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1 Introduction

Whether it’s bombing our enemies, steering our planes, fielding our calls, rub-

bing our backs, vacuuming our floors, driving our taxis or playing Jeopardy,

it’s hard to think of hitherto human tasks that smart machines can’t already or

won’t soon do. Few smart machines look human. But all combine brains and

brawn – artificial intelligence (AI) and physical capital. And they all share one

creator – us. Indeed, via machine learning, we are now teaching smart machines

to automatically pick our brains.

Will self-precipitated human replacement - the production by ourselves of sub-

stitutes for ourselves - deliver an economic utopia with smart machines satisfying

our every material need? Or will our self-generated redundancy leave us earn-

ing too little to afford what smart machines produce? This paper simulates one

vision of human replacement in a bare bones, overlapping generations (OLG)

model. It features two types of workers consuming two goods for two periods.

Yet it admits a wide range of dynamic outcomes, some quite unpleasant.

The model features high- and low-tech workers. Both work full time, but only

when young. There are two goods – corn and prayer. Corn is produced with

capital and code. Code is the sum of old plus new code. New code is produced

exclusively by high-tech workers.1 Prayers are produced via a combination of

high- and low-tech labor. High-tech workers earn the same whether they produce

code or prayers. Compensation for coding comes from the rent and sale of code.

Code references all rules, instructions, and methods as well as explicit software

that help generate output from given inputs. Conceptually, code is measured

in efficiency units, not literal lines of instructions, as fewer lines are often more

efficient. Old code needs to be retained, maintained, and updated, but is other-

wise a perfect substitute for new code. Hence, the stock of old code undermines

the demand for new code and, thus, for coders.

The potential for old code to obsolesce new coders is illustrated by Junior –

2013’s World Computer Chess Champion. Junior can beat all living and, ar-

guably, all future human beings. Consequently, Junior’s old code has put chess

programmers out of business (insofar as their business is beating humans at

chess). Junior is, of course, a very smart machine – a robot that combines cap-

ital and code. And like other robots, Junior’s code reflects past human brain

1In the U.S., computer and mathematical occupational income accounted for 5.25 per-
cent of total wages in 2016 (Bureau of Labor Statistics, 2017). But a much larger share of
compensation accrues to those engaged in creating code broadly defined.
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power. In this sense, Junior and all other robots are us.

We capture these features with a code depreciation rate and examine the model’s

reaction to a major reduction in this rate arising from, say, the invention of the

silicon chip. The response is a tech boom that raises the demand for new

code and coders. The resulting rise in high-tech and, indeed, low-tech worker

earnings engenders more national saving and capital formation, reinforcing the

boom. But over time, as the stock of legacy code grows, the demand for new

code and, thus, high-tech workers falls.

The eventual decline in wages of high- and, potentially, low-tech workers limits

what the young save and invest. This means less physical capital available for

future use. If the capital stock falls by enough, the economy ends up producing

less output notwithstanding its higher level of technology. This represents a

dynamic reversal of Say’s Law as extra supply of one input (code) reduces, over

time, the demand for and thus supply of another (capital). This is the sense in

which supply reduces demand. Thus, one of the novelties of our model is that

it studies not just how automation may arise and impact the demand for labor.

It also considers the impact of automation on saving and the supply of capital.

Our model’s potential for immiserating growth echoes that in (Sachs and Kotlikoff

2012) and (Sachs, Benzell and LaGarda 2015). Although our model of techno-

logical change differs from those studies, the selfish OLG setting is common and

crucial. It permits the reduction in workers’ wages to translate into lower sav-

ing and reduced capital formation despite the concomitant rise in the interest

rate. If the capital stock falls by enough, the economy’s long run can feature

less output and lower welfare notwithstanding its improved technology. This

potential for immiserating technological progress would not arise in a single,

infinitely-lived agent model arising from altruistic linkages across generations.

In such a model, national saving depends on the relative size of interest and

time preference rates, not the intergenerational distribution of resources. And

a capital shortage would lead to higher interest rates and immediately induce

more saving and capital formation. 2

Even in our OLG model intergenerational immiseration is not inevitable. It

depends on saving preferences as well as the ability to substitute software and

hardware. If young workers save at high rates or soft- and hardware can readily

substitute for one another, immiseration is less likely to arise.

2The evidence against operative intergenerational altruism is very strong, however. See, for
example, Altonji, Hayashi, and Kotlikoff (1992,1997), Hayashi, Altonji and Kotlikoff (1996),
and Abel and Kotlikoff (1994).
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Our main findings assume that code is excludable and rival in its use. This is a

reasonable approximation if software needs bespoke tailoring for each applica-

tion. However, a key economic feature of digital technologies is their replicability

at near zero cost. Therefore, we also consider the case of non-rival code. This

allows us to evaluate the welfare and economic implications of different intellec-

tual property (IP) regimes. This is relevant to policymakers worried about the

effects of emerging AI technologies on market concentration and labor demand

(Benzell and Brynjolfsson 2018a). We find that immiseration from code accu-

mulation is still possible if software is non-rival, and that this is more likely if

intellectual property rules are weak (i.e. code is non-excludable). On the other

hand, weak AI intellectual property protection lowers market concentration by

encouraging more entry by small firms.

Our appendix considers whether long-run immiseration can arise when agents

have more control over technological change à la the directed technological

change models of Acemoglu (2002) and Acemoglu and Restrepo (2018). In

this extension, firms can create either labor-substituting or capital-substituting

code. We find that immiseration is still possible so long as labor-substituting

code technology is more advanced than capital-substituting code technology.3

The next section references the historic debate over machines and robots and

reviews relevant recent literature. Section 3 presents the model and its solution

method. Section 4 illustrates the model’s surprising range of outcomes arising

from a decline in the rate of code depreciation. The range includes immiseration.

Section 5 shows how code rivalry and property rights matter. Section 6 considers

evidence supporting the model’s main predictions, including a decline in labor’s

share. Section 7 concludes.

2 Background and Literature Review

Concern about new technology dates at least to Ned Ludd’s destruction of two

stocking frames in 1779 near Leichester, England. Ludd, a weaver, was whipped

for indolence before taking revenge on the machines. More than three decades

later, in 1812, 150 armed workers – self-named Luddites – marched on a textile

mill in Huddersfield, England. Their purpose was to smash equipment. The

British army promptly killed 19. Later that year the British Parliament passed

3Previous versions of this paper also included a model extension where firms can choose
between a range of production technologies. In such a model immiseration remains pos-
sible. Additionally, Kondratiev-type business cycles, like those seen in our non-rival and
non-excludable code scenario, can arise.

3



The Destruction of Stocking Frames Act, authorizing death for those vandalizing

machines. Nonetheless, Luddite riots continued for several years eventuating in

70 hangings.

Sixty-five years later, Marx (1867) restated Ned Ludd’s warning about machines

replacing humans, stating: “Within the capitalist system all methods for raising

the social productivity of labour are put into effect at the cost of the individual

worker.” Keynes (1933) also raised technology’s potential for job destruction,

writing in the midst of the Great Depression that ”We are being afflicted with

a new disease ..., namely technological unemployment.” But Keynes called this

”only a temporary phase of maladjustment” and predicted a future of leisure

and plenty one hundred years hence. His contention that short-term pain fa-

cilitates long-term gain reinforced Schumpeter’s 1942 encomium to “creative

destruction”.

In the fifties and sixties, with employment high and wage growth rapid, Keynes’

and Schumpeter’s views held sway. Those raising concerns about technology

were derided as “Luddites.” But in recent years the swift loss of all manner of

jobs to smart machines has led economists to rethink Luddism. Erik Brynjolfs-

son and Andrew McAfee (2014)’s book, Race Against the Machine, and Aghion,

et. al.’s (2017) recent paper, Artificial Intelligence and Economic Growth, are

just two examples of a burgeoning literature. Brynjolfsson and McAfee empha-

size the ongoing role of machines in changing relative compensation across occu-

pations, increasing inequality and decreasing labor force participation. Aghion

and his co-authors connect AI to the recent decline in labor’s output share. But

they also view AI as potentially just a new form of automation – one likely sub-

ject to Baumol’s Cost Disease, with long-run outcomes ultimately determined

not by what AI can, but what it can’t do.

