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ABSTRACT
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NIH peer review to generate exogenous variation in funding across research areas. Our results show
that NIH funding spurs the development of private-sector patents: a $10 million boost in NIH funding
leads to a net increase of 3.26 patents. Though valuing patents is difficult, we report a range of estimates

for the private value of these patents using different approaches.
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1 Introduction

The pharmaceutical firm Novartis made use of decades of publicly funded research in the
development of Gleevec, a remarkably effective treatment for chronic myelogenous leukemia (CML).
Between the 1960s and 1980s, numerous studies elucidated the causes of CML, documenting the role
of a specific gene mutation that leads tyrosine kinase, a common cell signaling molecule, to become
overactive. This understanding pointed to an approach for treating CML—develop compounds to

inhibit tyrosine kinase—which Novartis scientists then pursued (Pray 2008).

Annual public-sector expenditures in biomedical research total more than $30 billion in the
United States alone. While the example of Gleevec is frequently invoked to support the claim
that these investments spur private-sector innovation, its history also illustrates the pitfalls that
accompany attempts to test this claim empirically. The synthesis of imatinib mesylate, the chemical
compound eventually marketed as Gleevec, was the culmination of both public and private research
investments not only in cancer, but also in the areas of gene mutation, cell signaling, and vascular
disease (Hunter 2007). This complicated genealogy means that attempts to isolate the causal role of
public funding in developing this—or any other—medical treatment must (i) track the unpredictable
and often convoluted path between initial R&D investments and final commercial products; (ii)
account for the possibility that public investments may crowd out industry efforts; and (iii) isolate
variation in public investment that is uncorrelated with the factors that drive private investments.

This paper makes progress on each of these issues.

We analyze the impact of biomedical research funding by the National Institutes of Health
(NIH) on patenting by private sector firms, from 1980 through 2005. Our first contribution is to
construct improved measures of the commercial output associated with publicly funded research.
The most recent work in this area, Blume-Kohout (2012), Toole (2012), and Manton et al. (2009),
examines the effects of funding for a disease on outcomes relevant for that same disease, using a
pre-specified lag structure. This strategy, however, misses any potential impact on other diseases or
with other time lags. Our paper takes a different approach. We construct a new dataset that uses

bibliometric information to explicitly link NIH grants with the publications that they support and,



ultimately, with the patents that cite those publications. By letting the data reveal the relevant
linkages, we are able to identify patents that build on NIH-funded research without making a priori
assumptions about the diffusion of scientific knowledge over time and across disease areas. This
strategy allows us, for the first time, to trace the often circuitous path from NIH funding to patented

innovations.

In addition to uncovering direct linkages between public funding and private-sector patenting,
we develop a novel method of combining citations data with measures of research similarity to
identify the set of private-sector patents related to a given NIH research area—even if they do not
build explicitly on NIH-funded work. This is important because NIH funding may crowd out private
investments. By identifying private-sector patents in areas potentially impacted by NIH funding, we
are able to measure the overall impact of public research investments on private-sector innovation,

accounting for the possibility of crowd-out.

Our final contribution relates to identification. Public investments may target research areas
with the most potential for follow-on innovation, for example those related to diseases whose burden
(Acemoglu and Linn 2004) or potential for scientific or technological advance is increasing (Lichten-
berg 2001). If this were the case, we could observe a correlation between public funding and private
patenting even if public investments were unproductive. To address concerns about the endogeneity
of public investments, our paper begins with the observation that scientists do not simply propose
research “on cancer.” Instead, they typically propose research on specific scientific questions that
may, at some later date, become useful in the search for cancer therapies. This means that NIH
funding for an entire disease may not necessarily correspond to the true set of resources available
for private-sector researchers to build upon. For example, funding for a cancer researcher using a
mouse model to study the physiology of tumors is unlikely to be useful for a cancer researcher using
high-throughput sequencing techniques to study gene expression. By recognizing that biomedical
research has both a science and disease component, we are able to construct a finer-grained measure

of public investment at the “disease/science” level.



This level of granularity helps our analysis in two ways. First, we use fixed effects to control
for time-varying unobservables related to disease burden or scientific potential. Second, we take
advantage of idiosyncrasies in NIH funding at the disease/science level. Consider a grant application
related to a specific disease/science area, say cancer/cell signaling. One can decide whether to fund
this application by comparing it with other cell-signaling applications (e.g., by science rank) or
by comparing it with other cancer applications (disease rank). The NIH does neither. Instead, it
decides whether to fund an application based on how its science rank compares with the science
ranks of other applications in the same disease area. By requiring that applications be funded on
the basis of this “rank of ranks,” NIH funding rules often lead to cases in which disease/science areas
with similar innovative potential receive different amounts of funding. We develop an instrument
to take advantage of funding variation determined by procedural rigidities rather than by conscious
efforts to direct resources to areas with more unobserved potential (see Section 3.3 for more details
and an example). To the best of our knowledge, with the exception of Moretti, Steinwender, and
Van Reenen (2014), no papers in this area have attempted to take advantage of plausibly exogenous

variation in public investments.

Our results show that NIH funding increases total private-sector patenting. Our preferred
empirical specification suggests that an additional $10 million in NTH funding for a research area
generates 3.26 additional private-sector patents in that area, or roughly 1 patent for every 2 NIH
grants. Of course, not all patents are equally valuable; the distribution of patent value is in fact
highly skewed (Harhoff et al. 2003). In a series of back-of-the envelope calculations (Section 5.3
and Table 8) we report a range of estimates for the private value of these patents using different

approaches.

Our results also help in understanding the path through which NIH investments influence
private sector innovation by developing the first estimates of the cross-disease spillover effects of
NIH funding. We show that fully half of the patents resulting from NIH funding are for disease
applications different from the one that funded the initial research. The size of this effect underscores

the importance of our approach to linking patents with funding: by looking only within the same



disease area when measuring impact, the prior literature in this area may miss almost half of the

total impact of basic science funding.

