7.92∗∗∗

PCQR1 13.24∗∗∗ 11.34∗∗∗ 16.98∗∗∗

PCQR2 17.91∗∗∗ 12.05∗∗∗ 19.57∗∗∗

PQR 18.44∗∗∗ 11.03∗∗∗ 12.01∗∗∗

Notes: The table reports in-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1946-2011 for US data, 1978-2011 for
UK data, and 1994-2011 for EU data. Rows “Absorption” through “Turbulence” use each systemic
risk measure in a univariate quantile forecast regression for the IP growth shock of the region in each
column. “Multiple QR” uses all systemic risk measures jointly in a multiple quantile regression. Rows
“Mean” through “PQR” use dimension reduction techniques on all the systemic risk measures. Mean
is a simple average, PCQR1 and PCQR2 use one and two principal components, respectively, in the
PCQR forecasting procedure, while PQR uses a single factor.
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Table 5: Out-of-Sample 20th Percentile IP Growth Forecasts
US UK EU

Out-of-sample start: 1950 1976 1990 1990 2000

Panel A: Individual Systemic Risk Measures

Absorption −3.14 −8.86 −3.78 0.36 6.30∗∗

AIM 2.92∗∗ 2.62 3.56∗ −0.23 0.53∗

CoVaR 1.37 0.86 1.79 6.55∗∗ 4.90∗∗

∆CoVaR −0.79 −3.40 −0.82 5.51∗∗ 4.93∗

MES −0.46 −2.09 1.44 2.29 2.49

MES-BE −1.25 −1.36 −7.17 −1.30 3.60

Book Lvg. − 2.63∗∗ 1.38∗∗∗ −2.77 −3.10

CatFin 5.74∗∗∗ 13.27∗∗∗ 17.79∗∗∗ 4.92∗∗∗ 12.09∗∗∗

DCI −1.80 −1.92 −3.35 −5.26 5.44∗∗

Def. Spr. −0.30 3.93∗∗ 8.66∗∗∗ 16.25∗∗∗ 11.47∗

∆Absorption −0.83 −0.06 −0.30 0.12 0.03

Intl. Spillover − 2.02∗ 1.01 −0.15 −1.01

GZ − 5.26∗∗ 14.68∗∗∗ −1.82 15.83∗∗

Size Conc. −2.25 −5.93 −3.37 7.15∗∗ 11.14∗∗∗

Mkt. Lvg. − 10.44∗∗∗ 12.67∗∗∗ −3.50 −0.62

Volatility 3.21∗∗ 5.62∗∗ 8.14∗ 6.05∗ 6.88∗

TED Spr. − − 9.76∗∗∗ −1.00 0.99

Term Spr. 0.23 2.90∗ 1.31 −2.64 1.26

Turbulence 3.60∗∗∗ 9.23∗∗∗ 13.01∗∗∗ −3.50 −0.41

Panel B: Systemic Risk Indexes

Multiple QR −58.18 −36.94 7.07 −24.33 2.48

Mean −2.26 −3.81 −11.35 −8.84 −1.31

PCQR1 −0.76 1.02 1.67 7.70∗∗ 13.11∗∗

PCQR2 2.74 7.51∗∗ 10.64∗∗ 1.08 11.17∗∗

PQR 6.39∗∗∗ 13.01∗∗∗ 14.98∗∗∗ 0.98 4.58

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1946-2011 for US data, 1978-2011
for UK data and 1994-2011 for EU data. Out-of-sample start date is noted for each column. Rows
“Absorption” through “Turbulence” use each systemic risk measure in a univariate quantile forecast
regression for IP growth rate shocks. “Multiple QR” uses all systemic risk measures jointly in a
multiple quantile regression. Rows “Mean” through “PQR” use dimension reduction techniques on all
the systemic risk measures. Mean is a simple average, PCQR1 and PCQR2 use one and two principal
components, respectively, in the PCQR forecasting procedure, while PQR uses a single factor. “−”
indicates insufficient data for estimation in a given sample.
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Table 6: Out-of-Sample 20th Percentile CFNAI Shock Forecasts
Total PH PI SOI EUH

Panel A: Individual Systemic Risk Measures

Absorption −3.07 −1.31 −2.98 −4.17 −2.52

AIM −4.65 −1.89 −5.33 −8.12 −3.19

CoVaR −3.37 −0.93 −1.85 −5.91 −2.15

∆CoVaR −5.70 −1.12 −3.16 −5.97 −4.34

MES −6.40 −1.87 −5.28 −8.01 −5.36

MES-BE −2.73 −1.89 −0.59 −3.30 −3.09

Book Lvg. −2.50 −3.01 −1.48 −2.06 −2.14

CatFin 2.46 −0.62 4.78 −1.05 5.44

DCI −2.28 0.01 −1.75 −2.20 −1.55

Def. Spr. 0.69 −1.33 0.19 0.60 −0.25

∆Absorption −0.58 −1.89 1.04 −0.29 0.55

Intl. Spillover −2.07 −1.27 −0.13 −2.66 −2.02

GZ −8.23 −6.00 −4.14 −9.84 −4.83

Size Conc. −1.75 −1.12 −0.61 −4.20 −0.63

Mkt. Lvg. 2.61 3.56∗∗ 2.49 −0.20 3.18

Volatility −5.26 −2.55 −2.79 −3.92 0.02

TED Spr. 2.36 1.85 3.38∗ 2.42 −2.76

Term Spr. 1.58 0.78 0.86 0.89 3.50

Turbulence 7.68∗∗ 5.26∗∗ 9.41∗∗∗ 7.78∗∗ 5.83∗

Panel B: Systemic Risk Indexes

Multiple QR −55.70 −72.10 −60.84 −37.01 −53.54

Mean 2.16 1.13 2.88 −0.67 −2.23

PCQR1 −6.21 −0.58 −4.93 −9.38 −2.08

PCQR2 −0.75 −0.57 −0.42 −6.09 1.90

PQR 3.68 0.45 5.27∗ 7.05∗∗ 4.60

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1967-2011. Out-of-sample period starts
in 1976, except for Ted Spread which begins later. Rows “Absorption” through “Turbulence” use each
systemic risk measure in a univariate quantile forecast regression for the CFNAI index or sub-index in
each column. “Multiple QR” uses all systemic risk measures jointly in a multiple quantile regression.
Rows “PCQR1” through “PQR” use dimension reduction techniques on all the systemic risk measures.
Mean is a simple average, PCQR1 and PCQR2 use one and two principal components, respectively,
in the PCQR forecasting procedure, while PQR uses a single factor.
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Table 7: 10th Percentile IP Growth Forecasts
In-Sample Out-of-Sample

