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Introduction 

People make many decisions with both short-term and long-term consequences. For 

example, smoking a cigarette has the immediate benefit of averting nicotine withdrawal and the 

long-term risk of lung cancer. Decisions involving consequences at different points in time are 

referred to as intertemporal choices (see Frederick, Loewenstein, & O'Donoghue, 2002, for a 

review). 

The primary theoretical paradigm that has been used to explain intertemporal choice has 

been the theory of delay discounting (Ainslie, 1975; Frederick, Loewenstein, & O'Donoghue, 

2002), which assumes that delayed rewards are discounted more as they are moved further into 

the future. The rate at which delayed consequences lose value is referred to as a discount rate. 

Discount rates are sometimes used as a measure of impatience. 

There are several well-known models of delay discounting, including the classical 

economic model of exponential discounting, which assumes a constant discount rate (Samuelson, 

1937); and the more recent hyperbolic discounting model, which assumes that discount rates 

decline as time to delivery increases (Ainslie, 1975). A large body of research has measured 

discount rates to characterize individual differences in impatience (e.g., Kirby, Petry & Bickel, 

1999; Shamosh et al., 2008). 

With delay discounted utility, intertemporal preferences are modeled with a discount 

function, D(t), and a utility (or value) function u(x). The utility function translates rewards (e.g. 

$1 or a serving of food) into units of value for the individual (20 servings of food may not be 20 
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times as valuable as a single serving to an individual). The discount function measures how that 

unit of utility decays if it is delivered at a time delay of t periods. The total value of a reward x at 

time t is the (multiplicative) product of the discount function and the utility function.  

The canonical experimental task used to measure discount functions is an intertemporal 

choice task in which individuals choose between a smaller-earlier monetary reward and a larger-

later monetary reward. We refer to such tasks as Money Earlier or Later (MEL) tasks. MEL tasks 

are typically assumed to measure a decision-maker’s discount function directly (Frederick, 

Loewenstein, & O'Donoghue, 2002). However, the results of MEL tasks exhibit several 

empirical regularities that cannot be accounted for easily by theories of delay discounting. For 

example, an extensive body of research has found that individuals are more impatient (per unit 

time) for shorter time horizons than longer ones (Ainslie, 1975; Loewenstein & Prelec, 1992; 

Laibson, 1997; Prelec, 2004) — a finding that cannot be explained by simple exponential 

discounting.  Several different (and complementary) extensions have been offered to account for 

this apparent anomaly.   Some researchers have argued that decreasing impatience reflects 

nonlinear perceptions of time (Ebert & Prelec, 2007; Zauberman, Kim, Malkoc, & Bettman, 

2009) or diminished sensitivity to delay (Scholten and Read 2010). Other researchers have 

explained it with hyperbolic discounting, which has become the leading model of intertemporal 

choice in psychology. But a large accumulation of additional findings, including studies of sub-

additive discounting (Read, 2001), date/delay discrepancies (Read, Frederick, Orsel, & Rahman, 

2005), similarity effects (Rubinstein, 1988; Rubinstein, 2003), delay/speedup asymmetries, and 

query-order effects (Loewenstein & Thaler, 1989; Weber et al., 2007) suggests that intertemporal 

choice is not well described by either exponential or hyperbolic discounted utility models. 
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 Heuristics provide an alternative approach to understanding intertemporal choice 

behavior. Heuristics are shortcuts that afford simpler, if not optimal solutions to a problem. We 

describe a model of decision-making, which we call the intertemporal choice heuristic (ITCH) 

model, in which decisions are made by using simple arithmetic heuristics to compare earlier and 

later options. This approach is consistent with a general preference for earlier rewards, without 

making any assumptions about the existence of an underlying discount function. In this respect, 

it is closely related to two other heuristic models of decision making in intertemporal 

choice— the DRIFT model of Read et al. (Read, Frederick & Scholten, 2013), and the tradeoff 

model of Scholten and Read (2010).  The ITCH model is motivated by a large literature 

concerning the use of heuristics in decision making, including attribute-based models of choice 

(Tversky, 1972; Payne, Bettman, & Johnson, 1988) and proportional thinking (Bordalo, 

Gennaioli, & Shleifer, 2012; Tversky & Kahneman, 1981). Here, we compare how heuristic 

models compare to models that assume systematic discounting. 