The long run, though, can take a long time. Moreover, the message of our and

other OLG models is that where the economy ends up depends on how it gets

there. Hence, the focus by Autor, Levy, and Murnane (2003), Acemoglu and

Autor (2011), Autor and Dorn (2013) and others on how smart machines are

impacting current employment and wage trends is well placed. Each finds signif-

icant outsourcing of middle-skilled workers by smart machines. Goos, Manning,

and Salomons (2010) offer supporting evidence for Europe. Margo (2013) points

to similar labor polarization during the early stages of America’s industrial rev-

olution. Many economists are now connecting robotization to the ongoing de-

cline in labor’s share of output. Hemous and Olson (2014) is an example. Their

model has capital substituting for low-tech and complementing high-tech labor.

Its calibration can explain trends in labor’s share and income inequality since
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the 1960s.

The labor-market impact of smart machines is not without its skeptics. Mishel,

Shierholz, and Schmitt (2013) argue that ‘robots’ can’t explain post-1970’s U.S.

job polarization given the observed timing of changes in relative wages and

employment. Autor (2015) is a another skeptic of Luddism, at least over the

long term. He points out that the automobile displaced equestrian drivers but

introduced myriad occupations for humans in the auto and other industries.

Autor’s argument applies to humans, but not horses, who suffered permanent

job loss. And when it comes to AI, the question is whether today’s humans are

yesterday’s horses.

Our model features an endogenous technological and growth response to an

exogenous technology shock – the aforementioned reduction in the rate of code

depreciation). Hence, our study connects, to a degree, to the endogenous growth

literature, whose major contributions include Schumpeter (1939), Arrow (1962),

Uzawa (1965), Sidrauski (1967), Lucas (1988), Romer (1990), Rebelo (1991),

Ortigueira and Santos (1997), Zeira (1998), Acemoglu (1998), Howitt (1999),

Zuleta (2008), and Peretto and Seater (2013).

As for modeling automation, economists have taken a range of approaches. Zeira

(1998) posits the availability, at a cost, of labor-substituting machines and shows

that countries with high labor costs and low interest rates will industrialize

more rapidly than others. This process produces a dispersion in global per

capita income. Zuleta (2004, 2008) considers the choice not of labor-replacing

machines, but of the degree of capital intensivity. As in Zeira (1998), rich

economies expand relative to poor economies, which can’t afford to increase

their degree of capital intensity. Zeira (2004)’s model is OLG. Hence, he too

finds that the decline in labor income can cause economic problems over time.

In his case, it’s the inability to achieve long-run growth absent the presence of

bequests.

Acemoglu (1998) features firms that invest in technology that differentially raise

the productivity of their least expensive inputs. Rourke, et. al. (2013) examines

18th and 19th technological change in England with special focus on the skill

premium. His model, which is similar to Acemoglu’s (1998), appears capable of

matching the trend in the skill premium over the period.

Peretto and Seater (2013) extend Zuleta (2008). They consider monopolisti-

cally competitive firms that invest in particular technologies depending on their

relative costs. In their model, firms may specialize in the use of one technology
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or produce with multiple technologies.

Acemoglu and Restrepo (2017) endogenize the automation of labor as well as the

invention of new labor-intensive products. The former (later) occurs to a greater

(lessor) degree when wages are high (low). They show that balance growth can

arise with the demand for labor performing innovative tasks offsetting job loss

due to automation.

Guerreiro, Rebelo, and Teles (2017), Costinot and Werning (2018) and others

have examined the use of fiscal policy to offset technology-induced redistribu-

tion. Costinot and Werning (2018) tax technology, via a constrained set of

taxes, in a complete market with a continuum of agents. The authors find that

when it is optimal to tax new technologies, such taxes will likely to be small.

Our framework is different. In particular, it doesn’t admit contracting between

current and future generations. Still, as in Sachs, Benzell and Lagarda (2017),

tax and transfer policies could be added to our model to maintain the capital

stock and preserve the intergenerational distribution of welfare in the face of AI

innovation.

3 The Model

Agents consume two products – corn and prayers.4 Corn, which can be con-

sumed or invested, is produced using capital and code.The CES function gov-

erning corn production can be viewed as a smart machine or robot. Prayers

are produced via a CES function of low- and high-tech labor.5 Prayers are

ephemeral. They are consumed when produced. Prayer and corn are stand-ins

for automatable and non-automatable products, and are rough analogues to

mass-produced goods and interpersonal or artisinal services.

Code is durable, with the stock of code equaling the sum of new and existing

code. New code is created by high-tech workers not working in the prayer sector.

Old code requires maintenance, retention, and updating, which we treat as a

form of depreciation. The numbers of high- and low-tech workers remain fixed

through time.6 Both types of workers live and consume for two periods, but

work only when young.

4Frey and Osborne (2013) identify the priesthood, psychotherapy and coaching as among
the occupations least subject to automation.

5Adding labor to the production function for corn, or capital to the production for prayer,
would not alter our qualitative findings.

6Our model can accommodate long-run balanced growth arising from population growth
or labor-augmenting technological change.
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Production

Time-t production of corn (goods), Yt, and prayers (services), St, satisfy (1)

and (2),

Yt = DY [α(Kt)
εy−1

εy + (1− α)(At)
εy−1

εy ]
εy

εy−1 , (1)

St = DS [γ(HS,t)
εs−1
εs + (1− γ)(Gt)

εs−1
εs ]

εs
εs−1 , (2)

where HS,t is the number of high-tech workers in the prayer sector and Gt

references low-tech workers. DS and DY are total factor productivity terms, γ

and α are CES share parameters, and εy and εs are CES elasticities. The stock

of code At grows according to,

At = δAt−1 + zHA,t, (3)

where the “depreciation” factor is δ ∈ [0, 1). Higher δ means that legacy code is

useful for longer.7 HA,t stands for the supply of high-tech coders and z is their

productivity coefficient.8

The demands for code, high-tech workers, and capital satisfy

max
Kt,At

Yt(At,Kt)−mtAt − rtKt, (4)

where corn is the numeraire, mt is the rental rate for code, and rt is the interest

rate. Factor demands for prayer reflect,

max
HS,t,Gt

qtSt(HS,t, Gt)− wG
t Gt − wH

t HS,t, (5)

where qt is the price of prayer, wH
t is a high-tech worker’s wage in the prayer

sector, and wG
t is a low-tech worker’s wage.

7Some of our simulations assume a depreciation rate of 30 percent per period, where a
period is roughly 30 to 40 years. This corresponds to a typical company needing to replace
approximately 1 percent of its code base annually to maintain the same level of output. The
current actual rate of code depreciation in the economy is unclear. The IRS allows for a 3 year
useful lifespan for licensed software. For software developed in house or purchased bespoke
software, costs can be amortized over a 15 year period (as a section 197 intangible). Software
which is bundled with hardware is implicitly assumed to deprecate at the rate of the hardware.
On the on the hand, many programs created over 50 years ago are still in use, such as those
written for older nuclear reactors.

8The corn production process can be understood by analogy to a firm whose service is
making good chess moves. The firm can improve its service either by increasing the quality
of its chess program (increasing its efficiency units of code) or using more capital (computer
cores) to exploring winning moves.
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Factor prices satisfy

wH
t = qtDS [γ(HS,t)

εs−1
εs + (1− γ)(Gt)

εs−1
εs ]

1
εs−1 [γ(HS,t)

−
1
εs ], (6)

wG
t = qtDS [γ(HS,t)

εs−1
εs + (1− γ)(Gt)

εs−1
εs ]

1
εs−1 [(1− γ)(Gt)

−
1
εs ], (7)

rt = DY [α(Kt)
εy−1

εy + (1− α)(At)
εy−1

εy ]
1

εy−1 [α(Kt)
−

1
εy ], (8)

and

mt = DY [α(Kt)
εy−1

εy + (1− α)(At)
εy−1

εy ]
1

εy−1 [(1− α)(At)
−

1
εy ]. (9)

Households

Whether high-tech or low-tech, households maximize

u = (1− φ)[(1− κ)logcy,t + κlogsy,t] + φ[(1− κ)logco,t+1 + κlogso,t+1], (10)

subject to,

cy,t + qtsy,t +
co,t+1 + qt+1so,t+1

1 + rt+1
= ij,t, (11)

where cy,t, co,t, sy,t, so,t, are consumption of corn and prayer by the young and

old, respectively and ij,t is total resources of group j. For low-tech workers,

iG,t = wG
t . (12)

For high-tech workers in the prayer sector,

i(H,S),t = wH
t , (13)

and for high-tech workers writing code,

i(H,A),t = z(mt + δpt), (14)

where zmt is revenue from renting out newly produced code and zδpt is the

proceeds from the sale of rights to future use of newly produced code.

Households save in the form of capital and code. Capital and code accumulation

obeys

φIt = Kt+1 + ptδAt, (15)

where It is the total resources of those born in t, φ is the saving propensity of
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the young, and ptδAt is the value of code retained from the current period. In

equilibrium the return to both investments is identical.

