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1 Introduction

Forward guidance has become an increasingly important tool of monetary policy in recent years.

Gurkaynak, Sack, and Swanson (2005) show that much of the surprise news about monetary policy

at the time of FOMC announcements arises from signals about the central bank’s intentions about

future monetary policy. In many cases, changes in the current Federal Funds rate are fully expected,

and all of the news about monetary policy has to do with how the central bank is expected to set

interest rates in the future.1

Promises about future interest rates have been shown to have a powerful effect on the economy in

standard monetary models. Eggertsson and Woodford (2003) show that a shock to the natural rate

of interest that causes the economy to hit the zero lower bound on nominal interest rates induces a

powerful deflationary spiral and a crippling recession. However, the recession can be entirely abated

if the central bank commits from the outset to holding interest rates at the zero lower bound for a

few additional quarters beyond what is justified by contemporaneous economic conditions.

Recent work argues that the magnitude of the effects of forward guidance in New Keynesian mod-

els stretches the limits of credibility. Carlstrom, Fuerst, and Paustian (2012) show that a promise by

the central bank to peg interest rates below the natural rate of interest for roughly two years gen-

erates explosive dynamics for inflation and output in a workhorse New Keynesian model (the Smets

and Wouters (2007) model).2 Del Negro, Giannoni, and Patterson (2013) refer to this phenomenon

as the forward guidance puzzle. Along the same lines, consider an experiment whereby the central

bank promises a 1 percentage point lower real interest rate for a single quarter at some point in the

future. We show that in the plain vanilla New Keynesian model, this promise has an eighteen times

greater impact on inflation when the promise pertains to interest rates 5 years in the future than

when it pertains to the current interest rate.

It may seem unintuitive that an interest rate cut far in the future has a greater effect than a

near-term one. To see why this arises in standard models, consider the response of consumption to

a decrease in the real interest rate for a single quarter 5 years in the future. The consumption Euler

equation dictates that consumption will rise immediately to a higher level and stay constant at that

1Campbell et al. (2012) reinforce these results using a longer sample period spanning the Great Recession.
2Carlstrom, Fuerst, and Paustian (2012) show that the responses of output and inflation experience a sign reversal

when the interest rate peg is extended from eight quarters to nine quarters in the Smets and Wouters (2007) model. We
interpret this as the model “blowing up” at this point, i.e., the monetary stimulus becomes so large that the response
of output and inflation is infinite.
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higher level for 5 years before returning to its normal level.3 The cumulative response of consumption

to the shock is therefore quite large and gets larger the further in the future the interest rate shocks

occurs. It is the cumulative response of consumption (with some discounting) that determines the

response of current inflation in the basic New Keynesian model. So, the further in the future is the

interest rate that the monetary authority announces it will change, the larger is the current response

of inflation. At the zero lower bound, this large effect on inflation will lower real rates and thus

create a powerful feedback loop on output.

But is it a realistic prediction of the standard model that agents increase their consumption by

the same amount in response to an interest rate change 5 years in the future as they do to a change

in the current interest rate? An individual who raises his consumption 5 years in advance of an

anticipated interest rate cut will need to run down his savings for 5 years. For many agents, this

is not feasible since it would entail hitting a borrowing constraint. More generally, as an agent’s

assets fall, the marginal value of wealth increases for precautionary reasons, raising the motive to

save. This precautionary savings effect counteracts the intertemporal substitution motive to dissave

in anticipation of the low interest rate. As the low interest rate is further in the future, the change

in assets needed to take full advantage of intertemporal substitution grows and the precautionary

savings effect therefore grows stronger, tempering the effects of forward guidance.

To investigate the quantitative magnitude of these effects, we consider a general equilibrium

model in which agents face uninsurable, idiosyncratic income risk and borrowing constraints. In this

model, the effect of forward guidance about future interest rates on current output falls the further

out in the future the interest rate change is. For forward guidance about the interest rate 5 years

in the future, the effect on output and inflation is roughly 40% as large as in the standard model.

For forward guidance about the interest rate 10 years in the future, the effect on current output is

essentially zero.

Our results indicate that forward guidance is a much less effective policy tool at the zero lower

bound in a model with a realistic degree of precautionary savings than it is in standard macro models.

We consider a shock that lowers the natural rate of interest enough that the zero lower bound binds

3The response is a step function because consumption growth only deviates from normal when the real interest rate
deviates from normal and this only occurs in the single quarter that the forward guidance pertains to. Another way to
see this is that the the forward guidance does not change the relative price of consumption for any two dates before the
date of the interest rate change. All these dates must therefore have the same level of consumption. The end-point of
consumption is pinned down at the old steady state by the fact that monetary shocks have no effect on real outcomes
in the long run.
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for 5 years and the initial fall in output is -4% in the absence of forward guidance. If we assume

markets are complete (and precautionary savings thus absent), a policy of maintaining interest rates

at zero for a little more than three quarters beyond what a strict inflation targeting central bank

would do completely eliminates the fall in output. In contrast, in our incomplete markets model

with idiosynctratic risk and borrowing constraints, the effect of this amount of forward guidance is

substantially smaller and a significant recession remains.

Returning to the intuition for the forward guidance puzzle, an key reason why the puzzle occurs

is that the sensitivity of current output to far future interest rates is the same as the sensitivity

to current interest rates. The important property of our incomplete markets model that reduces

the effects of far future forward guidance is that this is no longer the case. We show that the

responsiveness of output in the incomplete markets model can be approximated by a consumption

Euler equation with “discounting.”4 Furthermore, we show that this “discounted Euler equation”

can be micro-founded with a simplified version of our incomplete markets model. This formulation

has the advantage of being highly tractable, and easy to incorporate into the DSGE models used for

policy analysis at central banks around the world.

We use the “discounted Euler equation model” to revisit the question of how severe are the effects

of shocks that lead the zero lower bound (ZLB) to bind. We show that a patience shock of the type

often assumed to cause the ZLB to bind that generates a large depression (-14% output and -10%

inflation effect) in the plain vanilla New Keynesian model yields a much smaller recession in our

model (-3% output and -2% inflation). It is well known that shocks like these can lead the economy

into a “deflationary death spiral” (i.e., log output and inflation go to negative infinity) if they are

persistent enough. In the plain vanilla New Keynesian model, the deflationary death spiral occurs

even for shocks that are expected to last only roughly 3 years on average. In our discounted Euler

equation model, however, the deflationary death spiral occurs only for shocks that are considerably

more persistent.

An alternative simple adjustment to the standard model would be to assume that a fraction of

agents are hand-to-mouth. This also reduces the sensitivity of aggregate output to interest rates.

However, it reduces the sensitivity of output to interest rates by the same amount at all horizons—in

this respect, it is equivalent to reducing the intertemporal elasticity of substitution. Adding hand-

4Interestingly, such a formulation of the consumption Euler equation has actually been used in policy calculations
by the Central Bank of Norway, to combat the forward guidance puzzle. We thank Oistein Roisland for pointing this
out to us.
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to-mouth agents does not alter the prediction that an interest rate change 5 years in the future has

an eighteen times larger effect on current output as an equally large contemporaneous interest rate

increase. Our incomplete markets model and the discounted Euler equation model reduce the effect

of far future interest rates relative interest rate changes closer to the present.

Our work builds on recent papers that incorporate market incompleteness and idiosyncratic

uncertainty into New Keynesian models starting with Guerrieri and Lorenzoni (2011) and Oh and

Reis (2012). The papers closest in spirit to ours are McKay and Reis (2014) who investigate the power

of automatic stabilizers at the zero lower bound and Gornemann, Kuester, and Nakajima (2014) who

investigate the distributional implications of monetary policy shocks. Several other recent papers

suggest “solutions” to the forward guidance puzzle. Del Negro, Giannoni, and Patterson (2013)

argue that the experiment that gives rise to the puzzle is, itself, unreasonable. They argue that it is

unreasonable to assume that the central bank really can engender substantial changes in long-term

interest rates, which are at the core of why the forward guidance puzzle arises. Carlstrom, Fuerst,

and Paustian (2012) and Kiley (2014) show that the magnitude of the forward guidance puzzle is

substantially reduced in a sticky information (as opposed to a sticky price) model. Caballero and

Farhi (2014) argue that forward guidance is less effective if the reason why the zero lower bound

binds is a shortage of safe assets in the economy—a safety trap—as opposed to a deleveraging or

patience shock.