Out-of-sample start: 1950 1976 1990

Panel A: Individual Systemic Risk Measures

Absorption 0.14 −2.98 −9.93 −9.26

AIM 6.97∗∗∗ 6.41∗∗∗ 3.12 6.02∗

CoVaR 2.47∗∗∗ −0.62 −0.07 −1.02

∆CoVaR 1.42∗∗ −1.34 −1.48 −1.40

MES 1.51∗ −2.14 −0.51 0.62

MES-BE 0.07 −2.56 −4.82 −17.19

Book Lvg. 2.46∗∗ − 7.22∗∗∗ 3.31∗∗∗

CatFin 5.91∗∗∗ 5.48∗∗∗ 12.63∗∗∗ 15.40∗∗∗

DCI 1.45∗∗ 0.56 2.65 4.31∗

Def. Spr. 1.78∗ 0.67 3.58∗∗∗ 6.96∗∗∗

∆Absorption 0.16∗ −1.91 −0.27 −0.36

Intl. Spillover 2.15∗∗∗ − 6.51∗∗ 8.22∗∗∗

GZ 8.85∗∗∗ − 6.92∗∗ 16.46∗∗∗

Size Conc. 0.79∗ −2.19 −7.56 −3.24

Mkt. Lvg. 17.23∗∗∗ − 18.68∗∗∗ 18.94∗∗∗

Volatility 3.63∗∗∗ 2.99∗ 5.28∗ 4.94

TED Spr. 12.88∗∗∗ − − 11.45∗∗

Term Spr. 2.26∗ 1.13 4.53∗∗ −1.91

Turbulence 3.77∗∗∗ 2.32 8.01∗∗ 12.74∗∗

Panel B: Systemic Risk Indexes

Multiple QR 39.25 −114.56 −63.29 −6.86

Mean 0.13 −5.12 −11.00 −22.95

PCQR1 10.18∗∗ −1.10 2.71 −1.57

PCQR2 16.58∗∗∗ 0.51 10.07∗∗ 9.90∗

PQR 19.27∗∗∗ 5.07∗ 16.54∗∗∗ 15.48∗∗∗

Notes: The table reports quantile forecast R2 (in percentage) relative to the historical quantile model.
Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***, respectively;
we do not test the Multiple QR model. Sample is . In-sample statistics are in column one. The
out-of-sample start is noted for columns two through four. Rows “Absorption” through “Turbulence”
use each systemic risk measure in a univariate quantile forecast regression for US IP growth rate
shocks. “Multiple QR” uses all systemic risk measures jointly in a multiple quantile regression. Rows
“PCQR1” through “PQR” use dimension reduction techniques on all the systemic risk measures. Mean
is a simple average, PCQR1 and PCQR2 use one and two principal components, respectively, in the
PCQR forecasting procedure, while PQR uses a single factor. “−” indicates insufficient data for
estimation in a given sample.
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Table 8: Out-of-Sample 10th Percentile CFNAI Shock Forecasts
Total PH PI SOI EUH

Panel A: Individual Systemic Risk Measures

Absorption −7.19 −5.13 −6.84 −8.79 −5.21

AIM −7.75 −4.35 −8.19 −5.56 −4.43

CoVaR −6.12 −1.13 −4.87 −2.32 −0.64

∆CoVaR −6.53 −1.16 −7.53 −5.10 −4.17

MES −8.13 −2.46 −10.35 −6.55 −4.97

MES-BE −5.30 −3.13 −3.64 −4.12 −4.52

Book Lvg. −3.52 −3.08 −1.71 −0.76 1.30

CatFin 5.72 1.26 5.72 5.22 9.52∗

DCI −2.69 −1.63 −0.68 −2.67 −1.57

Def. Spr. −1.04 −3.82 −1.48 −0.78 −0.05

∆Absorption 0.21 −5.05 −0.85 1.87 0.74

Intl. Spillover −6.30 −3.85 −3.44 −3.23 −2.07

GZ −12.13 −6.08 −11.19 −11.99 −8.17

Size Conc. −4.04 −2.97 −2.21 −6.14 −0.64

Mkt. Lvg. 8.74∗∗ 4.95∗∗ 2.68 4.39 4.13

Volatility −2.06 −3.51 −1.68 1.30 2.08

TED Spr. 6.29∗ 7.67∗∗ 5.66 11.47∗∗ −1.32

Term Spr. 1.40 −2.58 0.42 0.97 1.02

Turbulence 13.41∗∗∗ 5.08∗ 14.65∗∗ 11.64∗∗∗ 9.63∗∗

Panel B: Systemic Risk Indexes

Multiple QR −104.76 −109.39 −98.97 −74.59 −86.96

Mean 0.80 1.16 −0.09 2.21 −7.10

PCQR1 −9.73 −2.38 −9.70 −5.75 −3.16

PCQR2 −4.09 −2.93 −2.41 −1.54 1.01

PQR 7.29∗ 1.79 8.21∗ 7.33∗ 8.15∗

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1967-2011. Out-of-sample period starts
in 1976, except for Ted Spread which begins later. Rows “Absorption” through “Turbulence” use each
systemic risk measure in a univariate quantile forecast regression for the CFNAI index or sub-index in
each column. “Multiple QR” uses all systemic risk measures jointly in a multiple quantile regression.
Rows “PCQR1” through “PQR” use dimension reduction techniques on all the systemic risk measures.
Mean is a simple average, PCQR1 and PCQR2 use one and two principal components, respectively,
in the PCQR forecasting procedure, while PQR uses a single factor.
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Table 9: Out-of-Sample Median IP Growth Shock Forecasts
US UK EU

Out-of-sample start: 1950 1976 1990 1990 2000

Panel A: Individual Systemic Risk Measures

Absorption −0.92 0.99 1.62 −1.18 1.46

AIM −0.03 −2.08 0.16∗ −0.30 −0.00

CoVaR −0.03 −4.47 0.71 −1.58 1.59

∆CoVaR −0.62 −4.56 −0.05 −0.92 0.69

MES −0.57 −4.17 −0.79 −1.67 −0.08

MES-BE −1.47 −0.50 −0.38 3.81∗∗ −0.05

Book Lvg. − −1.87 0.42 1.98∗∗ −2.57

CatFin 0.59 0.89 6.85∗∗∗ 0.35 2.81∗

DCI −1.69 −0.80 −0.96 −1.03 0.57

Def. Spr. −0.62 3.23∗∗ 4.91∗∗∗ 0.73 −2.52

∆Absorption −0.83 −0.62 −0.28 −0.20 −0.14

Intl. Spillover − −1.39 −0.67 −2.15 −0.03

GZ − 0.51 7.59∗∗ 6.24∗∗ 2.44

Size Conc. −3.42 −1.05 −3.43 3.61∗∗ 3.47∗∗

Mkt. Lvg. − −0.26 3.20∗ −1.42 −5.08

Volatility 0.73 −0.84 4.71∗ 1.46∗ −1.32

TED Spr. − − 2.13∗∗ −2.46 −1.44

Term Spr. −0.02 −0.58 −0.38 −0.38 −1.72

Turbulence 1.33∗∗ 2.69∗ 4.45∗ 0.28 −0.49

Panel B: Systemic Risk Indexes

Multiple QR −32.21 −28.30 0.12 −23.59 −14.28

Mean 1.18∗∗ 3.23∗∗∗ 5.31∗∗∗ −1.99 −3.46

PCQR1 −1.35 −5.19 4.39 0.58 −1.07

PCQR2 0.43 −5.17 2.72 0.03 −0.64

PQR −3.11 −1.49 5.54∗∗ −2.13 −7.53

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1946-2011 for US data, 1978-2011
for UK data and 1994-2011 for EU data. Out-of-sample start date is noted for each column. Rows
“Absorption” through “Turbulence” use each systemic risk measure in a univariate quantile forecast
regression for IP growth rate shocks. “Multiple QR” uses all systemic risk measures jointly in a multiple
quantile regression. Rows “PCQR1” through “PQR” use dimension reduction techniques on all the
systemic risk measures. Mean is a simple average, PCQR1 and PCQR2 use one and two principal
components, respectively, in the PCQR forecasting procedure, while PQR uses a single factor. “−”
indicates insufficient data for estimation in a given sample.
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Table 10: Estimators

