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1 Introduction

The pharmaceutical firm Novartis made use of decades of publicly funded research in the
development of Gleevec, a remarkably effective treatment for chronic myelogenous leukemia (CML).
Between the 1960s and 1980s, numerous studies elucidated the causes of CML, documenting the role
of a specific gene mutation that leads tyrosine kinase, a common cell signaling molecule, to become
overactive. This understanding pointed to an approach for treating CML—develop compounds to

inhibit tyrosine kinase—which Novartis scientists then pursued (Pray 2008).

Annual public-sector expenditures in biomedical research total more than $30 billion in the
United States alone. While the example of Gleevec is frequently invoked to support the claim
that these investments spur private-sector innovation, its history also illustrates the pitfalls that
accompany attempts to test this claim empirically. The synthesis of imatinib mesylate, the chemical
compound behind Gleevec, was the culmination of both public and private research investments not
simply into cancer, but into gene mutation, cell signaling, and vascular disease as well (Hunter
2007). This complicated genealogy means that attempts to isolate the causal role of public funding
in developing this—or any other—medical treatment must (i) track the unpredictable and often
convoluted path between initial R&D investments and final commercial products; (ii) account for
the possibility that public investments may crowd out industry efforts; and (iii) isolate variation in
public investment that is uncorrelated with the factors that drive private investments. This paper

makes progress on each of these issues.

We analyze the impact of biomedical research funding by the National Institutes of Health
(NIH) on patenting by private sector firms, from 1980 through 2005. Our first contribution is to
construct improved measures of the commercial output associated with publicly funded research.
The most recent work in this area, Blume-Kohout (2012), Toole (2012), and Manton et al. (2009),
examines the effects of funding for a disease on outcomes relevant for that same disease, using a
pre-specified lag structure. This strategy, however, misses any potential impact on other diseases or
with other time lags. Our paper takes a different approach. We construct a new dataset that uses
bibliometric information to explicitly link NIH grants with the publications that they support and,

ultimately, with the patents that cite those publications. By letting the data reveal the relevant



linkages, we are able to identify patents that build on NIH-funded research without making a priori
assumptions about the diffusion of scientific knowledge over time and across disease areas. This
strategy allows us, for the first time, to measure the often circuitous path from NIH funding to

patented innovations.

In addition to uncovering direct linkages between public funding and private-sector patenting,
we develop a novel method of combining citations data with measures of research similarity to
identify the set of private-sector patents related to a given NIH research area—even if they do not
build explicitly on NIH-funded work. This is important because NIH funding may crowd out private
investments. By identifying private-sector patents in areas potentially impacted by NIH funding, we
are able to measure the overall impact of public research investments on private-sector innovation,

accounting for the possibility of crowd-out.

Our final contribution relates to identification. Public investments may target research areas
with the most potential for follow-on innovation, for example those related to diseases whose burden
is increasing (Acemoglu and Linn 2004) or those that experience a scientific breakthrough (Lichten-
berg 2001). If this were the case, we could observe a correlation between public funding and private
patenting even if public investments were unproductive. To address concerns about the endogeneity
of public investments, our paper begins with the observation that scientists do not simply propose
research “on cancer.” Instead, they typically propose research on specific scientific questions that
may, at some later date, become useful in the search for cancer therapies. This means that NIH
funding for an entire disease may not necessarily correspond to the true set of resources available
for private-sector researchers to build upon. For example, funding for a cancer researcher using a
mouse model to study the physiology of tumors is unlikely to be useful for a cancer researcher using
high-throughput sequencing techniques to study gene expression. By recognizing that biomedical
research has both a science and disease component, we are able to construct a finer-grained measure

of public investment at the “disease/science” level.

This level of granularity helps our analysis in two ways. First, we use fixed effects to control
for time-varying unobservables related to disease burden or scientific potential. Second, we take

advantage of idiosyncrasies in NIH funding at the disease/science level. Consider a grant application



related to a specific disease/science area, say cancer/cell signaling. One can decide whether to fund
this application by comparing it with other cell-signaling applications (e.g., by science rank) or
by comparing it with other cancer applications (disease rank). The NIH does neither. Instead, it
decides whether to fund an application based on how its science rank compares with the science
ranks of other applications in the same disease area. By requiring that applications be funded on
the basis of this “rank of ranks,” NIH funding rules often lead to cases in which disease/science areas
with similar innovative potential receive different amounts of funding. We develop an instrument
to take advantage of funding variation determined by procedural rigidities rather than by conscious
efforts to direct resources to areas with more unobserved potential (see Section 3.3 for more details
and an example). To the best of our knowledge, with the exception of Moretti, Steinwender, and
Van Reenen (2014), no papers in this area have attempted to take advantage of plausibly exogenous

variation in public investments.

Our results show that NIH funding increases total private-sector patenting. Our preferred
empirical specification suggests that an additional $10 million in NIH funding for a research area
generates 3.1 additional private-sector patents in that area, or roughly 1 patent for every 2 NIH
grants. Of course, not all patents are equally valuable; the distribution of patent value is in fact
highly skewed (Harhoff et al. 2003). In order to express this return on public investment in
monetary terms, we narrow the focus of our analysis to patents associated with FDA-approved
biopharmaceuticals, whose value we can estimate using parameters from the literature (DiMasi
et al. 2004). A back-of-the-envelope calculation indicates that 1 dollar of NIH funding leads to
between 70 cents and 2.13 dollars in lifetime pharmaceutical sales alone (depending on whether
we use median or mean value of sales per drug). This figure ignores other potential benefits of
NIH funding, such as the development of medical devices, clinical protocols, or behavioral changes
induced by epidemiological research (Henderson et al. 1999; Heidenreich and McClellan 2003; Cutler
and Kadiyala 2003). It also ignores the consumer surplus created by these innovations, a potentially
important component of the social value of new drug development. Section 5.2 and Table 8 describes

the assumptions underlying these calculations in more detail.

Our results also help in understanding the path through which NIH investments influence

private sector innovation by developing the first estimates of the cross-disease spillover effects of



NIH funding. We show that fully half of the patents resulting from NIH funding are for disease
applications different from the one that funded the initial research. The size of this effect underscores
the importance of our approach to linking patents with funding: by looking only within the same
disease area when measuring impact, the prior literature in this area may miss almost half of the

total impact of basic science funding.

Finally, we consider the possibility that changes in NIH funding can lead firms to reallocate
resources to or from other projects. Reallocation can affect the interpretation of our results in two
ways: if increased funding in one area leads firms to divert resources away from other projects, then
this would lead us to overestimate the overall effect of funding; if, on the other hand, it leads firms
to divert their resources toward other areas, then we would underestimate the impact of funding.
We show in Section 6 that firms which work in an area of increased NIH funding produce more
patents in that area, with no commensurate decreases in patenting in other areas of their portfolio.

This suggests that NIH funding spurs private patenting by increasing total firm R&D expenditure.

We proceed as follows. In Section 2, we discuss the various effects that NIH funding may have
on private patenting. We describe our empirical strategy in Section 3 and Sections 4 and 5 describe
our data and main results, respectively. We discuss extensions in Section 6, and Section 7 concludes.

Robustness checks and alternative specifications can be found in Appendices F, G, and H.

2 Institutional Background

The NIH is the largest single supporter of biomedical research in the United States, responsible
for funding 28 percent of U.S. medical research in 2008. This compares to the 37 percent of research
funded by pharmaceutical firms, 15 percent by biotechnology firms, and 7 percent by medical device

firms (Dorsey et al. 2010).!

The bulk of NIH funding is for “basic” research that aims to extend the frontiers of medical
understanding. About one-third of NIH funding is for clinical research (including patient-oriented

research, clinical trials, epidemiological and behavioral studies, as well as outcomes and health

!Other funders include foundations, accounting for 4 percent, other federal funders, about 5 percent, and state
and local governments, also about 5 percent.



services research) that is more applied in nature. The agency also supports a range of training

grants that help develop the U.S. scientific and medical workforce.

2.1 Possible Effects of NIH Funding

Though many new therapies have intellectual roots in publicly-funded, academic laboratories
(Sampat and Lichtenberg 2011, Cockburn and Henderson 1998), most NIH grants yield neither
patented innovations nor novel treatment modalities. Indeed, it is possible that NIH-backed re-
searchers operate in “ivory towers” with relatively few incentive to direct one’s investigations towards

areas of clinical or commercial relevance.?

Alternatively, NIH funding may have the intended effect of encouraging firms to make comple-
mentary investments in R&D. This may occur if firms underinvest in foundational research because
of scientific uncertainty, the high fixed costs of R&D, or the difficulty to appropriate basic scientific
knowledge. In this case, NIH investments may increase the expected returns to private investment
by generating knowledge that clarifies opportunities for developing new therapies, as in the case of

Gleevec.

It is also possible that NIH investments crowd out private-sector efforts. This could happen for
a variety of reasons. Public funds could simply be subsidizing the cost of a firm’s existing research.
Alternatively, they could lower the costs of entry for competitors, reducing the firm’s ability to reap
market rewards from its R&D investments. This concern is especially salient in the life sciences,
since the organization of drug discovery research in the biopharmaceutical industry has been greatly
transformed to mimic that of academic labs in terms of size, intellectual autonomy granted to
researchers, and rewards linked to the production of high-impact publications (Henderson 1994).
Many biomedical scientists also search for positions in the academe and in industry simultaneously
(Stern 2004), and the patterns of mobility between the private and the public sector have been

extensively documented (Zucker, Darby, and Torero 2002).

?Bikard (2014) shows that when the same discovery is made simultaneously by an academic laboratory and a
private-sector laboratory, the corresponding academic publication receives 65% fewer citations in subsequent patents,
relative to its industry “twin.”



Finally, NIH spending in a given area may impact overall private-sector innovation by changing
how firms allocate their resources across other research areas. Firms may, for instance, complement
investments in NIH-funded areas by reallocating funds from other areas of investigation. Conversely,
NIH funding may crowd-out private investments and these funds may then be invested in other areas.
A full accounting of the impact of NIH funding requires taking into account potential innovative

losses or gains across a firm’s entire research portfolio.

We develop outcome measures that directly test whether NIH funding is useful for firms.
In addition, we examine the impact of NIH funding on total private-sector innovation in a given
research area, taking into account both the possibility that NIH investments may simultaneously
encourage some private investments in a research area while crowding out others. Finally, Section

6 discusses the impact of NIH funding on reallocation of firm R&D investments.

2.2 A Primer on NIH Peer Review and Funding Decisions

The NIH comprises 27 Institutes or Centers (ICs) that are typically organized around body
systems (e.g., the National Heart, Lung, and Blood Institute), or disease areas (e.g., the National
Cancer Institute). Each Institute receives its own Congressional appropriation and is responsible
for funding research that is potentially relevant to its mission. The scientific evaluation of grant
applications, in contrast, occurs primarily in approximately 200 standing review committees known
as study sections. Each study section is organized around a scientific topic (for example, “Behavioral
Genetics and Epidemiology” or “Cellular Signaling and Regulatory Systems”) and is responsible for
evaluating the quality of applications in its area. Study sections review grant applications from
multiple disease areas as long as they share similar scientific underpinnings. In turn, ICs fund

applications evaluated by multiple study sections.

Study sections assign each application a raw score. During the timespan covered by our data,
these ranged from 5.0 (worst) to 1.0 (best). This raw score is meant to be a summary statistic for the
study section’s assessment of the quality of that application. Raw scores are then normalized within a
study section and converted into a percentile. We call this normalized score the application’s “science

rank.” Once a study section has evaluated an application, the NIH’s funding rule is mechanical: an



IC must fund the applications it is assigned in order of their science rank until its budget has been
exhausted. The worst score that is still funded is known as that IC’s “payline.” In summary, the
peer review process at NIH generates three separate scores for each application: (i) the “raw score”
given by the study section; (ii) the within-study section “science rank” immediately derived from
the raw score; and (iii) the within-IC ranking of science ranks. It is this final “rank of rank” that
determines whether an application is funded. As alluded to in the introduction, the structure of the
NIH and its funding rules will play an important role in our empirical work. Section 3.3 details how
we exploit these features to isolate exogenous variation in NIH investments across research areas.

Appendix A provides more details about the NIH and NIH funding rules.?

2.3 Measuring Biomedical Innovation Using Patents

Our analyses uses patents granted to biopharmaceutical firms as outcome variables. In con-
crete terms, these patents include those associated with pharmaceuticals (e.g. new chemical entities,
modifications of old molecules, new methods of use, pharmaceutical processes), biotechnology prod-
ucts and techniques (proteins, research tools and techniques, diagnostic and testing methods), and
medical devices (surgical equipment, techniques, implants). Appendix B provides more background

on the universe of “life science” patents we use.

Patent outcomes may appear a surprising choice; researchers studying medical innovation
have typically focused on outcomes that are more immediately welfare-relevant, such as reductions
in mortality and morbidity (Manton et al. 2009) or new drug approvals (Blume-Kohout 2012; Toole
2012).

However, in the life sciences, the propensity to patent is higher than in other fields (Cohen,
Nelson, and Walsh 2000). Moreover, biomedical patents have a redeeming quality that make them a
natural choice for this study: they can be linked to specific grant expenditures using the bibliographic

references they contain.

3A maintained assumption for the empirical exercise is that grant applicants cannot game NIH peer review by
choosing to submit their applications to a committee which they expect will be more richly funded. Appendix A
provides qualitative and quantitative evidence consistent with this assumption.



Since our analyses focus on only one subset of the outcomes from NIH research—excluding
many effects on clinical practice, health behaviors, and unpatented surgical innovations—they can-
not provide the foundation for a complete welfare analysis.* Moreover, it is difficult to assign specific
dollar values even to the patented biomedical innovations. However, for the very small subset of
these that cover FDA-approved pharmaceuticals (1,999 of the 315,982 life-science patents in our
sample), we can use existing studies documenting the value of new drugs to provide a range of

effects in dollar terms.

3 Empirical Strategy

We examine the impact of public R&D investments on private-sector patenting by estimating

a regression of the form:
Patentsi- = o+ a1 Fundinggs + Controlsys; + €ast (1)

The unit of analysis is a disease/science/time (DST) combination. Biomedical research typi-
cally involves a set of scientific questions applied toward a particular disease area. Scientists may
study, for instance, the role of cell signaling in cancer or gene expression in diabetes. A dis-
ease/science classification can be thought of as a “research area” whose projects share a similar
disease target and benefit from an understanding of similar scientific methods and mechanisms. We

follow these research areas over time.

The first step in our analysis is to assign NIH funded research projects to specific DSTs.
Ordinarily, this task would not be straightforward because grant proposals often have titles—such
as “Impact of Type II Glucocorticoid Receptor Impaired Function in Transgenic Mice”—that would
not enable an outsider to the field to identify either a disease or a science area. In our setting,

however, we are able to infer a grant’s DST because the NIH requires all grant applicants to specify

4Note that clinical or epidemiological findings may subsequently inspire drug development strategies followed by
private firms, possibly resulting in patents that our analysis will capture. In a celebrated case, the patents granted to
Eli Lilly concerning recombinant activated Protein C for the treatment of sepsis all refer to a clinical study correlating
mortality in a small sample of severely septic patients with depressed levels of Protein C in these patient’s bloodstream
(Fourrier et al. 1992). This correlation provided the impetus for Lilly’s attempt to synthesize a recombinant version of
this protein. This product was ultimately withdrawn from the market in 2011 after new evidence emerged regarding
the bleeding risks associated with the use of this drug.



a funding institute and a study section that will evaluate the application.® Therefore, we assign
NIH funding to DSTs using the NIH’s own categorization: the Institute that funds a grant tells us
its disease area and the study section that evaluates a grant tells us its science area. Fundinggs
is thus the total amount of NIH support for grants assigned to a particular Institute and evaluated

by a particular study section in a particular year.