Figure 1 summarizes the timing of consumption and saving decisions for high-

tech workers in the corn industry.

Demands satisfy,

sy,t =
κ(1− φ)ij,t

qt
, (16)

cy,t = (1− κ)(1− φ)ij,t, (17)

so,t+1 =
1 + rt+1

qt+1
[κφij,t], (18)

and

co,t+1 = [1 + rt+1][(1− κ)φij,t]. (19)

Equilibrium

Since high-tech workers are mobile between sectors,

wH
t = z(mt + δpt). (20)

Asset-market clearing entails equal returns on capital and code, i.e.,

pt =
∞∑

s=t

R−1
s+1,tδ

s−tms+1, (21)

where Rs,t is the compound interest factor between t and s, i.e.,

Rs,t =
s∏

j=t

(1 + rj). (22)

Finally, equilibrium requires

Yt = Cy,t + Co,t +Kt+1 −Kt, (23)

Ht = HA,t +HS,t, (24)

and
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St = Sy,t + So,t, (25)

where Cy, Co, Sy, So, are total consumption demand of corn and payer by the

young and old respectively.

The Steady State

If production functions are Cobb-Douglas, the steady state is implicitly defined

by the following two equations in k = K
A
, the capital to code ratio, and q, the

relative price of prayer.

Dyk
α=[

(1− φ)(1− κ)

φ
][k +

(1− α)Dyk
αδ

1 + αDykα−1 − δ
]

+ (1− κ)[k +
(1− α)Dyk

αδ

1 + αDykα−1 − δ
][1 + αDyk

α−1]

(26)

and

k + pδ = φ[z(m+ pδ)H + (1− γ)G(
γ

z(m+ pδ)
)

γ
1−γ (qDs)

1
1−γ ], (27)

where,

m = (1− α)Dyk
α, (28)

r = αDyk
α−1, (29)

p =
(1− α)Dyk

α

1 + αDykα−1 − δ
. (30)

The mechanism for immiseration in the model is low wages. Real wages for

high-tech workers are lowered when the code to capital ratio is lowered (keeping

the price of prayer constant). In the Cobb-Douglas case, we have

dk

dδ
= −

aDyk
α−1 + α(1− α)[Dyk

α−1]2 − b

2α(1− α)cD2
yk

2α−3 + (1− α)eDykα−2
(31)

where a = [1 + (1−κ)(1−2α)
φ

], b = (1−κ)
φ

, c = 1 − (α + δ(1 − α)), and e =

(1− δ)(1− αb)− b(1− (1− α)δ). One can readily choose reasonable parameter
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values that make this derivative negative (i.e. such that an increase in code

retention technology lowers the capital to code ratio).

Solving the Model

We calculate the economy’s perfect foresight transition path following an im-

mediate and permanent increase in the rate of code retention (decline in the

code depreciation rate). The solution is via Gauss-Seidel iteration. First, we

calculate the economy’s initial and final steady states. This yields initial and

final stocks of capital and code. These steady-state values provide, based on lin-

ear interpolation, our initial guesses for the time paths of the two input stocks.

Next, we calculate associated guesses of the time paths of factor prices as well

as the price paths of code and prayer. Step three uses these price paths and

the model’s demand, asset arbitrage, and labor market conditions to derive new

paths of the supplies of capital and code. The new paths are weighted with

the old paths to form the iteration’s next guesses of capital and code paths.

The convergence of this iteration, which occurs to an arbitrarily high degree of

precision, implies market clearing in each period.

4 Simulation Results

The models’ main novelty is the inclusion of the stock of code in the production

of goods. When the code retention rate, δ equals zero, corn production is

conventional – based on contemporaneous inputs of capital and labor (code

writers). But when δ rises, corn production depends not just on capital and

current labor, but also, implicitly, on deceased high-tech workers.

The increase in δ initially raises the compensation of coders. This draws more

high-tech workers into coding, raising high-tech worker compensation in both

sectors. In most parameterizations, the concomitant reduction in the supply of

prayers raises the price of prayers. Depending on the degree to which high-tech

workers complement low-tech workers in producing prayer, the wages of low-tech

workers will rise or fall. When the two forms of labor are close substitutes the

wages of low-tech workers track those of the high tech. When low-tech workers

require high-tech workers to complement them, their wages fall as high-tech

workers depart for the corn industry.

The situation of high-tech workers degrades over time. As more durable code
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comes on line, the marginal productivity of code falls, making new coders in-

creasingly redundant. Eventually the demand for coders is limited to those

needed to cover the depreciation of legacy code, i.e., to retain, retrain, maintain,

and update the AI. The remaining high-tech workers find themselves working in

the prayer sector. The upshot is that high-tech workers can end up potentially

earning far less than in the initial steady state.

What about low-tech workers? The price of prayers peaks and then declines

thanks to the return of high-tech workers to the sector. This puts downward

pressure on low-tech workers’ wages and, depending on the complementarity of

the two inputs in producing prayer, low-tech workers may also see their wages

fall. When low-tech workers are close substitutes for high-tech workers, the

boom-bust in high-tech workers’ compensation generates a boom-bust in low-

tech compensation. In the special case where high and low-tech workers are

perfect substitutes their wages move in lock step.

The economy’s dynamic reaction to a higher δ operates in part through the

impact on capital formation. The initial rise in earnings of at least the high-

tech workers can engender more aggregate saving and investment. The increased

capital makes code and, thus, high-tech workers more productive. But if the

total compensation of workers eventually falls, so too will the saving of the

young and the economy’s supply of capital. Less capital lowers the marginal

productivity of code and raises interest rates. This lowers the price of code and

the wages of those who produce it.

We next consider alternative transition paths that emerge based on different as-

sumptions about technology or preferences. We first consider paths that feature

immiserating growth. Next we show that the opposite is possible - long-run, wel-

fare improving growth. The third type of path involves a change in the relative

income positions of high- and low-tech workers. I.e., we consider paths in which

low-tech workers end up with higher wages than high-tech workers despite the

opposite initial situation. Finally, we show that if the code depreciation shock is

accompanied by an increase in corn’s share of final consumption, immiseration

can be magnified.

Each simulation features an immediate and permanent rise in the code-retention

rate. But the dynamic impact of this technological breakthrough depends on

the size of the shock and the choice of parameters. In addition presenting the

above cases in detail, we perform a sensitivity analysis of outcomes to parameter

assumptions.
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Immiserating Growth

Figure 2 shows that technological growth, namely the code-retention rate, δ,

rising from 0 to .7, can have negative long-term consequences.9 The simulation

assumes Cobb-Douglas production of corn and linear production of prayer; i.e.,

both types of workers are perfect substitutes in producing prayers (εS = ∞).10

As the top left panel indicates, real national income rises several percent, peak-

ing at 7.8 percent above baseline a period after the shock.11 But it ultimately

declines, ending up 4.2 percent below its initial steady-state value. In the long-

run, corn output decreases 28.0 percent.

The output of prayer dips after the shock, as workers migrate to lucrative coding

jobs, then increases steeply as the automated workers return. The price of

prayers does the opposite. While production of prayers is 27.4 percent higher

in the long run, prayers, at that point, aren’t worth very much at the margin.

In fact, the long-run price of prayers is 43.4 percent lower than before the

technological breakthrough. Both types of workers are perfect substitutes in

the spirituality, which, in our simulations, always employ both. Their common

compensation initially jumps 7.6 percent and then falls gradually. In the long

run all workers earn 24.8 percent less than was originally the case.

What happens to the welfare of different agents through time? The initial elderly

are essentially indifferent to the tech boom. Both interest rates, benefiting them,

and the price of code, hurting them, rise slightly. The initial young experience

a 14.2 percent rise in lifetime utility, measured as a compensating differential

relative to their initial steady-state utility. But those born in the long run are

16.5 percent worse off and national income is 4.2 percent lower.

The top right chart helps explain why good times presage bad times. The stock

of code shoots up and stays high. But the stock of capital immediately starts

9Although we sometimes refer to this technological change as a shock, because saving
decisions are not a function of future prices it would not matter if the technological change
were anticipated.

10Throughout the paper we only consider equilibria where high-tech workers are employed
in both sectors. Here that assumption is equivalent to assuming workers are perfectly mobile
between high- and low-tech employment.