Principal Components Quantile Regression (PCQR)

Factor Stage: Estimate F̂ t by (Λ′Λ)−1Λ′xt for Λ the K eigenvectors associated
with the K largest eigenvalues of

∑T
t=1 xtx

′
t

Predictor Stage: Time series quantile regression of yt+1 on a constant and F̂ t

Partial Quantile Regression (PQR)

Factor Stage: 1. Time series quantile regression of yt+1 on a constant and xit to
get slope estimate φ̂i
2. Cross-section covariance of xit and φ̂i for each t to get factor
estimate f̂t

Predictor Stage: Time series quantile regression of yt+1 on a constant and f̂t

Notes: The predictors xt are each time-series standardized. All quantile regressions
and orthogonal quantile regressions are run for quantile τ .
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Table 11: Difference in Coefficients, Median versus 20th Percentile
Median 20th Pctl. Difference t

Absorption −0.1936 −0.4686 −0.2750 −3.54

AIM −0.0711 −0.0090 0.0622 0.75

CoVaR −0.2076 −0.6946 −0.4870 −6.07

∆CoVaR −0.1509 −0.4963 −0.3454 −4.17

MES −0.0980 −0.6326 −0.5346 −6.63

MES-BE −0.0735 −0.3487 −0.2752 −3.37

Book Lvg. −0.0628 −0.1596 −0.0968 −1.20

CatFin −0.5114 −0.7190 −0.2075 −2.65

DCI −0.1775 −0.6132 −0.4357 −5.47

Def. Spr. −0.4237 −0.6438 −0.2202 −2.79

∆Absorption 0.0721 0.1110 0.0389 0.47

Intl. Spillover 0.0455 −0.3459 −0.3914 −4.81

GZ −0.5586 −0.6910 −0.1325 −1.72

Size Conc. −0.1515 −0.3256 −0.1741 −2.13

Mkt. Lvg. −0.4958 −0.6243 −0.1285 −1.75

Volatility −0.3798 −0.6675 −0.2877 −3.54

TED Spr. −0.2139 −0.5470 −0.3332 −4.14

Term Spr. 0.1348 0.1372 0.0024 0.03

Turbulence −0.5331 −0.9204 −0.3873 −4.96

Mean −0.4119 −0.8830 −0.4710 −6.01

PCQR1 −0.4721 −0.6533 −0.1812 −2.40

PQR −0.3086 −0.6188 −0.3102 −3.87

Notes: In the first two columns, the table reports quarterly quantile regression coefficients for IP
growth shocks at the 50th and 20th percentiles. In each case, the predictor variable has been stan-
dardized to have unit variance and IP growth is scaled in percentage points. The third column is the
difference between the 20th and 50th percentile coefficients. The last column reports t-statistics for
the difference in coefficients. Sample is , or the longest span for which the predictor is available.
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Table 12: IP Growth Quantile Out-of-Sample Forecasts: Financial versus Non-financial
Volatility

80th Percentile Median 20th Percentile

Financial Volatility −1.58 2.86∗∗∗ 5.21∗∗∗

Non-financial Volatility −1.61 0.95 −0.72

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively. Sample is 1946-2011 and out-of-sample period begins in 1950. Rows use either financial
or non-financial volatility (calculated as the average individual equity return volatility for stocks in
each sector) in a quantile forecasting regression for IP growth.

Table 13: Federal Funds Rate Forecasts
Median 20th Pctl.

Panel A: In-Sample

Volatility 2.60∗∗∗ 5.55∗∗∗

Turbulence 2.33∗∗∗ 4.20∗∗∗

PQR 2.29∗∗∗ 14.45∗∗∗

Panel B: Out-of-Sample

Volatility 0.43 4.46∗

Turbulence 1.33∗∗ 3.08∗

PQR −8.97 6.60∗

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively. Sample is 1955-2011. Out-of-sample begins 1960. Rows “Volatility” and “Turbulence”
report univariate quantile forecast regressions on quarterly shocks to the Federal Funds rate. Row
“PQR” uses a single factor estimated from all systemic risk measures.
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Appendices

A Theoretical Appendix

A.1 Assumptions

Assumption 1. Let It denote the information set at time t and Qτ (yt+1|It) denote the
time-t conditional τ−quantile of yt+1. Let ft be 1×1 and gt be Kg×1 with K = 1+Kg,
F t ≡ (ft, g

′
t)
′, and xt be N × 1, for t = 1, . . . , T . Then

1. Qτ (yt+1|It) = Qτ (yt+1|f t) = α0 +α(τ)′F t = α0 + α(τ)ft

2. yt+1 = α0 + α(τ)ft + ηt+1(τ)

3. xt = λ0 + φft + Ψgt + εt = λ0 + ΛF t + εt

where Λ ≡ (λ1, . . . ,λN)′.

Assumption 2. Let ||A|| = (tr(A′A))1/2 denote the norm of matrix A, and M be
some positive finite scalar.

1. The variables {Λi}, {F t}, {εit} and {ηit} are independent groups.

2. E||F t||4 ≤ M < ∞ and 1
T

∑T
t=1 F tF

′
t → ΣF or some K × K positive definite

matrix ΣF ≡
[

Σf 0
0 Σg

]
.

3. ||λi|| ≤ λ̄ <∞ and ||Λ′Λ/N −ΣΛ|| → 0 for some K×K positive definite matrix

ΣΛ ≡
[

Σφ 0
0 Σψ

]
.

4. For all (i, t), E(εit) = 0,E|εit|8 ≤M

5. There exist E(εitεjs) = σij,ts and |σij,ts| < σ̄ij for all (t, s), and |σij,ts| ≤ τts for all
(i, j) such that 1

N

∑N
i,j=1 σ̄ij ≤M , 1

T

∑T
t,s=1 τts ≤M , and 1

NT

∑
i,j,s,t=1 |σij,ts| ≤M

6. For every (t, s), E| 1√
N

∑N
i=1[εisεit − E(εisεit)]|4 ≤M

Assumption 3. Let m,M be positive finite scalars. For each τ ∈ (0, 1) the shock
ηt+1(τ) has conditional density πτ (·|It) ≡ πτt and is such that

1. πτt is everywhere continuous

2. m ≤ πτt ≤M for all t

3. πτt satisfies the Lipschitz condition |πτt(κ1)− πτt(κ2)| ≤M |κ1 − κ2| for all t

Assumption 4. Let M be a positive finite scalar.