3.1 Measuring outcomes associated with NIH funding: Traditional challenges

It is difficult to predict whether and how funding for a given DST will spur private-sector
patenting: funding for one research area can have impacts on other research areas, with varying
time lags. The most direct way of assessing the impact of public funds, then, is to examine its impact
on patenting in all research areas, in all subsequent years. With sufficient data and variation, one
would be able to estimate all the cross-elasticities—across research areas and over time—associated

with changes in public R&D investments.

In practice, however, the literature has traditionally assumed that public investments may
only impact private innovation in the same research area, within a well-defined time horizon. Toole
(2012), for instance, regresses patenting in a given disease-year on 12 years of lagged funding for
that same disease. A generic concern with this type of approach is that it fails to capture any
benefits of medical research that cannot be anticipated in advance. These benefits may accrue both
to seemingly unrelated research areas and with unexpected time lags; for example, much of the
research underlying the development of anti-retrovirals used in the treatment of HIV infection in
the 1990s was originally funded by the National Cancer Institute in the 1950s and 1960s, at a time

when research on the causes of cancer centered on viruses.%

®We do not believe “study section shopping” to be a concern in this setting. See Appendix A for an extensive
discussion.

5Gleevec provides another example: Varmus (2009) recounts that that Ciba-Geigy was working with scientists of
the Dana Farber Cancer Institute to find drugs that would block the action of a tyrosine kinase that contributes to
atherosclerosis in blood vessels, a disorder that is very different from CML. The development of Gleevec also relied
heavily on knowledge about the genetic causes of CML that was established in the 1960s and 70s (e.g., Nowell and
Hungerford, 1960). In this case, the availability of treatment lagged behind basic research by over forty years. In
other settings, basic research percolates almost immediately into applied work, such as when publications and patents
are released in tandem (Murray 2002).



3.2 Linking patents to NIH funding: Novel solutions

A major innovation in our paper is that we do not make ex ante assumptions about where and
when public R&D investments may impact patenting. Instead, we develop new data and metrics to
explicitly track this process using bibliometric data. Using this approach, we construct Patents
in two different ways. Figure 1 provides an overview of this process and Appendix E provides a

detailed description.

Patents citing NIH-funded research. NIH funding may spur private-sector patenting by pro-
ducing research that firms subsequently build on. The belief that such knowledge spillovers is an
important mechanism for productivity growth has been a feature of policy debates since the end
of World War 1II (e.g., Bush 1945), and has also figured prominently in economic scholarship on
technological change (Nelson 1982; Cockburn and Henderson 1998). We assess this claim directly

by identifying the number of private-sector patents that explicitly cite NIH-funded research.

To do this, we first link NIH grants to the publications they support using grant-acknowledgement
data. Second, we link those publications to patents that build on their findings (Figure 1, second
column). To accomplish this second task, we find and standardize all the in-text publication cita-
tions in patents granted by the USPTO. Because publications, rather than patents, are the main
output of scientific researchers, this approach represents an advance over the more commonly used
patent-to-patent citation data because it allows us to more reliably document how firms draw on
scientific findings. Further, the vast majority (over 90%) of patent-to-article citations come from
applicants rather than examiners and are thus more plausibly indicators of real knowledge flows
than patent-to-patent citations, for which only 60% of citations are applicant generated (Lemley
and Sampat 2012).” Taking the acknowledgment and citation data together, we define Patents e

as the set of patents that cite publications that in turn acknowledge funding from that DST.

This approach has two important drawbacks. First, relying on direct publication-to-patent
citations limits the type of intellectual influences we can account for. We would not, for instance,

credit NTH funding if it lead to patenting through more complicated citation patterns (e.g., a patent

"Details of the matching process are discussed in Section 4 and Appendix C.
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that cites a publication that cites a publication that acknowledges the NIH), informal interactions
(e.g., two researchers meet and exchange ideas at a conference supported by NIH funding), or the
hiring of NIH-funded trainees by private-sector firms. Omitting these channels may lead us to

underestimate the impact of NIH funding.

Second, by accounting only for patents that explicitly cited NIH-funded research, this measure
treats patents that do not exist and patents that do exist but which cite only privately-funded
research in the same way—mneither are linked to a DST. As a result, if increased DST funding leads
to an additional linked patent, we cannot tell whether this patent would otherwise have not existed
or whether private firms would have funded the necessary research instead. In short, our first
outcome measure asks whether NIH-funded research is useful to private firms. While informative,
this is not equivalent to ascertaining whether NIH funding increases total private-sector innovation

in a research area.

Patents related to NIH-funded research. Our second outcome identifies all patents related to
an NIH funding area, whether or not these patents actually cite NIH-funded research. This allows
us to account for a richer set of channels through which NIH funding may impact private-sector
patenting. “Related” patents may include patents linked to NIH funding via a longer citation chain
or patents by NIH-trained scientists who end up in the private sector. Crucially, these related
patents may also be the result of private sector investments in related research areas; they need not
be financially dependent on the NIH at all. Capturing the total number of private sector patents in
an intellectual area is important because it allows us to take into account the possibility that NIH
funding may crowd out private investments. If this were the case, then we would not expect NIH
funds to increase the total number of patents in a given research area: it would simply change the
funding source for those patents. The impact of NIH funding on total innovation in a research area

captures the net effect of potential crowd-in and crowd-out.

To construct this measure, we define a patent to be related to an NIH funding area if it cites
research similar to research that is actually funded by that area. In particular, we match each NIH
grant in our sample to publications that acknowledge its support and then link these publications

to a set of intellectually similar publications using a keyword-based similarity measure developed

11



by the National Library of Medicine.® The final step in our matching process is to identify the set
of patents that cite this broader set of publications (see column 3 of Figure 1). The set of patents

linked to a DST in this way can be thought of as patents in the same “intellectual area” as a DST.

A potential concern with this approach is that our definition of a DST’s “intellectual juris-
diction” can vary over time. If funding allows a disease/science area to expand the set of topics
that it supports, then we may associate increased funding with more patents simply because higher
levels of grant expenditures leads us to credit DSTs with patents over a broader slice of technolog-
ical space. To ensure that our results are not driven by this phenomenon, we repeat the matching
exercise described above excluding articles that are related to those acknowledged by grants solely
because they are tagged by MeSH keywords that are peripheral to the grant’s disease/science area.
Within DS, a “core” MeSH keyword is one that recurs all years in our observation window, whereas a
“peripheral” keyword allows us to link articles only across a subset of the relevant years in the data.
This strategy breaks any mechanical relationship that might exist between funding and the number
of indirectly linked patents. More details are provided in Appendix H. Various reasonable imple-
mentations of this alternative linking strategy produce a battery of estimates that are remarkably

similar to those presented in Section 5.

Finally, it is worth emphasizing that in each of the formulations described above, Patents -,
describes patent output associated with NIH funding for disease d, science area s at time ¢. These
patents need not be confined to the same disease area d or science area s as the original funding
source, nor do they need to be issued in the same year t. For example, if a patent related to
cardiovascular stents cites research funded with money allocated to diabetes, we would associate

this cardiovascular patent to diabetes funding.

3.3 Identification

As noted earlier, public investments in R&D are potentially endogenous. We address this in

two ways. First, we include detailed fixed effects to control for possible omitted variables bias and,

8This is discussed in detail in Appendix D. Briefly, the PMRA analyzes keywords and keyword combinations that
are assigned to all life-science publications by the National Library of Medicine and defines similarity on the basis of
how many of these keywords overlap.
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second, we will show that our results are robust to using an instrumental variables strategy that

takes advantage of rigidities in NIH funding rules.
Fixed Effects Estimation. Our main OLS specification is given by

Patents— = o+ a1Fundingas: + B Xast + Ods + Yar + Vst + dst (2)

Equation (2) illustrates another benefit of using DSTs as our unit of analysis. In addition to its
policy relevance, studying variation in DST funding allows us to include pairwise disease/science,

disease-year, and science-year fixed effects that account for many common sources of endogeneity.

Diseases that affect more people may receive more public and private interest. Some research
topics may be more tractable than others; the genetics of breast cancer, for instance, can be studied
using a variety of animal models, whereas the same is not true for the genetics of schizophrenia. We
control for time-invariant differences in innovative potential among disease/science based research
areas (04s). We also account for changes in the innovative or commercial potential of disease and
science areas over time. Disease-year fixed effects ~4 control for potential confounders such as
shifting disease burdens or changing popular interest. NIH funding may also respond to scientific
advances. The introduction of new DNA-sequencing technologies in the late 1990s, for instance,
may have increased both public and private research funding for diseases with a genetic component.
We include science-year fixed effects, v, to control for this type of variation. Finally, we control in a
flexible way for the number of applicants to a DST to proxy for time-varying interest in a particular
research area. To account for serial correlation, standard errors are clustered at the disease/science

level.

The remaining funding variation in equation (2) comes from within-disease/year or within-
science/year changes: why is it, for instance, that cancer/cell signaling may receive more funding
in 1995 than cancer/tumor physiology? After saturating our specifications with fixed effects, our
identifying assumption is that NIH funding for a specific DST is not correlated with changes in the

innovative or commercial potential for specific disease/science combinations.

13



This assumption may be violated if, for instance, either Congress or NIH administrators al-
located funding to DSTs on the basis of their potential. In response to the success of Gleevec,
for example, the National Cancer Institute may have decided to devote a greater proportion of its
budget toward the study of cell signaling or gene expression, scientific topics that are particularly
relevant for targeted cancer therapies. If private firms were behaving similarly, then equation (2)
would not be able to identify the impact of public funding, because we would expect changes in

patenting for this area even in the absence of additional funds.

In practice it is difficult for the NIH to direct funding to DSTs on the basis of their evolving
potential. As discussed in Section 2.2, applications are funded in order of their science ranks. This
means that if cell signaling was a particularly “hot topic” in a given year, the NCI could not decide
to fund the top 20 cancer-related cell-signaling applications without first funding the top 19 cancer-
related applications in all other science areas. Most likely, it would not have the budget to do so.? In

fact, the rigidity of this system was cited in an NIH-commissioned report from 2000, urging reform:

“..Researchers perceive that...applications describing some of the most productive, highest impact

work may be assigned to too few study sections, causing too much of the “best science” to compete

with itself; that the scope of some study sections is restricted to research with relatively low

impact, resulting in undeserved ‘entitlements’. .. 0
Instrumental Variables Estimation. Even if the NIH cannot direct funding to specific DSTs,
Fundinggs; may still be endogenous if study section reviewers assign higher science ranks to appli-
cations from DSTs with more potential. If, for instance, the cell-signaling study section decides to

give higher science ranks to cancer-related applications after the discovery of Gleevec, then funding

for the cancer/cell signaling DST would reflect this unobserved enthusiasm.

We construct an instrument for DST funding that is not correlated with a DST’s potential.
Our instrument works by isolating variation in DST funding coming from differences in the within-
disease ranking of science ranks (“rank of rank”) assigned to otherwise equally meritorious grant

applications. Figure 7 illustrates how grant applications with the same quality may have different

9The main way that ICs get around these rules is to either fund an application out of scoring order or to issue a
request for proposals (RFPs) or applications (RFAs) on a specific topic. RFPs and RFAs account for only a small
portion of NIH grant spending. Grants responding to these are evaluated in specially empaneled study sections,
which we exclude from our analysis. See Appendix F for a discussion of out-of-order grant funding.

10«Recommendations for Change at The NIH Center For Scientific Review,” Final Phase 1 Report, Jan 14, 2000.
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funding outcomes. Differences in grant-level funding then translate into differences in DST level

funding.

In this example, there are two ICs: the National Cancer Institute (NCI) and the National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). They are responsible for funding
grant applications from two study sections: Cell Signaling and Tumor Physiology. The top two
panels display the raw scores that each study section assigns to the applications that they review,
as well as the normalized “science rank” that these raw scores imply. The bottom two panels of
Figure 7 display how science ranks translate into rank of ranks within an IC, using raw scores as
tie breakers. The solid line is the payline: applications with rank of rank above the payline are
funded; those with rank of rank below are not. In Figure 7, the cancer-tumor physiology DST and
the cancer/cell signaling DST both have applications with raw scores of 7.6, but different funding
outcomes. The cancer/cell signaling application is not funded because diabetes/tumor physiology
grants are relatively weak; this gives cancer /tumor physiology applications a high science rank, which
in turn leaves less NCI funding for cancer/cell signaling. The additional funding that cancer/tumor
physiology receives from this grant can be thought of as “windfall” funding because it is not related

to the innovative or commercial potential of that DST.

Our IV strategy compare DSTs that have the same number and quality of grant applications
near an IC’s payline, but which receive different amounts of windfall funding. Specifically, we

estimate
Patents— = o+ a1 Fundingqs + Y (# Applicationss;) (3)

+®(RawScoresys;) + V(Science Ranksgst) + dgs + Var + Vst + Edst
instrumenting Fundinggs with

Windfall Fundingqss = Z Fyast (4)
9€Gas

Windfall Fundinggs: is the amount of funding for a DST that comes from the set of grants, G,
near its IC’s payline. In our main specifications, we define Gy to be set of 25 grant applications

on either side of the funding threshold for disease area d in year t. The median IC receives 750
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applications in a given year (the mean is 1,100), making this a relatively tight window. Our results

are robust to a variety of other bandwidths.

In general, however, Windfall Fundingys; may be correlated with a DST’s quality if, for in-
stance, better DSTs have more applications near the payline or if, within the set G, applications
from better DSTs get higher scores. To address these concerns, we use our instrument together with
variables that control for the quality of a DST’s applications. Equation (3) includes a full set of
indicator variables for the number of grant applications any given DST has near the threshold set
G (ie., the function T in equation (3)), as well as separate cubics in the average raw score and
average science ranks of all DST applications within the threshold set G (i.e., the functions ® and
VU in equation (3)). Controlling for both the raw score and science rank accounts for any differences
in quality among applications, meaning that the remaining variation comes only from how science

ranks translate into rank of ranks.!!

In our IV specification, our identifying assumption is that there are no systematic differences in
innovative potential among DSTs with the same number of marginal applications, the same average
raw scores, and the same average science ranks. In Appendix F, we show that a DST’s windfall
funding, controlling for these variables, is uncorrelated with non-windfall funding, previous and

future windfall funding, and other measures of DST output.

4 Data Construction and Descriptive Statistics

Our analysis combines data from several primary sources: (i) Administrative data on NIH
funded grants from the IMPAC II database; (ii) publication data from PubMed including informa-
tion on grant acknowledgements; (iii) patent data from the USPTO; and (iv) information on patents
related to FDA-approved drugs from the FDA’s “Orange Book” and IMS-Health. Our final analytic

sample captures linkages between the universe of NIH-funded grants from 1980-2005 at both the

1Our strategy is similar to the one used by Jacob and Lefgren (2011) to investigate the impact of receiving
NIH funding on grant-level outcomes. They use a regression discontinuity design and compare outcomes for grant
applications just above and just below an Institute’s payline. We cannot use the same design because the running
variable—rank of rank—applies to individual grants but not to DSTs. There is no DST-level discontinuity; instead
we aggregate grant-level discontinuities in order to generate differences in funding among similar DSTs.
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individual grant and DST levels, and the universe of biomedical patents granted between 1985 and

2012.12

4.1 Grant-level Patent Match

We begin with data on all 153,076 NIH grants from 1980-2005 that were evaluated in 631
chartered study sections and funded by 17 Institutes.'®> The characteristics of these grants are

described in Table 1. In total, we have grant-level data on the activities of 14,085 DSTs.

The average award size for grants in our sample is approximately $1.6 million. The majority
(74%) of grants are RO1’s—the RO1 is a renewable, project-based grant that constitutes the majority
of NIH’s grant spending—and most (60%) are for new research projects (as opposed to renewals of

existing projects).