First, we show that the functional form of the ITCH model can account for a number of 

the anomalies concerning human performance in MEL tasks reported in the literature. In the 

ITCH model, decisions depend on the sum of absolute and relative (percentage) differences of 

the attributes of reward – specifically, the absolute and relative differences in dollars and the 

absolute and relative differences in time.  By considering both absolute and relative comparisons, 

the ITCH model is able to account for patterns of decision-making that have been a challenge to 

explain in terms of utility and discount functions. 

Second, to make rigorous comparisons between different models used to interpret 

behavior in MEL experiments, we collect data on MEL choices in a variety of framing 

conditions and use these to conduct model comparisons. Unlike earlier studies, our use of out-of-
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sample evaluation methods to conduct model comparisons provides an unbiased estimate of the 

extent to which different models fit the empirical data collected in typical MEL tasks. To do so, 

we employ cross-validation techniques that are now widely used for model comparison in 

contemporary statistics and machine learning (Kohavi, 1997; Arlot & Celisse, 2010). By 

conducting a quantitative, out-of-sample comparison of the fit of heuristic and discounting 

models to empirical data, we show that the heuristic models do significantly better at accounting 

for people’s intertemporal choice behavior than standard discounting models. We conclude by 

discussing the differences among the heuristic models.  Critically, however, our results show 

that, when confronted with intertemporal choices involving money, people use heuristics rather 

than systematic discounting to make their decisions.  

Intertemporal Choice Heuristics Model (ITCH Model) 

  As suggested above, the ITCH model is based on psychological principles rather than 

economic theory. In particular, the ITCH model is inspired by a large body of research in 

judgment and decision-making that provide support for attribute-based models of choice. In 

attribute-based models, a decision-maker weighs several distinct reasons for and against taking a 

decision. For example, Lichtenstein and Slovic’s seminal study of risky choice found that the 

relevant weight placed on certain attributes reliably shifts when participants make binary choices 

versus situations in which people estimate the monetary value of a gamble (Lichtenstein & 

Slovic, 1971). Similarly, Shafir et al. describe decision-making in terms of reasons for and 

against a decision that can be used as retrospective justifications for a decision (Shafir, Simonson 

& Tversky, 1993).  

          Likewise, the ITCH model assumes that decision-makers compare the two options in a 

typical MEL task in terms of the reasons that would argue for or against each option. These 
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heuristic comparisons generate a vector of arguments for and against selecting the earlier or later 

option. Using these comparisons, participants construct a weighted combination that determines 

the probability of choosing each of the two options in a MEL task. 

The specific heuristics used in the ITCH model involve the simplest arithmetic 

comparisons that can be made between the two options (e.g., subtracting and/or dividing them) 

along each of the two relevant dimensions (i.e., dollar value and time of delivery). The 

application of each heuristic to a particular pair of options generates a vector of four features for 

that choice (i.e., the results of each simple arithmetic computation), each of which favors one 

option or the other. The model assumes that the final decision is made based on a weighted sum 

of these four features. The weights can be interpreted as reflecting the attentional focus and/or 

importance placed on each heuristic comparison. The model is consistent both with individuals 

using all four heuristics and attaching different weights to them and/or as an approximation to a 

model in which each individual relies only on a single (or subset of) heuristics, and the heuristics 

that are used are chosen probabilistically (across tasks or individuals).  

Below, we show that the ITCH model provides a good fit to data from five different 

variants of a MEL task. The pattern of weights it assigns to the heuristics is broadly consistent 

across participants and task variants, suggesting that people use a stable combination of 

heuristics when evaluating MEL questions, irrespective of manipulations of content and context. 

In addition, the differences in relative weights assigned to different heuristics across task variants 

offer additional insights into the decision-making process, as these weights provide a mechanism 

for quantifying the differential importance assigned to different heuristics in different framing 

contexts. 
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The heuristics of the ITCH model implement four basic psychological principles: (a) 

participants compare each option relative to a reference point (Kahneman & Tversky, 1979); (b) 

comparisons are performed in both absolute terms (by subtraction) and relative terms (by 

division) (Thurstone, 1927); (c) comparisons are performed independently along the monetary 

and time dimensions (Lichtenstein & Slovic, 1971); and (d) the results of these comparisons are 

then aggregated linearly using a set of decision weights (Busemeyer & Townsend, 1993). We 

apply these principles to intertemporal choice, but these could also be applied to develop 

heuristic choice models in other domains; see the heuristic model of risky choice in Mellers et al. 