The paper proceeds as follows. Section 2 explains why forward guidance is so powerful in standard

New Keynesian models. Section 3 presents our incomplete markets model featuring uninsurable

idiosyncratic income risk and borrowing constraints. Section 4 describes our results about the reduced

power of forward guidance in our incomplete markets model relative to the standard complete markets

models. Section 5 show how the behavior of the incomplete markets model can be approximated by

a model with discounting in the consumption Euler equation. Section 6 concludes.

2 Why Is Forward Guidance So Powerful?

It is useful to start with an explanation for why forward guidance is so powerful in standard monetary

models. Consider the basic New Keynesian model as developed, e.g., in Woodford (2003) and Gali

(2008). The implications of private sector behavior for output and inflation in this model can be
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described up to a linear approximation by an intertemporal “IS” equation of the form

xt = Etxt+1 − σ(it − Etπt+1 − rnt ), (1)

and a Phillips curve of the form

πt = βEtπt+1 + κxt. (2)

Here, xt denotes the output gap—i.e., the percentage difference between actual output and the

natural rate of output that would prevail if prices are fully flexible—πt denotes inflation, it denotes

the nominal, short-term, risk-free interest rate, rnt denotes the natural real rate of interest—i.e.,

the real interest rate that would prevail if prices were fully flexible—σ denotes the intertemporal

elasticity of substitution, β denotes the subjective discount factor of households, and κ is the slope

of the Phillips curve which is determined by the degree of nominal and real rigidities in the economy.

All variables are denoted as percentage deviations from their steady state values.

Suppose for simplicity that the monetary policy of the central bank is given by an exogenous rule

for the real interest rate where the real interest rate tracks the natural real rate with some error:

rt = it − Etπt+1 = rnt + εt,t−j , where εt,t−j denotes the shock to the short term real rate in period

t that becomes known in period t − j.5 Absent any monetary shocks, the real interest rate will

perfectly track the natural real rate and both the output gap and inflation will be zero. Suppose

we start in such a state, but then the monetary authority announces that the real interest rate will

be lower by 1% for a single quarter 5 years in the future, but maintained at the natural real rate of

interest in all other quarters (i.e., εt+20,t = −0.01).

To see how this forward guidance announcement affects the output gap, it is useful to solve the

intertemporal IS equation forward to get

xt = −σ
∞∑
j=0

Et(it+j − Et+jπt+j+1 − rnt+j). (3)

Notice, that there is no discounting in the sum on the right hand side of this equation. This implies

that the output gap will rise immediately by 1% (if we assume for simplicity that σ = 1) and will

stay at that higher level for the next five years and then fall back to zero all at once when the low

5Given this specification of monetary policy, the model has a unique solution for which limj→∞Etxt+j = 0 and
inflation is bounded. We could alternatively assume that the monetary authority sets the nominal rate according to
the following rule it = rnt + φπt + ε̃t,t−j and φ > 1. In this case, the model has a unique bounded solution (without
the additional restriction that limj→∞Etxt+j = 0) and there exists a path for ε̃t,t−j that gives the same solution as
the model with monetary policy given by the exogenous path for the real rate we assume. We prefer to describe the
monetary policy as an exogenous rule for the real interest rate because this simplifies our exposition substantially.
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interest rate period passes. The same is true of forward guidance for any other horizon.6 So, the

further out in the future the forward guidance is, the larger is the cumulative response of output.

To see how the announcement affects inflation, it is useful to solve the Phillips curve forward to

get

πt = κ
∞∑
j=0

βjEtxt+j . (4)

This shows that it is the entire cumulative response of the output gap (albeit with some discounting)

that determines the current response of inflation to forward guidance. The further in the future

is the interest rate that the monetary authority announces it will change, the larger is the current

response of inflation. While the response of inflation to a 1% change in the current real rate is κσ,

the response of inflation to a 1% change in the real rate for one quarter in the infinite future is

κσ/(1− β). If β = 0.99, the current response of inflation to forward guidance about a single quarter

in the infinite future is 100 times larger than the response of inflation to an equally large change

in the current real interest rate. Figure 1 plots the response of inflation to forward guidance about

interest rates at different horizons relative to the response of inflation to an equally large change

in the current real interest rate. We see that the response of inflation to forward guidance about

interest rates five years in the future is roughly 18 times larger than the response of inflation to an

equally sized change in the current real interest rate.

To build intuition, we have assumed that there is no endogenous feedback from changes in output

and inflation back onto real interest rates. Actual monetary policies are more complicated. In normal

times, forward guidance about lower real interest rates in the future may be partly undone by higher

real interest rates in the intervening period. On the other hand, when monetary policy is constrained

by the zero lower bound on short-term nominal interest rates, the higher inflation associated with

forward guidance about future interest rates will actually lower current real interest rates and this will

in turn raise current output and inflation further. In this case, the outsized effects of forward guidance

we describe above will be further reinforced by subsequent endogenous interest rate movements.

6Here it is also important that after the interest rate shock passes, the output gap will go back to zero. In other
words, the monetary shock has no effect on output in the long run. This is what pins down the level of the output gap.
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Figure 1: Response of current inflation to forward guidance about interest rates at different horizons

relative to response to equally large change in current real interest rate.

3 An Incomplete Markets Model with Nominal Rigidities

Section 2 shows that the huge power of far future forward guidance in standard monetary models

depends crucially on the prediction of the model that the current response of output to an expected

change in real interest rates in the far future (say 20 years in the future) is equally large as the

response of output to a change in the current real interest rate. But is this realistic? Increasing

consumption today by 1% in anticipation of a 1% change in real interest rates 20 years from today

would entail a large run down of assets over the 20 years until the interest rate changes. Agents that

face uninsurable idiosyncratic income risk and borrowing constraints will trade off the benefits of

intertemporal substitution and the costs in terms of reduced ability to smooth consumption over time

of having lower buffer stock savings. To analyze this trade-off we develop a model with uninsurable

idiosyncratic shocks to household productivity, borrowing constraints, and nominal rigidities.
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3.1 The Environment

The economy is populated by a unit continuum of ex ante identical households with preferences given

by

E0

∞∑
t=0

βt

[
c1−γh,t

1− γ
−

`1+ψh,t

1 + ψ

]
,

where ch,t is consumption of household h at time t and `h,t is labor supply of household h at time t.

Households are endowed with stochastic idiosyncratic productivity zh,t that generates pre-tax labor

income Wtzh,t`h,t, where Wt is the aggregate real wage. Each household’s productivity zh,t follows a

Markov chain with transition probabilities Pr(zh,t+1|zh,t). We assume that the initial cross-sectional

distribution of idiosyncratic productivities is equal to the ergodic distribution of this Markov chain.

As the the Markov chain transition matrix is constant over time, it follows that the cross-sectional

distribution of productivities is constant. We use Γz(z) to denote this distribution.

In this economy, a final good is produced from intermediate inputs according to the production

function

Yt =

(∫ 1

0
y
1/µ
j,t dj

)µ
,

where Yt denotes the quantity of the final good produced at time t and yj,t denotes the quantity of

the intermediate good produced by firm j in period t. The intermediate goods are produced using

labor as an input according to the production function

yj,t = nj,t,

where nj,t denotes the amount of labor hired by firm j in period t.