Table 2 describes the life-sciences patents in our sample and show how they are linked to NIH
funding. We begin with the universe of 315,982 life-science patents granted by the USPTO between
1980 and 2012. Of these, 232,276 (74%) are private-sector patents and 83,394 (26%) are what we
call public-sector patents, meaning those assigned to governments, universities, hospitals, and other
institutions (see Appendix B for a description of patent types and definitions). Despite the large
number of patents we examine, Table 2 shows that high value patents are extremely rare: only 4,718
private-sector patents (2%) are associated with advanced drug candidates—drugs and biologics in
Phase III trials and beyond—and even fewer, 1,999 (<1%) are associated with FDA approved New

Chemical Entities and New Biological Entities.

127 patent is part of our universe if (i) it is in a relevant patent class and (ii) cites at least one article indexed
by PubMed. The relevant patent classes are the 92 classes belonging to categories 1 and 3 in the NBER USPTO
database (see Appendix B for a complete list). Note that in practice, the second requirement is almost always satisfied
for patents in these classes.

13The list of the included Institutes is described in Appendix A, Table Al. Briefly, we exclude three small ICs
(the National Institute on Minority Health and Health Disparities, the National Institute of Nursing Research, and
the National Library of Medicine), as well as six NIH centers which serve mainly administrative functions. Our
primary analyses do include three ICs that are not oriented towards a particular disease: the National Institute
of General Medical Sciences (NIGMS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
and the National Human Genome Research Institute (NHGRI). Note, however, that these Institutes review grant
applications from several study sections, which is all that our identification strategy requires. In a robustness test,
show that our results are robust to including only disease or body-system specific ICs.
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We find overwhelming evidence that NIH funding is relevant for organizations seeking life-
science patents. Forty-four percent of life-science patents in our sample directly cite NIH-funded
research. Among the subset of private-sector patents, this figure is 39%. For public-sector patents,
this figure is 57%. We further document a greater role of NIH-funded research in the development
of high value patents; 50% of patents associated with advanced drug candidates—those that have
entered clinical trials—cite NIH-funded research. We also show that smaller firms are more likely

to make use of NIH-funded research.

Table 2 also shows that the vast majority of life-science patents—265,741 patents or about
84% of the universe—cite research that is similar to research funded by an NIH DST. This is true,
moreover, for private- and public-sector patents, as well as high value patents, and those from both

large and small firms.

On average, one third of NIH grants in our sample produce a publication that is directly cited
by a patent. This figure is likely to be an underestimate because our publication and patent data are
truncated in 2012. Figures 3, 4, 5 and 6 describe the lag times between NIH funding and follow-on
patenting. Each figure displays a cumulative hazard curve where the risk being modeled is that
of a grant supporting a publication that is cited by patent. This provides a simple, graphical way
to examine the diffusion of knowledge stemming from NIH expenditures, and how this diffusion

process varies over time and across diseases.

Figure 3 documents substantial variation in the relevance of NIH funding for patenting across
diseases. Approximately 15 years after funding, almost 60% of grants funded by the National
Institutes for Allergy and Infectious Diseases have produced research that has been cited by a
patent. By contrast, this is true of only 20% of grants funded by the National Institutes of Mental
Health. These differences likely reflect differences in the ease of biomedical innovation across disease

areas, as opposed to differences in the efficacy of NIH funds.

Figure 4, meanwhile, shows that time-to-patent has been decreasing over time. Only 20%
of grants awarded between 1980 and 1985 produced research that is relevant for a patent in the
ten years following. For grants awarded between 1991 and 1995, this figure was almost 40%. One

interpretation of this finding is that NIH administrators’ efforts to encourage “translational research”
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have been successful. An alternative view is that patentability has steadily moved upstream along
the biopharmaceutical R&D value chain, consistent with other evidence (Eisenberg and Nelson 2002;

Jensen and Murray 2005).

Figure 5 underscores the fact that although a third of grants are associated with patents, “im-
portant” patents—those pertaining to advanced drug candidates, or to FDA-approved treatments—
are still relatively rare. Even twenty years after approval, only 5% of NIH grants produce research
cited by a patent associated with an FDA-approved drug; this figure is only slightly higher for highly

cited patents, 10%.

Finally, Figure 6 shows that a grant is just as likely to produce research relevant for patents
primarily associated with other disease areas as it is for patents associated with its own disease area.
Our matching process allows a patent to be associated with more than one Institute (conditional on
being linked to a DST, the average patent is linked to 7 different ICs). For each patent, we define
its primary disease area as the IC responsible for funding the plurality of the publications that it
cites. Then we categorize each patent-to-grant linkage as being for the same disease or for a different
disease, where the reference disease is simply given by the funding IC for the focal grant. Figure 6

also shows that both private- and public-sector entities take advantage of NIH-funded research.

4.2 DST-level Patent Match

Our empirical variation resides at the level of the DST, not the level of the individual grant.
Table 3 describes the characteristics of the DSTs in our sample. The average DST supports 11 grants

totaling $14 million in funding or $47 million when weighted by the size of the DST.

Table 3 indicates that 13,027 or over 80% of DSTs produce research that is potentially relevant
for patenting. Before describing the number of patents we associate to each DST, it is worth

describing how we attribute credit when a patent is associated with more than one DST.

In general, the correct attribution of patents to DSTs depends on the innovation production
function and the degree to which any particular piece of knowledge is instrumental in generating

the patent. If DSTs are pure substitutes in the production of patents and if a patent is linked
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to N DSTs, then each DST should receive credit for 1/N th of that patent. Table 3 shows that the
average DST in our sample produces research that is directly cited by 14.7 private-sector patents
and is intellectually related to a total of 28 patents, using this “weighted” count. If, instead, the
contributions of various DSTs are complements, then a patent should count for more than %; in
the extreme, support from each DST is critical such that production is Leontief. In this case, DSTs
should receive full credit for each patent it is linked to. Applying this more generous assumption to

our data, we find that the average DST is directly cited by 116 unweighted patents.

5 Main Results

Tables 4 and 5 present our fixed effects estimates for the impact of NIH funding on each of our
two measures of patent outcomes. The top panel of Table 4 describes the impact of NIH funding on
the number of patents that cite NIH-funded work. Without any controls, we find that a $10 million
increase in funding is associated with 2.4 more patents. Adding fixed effects for research areas
(disease/science groupings) reduces this coefficient to 2.1. We add increasingly detailed fixed effects
in each successive column; interestingly, our estimates remain relatively stable. One explanation
for this is consistency is that, at the time it makes funding decisions, the NIH may not be able to
anticipate which DSTs have greater future innovative potential. In this case, the amount of funding
that a DST receives may be relatively uncorrelated with its future patent output. With our full set
of controls, we estimate that a $10 million increase in funding leads to 2.5 additional patents, or

approximately one patent for every two to three grants.

The bottom panel presents our results under the assumption that every publication a patent
cites is necessary for that patent’s creation and cannot be substituted with a non-NIH-funded
publication. Without weighting, we estimate that $10 million leads to 19.9 more patents, or about

2 to 3 patents for every NIH grant.

The estimates in Table 4, however, may not reflect the true value of NIH funding if public
support for science either crowds out private investment or if it spurs patenting in ways that cannot
be captured by a direct grant-publication-patent link. The top panel of Table 5 reports the impact

of NIH expenditures on the total amount of private-sector patenting in areas related to a DST,
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regardless of whether those patents directly cite NIH-funded research. This specification is designed
to assess the net impact of NIH funding on private-sector innovation in an area, accounting for both
the possibility of crowd-out and the possibility that not all patents spurred by NIH funding can be
linked via direct citations. Column 5 of Table 5 finds that a $10 million increase in DST funding
results in a 3.3 net increase in the number of related private-sector patents, or about one patent for

every two NIH grants.

The magnitude of the impact of NIH funding on total patenting is slightly larger than its
effect on patenting that can be directly linked to NIH funds. This indicates that NIH funding
generates more patents through non-direct citation means than it crowds out. This may occur if,
for instance, NIH funding increases the productivity of private R&D investments by clarifying the
scientific potential of various research areas. In this case, even if firms reduce their investments,

total private patenting in an area may still increase.

The bottom panel of Table 5 reports these results with unweighted patent counts and estimates
effects that are an order of magnitude larger. These results, however, are unlikely to reflect the true
effect of NIH funding. Recall that this final outcome measure is designed to capture the influence
that NIH funding may have on patenting that does not require a direct citation linkage between
funding and patents. In this measure, patents are linked to study sections through shared intellectual
foci, reflecting the notion that public funding in a particular area produces knowledge that enhances
productivity of others working in that area. Each DST is associated with many more patents this
way, thus driving a large wedge between weighted and unweighted impacts. Unlike the direct
approaches which connect patents to a small number of study sections, our indirect method often
yields connections to hundreds of study sections in related intellectual realms. While all linkages
may be important, it is harder to imagine that each unit of knowledge is instrumental, and thus
we favor the more conservative weighted approach in this case. Going forward, we will discuss
estimates of the effect of funding on overall patent production using only our more conservative

weighted counts. The unweighted results, however, are still reported in our tables.

Table 6 displays 2SLS estimates using our instrumental variable for funding. Column 1 reports

our first stage estimate of the relationship between total DST funding and windfall DST funding,
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controlling flexibly for raw scores and science ranks, as well as the number of applications that
a disease/science paring has in a 25-grant window surrounding that disease’s (e.g., IC’s) funding
threshold for that year. Table 6 also reports tests of the strength of our windfall funding instrument.
We obtain a Cragg-Donald Wald F-statistic of 452 and a Kleibergen-Paap Wald F-statistic of 31;
both reject the null hypothesis that our instrument is weak. Because our IV strategy requires that
we control for these additional variables, which we do not use in Tables 4 and 5, we report both
our IV estimates as well as OLS estimates using the same set of first stage controls. Using our
instrument, we find similar effects of NIH funding on the number of directly cited patents (2.8 vs.
2.6) and a slightly smaller effect for the total number of patents related to an NIH research area
(4.0 vs. 3.1). We take the 3.1 figure in Column 5 as our preferred estimate of the impact of NIH

funding on private sector patenting.

5.1 Heterogeneity

In addition to quantifying the impact of NIH funding on overall patenting, we also examine
which type of patents are most responsive to NIH expenditures. Column 1 of Table 7 reproduces our
estimates of the impact of funding on total private sector patenting from Table 6. Columns 2 and 3
focus on “important” patents, those that either pertain to advanced drug candidates or to FDA-
approved biopharmaceuticals (traditional “small molecule” drugs as well as vaccines and biologics).
The impact of NIH funding on the development of high-value patents need not be similar to its
impact on overall patenting; if firms direct their resources to the most promising projects, then the
marginal patent that is created because of NIH funding may be relatively low quality. Conversely,
if it is unprofitable for firms to invest in risky or early stage research, then the marginal patent

supported by the NIH may be of high quality.

Looking at our IV estimates in the bottom panel of Table 7, Column 2 shows that a $10
million increase in DST funding leads to a net increase of 0.07 patents associated with advanced
drug candidates (those that have entered clinical trials) and FDA-approved drugs. Column 3 shows
that this same increase in funding results in a net increase of 0.05 patents associated with FDA-

approved drugs only. While these figures are small in magnitude, they translate into elasticities of
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patenting with respect to funding of between 0.5 to 0.7, which are comparable to the elasticity we
estimate for private-sector patents in general. We will return to these results in the next section,

when we discuss the economic magnitude of our results.

Many studies document cases in which existing medical treatments have been successfully
used to treat new conditions (Gelijns et al. 1998; Wurtman and Bettiker 1994). Similarly, drug
development efforts often build on research originally intended for other diseases, reflecting the
importance of knowledge spillovers across diseases (Henderson and Cockburn 1996). Our results
provide evidence on the magnitude of these cross-disease knowledge spillovers. To measure spillovers,
we assign a primary disease affiliation to each patent in our data by finding the NIH Institute that
is responsible for funding the plurality of publications cited by that patent. We find that NIH
funding directed toward one disease area is as likely—if not more likely—to translate into patents
that are primarily affiliated with other disease areas as it is to translate into patents affiliated with
its own. The IV estimate in Column 4 of Table 7 indicates that a $10 million increase in funding
for a DST generates 1.8 additional patents with the same primary disease affiliation. This is likely
the effect that Congress is interested in when allocating funds for particular diseases. Column 5,
however, shows that this same funding also generates 2.4 additional patents with a different primary
disease affiliation. Part of the reason for such large cross-disease funding spillovers may be due to
the fact that much of the research that the NIH supports centers on scientific questions that are
relevant to many disease areas. The National Cancer Institute may, for instance, fund a study of
cell division in frog embryos; this research may also be relevant for the study of tissue regeneration

and aging-related disorders.

These findings highlight the importance of using a patent-linking strategy that does not assume
that funding only impacts innovation in its intended area. Had we made this assumption, we would

have failed to account for over half of the relevant innovative outputs.

Finally, Table 7 also shows that NIH investments increase patenting for both large and small
assignees. While larger assignees produce a larger number of patents in response to increases in

NIH funding, the response of small assignees is more elastic. This finding is consistent with our
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summary statistics in Table 2, which show that a greater proportion of patents assigned to small

firms cite NIH-funded research.

5.2 Magnitudes

Ou results suggest that a $10 million increase in NIH funding leads to a net increase of 3.1
weighted private-sector patents. Restricting to the set of patents associated with FDA-approved
drugs, we find that $10 million dollars leads to an increase of 0.049 patents. What are the economic

magnitudes of these estimates?

Ideally, one would like an estimate of the return to public R&D investments in monetary terms.
Coming up with this figure, however, requires making strong assumptions about the distribution
of patent quality, the probability that patents translate into drugs, and the market or social value
of those drugs. Our estimates in this section should be taken with the understanding that there is

currently little agreement in the literature about those parameters.

Much of the previous literature valuing patents relates patent stocks to firm market values,
and finds weak and noisy relationships between the two (Griliches 1981; Hall et al. 2007). When
restricting attention to the life sciences, valuing the output of R&D investments is on the one hand
easier because the vast majority of innovations are patented (Arundel and Kabal 1998; Cohen et
al. 2000), but on the other hand harder because the returns to innovation vary considerably. In the
pharmaceutical sector, for example, firms seek out patents on all promising molecular compounds,
but only a tiny share of these drug candidates ever enter clinical trials. Of those, only about a fifth
survive testing and are approved by the FDA and, of these, the top decile accounts for the vast

majority of revenues (Grabowsksi and Vernon 2000).

Not all biomedical patents in our sample are for drugs, let alone those that are ultimately
approved by the FDA. However, for this set, we can provide a benchmark of magnitudes. DiMasi,
Grabowski, and Vernon (2004) report that the mean present discounted value (PDV) of life time
sales for new drugs approved by the FDA between 1990 and 1994 was approximately $3.5 billion
(2010 dollars). On average, there are about eight patents associated with every FDA-approved drug

(See Appendix B). In our data, a $10 million dollar increase in funding results in 0.049 patents
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associated with FDA-approved biopharmaceuticals. Then we would expect this funding amount to

translate into 0.049/8=0.0061 drugs, with an expected PDV of 0.0061 x$3.47 billion = $21.3 million.