Finally, we consider the possibility that changes in NIH funding can lead firms to reallocate
resources to or from other projects. Reallocation can affect the interpretation of our results in two
ways: if increased funding in one area leads firms to divert resources away from other projects, then
this would lead us to overestimate the overall effect of funding; if, on the other hand, it leads firms to
divert their resources toward other areas, then we would underestimate the impact of funding. We
show in Section 6 that firms which work in an area of increased NIH funding produce more patents
in that area, with no commensurate decreases in patenting in other areas of their portfolio. This
suggests that NIH funding spurs private patenting by either increasing total firm R&D expenditure

or increasing the efficiency of these expenditures.

We proceed as follows. In Section 2, we discuss the various effects that NIH funding may have
on private patenting. We describe our empirical strategy in Section 3; Sections 4 and 5 present our
data and main results, respectively. We discuss extensions in Section 6, and Section 7 concludes.

Robustness checks and alternative specifications can be found in Appendices F, G, and H.

2 Institutional Background

The NIH is the largest single supporter of biomedical research in the United States, responsible
for funding 28 percent of U.S. medical research in 2008. This compares to the 37 percent of research
funded by pharmaceutical firms, 15 percent by biotechnology firms, and 7 percent by medical device

firms (Dorsey et al. 2010).1

The bulk of NIH funding is for “basic” research that aims to extend the frontiers of medical
understanding. About one-third of NIH funding is for clinical research (including patient-oriented

research, clinical trials, epidemiological and behavioral studies, as well as outcomes and health

1Other funders include foundations, accounting for 4 percent, other federal funders, about 5 percent, and state
and local governments, also about 5 percent.



services research) that is more applied in nature. The agency also supports a range of training

grants that help develop the U.S. scientific and medical workforce.

2.1 Possible Effects of NIH Funding

Though many new therapies have intellectual roots in publicly-funded, academic laboratories
(Sampat and Lichtenberg 2011, Cockburn and Henderson 1998), most NIH grants yield neither
patented innovations nor novel treatment modalities. Indeed, it is possible that NIH-backed re-
searchers operate in “ivory towers” with little incentive to direct one’s investigations towards areas

of clinical or commercial relevance.?

Alternatively, NIH funding may have the intended effect of encouraging firms to make comple-
mentary investments in R&D. This may occur if firms underinvest in foundational research because
of scientific uncertainty, the high fixed costs of R&D, or the difficulty of appropriating basic scientific
knowledge. In this case, NIH investments may increase the expected returns to private investment
by generating knowledge that clarifies opportunities for developing new therapies, as in the case of

Gleevec. We refer to this possibility as NIH investments “crowding-in” private sector investments.

It is also possible that NIH investments “crowd-out” private-sector efforts. This could happen
for a variety of reasons. Public funds could simply be subsidizing the cost of a firm’s existing research.
Alternatively, they could lower the costs of entry for competitors, reducing the firm’s ability to reap
market rewards from its R&D investments. This concern is especially salient in the life sciences,
since the organization of drug discovery research in the biopharmaceutical industry has been greatly
transformed to mimic that of academic labs in terms of size, intellectual autonomy granted to
researchers, and rewards linked to the production of high-impact publications (Henderson 1994).
Many biomedical scientists also search for positions in the academe and in industry simultaneously
(Stern 2004), and the patterns of mobility between the private and the public sector have been

extensively documented (Zucker, Darby, and Torero 2002).

*Bikard (2014) shows that when the same discovery is made simultaneously by an academic laboratory and a
private-sector laboratory, the corresponding academic publication receives 65% fewer citations in subsequent patents,
relative to its industry “twin.”



Finally, NIH spending in a given area may impact overall private-sector innovation by changing
how firms allocate their resources across other research areas. Firms may, for instance, complement
investments in NIH-funded areas by reallocating funds from other areas of investigation. Conversely,
NIH funding may crowd-out private investments and these funds may then be invested in other areas.
A full accounting of the impact of NIH funding requires taking into account potential innovative

losses or gains across a firm’s entire research portfolio.

We develop outcome measures that directly test whether NIH funding is useful for firms.
In addition, we examine the impact of NIH funding on total private-sector innovation in a given
research area, taking into account both the possibility that NIH investments may simultaneously
encourage some private investments in a research area while crowding out others. Finally, Section

6 discusses the impact of NIH funding on reallocation of firm R&D investments.

2.2 A Primer on NIH Peer Review and Funding Decisions

The NIH comprises 27 Institutes or Centers (ICs) that are typically organized around body
systems (e.g., the National Heart, Lung, and Blood Institute), or disease areas (e.g., the National
Cancer Institute). Each Institute receives its own Congressional appropriation and is responsible
for funding research that is potentially relevant to its mission. The scientific evaluation of grant
applications, by contrast, occurs primarily in approximately 200 standing review committees known
as study sections. Each study section is organized around a scientific topic (for example, “Behavioral
Genetics and Epidemiology” or “Cellular Signaling and Regulatory Systems”) and is responsible for
evaluating the quality of applications in its area. Study sections review grant applications from
multiple disease areas with similar scientific underpinnings. In turn, ICs fund applications evaluated

by multiple study sections.

Study sections assign each application a raw score. During the timespan covered by our data,
these ranged from 5.0 (worst) to 1.0 (best). This raw score is meant to be a summary statistic for the
study section’s assessment of the quality of that application. Raw scores are then normalized within a

study section and converted into a percentile. We call this normalized score the application’s “science



rank.” Once a study section has evaluated an application, the NIH’s funding rule is mechanical: an
IC must fund the applications it is assigned in order of their science rank until its budget has been
exhausted. The worst score that is still funded is known as that IC’s “payline.” In summary, the
peer review process at NIH generates three separate scores for each application: (i) the “raw score”
given by the study section; (ii) the within-study section “science rank” immediately derived from
the raw score; and (iii) the within-IC ranking of science ranks. It is this final “rank of rank” that
determines whether an application is funded. As alluded to in the introduction, the structure of the
NIH and its funding rules will play an important role in our empirical work. Section 3.3 details how
we exploit these features to isolate exogenous variation in NIH investments across research areas.

Appendix A provides more details about the NIH and NIH funding rules.?