The market structure of this model economy combines elements that are familiar from the stan-

dard New Keynesian model with elements that are familiar from the standard incomplete markets

model (Bewley, undated; Huggett, 1993; Aiyagari, 1994). While the final good is produced by a rep-

resentative competitive firm, the intermediate goods are produced by monopolistically competitive

firms. The intermediate goods firms face frictions in adjusting their prices that imply that they can

only update their prices with probability θ per period as in Calvo (1983). These firms are controlled

by a risk-neutral manager who discounts future profits at rate β. Whatever profits are produced are

paid out immediately to the households with each household receiving an equal share Dt. Households

cannot trade their stakes in the firms.

Households trade a risk-free real bond with real interest rt between periods t and t+ 1. Borrow-

ing constraints prevent these households from taking negative bond positions. There is a stock of
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government debt outstanding with real face value B. The government raises tax revenue to finance

interest payments on this debt. These taxes are collected by taxing households according to their

labor productivity zh,t. Let τtτ̄(zh,t) be the tax paid by a household h in period t. By levying the

taxes on labor productivity, which is exogenous, the tax does not distort household decisions in the

same way that a lump-sum tax does not. At the same time, the dependence of the tax on zh,t allows

us to manipulate the cross-sectional correlation of tax payments and earnings.

We assume that the government runs a balanced budget so as to maintain a stable level of debt

in each period. The government budget constraint is

B

1 + rt
+
∑
z

Γz(z)τtτ̄(z) = B. (5)

To illustrate our main results about the power of forward guidance, we will consider several mon-

etary policy experiments involving somewhat different specifications of monetary policy. These are

described in Section 4. The relationship between the real interest rate, the nominal interest rate it,

and inflation πt is given by the Fisher relation in the usual way

1 + rt =
1 + it

1 + πt+1
(6)

where πt+1 ≡ Pt+1/Pt − 1 and Pt is the aggregate price level.

3.2 Decision Problems

The decision problem faced by the households in the economy is

Vt(bh,t, zh,t) = max
ch,t,bh,t+1,`h,t

 c1−γh,t

1− γ
−

`1+ψh,t

1 + ψ
+ β

∑
zh,t+1

Pr(zh,t+1|zh,t)Vt+1(bh,t+1, zh,t+1)


subject to

ch,t +
bh,t+1

1 + rt
= bh,t +Wtzh,t`h,t − τtτ̄(zh,t) +Dt

bh,t+1 ≥ 0.

Let ct(b, z) be the decision rule for ch,t, gt(b, z) be the decision rule for household bond holdings

bh,t+1, and `t(b, z) be the decision rule for `h,t. These policy rules vary over time in response to

aggregate events that affect current or future prices, taxes, or dividends.

The final goods producer’s cost minimization problem implies that

yj,t =

(
pj,t
Pt

)µ/(1−µ)
Yt, (7)
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where pj,t is the price changed by firm j in period t and the aggregate price index is given by

Pt =

(∫ 1

0
p
1/(1−µ)
j,t dj

)1−µ

.

When an intermediate goods producer updates its price it solves

max
p∗t ,{yj,s,nj,s}∞s=t

∞∑
s=t

βt(1− θ)t
(
p∗t
Ps
yj,s −Wsnj,s

)
subject to

yj,s =

(
p∗t
Ps

)µ/(1−µ)
Ys,

yj,s = nj,s,

where p∗t is the price set by firms who are able to update their price at date t.

The solution to this problem satisfies

p∗t
Pt

=

∑∞
s=t β

s−t(1− θ)s−t
(
Pt
Ps

)µ/(1−µ)
YsµWs∑∞

s=t β
s−t(1− θ)s−t

(
Pt
Ps

)1/(1−µ)
Ys

. (8)

3.3 Equilibrium

Let Γt(b, z) be the distribution of households over idiosyncratic states at date t. This distribution

evolves according to

Γt+1(B, z′) =

∫
{(b,z):gt(b,z)∈B}

Pr(z′|z)dΓt(b, z) (9)

for all sets B ⊂ R.

As a result of nominal rigidities, price dispersion will result in some loss of efficiency. Integrating

both sides of (7) across firms and using yj,t = nj,t yields an aggregate production function

StYt =

∫
nj,tdj ≡ Nt, (10)

where Nt is aggregate labor demand and St ≡
∫ 1
0

(
pj,t
Pt

)µ/(1−µ)
dj reflects the efficiency loss due to

price dispersion. St evolves according to

St+1 = (1− θ)St (1 + πt+1)
−µ/(1−µ) + θ

(
p∗t+1

Pt+1

)µ/(1−µ)
. (11)
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Inflation can be written as a function of the relative price selected by firms that update their prices

1 + πt =

 1− θ

1− θ
(
p∗t
Pt

)1/(1−µ)


1−µ

. (12)

Aggregate labor supply is given by

Lt ≡
∫
z`t(b, z)dΓ(b, z). (13)

and labor market clearing requires

Lt = Nt. (14)

Bond market clearing requires

B =

∫
gt(b, z)dΓt(b, z). (15)

The aggregate dividend paid by the intermediate goods firms is

Dt = Yt −WtNt. (16)

Finally, integrating across the household budget constraints and using the government budget con-

straint and equation (16) gives

Ct = Yt (17)

as the aggregate resource constraint, where Ct ≡
∫
ct(b, z)dΓt(b, z).

An equilibrium of this economy consists of decision rules and value functions {gt(b, z), `t(b, z),

Vt(b, z)}∞t=0 that solve the household’s problem, distributions {Γt(b, z)}∞t=0 that evolve according to

(9). In addition, an equilibrium involves sequences {Ct, Lt, Nt, Yt, Dt, it, Wt, πt, rt, p
∗
t /Pt, St, τt}∞t=0,

that satisfy the definitions of Ct and Lt and equations (5), (6), (8), (10), (11), (12), (14), (16), (17),

and a monetary policy rule as described in section 4.

The main difference between this model and the model discussed in section 2 is the fact that

markets are incomplete. If we modified this model to have complete markets and then linearized the

equilibrium conditions, we would get the model in section 2. The introduction of incomplete markets

yields a role for precautionary savings and it implies that redistribution of wealth across agents can

affect the evolution of aggregate output. The fact that the present model is not linearized also implies

that price dispersion affects equilibrium outcomes. Our main results regarding the reduced power of

forward guidance stem from the precautionary savings motive.
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Table 1: Baseline calibration

Parameter Description Value Target

β discount factor 0.986 2% annual interest rate

γ risk aversion 2

1/ψ Frisch elasticity 1/2 Chetty (2012)

B supply of assets 1.4 × annual GDP aggregate liquid assets (see text)

µ markup 1.2 Christiano, Eichenbaum, and Rebelo (2011)

θ price revision rate 0.15 Christiano, Eichenbaum, and Rebelo (2011)

3.4 Calibration

Our model period is one quarter and our calibration is summarized in Table 1. We fix the steady

state real interest rate at 2% annually and adjust the discount factor to match this.7 We set the

coefficient of risk aversion to 2. We set the Frisch elasticity of labor supply to 1/2, which is in line

with the findings of Chetty (2012). In our baseline calibration we set the supply of government

bonds, B, to match the ratio of aggregate liquid assets to GDP. We calculate liquid assets from

aggregate household balance sheets reported in the Flow of Funds Accounts and take the average

ratio over the period 1970 to 2013.8 Our choice to calibrate the aggregate supply of assets to match

liquid assets is motivated by the view that much of household net worth is illiquid and therefore not

easily used for consumption smoothing and intertemporal substitution.9 In a sensitivity analysis we

also consider a calibration in which we match aggregate household net worth, which we also calculate

from the Flow of Funds Accounts (described below).

For our choices of the desired markup of intermediate firms, µ, and probability of maintaining a

fixed price, θ, we follow Christiano, Eichenbaum, and Rebelo (2011) and set µ = 1.2 and θ = 0.15.