However, because the distribution of drug sales is so skewed, we also compute the drug-sales
related returns to NIH funding using sales values from different points in the distribution. At the
25" percentile, an additional dollar of NIH funding generates 17 cents in lifetime drug sales; at the

median, 70 cents; and at the 75" percentile, $2.50.14

6 Assessing Firm Reallocation of R&D Expenditures

So far, our results have examined the impact of NIH funding on firm patenting in related
research areas. Yet in the cases of both crowd in and crowd out, the additional resources that a firm
devotes to—or diverts from—a DST must come from somewhere else in its budget. One possibility
is that these resources come from either an expansion in the firm’s total R&D budget (in the case
of crowd-in) or a contraction in the firm’s R&D budget (in the case of crowd-out). In this case,
the impact of NIH expenditures that we estimate in Tables 5, 6, and 7 is the same as its impact
on overall firm R&D. Another possibility, however, is that firms respond to public investments by
reallocating resources to and from other parts of their R&D portfolio. In this case, one needs to
know the consequences of NIH investments on firm investments in other areas in order to assess its

full impact on private innovation.

Firms may respond to increased NIH funding for a DST by reallocating funds from other
parts of its research portfolio. In this case, the effect of NIH funding in a research area on private
innovation is two-fold: the direct effect of NIH funding is to increase private innovation in the same
area and the countervailing reallocation effect is to decrease private innovation in the areas that
a firm diverts resources from. We think of this as “reallocated crowd-in.” Conversely, firms may

divert resources away from a DST with increased NIH funding toward other research areas. Again,

M Our estimated elasticities, around 0.5, are similar to those found in the literature estimating the elasticities of
output with respect to firm R&D. The earliest firm-level study by Pakes and Griliches (1980) report an elasticity of
0.61 using a panel of 121 US firms from 1968 to 1975, including firm fixed effects. Hall et al.’s (1986) estimates range
from 0.29 to 0.38, also using within-firm variation in R&D spending from their panel of 342 US manufacturing firms.
Blundell et al. (2002) reports an elasticity of 0.34. Perhaps most relevant to this paper, Henderson and Cockburn
(1996) report an elasticity of 0.301 in their longitudinal sample of ten large pharmaceutical firms. However, direct
comparisons between our estimates and those contained in prior studies are fraught with hazards.
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the overall effect of NIH funding on total private innovation will be twofold: the direct effect of
public funding is to reduce private innovation within the same intellectual area, but the reallocation
effect is to increase private innovation in areas to which funds are reallocated. We refer to this as

“reallocated crowd-out.”

We attempt to directly measure the extent of firm reallocation in response to NIH funding.
First, we note that our final outcome measure, that of the number of patents that draw on research
related to a DST, is already likely to take into account some of the impact of reallocation. This is
because our patent linking approach defines the area of a DST quite broadly. If the NIH increases
spending on, for instance, cancer (D) cell signaling (S) research in 1990 (T'), we measure net impact
of this change on total innovation in all parts of the firm’s R&D portfolio that are related to
cancer/cell signaling research from 1990. This may include patents related to cell signaling in other
disease areas, cancer patents unrelated to cell signaling, or any other set of projects similar to
research that is supported by the DST. Reallocation within this set would already be captured in

the results displayed in Table 5.

Firms, however, may also choose to reallocate funds to or from projects that are completely
unrelated to a DST’s research. If NIH funding in one DST leads firms to reallocate funds away from
that DST, then we should observe an increase in non-DST patenting within that firm. If, instead,
NIH investments in a DST lead firms to reallocate funding away from other projects toward the

area of NIH investment, then we should observe a decrease in non-DST patenting within that firm.

To measure the extent of reallocation, we would ideally like to focus on the set of firms
that actually faced a decision about whether to invest more or less in a DST as a result of NIH
funding. In the absence of these data, we focus on firms that actively patent in a DST area and
construct a measure of the number of non-D, non-S patents that they produce in the same year.
We have two final variables of interest. Total Patents_q _s; measures the total number of non-D,
non-S patents that are produced by firms that also produce a DST-linked patent in the same year.
AveragePatents_g _s; measures the average number of non-D, non-S patents a firm produces for

every DST-linked patent it produces, averaged over all firms in that DST.
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The advantage of this approach is that we restrict our analysis to firms that are indeed affected
by changes in funding for a particular DST. If these firms spend more resources in another area,
it is likely that these funds could have also been spent on DST research. The downside of this
approach, however, is that it limits the kinds of reallocation we can study. If DST funding leads a
firm to reallocate toward other areas entirely, then we would no longer be able to associate it to the
original DST. Our results, then, document the impact of DST funding on the reallocation of firm

investments on the intensive margin, conditional on firms not switching away entirely.

Table 9 shows that, in general, an increase in NIH funding for one area of a firm’s R&D portfolio
does not decrease the number of patents that those firms develop in other areas. Our estimates in
Columns 1 and 2 indicate that a $10 million increase in DST funding leads to an additional three
to five patents, although these estimates are noisy. NIH funding does not appear to increase the

average number of non-DST patents assigned to firms.

These findings, when combined with our previous results, indicate that overall firm patenting
appears to increase in response to NIH funding. This finding suggests that NIH investments lead
firms to weakly increase their overall patenting. Another interpretation for this finding is that there
are more direct impacts of NIH funding for a DST than we capture through our main outcome
measures. If, for instance, firms respond to increased NIH funding by expanding their scientific
labor force, and these scientists work on a variety of projects, then an increase in NIH funding for
one DST can impact other patenting areas in ways our outcome measures cannot observe; some of

those effects may be captured here.

The elasticities we estimate under all of these specifications are smaller than the ones we esti-
mate for the direct effect of DST funding on patenting in the same area. These smaller magnitudes
are to be expected. In the case of reallocated crowd-in, the patents that are lost in the area from
which the firm diverts funds should be fewer than the number that are gained, as long as the firm is
reallocating optimally. Similarly, in the case of reallocated crowd-out, the patents that are gained
in the area to which firms divert funds should be fewer than the number that are lost in the original

area, as long as firms had initially allocated their investments optimally.
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7 Conclusion

Public investments in science are motivated by the belief that these investments carry high
social returns. This rationale is most famously expressed Vannevar Bush’s 1945 report on postwar
science policy, which characterizes basic research as “the pacemaker of technological progress” and
the source of new economically valuable technologies. Yet despite this high-level policy consensus,
there is little credible evidence on the returns to science funding (Garber and Romer 1996; Cockburn
and Henderson 1996; Murphy and Topel 2003). And there has been periodic questioning of the
benefits from science by policymakers as well, especially when discretionary budgets have been

tight (Brooks 1995).

In this paper, we examine the effects of public science on private sector innovation in the
life sciences. Our results show that NIH investments in an area increase subsequent private-sector
patenting in that area; a $10 million increase in funding for an area leads to 3.1 additional patents
or, equivalently, we expect one private-sector patent generated for every two NIH-funded grants.
This result holds across a variety of OLS and IV specifications. This positive impact, moreover,
does not appear to be associated with lower private investments in other research areas. We cannot
perform a formal rate of return calculation since our analysis focuses only on one effect of the NIH
funding, on sales associated with patented drugs. However, our rough calculations suggest that
$1 dollar in NIH funding generates between between 70 cents and 2 dollars in drug sales alone,

depending on whether we use median or mean value of sales per drug.

We find that over half of the patents that result from NIH funding flow across disease areas.
This has implications for measurement: had we looked only at patents in the same disease area,
we would have missed half the output. This finding speaks to a long-standing question in postwar
medical research policy: the feasibility and desirability of targeting research to diseases. Claims
that scientific research often flows across disease areas have been common from NIH Directors since
the agency’s founding, especially during Congressional debates about whether particular diseases
are over/underfunded or in response to advocates lobbying for a new Institute for “their” disease
(Sampat 2012). Our results support the view that there are strong cross-disease spillovers. The

organization of the agency around disease-specific Institutes, though useful for mobilizing funding,
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may not reflect the importance of the interplay of ideas from different disease areas and fields in

shaping biomedical research progress.

Throughout the text, we emphasized numerous caveats. We highlight several here. First,
we are examining only one type of return to NIH funding, those that flow through patented in-
novations. This neglects a number of other socially important benefits of publicly-funded medical
research, including applied epidemiological and clinical research that changes medical practice or
health behaviors. Previous research (Cutler and Kadiyala 2003; Heidenreich and McClellan 2003)
suggests this research has high value. Ignoring these outcomes could lead to large underestimates
of the value of NIH funding. Second, we rely on patent-to-publication citations, and assume these
citations capture knowledge flows from researchers to inventors. This may not always be the case:
for example, articles may be cited for strategic legal reasons even if the results contained therein did
not contribute to the citing patent. This would lead to overestimates of the effects of NIH funding.
Third, our welfare calculations were based on publicly available estimates on the average value of
drugs, and assumptions about how to divide a drug’s value across its many patents. There is con-
siderable heterogeneity in the private and social value of drugs (Garthwaite and Duggan 2012), and
individual patents (Hemphill and Sampat 2011), which our back-of-the-envelope welfare calculations
could not fully incorporate. Finally, our analysis implicitly assumes a “linear” flow from science to
technology, and does not account for the complementary investments made by other actors (e.g.,
the NSF, or venture capital firms) in the path from laboratory to marketplace, or the feedbacks
from technology to the progress of science. This “linear model” of research is well known to be an
oversimplification, but even its detractors acknowledge that it is more reasonable in the life sciences
than in other fields, and that alternative models would be far more empirically intractable (Balconi

et al. 2010).

Despite these limitations, our analysis provides new estimates on a question of longstanding
importance to economists and policymakers, using novel data and a new source of identification.
In future work, we plan to extend the analyses and framework to examine a range of other science
policy questions, including heterogeneity in types of research (whether more or less targeted research
has higher impact) and how the presence or absence of intellectual property rights affects returns

to public research investments.
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FIGURE 1
OVERVIEW OF DATA AND CONSTRUCTION OF PATENT OUTCOME MEASURES

NIH Administrative Data on Grant Applications (1980-2005)

1. Disease (Institute), Science Area (study section), and Year — DST
2. Data on a) raw scores b) science ranks c) rank of rank and d) funding status

/
PubMed Grant-Publication Publication-Publication
Acknowledgement Data Relatedness Algorithm
e Links NIH Grants with > ¢ Links PubMed life science
PubMed life science publications with all related
publications PubMed life science
publications
4

USPTO Patent-Publication Citation Data

e Links PubMed life science publications with USPTO patents

A4 v
# Patents citing NIH-Funded Total # Patents Relevant to
Research, by DST a DST’s Funded Research

33



FIGURE 2
OUTCOME MEASURES BY DST
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FIGURE 3
GRANT-PATENT LAGS BY DISEASE AREA — Top 10 ICs
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FIGURE 5

GRANT-PATENT LAGS BY PATENT QUALITY
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FIGURE 7
EXAMPLE OF VARIATION IN FUNDING UNRELATED TO QUALITY

Cell Signaling Study Section Tumor Physiology Study Section
Science Rank Disease Raw Score Science Rank Disease Raw Score
1 Cancer 10 1 Cancer 8.2
2 Diabetes 9.8 2 Cancer 8.1
3 Cancer 9.2 3 Cancer 7.6
4 Cancer 9.1 4 Cancer 6.4
5 Cancer 8.2 5 Cancer 5.4
6 Diabetes 7.6 6 Diabetes 5.2
7 Cancer 7.6 7 Diabetes 4.8
8 Diabetes 7.4 8 Diabetes 4.4
Cancer Institute (NCI) Diabetes Institute (NIDDK)

Rank of  Science Rank of  Science

Ranks Rank Study Section Raw Score Ranks Rank Study Section Raw Score
1 1 Cell 10 1 2 Cell 9.8
3 2 Tumor 8.1 3 6 Tumor 5.2
4 3 Cell 9.2 4 7 Tumor 4.8
6 4 Cell 9.1 6 8 Tumor 4.4
7 4 Tumor 6.4
8 ) Cell 8.2
9 5 Tumor 5.4
10 7 Cell 7.6

Note: This is an example of how raw scores and science ranks can result in idiosyncracies in funding. There are two disease
areas, cancer and diabetes, and two science areas, cell signaling and tumor physiology. The darkened cells are grants that are
not funded and the dark line represents the funding threshold in each disease area. Cell signaling receives, on average,
applications with higher quality, as reflected by their raw scores. NIH funding, however, requires that Institutes (disease areas)
fund applications in order of their science rank. In this example, we assume that cancer can fund five applications and diabetes
can fund four. The top two panels list the science rankings of each study section/science area, along with the disease area of
each application and its raw score. The bottom two panels show the funding decision at the cancer and diabetes institutes,
which is based on the “Rank of Rank.” We see that, within a science area in the same year, applications from two different
disease areas with the same score may have different funding outcomes. In particular, the fact that cancer applications in tumor
physiology have high science rankings means that cancer applications in cell signaling are less likely to be funded. Similarly, it is
also possible for two applications with the same raw score within the same disease area to have different funding outcomes. In
this case, tumor-physiology applications are less competitive than cell-signaling applications.
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TABLE 1: GRANT CHARACTERISTICS, 1980-2005

Grants Linked to
Private-sector Patents

Full Sample Cited by Patents Related to Patents
Sample Coverage
# Grants 153,076 66,085 123,872
# Disease Areas (Institutes) 17 17 17
# Science Areas (Study Sections) 624 548 598
# DSTs 14,085 8,886 13,037
Grant Characteristics
% RO1 equivalent 73.72 77.46 74.30
% Center grants 3.26 4.79 3.20
% Teaching or Fellowship grants 11.43 10.12 11.27
% New 59.50 51.08 58.55
Funding amount (Total project $1,556,572 $1,875,779 $1,568,894
allocation, 2010 dollars) -2,197,603 -2,783,272 -2,215,366

Note: Sample is the set of all NIH-funded grants from 1980-2005, excluding NINR, NLM, and NIMHD grants (see Appendix A
for a full list of ICs in the sample) and evaluated by chartered study sections. The sample is restricted to new and competitive
renewal grants so that there is one observation per successful grant application cycle. A grant is defined as cited by patents if
there exists a patent that cites a publication that acknowledges funding from that grant. A grant is matched with a publication
if it acknowledges the project number of the grant and is published within 5 years of the grant’s funding year. A patent is
citation-linked to a grant if it cites a publication that is linked to a grant. A grant is considered related to a patent if that grant
produces a publication that is similar (as defined by the PubMed Relatedness Matching Algorithm) to a publication that is cited
by a patent. In this paper, we require that similar publications be published within 5 years of each other. A grant is an R01
equivalent (e.g. a large project-based grant) if its NIH funding mechanism is either an R01, R23, R29, or R37. Center grants are
those grants whose mechanism starts with a “P” (e.g., a POl grant containing multiple projects). A teaching or fellowship grant
is one whose grant mechanism designation begins with a “T” or an “F.” New grants are projects that have not previously
received NIH funding.