2.3 Measuring Biomedical Innovation Using Patents

Our main outcome variable is patenting by private sector biopharmaceutical firms (see Ap-
pendix B for more details on these patents). Patents may appear a surprising choice; researchers
studying medical innovation have typically focused on outcomes that are more immediately welfare-
relevant, such as reductions in mortality and morbidity (Manton et al. 2009) or new drug approvals
(Blume-Kohout 2012; Toole 2012). However, these outcomes cannot be readily linked to variation
in public research expenditures without restrictive assumptions. In contrast, biomedical patents can
be linked to specific grant expenditures using the bibliographic references they contain. Moreover,
securing patents is the principal way that biopharmaceutical firms appropriate the returns from

their R&D investments (Cohen, Nelson, and Walsh 2000).

Since our analyses focus on the patented outcomes stemming from NIH-funded research—
thereby excluding effects on clinical practice, health behaviors, and unpatented surgical innovations—

they cannot provide the foundation for a complete welfare calculation.* Moreover, it is difficult to

3A maintained assumption for the empirical exercise is that grant applicants cannot game NIH peer review by
choosing to submit their applications to a committee which they expect will be more richly funded. Appendix A
provides qualitative and quantitative evidence consistent with this assumption.

4Note that clinical or epidemiological findings may subsequently inspire drug development strategies followed by
private firms, possibly resulting in patents that our analysis will capture. In a celebrated case, the patents granted to
Eli Lilly concerning recombinant activated Protein C for the treatment of sepsis all refer to a clinical study correlating
mortality in a small sample of severely septic patients with depressed levels of Protein C in these patient’s bloodstream



value patented inventions, either from the standpoint of their private or their social benefits. For the
very small subset of patents pertaining to FDA-approved biopharmaceuticals (1,999 of the 315,982
patents in our sample), we can use estimates from the literature to calculate implied drug valua-
tions for the impacts of NIH funding in dollar terms—a rough estimate of the private value of these

patents.

3 Empirical Strategy

We examine the impact of public R&D investments on private-sector patenting by estimating

a regression of the form:
Patents - = «ag+ arFundingas: + Controlsgst + €ast (1)

The unit of analysis is a disease/science/time (DST) combination. Biomedical research typi-
cally involves a set of scientific questions applied toward a particular disease area. Scientists may
study, for instance, the role of cell signaling in cancer or gene expression in diabetes. A dis-
ease/science classification can be thought of as a “research area” whose projects share a similar
disease target and benefit from an understanding of similar scientific methods and mechanisms. We

follow these research areas over time.

Our outcome variable, Patents -, describes the set of private-sector patents that we can
associate with NIH funding for disease d, science area s at time t. As further detailed below, these

patents need not be confined to the same disease area d or science area s as the original funding

source, nor do they need to be issued in the same year t.

The first step in our analysis is to assign NIH funded research projects to specific DSTs.
Ordinarily, this task would not be straightforward because grant proposals often have titles—such

as “Impact of Type II Glucocorticoid Receptor Impaired Function in Transgenic Mice”—that would

(Fourrier et al. 1992). This correlation provided the impetus for Lilly’s attempt to synthesize a recombinant version of
this protein. This product was ultimately withdrawn from the market in 2011 after new evidence emerged regarding
the bleeding risks associated with the use of this drug.



not enable an outsider to the field to identify either a disease or a science area. In our setting,
however, we are able to infer a grant’s DST because the NIH requires all grant applicants to specify
a funding institute and a study section that will evaluate the application.® Therefore, we assign
NIH funding to DSTs using the NIH’s own categorization: the Institute that funds a grant tells us
its disease area and the study section that evaluates a grant tells us its science area. Fundinggs:
is thus the total amount of NIH support for grants assigned to a particular Institute and evaluated

by a particular study section in a particular year.

3.1 Measuring Outcomes Associated with NIH Funding: Traditional Challenges

It is difficult to predict whether and how funding for a given DST will spur private-sector
patenting: funding for one research area can have impacts on other research areas, with varying
time lags. The most direct way of assessing the impact of public funds, then, is to examine its impact
on patenting in all research areas, in all subsequent years. With sufficient data and variation, one
would be able to estimate all the cross-elasticities—across research areas and over time—associated

with changes in public R&D investments.

In practice, however, the literature has traditionally assumed that public investments may
only impact private innovation in the same research area, within a well-defined time horizon. Toole
(2012), for instance, regresses patenting in a given disease-year on 12 years of lagged funding for
that same disease. A generic concern with this type of approach is that it fails to capture any
benefits of medical research that cannot be anticipated in advance. These benefits may accrue both
to seemingly unrelated research areas and with unexpected time lags; for example, much of the
research underlying the development of anti-retrovirals used in the treatment of HIV infection in
the 1990s was originally funded by the National Cancer Institute in the 1950s and 1960s, at a time

when research on the causes of cancer centered on viruses.%

5We do not believe “study section shopping” to be a concern in this setting. See Appendix A for an extensive
discussion.

5Gleevec provides another example: Varmus (2009) recounts that that Ciba-Geigy was working with scientists of
the Dana Farber Cancer Institute to find drugs that would block the action of a tyrosine kinase that contributes to
atherosclerosis in blood vessels, a disorder that is very different from CML. The development of Gleevec also relied
heavily on knowledge about the genetic causes of CML that was established in the 1960s and 70s (e.g., Nowell and
Hungerford 1960). In this case, the availability of treatment lagged behind basic research by over forty years. In other



3.2 Linking Patents to NIH Funding: Novel Solutions

A major innovation in our paper is that we do not make ex ante assumptions about where and
when public R&D investments may impact patenting. Instead, we develop new data and metrics to
explicitly track this process using bibliometric data. Using this approach, we construct Patents
in two different ways. Figure 1 provides an overview of this process and Appendix E provides a

detailed description.

Patents citing NIH-funded research. NIH funding may spur private-sector patenting by pro-
ducing research that firms subsequently build on. The belief that such knowledge spillovers is an
important mechanism for productivity growth has been a feature of policy debates since the end
of World War II (e.g., Bush 1945), and has also figured prominently in economic scholarship on
technological change (Nelson 1982; Cockburn and Henderson 1998). We assess this claim directly

by identifying the number of private-sector patents that explicitly cite NIH-funded research.