1. In addition to Assumption 2.1, {ft} is independent of {gt} and {φi} is indepen-
dent of {ψi}
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2. {εit} are i.i.d.

3. limN→∞
1
N

∑N
i=1

1
φi
< M .

4. E(fnt ), E(gnt ) and E(εnt ) exist and are finite for all n.

5. {gt} and {ψi} have symmetric distributions.

Proof Outline Assumptions 1 and 2 are the same as those in Bai and Ng’s (2006)
work on principal components factor estimates in OLS regressions. Assumption 3 is
sufficient to show that quantile regression is consistent in a time series setting (White
1994). Assumption 4 strengthens some moment and independence conditions of As-
sumption 2 and additionally imposes conditions on the distributions of φi, ψi and
gu.

Our approach views the latent factor structure among systemic risk measures as
an errors-in-variables quantile regression problem. To address this, we rely heavily on
mis-specified quantile regression results from Angrist, Chernozhukov and Fernandez-
Val (2006, ACF hereafter) to express biases that arise in various stages of the PCQR
and PQR procedures.37

For PCQR, Bai (2003) tells us that the principal component factor estimates con-
verge to a rotation of the true factor space at rate min(

√
N, T ) under Assumptions 1

and 2. We write an infeasible second stage quantile regression of yt+1 on the factor
estimate and its deviation from the true factor. The probability limit of this infeasible
quantile regression follows by Assumption 3 and allows for an ACF bias representation
of the feasible quantile regression of yt+1 on the factor estimate alone. This allows us
to show that the fitted conditional quantile from the second stage quantile regression
is consistent for the true conditional quantile for N, T large.

The proof for PQR looks similar. The main difference is PQR’s latent factor
estimator, which is not based on PCA. PQR’s first stage quantile regressions of yt+1 on
xit involves an errors-in-variables bias that remains in the largeN and T limit. We write
an infeasible first stage quantile regression of yt+1 on xit and the two components of its
measurement error (gt, εit). For each i, the probability limit of this infeasible quantile
regression follows by Assumptions 1-3 and allows for an ACF bias representation of
the feasible quantile regression regression of yt+1 on xit alone. For each t, the factor
estimate comes from cross-sectional covariance of xit with the mis-measured first-stage
coefficients. This converges to a scalar times the true factor at rate min(

√
N,
√
T ) under

Assumption 4. This results makes use of a fact about the covariance of a symmetrically-
distributed random variable with a rational function of its square, which is proved in
Lemma 1. The third stage quantile regression using this factor is consistent for the
true conditional quantile in the joint N, T limit.

37The results of Bai (2003) and Bai and Ng (2008a) can be used to establish the consistency of the
PCQR. We provide an alternative derivation in order to closely connect the proofs of both PCQR and
PQR.
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A.2 Proof of Theorem 1

Proof. Let F̂ t be given by the firstK principal components of xt. Bai (2003) Theorem 1
implies that for each t, F̂ t−HF t is at least Op(δ

−1
NT ), where δNT ≡ min(

√
N,
√
T ),H =

Ṽ
−1

(F̃
′
F /T )(Λ′Λ/N), F̃ ≡ (F̃ 1, . . . , F̃ T ) is the matrix of K eigenvectors (multiplied

by
√
T ) associated with the K largest eigenvalues of XX ′/(TN) in decreasing order,

and Ṽ is the K ×K diagonal matrix of the K largest eigenvalues.38

The second stage quantile regression coefficient is given by

(α̂0, α̂) = argmin
α0,α

1

T

T∑
t=1

ρτ (yt+1 − α0 −α′F̂ t).

Consider an infeasible regression of yt+1 on the PCA factor estimate F̂ t as well as the
factor estimation error F̂ t−HF t (for given N and T ). Because F t linearly depends on
(F̂ t, F̂ t−HF t), this regression nests the correctly specified quantile forecast regression.
By White (1996) Corollary 5.1239 and the equivariance properties of quantile regression
we have that the infeasible regression coefficients

(α̇0, α̇, α̇1) = arg min
α0,α1,α

1

T

T∑
t=1

ρτ (yt+1 − α0 −α′F̂ t −α′1(F̂ t −HF t)),

are such that α̇ satisfies
√
T (α̇−α′H−1)

d−−−→
T→∞

N(0,Σα̇).

Next, ACF (2006) Theorem 1 implies that

α̂ = α̇+

(
T∑
u=1

wuF̂ uF̂
′
u

)−1( T∑
u=1

wuF̂ uα̇
′
1(F̂ u −HF u)

)
(A1)

where they derive the weight function wt = 1
2

∫ 1

0
πτ

(
v
[
α̂′F̂ t − αft

])
dv.

Next, we rewrite the forecast error as

α̂′F̂ t −α′F t = α̂′(F̂ t −HF t) + (α̂′ −α′H−1)HF t. (A2)

As stated above, the first term of (A2) is no bigger than Op(δ
−1
NT ). To evaluate the

38Bai (2003) shows that F̂ t−HF t is Op(min(
√
N,T )−1), which is at least as fast a rate of conver-

gence as Op(min(
√
N,
√
T )−1).

39Note that our assumptions satisfy Engle and Manganelli’s (2004) assumptions C0-C7 and AN1-
AN4.
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second term, use (A1) to obtain

(α̂′ −α′H−1) = (α̇′ −α′H−1) +

(
1

T

T∑
u=1

wuF̂ uF̂
′
u

)−1(
1

T

T∑
u=1

wuF̂ uα̇
′
1(F̂ u −HF u)

)
.

(A3)

The first term on the right-hand side is Op(T
−1/2), as stated above. Use F̂ u ≡ F̂ u −

HF u +HF u to rewrite the numerator of the second term on the right-hand side

1

T

T∑
u=1

wuF̂ uα̇
′
1(F̂ u −HF u)

= δ−2
NT

1

T

T∑
u=1

wtδNT (F̂ u −HF u)α̇
′
1δNT (F̂ u −HF u) + δ−1

NT

1

T

T∑
u=1

wtHF uα̇
′
1δNT (F̂ u −HF u)

= δ−2
NTOp(1) + δ−1

NTOp(1).

Therefore the right-hand side of (A3) is Op(T
−1/2) + Op(1)Op(δ

−1
NT ) = Op(δ

−1
NT ). This

implies that α̂′ − α′H−1 is Op(δ
−1
NT ). Putting this back into (A2), we see therefore

that α̂′F̂ t − α′F t is Op(1)Op(δ
−1
NT ) + Op(δ

−1
NT )Op(1) = Op(δ

−1
NT ) which completes the

result.

A.3 Proof of Theorem 2

Proof. For each i, the first stage quantile regression coefficient is given by

(γ̂0i, γ̂i) = argmin
γ0,γ

1

T

∑
ρτ (yt+1 − γ0 − γxit). (A4)

Consider the infeasible quantile regression of yt+1 on (xit, g
′
t, εit)

′, yielding coefficient
estimates

(γ̇0i, γ̇i, γ̇
′
ig, γ̇iε)

′ = arg min
γ0,γ,γg ,γε

1

T

T∑
t=1

ρτ (yt+1 − γ0 − γxit − γ ′ggt − γεεit).