38



TABLE 2: PATENT CHARACTERISTICS, 1980-2012

Patents Linked to NIH Funding

% Citing NIH % Related to NTH

Full Sample Funded Research Funded Research

Sample Coverage

# Patents 315,982 44.00 84.10
Patent Characteristics: General

Private Sector 232,276 39.38 82.33

Public Sector 83,394 56.91 89.07

Patent Characteristics: Private
Sector Only

Advanced Drug Candidates 4,718 49.92 88.22
FDA Approved Drugs 1,999 42.47 86.79
Large Asssignee 164,431 36.23 80.37
Small Asssignee 29,183 51.37 87.89

Note: Sample is the set of all USPTO granted patents from 1980-2012 that meet the following criteria: (i) they are either in
NBER Patent Categories 1 (“Chemicals”) or 3 (“Drugs and Medical”) and (ii) they cite at least one publication in the PubMed
database. A patent is defined as citing NIH-funded research if it cites a publication that acknowledges the project number of
an NIH grant and is published within 5 years of that grant’s funding year. A patent is considered related to NIH funding if it
cites a publication that is similar (as defined by the PubMed Relatedness Matching Algorithm) to a publication that
acknowledges NIH funding. We require that similar publications be published within 5 years of each other. A patent is labelled
“Private Sector” if it is assigned to a domestic US or foreign corporation (NBER assignee categories 1 and 2 minus foundations,
universities, and hospitals). A patent is labelled “Public Sector” if it is assigned to a US or foreign goverment (NBER
categories 5 and 6) or if it is assigned to a foundation, university, or hospital. A patent is labeled an advanced drug candidate
if it is associated with a drug or biologic in Phase III clinical trials or beyond (these are listed in Orange Book and/or IMS
Patent Focus); A patent is associated with an FDA approved drug if that patent is associated with a marketed treatment
accoding to IMS Health. A patent is associated with a large assignee if its assignee employs over 500 employees; it is considered
small otherwise.
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TABLE 3: NIH RESEARCH AREA (DST) CHARACTERISTICS, 1980-2005

Full Sample

DSTs Linked to Patents

Cited by Patents

Related to Patents

10.85 15.59 11.62
A f Grants
verage # of Grants (16.58) (19.05) (17.01)
Output Characteristics (weighted
by DST size)
. $47,197,730 $51,020,260 $47,632,592
Funding A t (DST R D o
wnding Amount (DST) (48,649,470 (49,543,540) (48,677,490)
# of Patents Citing NIH-Funded 14.70 16.22 14.84
Research (weighted counts) (20.72) (21.19) (20.77)
. 116.0 128.0 117.2
U hted
HWeIshte (164.2) (168.0) (164.6)
# of Patents Related to NIH-Funded 28.29 31.06 28.56
Research (weighted counts) (29.91) (80.07) (29.93)
. 3,969 4,366 3,988
U ht d ’ ? ’
HveIsite (3,918) (3,906) (3,921)
N 14,085 8,886 13,027

Note: Sample is the same as that in Table 1, except aggregated to the NIH Disease/Science/Time level. See the notes to
Table 1 for additional definitions. The weighting on patent counts is modified from the grant-level weights so that if a
patent is matched to N distinct DSTs, it counts as 1/N-th of a patent for each DST. Funding amounts are expressed in
2010 dollars (deflated by the Biomedical R&D Producer Price Index).
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TABLE 4: EFFECT OF NIH INVESTMENTS ON FOLLOW-ON PATENTING
BY PRIVATE-SECTOR FIRMS

# of Patents Citing NIH-Funded Research

(1) (2) ®3) (4) (5)

Weighted Patent Counts: Mean=14.70; SD=20.72

DST Funding (x$10 mln.) 2.443™ 2.116™ 2.113™ 2.484™ 2.517"
Mean=4.72; SD=4.87 (0.205) (0.340) (0.291) (0.348) (0.306)
Elasticity 0.784 0.679 0.678 0.797 0.808
R? 0.404 0.624 0.669 0.932 0.945

Unweighted Patent Counts: Mean=116.0; SD=164.2

DST Funding (x$10 mln.) 20.475™ 16.056™ 16.401™ 18.860™ 19.905™
Mean=4.72; SD=4.87 (1.529) (8.013) (2.553) (2.675) (2.213)
Elasticity 0.833 0.653 0.667 0.767 0.810
R2 0.435 0.701 0.740 0.954 0.964
Observations 14,085 14,085 14,085 14,085 14,085
Year FEs Incl. Incl. Incl. Incl. Incl.
Disease x Science FEs Incl. Incl. Incl. Incl.
Disease x Year FEs Incl. Incl. Incl.
Science x Year FEs Incl. Incl.
Application Count FEs Incl.

Note: Each observation is Disease/Science/Time (DST) combination. A patent is citation-linked to a DST if it cites research
that acknowledges funding from that DST. For more details on this sample, see the notes to Tables 1 and 3. Funding is
defined by the sum of project-cycle allocations for all new and competing renewal grants that are associated with that DST.
The patent sample is restricted to those with private sector assignees. See Table 2 for more details. Year FEs are fixed effects
for the fiscal year associated with a DST. NIH Institutes are taken to represent diseases and NIH study sections (review
committees) are taken to represent science areas. Elasticities are evaluated at sample means. Application count FEs are
indicator variables for the number of applications that a DST receives.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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TABLE 5:

ErfrecT OoF NIH INVESTMENTS ON TOTAL RELATED PRIVATE-SECTOR PATENTING

# of Patents Related to NIH-Funded Research

(1) (2) (3) (4) (5)
Weighted Patent Counts: Mean=28.3; SD=29.9
DST Funding (x$10 mln.) 4.177F** 3.060%** 3.193%** 3.509%** 3.264%**
Mean=4.72; SD=4.87 (0.850) (0.662) (0.550) (0.504) (0.293)
Elasticity 0.697 0.511 0.533 0.586 0.545
R2 0.511 0.774 0.801 0.974 0.980
Unweighted Patent Counts: Mean=3,969; SD=3,918
DST Funding (x$10 mln.) 549.339*** 381.244*** 389.754%** 491.734%** 451.943%**
Mean=4.72; SD=4.87 (42.702) (75.115) (63.107) (64.202) (85.964)
Elasticity 0.656 0.456 0.466 0.588 0.540
R2 0.531 0.862 0.881 0.982 0.986
Observations 14,085 14,085 14,085 14,085 14,085
Year FEs Incl. Incl. Incl. Incl. Incl.
Disease x Science FEs Incl. Incl. Incl. Incl.
Disease x Year FEs Incl. Incl. Incl.
Science x Year FEs Incl. Incl.
Application Count FEs Incl.

Note: Each observation is Disease/Science/Time (DST) combination. A patent is considered to be in the same area as an
NIH grant if it cites a publication that is similar (as defined by the PubMed Relatedness Matching Algorithm) to a
publication that is linked to a patent. For more details on this sample, See the notes to Tables 1 and 2. Funding is
defined by the sum of project-cycle allocations for all new and competing renewal grants that are associated with that
DST. The patent sample is restricted to those with private sector assignees. See Table 2 for more details. Year FEs are
fixed effects for the fiscal year associated with a DST. NIH Institutes are taken to represent diseases and NIH study
sections (review committees) are taken to represent science areas. Elasticities are evaluated at sample means. Application
count FEs are indicator variables for the number of applications that a DST receives.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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TABLE 6: EFFECT OF NIH INVESTMENTS ON PRIVATE-SECTOR PATENTING
WINDFALL FUNDING IV

First Stage Citation Linked Total Related
DST Funding
ST Funding Mean=14.70; SD=20.72 Mean=28.3; SD=29.9
(x $10 mln.)
OLS v OLS v
1) 2) (3) (4) (5)
Windfall Funding 1.115™ D?T)Fl\‘;n[d‘rii(:jm 2.777 2.610 3.970" 3.259"
(x$10 mln.) (0.227) ) S CARTRLS (0.472) (0.787) (0.636) (0.809)
SD=4.87
Elasticity 0.892 0.839 0.662 0.544
Cragg-Donald Wald F-stat 452 348
Kleibergen-Paap Wald F-stat 31.01 51.47
R? 0.949 0.776 0.537 0.886 0.630
Observations 14,085 14,085 14,085 14,085 14,085
Year FEs Incl. Incl. Incl. Incl. Incl.
Disease x Science FEs Incl. Incl. Incl. Incl. Incl.
Disease x Year FEs Incl. Incl. Incl. Incl. Incl.
Science x Year Linear Incl. Incl. Incl. Incl. Incl.
Trends
Application Controls Incl. Incl. Incl. Incl. Incl.

Note: See notes to Tables 4 and 5 for details about the sample. The instrument is the total amount of funding ($2010) for the subset of grants
funded by a DST whose rank of rank scores were marginal, i.e., were within 25 applications of the award cutoff for their specific disease area
(Institute). Application controls include 1) FEs for the number of applications that a DST receives; 2) FEs for the number of applications
associated with a DST that are also in a 50-grant window around the relevant IC payline, as well as 3) cubics in the average raw and rank
scores of applications associated with a DST that are also in a 50-grant window around the payline. Elasticities are evaluated at the sample
means.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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TABLE 8: PARTIAL RATE OF RETURN CALCULATION
SALES FOR FDA-APPROVED DRUGS

Mean 25" percentile Median 75" percentile
Worldwide Sales Revenues
4 274 1,1 4
(millions of 2010 dollars) 83,473 527 $1,137 §4,085
Private Ret to $10 mln. NIH
rivate Return to $10 min $21,272,366.17 $1,678,017 $6,965,520 $25.021,686

investment [Scaled]

Note: Sales figures correspond to worldwide sales revenues over the product life cycle for new drugs approved in the US
during 1990 and 1994 (DiMasi et al. 2004). The coefficient estimate o, (in equation [3]) corresponds to the IV estimate in
column 3 of Table 7 (our estimate of the causal effect of NIH funding on the rate of production of patents associated with
FDA-approved drugs). Given that the IMS Health data we rely on to identify patents associated with approved drugs
typically lists many such patents, we scale our calculations by the probability that any given patent is pivotal. Given that
each drug in the IMS+OB set has about 8 patents on average (see Appendix B) we scale the effect by 1/8.
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TABLE 9: ErrecT OF NIH INVESTMENTS ON FIRM REALLOCATION
OoF R&D INVESTMENTS

Average non-DST patents,

Total -DST patent
otal non-DST patents per DST-linked patent

Citation Related Citation Related

Mean=141.7; Mean=203.5; Mean=22.8;
SD=318.0 SD=209.6 SD=67.5

(1) (2) (3) (4)

Mean=2.7; SD=3.2

3.024 5.322™ -0.153 0.044
DST Funding (x$10 mln.
g ) (4.507) (1.472) (1.484) (0.043)
Elasticity 0.101 0.123 -0.032 0.077
R’ 0.921 0.987 0.843 0.872
Observations 14,085 14,085 14,085 14,085

Note: Each observation is Disease-Science Area-Time (DST) combination. Total non-DST patents are calculated by first
identifying all assignees that produce a patent linked to a DST (either through citations or through PMRA relatedness). We
then find all non-D, non-S patents issued to that restricted set of assignees in the same year. This is our "Total non-DST”
patent count. "Average non-DST” patents normalizes this by the number of DST-linked patents. A patent is assigned to the
disease area to which it is most often associated. All regressions include disease-science FEs, disease-year FEs, science-year
FEs, and FEs for the number of applications to the DST, and cubics in the number of DST-linked patents that are matched.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Appendix A: A Primer on NIH Funding

The National Institutes of Health (NIH) is the primary organization within the United States government
with responsibilities for health-related research. The NIH is the single largest funder of biomedical research,
with an annual budget of approximately $30 billion dollars. According to its own web site, NIH’s mission is
“to seek fundamental knowledge about the nature and behavior of living systems and the application of that
knowledge to enhance health, lengthen life, and reduce illness and disability.”

NIH comprises 21 different Institutes (plus an assortment of centers that our analysis will ignore), each with
a distinct, though sometimes overlapping, research agenda. For example, the National Institute for Mental
Health, as the name suggests, focuses on mental health related research. It clearly shares interests with the
National Institute of Aging on issues related to dementia. All Institutes receive their funding directly from
Congress, and manage their own budgets. Table A1 lists each of the agency’s component institutes.

Figure A1(i) provides an example of language from an appropriations bill for the National Cancer Institute;
here, Congress uses the disease burden associated with pancreatic cancer to underscore the need for more
research in this field. Figure A1(ii) compiles a list of the mostly commonly used words in the Congressional
appropriations documents for all NTH Institutes, for a sample year. The highest-frequency word in both House
and Senate appropriations is, unsurprisingly, “research.” The majority of the remaining list are medicine
or disease focused: “disease,” “health,” “child,” “behavior,” “patients,” “syndrome,” etc. This reasoning is
supported by research showing that funding levels for particular Institutes are more highly correlated with
disease burden than with scientific advances (Gillum et al., 2011). Variation in funding across institutes
and over time, however, does not present a problem for our identification strategy since the level of analysis
for our study is the disease/science/year (DST), thus allowing us to include disease-by-year (technically,
Institute-by-year) fixed effects in all specifications.

Approximately 10% of the overall NIH budget is dedicated to the intramural research program, with almost
all Institutes providing some support. The program directly supports about 6,000 scientists working within
the federal laboratories on NIH Campuses. The operations of the extramural program, in contrast, are quite
transparent. More than 80% of the total budget supports extramural research through competitive grants
that are awarded to universities, medical schools, and other research institutions, primarily in the United
States. The largest and most established of these grant mechanisms is the RO1, a project-based renewable
research grant which constitutes half of all NIH grant spending and is the primary funding source for most
academic biomedical labs in the United States. There are currently 27,000 outstanding awards, with 4,000
new projects approved each year. The average size of each award is 1.7 million dollars spread over 3 to 5
years and the application success rate is approximately 20 percent (Li 2014).

Requests for proposals identify priority areas, but investigators are also free to submit applications on
unsolicited topics under the extramural research program. All applications are assigned to a review committee
comprised of scientific peers, generally known as a study section (Table A2 lists the 173 study sections that
currently exist). Reviewers are asked to ignore budgetary issues, limiting their attention to scientific and
technical merit on the basis of five criteria: (1) Significance [does the project address an important issue?|;
(2) Approach [is the methodology sound?]; (3) Innovation [is the research novel?]; (4) Investigator [are the
skills of the research team well matched to the project?]; and (5) Environment [is the place in which the work
will take place conducive to project success?|. Each reviewer assigns a two digit priority score ranging from
1.0 for the best application to 5.0 for the worst. At the study section meeting, three reviewers are typically
asked to discuss an application and present their initial scores. This is followed by an open discussion by
all reviewers and a brief period for everyone to revise their initial scoring based on the group deliberations
before anonymously submitting their final scores. The overall priority score for the proposal is based on the
average across all study section members. Those applications determined to be of the lowest quality by the
study section do not receive priority scores. Scores are then normalized within review groups through the
assignment of percentile scores to facilitate funding decisions.



Funding decisions are decoupled from the scientific review and determined by program areas within the
Institutes. In essence, each decision making unit (e.g., Division, Program, Branch) within an Institute is
allocated a fixed annual budget. Units then fund new projects in order of their priority score until their
budget, net of encumbered funds for ongoing grants awarded in previous years, is exhausted. The highest
percentile score that is funded is known as the payline. A grant’s score is generally the sole determinant of
the funding decision,' irrespective of proposal costs (assuming they are deemed reasonable). Researchers who
do not receive funding are given the opportunity to respond to reviewer criticisms and submit an amended
application.

Institutes considered in the econometric analysis. We exclude from our analytic sample observa-
tions corresponding to the National Library of Medicine (NLM), the National Institute of Nursing Research
(NINR), and the National Institute on Minority Health and Health Disparities (NIMHD), which together
represent less than 3% of NIH’s total budget in first year. We drop the NLM because it seldom supports
extramural researchers. We drop NINR and NIMHD because we found no instances of the grants funded by
these Institutes generating publications referenced in private-sector patents.

A cursory look at the names of the list of the 18 Institutes we do include in most of our analyses reveals that
some of these Institutes may not be strictly disease-focused. This is certainly the case for NIGMS (which
supports mostly untargeted laboratory research), for NHGRI (the genome Institute), and NIBIB (which
focuses on imaging technology). In a sensitivity test, we will explore whether our main insights are robust
to the exclusion of these three “science-focused” Institutes. Further, we will also investigate the effects of
dropping NIA, NIDCD, NIEHS, and NICHD who traditionally support research on a broad spectrum of
loosely related diseases.

Study sections. As mentioned above, the majority of grant evaluation occurs in approximately 200 standing
review committees, known as “study sections.” Each study section is organized around a scientific topic—for
instance, “Cellular and Molecular Immunology”™—and is responsible for evaluating the quality of applications
in its area. Traditionally, the boundaries delineating study sections have changed only very slowly (too slowly
for many NIH critics). Additions and deletions of study sections is relatively rare, and often controversial.
In 2006, however, the NIH reorganized its standing study sections. This involved closing or consolidating
some study sections, splitting others, and creating new study sections, for instance one on data analytics, to
respond to new topics and tools. The overall review process stayed largely the same. This change happens
outside of our sample frame and, throughout our analysis, we refer to the old system.