(1995). 

Mathematical Specification of the ITCH Model 

We formalize the ITCH model (for binary choices) as follows. The ITCH model treats 

the dimensions of time and money symmetrically. Each of the two options is written in the form 

(x, t), where x is the option’s monetary value and t is the time the money would be received. The 

probability of choosing the larger later option, denoted P(LL), in a choice between a smaller, 

earlier amount of money, (x1, t1), and a larger, later amount of money, (x2, t2), is expressed as, 

P(LL)  L I  xA(x2 x1) xR
x2 x1

x*
 tA (t2  t1) tR

t2  t1

t*







  

where (x*, t*) represents a reference point that is the arithmetic average of the two options along 

each dimension: 

x*  x1  x2

2
 , 

t*  t1  t2

2
 . 
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In this equation, L is the cumulative distribution function (CDF) of a logistic distribution with 

mean 0 and variance 1. Thus, each term of the model represents either an absolute or 

proportional arithmetic operation that compares the options along a particular dimension (dollar 

value and time).  Each term is multiplied by a parameter β that represents the weight given to 

each heuristic in making the decision between the two choices. The weighted sum of the 

outcomes predicted by each heuristics then determines the probability of choosing one option or 

the other.  This model can be fit to data from different versions of a MEL task to estimate and 

compare the parameters across conditions. (See SOM-R). 

The ITCH model can explain the two most robust and widely observed phenomena in 

MEL tasks— decreasing impatience and the absolute magnitude effect— in terms of a single, 

consistent set of heuristics: the simultaneous consideration of absolute and relative differences 

between the two options. For example, when the weight on relative time βtR is negative (as in our 

fitted estimates), the ITCH model predicts that the probability of choosing the larger, later 

amount will increase as both options are delayed by an additional identical amount of time—e.g. 

by adding a front-end delay to both options. Such decreasing impatience (Prelec, 2004) has often 

been interpreted as evidence of hyperbolic discounting (Ainslie, 1975). According to the ITCH 

model, this is a natural consequence of including both relative and absolute differences in time: 

the relative difference between the timing of the two goods decreases as the earliest available 

option moves into the future – even as the absolute difference is held fixed. 

Consider the following concrete example.  If the participant uses weights (0.0, 0.1, 0.1, -

0.1, -0.1) and selects between $10 today and $20 tomorrow, then the probability of choosing the 

later option is 

P(LL)  L 00.1(2010)0.1
2010

(2010)/ 2
0.1 (10)0.1

10

(10) / 2









 0.68 



HEURISTICS EXPLAIN INTERTEMPORAL CHOICE 
 10 

In contrast, if the participant selects between $10 in 10 days and $20 in 11 days, only the relative 

time term changes. The probability of choosing the later option increases to 

P(LL)  L 00.1(2010)0.1
2010

(2010)/ 2
 0.1 (1110)0.1

1110

(1110) / 2









 0.72  

ITCH also makes the prediction that, when the weight on the monetary difference term 

βxA is positive, multiplicatively scaling up the magnitude of the monetary amounts will make 

participants more likely to take the later option. This prediction has been confirmed in virtually 

all MEL tasks that have tested it and is often referred to as the Absolute Magnitude Effect 

(Loewenstein & Prelec, 1992). Using the same weights as before (0.0, 0.1, 0.1, -0.1, -0.1), 

consider what happens when the stakes are scaled up by a factor of ten. The probability of 

choosing the later option when choosing between $10 today and $20 tomorrow is still 0.68. 

However, when choosing between $100 today and $200 tomorrow, only the absolute monetary 

difference term changes. The probability of choosing the later option will be: 

200 100 1 0
( ) 0 0.1(200 100) 0.1 0.1 (1 0) 0.1 0.99

(200 100)/ 2 (1 0) / 2
P LL L

  
          

 

The magnitude effect can also be generated by a concave value function for rewards (e.g. as in 

the tradeoff model). In general, a model in which decisions are made based on a combination of 

absolute and relative comparisons mimics the effects otherwise attributed to psychophysical 

curvature or diminishing marginal utility.   