To do this, we first link NIH grants to the publications they support using grant-acknowledgement
data. Second, we link those publications to patents that build on their findings (Figure 1, second
column). To accomplish this second task, we find and standardize all the in-text publication cita-
tions in patents granted by the USPTO. Because publications, rather than patents, are the main
output of scientific researchers, this approach represents an advance over the more commonly used
patent-to-patent citation data because it allows us to more reliably document how firms draw on
scientific findings. Further, the vast majority (over 90%) of patent-to-article citations come from
applicants rather than examiners and are thus more plausibly indicators of real knowledge flows
than patent-to-patent citations, for which only 60% of citations are applicant generated (Lemley

and Sampat 2012).7

Taking the acknowledgment and citation data together, we define Patents;, as the set of

patents that cite publications that in turn acknowledge funding from that DST. These patents need

settings, basic research percolates almost immediately into applied work, such as when publications and patents are
released in tandem (Murray 2002).
"Details of the matching process are discussed in Section 4 and Appendix C.
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not target the same disease as the original source of NIH funding with which it is linked. For
example, if a patent related to cardiovascular stents cites research funded with money allocated to

diabetes, we would associate this cardiovascular patent with diabetes funding.

This approach has two important drawbacks. First, relying on direct publication-to-patent
citations limits the type of intellectual influences we can account for. We would not, for instance,
credit NIH funding if it lead to patenting through more complicated citation patterns (e.g., a patent
that cites a publication that cites a publication that acknowledges the NIH), informal interactions
(e.g., two researchers meet and exchange ideas at a conference supported by NIH funding), or the
hiring of NIH-funded trainees by private-sector firms. Omitting these channels may lead us to

underestimate the impact of NIH funding.

Second, by accounting only for patents that explicitly cite NIH-funded research, this measure
treats patents that do not exist and patents that do exist but which cite only privately-funded
research in the same way—mneither are linked to a DST. As a result, if increased DST funding
led to an additional linked patent, we could not tell whether this patent would otherwise have
existed or not, i.e., whether private firms would have funded the necessary research instead. In
other words, our first outcome measure asks whether NIH-funded research is useful to private firms.
While informative, this is not the same as asking whether NIH funding increases total private-sector

innovation in a research area.

Patents related to NIH-funded research. Our second outcome identifies all patents related to
an NIH funding area, whether or not these patents actually cite NIH-funded research. This allows
us to account for a richer set of channels through which NIH funding may impact private-sector
patenting. “Related” patents may include patents linked to NIH funding via a longer citation chain
or patents by NIH-trained scientists who end up in the private sector. Crucially, these related
patents may also be the result of private sector investments in related research areas; they need not
be financially dependent on NIH at all. Capturing the total number of private sector patents in
an intellectual area is important because it allows us to take into account the possibility that NIH

funding may crowd out private investments. If this were the case, then we would not expect NIH

11



funds to increase the total number of patents in a given research area: it would simply change the
funding source for those patents. The impact of NIH funding on total innovation in a research area

captures the net effect of potential crowd-in and crowd-out.

To construct this measure, we define a patent to be related to an NIH funding area if it cites
research similar to research that is actually funded by that area. In particular, we match each NIH
grant in our sample to publications that acknowledge its support and then link these publications
to a set of intellectually similar publications using a keyword-based similarity measure developed
by the National Library of Medicine.® The final step in our matching process is to identify the set
of patents that cite this broader set of publications (see column 3 of Figure 1). The set of patents

linked to a DST in this way can be thought of as patents in the same “intellectual area” as a DST.

3.3 Identification

As noted earlier, public investments in R&D are potentially endogenous. We address this in
two ways. First, we include detailed fixed effects to control for possible omitted variables bias.
Second, we will show that our results are robust to using an instrumental variables strategy that

takes advantage of rigidities in NIH funding rules.
Fixed Effects Estimation. Our main OLS specification is given by
Patentsg, = ao+ arFundingas + B Xast + 0as + Yar + Vst + Edst (2)

Equation (2) includes pairwise disease/science, disease-year, and science-year fixed effects that ac-
count for many common sources of endogeneity. Diseases that affect more people may receive more
public and private interest. Some research topics may be more tractable than others; the genetics of
breast cancer, for instance, can be studied using a variety of animal models, whereas the same is not

true for the genetics of schizophrenia. We control for time-invariant differences in innovative poten-

8The PubMed Related Article (PMRA) algorithm analyzes keywords and keyword combinations that are assigned
to all life-science publications by the National Library of Medicine and defines similarity on the basis of how many
of these keywords overlap. This is discussed in detail in Appendix D.

12



tial among disease/science based research areas (d45). We also account for changes in the innovative
or commercial potential of disease and science areas over time. Disease-year fixed effects 4 control
for potential confounders such as shifting disease burden or public perceptions of disease salience.
NIH funding may also respond to scientific advances. The introduction of new DNA-sequencing
technologies in the late 1990s, for instance, may have increased both public and private research
funding for diseases with a genetic component. We include science-year fixed effects, vy, to control
for this type of variation. Finally, we control in a flexible way for the number of applicants to a DST
to proxy for time-varying interest in a particular research area. To account for serial correlation,

standard errors are clustered at the disease/science level.

The remaining funding variation in equation (2) comes from within-disease/year or within-
science/year changes: why is it, for instance, that cancer/cell signaling may receive more funding
in 1995 than cancer/tumor physiology? After saturating our specifications with fixed effects, our
identifying assumption is that NIH funding for a specific DST is not correlated with changes in the

innovative or commercial potential for specific disease/science combinations.

This assumption may be violated if, for instance, either Congress or NIH administrators al-
located funding to DSTs on the basis of their potential. In response to the success of Gleevec,
for example, the National Cancer Institute may have decided to devote a greater proportion of its
budget toward the study of cell signaling or gene expression, scientific topics that are particularly
relevant for targeted cancer therapies. If private firms were behaving similarly, then equation (2)
would not be able to identify the impact of public funding, because we would expect changes in

patenting for this area even in the absence of additional funds.