Note that ft linearly depends on the vector (xit, g
′
t, εit)

′. By White (1996) Corollary
5.12 and the equivariance properties of quantile regression, These coefficients satisfy

√
T (γ̇i, γ̇

′
ig, γ̇iε)

′ d−−−→
T→∞

N

((
α

φi
,− α

φi
ψ′i,−

α

φi

)′
,Σγ

)
ACF (2006) Theorem 1 implies that

γ̂i = γ̇i +

(
T∑
u=1

wiux
2
iu

)−1( T∑
u=1

wiuxiu
(
γ̇ ′iggu + γ̇iεεiu

))
. (A5)
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for the weight wit = 1
2

∫ 1

0
(1−u)πτ (u [xitγ̂i −Q (yt+1|ft)] |ft) du.40 Expanding the weight

around xit = 0, we have

wit =
∞∑
n=1

κn(ft)x
n
it , κn(ft) ≡

1

n!

∂nwit
(∂xit)n

∣∣∣∣
xit=0

(A6)

and can use this to rewrite (A5). Note that κn(ft) is a function only of ft and is
therefore independent of gt, εit. Also note that xnit =

∑n
j=0(φift)

n−j(ψ′gt + εit)
jan,j,

where the an,j’s are polynomial expansion coefficients. Using the following notation

Γ1 =

(
T∑
u=1

wiux
2
iu

)−1( T∑
u=1

wiuxiu

[
(γ̇ig +

α

φi
ψi)

′gu + (γ̇iε +
α

φi
)εiu

])
,

Γ2 = − α
φi

(
1

T

T∑
u=1

wiux
2
iu

)−1( ∞∑
n=0

n+1∑
j=0

an+1,j

[
1

T

T∑
u=1

κn(fu)(φifu)
n+1−j(ψ′igu + εiu)

j+1

− E
(
κn(fu)(φifu)

n+1−j(ψ′igu + εiu)
j+1
) ])

,

Γ3 = − α
φi
×

(
∞∑
n=0

n+1∑
j=0

an+1,jE
(
κn(fu)(φifu)

n+1−j(ψ′igu + εiu)
j+1
))

(
∞∑
n=0

n+2∑
j=0

an+2,j

[
E
(
κn(fu)(φifu)

n+2−j(ψ′igu + εiu)
j
)
− 1

T

T∑
u=1

κn(fu)(φifu)
n+2−j(ψ′igu + εiu)

j

])−1

,

Γ4 = γ̇i −
α

φi
,

we can rewrite (A5) as

γ̂i =
α

φi
− α

φi

∑∞
n=0

∑n+1
j=0 an+1,jE [Kn(ft)(φift)

n+1−j]
∑j+1

k=0 aj+1,kE
[
(ψ′igt)

j+1−k]E [εkit]∑∞
n=0

∑n+2
j=0 an+2,jE [Kn(ft)(φift)n+2−j]

∑j
k=0 aj,kE [(ψ′igt)

j−k]E
[
εkit
]

+ Γ1 + Γ2 + Γ3 + Γ4. (A7)

Because of the probability limit noted above for (γ̇i, γ̇
′
ig, γ̇iε)

′, we know that Γ1 and Γ4

are Op(T
−1/2). Γ2 and Γ3 are also Op(T

−1/2) by Assumption 4, the continuous mapping
theorem, and the law of large numbers. By Assumption 4, for any i and for n odd we
have E [(ψ′igt)

n] = 0. Therefore we can rewrite the above expression for γ̂i as

γ̂i =
α

φi
− α

φi
Υ(ψ2

i , φi) +Op(T
−1/2)

40This weight comes from the fact that in our factor model the true conditional quantile Q(yt+1|It)
is identical to the quantile conditioned only on ft. In addition, the conditioning of πτ on ft is a choice
of representation and consistent with our assumption that no other time t information influences the
distribution of ηt+1. ACF provide a detailed derivation of this weight as a function of the quantile
forecast error density, which they denote as f rather than π.
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where Υ is a rational function given by the second term in A7.
The second stage factor estimate is41

f̂t =
1

N

N∑
i=1

(
γ̂i − ¯̂γ

)
(xit − x̄t)

=
1

N

N∑
i=1

(
α

φi
− α

φi
Υ(ψ2

i , φi) +Op(T
−1/2)− ¯̂γ

)(
(φi − φ̄)ft + (ψi − ψ̄)′gt + (εit − ε̄t)

)
.

Because the irrelevant factor gt is multiplied by N−1
∑

i(
α
φi
− ᾱ

φi
)(ψi− ψ̄)′, gt vanishes

from f̂t for N large due to the independence of φi,ψi. Sums involving cross products
of Υ(ψ2

i , φi) and (ψi − ψ̄)′ vanish in probability as N becomes large by the symmetry
of ψi (Assumption 4) and Lemma 1. Sums involving εit vanish as N becomes large
by the independence of εit and (φi,ψ

′
i)
′. Straightforward algebra shows that f̂t − hft

is at least Op(δ
−1
NT ), where is h a finite nonzero constant.42 From here, Theorem 1’s

argument, starting in the second paragraph of that proof, goes through for α̂f̂t and the
result follows.

Lemma 1. For any symmetrically-distributed random variable x, random vector y =
(y1, ..., yd−1) such that x ⊥ y, and rational function f : Rd → R1 that is infinitely
differentiable at some number a ∈ Rd, it is the case that Cov(f(x2,y), x) = 0.

Proof. Define the vector x = (x2,y′)′, so that x1 = x2 and xj = yj−1. The Taylor
series for f(x) at a is

f(a1, . . . , ad) +
d∑
j=1

∂f(a1, . . . , ad)

∂xj
(xj − aj) +

1

2!

d∑
j=1

d∑
k=1

∂2f(a1, . . . , ad)

∂xj∂xk
(xj − aj)(xk − ak)+

+
1

3!

d∑
j=1

d∑
k=1

d∑
l=1

∂3f(a1, . . . , ad)

∂xj∂xk∂xl
(xj − aj)(xk − ak)(xl − al) + . . .

Any cross products involving xj for j > 1 have zero covariance with x by independence.
By the symmetry of x, Cov(xi1, x) = 0 for any i = 0, 1, ..., which proves the result.

A.4 Simulation Evidence

Table A2 compares PCQR and PQR estimates with the true 0.1 conditional quan-
tile. We report the time series correlation between the true conditional quantile and

41Overbar denotes a sample mean over i.
42It can be shown that

N−1
N∑
i=1

Υ(ψ2
i , φi)−N−1

N∑
j=1

Υ(ψ2
j , φj)

(φi − φ̄)
converges to a finite constant that is different from one, which implies that h is nonzero.
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the fitted series as well as the time series mean absolute error (MAE) averaged over
simulations. The simulated model is

yt+1 = −ft1L + (ση + ft1S) ηt+1

xt = φft +ψgt + et

We draw f ∼ U(0, 1), g ∼ N(0, 0.52), eit ∼ N(0, 0.52), η ∼ N(0, 0.52), φi ∼ N(0, 0.52),
and ψi ∼ N(0, 0.52), all independent. We pick 1L = 1 for a location model and 1L = 0
otherwise, 1S = 1 for a scale model and 1S = 0 otherwise, and 1L = 1S = 1 for a
location and scale model. We vary T , set N = T , and run 1,000 simulations of each
specification. The table reports performance of quantile forecasts from PCQR using
two principal component indexes and from PQR using a single index. It shows that
conditional quantile forecasts are increasingly accurate in the size of the predictor panel.
As N and T grow, the time series correlation between fits and the true conditional
quantile approaches one and the forecast error shrinks toward zero.