Moreover, by letting the intercept term  I vary across different framing conditions, the 

ITCH model can also capture the large number of anomalies that can be conceptualized as 

presenting the same information in different frames (e.g.  I might be higher in a task that 

presents time-dated payments as dates rather than delays).  Finally, ITCH is an example of a 

heuristic model that produces non-additive discounting behavior (i.e. total discounting over an 
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interval depends on whether it is presented as one long interval or subdivided into separate 

intervals); see an extended discussion for a similar model in Scholten and Read (2010). 

The ITCH model is similar to other heuristic models of MEL behavior, including both 

Scholten and Read (2010)’s tradeoff model and Read et al. (2013)’s DRIFT model. Unlike 

systematic discounting models, they do not produce a discounted utility value by multiplying a 

discount function and utility function.  Instead, like ITCH, they explain choice in terms of the 

sum of different factors, including allowing the effects of money and time to be additively 

separable. However, these models differ in a few potentially important ways. ITCH includes 

absolute and percentage comparisons for time delay, whereas DRIFT only includes an absolute 

comparison.  The model fits we present below suggest that the percentage comparison for time 

delay is statistically significant. DRIFT includes an interest rate term and a term that captures 

consumption versus investment framing.  The tradeoff model assumes concave functional forms 

for perceived time delay and perceived reward magnitude, which are used to account for 

diminishing sensitivity.  In contrast, ITCH relies exclusively on simple arithmetic comparisons, 

which are symmetrically applied to both money and time. Our results below indicate that ITCH 

provides a slightly better fit to the data than the alternative heuristic models.  However, what is 

most significant — in both a statistical and conceptual sense — is that all three heuristic models 

provide a substantially better fit than the current standard economic models of intertemporal 

decision-making, suggesting that further work developing and refining heuristic models of 

intertemporal choice will be fruitful. 

Model Comparisons across Five Experiments 

 We conducted five closely related experiments to compare the three heuristic models 

with three standard economic models — the exponential, hyperbolic, and quasi-hyperbolic 
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models of discounting (Samuelson, 1937; Ainslie, 1975; Laibson, 1997). One thousand 

participants were recruited from the Mturk.com online labor market. These participants were 

randomly assigned to one of five task variants under which 25 hypothetical choices were 

presented in a random order. Each condition involved a MEL task that differed in the framing of 

the two time-dated options: 

1. Absolute $, Delay Framing: $5 today vs. $5 plus an additional $5 in 4 weeks 

2. Relative $, Delay Framing: $5 today vs. $5 plus an additional 100% in 4 weeks 

3. Standard MEL Format: $5 today vs. $10 in 4 weeks 

4. Absolute $, Speedup Framing: $10 in 4 weeks vs. $10 minus $5 today 

5. Relative $, Speedup Framing: $10 in 4 weeks vs. $10 minus 50% today 

The use of conditions framing the choices as delay vs. speedup parallels the order manipulations 

used in the studies by Weber et al. (2007). Within a framing condition, each participant answered 

25 randomly generated MEL questions designed to span a large range of dollar amounts and 

delays. (See SOM-R)  

To compare models, we used a cross-validation approach in which each model was fit to 

one subset of our data and then tested on another subset of data. In order to generate many 

training and test datasets, we randomly subsampled 75% of the data as a training dataset and 

25% as a test set; we repeated this subsampling procedure 100 times. Cross-validation provides 

an unbiased method for comparing the predictive power of models with different numbers of 

parameters, which is necessary in our case because the each of the heuristic models has more 

parameters than some of the discounting models with which they were compared (Kohavi, 

1995). Cross-validation is a type of out-of-sample analysis. In contrast, standard measures of 
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model fit applied in-sample (e.g. the calculation of R2 values) do not provide reliable indicators 

of the generalizability of fitted models. 

In all five experiments, the three heuristic models (ITCH, DRIFT, and tradeoff) 

outperformed all of the standard delay discounted utility models of intertemporal choice in 

predicting participants’ choices. The specification of each model is listed in the SOM-R. Within 

the heuristic class, the ITCH model outperformed the tradeoff and DRIFT models. Table S1 

shows the results when, separately for each experimental condition, we fit the model on the 

training data and tested it on the testing data for that condition. (Note that this method thus lets 

model parameters vary by condition, capturing generalizations of each model that would let 

parameters differ between delay v. speedup and absolute v. relative frames).  