In practice it is difficult for the NIH to direct funding to DSTs on the basis of their evolving
potential. As discussed in Section 2.2, applications are funded in order of their science ranks. This
means that if cell signaling was a particularly “hot topic” in a given year, the NCI could not decide

to fund the top 20 cancer-related cell-signaling applications without first funding the top 19 cancer-

13



related applications in all other science areas. Most likely, it would not have the budget to do so.? In

fact, the rigidity of this system was cited in an NIH-commissioned report from 2000, urging reform:

“..Researchers perceive that...applications describing some of the most productive, highest impact
work may be assigned to too few study sections, causing too much of the ‘best science’ to compete
with itself; that the scope of some study sections is restricted to research with relatively low
impact, resulting in undeserved ‘entitlements’. .. 9

Instrumental Variables Estimation. Even if the NIH cannot direct funding to specific DSTs,
Fundinggss may still be endogenous if study section reviewers assign higher science ranks to appli-
cations from DSTs with more potential. If, for instance, the cell-signaling study section decides to
give higher science ranks to cancer-related applications after the discovery of Gleevec, then funding

for the cancer/cell signaling DST would reflect this unobserved enthusiasm.

We construct an instrument for DST funding that is not correlated with a DST’s potential.
Our instrument works by isolating variation in DST funding coming from differences in the within-
disease ranking of science ranks (“rank of rank”) assigned to otherwise equally meritorious grant
applications. Figure 7 illustrates how grant applications with the same quality may have different
funding outcomes. Differences in grant-level funding then translate into differences in DST level

funding.

In this example, there are two ICs: the National Cancer Institute (NCI) and the National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). They are responsible for funding
grant applications from two study sections: Cell Signaling and Tumor Physiology. The top two
panels display the raw scores that each study section assigns to the applications that they review,
as well as the normalized “science rank” that these raw scores imply. The bottom two panels of
Figure 7 display how science ranks translate into rank of ranks within an IC, using raw scores as
tie breakers. The solid line is the payline: applications with rank of rank above the payline are
funded; those with rank of rank below are not. In Figure 7, the cancer-tumor physiology DST and

the cancer/cell signaling DST both have applications with raw scores of 7.6, but different funding

9The main way that ICs get around these rules is to either fund an application out of scoring order or to issue a
request for proposals (RFPs) or applications (RFAs) on a specific topic. RFPs and RFAs account for only a small
portion of NIH grant spending. Grants responding to these are evaluated in specially empaneled study sections,
which we exclude from our analysis. See Appendix F for a discussion of out-of-order grant funding.

104Recommendations for Change at The NIH Center For Scientific Review,” Final Phase 1 Report, Jan 14, 2000.
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outcomes. The cancer/cell signaling application is not funded because diabetes/tumor physiology
grants are relatively weak; this gives cancer/tumor physiology applications a high science rank, which
in turn leaves less NCI funding for cancer/cell signaling. The additional funding that cancer/tumor
physiology receives from this grant can be thought of as “windfall” funding because it is not related

to the innovative or commercial potential of that DST.

Our IV strategy compares DSTs that have the same number and quality of grant applications
near an IC’s payline, but which receive different amounts of windfall funding. Specifically, we

estimate:
Patentsz, = oo+ arFundinggs + Y (# Applicationsgs;) (3)

+®(RawScoresyst) + V(Science Ranksgst) + dgs + Var + Vst + Edst
instrumenting Fundinggs with

WindfallFundingasy = Fyast (4)
9€Gat

Windfall Fundinggs; is the amount of funding for a DST that comes from the set of grants, Gg,
near its IC’s payline. In our main specifications, we define G4 to be set of 25 grant applications
on either side of the funding threshold for disease area d in year t. The median IC receives 750
applications in a given year (the mean is 1,100), making this a relatively tight window. Our results

are robust to a variety of other bandwidths.

In general, however, Windfall Fundingys; may be correlated with a DST’s quality if, for in-
stance, better DSTs have more applications near the payline or if, within the set G, applications
from better DSTs get higher scores. To address these concerns, we use our instrument together with
variables that control for the quality of a DST’s applications. Equation (3) includes a full set of
indicator variables for the number of grant applications any given DST has near the threshold set
Gy (i.e., the function T in equation (3)), as well as separate cubics in the average raw score and
average science ranks of all DST applications within the threshold set G (i.e., the functions ® and

VU in equation (3)). Controlling for both the raw score and science rank accounts for any differences
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in quality among applications, meaning that the remaining variation comes only from how science

ranks translate into rank of ranks.!!

In our IV specification, our identifying assumption is that there are no systematic differences in
innovative potential among DSTs with the same number of marginal applications, the same average
raw scores, and the same average science ranks. In Appendix F, we show that a DST’s windfall
funding, controlling for these variables, is uncorrelated with non-windfall funding, previous and

future windfall funding, and other measures of DST output.

4 Data Construction and Descriptive Statistics

Our analysis combines data from several primary sources: (i) Administrative data on NIH
funded grants from the IMPAC II database; (ii) publication data from PubMed including informa-
tion on grant acknowledgements; (iii) patent data from the USPTO; and (iv) information on patents
related to FDA-approved drugs from the FDA’s “Orange Book” and IMS-Health. Our final analytic
sample captures linkages between the universe of NIH-funded grants from 1980-2005 at both the
individual grant and DST levels, and the universe of biomedical patents granted between 1985 and

2012.12

4.1 Grant-level Patent Match

We begin with data on all 153,076 NIH grants from 1980-2005 that were evaluated in chartered
study sections (those that are associated with a specific science area, rather than convened on an ad

hoc basis). These grants were evaluated by 631 such study sections and funded by 17 Institutes.!?

1 Our strategy is similar to the one used by Jacob and Lefgren (2011) to investigate the impact of receiving
NIH funding on grant-level outcomes. They use a regression discontinuity design and compare outcomes for grant
applications just above and just below an Institute’s payline. We cannot use the same design because the running
variable—rank of rank—applies to individual grants but not to DSTs. There is no DST-level discontinuity; instead
we aggregate grant-level discontinuities in order to generate differences in funding among similar DSTs.