The implied degree of price stickiness is on high side of values used in the business cycle literature.

7We use the term “steady state” to refer to the stationary equilibrium in which aggregate quantities and prices are
constant and inflation is zero.

8We use the same definition of liquid assets as Guerrieri and Lorenzoni (2011). Flow of Funds Table B.100 Lines
10 (deposits), 17 (treasury securities), 18 (agency and GSE securities), 19 (municipal securities), 20 (corporate and
foreign bonds), 24 (corporate equities), 25 (mutual fund shares).

9Kaplan and Violante (2014) present a lifecycle savings model with liquid and illiquid assets and show that the
illiquidity of household net worth leads to stronger and more realistic consumption responses to transitory income
fluctuations.
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This tends to reduce the size of the effects we find on inflation since it makes inflation less sensitive

to changes in current marginal costs. In the exercises we do where the zero lower bound on nominal

interest rates binds, this also tends to reduce the size of the effects on output since the smaller effects

on inflation translate into smaller effects on real interest rates (Werning, 2012).

We calibrate the idiosyncratic wage risk to the persistent component of the estimated wage

process in Floden and Lindé (2001).10 The estimates of Floden and Lindé are for an AR(1) with

annual observations of log residual wages after the effects of age, education, and occupation have been

removed. Floden and Lindé find an autoregressive coefficient of 0.9136 and an innovation variance

of 0.0426. We convert these estimates to parameters of a quarterly AR(1) process for log wages by

simulating the quarterly process and aggregating to annual observations. We find the parameters of

the quarterly process such that estimating an AR(1) on the simulated annual data reproduces the

Floden and Lindé estimates, which results in an autoregressive coefficient of 0.966 and an innovation

variance of 0.017. We discretize the resulting AR(1) process for log wages to a three-point Markov

chain using the Rouwenhorst (1995) method.11

Finally, to capture the fact that the bulk of tax payments are made by those with high earnings

we set τ̄(z) to be positive only for the highest z. Since households are hetergeneous in the incom-

plete markets model, their MPCs differ widely. Households with little wealth have high MPCs, while

households with a great deal of wealth have much lower MPCs. As a consequence, wealth redistri-

bution matters for aggregate consumption dynamics. For example, a reallocation of income from

high to low net worth households leads to higher consumption demand, all else equal. One way in

which this shows up in our model is that the government levies taxes to finance interest payments on

debt. A fall in interest rates, therefore, may lead to a redistribution of wealth due to variation across

households in holdings of government debt as well as tax obligations. Our (realistic) assumption that

taxes are paid mostly by the rich leads these tax effects to be relatively small.

3.5 Alternative Calibrations

Our baseline calibration potentially implies too little volatility in household earnings. Guvenen,

Ozkan, and Song (2014) report the standard deviation of the distribution of five-year earnings growth

10While it is common to include a transitory income shock in empirical models of wage dynamics we do not include
such transitory shocks in our analysis because their impact on the quantitative results will be small as these shocks are
easily smoothed be virtue of being transitory.

11Kopecky and Suen (2010) prove that the Rouwenhorst method can match the conditional and unconditional mean
and variance, and the first-order autocorrelation of any stationary AR(1) process.
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rates to be 0.73.12 Our model calibrated as described above implies this standard deviation is only

0.53.

We therefore consider an alternative calibration in which we raise the variance of the productivity

shocks in the model so that our model matches this moment of the five-year earnings growth rate

distribution. Doing so requires raising the variance of the idiosyncratic productivity innovation from

0.017 to 0.033. With more risk, the larger precautionary savings motive raises the total demand

for assets by households. In this calibration we, thus, reduce the discount factor so that the model

is again consistent with the total supply of assets and a 2% annual interest rate. This requires a

discount factor of 0.978. We refer to this as the High Risk calibration.

We also explore the extent to which our results depend on the average level of assets in the

economy. With more assets, households will generally have more self-insurance and therefore will be

less concerned with running down their assets. To explore this possibility we consider an alternative

calibration in which we raise the supply of government debt, B, so that the average wealth in the

economy is equal to the aggregate net worth of the household sector from the Flow of Funds, including

both liquid and illiquid wealth.13 This yields a ratio of assets to annual GDP of 3.79. With a larger

supply of assets, bond market clearing requires that households are more patient so as to increase

the demand for assets at a given interest rate. In this calibration, we set the discount factor to 0.992

to be able to match a 2% annual interest rate. We refer to this as the High Asset calibration.

Finally we consider a case where we increase both the supply of assets and the extent of risk that

households face. In this case we match a ratio of assets to GDP of 3.79 and the standard deviation

of five-year earnings growth rates of 0.73. The discount factor needed to match a 2% annual interest

rate is 0.990. We refer to this as the High Risk and Asset calibration.

3.6 Computation

In Section 4, we compute the perfect foresight transition paths of the economy in response to mone-

tary policy and demand shocks. We assume that the economy begins in the steady state and returns

to steady state after 250 quarters. We begin by guessing paths for all aggregate quantities and

prices. We can then verify whether this guess is an equilibrium by checking that the definition of an

equilibrium given above is satisfied. Part of this step involves solving and simulating the households

12This value is the average across years of the values reported in Table A8 of Guvenen, Ozkan, and Song (2014).
13Here we use the ratio of household net worth to GDP averaged over 1970 to 2013. Household net worth is taken

from Table B.100 Line 42.
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problem at the guessed prices. We solve the household’s problem by iterating on the Euler equa-

tion backwards through time using the endogenous gridpoint method of Carroll (2006) to compute

the policy rules for each period of the transition. We then simulate the population of households

forwards through time using a non-stochastic simulation algorithm to compute the distribution of

wealth at each date. We can then compute aggregate consumption, labor supply, and bond holdings

using the policy rules and distribution of wealth for each date. If our guess is not an equilibrium we

update it to a new guess that is closer to an equilibrium. We generate the new guess of prices and

aggregate quantities by making use of an auxiliary model that approximates the aggregate behavior

of the incomplete markets households and then solving for an equilibrium under this approximating

model. We perform this step using a version of Newton’s method. We provide additional details of

the computational methods in Appendix A.

4 Results

Our main result is that the power of forward guidance is substantially muted in the incomplete

markets model we present in Section 3 relative to the standard complete-markets New Keynesian

model. To illustrate this, we first consider a simple policy experiment: suppose the central bank

promises a 50 basis point (i.e., 2% annualized) decrease in the real interest rate for a single quarter

5 years in the future.14

Figure 2 plots the response of output to this shock in our incomplete markets model and, for

comparison, in the complete markets version of this model. With complete markets, output immedi-

ately jumps up by 25bp and remains at that elevated level for 20 quarters before returning to steady

state. In contrast, in the incomplete markets model the initial increase in output is only about 40%

as large. Output then gradually rises as the interest rate decrease gets closer. But even in the period

right before the interest rate increase, the increase in output is substantially smaller than under

complete markets.

Figure 3 plots the response of inflation to this same shock. The five year output boom induced

by the forward guidance about real interest rates leads to a large inflation response in the complete

markets case. Since the output boom is much smaller in the incomplete markets model, the rise in

inflation is also much smaller. The initial response of inflation in the incomplete markets model is

14As in Section 2, we assume here that the monetary authority sets an exogenous path for the real interest rate.
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Figure 2: Response of output to 50 basis point forward guidance about the real interest rate in

quarter 20 (with real interest rates in all other quarters unchanged).

again only about 40% as large as in the complete markets model.