Since relative model performance results are similar across conditions, Figure 1 presents 

a pooled analysis of model performance across conditions.  In this analysis, for each cross-

validation subsample, we estimated one set of model parameters on the training data pooled from 

all five experimental conditions and then assessed the fit on the pooled testing data.  
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Figure 1. The predictive accuracy of the standard and heuristic models of intertemporal choice 

for pooled data from all five experiments. Errors are measured using mean absolute deviation. 

The error bars reflect the variability of the model comparison results under cross-validation. 
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For the ITCH model, we found that the  β decision weights for the four component 

heuristics were relatively stable across experimental conditions. Figure 2 plots six sets of 

decisions weights: the weights when estimated separately on the five conditions, plus a set of 

weights estimated on the pooled data across all conditions (see also Table S3 for raw numbers). 

Absolute time and relative time were weighted similarly, but relative money received much 

higher weight than absolute money; we speculate that this was due to a much larger range in 

dollar reward amounts available than time delays available.  

Although the magnitude of the parameters varied across fits, the pattern of decision 

weight β parameters were stable across framing conditions. The estimates imply that participants 

assigned a qualitatively similar pattern of relative weights to the heuristics represented by each 

term of the ITCH model, irrespective of manipulations of task content or context. Moreover, 

variations in parameter estimates across conditions capture variations between the comparisons 

made salient by each of the tasks. The ratios of the relative to absolute comparison coefficients 

are higher in the conditions that emphasize relative differences of money than in conditions that 

emphasize absolute differences in money. Because our frames always presented time delays in 

absolute, not relative, terms, we expected to see less variation in the coefficients on relative time. 

Finally, the variation in the intercept term  I also captures differences between conditions in 

generalized impatience. 
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Figure 2. The pattern of decision weights is highly consistent across different forms of MEL 

tasks. Six sets of decision weights are shown: one for each of the five condition, plus a sixth set 

estimated on the pooled data. To make decision weights more readily comparable, we z-scored 

all inputs. We tested the consistency of decision weights by computing the pairwise correlations 

between decision weights across the six data sets and comparing this against the null hypothesis 

of no correlation (t = 125.977, df = 35, p < 10-14). 

Discussion 

To understand the anomalous decision-making behavior observed in MEL experiments, 

we developed an alternative account of behavior in MEL tasks – the ITCH model – based on 

basic psychological principles, including reference points and simple arithmetic comparisons. 

The results of our model comparisons show that both this model and the other two heuristic 
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models provide substantially better fits to choices in MEL tasks than standard economic models 

of intertemporal choice that rely on a discount function.  

The fit of the ITCH model demonstrated that the relative weights assigned to each of the 

heuristics in the model were stable across individuals and a range of conditions. Moreover, the 

variations in the weights across framings were themselves interpretable in terms of the relative 

salience of different comparisons suggested by question framing. Thus, while participants’ 

decision making behavior in MEL tasks may not be meaningfully described by a discount 

function, our findings suggest that decision-making in MEL tasks nevertheless exhibits a form of 

psychological stability that may generalize to other tasks. 

In summary, our findings raise two important points. The ability of heuristic models to 

predict behavior in MEL tasks suggests that for these tasks, as for many other decision-making 

tasks, people may apply simple heuristics to generate a response that is sufficient for their 

purposes rather than employ a decision-process that mirrors conventional economic models. The 

ITCH model and related models show that a weighted combination of simple heuristics can 

model time-money tradeoffs in MEL tasks well. Future research should evaluate the usefulness 

of this approach for other types of intertemporal choices besides MEL, as decision-making tasks 

in other domains, such as risky choice. 
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SOM-R 
 
Materials and Methods for Experiments 1-5 

For these experiments, we recruited 1,000 participants from the Amazon.com Mechanical 

Turk online labor market. Our sample size was determined based on previous exploratory studies 

in which we found a sample size of 1000 participants was sufficient to fit various discount 

functions to the data. We collected these 1000 participants and stopped collecting further data. 

Participants were randomly assigned to one of the five task variants described in the main 

text. They made hypothetical choices, allowing us to use a large range of monetary rewards. We 

generated random questions that spanned dollar amounts from $0.01 to $100,000.00 and time 

amounts from 0 weeks to 6 weeks. The specific questions shown to each participant were 

randomly generated in order to make the four terms of Equation 1 in the main text orthogonal 

across participants. 

