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1. Introduction

Consumption-based asset pricing models in the tradition of Lucas (1978) and Breedan (1979)

emphasize the theoretical link between asset returns and economic fundamentals, such as

consumption growth. Much of the empirical literature has tested these theories using annual,

quarterly, and higher frequency data. Classic examples include Shiller (1981), Hansen and

Singleton (1982), and Mehra and Prescott (1985). A central challenge that has emerged

from this work is the apparent weak relation between stock returns and observable economic

fundamentals.

In this paper, we re-examine this relation using an empirical strategy inspired by Burns

and Mitchell’s (1946) work on business cycles which uses expansions and recessions as the

basic unit of analysis.1 In this spirit, we investigate whether the elusive relation between

economic fundamentals and asset prices emerges more clearly across long-run bull and bear

episodes.

We begin by reproducing the standard finding that consumption and output growth

are weakly correlated with stock returns. We then use a modified version of the algorithm

developed by Bry and Boschan (1971) to identify peaks and troughs in long-run stock market

trends. We call “bulls” the episodes that occur between a trough and a peak and “bears”

the episodes that occur between a peak and a trough. These bull and bear episodes are

identified using only stock market data. We find that the correlation between stock returns

and fundamentals across bull and bear episodes is much higher (about twice as high) than

the time-series correlations. This finding holds for the U.S., G7, and OECD countries.

As a check on our procedure, we also date episodes using only consumption data or only

output data. Once again, we find that for the U.S., G7, and OECD countries, the correlation

between stock returns and fundamentals across bull and bear episodes is much higher than

the time-series correlations.

We investigate whether this new fact—episode correlations between stock returns and

fundamentals are much stronger than time-series correlations—is consistent with three asset-

pricing models. The first is the external-habit model proposed by Campbell and Cochrane

(1999). The second is the long-run risk model proposed by Bansal, Kiku and Yaron (2012).

The third is the valuation-risk model proposed by Albuquerque, Eichenbaum and Rebelo

(2014). We find that none of these models can explain our basic fact.

1Stock (1987) pursues a modern version of this approach.

1



Both the external-habit model and the long-run risk model do well at accounting for the

high episode correlations. However, they imply time-series correlations between stock returns

and consumption growth which are too high relative to the data, even taking sampling

uncertainty into account. This result holds at the one-, five-, ten- and 15-year horizons.

As stressed in Albuquerque, Eichenbaum and Rebelo (2014), this shortcoming reflects the

fact that the only source of uncertainty in those models comes from the production side

of the economy. The valuation-risk model of Albuquerque, Eichenbaum and Rebelo (2014)

accounts for the time-series correlations at all horizons when sampling uncertainty is taken

into consideration. However, the model fails to account for the high episode correlations.

We investigate whether the di§erence between the time-series and episode correlations

might be an artifact of the historical sample that we have at our disposal. At least for the

U.S., this possibility seems very unlikely. The evidence is somewhat more mixed for the G7

and OECD countries. Considering the evidence as a whole, we are left with a puzzle: why is

the correlation between stock returns and fundamentals much stronger across bull and bear

episodes than the time-series correlations?

Our paper is organized as follows. In section 2 we describe our modified version of the

Bry-Boschan filter, the data we use, and our empirical results. Section 3 describes the

three asset-pricing models we consider and their implications for time-series and episode

correlations between stock returns and fundamentals. Section 4 concludes.

2. Measuring long-run booms and busts

There is a long tradition of characterizing turning points in economic time series that goes

back at least to the work of Burns and Mitchell (1946) on dating business cycles. This

tradition gave rise to a large literature that uses time-series methods to estimate turning

points (see Stock and Watson (2010) and the references therein). An early, important con-

tribution to this literature is Bry and Boschan (1971) who develop an algorithm for dating

the beginnings and ends of recessions. This algorithm has recently been used to character-

ize high-frequency bull and bear stock markets (see e.g. Pagan and Sossounov (2002) and

Gonzalez, Powel, Shi and Wilson (2005)).