4.1 Intuition

To build intuition for why the effects of forward guidance are greatly reduced in the incomplete

markets model, it is useful to start by considering the response of a single household in partial

equilibrium. Figure 4 plots the partial equilibrium response of consumption and assets for a household

with median productivity and wealth. For comparison, Figure 4 also plots the responses of these

variables for a household with this same amount of wealth in a model with complete markets.15

As in Figure 2, the response of consumption under complete markets is to jump up immediately

and remain high for 5 years. The shape of the response under complete markets is the same whether

the interest rate shock is expected to occur 1 quarter or 40 quarters in the future. The reason

the response has this shape is that the interest rate change alters the price of consumption before

the change relative to the price of consumption after the change, but does not alter the relative

price of consumption between two dates before the change or between two dates after the change.

15Specifically, the household being plotted is a household with median productivity and median wealth among
households with median productivity in the incomplete markets model. The consumption and asset responses plotted
are the percentage change in the evolution of these variables relative to what they would be without the shock to interest
rates. We assume a realization of idiosyncratic productivity that leaves the household’s productivity unchanged.
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Figure 3: Response of inflation to 50 basis point forward guidance about the real interest rate in

quarter 20 (with real interest rates in all other quarters unchanged).
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Under complete markets, consumption at all dates before the change must therefore be equal, and

consumption at all dates after the change must also be equal. The result is a step function.

Why doesn’t the incomplete markets household respond in the same way? Figure 4 shows that

the complete markets response requires a substantial run-down in assets. This poses no concern

for the complete markets household (since it is fully insured against all shocks). In contrast, the

incomplete markets household needs to maintain a buffer stock of assets to help insulate itself from

future shocks. Were the incomplete markets household to run-down its assets the way the complete

markets household does, it would face permanently higher consumption volatility going forward due

its reduced buffer-stock savings. This precautionary motive leads the incomplete markets household

to choose a more conservative consumption path.

In general equilibrium, households can’t all run down their wealth. The increase in demand

resulting from the desire to increase consumption instead results in an increase in aggregate income.

This implies that if all other households responded in the way the complete markets households do,

income would rise enough that a given household could do the same without having to run down its

wealth. However, even if all other households did respond in this way, it is not optimal for a given

household faced with incomplete markets to do the same, since it would instead want to spend a

fraction of its increased income on further building up its precautionary savings. Since all households

think this way, they all demand less than they would under complete markets which reduces their

incomes and further reduces their demand. The result is a substantial reduction in the response

of consumption (and output) to the interest rate shock. It is this trade-off between precautionary

savings and intertemporal substitution that reduces the power of forward guidance in our model.

4.2 Dependence on Horizon of Forward Guidance

The difference between the complete and incomplete markets models grows with the horizon of the

interest rate shock. Figure 5 plots the initial response of output to 50 basis point forward guidance

about the real interest rate in a single quarter as the horizon of that single quarter changes from

zero to 40 quarters.16

In the complete markets model, output always rises by 25 basis points, regardless of the horizon

of the forward guidance. In contrast, in the incomplete markets model, the effect is only about 20

16For example, the points at horizon 20 in Figure 5 are the first points on each line in Figure 2. And the points at
horizon 10 in Figure 5 are the initial response of output in the two models if the central bank announces that it will
lower the real interest rate by 50 basis points for a single quarter 10 quarters in the future.
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Figure 5: Initial response of output to 50 basis point forward guidance about the real interest rate

for a single quarter at different horizons.

basis points for an announcement about the real interest rate next quarter and falls monotonically

thereafter. It is roughly 10 basis points for an announcement about the real interest rate 5 years

ahead; and essentially zero for an announcement about the real interest rate 10 years ahead.

Intuitively, the response of consumption is governed by two forces: an intertemporal substitution

motive (as in the complete markets case) and a precautionary savings motive. For far-future interest

rate changes, the run-down in assets needed to reap the benefits of intertemporal substitution are

very large. This implies that eventually the benefits from intertemporal substitution are simply

too small to make it worth it for households to incur the costs associated with running down their

buffer-stock savings.

The results for inflation are even starker. Figure 6 plots the initial response of inflation to forward

guidance about the real interest rate at different horizons. In the complete markets model, the

response of inflation rises explosively with the horizon of the forward guidance. Above 20 quarters,

the model “explodes”: the inflation response grows so quickly that we can no longer compute it

numerically. In the incomplete markets model, in contrast, the inflation response is smaller to start

out with, grows more slowly, and therefore generates very different results at long horizons.
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Figure 6: Initial response of inflation to 50 basis point forward guidance about the real interest rate

for a single quarter at different horizons.

4.3 Results for Alternative Calibrations

Table 2 presents the results of the forward guidance experiment described above for our baseline

incomplete markets model as well as for several alternative calibrations of our incomplete markets

model. We also present the results for the the complete markets version of our model, for comparison.

In each case, we present the initial response of output and inflation to 50 basis point forward guidance

about the real interest rate for a single quarter 5 years in the future.

The High Risk calibration features greater uninsurable risk than our baseline calibration. We

roughly double the volatility of idiosyncratic productivity shocks relative to our baseline calibration,

allowing us to match recent evidence on the volatility of earnings growth from Guvenen, Ozkan, and

Song (2014). This boosts the precautionary savings motive and further reduces the power of forward

guidance relative to the complete markets benchmark. The response of output in this case is only

about 20% of the complete markets benchmark and the response of inflation only about 32% of the

complete markets benchmark.

In the High Asset calibration, we set the ratio of assets to GDP in the model to be almost three

times higher than in our baseline calibration (3.79 versus 1.4). We do this to match the ratio of total

net worth in the economy to GDP (as opposed to total liquid assets as in our baseline calibration).
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Table 2: Power of 20 Quarter Ahead Forward Guidance

Initial Responses of

Output Inflation

Baseline 10.3 29.8

High Risk 4.8 23.8

High Asset 14.5 36.2

High Risk and Asset 11.6 33.8

Complete Markets 25.0 74.3

Initial response of output and inflation (in bases points) to forward guid-
ance that reduces the expected real interest rate 20 quarters ahead by 50
basis point for four different calibrations of our incomplete markets model.

Increasing the quantity of available assets in the economy increases the size of the precautionary

savings buffers available to households and thus reduces their reluctance to engage in intertemporal

substitution. This change therefore moves the incomplete markets model closer to the complete

markets benchmark. The output response rises to 58% of the complete markets benchmark, while

the inflation effect rises to 49%.

Finally, we consider a High Risk and Asset calibration with both of the above-mentioned alter-

native parameter values. These two modifications largely offset each other. As a consequence, the

results lie between the two calibrations described above and close to the baseline calibration. The

response of output in this calibration is 46% of the complete markets benchmark, while the response

of inflation is 45% of the complete markets benchmark.

An alternative way of calibrating the model would be to choose parameters to fit empirical

estimates of the marginal propensity to consume (MPC) out of additional wealth. The average MPC

in our baseline calibration is only 12%, and even in our High Risk calibration it rises only to 14%.

In contrast, a substantial amount of empirical evidence suggests larger values for the MPC, with

many studies estimating values close to 20%.17 On this basis, one might argue for calibrations in

17Parker (1999) estimates that household spend 20% of increases in disposable income when they hit the Social
Security tax cap. Johnson, Parker, and Souleles (2006) estimate that households spent 20-40% of tax rebate checks
they received in 2001, and Parker et al. (2013) estimate that households spent 12-30% of tax rebate checks they
received in 2008. These studies as well as most others on this topic consider anticipated changes in income. They
therefore provide a lower bound for responses to unanticipated changes in income. See Jappelli and Pistaferri (2010)
for an excellent recent survey of the literature on the response of consumption to changes in income.
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which households are more credit constrained than even our High Risk calibration implies. Such

a calibration would further amplify the effects we emphasize regarding the differences between the

complete and incomplete markets models.

4.4 Zero Lower Bound Analysis

In recent years, risk-free nominal interest rates around the world have hit zero. At the zero lower

bound (ZLB), forward guidance has become an indispensable policy tool, since it is no longer possible

to implement monetary policy via the current policy rate. Eggertsson and Woodford (2003) show

how a persistent shock to the natural interest rate that causes the economy to hit the ZLB can

provoke a massive recession if the central bank does not engage in unconventional monetary policy.