We estimated the parameters of the ITCH model using standard maximum likelihood 

estimation techniques for Generalized Linear Models. To compare models, we performed a 

cross-validation analysis that repeatedly split the data into two randomly generated parts: the first 

part consisted of 75% of the data and was used to estimate the parameters of our model; the 

second part consisted of 25% of the data and was used to assess the model’s fit to “held out” data 

(Kohavi, 1995). We assessed model fit using the Mean Absolute Deviation (MAD) between a 

model’s prediction (which is a probability between 0 and 1) and the actual choice indicator 

(which is 0 or 1 depending on whether the LL option was chosen) because this metric is 

interpretable on the scale of probabilities and robust to outliers. (When model fit is assessed 

using held-out log likelihood and Root Mean Squared Error, the results are qualitatively similar). 

We compared the ITCH model with seven other models of intertemporal choice: a 

baseline model that makes choices by flipping a biased coin, exponential discounting, hyperbolic 
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discounting, generalized hyperbolic discounting, quasi-hyperbolic discounting, and a fixed cost 

model of delay (Benhabib, Bisin & Schotter, 2010). We also estimated the “DRIFT” model of 

Read et al. (2013).  

Because the discounting models contain nonlinearities and impose theoretical limits on 

allowable model parameters, we estimated them via maximum likelihood using a constrained 

optimization suite in R that implements the L-BFGS-B algorithm (Zhu, Byrd, Lu, & Nocedal, 

1997). 

The functional forms of each model are listed below. In each of these models, the 

notation, L(z), represents the inverse logistic function of z: 

L(z) (1ez )1 

The notation I(x) represents the indicator variable that is 1 if x is true and 0 otherwise. The 

variable a represents the logistic scaling parameter. 

 Baseline model: P(LL)    (empirical mean) 

 Exponential model:   12
2 1( ) t tP LL L a x x    

 Hyperbolic model: 1 1
2 2 1 1( ) (a( (1 ) (1 ) ))P LL L x t x t       

 Quasi-hyperbolic model: 2 2 1 1( 0) ( 0)
2 1( ) ( ( ))I t t I t tP LL L a x x       

 Tradeoff model: 

P(LL)  L a log(1
x
x

2
) / 

x
 log(1

x
x

1  / 
x
 k(log(1

t
t

2
) log(1

t
t
1
)/ 

t
)    

 DRIFT model:
2 1

1

2 1 2
0 1 2 1 2 3 2 14

1 1
( ) ( ) ( 1) ( )

t tx x x
P LL L x x t t

x x
    


         
 
 

 

 ITCH model: P(LL)  L I  xA(x2  x1) xR
x2 x1

x*
 tA (t2  t1) tR

t2  t1

t*







  
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We find that the exponential, hyperbolic, quasi-hyperbolic and generalized hyperbolic 

models can be numerically unstable. To resolve this numeric instability, we compute the 

probability of an entire sequence of choices by bounding the per-choice probabilities estimated 

using the functional forms above at a value that is not 0 or 1. In our estimation, the exponential, 

hyperbolic, quasi-hyperbolic and generalized hyperbolic models perform better when bounded.  

Table S1 shows the results when bounded at 0.01 and 0.99. These bounded probabilities are 

computed as: 

P(LLb)  (1)P(LL) 
2

 

For the non-heuristic models, we have also estimated variants in which utilities do not 

have constant variance logistic noise (as implied by the inverse logistic function), but are instead 

have scale-invariant, homothetic noise. With homothetic noise, the probability of errors depends 

on the ratio of the utilities of the two goods, rather than on their absolute difference. This 

homothetic noise assumption the following functional forms: 

 Homothetic exponential model: P(LL)  L(log(x2 t 2 ) log(x1 t1 ))  

 Homothetic hyperbolic model: P(LL)  L(log(x2(1t2)1) log(x1(1t1)1))  

 Homothetic quasi-hyperbolic model: P(LL) L(log(x2 I (t 20) t 2 ) log(x1 I (t10) t1 )) 

The results comparing the heuristic models against these homothetic models are shown in Table 

S2. 
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SOM-R Tables 
 
Experiment Baseline Exponential Hyperbolic Quasi-

Hyperbolic 
Tradeoff DRIFT ITCH 

Pooled 0.4674 
 (0.0002) 