This paper focuses on low-frequency swings in the stock market which we refer to as

long-run bulls and bears. The solid line in Figure 1 displays an annual index of U.S. stock

prices for the time period 1869 to 2013. It is evident that there are periods of irregular
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length in which stock prices are dominated by either upward or downward movements. To

determine the turning points that mark the beginning and end of long-run bulls and bears,

we develop a modified version of the Bry and Boschan (1971) algorithm.

The remainder of this section is organized as follows. In subsection 2.1, we describe

the modified Bry-Boschan (1971) algorithm. In subsection 2.2 we describe the data we use.

In subsection 2.3 we apply the algorithm to U.S. data and discuss historical events around

the identified turning points. In subsection 2.4 we revisit a classic question in asset pricing:

what is the correlation between fundamentals (consumption and output growth) and realized

returns to the stock market? We also extend our basic analysis to G7 and OECD countries.

In subsection 2.5 we pursue an alternative strategy for dating long-run bulls and bears, which

relies on consumption and output data. In subsection 2.6 we conduct tests to assess whether

our results are spurious in the sense of being an artifact of the filter that we use to date bull

and bear episodes. We also discuss the possibility that our results might reflect small-sample

bias.

2.1. A modified Bry-Boschan algorithm

The Bry and Boschan (1971) algorithm is a series of ad-hoc filters designed to determine turn-

ing points in times-series data.2 As emphasized by Watson (2004), the algorithm identifies

local maxima and minima subject to constraints on the length and amplitude of expansions

and contractions.

To focus on long-run movements in stock prices, we adopt the following modified version

of the Bry-Boschan algorithm. In the first step, we take logarithms of the data and eliminate

high frequencies and business-cycle frequencies (those lower than 8 years) using the bandpass

filter proposed by Christiano and Fitzgerald (1999).3 We refer to the resulting series as the

long-run stock price index, which we denote by P̄ (t). In step two, we identify peaks by finding

2See King and Plosser (1994) for a detailed description of the Bry-Boschan algorithm.
3Our algorithm to compute turning points uses a two-sided bandpass filter. The two-sided nature of this

filter does not pose a problem for our analysis because we are characterizing ex-post features of the data,
as opposed to forecasting or testing trading strategies. Obtaining accurate estimates of the long-run trend
requires the use of a long two-sided moving average. In fact, an ideal bandpass filter requires an infinite
two-sided moving average (see Baxter and King (1999) and Christiano and Fitzgerald (2003)). It is di¢cult
to estimate bandpass trends in the beginning and end of the sample, because long lags of the series are
not available. For this reason, one-sided versions of the bandpass filter generally produce very noisy trend
estimates (see Watson (2007) for a detailed discussion). Consistent with Watson (2007), we find that the
one-sided version of the bandpass filter produces a trend that is volatile and takes on values that are actually
closer to the original series than to the two-sided bandpass trend.
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dates, t, for which P̄ (t) is higher than P̄ (t + j) for j 2 J , where J = {−3,−2,−1, 1, 2, 3}.

Similarly, we identify troughs by finding dates, t, for which P̄ (t) is lower than P̄ (t + j) for

j 2 J . In step three, we check whether there are two subsequent peaks or two subsequent

troughs. If we find two subsequent peaks (troughs), we retain only the most extreme peak

(trough). If the values of the peaks (troughs) are equal, we select the last peak (trough).

Finally, we refine the peaks and troughs using the original series instead of the long-run

stock price index. For every peak (trough) date identified using the long-run stock price

index, we search three years before or after the peak (trough) for higher (lower) values of

the actual stock price index.4 We identify the final peak (trough) as the highest (lowest)

value of the actual stock price index within that window. Unlike Bry and Boschan (1971),

we do not require a minimum duration for a bull or bear episode. An important aspect of

our algorithm is that it dates bull and bear episodes using only stock market data.