B Empirical Appendix

B.1 Systemic Risk Measures

CoVaR and ∆CoVaR (Adrian and Brunnermeier 2011) CoVaR is defined as
the value-at-risk (VaR) of the financial system as a whole conditional on an institution
being in distress. The distress of the institution, in turn, is captured by the institution
being at its own individual VaR (computed at quantile q):

Pr(X i < VaRi) = q

CoVaR for institution i is then defined as:

Pr(Xsyst < CoVaRi|X i = VaRi) = q

which we estimate using conditional linear quantile regression after estimating
VaRi. ∆CoVaRi is defined as the VaR of the financial system when institution i is at
quantile q (in distress) relative to the VaR when institution i is at the median of its
distribution:

∆CoVaRi = CoVaRi(q)− CoVaRi(0.5).

In estimating CoVaR, we set q to the 5th percentile. Note that Adrian and Brunner-
meier (2011) propose the use of a conditional version of CoVaR as well, called forward
CoVaR, in which the relation between the value-at-risk of the system and an individual
institution is allowed to depend on an additional set of covariates. Here we use the
alternative approach of rolling window CoVaR estimates with an estimation window of
252 days. We construct individual CoVaR for each firm separately and calculate the
aggregate measure as an equal-weighted average among the largest 20 financial firms.
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MES (Acharya, Pedersen, Philippon and Richardson (2010)) These measures
capture the exposure of each individual firm to shocks to the aggregate system. MES
captures the expected return of a firm conditional on the system being in its lower tail:

MESi = E[Ri|Rm < q]

where q is a low quantile of the distribution of Rm (we employ the 5th percentile). We
construct individual MES for each firm separately using a rolling window of 252 days
and calculate the aggregate measure as an equal-weighted average among the largest
20 financial firms.

MES-BE (Brownlees and Engle (2011)) This version of MES employs dynamic
volatility models (GARCH/DCC for σ·,t, ρt) to estimate the components of MES:

MES-BEi,t−1 = σi,tρtE

[
εm,t|εm,t <

k

σm,t

]
+ σi,t

√
1− ρ2

tE

[
εi,t|εm,t <

k

σm,t

]
.

where εm,t are market return shocks, εi,t is the individual firm return and k is set to
2 following Brownlees and Engle (2011). We construct the measure individually for
each firm and calculate the aggregate measure as an equal-weighted average among the
largest 20 financial firms.

CatFin (Allen, Bali and Tang (2012)) This measure computes the time-varying
value at risk (VaR) of financial institutions at the 99% confidence level, using the
cross-sectional distribution of returns on the equity of financial firms in each period.
In particular, the methodology first fits (parametrically or nonparametrically) a dis-
tribution for the lower tail (bottom 10%) of the cross-sectional distribution of returns
of financial institutions, separately in each month. CatFin is then obtained as the 1st
percentile of returns under the fitted distribution, computed separately in each month.

Allen et al. (2012) propose computing the VaR by fitting two types of parametric
distributions, the Generalized Pareto Distribution (GPD) and the Skewed Generalized
Error Distribution, as well as nonparametrically using the empirical cross-sectional
distribution of returns (simply computing in each month the 1st percentile of the
returns realized across firms in that month), and then averaging the three measures to
construct CatFin.

In our implementation of CatFin (which differs slightly from the specification in
Allen et al. (2012) for consistency with the other measures we build), we construct
the measure at the monthly frequency by pooling together all daily returns of the top
20 financial firms in each month, and using them to estimate the tail distribution and
compute the 1st percentile of returns. Given the extremely high correlations among the
three ways of computing the VaR (already noted by Allen et al. (2012)), we construct
CatFin by averaging together the VaR obtained using the GPD and that obtained
from the empirical distribution of returns (the two have a correlation above 0.99 in our
sample).
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Absorption Ratio (Kritzman et al. (2010)) This measure computes the fraction
of return variance of a set of N financial institutions explained by the first K < N
principal components:

Absorption(K) =

∑K
i=1 V ar(PCi)∑N
i=1 V ar(PCi)

.

A leading distress indicator is then constructed as the difference between absorption
ratios calculated for long and short estimation windows

∆Absorption(K) = Absorption(K)short − Absorption(K)long.

In our empirical analysis we construct the Absorption(3) measure using returns for the
largest 20 financial institutions at each point in time. We construct ∆Absorption(3)
using 252 and 22 days for the long and short windows, respectively.

Dynamic Causality Index or DCI (Billio et al. 2012) The index aims to cap-
ture how interconnected a set of financial institutions is by computing the fraction of
significant Granger-causality relationships among their returns:

DCIt =
# significantGC relations

# relations

A Granger-causality relation is defined as significant if its p-value falls below 0.05. We
construct the measure using daily returns of the largest 20 financial institutions, with
a rolling window of 36 months.

International Spillover (Diebold and Yilmaz 2009) The index, downloaded
from http://economicresearchforum.org/en/bcspill, aggregates the contribution
of each variable to the forecast error variance of other variables across multiple return
series. It captures the total extent of spillover across the series considered (a measure
of interdependence).

Volatility We construct individual volatility series of financial institutions by com-
puting the within-month standard deviation of daily returns. We construct the ag-
gregated series of volatility by averaging the individual volatility across the 20 largest
institutions.

Book and Market Leverage We construct a measure of aggregate book leverage
(debt/assets) and aggregate market leverage (debt/market equity) among the largest
20 financial institutions to capture the potential for instability and shock propagation
that occurs when large intermediaries are highly levered.
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Size Concentration We construct the Herfindal index of the size distribution among
financial firms:

Herfindahlt = N
ΣN
i=1ME2

i

(ΣN
i=1MEi)2

The concentration index captures potential instability due to the threat of default of
the largest firms. The index corrects for the changing number of firms in the sample by
multiplying the measure of dispersion by the number of firms, N . When constructing
this measure we use the market equity of the largest 100 firms.

Turbulence (Kritzman and Li (2010)) Turbulence is a measure of excess volatil-
ity that compares the realized squared returns of financial institutions with their his-
torical volatility:

Turbulencet = (rt − µ)′Σ−1(rt − µ)

where rt is the vector of returns of financial institutions, and µ and Σ are the historical
mean and variance-covariance matrix. We compute the moments using data for the
largest 20 financial institutions and a rolling window of 60 months.

AIM (Amihud 2002) AIM captures a weighted average of stock-level illiquidity
AIMi

t, defined as:

AIMi
t =

1

K

t∑
τ=t−K

|ri,τ |
turnoveri,τ

We construct an aggregated measure by averaging the measure across the top 20 fi-
nancial institutions.43

TED Spread The difference between three-month LIBOR and three-month T-bill
interest rates.