They show, however, that the recession can be fully abated by a relatively modest amount of forward

guidance about future interest rates.

Our conclusions above suggest that forward guidance may not be as powerful at the ZLB in our

incomplete markets model. To investigate this question, we follow Eggertsson and Woodford (2003)

in assuming that the ZLB is brought on by a temporary shock to the subjective discount factor of

households in the economy that depresses the natural rate of interest below zero. In other words,

we now consider a case were the discount factor can vary over time. The specific shock we consider

is an increase in the discount factor that lasts for a known number of quarters and then reverts to

normal.18 We choose the size and persistence of the shock so that the initial output decline is 4%

and the ZLB binds for 20 quarters under a naive monetary policy (described below).19

We consider two alternative monetary policies. First, we consider a policy where the central bank

sets the nominal interest rate equal to a simplified Taylor rule whenever this yields an interest rate

greater than zero, and, otherwise, sets the nominal rate to zero: it = max[0, r̄ + φπt], where φ = 1.5

and r̄ is the steady state real interest rate. We refer to this policy as the “naive” policy. We also

18Our shock differs from the shock considered in Eggertsson and Woodford (2003) in that its persistence is known
implying that agents have perfect foresight about the evolution of the aggregate economy. Eggertsson and Woodford
(2003) consider a shock that reverts back to normal with constant probability each period. Clearly, both formulations
are approximations. Eggertsson and Woodford’s formulation abstracts from time-variation in the probability of the ZLB
period ending, while our framework abstracts from uncertainty about when it will end. However, the incomplete markets
model is more difficult to solve computationally without the assumption of perfect foresight for aggregate shocks. In
Section 5, we consider Eggertsson and Woodford’s formulation of the shock in a more tractable approximation of the
incomplete markets model.

19Hitting these targets requires slightly different calibrations of the discount factor shock in the complete versus the
incomplete markets model: it corresponds to a decline in the natural rate of 16.4 basis points in the complete markets
model, but only 14.8 basis points in the incomplete markets model. In each case, the duration of the shock is 33
quarters.
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Figure 7: Response of output to the ZLB shock.

consider an “extended” policy whereby the central bank sets the nominal rate to zero for several

additional quarters beyond what is implied by the naive policy and then reverts back to the policy

rule. We choose the length of the additional monetary stimulus to fully eliminate the initial fall in

output in the complete markets model.

Figure 7 shows that forward guidance is substantially less powerful at the ZLB in the incomplete

markets model than in the standard New Keynesian model. The bottom two lines show the path

of output under the naive monetary policy for the complete and incomplete markets cases; while

the top two lines show the effects of the extended monetary policy in these two cases. While the

extended monetary policy fully eliminates the recession in the complete markets case, a substantial

recession remains in the incomplete markets model. Figure 8 shows the implications for inflation:

the extended policy is much more successful in preventing deflation in the complete markets model

versus the incomplete markets model. While the initial deflation is only about 30 basis points in the

complete markets case, it is more than 100 basis points in the incomplete markets case. The fact

that inflation is lower in the incomplete markets case implies that real interest rates are higher (since

nominal rates are stuck at zero). This contributes to the larger fall in output.

Figure 9 plots the implications of the naive and extended monetary policies for the nominal
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Figure 8: Response of inflation to the ZLB shock.

interest rate. Under the naive policy the ZLB binds for 20 quarters and then rises gradually to its

steady state value of 50 basis points. Under the extended policy, the nominal interest rate remains at

zero for 23 quarters (an additional 3 quarters), and interest rates are somewhat lower in quarter 24

than the naive policy implies (this partial stimulus in the 24th quarter is what is needed to exactly

eliminate the initial fall in output due to the shock). The difference between the dashed and solid

lines, thus, indicates the amount of additional stimulus provided by the extended policy.

5 Discounted Euler Equation Model

We argued in Section 2 that the power of forward guidance in standard monetary models results

from the fact that current output responds just as strongly to a change in the expected real interest

rate 20 years in the future as it does to an equally large change in the current real interest rate (see

equation (3)). Our analysis in Sections 3 and 4 indicates that this is no longer the case in a model

where agents face uninsurable idiosyncratic income risk and borrowing constraints. In such a model,

precautionary savings forces imply that output reacts much less to changes in far future expected

real interest rates than current real interest rates (Figure 5).

However, our full model with uninsurable idiosyncratic income risk and borrowing constraints
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Figure 9: Response of nominal interest rate to the ZLB shock.

is more difficult to analyze than the linearized DSGE models commonly used in business cycle

analysis. It is therefore useful to develop a modification to the standard linearized consumption

Euler equation that better approximates a model with uninsurable idiosyncratic income risk and

borrowing constraints. Figures 2 and 5 suggest that what is needed is to “discount” the effect of

future interest rates on current consumption.

We therefore consider the following simple modification to the standard linearized consumption

Euler equation:

xt = −ζσEt
∞∑
j=0

αj(it+j − Et+jπt+j+1 − rnt+j), (18)

where α < 1 causes future interest rates to be discounted exponentially, and ζ < 1 is a factor that

reduces the the response of output to all interest rates. Equation (18) can be first differenced to

yield

xt = αEtxt+1 − ζσ(it − Etπt+1 − rnt ). (19)

We refer to this equation as the discounted Euler equation. The key difference between the discounted

Euler equation and the standard Euler equation is the factor α < 1 multiplying expected future

consumption. This term implies that far future interest rate changes have much smaller effects on

current consumption than near term interest rate changes.
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In Appendix B, we show how the discounted Euler equation can be micro-founded with a sim-

plified version of our incomplete markets model. In this simplified version, we replace the rich

distribution of idiosyncratic shocks in the model in section 3 with a simpler specification where each

period a fraction of agents are hit by an expenditure shock that is large enough that they hit their

borrowing constraint for sure. We assume that this expenditure shock is uninsurable and that agents

have some positive marginal utility of wealth in the period when they are hit by the expenditure

shock. The combination of these features implies that agents discount future consumption in the

Euler equation but their overall desire to save is not changed and thus the equilibrium interest rate

remains low. Together these features yield the discounted Euler equation above.20

Figure 10 shows that with α = 0.97 and ζ = 0.75, the discounted Euler equation provides a

good approximation to the response of output to a real interest rate shock 20 quarters in the future.

The approximation is nearly perfect up until the time that the interest rate changes. What the

discounted Euler equation misses is the fall in consumption after the interest rate shock. This fall is

due to redistribution of wealth in the incomplete markets model (from households with high MPCs

to households with low MPCs), which the discounted Euler equation does not capture.

To illustrate the importance of allowing for discounting in the Euler equation, we revisit the

question of monetary policy at the zero lower bound using the standard linearized New Keynesian

model analyzed in Section 2 with the standard Euler equation replaced by the discounted Euler

equation. An advantage of this approach to incorporating the precautionary savings effects we

emphasize is that we are able to deviate from our previous setting of perfectly anticipated shocks.

In particular, we assume that the ZLB binds due to a shock that lowers the natural rate below zero

and persists at the same negative value with probability λ each quarter. With probability 1− λ, it

reverts back to normal. For simplicity, we assume that once the natural rate reverts back to normal,

the zero lower bound on nominal interest rates never binds again in the future. This is the same

type of shock as Eggertsson and Woodford (2003) consider.