2.2. Data

Our data sets come from two sources. First, we obtain annual real stock returns for the

G7 and the OECD countries from Global Financial Data. The countries (sample peri-

ods) included in our data set are: Australia (1901-2013), Austria (1947-2013), Belgium

(1947-2013), Canada (1900-2013), Chile (1900-2013), Denmark (1900-2013), Finland (1923-

2013), France (1942-2013), Germany (1851-2013), Greece (1953-2013), Italy (1900-2013),

Japan (1894-2013), Korea (1963-2013), Mexico (1902-2013), Netherlands (1947-2013), New

Zealand (1947-2013), Norway (1915-2013), Spain (1941-2013), Sweden (1900-2013), Switzer-

land (1900-2013), United Kingdom (1830-2013), and United States (1869-2013).

Second, we use the data set on real per capita personal consumer expenditures and real

per capita Gross Domestic Product (GDP) originally constructed by Barro and Ursúa (2008)

and updated by these authors until 2009.

2.3. Long-run bulls and bears

The solid line in Figure 1 corresponds to the logarithm of the U.S. stock price index. The

dotted line is the bandpass-filtered version of the solid line in which high frequencies and

4To assess the robustness of our results, we redid our analysis using the Bry-Boschan procedure without
this last refinement. We find that refining the Bry-Boschan procedure eliminates some of the episodes but
the basic facts about the correlations between realized stock returns and various measures of fundamentals
are very robust.
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business-cycle frequencies have been removed. Circles and stars denote the peaks and troughs

identified by our algorithm.

Table 1 provides summary statistics for bull and bear episodes. Consider the results for

the U.S. First, bull markets are on average much longer than bear markets, 14.8 years versus

3.2 years. On net, the economy spends 80 percent of the time in bull markets and only

20 percent in bear markets. The annual realized excess return to equity is, on average, 7.5

percent in our sample. However, this excess return is very di§erent across bull and bear

markets: 13.0 percent in bull markets versus −14.3 percent in bear markets. This sharp

di§erence primarily reflects the fact that equity returns are on average 14.2 percent in bull

markets but −15.5 percent in bear markets. The last two lines of Table 1 report the growth

rate of two measures of fundamentals that are at the core of standard asset pricing theory:

consumption and output. The average growth rate of consumption is higher in bull markets

(2.3 percent) than in bear markets (0.7 percent). While the average growth rate of output

is also higher in bull than in bear episodes (2.4 versus 2 percent), the di§erence is not as

dramatic as in the case of consumption. The results for consumption for the G7 and OECD

are quite similar to the results for the U.S. There is a sizable di§erence between the growth

rate of output in bull and bear episodes for the G7 and OECD.

Table 2 lists the dates of U.S. bull and bear episodes along with a summary of major

technological, military or political events associated with these episodes. While it is easy to

rationalize dates ex-post, many of the 20th century turning points are instantly recognizable.

The bear market of 1915-20 is associated with World War I and its aftermath. The bull

market of 1920 to 1928 is associated with a well-know period of fast technological progress.

The bear market of 1928-31 is associated with the Great Depression, while the bull market

of 1931-36 is associated with the recovery from the Great Depression. This episode also falls

squarely in the period that Fields (2011) calls “the most technologically progressive decade

of the century.” The bear market of 1936-41 coincides with the uncertainties associated with

the run up to World War II. The great bull market from 1941 to 1972 is associated with

the period of “pax Americana” as well as major developments like the emergence of the

commercial aviation industry and the construction of the interstate highway system. The

1972-74 bear market reflects adverse shocks to the price of oil. The bull market of 1974-1999

coincides with the information technology revolution that included the personal computer

and the internet. The bear market of 1999-2002 is associated with the Nasdaq crash and
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the 9/11 terrorist attacks. The bull market of 2002-07 coincides with the credit and housing

boom, while the bear market of 2007-08 is associated with the Great Recession.

Figures 2 and 3 display, for the G7 and the OECD, the logarithm of the stock price index,

the bandpass trend and the peaks and troughs associated with booms and busts episodes.

Figure 2 suggests that the boom and bust episodes are correlated across G7 countries. Recall

that we interpret long-run bull and bear episodes as being driven by major technological,

political, and military events. From this perspective, it is reasonable to expect that the

episodes would be correlated across countries.