11Unless otherwise noted, national income, personal income, and wages are reported in real
terms. The price index used is a geometric mean of the relative price of corn and prayer. The
weights used are their corresponding shares in consumption. The price index is

Πt = q

qt(Sy,t+So,t)

qt(Sy,t+So,t)+Cy,t+Co,t

t
= qκt (32)

Output of corn and prayer are reported in their own units. Other prices (the price of code,
p, interest rate, r, and price of prayer, q) are reported in units of the numeraire (corn) unless
otherwise noted. National income is the sum of all payments to workers and capital.
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falling. After six periods there is over 50 percent more code, but 65 percent less

capital. The marginal product of capital skyrockets, increasing the long-run

interest rate 110.2 percent above its initial steady-state value.

The huge long-run decline in the capital stock and associated rise in its marginal

product has two causes. First, as just stated, wages, which finance the acqui-

sition of capital, fall almost in half by the implicit competition with deceased

workers. Second, the advent of a new asset – durable code – crowds out asset

accumulation in the form of capital. When δ rises, all workers immediately

enjoy an increase in their compensation. This leads to more saving, but not

necessarily more saving in the form of capital. Instead, much of the short-lived

extra saving is used to acquire claims to legacy code. Initially, when the stock

of code is small, its price is quite high. Later, when the stock of code is large, its

price is quite low. But the product of code’s price and its quantity are always

sufficiently high to crowd out investment in capital.

What happens to labor’s share of national income? Initially it rises slightly

from 75.0 percent in the initial steady state to 75.7 percent. It then declines,

falling to 57.5 percent in the long run. This reflects the higher share of output

paid to legacy code. This long-run decline in both physical capital and labor’s

shares of national income arise in all our simulations.

Welfare-Improving Growth

As figure 3 shows, the tech boom need not auger long-term economic decline.

A higher saving propensity is the key. In the immiserating growth case, we

assumed a saving propensity, φ, equal to .2. Here, keeping all other parameters

fixed, we assume φ equals .85. With this far higher saving rate, workers are bet-

ter off in the long run. However, in the first period, when the code-depreciation

shock hits, the old generation is worse off due to the short-term rise in the price

of prayer.

National income peaks in the period after the technological shock, rising 25.6

percent above baseline. But in the long-run, national income is only 16.8 percent

higher. This reflects a rise and then fall in the capital stock, but not one that

is sufficient to reduce long-run welfare. In the prior simulation the capital stock

immediately declined. Here the capital stock temporarily increases 8.7 percent

above its initial value.

A short-run rise in both the capital stock and prayer price boost the common
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wage in the short run and leaves it at roughly its initial value in the long run.

After peaking 20.5 percent above its initial value, the wage falls, ending up

2.2 percent lower. The stock of code ends up more than doubling. But the

capital stock, notwithstanding the high rate of saving, ultimately declines by

35.8 percent.

The respective increase and decrease in the stocks of code and capital produce

a significant rise in the economy’s interest rate – 78.0 percent in the long run.

Although the common wage of high and low-tech workers decreases slightly

from its initial level, the rise in the interest rate permits future generations to

consume significantly more.

Why does a high enough saving rate lead the δ shock to increase long-run

welfare? The answer is that whatever happens to the stock of code, a higher

saving rate entails a higher capital stock and, therefore, less of a decline in wages

after code accumulates.

At the end of this section we explore the sensitivity of welfare changes to the

combination of the saving propensity and code depreciation rates. The combi-

nation of low saving and high code retention rates lead to the most negative

outcomes. Conversely, a high saving preference and high code retention rate

lead to the best outcomes.

Inequality-Flipping Growth

If high and low-tech workers are complements in production of prayer, their

relative wage and welfare levels can flip. Consider, for example, simulating the

model based on table 2’s parameters. The results are displayed in figure 4. This

simulation assumes production in the prayer sector is Cobb-Douglas. We also

assume that the saving propensity, φ, equals .7. We normalize high- and low-

tech efficiency units such that their wages are the same in the no-shock steady

state.

As always occurs, the initial effect for high-tech workers is positive. Indeed,

the shock immediately raises the wages of high-tech workers by 26.0 percent. It

also immediately lowers the share of high-tech workers in the prayer sector from

50.0 to 39.8 percent. Consequently, in the short run, low-tech workers, who,

given our complements in production assumption, need high-tech workers to be

productive, see their wages increase only .2 percent.

However, as code accumulates and capital decumulates, high-tech workers earn
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less and less writing code. In response, they move in great number back to the

prayer sector. Ultimately, 67.6 percent of high-tech workers end up working in

the prayer sector, earning less than was originally the case. Indeed, in the final

steady state, high-tech workers earn 18.1 percent less than in the initial steady

state. Low-tech workers, in contrast, earn 10.8 percent more. Interestingly,

the low-tech wage peaks two periods after the shock at 23.2 percent above its

original value. This rise and fall in the wage of low-tech workers reflects, in

part, the rise and fall in the price of prayer.

Although, the wages of high-tech workers end up below their initial values, they,

like low-tech workers, experience long-run increases in welfare. But the increase

is very small for high-tech workers and very large for low-tech workers.

Increase in Corn’s Share in Final Consumption

Our model’s assumption that corn and prayer are Cobb-Douglas complements

in final consumption is important. Assuming that the shares of spending on

automatable versus non-automatable goods are fixed is reasonable, given that

there is no strong evidence on the elasticity of substitution between them. How-

ever, due to changes in preferences, relative prices, or technology, corn could

command a larger or smaller share of final consumption than corn.

This subsection examines the consequences of a change in the corn preference-

share parameter, κ, arising in conjunction with the reduction in the code de-

preciation rate. Figure 5 shows results for the case that κ decreases from .5 to

.25 at the same time the code retention rate increases. All other parameters

are those in table 2. This alternative assumption has a dramatic and surpris-

ing impact on the path of national income. Unlike figure 4’s results, long-run

national income falls by 30.3 percent rather than rising. As in previous cases,

immiseration is caused by capital decumulation. Capital stocks in this case de-

crease 34.6 percent in the period immediately after the shock and 85.8 percent

in the long-run.

Capital deccumulation is greater when κ is larger for three reasons. First, the

higher demand for corn increases the share of high-tech workers working as

coders. This translates, after one period, into more legacy code and lower labor

compensation – the source of saving and capital formation. Second, the increase

in immediate corn consumption reduces the amount of corn left over to invest.

Third, the higher preference toward corn limits the rise in the price of prayers.

This, too, has a negative impact on wages and capital formation.
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The Large Range of Potential Outcomes

As just demonstrated, the model’s reaction to the δ shock is highly sensitive

to parameter values. We now consider this sensitivity in more detail. Figure

6 displays our previous results. Table 3 shows additional findings for other

parameter combinations. The table’s baseline simulation (row one) assumes

intermediate parameter values. Subsequent rows show the impact of sequentially

modifying one parameter. Figure 7 plots the path of national income for each

row of the table.

These simulations teach several new things. First, high-tech workers benefit

from higher substitutability between capital and code in the corn sector. This

makes sense. Indeed, when capital and code are perfect substitutes, corn pro-

duction is linear in the sum of the two inputs. Hence, the marginal product of

code is unchanged in response to a rise in the stock of code. Consequently, com-

pensation to coders is unaffected by a reduction in code depreciation and there

is no mechanism for a fall in workers’ saving and investment or for long-run

immiseration.

Second, with both Cobb-Douglas production and preferences, the path of the

capital-to-code ratio in response to a rise in delta, starting from δ = 0, is

independent of the absolute and relative numbers of each type of worker.12

Third, a positive δ shock always produces a tech boom with increases in both

the price of code and the wage of high-tech workers.13 In most simulations, the

boom is short lived, auguring a major tech and saving bust. Finally, the δ shock

generally raises labor’s share in the short run and lowers it in the long run.

Figure 8 presents a contour map of the long-run compensating differential. Its

top half considers combinations of saving preference parameters φ and shocks

12Consider a doubling of H. This will double HY in the δ = 0 economy. But if HY also
doubles along the entire transition path, the path of k will remain unchanged. One can see
this by combining the equation for market-clearing in capital with that for market-clearing in
code. This, of course, requires that the path of HS be twice as large as well. But this outcome
as well as a doubling of qt is implied by (16). This k-path invariance to initial levels of H

and G is somewhat surprising and suggests that transforming more low-tech into high-tech
workers may have less impact on the economy than one might have thought. Still, such a
policy, if enacted before the rise in delta, would lower the real wages of skilled workers. (Their
wages valued in corn wouldn’t change, but the higher price of prayer would lower their real
wage.) It would also improve the relative welfare of those who remain unskilled workers since
their wage measured in units of capital will rise thanks to the higher marginal revenue of
their labor. Additional effects would arise were H or G to vary once delta had risen and the
economy was in transition. In this case, the k path would temporarily fall making code and
coding less valuable. However, in the long run, the real wages of each type of worker are
independent of such transition effects on the path of k.