0.4923 
 (0.0001) 

0.4923 
 (0.0001) 

0.4922 
 (0.0001) 

0.4584 
(0.0002) 

0.4081 
(0.0003) 

0.3998 
 (0.0003) 

1: Absolute $, 
Delay 

Framing 

0.4106 
(0.0007) 

0.4584 
 (0.0008) 

0.4556 
 (0.0013) 

0.4573 
 (0.0015) 

0.4067 
(0.0007) 

0.3271 
(0.0009) 

0.3213 
 (0.0010) 

2: Relative $, 
Delay 

Framing 

0.4682 
(0.0004) 

0.4783 
 (0.0023) 

0.4778 
 (0.0022) 

0.4776 
 (0.0023) 

0.4600 
(0.0004) 

0.4005 
(0.0007) 

0.3898 
 (0.0008) 

3: Standard 
MEL 

0.4117 
 (0.0007) 

0.4711 
 (0.0026) 

0.4694 
 (0.0029) 

0.4685 
 (0.0027) 

0.4049 
(0.0007) 

0.3235 
(0.0011) 

0.3156 
 (0.0010) 

4: Absolute $, 
Speedup 
Framing 

0.4942 
 (0.0002) 

0.4990 
 (0.0001) 

0.4987 
 (0.0001) 

0.4987 
 (0.0001) 

0.4842 
(0.0003) 

0.4632 
(0.0004) 

0.4528 
 (0.0006) 

5: Relative $, 
Speedup 
Framing 

0.4941 
 (0.0002) 

0.4847 
 (0.0003) 

0.4844 
 (0.0003) 

0.4846 
 (0.0004) 

0.4861 
(0.0003) 

0.4530 
(0.0005) 

0.4412 
 (0.0005) 

 
Table S1. Mean absolute deviations for all models under cross-validation using data from 
Experiments 1-5. Values in parentheses indicate variability under cross-validation. Per-choice 
probabilities are bounded at 0.01 and 0.99. 
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 Exponential Hyperbolic Quasi-Hyperbolic 

Pooled 0.4165  
(0.0003) 

0.4133  
(0.0003) 

0.4110  
(0.0003) 

1: Absolute $, 
Delay Framing 

0.3528  
(0.0008) 

0.3597  
(0.0008) 

0.3484 
 (0.0009) 

2: Relative $, 
Delay Framing 

0.4025  
(0.0007) 

0.4014  
(0.0007) 

0.3987 
 (0.0007) 

3: Standard MEL 0.3479 
 (0.0011) 

0.3565  
(0.0008) 

0.3423  
(0.0010) 

4: Absolute $, 
Speedup Framing 

0.4662 
 (0.0004) 

0.4586  
(0.0005) 

0.4579  
(0.0005) 

5: Relative $, 
Speedup Framing 

0.4535  
(0.0005) 

0.4474  
(0.0006) 

0.4484  
(0.0005) 

 
Table S2. Mean absolute deviations for classical models after assuming homothetic noise under 
cross-validation using data from Experiments 1-5. Values in parentheses indicate variability 
under cross-validation 
 
 
 

Experiment  I  xA  xR  tA  tR 

1: Absolute $, 
Delay Framing 

-1.11 (0.08) 0.40 (0.07) 1.01 (0.07) -0.22 (0.08) -0.16 (0.08) 

2: Relative $, 
Delay Framing 

-0.59 (0.07) 0.20 (0.06) 0.84 (0.06) -0.25 (0.07) -0.17 (0.07) 

3: Standard MEL -1.13 (0.09) 0.44 (0.08) 1.05 (0.08) -0.29 (0.08) -0.19 (0.08) 

4: Absolute $, 
Speedup Framing 

-0.23 (0.06) 0.20 (0.06) 0.46 (0.06) -0.18 (0.06) -0.30 (0.06) 

5: Relative $, 
Speedup Framing 

-0.23 (0.06) 0.23 (0.06) 0.58 (0.06) -0.18 (0.06) -0.23 (0.06) 

Pooled -0.59 (0.03) 0.27 (0.03) 0.73 (0.03) -0.21 (0.03) -0.21 (0.03) 

 
Table S3. Decision weights for the ITCH model separated by experiment. Values in parentheses 
indicate standard errors. Input variables are z-scored. 
 