Default Yield Spread The difference between yields on BAA and AAA corporate
bonds. The series is computed by Moody’s and is available from the Federal Reserve
Bank of St. Louis.

Gilchrist-Zakrajsek Spread Gilchrist and Zakrajsek (2012) propose an alternative
measure of credit spread constructed from individual unsecured corporate bonds, where
the yield of each bond is compared to the yield of a synthetic treasury bond with the
same cash flows to obtain a precise measure of its credit spread. The individual credit
spreads are then averaged across all maturities and all firms to obtain an index, GZ.
We obtained the series from Simon Gilchrist’s website.

Term Spread The difference between yields on the ten year and the three month
US Treasury bond. The series is obtained from Global Financial Data.

43Our definition of AIM differs from that of Amihud (2002). We replace dollar volume with share
turnover to avoid complications due to non-stationarity.
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B.2 Macroeconomic Shocks

Let the monthly macroeconomic series (CFNAI or IP) be denoted Yt. We construct
shocks to these series as residuals in an autoregression of the form

Yt = c+

p∑
l=1

alYt−l = cp + ap(L)Yt

for a range of autoregressive orders, p, and select the p that minimizes the Akaike In-
formation Criterion. This approach purges each macroeconomic variable of predictable
variation based on its own lags, and is a convention in the macro forecasting literature
(e.g. Bai and Ng (2008b) and Stock and Watson (2012)).

Shocks are estimated in a recursive out-of-sample scheme to avoid look-ahead bias
in our out-of-sample quantile forecasting tests. For each month τ , we estimate the AR
and AIC on data only known through τ , and construct the forecast residual at time
τ + 1 based on these estimates. Finally, we construct quarterly shocks as a moving
three-month sum of the monthly residuals.

B.3 Quantile Granger Causality Tests

An alternative to the pre-whitening procedure described in Appendix B.2 is to control
for the history each dependent variable within the quantile regression specification, as
in an in-sample Granger causality test. This alternative procedure yields qualitatively
similar results to those reported in the main text.

To conduct a Granger causality test in our framework, consider the quantile re-
gression

Qτ (Yt|It) = β0 +

p∑
l=1

βpYt−p +

q∑
k=1

γkxt−k

where Y is monthly IP growth and x is a systemic risk measure. We investigate whether
x Granger causes the quantiles of Y by testing the hypothesis: γ1 = · · · = γq = 0.
We estimate the standard error matrix of (β′,γ ′)′ using Politis and Romano’s (1994)
stationary block-bootstrap with 1,000 bootstrap replications and choose q = 1. Table
A3 reports the resulting Wald statistics for the 20th percentile and median, each of
which is asymptotically distributed as a χ2(1).

B.4 Interval Coverage Tests

An alternative method of evaluating the quantile forecasts follows Christoffersen (1998).
We take the quantile forecast q̂ to define the interval (−∞, q̂) and evaluate this interval’s
coverage. Christoffersen (1998) provides likelihood ratio tests for the intervals’ correct
conditional coverage. Table A4 reports the resulting likelihood ratio tests using the
20th percentile.
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Table A1: Out-of-Sample 80th Percentile Shock Forecasts
IP CFNAI

Panel A: Individual Systemic Risk Measures

Absorption 1.14 0.01

AIM 3.57∗∗∗ −3.97

CoVaR 0.76 −2.52

∆CoVaR 0.40 −2.97

MES −1.29 −3.12

MES-BE 0.33 −0.53

Book Lvg. − −1.32

CatFin 0.19 −2.78

DCI −3.96 −0.80

Def. Spr. −4.48 −3.38

∆Absorption −0.92 −1.85

Intl. Spillover − −0.75

GZ − −2.34

Size Conc. −3.02 −0.59

Mkt. Lvg. − 0.23

Volatility 0.34 −2.69

TED Spr. 16.22∗∗∗ 7.41∗∗∗

Term Spr. −4.14 −4.28

Turbulence 0.31 −0.28

Panel B: Systemic Risk Indexes

Multiple QR −48.21 −68.59

Mean 4.69∗∗ 0.44

PCQR1 −3.47 −2.39

PCQR2 −6.00 −8.74

PQR −5.73 0.24

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1946-2011 for IP and 1967-2011
for CFNAI. Out-of-sample period starts in 1976, except for Ted Spread which begins later. Rows
“Absorption” through “Turbulence” use each systemic risk measure in a univariate quantile forecast
regression for IP. “Multiple QR” uses all systemic risk measures jointly in a multiple quantile regression.
Rows “PCQR1” through “PQR” use dimension reduction techniques on all the systemic risk measures.
Mean is a simple average, PCQR1 and PCQR2 use one and two principal components, respectively,
in the PCQR forecasting procedure, while PQR uses a single factor.
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Table A2: Simulation Evidence

Location Scale Loc. and Scale
T,N Corr. MAE Corr. MAE Corr. MAE

Panel A: PCQR
T,N = 50 0.87 0.61 0.76 2.77 0.89 0.50
T,N = 100 0.94 0.33 0.85 6.39 0.95 0.28
T,N = 500 0.99 0.12 0.98 0.16 0.99 0.11
T,N = 1, 000 0.99 0.08 0.99 0.11 1.00 0.07

Panel B: PQR
T,N = 50 0.74 0.80 0.56 3.07 0.72 0.90
T,N = 100 0.84 0.51 0.70 1.06 0.84 0.54
T,N = 500 0.96 0.22 0.91 0.33 0.96 0.21
T,N = 1, 000 0.98 0.15 0.95 0.22 0.98 0.15

Notes: Simulation evidence using the model described in the text. We consider dimensions for T,N
between 50 and 1,000. We report time series correlation and mean absolute pricing error between the
true and estimated 0.1 conditional quantiles. Panel A reports results for PCQR using two principal
component indexes, and Panel B reports results for PQR using a single index. The simulated model
is described in Appendix A.
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Table A3: Quantile Forecasts of US IP Growth Using Granger Causality Tests
20th Median

Absorption 0.04 2.92∗

AIM 74.54∗∗∗ 0.00

CoVaR 11.16∗∗∗ 12.10∗∗∗

∆CoVaR 8.33∗∗∗ 5.30∗∗

MES 6.04∗∗ 4.46∗∗

MES-BE 0.03 0.00

Book Lvg. 0.24 0.00

CatFin 40.74∗∗∗ 10.86∗∗∗

DCI 0.14 0.13

Def. Spr. 8.77∗∗∗ 20.51∗∗∗

∆Absorption 0.03 0.08

Intl. Spillover 0.21 1.77

GZ 6.24∗∗ 20.07∗∗∗

Size Conc. 0.01 0.00

Mkt. Lvg. 10.37∗∗∗ 7.19∗∗∗

Volatility 12.48∗∗∗ 23.19∗∗∗

TED Spr. 4.65∗∗ 0.04

Term Spr. 1.02 1.11

Turbulence 12.64∗∗∗ 6.64∗∗∗

Notes: The table reports Wald statistics of the test that the systemic risk measure (by row) does not
Granger cause (in the quantile sense) IP growth in the regression at a particular quantile (by column).
Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***, respectively; we do
not test the Multiple QRmodel. Sample period is 1946-2011. Rows “Absorption” through “Turbulence”
use each systemic risk measure (by row) singly in a quantile regression.
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Table A4: Conditional Coverage Tests of the Intervals defined by the 20th Percentile,
for IP Growth