Allocation of Applications to Study Sections. Could applicants improve their odds of funding by
sending their applications to study sections reputed to be “weaker”” Study section shopping of this type
would be almost surely unproductive, given year-to-year fluctuations in funding and the vagaries of the
reapplication process (most proposals are not funded at the first review).!! Formally, grant applicants do not
choose the study section that will review their proposals. Rather, each application is assigned by staff within
the Division of Receipt and Referral at the NIH to a study section based on the needed expertise to evaluate
scientific and technical merit."! While many investigators ask to be reviewed by a specific study section,
the NIH grants such requests based on the scientific content of the proposal, a consideration of conflicts of
interest, and the administrative viability of the request (Chacko 2014). More importantly, the typical advice
received by new investigators is to petition to be reviewed in the study section that is most likely to have
members on their roster whom are familiar with their narrowly-defined field, and then to stick to this initial

'Institute directors have the discretion to fund applications out of order if, for example, they are especially important to
the Institute’s mission. Since applications can only be submitted three times, Institutes may also choose to fund applications
on their last evaluation cycle instead of newly submitted applications that can be reconsidered later. These exceptions appear
rare (Jacob and Lefgren 2011).

"Even grant administrators are usually unable to communicate to applicants how the score they received in committee is
likely to translate into a final funding decision. We find it hard to believe that grant applicants could be better informed than
these knowledgeable insiders.

"http://public.csr.nih.gov/ApplicantResources/ReceiptReferal/Pages/Submission-and-Assignment-Process.aspx,
accessed August 30, 2014
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choice. Consistent with this advice, an essential component of “grantsmanship” at NIH is to build a cordial
relationship with the Scientific Review Officer, the staff person within NIH’s Center for Scientific Review
who administers the logistics of the review process. These informal practices would seem to run counter any
temptation to “chase the money.”

We see this in the data, where there is considerable inertia in scientist-study section pairings. In a typical
five year-period, 88% of NIH grant recipients are evaluated by only one study section; eleven percent are
evaluated by two study sections; and only one percent are evaluated by three study sections or more. Why
would a given scientist’s grant applications ever be reviewed by multiple study sections? One reason is
that study sections are not immutable. Some are created; others are eliminated; yet others are merged.
Intellectual breadth may also explain the anomalies: In a sample of 10,177 well-funded investigators for
whom we have gathered a carefully curated list of publications (cf. Azoulay et al. 2012), intellectual breadth
(as proxied by the diversity of MeSH keywords that tag the publications produced by these scientists in
rolling five-year windows) is strongly correlated with the likelihood of having oneaAZs work reviewed by
multiple study section (Table A3). This results holds even when controlling for the total level of funding
received. This results hold even when controlling for the total level of funding received. This suggests that
scientists have their work reviewed by two or more committees only to the extent that they are active in
subfields that are sufficiently distant in intellectual space.

Disease/Science as a level of analysis. As highlighted in the introduction, the organization of the
NIH into disease-based funding Institutes and science-based review committees will play an important role
in our empirical work, since our independent and dependent variables will be computed at the level of the
disease/science/year (DST, technically the IC/study section/year level). If applications evaluated by a study
section were always funded by the same Institute, the distinction we emphasize between the disease/science
level of analysis and disease-level variation over time would not be very meaningful. However, it is indeed
the case that study sections are “promiscuous,” in the sense that the grant applications they pass favorable
judgement on will go on to be funded by several different Institutes. Figure A2(i) shows that the majority, 75
percent, of study sections evaluated grants funded by at least two Institutes. Conversely, Figure A2(ii) shows
that the typical Institute draws on applications stemming from more than 50 study sections, on average.

Not only is the DST level of analysis policy-relevant, it is tractable by using the structure of NIH grant
review and mapping Institutes into disease areas, and study sections into science areas, respectively. And
because of the “intellectual promiscuity” documented above, in practice, increases in funding for one disease
can impact innovation in another by supporting research on the scientific foundations these two areas share.

Figure A3 plots residual variation in funding taking out, successively, fixed effects for calendar year, dis-
ease/science, disease/year, and science/year. These kernel density estimates make clear that there remains
substantial unexplained variation in funding after controlling for all these fixed effects. It is this DST-level
variation that we use to estimate the effect of funding on private-sector patenting.
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TABLE Al: NIH INSTITUTES AND CENTERS (ICs)

Institute Abbrev. Established Avg. Budget
National Cancer Institute NCI 1937 $4,019,793
National Heart, Lung, and Blood Institute NHLBI 1948 $2,489,629
National Institute of Allergy and Infectious Diseases NIAID 1948 $2,070,634
National Institute of Dental and Craniofacial Research NIDCR 1948 $325,861
National Institute of Mental Health NIMH 1949 $1,378,636
National Institute of Diabetes and Digestive and Kidney Diseases NIDDK 1950 $1,491,613
National Institute of Neurological Disorders and Stroke NINDS 1950 $1,244,241
National Eye Institute NEIL 1968 $562,126
National Institute on Alcohol Abuse and Alcoholism NIAAA 1970 $423,341
National Institute on Drug Abuse NIDA 1974 $960,637
National Institute of Arthritis and Musculoskeletal and Skin Diseases NIAMS 1986 $458,273
National Institute of Child Health and Human Development NICHD 1962 $1,043,447
National Institute of Environmental Health Sciences NIEHS 1969 $557,645
National Institute on Aging NIA 1974 $702,184
National Institute on Deafness and Other Communication Disorders NIDCD 1988 $347,646

Over the 1980-2005 time period, In thousands of 2010 dollars (amounts deflated by the Biomedical R&D PPI)
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TABLE A3: INTELLECTUAL BREADTH AND STUDY SECTION AFFILIATIONS

(1) (2) (3) (4)
. 0.1417 0.124™ 0.026™ 0.011™
Two Study Sections (0.005) (0.005) (0.003) (0.003)
. 0.249™ 0.222™ 0.042™ 0.018™
Three Study Sections (0.011) (0.012) (0.006) (0.007)
. 0.333™ 0.297™ 0.065™ 0.035"
Four Study Sections (0.033) (0.034) (0.017) (0.017)
. . 0.354™ 0.313™ 0.037 0.003
Five Study Sections (0.084) (0.084) (0.055) (0.055)
. 0.030™ 0.031™
Ln(NIH Funding) (0.005) (0.003)
Scientist Fixed Effects Not Incl. Not Incl. Incl. Incl.
Nb. of Scientists 10,177 10,177 10,177 10,177
Nb. of Observations 146,661 146,661 146,661 146,661
Adjusted R? 0.226 0.227 0.711 0.712

The dependent variable is the log odds of intellectual diversity, computed as one minus the herfindahl of MeSH keywords
in a sample of 10,177 “superstar scientists.” The specifications in columns (1) and (2) include indicator variables for type of
degree (MD, PhD, MD/PhD), year of highest degree, and gender. All specifications include a full suite of indicator variables
for calendar year and for scientist age.

Standard errors in parentheses, clustered by scientist (fp < 0.10, *p < 0.05, “'p < 0.01)
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FIGURE Al: CONGRESSIONAL APPROPRIATIONS FOR NIH INSTITUTES

(i) EXAMPLE OF APPROPRIATIONS LANGUAGE

Pancreatic cancer.—Pancreatic cancer is the country’s fourth
leading cause of cancer death. Most patients present with advanced
disease at diagnosis and the median overall survival rate for people
diagnosed with metastatic disease is only about six months. The
Committee is concerned that there are too few scientists research-
ing pancreatic cancer and compliments the NCI’s past efforts for
increasing the research field through its program of a 50 percent
formalized extended payline for grants that were 100 percent rel-
evant to pancreatic cancer. The Committee considers this an impor-
tant method for attracting both young and experienced investiga-
tors to develop careers in pancreatic cancer. In 2004, the NCI es-
tablished a new policy for awarding additional grants in pancreatic
cancer research and extended this initiative to research that is 50
percent relevant to pancreatic cancer. The Committee requests NCI
to report in February, 2006 on how the two changes in policy have
affected the pancreatic cancer portfolio, including the percentage
relevancy of each grant to pancreatic cancer, and urges NCI to con-
tinue its commitment to fertilize the pancreatic cancer field.

(i) WORD FREQUENCY IN APPROPRIATIONS DOCUMENTS

House Senate

research research
disease disease
health health
child behavior

liver child
syndrome patients
environment syndrome
patients population
population science
brain environment
affect brain
programs liver
kidney kidney
clinical trial programs
blood clinical trial
diagnosis blood
hepatitis affect
women diagnosis
science heart
transplantation cells
heart hearing
hearing stroke
education women
behavior anemia

growth mental disorders
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FIGURE A2: INSTITUTE AND STUDY SECTION OVERLAP

(i) NUMBER OF INSTITUTES PER STUDY SECTION

25+

20+

15+

10+

Percent, weighted by Nb. of Grants

0 5 10 15 20

Number of Contributing Disease Areas (ICs) per Study Section-Year
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FIGURE A3: RESIDUAL VARIATION IN DST FUNDING
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Appendix B: “Life-science” Patents

To assess the impact of NIH funding, we need to define a universe of life science patents. While we do not
want to impose strong restrictions on where NIH funding could have an effect (e.g., by looking in specific
disease areas) focusing on a specific subset of the universe of issued patents is necessary for two reasons.
From a substantive standpoint, it is important to assign most patents to one or more NIH research areas,
and this would be infeasible were we to focus on all patents granted by the USPTO." From a pragmatic
standpoint, linking NIH publications to patents requires probabilistic matching (see Appendix C), and the
rate of false positives is much lower if we restrict the set of potential matches.

To do so, we started with the 5,269,968 patents issued by the USPTO between 1980 and 2012. Then,
using the NBER patent categorization described in Hall et al. (2001), we focused on patents in the classes
belonging to NBER Categories 1 (Chemicals) and 3 (Drugs and Medical). This left 1,310,700 patents. Of
these patents, 565,593 cite at least one non-patent reference. Using the algorithm described in Azoulay et
al. (2012) and Sampat and Lichtenberg (2011) we determined that 312,903 patents cite an article indexed in
PubMed. We refer to this set—patents in NBER Classes 1 and 3 that cite to at least one PubMed indexed
article—as “life-science patents.” Classes 1 and 3 cover a range of subcategories, listed in Table B1.

To provide a better sense of what this set includes, we took a random sample of 1,000 in the universe
described above, and looked them up in the Thomson Reuters Innovation Database. This database includes
information on the expert classification of each patent to one or more codes in the Derwent World Patents
Index (DWPI 2012). Of the 1,000 patents, 656 had at least one DWPI “B” code, indicating they are in the
“pharmaceuticals” category. According to DWPI 2012 (page 5) these pharmaceutical patents include:

e Compounds and proteins of pharmaceutical (or veterinary) interest;
e Compounds used as intermediates in the manufacture of pharmaceutical products;

e Compositions used for diagnosis and analysis in pharmaceuticals;

Technologies dealing with production of tablets, pills, capsules, etc.

e Devices for dispensing pharmaceuticals.

Importantly, the “B” classes also include a range of biotechnology research tools and processes.

What about those without a “B” code, about one-third of the life science patents? The majority of these
non-pharmaceutical patents are in five DWPI categories covering chemistry and medical devices: Class A
(Polymers and Plastics), Class D (Food, Detergents, Water Treatment, and Associated Biotechnology),
Class E (General Chemicals), Class S (Instrumentation, Measuring, and Testing), and Class P (General
Human Necessities, including diagnosis/surgery).

Private sector vs. public sector patents. We are primarily interested in the effect of NIH funding on
the rate of production of private-sector patents, excluding those assigned to public research entities such
as universities, research institutes, academic medical centers, or government agencies (e.g., the intramural
campus of NIH). This focus is justified by our desire to focus on disembodied knowledge flows. Since the
Bayh-Dole act, life-science academics have considerably increased their rate of patenting (Azoulay et al.
2007; 2009). Previous scholarship has documented the growing importance of patent-paper pairs (Murray
and Stern 2007) where a given piece of academic knowledge gives rise to both an article and a patent
listing the authors of the article as inventors and their employer (often a public institution) as assignee.
Including these patents in our analyses would make the interpretation of our results (which emphasizes
indirect spillovers of knowledge) difficult. To separate private-sector from public-sector patents, we adapted

iVe.g., class 150, “Purses, Wallets, and Protective Covers,” or Class 169, “Fire Extinguishers.”



Bronwyn Hall’s patent assignee name matching algorithm to isolate private-sector assignees.Y Using this
method, we restrict the sample to 232,276 patents, or 74% of the life science patents (see Table 2 in the main
body of the manuscript).

Patents on drug candidates and approved drugs. Though a substantial share of the life science patents
are “pharmaceuticals” not all are therapeutic molecules or proteins. Even among those that are, there is
substantial heterogeneity in value, since only a small share of drugs and biologics enter trials, and of these
a small share receive marketing approval.

To examine heterogeneity of the effects of NIH funding, and to assess the effects on drug development, we
isolated patents associated with important drugs and biologics. We began with all patents from current and
archival versions of the FDA’s Orange Book (officially named Approved Drug Product with Therapeutic
Equivalence Evaluations). Since the 1984 Hatch-Waxman Act, branded firms are required to list on the
Orange Book patent issued before drug approval with at least one claim covering a drug’s active ingredient,
formulation, or methods of use for approved indications. Though there is strong incentive to list patents
issued after drug approval as well (Hemphill and Sampat 2012), strictly speaking this is not required. More-
over other drug patents (methods of manufacture, formulations not covering the marketed product, methods
of use covering unapproved indications) are barred.

In parts of our analysis, we look at the effects of NIH funding on “important” life science patents associated
with drugs that have been approved or entered late-stage clinical trials. For doing so, the Orange Book is
restrictive, for several reasons. First, it does not list all patents on a drug, as already noted. Second, it
does not list patents for all biologic drugs (since these drugs were historically covered by a division of the
FDA exempt from Orange Book listing rules). Third, it does not include patents on drugs and biologics
in late stage trials. Accordingly, we supplemented the patent list from the Orange Book with those from
IMS Patent Focus, which includes patents on drugs and biologics in Phase III trials and above, and is less
restrictive about the types of patents it includes than the Orange Book."!

Together 4,718 of the 232,276 life science patents were listed in the Orange Book and/or IMS. We call this
set of patents “Advanced Drug Candidates.”

For welfare calculations, we multiply the effects of NIH patenting with measures of the value of new drugs.
In order to do so, we need to isolate the patents associated with new molecular and biological entities
(NMEs and NBESs), eliminating patents on drugs that associated with other drugs (e.g., line extensions) and
unapproved drugs. This is not to say that drugs beyond NMEs and NBEs are unimportant. However, doing
S0 is necessary since our measures of private and social value of drugs are based on data on new drugs that
have been approved for marketing (as opposed to line extensions or unapproved drugs).

To construct this set, we used information on all NMEs and NBEs approved by the FDA between 1984 and
2012. Specifically, we collected information on all new molecular entities and biological license applications
approved by the FDA. We searched for patents on each of these in the Orange Book using application
numbers, and supplemented with searches in IMS patent focus using drug names. About 30 percent of these
patents were listed both in the Orange Book and IMS, 67 percent in IMS only, and 3 percent in the Orange
Book only. On average, there were 7.6 patents per drug in the dataset (7.3 for NME and 9.6 for biologics).
After limiting to private sector patents (see above), we were left with a set of 1,999 private sector life science
patents associated with new molecules and biologics.