13This and the previous result can both be shown analytically.
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to δ assuming table 1’s values of the other parameters. Because the two types of

workers are perfect substitutes, the compensating differential for both types is

the same. Redder areas reference higher long-run utilities relative to the initial

steady state. Bluer areas reference the opposite. Long-run utility increases most

when δ is large and the saving rate is high. It decreases the most when the δ

shock is high and the saving rate is low.

Figure 8’s lower half considers joint shocks to the saving rate and code-writing

productivity z).14 Higher values of each reinforces their individual positive

impacts on long-run utility. As opposed to δ shocks, increases in code-writing

productivity (z) enhance all agents’ welfare. The reason is simple – this shock

makes living, but not deceased high-tech workers more productive. Increasing

labor’s productivity in other tasks has the same result. As this model posits no

disutility from labor, reducing labor’s productivity is isomorphic to restricting

its supply. Policies that attempt to raise wages by reducing labor supply - such

as increasing the minimum wage - will, therefore, backfire.

Figure 9 considers combinations of the saving rate, φ, and the good sector’s

elasticity of substitution, εy. It visualizes the aforementioned sensitivity of

long-run utility to the substitutability of code for capital. High-tech workers, in

particular, benefit from both higher levels of their scarce complement and from

being more substitutable for it. The figure also indicates that this sensitivity

is greater for low than for high saving rates. Higher substitutability moderates

the negative effects of capital’s crowding out that occurs with a low saving

rate. Low-tech workers also benefit from both monotonically. However, the

relationship is slightly more complex. Low-tech workers benefit when some

high-tech workers cross sectors to complement them. When both the saving rate

and elasticity of substitution in the corn sector are high, the marginal product

of high-tech workers in the corn sector declines very little as code accumulates.

Therefore, few leave to complement low-tech workers, limiting low-tech workers’

gains.

5 The Role of Property Rights and Rivalry

To this point we’ve assumed that code is private and rival. Specifically, we’ve

assumed that when one firm uses code it is unavailable for rent or use by oth-

ers. But unlike physical capital, code represents stored information, which may

be non-rival in its use. Non-rivalry does not however necessarily imply non-

14Other parameters are those in the immiserating growth scenario.
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excludability. Patents, copyrights, trade secrets, and other means can be used

to limit code’s unlicensed distribution. On the other hand, the government can

turn code into a public good by mandating it be open source. There are sig-

nificant open questions about the legality and desirability of IP protection for

AI and original works created by AI systems (Center for the Fourth Industrial

Revolution 2018).

This section modifies the baseline model to investigate these questions. To do

so we add a firm entry decision. Firm entry is important in the context of IP

because when code can be simultaneously used by multiple parties, the number

of these parties must be determined. Corn producing firms enter by paying a

fixed cost each period, and gain access to the amount of free code available. This

fixed cost corresponds to both the overhead necessary to run a business and the

cost of discovering a new idea for applying AI. When code is excludable, firms

may also rent an additional supply of it at a market price. Strong IP protections

for AI incentives the creation of more code but limit the use of AI that already

exists.15

We first present the modified model in the baseline case of private (rival and

excludable) code. We then explore two alternative scenarios. In the first, code

is non-rival and non-excludable, i.e., it is a public good. In the second, code is

non-rival, but excludable. In other words, those who develop AI can rent it out

to as many companies as they like without friction.

Rival, Excludable (Private) Code

Corn firms maximize their profit, which is equal to

πj,t = F (kj,t, zHj,t + aj,t +A)− C − rtkj,t −mtaj,t, (33)

where πj,t are profits for firm j at time t, F (•) is a constant elasticity of substi-

tution production function, kj,t is the amount of capital rented by the firm, aj,t

is the amount of code rented by the firm, Hj,t is the amount of high-tech labor

hired by the firm, A is the exogenously set amount of free code in the economy,

and C is the per-period fixed operating cost. In equilibrium all firms have zero

profits.

0 = F (kj,t, zHj,t + aj,t +A)− C − rtkt −mtaj,t. (34)

15We incorporate some amount of free public code in all institutional scenarios to ensure
entry.
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Market clearing conditions are,

∑
aj,t = δAt−1, (35)

∑
kj,t = Kt, (36)

∑
Hj,t = HA,t, (37)

Y = co,t + cy,t −Kt +Kt+1 −NC, (38)

where N is the number of firms. All other equations are as in the baseline model.

Since all firms are identical, (38) can be converted into an equation for N, the

number of firms.

0 = NF (
Kt

N
, zHt +

1

N
δAt−1 +A)−NC − rtKt −mtδAt−1 (39)

Firms enter up to the point that the value of the public code they obtain for

free, namely A, equals their fixed cost of production. Thus,

AFa,t = C. (40)

This fixes the marginal product of code at C

A
in every period. Intuitively, new

firms can acquire a perfect substitute for new code, and, thus, new coders at

a fixed cost by setting up shop and gaining access to A in free code. Given

that corn’s production obeys constant returns to scale, fixing code’s marginal

product means fixing the ratio of capital to code. This, in turn, fixes the interest

rate. Hence, the rental rates of code and capital are invariant to the increase in

δ.

To solve the model an additional step is added to the iteration procedure. Given

a guess of prices and stocks in a period, (39) is used to calculate N . This guess

of N in each period is included in the next iteration to calculate new prices.

Figure 10 shows transition paths for this economy, with excludable, non-rival

code, after an increase in the code retention rate. Parameter values are provided

in table 4. Although an increase in δ does not change the marginal productivity

of code, it does raise coder compensation. The reason is that coders can now

sell property rights to the future use of their invention. Immediately after the

shock, the wage of high-tech workers increases 10.2 percent, decreasing to 6.5

percent higher in the long run due to a decrease in the relative price of corn.

The number of firms in the economy decreases as a result of the technology

shock, by 11.3 percent in the long run. Were the number of firms to remain

20



fixed, the jump in δ would entail a higher code to capital ratio (in the short

term the capital stock is fixed, and in the long run it increases by less than

the code stock). This would mean a lower marginal productivity of code, which

equation (40) precludes. It would also mean a negative payoff to setting up a

new firm. Another way of viewing this relationship is that as the rental price

of code decreases, the attractiveness of acquiring code by setting up a new firm

decreases. As the later is fixed, the rental price of code is fixed, with the margin

of adjustment being fewer firms created.

In the period of the shock, welfare for the old decreases by 1.8 percent. This is

because the cost of prayer increases 8.0 percent while the interest rate remains

fixed. In the long run, high and low-tech workers are 6.5 percent better off.

As the wage of high-tech workers can only increase as a function of the tech-

nology shock, this model variant does not admit long-run immiserating growth

absent additional assumptions. For example, if the number of firms were to

be fixed due to oligopilization of the industry, or if the fixed cost of firm entry

were increasing in the number of firms, (40) would not hold, in which case the

marginal productivity of code would decrease as code accumulates. This would

reintroduce the possibility of immiserating growth.

Non-Rival, Non-Excludable (Public) Code

Consider next the case that code, in the period after it is produced, becomes

a pure public good used simultaneously by every firm. This could arise by

government edict, the wholesale pirating of code, or reverse engineering.

Profits are now

πj,t = F (kj,t, zHj,t + aj,t +A)− C − rtkj,t, (41)

as firms no longer need to rent their stock of code (aj,t), where

aj,t = δAt−1∀j (42)

As before, firm entry and exit imply zero profits,

0 = NF (
Kt

N
, zHt + δAt−1 +A)−NC − rtKt. (43)

and, because the amount of free code available to newly set up firms changes

21



over time, (40) is modified to

(δAt−1 +A)Fa,t = C. (44)

Finally, with investment in code no longer crowding out investment in capital,

Kt+1 = φIt. (45)

Figure 11 shows the transition path after a δ increase for the case of non-

excludable code with table 4’s parameter values. The initial steady state is the

same as in the prior case of excludable rival code. However, the response to the

jump in δ is dramatically different. It has no immediate effect on the high-tech

wage because workers no longer hold copyright to their code. They, therefore,

have no incentive to move to the corn sector, leaving the economy unresponsive

to the shock in the short term.

In the period after the shock, the economy begins to react. The stock of free

public code, which now includes both A plus all of the economy’s legacy code,

is larger. This induces more firm entry. The number of firms immediately

more than doubles to 112.4 percent above its initial level in the short run and

is 43.4 percent higher in the long run. As indicated in (44), with more free

code available, the break even condition entails a lower rental rate of code. In

equilibrium, this entails more firms operating with less capital per unit of code.