1950 1970 1990

Absorption 0 0 0

AIM 0 0 0

CoVaR 0 0 ∗ ∗ ∗
∆CoVaR 0 0 ∗ ∗ ∗
MES 0 ∗ ∗ ∗ ∗ ∗ ∗
MES-BE 0 0 0

Book Lvg. 0 0 0

CatFin 0 0 0

DCI 0 0 0

Def. Spr. 0 0 0

∆Absorption 0 0 0

Intl. Spillover 0 0 0

GZ 0 0 ∗ ∗ ∗
Size Conc. 0 0 0

Mkt. Lvg. 0 0 0

Volatility 0 ∗∗ ∗ ∗ ∗
TED Spr. − − 0

Term Spr. 0 0 0

Turbulence 0 0 0

Multiple QR 0 0 0

MEAN 0 0 0

PCQR1 0 0 ∗ ∗ ∗
PCQR2 0 0 ∗ ∗ ∗
PQR 0 0 0

Notes: The table reports likelihood ratio test significant of the null hypothesis that the estimated
quantile q̂ defines an interval (−∞, q̂) that has correct conditional coverage, following Christoffersen
(1998). Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***, respectively;
acceptance of the null hypothesis is denoted by “0”.
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Table A5: 20th Percentile US IP Growth Forecasts, Excluding the Recent Crisis
In-Sample Out-of-Sample

Out-of-sample start: 1950 1975 1990

Panel A: Individual Systemic Risk Measures

Absorption 0.03 −3.19 −10.38 −4.39

AIM 4.68∗∗∗ 3.91∗∗∗ 5.10∗∗ 9.30∗∗∗

CoVaR 2.03∗∗∗ 0.14 −2.46 −4.77

∆CoVaR 0.42∗∗∗ −1.63 −6.24 −5.50

MES 0.45∗∗∗ −1.63 −5.52 −4.02

MES-BE 2.47∗∗∗ 1.84∗∗∗ 6.66∗∗∗ 6.82∗∗∗

Book Lvg. 0.39 − 3.14∗∗ 1.82∗∗∗

CatFin 3.12∗∗∗ 2.84∗∗∗ 7.55∗∗∗ 8.00∗∗

DCI 0.03 −1.44 −1.00 −2.12

Def. Spr. 0.55∗∗∗ −2.17 0.08 2.93∗∗∗

∆Absorption 0.17∗∗ −0.89 −0.03 −0.36

Intl. Spillover 0.02 − 4.54∗∗∗ 5.89∗∗∗

GZ 1.91∗∗∗ − −0.57 6.69∗∗∗

Size Conc. 0.02 −2.47 −7.41 −5.19

Mkt. Lvg. 7.33∗∗∗ − 7.57∗∗ 7.75∗∗

Volatility 1.45∗∗∗ 0.51 −0.82 −4.20

TED Spr. 0.89 − − 8.96∗∗

Term Spr. 2.23∗∗∗ 0.78 4.99∗∗ 4.92∗∗

Turbulence 1.40∗ 0.94 3.66∗∗∗ 3.13

Panel B: Systemic Risk Indexes

Multiple QR 19.61 −66.12 −53.18 −7.87

Mean 1.75∗∗∗ 0.50 3.01∗ −0.78

PCQR1 2.06∗∗∗ −2.46 −2.97 −6.44

PCQR2 1.67∗∗∗ 0.06 1.69 −0.07

PQR 11.94∗∗∗ 5.31∗∗ 11.58∗∗∗ 12.83∗∗∗

Notes: The table reports quantile forecast R2 (in percentage) relative to the historical quantile model.
Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***, respectively;
we do not test the Multiple QR model. Sample is 1946-2007. In-sample statistics are in column
one. The out-of-sample start is noted for each column. Rows “Absorption” through “Turbulence” use
each systemic risk measure in a univariate quantile forecast regression for IP growth rate shocks in
the US. “Multiple QR” uses all systemic risk measures jointly in a multiple quantile regression. Rows
“PCQR1” through “PQR” use dimension reduction techniques on all the systemic risk measures. Mean
is a simple average, PCQR1 and PCQR2 use one and two principal components, respectively, in the
PCQR forecasting procedure, while PQR uses a single factor. Owing to its late availability, TED Spr.
is excluded from Multiple QR and PCQR calculations. “−” indicates insufficient data for estimation
in a given sample.
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Table A6: Out-of-Sample 20th Percentile IP Growth Forecasts in the US using Real-
Time Data

US

Out-of-sample start: 1950 1976 1990

Panel A: Individual Systemic Risk Measures

Absorption −3.19 −10.38 −4.39

AIM 3.91∗∗∗ 5.10∗∗ 9.30∗∗∗

CoVaR 0.14 −2.46 −4.77

∆CoVaR −1.63 −6.24 −5.50

MES −1.63 −5.52 −4.02

MES-BE 1.84∗∗∗ 6.66∗∗∗ 6.82∗∗∗

Book Lvg. − 3.14∗∗ 1.82∗∗∗

CatFin 2.84∗∗∗ 7.55∗∗∗ 8.00∗∗

DCI −1.44 −1.00 −2.12

Def. Spr. −2.17 0.08 2.93∗∗∗

∆Absorption −0.89 −0.03 −0.36

Intl. Spillover − 4.54∗∗∗ 5.89∗∗∗

GZ − −0.57 6.69∗∗∗

Size Conc. −2.47 −7.41 −5.19

Mkt. Lvg. − 7.57∗∗ 7.75∗∗

Volatility 0.51 −0.82 −4.20

TED Spr. − − 8.96∗∗

Term Spr. 0.78 4.99∗∗ 4.92∗∗

Turbulence 0.94 3.66∗∗∗ 3.13

Panel B: Systemic Risk Indexes

Multiple QR −66.12 −53.18 −7.87

Mean 0.50 3.01∗ −0.78

PCQR1 −2.46 −2.97 −6.44

PCQR2 0.06 1.69 −0.07

PQR 5.31∗∗ 11.58∗∗∗ 12.83∗∗∗

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1946-2011 for US data take as real-time
data from the St. Louis Fed’s ALFRED. Out-of-sample start date is noted for each column. Rows
“Absorption” through “Turbulence” use each systemic risk measure in a univariate quantile forecast
regression for IP growth rate shocks. “Multiple QR” uses all systemic risk measures jointly in a
multiple quantile regression. Rows “Mean” through “PQR” use dimension reduction techniques on all
the systemic risk measures. Mean is a simple average, PCQR1 and PCQR2 use one and two principal
components, respectively, in the PCQR forecasting procedure, while PQR uses a single factor. “−”
indicates insufficient data for estimation in a given sample.
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