We use this set of 1,999 for welfare calculations. For illustration, we begin with the assumption that each
patent represents a unique new drug or biologic. But this is unrealistic: as noted, each drug in the dataset
has eight patents in the combined Orange Book/IMS set. Attributing the full value of each drug to every
patent on that drug would overstate the effect of increased NIH funding. Moreover, it is possible that
multiple patents on a drug cite the same NIH article, and attributing the full value of drug sales to each

Vhttp://eml.berkeley.edu/ bhhall/pat/namematch.html

Vihttp://www.imshealth.com/deployedfileS/imshealth/Global/Content/Technology/Syndicated%2OAna1ytics/
Lifecycle%20and’,20Portfolio}20Management/IMS_LifeCycle_Patent_Focus_Global_Brochure.pdf
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such patent would over-count as well. Accordingly, we scale the estimated effect of NIH funding by % in our
welfare calculations.

TABLE B1l: RELEVANT PATENT CLASSES

Cat. Sub-Cat.
Code Category Name Code Sub-Category Name Patent Classes
1 Chemical 11 Agriculture, Food, Textiles 8, 19, 71, 127, 442, 504
12 Coating 106,118, 401, 427
13 Gas 48, 55, 95, 96
" Oreanic Compounds 534, 536, 540, 544, 546, 548, 549, 552, 554, 556,
& P 558, 560, 562, 564, 568, 570
15 Resins 520, 521, 522, 523, 524, 525, 526, 527, 528, 530
23, 34, 44, 102, 117, 149, 156, 159, 162, 196, 201,
19 Miscell: 202, 203, 204, 205, 208, 210, 216, 222, 252, 260,
peefianeons 261, 349, 366, 416, 422, 423, 430, 436, 494, 501,
502, 510, 512, 516, 518, 585, 588
3 Drugs & Medical 31 Drugs 424, 514
32 Surgery & Medical Instruments 128, 600, 601, 602, 604, 606, 607
33 Biotechnology 435, 800
39 Miscellaneous 351, 433, 623

xii



Appendix C: Linking PubMed References to USPTO Patents

We use patent-publication citation information to identify patents that build on NIH-funded research. Patent
applicants are required to disclose any previous patents that are related to their research. Failure to do so can
result in strong penalties for the applicant and attorney, and invalidation of the patent (Sampat 2009). There
is a long history of using citation data as measures of intellectual influence or knowledge flows between public
and private sector research (Jaffe and Trajtenberg 2005; Narin and Olivastro 1992). Recent work (Sampat
2010, Alcacer, Gittleman and Sampat 2009), however, shows that patent examiners rather than applicants
insert many of these citations, casting doubt on their utility as measures of knowledge flows or spillovers
(Alcacer and Gittleman 2006).

We will instead use information on patent citations to published scientific articles. This is appealing both
because publications rather than patents are the main output of scientific researchers (Agrawal and Henderson
2002), but also because the vast majority of patent-paper citations, over 90 percent, come from applicants
rather than examiners, and are thus more plausibly indicators of real knowledge flows than patent-patent
citations (Lemley and Sampat 2012). Roach and Cohen (2012) provide empirical evidence on this point.

Determining whether patents cite publications is more difficult than tracing patent citations: while the cited
patents are unique seven-digit numbers, cited publications are free-form text (Callaert et al. 2006). Moreover,
the USPTO does not require that applicants submit references to literature in a standard format. For
example, Harold Varmus’s 1988 Science article “Retroviruses” is cited in 29 distinct patents, but in numerous
different formats, including Varmus. “Retroviruses” Science 240:1427-1435 (1988) (in patent 6794141) and
Varmus et al., 1988, Science 240:1427-1439 (in patent 6805882). As this example illustrates, there can be
errors in author lists and page numbers. Even more problematic, in some cases certain fields (e.g. author
name) are included, in others they are not. Journal names may be abbreviated in some patents, but not in
others.

To address these difficulties, we developed a matching algorithm that compared each of several PubMed fields
— first author, page numbers, volume, and the beginning of the title, publication year, or journal name —
to all references in all biomedical and chemical patents issued by the USPTO since 1976. Biomedical patents
are identified by technology class, using the patent class-field concordance developed by the National Bureau
of Economic Research (Hall, Jaffe, and Trajtenberg 2001). We considered a dyad to be a match if four of
the fields from PubMed were listed in a USPTO reference.

Overall, the algorithm returned 1,058,893 distinct PMIDs cited in distinct 322,385 patents. Azoulay, Graff
Zivin and Sampat (2012) discuss the performance of this algorithm against manual searching, and tradeoffs
involved in calibrating the algorithm.
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Appendix D: PubMed Related Citations Algorithm [PMRA]

One of our outcome measures (described in more detail in Appendix E) captures all patents in the intellectual
vicinity of an NIH funding area. A crucial input in the construction of this measure is the National Library of
Medicine’s PubMed Related Citations Algorithm (PMRA), which provides a way of determining the degree
of intellectual similarity between any two publications. The following paragraphs were extracted from a brief
description of PMRA:V1

The neighbors of a document are those documents in the database that are the most similar to it. The simi-
larity between documents is measured by the words they have in common, with some adjustment for document
lengths. To carry out such a program, one must first define what a word is. For us, a word is basically an
unbroken string of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens,
spaces, new lines, and punctuation. A list of 310 common, but uninformative, words (also known as stopwords)
are eliminated from processing at this stage. Next, a limited amount of stemming of words is done, but no
thesaurus is used in processing. Words from the abstract of a document are classified as text words. Words
from titles are also classified as text words, but words from titles are added in a second time to give them a
small advantage in the local weighting scheme. MeSH terms are placed in a third category, and a MeSH term
with a subheading qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is
starred (indicating a magjor concept in a document), the star is ignored. These three categories of words (or
phrases in the case of MeSH) comprise the representation of a document. No other fields, such as Author or
Journal, enter into the calculations.

Having obtained the set of terms that represent each document, the next step is to recognize that not all words
are of equal value. FEach time a word is used, it is assigned a numerical weight. This numerical weight is
based on information that the computer can obtain by automatic processing. Automatic processing is important
because the number of different terms that have to be assigned weights is close to two million for this system.
The weight or value of a term is dependent on three types of information: 1) the number of different documents
in the database that contain the term; 2) the number of times the term occurs in a particular document; and
3) the number of term occurrences in the document. The first of these pieces of information is used to produce
a number called the global weight of the term. The global weight is used in weighting the term throughout the
database. The second and third pieces of information pertain only to a particular document and are used to
produce a number called the local weight of the term in that specific document. When a word occurs in two
documents, its weight is computed as the product of the global weight times the two local weights (one pertaining
to each of the documents).

The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a
term that occurred in most of the documents would really tell one very little about a document. On the other
hand, a term that occurred in only 100 documents of one million would be very helpful in limiting the set of
documents of interest. A word that occurred in only 10 documents is likely to be even more informative and
will recetve an even higher weight.

The local weight of a term is the measure of its importance in a particular document. Generally, the more
frequent a term is within a document, the more important it is in representing the content of that document.
Howewver, this relationship is saturating, i.e., as the frequency continues to go up, the importance of the word
increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be
considered more important just because it is longer; therefore, a length correction is applied.

The similarity between two documents is computed by adding up the weights of all of the terms the two docu-
ments have in common. Once the similarity score of a document in relation to each of the other documents in
the database has been computed, that document’s neighbors are identified as the most similar (highest scoring)
documents found. These closely related documents are pre-computed for each document in PubMed so that
when one selects Related Articles, the system has only to retrieve this list. This enables a fast response time
for such queries.

In Table D1, we illustrate the use of PMRA with an example taken from our sample. Brian Druker is a
faculty member at the University of Oregon whose NIH grant CA-001422 (first awarded in 1990) yielded
9 publications. “CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL,
TEL-ABL, and TEL-PDGFR fusion proteins” (PubMed ID #9389713) appeared in the December 1997 issue

Vil Available at http://ii.nlm.nih.gov/MTI/related.shtml
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of the journal Blood and lists 16 MeSH terms. PubMed ID #8548747 is its fifth-most related paper according
to the PMRA algorithm; it appeared in Cancer Research in January 1996 and has 13 MeSH terms, 6 of
which overlap with the Druker article. These terms include common terms such as Mice and Pyrimidines as
well as more specific keywords including Oncogene Proteins v-abl and Receptors, Platelet-Derived
Growth Factor.

TABLE D1: PMRA AND MESH TERMS OVERLAP — AN EXAMPLE

Source Article

Carroll et al., “CGP 57148, a tyrosine kinase
inhibitor, inhibits the growth of cells expressing
BCR-ABL, TEL-ABL, and TEL-PDGFR fusion

proteins.” Blood, 1997.

PMID #9389713

PMRA-Linked Article

Buchdunger et al. “Inhibition of the Abl protein-
tyrosine kinase in vitro and in vivo by a 2-
phenylaminopyrimidine derivative.” Cancer

Research , 1996.

PMID #8548747

MeSH Terms

Animals

Antineoplastic Agents

Cell Division

Cell Line

DNA-Binding Proteins*
Enzyme Inhibitors*

Fusion Proteins, ber-abl*
Mice

Oncogene Proteins v-abl*
Piperazines*

Protein-Tyrosine Kinases*
Proto-Oncogene Proteins c-ets
Pyrimidines*

Receptors, Platelet-Derived Growth Factor*
Repressor Proteins*
Transcription Factors*

Substances

Antineoplastic Agents
DNA-Binding Proteins

ETS translocation variant 6 protein
Enzyme Inhibitors

Fusion Proteins, ber-abl

Oncogene Proteins v-abl
Piperazines

Proto-Oncogene Proteins c-ets
Pyrimidines

Repressor Proteins

Transcription Factors

imatinib

Protein-Tyrosine Kinases
Receptors, Platelet-Derived Growth Factor

MeSH Terms

3T3 Cells

Animals

Cell Line, Transformed
Growth Substances

Mice

Mice, Inbred BALB C
Oncogene Proteins v-abl*
Piperazines*

Piperidines*

Proto-Oncogene Proteins c-fos
Pyrimidines*

Receptors, Platelet-Derived Growth Factor*®
Tumor Cells, Cultured

Substances

Growth Substances

Oncogene Proteins v-abl

Piperazines

Piperidines

Proto-Oncogene Proteins c-fos

Pyrimidines

imatinib

Receptors, Platelet-Derived Growth Factor
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Appendix E: Linking NIH Research Areas (DSTs) to Patents

We begin by linking the universe of funded NIH grants between 1980 and 2005 to the set of articles that it
supports using grant acknowledgement data from PubMed. We then link these publications to private-sector
patents using two alternative procedures; in turn, the outcome measures that build on these procedures are
designed to answer slightly different questions about the impact of NIH funding. The first measure asks
whether private firms build on NIH-funded research in their patented inventions. The second measure asks
whether NIH funding leads to the net creation of private-sector patents that would not have otherwise been
developed. We describe the two procedures below; the overall data and variable construction process is
summarized in Figure 2 in the main body of the manuscript.

Patents building on NIH-funded research: Direct linkages. We consider how many patents explicitly
build on NIH-funded research. Figure El illustrates the procedure with an example. In its first three years
of funding, the NIH grant CA-065823 was acknowledged by four publications, among which is the article
published by Thiesing et al. in the leading hematology journal Blood. We observe this link because grant
acknowledgements are reported for publications indexed in the National Library of Medicine’s PubMed
database. Next, the Thiesing et al. article is listed as prior art in patent number 7,125,875 issued in 2006 to
the pharmaceutical firm Bristol Myers Squibb.

Patents building on NIH-funded research: Indirect linkages. The second procedure links a patent
to a grant if this patent refers to a publication that is “intellectually similar” to a publication that does
acknowledge NIH funding. In other words, these linkages are indirect: from a grant, to a publication that
acknowledges it, to the publications that are proximate in intellectual space, to the patents that in turn cite
these related publications. The grant linked to patents in this way delineate the pool of research expenditures
that is intellectually relevant for the creation of these patents, even in the absence of a direct linkage between
the patent and the grant. Figure E2 illustrates this process. Patent number 6,894,051 was issued to Novartis
in May 2005, one of the five patents listed in the FDA Orange book as associated with the drug imatinib
mesylate, better known by its brand name, Gleevec. Patent 6,894,051 does not cite any publications which
are directly supported by the NIH so it would not be linked to an NIH DST under our citation-linkage
measure of innovative output. It does, however, cite PubMed publication 8548747, published in Cancer
Research in 1996. The PubMed Related Citation Algorithm [PMRA, see Appendix D] indicates that this
publication is closely related to PubMed article 9389713, which acknowledges funding from NIH grant CA-
0011422. Using these second procedure, we can link the vast majority of life-science patents to an NIH
disease-science area. In other words, most patents cite publications that are similar to publications that
acknowledge NIH funding.

Under the indirect procedure, the same patent can be linked to many distinct grants through the inclusion
of related publications. In our regressions, we adjust for this by weighting patents in the following way:
regardless of what outcome measure we use, if a patent is linked to N grants, it counts as 1/N of a patent in
each NIH research area. This means that a patent is restricted to being counted once across all NIH research
areas to which it is linked.

Aggregation from the individual grant-patent linkage up to the NIH research area level [DST].
The procedures outlined above describe how to link patents to specific NIH grants. However, we do not per-
form the econometric analysis at the grant level. Rather, we aggregate grants up to the disease/science/time
(DST) level, as explained in Section 3. Understanding the impact of NIH funding at the DST level offers
conceptual advantages apart from its econometric ones. Because DSTs are defined to be intellectually coher-
ent units in which knowledge generated by one projects is likely to benefit other projects, our estimate of the
impact of NIH funding on DST-level outcomes, then, captures the benefits of potential complementarities
between research in the same area. This would not be true of an analysis of grant-level funding on grant-level
patenting.
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Appendix F: Identification Robustness Checks

The fixed effect estimation strategy outlined in Section 3 identify the causal impact of NIH funding under
the assumption that NIH funding for a DST does not respond to changes in the specific innovative potential
of a disease/science area combination. In this Section, we present several tests to argue that this is not the
case.

One potential concern is that the NIH occasionally funds grant applications out of the order in which they
are scored. As discussed in Section 3.3 and Appendix B, peer review rules at the NIH make it difficult for
NIH’s component Institutes to direct resources to DSTs. ICs, however, do have the discretion to fund grant
applications as exceptions to the standard scoring rules; approximately four to five percent of grants are
funded in this way. While this usually occurs in response to the emergence of new data to strengthen the
application, grants are also sometimes funded out of order if they were evaluated in an exceptionally strong
committee and received a lower relative score than their absolute quality should indicate.Vii! This practice
has the potential of generating a correlation between DST funding and its unobserved potential.

We show that this possibility does not appear to affect our results using two different tests. If the component
Institutes do selectively fund grant applications from competitive, high-interest science areas out of order,
then we would expect that the amount of funding for DSTs that share the same scientific interests should
be correlated; that is, if the NCI (cancer) were allocating more money to genetics because of increased
potential in that area, then we should weakly expect the NIDDK (diabetes) to do the same. Similarly, if
Congress increased funding for all Institutes whose disease focus has a strong hereditary component, we
would also expect cancer-genetics and heart disease-genetics funding to be positively correlated. Table F1
examines the correlation between own-disease funding for a science area, Funding,,,, and funding for that
same science area from other diseases Funding_, ;. Column 1, which includes only year fixed effects, shows
a strong negative correlation between own and other funding. This, however, is likely due to the mechanical
relationship between the size of one’s own disease area in a given science area, and the size of other disease
areas. Column 2 controls for this confounder by introducing disease by science fixed effects; we find no
correlation between own and other disease funding. This is also true if we add disease by year fixed effects
as we do in Column 3. Column 3 includes the same set of controls as we use in estimating our main results.
Columns 4 through 6 repeat this exercise using the proportion of a disease area’s funding devoted to a
particular science area as the variable of interest. This asks: if the NCI begins spending a greater proportion
of its budget on genetics, does it appear that other disease areas do the same? Again, we find that this does
not, appear to be the case.