We assume that the central bank follows a “naive” monetary policy similar to the one we consider

20Piergallini (2006) and Nistico (2012) provide an alternative micro-foundation for discounting in the Euler equation
based on mortality shocks as in Blanchard’s (1985) perpetual-youth model. In their formulation, there is no discounting
at the level of the individual. Discounting only arises from aggregation over different generations, and to generate a
quantitatively important deviation from the standard Euler equation, these authors assume counter-factually high death
rates. Our approach rationalizes why long-lived consumers can have short planning horizons and includes discounting
in the individual’s Euler equation. Moreover, in Piergallini and Nistico’s formulation, the discounting in the Euler
equation is larger the larger is the amount of financial wealth in the economy and disappears when financial wealth
is in zero-net supply. In contrast, in our full model, agents discount the future more when they have little financial
wealth to buffer shocks to income.
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Figure 10: Response of output to a 50 bp change in the expected real interest rate in quarter 20 in

the incomplete markets model and in the discounted Euler equation model.

in Section 4

it = max(0, rnt + φπt), (20)

where φ > 1. The full model then consists of equations (2), (19), and (20). For comparability with

Eggertsson and Woodford (2003), we assume that β = 0.99, σ = 0.5, and κ = 0.02. To mimic

the behavior of the incomplete markets model regarding the effects of future interest rates, we set

α = 0.97 and ζ = 0.75 as in Figure 10. We also consider the standard case of α = 1 and ζ = 1.

We start by solving for the level of the output gap and inflation after the shock has dissipated.

Since we have assumed that the natural rate will never go negative again, it is feasible for the

monetary authority to set it = rnt at all times after the shock dissipates. This implies that both

the output gap and inflation will be zero at all times after the shock dissipates. Given this, it is

easy to solve for the output gap and inflation while the shock persists. First, notice that all periods

while the shock persists are identical since the probability of the shock reverting to normal does not

change over time. This implies that output and inflation will be constant while the shock persists.

We refer to the period during which the shock persists as the short run. Next, notice that in the

short run Etxt+1 = λxt and Etπt+1 = λπt since with probability 1 − λ the economy will revert to

normal (in which case xt = πt = 0). Using these facts and equations (2) and (19), a few steps of
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Table 3: How Severe a Constraint Is the ZLB?

Output Inflation

Standard Model -14.3% -10.5%

(α = 1, ζ = 1)

Discounted Euler Equation Model -2.9% -2.1%

(α = 0.97, ζ = 0.75)

Response of output and inflation when the natural rate falls to -2%
(annualized) with a 10% per quarter probability of returning to nor-
mal.

algebra (presented in Appendix C) yield

πS =
κ

1− βp
xS , (21)

xS =
ζσ

1− αλ− ζσλκ
1−λβ

rnS , (22)

where πS and xS denote inflation and the output gap in the short run, and rnS denotes the natural

real rate of interest in the short run.

Eggertsson and Woodford (2003) present results for a shock that lowers the natural rate to

rnS = −0.02 (annualized) and reverts to normal with probability λ = 0.1 (per quarter). They show

that in the standard model, a shock of this size and persistence generates a very large recession—an

output gap of -14.3%—accompanied by a large amount of deflation (-10.5%). In Table 3, we show

that in the discounted Euler equation model, this same shock leads to a much more modest recession.

The output gap is a mere -2.9%, and inflation falls by only 2.1%. Clearly, incorporating discounting

of future interest rates radically alters the conclusions one comes to about the severity of the problem

that the monetary authority faces with this type of shock.21

The strength of the deflationary forces in the standard model are due to a feedback loop that

gets stronger the more persistent is the shock to the natural rate. The basic feedback loop results

from the following chain of logic: The negative natural rate leads to a positive interest rate gap—a

real rate that is higher than the natural rate—because the nominal rate can’t fall below zero. This

21Here we have illustrated the importance of allowing for discounting in the Euler equation using a shock to expected
natural real rate of interest, while elsewhere in the paper we have focused on its importance when it comes to changes
in expectations about actual real rates. It is easy to see from equation (18) that discounting mutes the effect of changes
in both far future natural rates and far future actual rates by an equal amount. It is only the difference between the
realized rate and the natural rate at each horizon that matters for the consumption-savings decisions of households.
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leads output to fall, and if the shock is persistent it leads expectations of future output to fall, which

in turn leads expected inflation to fall, which causes the current real rate to rise further, and current

output to fall further, etc. The more persistent is the shock, the more it affects expected inflation

and the stronger this feedback loop becomes.

It is well known that the strength of the deflationary forces associated with negative shocks to the

natural real rate become infinitely strong—i.e. imply that the (log) output gap and inflation go to

negative infinity—for even relatively modest levels of persistence. This can be seen by looking at the

denominator of the expression for the short run output gap in equation (22). As this denominator

goes to zero, the short run output gap goes to negative infinity. In the standard model (with α = 1

and ζ = 1), this occurs for a shock with an expected duration of 11 quarters.

In the discounted Euler equation model, the strength of the deflationary forces are muted and

consequently the persistence of the ZLB shock needs to be greater for this “deflationary death

spiral” to occur. This is depicted in Figure 11, which plots the drop in output for different levels

of persistence of the ZLB shock. The solid line is the standard model, while the two broken lines

are two calibrations of the discounted Euler equation model that match the baseline and high-risk

calibrations of our incomplete markets model, respectively.22 The deflationary death spiral occurs

only for shocks that are considerably more persistent in the discounted Euler equation model than

in the standard model.

6 Conclusion

We study the effects of forward guidance about monetary policy. We do this in a standard New

Keynesian model augmented with uninsurable income risk and borrowing constraints. Our main

finding is that allowing for uninsurable income risk and borrowing constraints substantially decrease

the power of forward guidance relative to the standard New Keynesian model.

While an interest rate announcement in the standard New Keynesian model has the same effect

on consumption whether it occurs 1 or 40 quarters in the future, the effect declines with the horizon of

the announcement in the incomplete markets model. Forward guidance 10 years ahead has essentially

zero effect on output in the incomplete markets model. Intuitively, in the incomplete markets model,

22As we discuss in the text, α = 0.97 and ζ = 0.75 matches the baseline calibration of the incomplete markets
model well. We use the same approach to match the high-risk calibration of the incomplete markets model with the
discounted Euler equation model. This yields α = 0.94 and ζ = 0.7.
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Figure 11: Response of output to shock that makes the natural real rate of interest -2% (annualized)

for different levels of persistence of the shock (different values of λ).

precautionary savings effects work to offset the standard intertemporal substitution motive. Our

results have important implications for monetary policy at the zero lower bound. They imply both

that persistent shocks to the natural rate of interest have smaller effects on current output and also

that far future forward guidance has substantially less power to stimulate the economy.

We show that the response of consumption to interest rates at different horizons in the incomplete

markets model can be approximated by a consumption Euler equation with “discounting.” Such an

equation is a tractable way of incorporating the precautionary savings forces we emphasize into

workhorse linearized macroeconomic models. We show that this discounted Euler equation can be

micro-founded using a simple model of borrowing constraints.
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A Computational methods

Here we describe the procedure used to find an equilibrium path of the heterogeneous agent model

along a perfect foresight transition for the zero-lower-bound episode considered in Section 4.4. The

algorithm used to compute the results for a one-time change in the real interest rate is closely related

to what we present here.

Writing the firm’s first order condition recursively. For the numerical analysis it is conve-

nient to rewrite equation (8) recursively. Define

PAt ≡
∞∑
s=t

βs−t(1− θ)s−t
(
Pt
Ps

)µ/(1−µ)
YsµWs (23)

PBt ≡
∞∑
s=t

βs−t(1− θ)s−t
(
Pt
Ps

)1/(1−µ)
Ys. (24)

then equation (8) becomes

p∗t
Pt

=
PAt
PBt

. (25)

Equations (23) and (24) can be written recursively

PAt = µWtYt + (1− θ)βEt(1 + πt+1)
−µ/(1−µ)PAt+1 (26)

PBt = Yt + β(1− θ)Et(1 + πt+1)
−1/(1−µ)PBt+1. (27)

Initial guess. We assume that the economy has returned to steady state after T = 250 periods and

look for equilibrium values for endogenous variables between dates t = 0 to T . In this explanation of

our methods we use variables without subscripts to represent sequences from 0 to T . Let X denote a

path for all endogenous aggregate variables from date 0 to date T. These variables include aggregate

quantities and prices

X ≡ {Ct, Lt, Nt, Yt, Dt, it,Wt, πt, rt, p
∗
t /Pt, St, τt, P

A
t , P

B
t }Tt=0.