The lower marginal product of code and, thus, of coders leads 30.3 percent of

high-tech workers to move from coding into prayer in the period after the shock.

National income peaks at 10.8 percent above its initial level in this period. The

interest rate rises by 35.5 percent and the wage of low-tech workers increases by

15.0 percent.

The economy’s transition is characterized by a series of damped oscillations.

Periods of relatively high coder hiring and fewer firms is followed by periods

of plentiful free code, more firm entry, and relatively low coder hiring. In the

long run, the share of high-tech workers coding is 12.6 percent higher than its

initial level and the high-tech wage is 23.4 percent lower. Welfare in the long

run for high-tech workers is 9.7 percent lower. For low-tech workers, welfare is

8.0 percent higher. It is easy to select parameters such that both groups are

worse off. As in the baseline model, the main mechanism for immiseration is

the reduction of the high-tech wage leading to less capital accumulation. A

contributing factor is the inefficiency introduced due to coders no longer being

able to internalize the full value of their work.
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Non-Rival, Excludable (Private) Code

Another possibility is that code is excludable, but non-rival in its use, permitting

high-tech workers to license all their code to all firms in the period after it is

produced. The equations for the rival, excludable model hold with the following

exceptions. First, profits are given by

πj,t = F (kj,t, zHj,t + δAt−1 +A)− C − rtkj,t −mtδAt−1 (46)

Second, the price of code reflects its use by all firms.

pt =
∞∑

s=t

R−1
s+1,tδ

s−tms+1Ns+1. (47)

As figure 12 shows, the δ shock produces a long-run, welfare-improving growth

path, indeed a significantly better path than in the rival, excludable case. As in

the rival, excludable case, firm entry satisfies equation (40). Hence, the interest

rate and marginal product of new code are fixed, the wage of high-tech workers

must increase, and a long-term welfare improvement is ensured. Welfare for the

old in the period of the shock decreases by 2.6 percent, slightly more than in

the rival, excludable case. Thereafter, however, households are much better off,

enjoying 11.5 percent higher utility in the long run, measured, as always, as a

compensating differential.

This case features less entry. In the long-run, there are 20.8 percent fewer

firms than before the δ shock. In the public code case, there is a 43.4 percent

increase in the number of firms in response to the shock. In the private code

case, the shock reduces the number of firms by 11.3 percent. Intuitively, since

each firm can use all available code, fewer firms are needed. More surprising is

the decrease relative to the rival code case. The reason is that with non-rival,

excludable code, the effective supply and value of code is very high. The higher

value crowds out capital investment. As can be seen from equation (40), the

relatively small number of firms entering is due to a relatively higher effective

stock of code and lower stock of capital.

6 Testable Implications and Supportive Evidence

Each of our simulations feature a temporary rise followed by a decline in labor’s

share of national income as well as a rise in code as a share of total assets. U.S.
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labor-share data going back four decades provides support for these trends.16

There is also recent evidence of a decline in capital per worker, consistent with

our model’s immiseration scenarios.17

Figure 13 displays three measures of labor’s share of U.S. income based on three

approaches to handing labor’s unknown share of proprietorship and partnership

income. The orange and gray curves use Bureau of Economic Analysis (BEA)

data. The orange curve charts labor’s share of total non-proprietorship national

income assuming that labor’s share of proprietorship income is the same as that

of national income.18 The blue curve displays labor’s share of corporate income,

i.e., it simply ignores the non-corporate sector.

The yellow curve displays labor’s share of private businesses including propri-

etorships as calculated by the Bureau of Labor Statistics (BLS). The BLS im-

putes labor’s share in proprietorship income by assuming proprietors (and part-

ners) earn the annual average wage in their industry. Proprietor income above

this amount is considered capital income. This measure is smaller than the

others because the BLS’s income measure is not net of depreciation.

By all three measures, labor’s share of income is lower in 2015 than in the

mid 1970’s. In the yellow curve, labor’s share peaks in the mid-1970s with

the two lowest shares recorded in 2014 and 2015. The precise percentage-point

decline in labor’s share between 1975 and 2014 are 5.96 percentage points, 5.88

percentage points, or 4.88 percentage points according to the orange, gray, and

yellow curves, respectively.

Other authors, including Karabarbounis and Neiman (2013) and Brigdman

(2014), report similar findings using related labor-share measures. The con-

sensus view is that labor’s share has decreased significantly since peaking in

the mid 1970’s. Armenter (2015) considers the possibility that the decrease in

the BLS’s measure is driven by the assumption that the proprietors pay them-

selves the average wage in their industry. When he instead fixes labor’s share of

proprietor’s income at 85 percent, labor’ share since 1975 still falls, but by less.

Our model predicts both a rise in code relative to other economic input and an

increase in the share of output attributable to intangibles, i.e., inputs that are

16Other models, without smart machines, deliver this conclusion. Karabarbounis and
Neiman (2013) attribute the decline to capital accumulation and their finding of gross substi-
tutability between capital and labor. Rather than capital abundance, Rognlie (2015) argues
that the decrease in the labor share is due to the scarcity of land. He attributes the decline
in labors’ share to an increase in property values and imputed rents.

17Capital-hours ratio; BLS multifactor productivity series, Table PG-2-3. Records date
back to 1949.

18National income is measured at producer prices.
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neither physical capital or labor. Code stocks have certainly increased since the

invention of the digital computer and the silicon chip. Figure 14 reports stocks

of R&D and software as a share of total U.S. fixed assets. According to the

BEA, software grew from essentially zero percent of capital in 1960 to over 1.5

percent today. Combined software and R&D stocks have grown as a share of

capital by about 3.5 percentage points over the same period. 19

Many papers suggest that the BEA underestimates the stock of organizational

capital and code complementary to computers. Brynjolfson, Hitt, and Yang

(2002) find that firms with large investments in computer capital have much

higher valuations, that computer-capital investments lead to disproportionately

large increases in firm valuations, and that firms that make such investments

tend to be more productive in future years. Similarly, Hulten and Hao (2008)

find that the book value of R&D-intensive firms in 2006 explains only 31 percent

of their valuation. Both these papers argue that only firms who have made large

investments in organizational and technological capital are able to implement

innovative technologies.

Code and software controlled by firms that are not counted as assets by the BEA

still increase the productivity of firms. Such firms would be more valuable than

they should be based on only their observed assets. Figure 15 shows the value of

the U.S. corporate sector less the replacement cost of its physical and financial

assets.20 This measure of the stock of intangible assets is highly cyclical due

to the volatility of the stock market. Despite this, it shows a dramatic secular

increase starting in the mid 1970s. For firms in the S&P 500, intangible assets

increased from 17 percent of market value in 1975 to 84 percent in 2015 (Ocean

Tomo, 2015).

Hall (2001) argues that the increase in the value of economy-wide intangible

assets, and therefore Tobin’s (average) q, is due to the creation of code and

organizational capital within firms, which he calls ‘e-capital.’ Barkai (2016) and

Barkai and Benzell (2018) also note that US firms’ output per unit of observed

capital has increased even as the marginal cost of capital (as measured by the

real interest rate) has decreased since the mid-1980s. Simultaneous decreases in

19These numbers are likely underestimates of the increasing importance of programmers,
scientists and engineers in the economy. Software is decomposed in NIPA table 2.1 into own
account, prepackaged and custom software. The true value of prepackaged software in the
economy is likely undercounted because it is often pirated. It is also often free or sold at a
discount in order to cross subsidize some other product or subscription (see Parker and Van
Alstyne, 2005). BEA estimates of firms’ internal creation of their own software are based on
very conservative assumptions about the share of programmers who are developing new code,
rather than maintaining old code, and the rate at which the software stock decays.

20U.S. Corporate intangible assets are calculated as U.S. corporate equity less corporate net
worth from Federal Reserve series Z.1.
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both capital and labor’s share of income are consistent with an increasing share

for intangibles like code. Barkai (2016) argues that the stock of intangible assets

needed to explain the wedge between the observed average product of capital

and its marginal cost is implausibly large. The level of intangible assets in 2014

would need to be 42 Trillion (or 54% of U.S. wealth) in order to explain the

discrepancy. However, an extremely rapid increase in the share of intangibles

in total assets is a phenomena implied by our model.