'2A patent is part of our universe if (i) it is in a relevant patent class and (ii) cites at least one article indexed
by PubMed. The relevant patent classes are the 92 classes belonging to categories 1 and 3 in the NBER USPTO
database (see Appendix B for a complete list). Note that in practice, the second requirement is almost always satisfied
for patents in these classes.

13The list of the included Institutes is described in Appendix A, Table Al. Briefly, we exclude three small ICs
(the National Institute on Minority Health and Health Disparities, the National Institute of Nursing Research, and
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The characteristics of these grants are described in Table 1. In total, we have grant-level data that

aggregate up to the activities of 14,085 DSTs.

The average award size for grants in our sample is approximately $1.6 million. Seventy four
percent of grants are RO1s—the RO1 is a renewable, project-based grant that constitutes the majority
of NIH’s grant spending—and most (60%) are for new research projects (as opposed to renewals of

existing projects).

Table 2 describes the life-sciences patents in our sample and show how they are linked to NIH
funding. We begin with the universe of 315,982 life-science patents granted by the USPTO between
1980 and 2012. Of these, 232,276 (74%) are private-sector patents and 83,394 (26%) are what we
call public-sector patents, meaning those assigned to governments, universities, hospitals, and other
institutions (see Appendix B for a description of patent types and definitions). Despite the large
number of patents we examine, Table 2 shows that high value patents are extremely rare: only 4,718
private-sector patents (2%) are associated with advanced drug candidates—drugs and biologics in
Phase IIT trials and beyond—and even fewer, 1,999 (<1%) are associated with FDA approved New

Chemical Entities and New Biological Entities.

We find overwhelming evidence that NIH funding is relevant for organizations seeking life-
science patents. Forty-four percent of life-science patents in our sample directly cite NIH-funded
research. Among the subset of private-sector patents, this figure is 39%. For public-sector patents,
this figure is 57%. We further document a greater role of NIH-funded research in the development
of high value patents; 50% of patents associated with advanced drug candidates—those that have
entered clinical trials—cite NIH-funded research. We also show that smaller firms are more likely

to make use of NIH-funded research.

Table 2 also shows that the vast majority of life-science patents—265,741 patents or about

84% of the universe—-cite research that is similar to research funded by an NIH DST. This is true,

the National Library of Medicine), as well as six NIH centers which serve mainly administrative functions. Our
primary analyses do include three ICs that are not oriented towards a particular disease: the National Institute
of General Medical Sciences (NIGMS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
and the National Human Genome Research Institute (NHGRI). Note, however, that these Institutes review grant
applications from several study sections, which is all that our identification strategy requires. In a robustness test,
show that our results are robust to including only disease or body-system specific ICs.
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moreover, for private- and public-sector patents, as well as high value patents, and those from both

large and small firms.

On average, one third of the NIH grants in our sample produce a publication that is directly
cited by a patent. This figure is likely to be an underestimate because our publication and patent
data are truncated in 2012. Figures 3, 4, 5 and 6 describe the lag times between NIH funding and
follow-on patenting. Each figure displays a cumulative hazard curve where the risk being modeled is
that of a grant supporting a publication that is cited by a patent. This provides a simple, graphical
way to examine the diffusion of knowledge stemming from NIH expenditures, and how this diffusion

process varies over time and across diseases.

Figure 3 documents substantial variation in the relevance of NIH funding for patenting across
diseases. Approximately 15 years after funding, almost 60% of grants funded by the National
Institutes for Allergy and Infectious Diseases have produced research that has been cited by a
patent. By contrast, this is true of only 20% of grants funded by the National Institutes of Mental
Health. These differences should not be interpreted as comparisons of the efficacy of NIH funds, as

they also reflect differences in the ease of biomedical innovation across disease areas.

Figure 4, meanwhile, shows that time-to-patent has been decreasing over time. Only 20%
of grants awarded between 1980 and 1985 produced research that is relevant for a patent in the
ten years following. For grants awarded between 1991 and 1995, this figure was almost 40%. One
interpretation of this finding is that NIH administrators’ efforts to encourage “translational research”
have been successful. An alternative view is that patentability has steadily moved upstream along
the biopharmaceutical R&D value chain, consistent with other evidence (Eisenberg and Nelson 2002;

Jensen and Murray 2005).

Figure 5 underscores the fact that although a third of grants are associated with patents, “im-
portant” patents—those pertaining to advanced drug candidates, or to FDA-approved treatments—
are still relatively rare. Even twenty years after approval, only 5% of NIH grants produce research
cited by a patent associated with an FDA-approved drug; this figure is only slightly higher for highly

cited patents, 10%.
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Finally, Figure 6 shows that a grant is just as likely to produce research relevant for patents
primarily associated with other disease areas as it is for patents associated with its own disease area.
Our matching process allows a patent to be associated with more than one Institute (conditional on
being linked to a DST, the average patent is linked to 7 different ICs). For each patent, we define
its primary disease area as the IC responsible for funding the plurality of the publications that it
cites. Then we categorize each patent-to-grant linkage as being for the same disease or for a different
disease, where the reference disease is simply given by the funding IC for the focal grant. Figure 6

also shows that both private- and public-sector entities take advantage of NIH-funded research.

4.2 DST-level Patent Match

Our empirical variation resides at the level of the DST, not the level of the individual grant.
Table 3 describes the characteristics of the DSTs in our sample. The average DST supports 11 grants

totaling $47 million in funding (weighted by DST size).

Table 3 indicates that 13,027 or over 80% of DSTs produce research that is potentially relevant
for patenting. Before describing the number of patents we associate to each DST, it is worth

describing how we attribute credit when a patent is associated with more than one DST.