Another way to address the possibility that out-of-order scoring matters is to instrument for DST funding
using funding from grants that are not funded out of order. Ideally, we would add up requested funding
amounts for the top ranked applications, regardless of whether they were actually funded, but we do not have
data on funding requests for unfunded applications. Instead, we count funding amounts for the subset of
DST grants that are funded in order. Table F2 presents our findings using this alternative strategy. Columns
1 and 2 indicate that we have a strong first stage and, using this instrument, we find that an additional $10
million in ordered funding increases net patenting by 3.7, compared with 2.8 in our main OLS specification
and 2.9 in our preferred IV specification.™ The implied elasticities of all these estimates are similar.

Our next test checks the plausibility of the exclusion restriction for our instrument. Table F'3 tests alternative
first stages using past or future windfalls as an instrument. If windfall funding for a DST is correlated with
time-varying observed potential in that disease/science area after conditioning on the number of applications
around the payline and their raw scores and science ranks, then we might expect past or future windfalls
to still be predictive of current funding; excitement about targeted cancer therapies in the wake of Gleevec
might, for instance, drive funding for cancer/cell-signaling for several years. The results in Table F3 show,

Vil Aythors’ conversation with Stefano Bertuzzi, NIH Center for Scientific Review.
XNote that our original lucky funding instrument already purges funding dollars to out of order grants.
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however, that this is not the case. While current windfalls (Column 2) are strongly predictive of total DST
funding, past and future windfalls are not.

Figure F1 illustrates this point graphically. The first panel of Figure F1 plots past windfall funding on the z-
axis against current windfall funding on the y-axis and finds no evidence of a relationship. The second panel
does the same for current and future windfall funding. The final panel examines the relationship between
windfall funding and “non-windfall” funding, i.e. Funding,,, — Windfall Funding, . If windfall funding were
truly random, then it should not be correlated with the overall quality of the DST as given by the amount
of non-marginal funding it receives. Again, we find no relationship.

Finally, Table F4 tests whether, after controlling for our primary set of regressors, our instrument for funding
is correlated with any measures of lagged application quality or lagged patent output. Column 1 reports the
F-test of the joint significance of 10 year lags in the number of patents that acknowledge NIH funding from
a disease/science area, as well as the number of patents that cite publications supported by that area or
which cite publications related to those funded by that area. We also examine whether windfall funding is
correlated with lagged applicant scores or lagged windfall funding. Again, we fail to reject the null hypothesis
in all these cases.



FIGURE F1: CORRELATION BETWEEN WINDFALL DST FUNDING
AND OTHER DST FUNDING
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TABLE F1: RELATIONSHIP BETWEEN OWN DST FUNDING AND FUNDING BY
OTHER DISEASES FOR THE SAME SCIENCE AREA

DST Funding ($10 mln.) DST Funding/DT Funding
(1) (2) (3) (4) (5) (6)
DiSeamsesl,1 nSd;Irlnge, gciei’e -0.492 0.001 -0.004
(x$10 mln.) (0.022) (0.040) (0.043)
D’ST Funding/D’T
Funding, Other Diseases, 0.063 0.081 -0.040
Same Science (0.046) (0.081) (0.045)
Observations 14,085 14,085 14,085 14085 14085 14085
R’ 0.120 0.804 0.835 0.006 0.867 0.907
Year FEs Incl. Incl. Incl. Incl. Incl. Incl.
Disease x Science FEs Incl. Incl. Incl. Incl.
Disease x Year FEs Incl. Incl.

Note: Each cell is a study section/IC/year. DST/DT funding is the portion of an Institute’s funding that is allocated to the
study section associated with that DST. D’ST/D’T is the proportion of funding for all non-D areas that goes to the same
science area as that DST. Funding is defined by the sum of project-cycle allocations for all Type I and II grants reviewed by
that study section. See notes to Tables 1 and 2 for additional details about this sample.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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TABLE F2:

INSTRUMENTING DST FUNDING WITH FUNDING FOR GRANTS

FUNDED IN ORDER ONLY

First Stage

DST Funding

Citation Linked

Mean=14.70; SD=20.72

Total Related

Mean=28.3; SD=29.9

(x$10 mln.)
OLS v OLS I\Y
(1) (2) (3) (4) (5)
DST Funding, s DST Funding ($10
Grants in Order 0.713 mill) Mean=4.85; SD 2777 2.924%%% 3.986™** 4.1607%*
Only (x$10 mln.) 0.078) 591 (0.472) (0.542) (0.632) (0.703)
Elasticity 0.893 0.863 0.664 0.682
R’ 0.949 0.776 0.537 0.886 0.630
Observations 14,085 14,085 14,085 14,085 14,085

Note: The instrument is the total amount of funding for awarded DST grants that are funded in order of score (i.e., which are not
exceptions). For more details on this sample, see the notes to Tables 6. All specifications include disease-science FEs, disease-year
FEs, science by year linear time trends, and FEs for the number of applications to the DST.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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TABLE F3: ALTERNATIVE FIRST STAGES, PAST AND FUTURE WINDFALLS

Dependent variable: Total DST Funding

Past Windfall Current Windfall Future Windfall

(1) (2) (3)

0.127 1.115 0.120

Windfall Fundji
Htall Tundms (0.000) (0.227) (0.146)
R’ 0.950 0.949 0.950
Observations 9,326 14,085 9,326

Note: This table presents alternative first stages using past and future windfall funding. Current windfall funding is the total amount of
funding for awarded DST grants within 25 grants of an Institute specific award cutoff in the same year T. Future windfall is this same
amount, but defined for DS, T+1. Past windfall funding is similarly defined, for DS, T-1. Controls include disease-science and disease-
year fixed effects, linear science-year time trends, as well as fixed effects for the number of applicants to a DST, the number of
applicants within a 25-grant radius window around the IC payline, as well as cubics in the average raw and rank scores of applications
in the funding window.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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TABLE F4: CORRELATION BETWEEN WINDFALL FUNDING AND MEASURES OF
DST QUALITY

RHS includes 10 Years of Lags for: F-stat of Joint Significance
# of Patents Citing Research Acknowledging NIH Funding 0.871
# of Patents Citing Research Similar to NIH-Funded Research 0.651
Raw and Rank Scores 0.339

Note: Each observation is a disease/science/time (DST) combination. Each column reports a regression of our windfall
funding instrument on measures of DST input and output quality. We controls for the same set of variables as in our
most detailed specification in Tables 4 and 5. Column 1 reports an F-test for the joint significance of one to ten year
lags of past DST patent production: citation-linked and PMRA linked (20 variables).
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Appendix G: Alternative Specifications and Samples

Another set of specification checks describe alternative specifications and samples. Our main results rely
on linear fixed effects and IV models; this may be problematic because patenting outcomes tend to be very
skewed. Table G1 shows that our results hold in logs as well. Columns 1 and 2 rerun our main results for
our first outcome measure, the number of patents that cite research funded by that DST; Column 1 uses the
same set of controls as our main fixed effects estimates from Table 4 and Column 2 uses our IV controls.
On the subsample of DSTs with nonzero patenting under this measure (63% of our main DST sample), we
show that a one percent increase in DST funding increases patenting by between 0.8 and 0.9 percent. This
is similar, though slightly higher, to the elasticities we find in our main results. Columns 3 and 4 repeat this
exercise using our second outcome measure, the total number of related patents. Again, we find elasticities
between 0.8 and 0.9, which are slightly higher than in our main results.

Next, we restrict our sample to different Institutes (ICs). In our paper, we refer to Institutes as representing
diseases or body systems. In practice, however, not all ICs are organized in this way. The National Institute
on Aging, for instance, does not focus on diseases in the same way as the National Cancer Institute. Other
Institutes are even more difficult to think of as representing a disease or body system; the National Human
Genome Research Institute (NHGRI) focuses on science areas rather than on disease areas. The fact that
ICs do not always correspond to diseases does not impact the validity of our instrument, which relies only
on the fact that ICs span study sections and vice versa.

It does, however, raise the concern that the IC by year fixed effects in our specifications may not, for some
grants, be capturing changes in the innovative or commercial potential of their actual disease areas. For
example, if the NHGRI funds research on cancer genetics, the IC by year FE associated with this grant will
control for time varying potential in genetics, but not in cancer more generally. In Table G2, we restrict
our sample to ICs that are more closely affiliated with disease and body system areas. Columns 1 and 2
reproduce our main results; Columns 3 and 4 exclude three science-focused ICs (general medicine, genome
research, and biomedical imagine), and Columns 5 and 6 keep only ICs clearly associated with a disease or
body system.
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TABLE G1: LoG PATENTS-LOG FUNDING

PARAMETRIZATION

Log(# Citation Linked Patents)

Log(# Related Patents)

(1) (2) (3) (4)
sokok koK Fskok koK
Log(DST Funding) 0.817 0.888 0.893 0.854
(0.067) (0.049) (0.029) (0.029)
R’ 0.776 0.537 0.886 0.630
Observations 8,880 8,880 13,023 13,023
Full OLS Controls Incl. Incl.
Full IV Controls Incl. Incl.

Note: The dependent variable in Columns 1 and 2 is the log of citation-linked patents, with zeros treated as missing.
There are 14,085-8,880=5,205 DSTs that do not produce research ever cited by a patent. Full OLS controls are the
controls used in the most saturated specification of Tables 4 and 5 (see notes to those tables). Full IV controls are
those used in Table 6. Log(#Related Patents) is the log of the number of patents related by our second outcome
measure, using PMRA. There are 14,085-13,023=1,062 DSTs that do not produce resarch that is related to a patent

in our sample.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ¥***p < 0.01).
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Appendix H: “Core PMRA” Indirect Linking Strategy

Recall that our preferred outcome measure identifies all patents related to an NIH funding area, whether or
not these patents actually cite NIH-funded research. This allows us to account for a richer set of channels
through which NIH funding may impact private-sector patenting. “Related” patents may include patents
linked to NIH funding via a longer citation chain or patents by NIH-trained scientists who end up in the
private sector. Crucially, these related patents may also be the result of private sector investments in related
research areas; they need not be financially dependent on the NIH at all. Capturing the total number of
private sector patents in an intellectual area is important because it allows us to take into account the
possibility that NIH funding may crowd out private investments. If this were the case, then we would not
expect NIH funds to increase the total number of patents in a given research area: it would simply change
the funding source for those patents. The impact of NIH funding on total innovation in a research area
captures the net effect of potential crowd-in and crowd-out.

A potential drawback with this approach is that our definition of a DST’s “intellectual jurisdiction” can vary
over time. If funding allows a disease/science area to expand the set of topics that it supports, then we may
associate increased funding with more patents simply because higher levels of grant expenditures leads us to
credit DSTs with patents over a broader slice of technological space.

To ensure that our results are not driven by this phenomenon, it is important that the breadth of the
space over which we attempt to link patents with grants in a DST is exogenous to the amount of funding
a DST receives. One way to ensure this is true is to verify that this space is stable over time, within each
disease/science (DS) area.

Concretely, for each DS, across all years in the observation window, we list all the MeSH keywords tagging the
publications that directly acknowledge the grants in the DS. We then compute the frequency distribution of
keywords within each DS. To fix ideas, in the DS corresponding to the National Institute of General Medical
Sciences (NIGMS) and the Microbial Physiology II study section (MBC-2), the MeSH keyword DNA-Binding
proteins sits above the 80" percentile of the frequency distribution; E coli sits above the 95" percentile;
Structure-Activity Relationship sits above the 50" percentile; and Glucosephosphates lies below the
fifth percentile.

In the next step, we once again link each acknowledged article to the related articles identified by PMRA.
However, we can now track whether these related articles are themselves tagged by keywords that our
previous analysis has identified as “stable” within the DS—those keywords that are at the median or above
of the DS-specific MeSH keyword frequency distribution.* The last step is to identify the patents that cite
these indirectly linked articles, but we now restrict the citations to exist between patents and only the subset
of “stable” related articles. In so doing, we break the mechanical relationship that might exist between
funding and the number of indirectly linked patents.

We experimented with several alternative ways to characterize “stable” indirectly linked articles. We report
the results of specifications modeled after those used to generate the estimates in columns 4 and 5 of Table 6,
our benchmark set of results. We manipulate two characteristics of keywords to generate the four variations
of the strategy presented in the table below. First, for each article indexed by PubMed, some keywords are
designated as main keywords, in the sense that they pertain to the article’s central theme(s). We generate
the keyword frequency distributions using all keywords and only main keywords, separately.

Second, MeSH keywords are arrayed in a hierarchical tree with 13 levels, with keywords for each article
potentially sitting at any of these levels. Eighty percent of keywords that occur in PubMed belong to the
third level of the hierarchy or below. For each keyword below the third level, we climb up the MeSH hierarchy
to the third level to find its third-level ancestor (in the case of keywords that belong to multiple branches in
the tree, we pick the ancestor at random). We recompute the keyword frequency distribution at this coarser,

*In unreported results, we also experimented with a top quartile threshold, with little change to the results.
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but more homogeneous level. Combining these two characteristics (main vs. all keywords; any levels vs.
third level of the MeSH tree) provides us with four distinct keyword frequency distributions to identify the
set of stable, indirectly-linked articles. Each of these in turn correspond to a column in Table H1.

Two features of the results in this table deserve mention. First, the magnitudes of the coefficients are slightly
smaller than those observed in Table 6. This is to be expected, since our “stable” linking strategy shrinks
the number of opportunities to associate patents with DSTs. Second, the elasticities that correspond to the
estimates are comparable to those computed in Table 6. In fact, they are, if anything, a little larger.

In conclusion, the results corresponding to these alternative linking strategies bolster our claim that the
indirect linking strategy presented in the main body of the manuscript allows us to identify total private-
sector innovation in a DST in a way that is not mechanically related to the amount of funding this DST
receives.
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TABLE H1: EFreEcT OF NIH INVESTMENTS ON TOTAL RELATED
PRIVATE-SECTOR PATENTING, CORE RESEARCH AREA KEYWORDS ONLY

Main Keywords

All Keywords

Level Adjusted Raw Level Adjusted Raw
Mean=16.8; Mean=14.3; Mean=26.2; Mean=25.5;
SD=18.1 SD=15.9 SD=27.4 SD=26.8
(1) (2) (3) (4)

OLS
E?E)I?\Es;ﬁ(;jw 2.391%%% 2.200%%* 3,667+ 3.600%%*
g (0.359) (0.336) (0.575) (0.562)
Elasticity 0.672 0.726 0.661 0.666
v
DST Funding (<810, /oo su 2.309%** 3.943%%* 3.861%**
min.) Mean=4.72; 0.406 0.378 0.639 0.617
. (0.406) (0.575) (0.639) (0.617)
Elasticity 0.703 0.792 0.710 0.715
Observations 14,085 14,085 14,085 14,085

Note: The dependent variable is the number of patents in the same area as a given DST, but using only MeSH

keywords that are frequently associated with that disease/science area, across all years,to generate the list of articles
that are related to the articles acknowledged by the grants in the DST. If a patent cites a publication that directly
acknowledges an NIH grant, but which does not contain any keywords that have commonly been used in that DS,
then the linked patent is not counted, under this approach. The specification is patterned after Table 6, column 4
(for the OLS estimates) and Table 6, column 5 (for the 2SLS estimates). Columns 1 and 2 apply this method
counting only keywords that are designated as main keywords; Columns 3 and 4 do this for all keywords. Columns 1
and 3 match two different keywords if they share the same level 3 parent keyword in the National Library of

Medicine’s MeSH tree structure. Columns 2 and 4 do not.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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