Long-run immiseration in our model hinges on a long-run decline in capital per

worker and a corresponding increase in the interest rate. While capital per

worker increased at an average rate of 2.5 percent from 1985 to the present,

it has been decreasing since 2011 at .5 percent per year on average. Whether

this short-term trend continues remains to be seen. But this measure signifi-

cantly underestimates the extent to which physical capital per person has de-

creased. Capital services as measured by the BLS include accumulation of

intellectual property and capital quality increases (through the deflator) that

are attributable in our model not to physical capital per worker but to larger

stocks of code.

On the other hand, real interest rates have decreased steadily and dramatically

since the mid-1980s. Almost all models of automation predict an increase in

interest rates, at least in the short run, as a result of an advance in automation

technology. Benzell and Brynjolfsson (2018) discuss this riddle. They propose

that digital abundance has increased scarcity of an inelastically supplied com-

plement to capital, code and ordinary labor. Integrating this additional factor

of production to our model would generate decreasing interest rates while pre-

serving all other qualitative results.

7 Conclusion

Will smart machines, which are rapidly replacing workers in a wide range of jobs,

produce economic misery or prosperity? Our two-period, OLG model admits

both outcomes. But it does firmly predict three things - a long-run decline

in labor’s share of income (which appears underway among OECD members),

tech-booms followed by tech-busts, and a growing dependency of current output

on past software investment.

In our simple model, long-run immiseration is caused by a reduction in labor

income and, thereby, saving and capital formation. Yes, the economy has bet-
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ter technology. But it has less capital. With the right parameters, the latter

factor can outweigh the former. Immiseration is more likely the smaller the

propensity to save and the smaller the elasticity of substitution of capital for

code. Our model’s saving propensity. But with different preferences it would

decrease (increase) with the interest rate. In this case, the scope for long-term

immiseration would be greater (smaller). As the appendix shows, our results

can be generalized to consider profit-maximizing, directed technological change

in which AI can replace labor or capital. If AI is better at replacing labor,

immiseration can readily follow.

Making higher code retention a win win for all current and future workers as

well as initial elderly requires taxing high-skilled workers who benefit from the

models technological breakthrough and investing the tax proceeds. This keeps

the capital stock and wages from falling. Other policies for managing the rise

of smart machines may backfire. For example, policies restricting labor supply

will reduce total labor income. While this may temporarily raise wages, it will

reduce saving, investment and the capital formation on which wages depend.

To the extent that AI is non rival, countries must weigh several factors in de-

termining whether to grant AI developers property rights to their creations.

Excludabilty increases the return to software development, increasing long-run

levels of code, wages, national income, and welfare. It also lowers the poten-

tial for technologically driven business cycles. On the other hand, treating AI

as a public good by, for example, denying AI software patents, ignoring AI

copyrights, failing to prosecute software piracy, or mandating that new code be

open-source, produces worse results along these dimensions. On the other hand,

it increases short-term welfare as well as firm entry. This last implication is an

increasingly important desiradatum as countries become concerned about the

concentration of power in the hands of a small number of superstar technology

companies.

Our simple model illustrates the range of things that smart machines can do

for us as well as do to us. Its central message is disturbing. Absent appropriate

fiscal policy, which redistributes from winners to losers, smart machines can

mean collective long-term misery. Ironically, the same AI that helps us produce

more in the present can limit our production in the future.
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Saving + Consumption

Labor Income

Consumption

Return on Savings and Coding

Young: C1,t + qtS1,t + Kt+1 + ptδAt

= z(mt + δpt)

Old: C2,t+1 + qt+1S2,t+1

= (1 + rt+1)Kt+1 +mt+1Atδ + pt+1Atδ
2

Young

Old

Figure 1: Overlapping generations budget constraint summary for high-tech
worker in the corn industry who is young in period t.

Table 1
Parameters for Immiserating Growth

Parameter Description Model Parameter Value

Elasticity in Service/Prayer Sector εs ∞

Elasticity in Goods/Corn Sector εy 1
Prayer High-Tech Input Share Param. γ 0.5
Good Capital Input Share Param. α 0.5
Code Retention Rate δ 0 shocked to 0.7
Saving Preference Param. φ 0.2
High-Tech Worker Quantity H 1
Low-Tech Worker Quantity G 1
Prayer Consumption Share κ 0.5
Code Writing Productivity z 1
TFP in Corn Dy 1
TFP in Prayer Ds 1

Table 1: This table gives parameter values for the first pair of illustrations of the
effects of a permanent increase in the depreciation rate, δ, from zero to .7. We take
the intermediate value of .5 for κ, α, and γ. The productivity terms z, DY , and DS ,
are set to one.
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Figure 2
Immiserating Growth

Figure 2: Transition paths based on table 1. Compensating Differential references the
percentage change increase in steady-state consumption needed for initial steady-state
households’ lifetime utility to equal the lifetime utility of households who are old in
a given period on the transition path. Output, capital and code stocks are in units.
Wage and national income are deflated. Wage is total income in youth from labor in
any occupation. Price of code, interest rate, and price of prayer are in units of the
numeraire, corn.
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Figure 3
Welfare Improving Growth

(higher saving rate, φ = .85)

Figure 3: Transition paths based on table 1, with the exception of a higher saving
rate (φ = .85). Compensating Differential references the percentage change increase in
steady-state consumption needed for initial steady-state households’ lifetime utility to
equal the lifetime utility of households who are old in a given period on the transition
path. Output, capital and code stocks are in units. Wage and national income are
deflated. Wage is total income in youth from labor in any occupation. Price of code,
interest rate, and price of prayer are in units of the numeraire, corn.
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Figure 4
Inequality-Flipping Growth

Figure 4: Transition paths based on table 2. Compensating Differential references the
percentage change increase in steady-state consumption needed for initial steady-state
households’ lifetime utility to equal the lifetime utility of households who are old in
a given period on the transition path. Output, capital and code stocks are in units.
Wage and national income are deflated. Wage is total income in youth from labor in
any occupation. Price of code, interest rate, and price of prayer are in units of the
numeraire, corn.
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Figure 5
Changed Corn Preference

Figure 5: Transition paths based on table 2, except in addition to the δ shock, κ

is simultaneously shocked from .5 to .25. Compensating Differential references the
percentage change increase in steady-state consumption needed for initial steady-state
households’ lifetime utility to equal the lifetime utility of households who are old in
a given period on the transition path. Output, capital and code stocks are in units.
Wage and national income are deflated. Wage is total income in youth from labor in
any occupation. Price of code, interest rate, and price of prayer are in units of the
numeraire, corn.
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Table 2
Inequality-Flipping Growth

Parameter Description Model Parameter Value

Elasticity in Service/Prayer Sector εs 1
Elasticity in Goods/Corn Sector εy 1
Prayer High-Tech Input Share Param. γ 0.5
Good Capital Input Share Param. α 0.5
Code-Retention Rate δ 0 shocked to 0.7
Saving Preference Parameter φ 0.7
High-Tech Worker Quantity H 2
Low-Tech Worker Quantity G 1
Prayer Consumption Share κ 0.5
Code Writing Productivity z 1
TFP in Corn Dy 1
TFP in Prayer Ds 1

Table 2: This table gives parameter values for the second pair of illustrations of the
effects of a permanent increase in the depreciation rate, δ, from zero to .7.
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Figure 6
Comparing Four Case Studies

Figure 6: Transition paths from the first 4 cases presented (immiserating growth,
etc.) superimposed.
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Figure 7
National Income, Sensitivity Analysis

National Income

50

60

70

80

90

100

110

120

130

140

150

- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

In
d

ex
ed

 V
a

lu
e

Period

Baseline kappa from 0.5 to 0.25

Low Savings (phi = 0.1) High Savings (phi = 0.9)

Subs Prayer Comp Prayer

Comp Corn kappa from 0.5 to 0.75

Subs Corn Shock z

Figure 7: Illustration of the 10 sensitivity analysis cases superimposed. ‘Subs’ refer
to cases in which the production technology of a sector is more substitutable. ‘Com’
refer to cases in which the production technology is more complementary.
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Figure 8
Long-Run Compensating Differential for Alternative Saving and

Code-Retention and Productivity Shocks

Figure 8: Compensating Differential references the ratio of consumption needed to
achieve lifetime utility of households in the long run to initial steady-state consumption
less 1. Parameters not on axes are given in table 1. X’s denote parameter combinations
with transition paths discussed in the text.
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Figure 9
Long-Run Compensating Differential for Alternative Saving and

Elasticity of Substitution for Low and High-Tech Workers

Figure 9: Compensating Differential references the ratio of consumption needed to
achieve lifetime utility of households in the long run to initial steady-state consumption
less 1. Parameters not on axes are given in table 2. X’s denote parameter combination
in the inequality flipping case study.
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Figure 10
Rival, Excludable (Private) Code