The dimension of X is given by 14 variables for each date and 251 dates. We require an initial guess

X0. In most cases we found it sufficient to guess that the economy remains in steady state.

Solving the household’s problem. The household’s decision problem depends on X through

r, W , τ , and D. For a given Xi we solve the household’s problem using the endogenous gridpoint
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method (Carroll, 2006). We approximate the household consumption function c(b, z) with a shape-

preserving cubic spline with 200 unequally-spaced knot points for each value of z with more knots

placed at low asset levels where the consumption function exhibits more curvature. Given the con-

sumption function we calculate labor supply from the household’s intratemporal optimality condition

and savings from the budget constraint.

Simulating the population of households. We simulate the population of households in order

to compute aggregate consumption and aggregate labor supply. We use a non-stochastic simulation

method. We approximate the distribution of wealth with a histogram with 1000 unequally-spaced

bins for each value of z again placing more bins at low asset levels. We then update the distribution

of wealth according to the household savings policies and the exogenous transitions across z. When

households choose levels of savings between the center of two bins, we allocate these households

to the adjacent bins in a way that preserves total savings. See Young (2010) for a description of

non-stochastic simulation in this manner.

Checking the equilibrium conditions. An equilibrium value of X must satisfy equations (5),

(6), (10), (11), (12), (14), (16), (17), (25), (26), and (27) and the monetary policy rule it =

max[0, r̄+φ ∗πt + εt], where εt is the exogenous deviation from the Taylor rule that takes a negative

value under our “extended” policy. Call these 12 equations the “analytical” equilibrium conditions.

The remaining two equilibrium conditions that pin down X are that C and L are consistent with

household optimization and the dynamics of the distribution of wealth given the prices. Call these

the “computational” equilibrium conditions.

To check whether a given X represents an equilibrium of the model is straightforward. We can

easily verify whether the analytical equilibrium conditions hold at X. In addition, we can solve the

household problem and simulate the population of households to verify that aggregated choices for

consumption and labor supply of the heterogeneous households match with the values of C and L

that appear in X.

Updating Xi The difficult part of the solution method arises when Xi is not an equilibrium. In

this case we need to find a new guess Xi+1 that moves us towards an equilibrium. To do this, we

construct an auxiliary model by replacing the computational equilibrium conditions with additional

analytical equilibrium conditions that approximate the behavior of the population of heterogeneous
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households but are easier to analyze. Specifically we use the equations

C−γt = η1t β(1 + rt)C
−γ
t+1 (28)

C−γt wt = η2tL
ψ
t . (29)

where η1 and η2 are treated as parameters of the auxiliary model. For a given Xi, we have computed

C and L from the computational equilibrium conditions. We then calibrate η1 and η2 from (28) and

(29). We then solve for a new value of X from the 12 analytical equilibrium conditions and (28) and

(29). This is a problem of solving for 14 unknowns at each date from 14 non-linear equations at each

date for a total of 3514 unknowns and 3514 non-linear equations. We solve this system using the

method described by Juillard (1996) for computing perfect foresight transition paths for non-linear

models. This method is a variant of Newton’s method that exploits the sparsity of the Jacobian

matrix. Call this solution Xi′. We then form Xi+1 by updating partially from Xi towards Xi′. We

iterate until Xi satisfies the equilibrium conditions within a tolerance of 5× 10−6.

B A Simple Model of Borrowing Constraints

The discounted Euler equation (equation (19)) can be micro-founded with a simple model of bor-

rowing constraints. Suppose that with probability ω a household is hit by an expenditure shock

that requires that the household consume all available resources and hit a borrowing constraint. An

example of such a shock could be a large hospital bill that drives the household to its borrowing con-

straint. We refer to the households that are hit by this shock as the constrained households and the

other households as the unconstrained households. Suppose for simplicity that the marginal utility

of consumption of the constrained households is constant at a value Q. Suppose furthermore, that

the institutions of the economy are such that it is not feasible for the household to transfer resources

intertemporally across this event and as a result the household will continue from that point on with

no assets.

The households do not have access to insurance against these idiosyncratic shocks. Instead

households save in a zero-net-supply bond with real interest rate Rt. As the bond is in zero net

supply, if all unconstrained households begin with zero bond positions they will have to choose zero

bond positions for the bond market to clear. This follows because all unconstrained households are

identical and therefore if there are no savings in the aggregate there must be no savings for each
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individual household. Those households who are constrained also continue without any savings in

the next period so the degenerate distribution of wealth is preserved.

For simplicity, we assume that constrained households do not supply labor nor do they receive

dividends from firms. From these assumptions, it follows that the only resources the constrained

households have to fund their consumption is their stock of assets, but in equilibrium they hold no

assets so they do not consume in equilibrium. Each unconstrained household receives an equal share

D of the profits of the firms.

The Bellman equation for the representative unconstrained household is

V (b,Ξ) = max
C,b′,`

{
C1−γ

1− γ
− `1+ψ

1 + ψ
+ βtE

[
(1− ω)V (b′,Ξ′) + ωQb′

]}
where b denotes the household’s asset holdings, Ξ represents the aggregate state, the natural rate

of interest in our application, and the expectation is taken over Ξ′. Maximization is subject to the

budget constraint

C +
b′

R
= W`+ b+D.

This problem generates a consumption Euler equation of

C−γt = βtRtEt
[
(1− ω)C−γt+1 + ωQ

]
.

In equilibrium, goods market clearing implies that Ct = Yt.

Log-linearizing this equation yields

xt = −1

γ
(rt − rnt ) + αEt [xt+1]

where xt is the output gap,

α =
(1− ω)C̄−γ

(1− ω)C̄−γ + ωQ
,

and rnt is γ times the log deviation of βt from its steady state value. To match the functional form

presented in the text, set 1/γ = σζ, set Q = C̄−γ , and then the above expression becomes α = 1−ω

so the parameter ω controls the discounting in the Euler equation.

If households do not value wealth when they are constrained (Q = 0), there is no discounting in

the Euler equation because the return on saving offsets the fact that the household discounts utility

at future dates. In contrast, with Q > 0 household discount the future more strongly as ω increases,

but the return to savings remains low. Households discount the future at a higher rate because they

completely discount any states of the world following expenditure shocks (since they can’t influence
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their situation in these states). The return to savings remains low because households value wealth

in the constrained states and this bids up the price of assets and drives down the interest rate. The

result is that households discount future consumption more than is offset by the returns to savings

that they have access to.

The other equations of the model, including the intratemporal labor supply condition, are unaf-

fected by the possibility that the borrowing constraint binds.

C Algebra Behind Equations (21) and (22)

Consider first the Phillips curve:

πt = βEtπt+1 + κxt.

Since the output gap and inflation are constant at xS and πS , respectively, and Etπt+1 = λπS in the

short run, we have that

πS = βλπS + κxS ,

which implies

πS =
κ

1− βλ
xS (30)

as long as xS and πS are finite.

Consider next the discounted Euler equation

xt = αEtxt+1 − ζσ(it − Etπt+1 − rnt ).

Again, since the output gap and inflation are constant at xS and πS , respectively, and Etπt+1 = λπS

and Etxt+1 = λxS in the short run, and, in addition, since the natural real rate is rnS in the short

run, we have that

xS = αλxS + ζσ(λπS + rnS).

If we now use equation (30) to eliminate πS from this equation we get that

xS = αλxS + ζσ(λ
κ

1− βλ
xS + rnS),

which implies

xS =
ζσ

1− αλ− ζσλκ
1−λβ

rnS

as long as xS is finite.
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