In general, the correct attribution of patents to DSTs depends on the innovation production
function and the degree to which any particular piece of knowledge is instrumental in generating
the patent. If DSTs are pure substitutes in the production of patents and if a patent is linked
to N DSTs, then each DST should receive credit for 1/N*® of that patent. Table 3 shows that the
average DST in our sample produces research that is directly cited by 14.7 private-sector patents
and is intellectually related to a total of 28 patents, using this “weighted” count. If, instead, the
contributions of various DSTs are complements, then a patent should count for more than %; in
the extreme, support from each DST is critical such that production is Leontief. In this case, DSTs
should receive full credit for each patent it is linked to. Applying this more generous assumption to

our data, we find that the average DST is directly cited by 116 unweighted patents.
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5 Main Results

Tables 4 and 5 present our fixed effects estimates for the impact of NIH funding on each of our
two measures of patent outcomes. The top panel of Table 4 describes the impact of NIH funding on
the number of patents that cite NIH-funded work. Without any controls, we find that a $10 million
increase in funding is associated with 2.4 more patents. Adding fixed effects for research areas
(disease/science groupings) reduces this coefficient to 2.1. We add increasingly detailed fixed effects
in each successive column; interestingly, our estimates remain relatively stable. One explanation
for this is consistency is that, at the time it makes funding decisions, the NIH may not be able to
anticipate which DSTs have greater future innovative potential. In this case, the amount of funding
that a DST receives may be relatively uncorrelated with its future patent output. With our full set
of controls, we estimate that a $10 million increase in funding leads to 2.5 additional patents, or

approximately one patent for every two to three grants.

The bottom panel presents our results under the assumption that every publication a patent
cites is necessary for that patent’s creation and cannot be substituted with a non-NIH-funded
publication. Without weighting, we estimate that $10 million leads to 19.9 more patents, or about

2 to 3 patents for every NIH grant.

The estimates in Table 4 would not reflect the true value of NIH funding if public support
for science either crowds out private investment or if it spurs patenting in ways that cannot be
captured by a direct grant-publication-patent link. The top panel of Table 5 reports the impact
of NIH expenditures on the total amount of private-sector patenting in areas related to a DST,
regardless of whether those patents directly cite NIH-funded research. This specification is designed
to assess the net impact of NIH funding on private-sector innovation in an area, accounting for both
the possibility of crowd-out and the possibility that not all patents spurred by NIH funding can be
linked via direct citations. Column 5 of Table 5 finds that a $10 million increase in DST funding
results in a 3.26 net increase in the number of related private-sector patents, or about one patent

for every two NIH grants.
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The magnitude of the impact of NIH funding on total patenting is slightly larger than its
effect on patenting that can be directly linked to NIH funds. This indicates that NIH funding
generates more patents through non-direct citation means than it crowds out. This may occur if,
for instance, NIH funding increases the productivity of private R&D investments by clarifying the
scientific potential of various research areas. In this case, even if firms reduce their investments,

total private patenting in an area may still increase.

The bottom panel of Table 5 reports these results with unweighted patent counts and estimates
effects that are an order of magnitude larger. These results, however, are unlikely to reflect the true
effect of NIH funding. Recall that this final outcome measure is designed to capture the influence
that NIH funding may have on patenting that does not require a direct citation linkage between
funding and patents. In this measure, patents are linked to study sections through shared intellectual
foci, reflecting the notion that public funding in a particular area produces knowledge that enhances
productivity of others working in that area. Each DST is associated with many more patents in
this way, thus driving a large wedge between weighted and unweighted impacts. Unlike the direct
approaches which connect patents to a small number of study sections, our indirect method often
yields connections to hundreds of study sections in related intellectual realms. While all linkages
may be important, it is harder to imagine that each unit of knowledge is instrumental, and thus
we favor the more conservative weighted approach in this case. Going forward, we will discuss
estimates of the effect of funding on overall patent production using only our more conservative

weighted counts. The unweighted results, however, are still reported in our tables.

Table 6 displays 2SLS estimates using our instrumental variable for funding. Column 1 reports
our first stage estimate of the relationship between total DST funding and windfall DST funding,
controlling flexibly for raw scores and science ranks, as well as the number of applications that
a disease/science paring has in a 25-grant window surrounding that disease’s (e.g., 1C’s) funding
threshold for that year. Table 6 also reports tests of the strength of our windfall funding instrument.
We obtain a Cragg-Donald Wald F-statistic of 452 and a Kleibergen-Paap Wald F-statistic of 31;
both reject the null hypothesis that our instrument is weak. Because our IV strategy requires that

we control for these additional variables, which we do not use in Tables 4 and 5, we report both
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our IV estimates as well as OLS estimates using the same set of first stage controls. Using our
instrument, we find similar effects of NIH funding on the number of directly cited patents (2.78 vs.
2.61) and a slightly smaller effect for the total number of patents related to an NIH research area
(3.97 vs. 3.26). We take the 3.26 figure in Column 5 as our preferred estimate of the impact of NTH

funding on private sector patenting.

5.1 Robustness Checks

We probe the robustness of our results using a variety approaches, described in more detail in

Appendices F, G, and H.

Appendix F investigates the robustness of our identifying assumptions. For example, the NIH
occasionally funds grant applications out of the order in which they are scored. If DSTs that receive
more out-of-order funding also have unobservably higher innovative potential, then this may bias our
estimates. We discuss a variety of specification checks that together demonstrate that this threat to
identification is not a concern empirically. Appendix F also provides evidence for the plausibility of
the exclusion restriction for our instrument. We show that Windfall Fundinggs is not correlated
with windfall funding in previous or future years; we also show that it is not correlated with the
non-windfall funding that a DST receives. Finally, we also show that Windfall Fundinggs is not
correlated with the quality of previous applicants to a DS (same area, different time), or to past

patent output in a DS.

Appendix G considers alternative specifications and samples. We show that our results are
robust to using logs of funding and patenting, as well as to restricting our sample to NIH Institutes

that are the most directly identified with disease and body system areas.

Finally, Appendix H shows that our results are robust to alternative linking strategies. In
particular, a potential concern with our main approach is that our definition of a DST’s “intellectual
area” can vary over time. If funding allows a disease/science area to expand the set of topics that it

supports, then we may associate increased funding with more patents simply because higher levels of

grant expenditures leads us to credit DSTs with patents over a wider slice of technological space. To
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ensure that our results are not driven by this phenomenon, we repeat the matching exercise using a
definition of “intellectual area” that is fixed for a given disease-science (DS) combination over time.
Various implementations of this alternative linking strategy produce a battery of estimates that are

remarkably similar to those presented in Section 5.