Figure 10: Transition paths based on table 4’s parameters. Compensating Differential
references the percentage change in initial steady-state consumption needed for the
utility levels of workers in the initial steady state to equal their respective transition-
path utility levels. Prayer sector output is measured in units of prayers. Corn output
is net of firm entry fixed costs.
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Table 4
Parameters for Institutional Simulations

Model Parameter Role Value
εs Elasticity in Service/Prayer Sector 1
εy Elasticity in Goods/Corn Sector 1
γ Prayer High-Tech Input Share Param. 0.5
α Good Capital Input Share Param. 0.5
δ Code Retention Rate 0 shocked to 0.25
φ Saving Rate 0.5
H High-Tech Worker Quantity 1
G Low-Tech Worker Quantity 1
κ Prayer Consumption Share 0.5
z Code Writing Productivity 1
Dy TFP in Good Sector 1
Ds TFP in Prayer Sector 1
C Firm Setup cost .055
A Exogenous Free Code .25

Table 4: This table gives parameter values for illustrations of the effects of a one-
time, permanent increase in the depreciation rate, δ, from zero to .25 given different
institutional settings.
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Figure 11
Non-Rival, Non-Excludable (Public) Code

Figure 11: Transition paths based on table 4’s parameters. Compensating Differential
references the percentage change in initial steady-state consumption needed for the
utility levels of workers in the initial steady state to equal their respective transition-
path utility levels. Prayer sector output is measured in units of prayers. Corn output
is net of firm entry fixed costs.
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Figure 12
Non-Rival, Excludable (Private) Code

Figure 12: Transition paths based on table 4’s parameters. Compensating Differential
references the percentage change in initial steady-state consumption needed for the
utility levels of workers in the initial steady state to equal their respective transition-
path utility levels. Prayer sector output is measured in units of prayers. Corn output
is net of firm entry fixed costs.
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Figure 13
Three Measures of Labor’s Share of Income in the U.S.

Figure 13: Three measures of the U.S. labor share. The orange curve, labor’s share
of non-proprietorship income, is calculated as employee compensation divided by na-
tional income at producer prices less proprietorship income (NIPA table 1.12, lines
2/(1-25+26-18). The gray curve, labor’s share of income in the corporate sector, is
calculated as corporate employee compensation divided by corporate business income
less corporate taxes net of subsidies (NIPA table 1.13 lines 4/(3-9)). The yellow curve
is the BLS’s measure of labor share in the private business sector (from the BLS
multi-factor productivity series). Dashed lines are fitted third-degree polynomials.

Figure 14
The Stock of Software and Software and R&D as a Share of U.S.

Fixed Assets

Figure 14: The stock of software (solid line) and software plus R&D assets (dashed
line) as a share of total fixed assets (authors’ calculation based on NIPA table 2.1).
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Figure 15
U.S. Corporate Intangible Assets as a Share of U.S. Wealth

Figure 15: U.S. corporate intangible assets as a share of U.S. wealth is calculated by
subtracting the net worth of U.S. corporations from their equity value. Net worth is
the replacement cost of fixed assets plus the market value of other assets less liabilities
apart from owners’ equity. This imputed value of intangible corporate assets (goodwill)
is divided by total U.S. wealth (authors’ calculation based on Federal Reserve financial
accounts series Z.1).
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Appendix

A Directed Technological Change

An important critique of the above models is that technological change is purely

(directly) labor-substituting. Recent models of technological change, such as

Acemoglu (2002) and Acemoglu and Restrepo (2018) have emphasized the di-

rectedness of technological change. That is, rather than only deciding how

much technology to develop, individuals and firms can choose between a suite

of research projects that each enter the production function in different ways.

Here we relax both assumptions in a striped down, one-sector model, with only

high-tech workers who can write both labor-substituting and capital-substituting

software. This extension captures the spirit of the directed technological change

literature in that workers can develop either a labor substituting or labor com-

plimenting technology. As we’ll show, immisserizing technological change due

to higher code retention can still occur, at least in cases when the code-retention

shock disproportionately impacts labor-substituting software.

Production of the economy’s single good, corn, satisfies

Yt = D((1− γ)(Wt +AL
t )

α + (γ)(Kt +AK
t )α)

1
α . (48)

This production function deviates from the baseline model in two ways. First,

we introduce a type of labor, W that is a perfect substitute for software but

that doesn’t create software as a byproduct. Second, we add a type of software

AK which is a substitute for capital.

Producers face the following profit maximization problem.

πt = Yt(Wt +AL
t ,Kt +AK

t )− wtWt − rtKt −AL
t m

L
t −AK

t mK
t , (49)

where wt is the wage of non-coders and mL
t and mK

t are the rental prices of

labor substituting and capital substituting software, respectively.

Both types of code are written by software companies with fixed costs of entry

and decreasing returns to scale. Production of code satisfies

AL
t,i = zL(L

L
t,i)

βL (50)
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AK
t,j = zK(LK

t,j)
βK , (51)

where LL
t,i and LK

t,j are demands for coders by labor substituting and capital

substituting software companies, respectively and zK , zL, βL and βK are pa-

rameters. Both βL and βK are between zero and 1.

Software firms maximizes profits – revenues from renting code net of paying

coders and covering each period’s fixed cost of operation, FL or FK . Firms

rent out their software at its marginal product and then sell their software after

depreciation at prices pLt and pKt .

πL
t,i = AL

t,i(m
L
t + δLpLt )− wtL

L
t,i − FL

t (52)

πK
t,j = AK

t,j(m
K
t + δKpKt )− wtL

K
t,j − FK

t (53)

Total software of each type accumulates as in the baseline model.

AL
t =

∑
AL

t,i + δLA
L
t−1 (54)

AK
t =

∑
AK

t,i + δKAK
t−1. (55)

Firms enter until profits are zero. This implies

πL
t,i = 0 (56)

πK
t,i = 0 (57)

Combining equations gives

0 = zL(L
L
t /N

L
t )

αL(mL
t + δLpLt )− wtL

1
t/N

L
t − FL

t (58)

0 = zK(LK
t /NK

t )αK (mK
t + δKpKt )− wtK

1
t /N

K
t − FK

t , (59)

where NK
t and NL

t are the number of K and L software companies, respectively.

Both types of software are priced as the present discounted value of their

marginal product. The capital stock equals saving of the young net of their

purchase of ownership rights to software.

Kt+1 = φIt − pLt δA
L
t − pKt δAK

t (60)
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Labor market equilibrium requires

L = LL
t + LK

t +Wt. (61)

Since workers can move freely between the tasks of ordinary worker, capital-

substituting coder, or labor substituting coder, the wage, wt, is the same across

all task. Hence, the total income of the young is

It = wtL. (62)

There is no depreciation of capital. Output is either consumed, invested or used

to cover fixed costs.

Yt = Cy,t + Co,t +Kt+1 −Kt − FK
t NK

t − FL
t NL

t , (63)

Appendix figure 1 reports steady-state results based on the parameters in ap-

pendix table 1. As can be seen, steady-state outcomes for an economy with

a higher δL are worse, while those with relatively higher δK are better. The

mechanisms for immiseration are similar to the baseline model. The increase in

AL stocks decreases wages and increases interest rates. The decrease in wages

decreases capital stocks, which decreases wages yet further. Immiseration can

arise if the exogenous shock makes it disproportionately easier to accumulate

labor- than capital-substituting software.
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Appendix Table 1
Parameters for Directed Technical Change Simulation

Model Parameter Role Value
α Elasticity Param. in Final Good Prod. .952
γ Capital Input Share Param. .7
L Total Labor Supply 25
δL Labor Subs. Code Retention Rate 0 initially
δK Capital Subs. Code Retention Rate 0 initially
φ Saving Rate .8
FL L Code Firm Fixed Cost 5 ∗ 10−13

FK K Code Firm Fixed Cost 5 ∗ 10−13

ZL L Code Productivity Param. .00013
ZK K Code Productivity Param. .00013
βL L Decreasing Returns to L-Software Coding Param. .6
βK K Decreasing Returns to K-Software Coding Param. .6
D TFP in Final Production 1

Appendix Table 1: This table presents parameter values for illustrations of the effects
of a one-time, permanent increase in the depreciation rate of labor substituting and
capital substituting software as displayed in appendix figure 1.
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Appendix Figure 1
Long-Run Compensating Differential for Alternative δ Shocks

Compensating Differential references the ratio of consumption needed to achieve life-
time utility of households in the long run to initial steady-state consumption less 1.
Parameters not on axes are given in appendix table 1.
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