5.2 Heterogeneity

In addition to quantifying the impact of NIH funding on overall patenting, we also examine
which type of patents are most responsive to NIH expenditures. Column 1 of Table 7 reproduces our
estimates of the impact of funding on total private sector patenting from Table 6. Columns 2 and 3
focus on “important” patents, those that either pertain to advanced drug candidates or to FDA-
approved biopharmaceuticals (traditional “small molecule” drugs as well as vaccines and biologics).
The impact of NIH funding on the development of high-value patents need not be similar to its
impact on overall patenting; if firms direct their resources to the most promising projects, then the
marginal patent that is created because of NIH funding may be relatively low quality. Conversely,
if it is unprofitable for firms to invest in risky or early stage research, then the marginal patent

supported by the NIH may be of high quality.

Looking at our IV estimates in the bottom panel of Table 7, Column 2 shows that a $10
million increase in DST funding leads to a net increase of 0.07 patents associated with advanced
drug candidates (those that have entered clinical trials) and FDA-approved drugs. While this figure
is small in magnitude, it translates into an elasticiy of patenting with respect to funding of between
0.5 to 0.6, comparable to the elasticity we estimate for private-sector patents in general. We will
discuss alternative measures of patent value in the next section, when we discuss the economic

magnitude of our results.

Many studies document cases in which existing medical treatments have been successfully
used to treat new conditions (Gelijns et al. 1998; Wurtman and Bettiker 1994). Similarly, drug
development efforts often build on research originally intended for other diseases, reflecting the

importance of knowledge spillovers across diseases (Henderson and Cockburn 1996). Our results
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provide evidence on the magnitude of these cross-disease knowledge spillovers. To measure spillovers,
we assign a primary disease affiliation to each patent in our data by finding the NIH Institute that
is responsible for funding the plurality of publications cited by that patent. We find that NIH
funding directed toward one disease area is as likely—if not more likely—to translate into patents
that are primarily affiliated with other disease areas as it is to translate into patents affiliated with
its own. The IV estimate in Column 3 of Table 7 indicates that a $10 million increase in funding
for a DST generates 1.8 additional patents with the same primary disease affiliation. This is likely
the effect that Congress is interested in when allocating funds for particular diseases. Column 4,
however, shows that this same funding also generates 2.4 additional patents with a different primary
disease affiliation. Part of the reason for such large cross-disease funding spillovers may be due to
the fact that much of the research that the NIH supports centers on scientific questions that are
relevant to many disease areas. The National Cancer Institute may, for instance, fund a study of
cell division in frog embryos; this research may also be relevant for the study of tissue regeneration

and aging-related disorders.

These findings highlight the importance of using a patent-linking strategy that does not assume
that funding only impacts innovation in its intended area. Had we made this assumption, we would

have failed to account for over half of the relevant innovative outputs.

Finally, Table 7 also shows that NIH investments increase patenting for both large and small
assignees. While larger assignees produce a larger number of patents in response to increases in
NIH funding, the response of small assignees is more elastic. This finding is consistent with our
summary statistics in Table 2, which show that a greater proportion of patents assigned to small

firms cite NIH-funded research.

5.3 Valuing the Impacts of NIH Investments

Our results suggest that a $10 million increase in NIH funding leads to a net increase of 3.26
weighted private-sector patents. Putting a dollar value on these patents is difficult, for several

reasons. It is well known that patent value distributions are highly skewed (Harhoff, Scherer, and
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Vopel 2000). Moreover, typically only the private value of patents is calculated, and the social value

can be much larger.

One approach to valuing the returns to NIH funding in dollars, rather than patents, is to rely
on estimates for the market value of patents taken from the literature. Bessen (2009) quantifies
the effect of patent stocks on Tobin’s ¢, and uses these estimates to derive the market value of a
patent across sectors of the economy. In the biopharmaceutical sector, his estimates imply that an
additional patent is valued by the stock market at about $11.2 million (2010 dollars). Combined
with our estimate in Table 6, column 5, a back-of-the-envelope calculation indicate that a $10 million
dollar in NIH funding would yield $34.7 million in firm market value. As Bessen (2009) notes, a
problem with this approach is that patents may be picking up the effects of other factors correlated

with market value; accordingly this figure probably represents an upper bound.

A different approach is to focus on patents associated with marketed drugs. Very few of the
patents in our sample are for drugs, let alone marketed drugs. However, for this set we have another
measure of private value, drug sales. DiMasi, Grabowski, and Vernon (2004) report that the mean
present discounted value (PDV) of lifetime sales for new drugs approved by the FDA between 1990
and 1994 was approximately $3.47 billion (2010 dollars). More recent research (Berndt et al. 2015)

shows similar orders of magnitude, although the returns appear to have been declining over time.

Table 8 presents implied drug valuation estimates of our results based on the DiMasi et al.
figure reported above. Column 1 reproduces our findings from Table 7 with respect to all advanced
drug candidates. Another variation is to restrict the outcome to patents associated with FDA-
approved drugs. Column 2 reports OLS and IV estimates using only these patents to construct the
outcome variables at the DST level and finds that a $10 million dollar increase in funding results
in approximately 0.049 more such patents. In this definition, we include all patents we can link to
a drug (including those listed in the Orange Book, as well as additional patents from IMS Patent
Focus); there are approximately eight patents associated with every FDA-approved drug on average
(cf. Appendix B). If the inventions associated which each of these eight patents are essential to

the development of the corresponding drug, then we should fully credit each with the value of that
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drug. In this case, we would expect $10 million dollar increase in funding to generate an expected

PDV of 0.049 x $3.47 billion = $173.5 million dollars in sales.

If we instead assumed that the invention underlying each patent contributes equally to the
drug, we would expect this funding amount to translate into 0.049/8 = 0.0061 drugs, with an
expected PDV of 0.0061 x $3.47 billion = $21.3 million. At the 25" percentile, an additional dollar
5th

of NIH funding generates 17 cents in lifetime drug sales; at the median, 70 cents; and at the 7

percentile, $2.50.

14 Many “sec-

However, even within drug, there may be heterogeneity in patent importance.
ondary” Orange Book patents are not even filed until well after 