We use the concordance index proposed by Harding and Pagan (2002, 2006) to measure

the extent to which bull and bear episodes are synchronized across countries. To compute

this index, we define the indicator Sjt for country j which takes on the value one if the

country is in a long-run bull at time t and zero otherwise. We use country index one to

denote the U.S. The concordance index between the U.S. and country j, Ij, is computed as:

Ij =
1

T

(
TX

t=1

S1t S
j
t +

TX

t=1

(
1− S1t

) (
1− Sjt

)
)
.

This index measures the fraction of time that two countries spend in the same stock-market

phase. Figure 4 presents our results, ordering countries by their concordance with the U.S.

The degree of concordance between the U.S. and the other countries in our sample is higher

than 0.7 for most developed countries. Presumably, this statistic reflects the presence of a

common factor inducing long-run bulls and bears in stock returns across di§erent countries

and the fact that the long-term trend for stock prices is positive most of the time.

2.4. Correlations between fundamentals and stock returns

Table 3 reports the correlation between stock returns and the growth rate of consumption

and output for the U.S., the G7, and the OECD. We report correlations at the one-, five-

, ten- and 15-year horizons. Correlations at horizons longer than one year are computed

using overlapping observations. We report Newey-West (1987) heteroskedasticity-consistent

standard errors.5 We compute correlations for the G7 and the OECD countries pooling

data across all countries. This procedure implies that countries with longer time series

receive more weight in the calculations. Below we assess the sensitivity of our results to this

5To compute standard errors for the 1, 5, 10, and 15 year correlatio,n we use 6, 11, 16 and 21 lags,
respectively.
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assumption.

Consistent with results in Cochrane and Hansen (1992), Campbell and Cochrane (1999),

and Albuquerque, Eichenbaum and Rebelo (2014), we find that there is a relatively weak

correlation between consumption and output growth and stock returns at all the horizons we

consider. This result obtains for horizons as long as 15 years. One exception is the five-year

correlation between U.S. consumption growth and U.S. stock returns which is relatively high.

This result only holds in U.S. data: the analogue five-year correlation is not high for the G7

and OECD countries.

A key question is: what is the correlation between stock returns and fundamentals like

consumption and output growth across episodes. Recall that bull and bear episodes are

identified using only stock market data.

Table 3 reports two versions of the correlation between the average growth rate of fun-

damentals and the average annual stock returns across episodes. The first is a simple corre-

lation. The second is a correlation that gives more weight to longer episodes. The weighted

correlation between variable x and y is computed as:

P
iwi(xi − x̄)(yi − ȳ)

[
P

iw
2
i (xi − x̄)2]

1/2
[
P

iw
2
i (yi − ȳ)2]

1/2
,

where i indexes episodes, a bar over a variable denotes the mean value of that variable over

the whole sample, and wi denotes the number of years in episode i. The variables xi and yi

denote the average annual growth rate of x and y, respectively, measured from the beginning

to the end of episode i. The variables x̄ and ȳ represent weighted sample averages.

From Table 3 we see that there is a very high correlation between consumption growth

rates and stock returns across U.S. episodes. The simple correlation is 0.635 and the weighted

correlation is 0.626. In both cases, the correlation is significantly di§erent from zero and

insignificantly di§erent from one. Similar results emerge for the G7 and OECD countries.

For the G7, the simple and weighted correlations between consumption growth and stock

returns are 0.757 and 0.794, respectively. The corresponding correlations for OECD countries

are 0.579 and 0.604, respectively.

The correlations between output growth and stock returns follow a similar pattern. For

the U.S., the highest time-series correlation (0.253) occurs at a five-year horizon. The lowest

correlation (−0.034) occurs at a 15-year horizon. Correlations across episodes are much

higher: 0.462 and 0.328 for simple and weighted correlations, respectively. For the G7, the
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correlation between output growth and stock returns across episodes is about twice as high

as the time-series correlation. For the OECD, the episode correlations are about 2.5 times

the time-series correlations.

Table 4 reports the time-series correlations between stock returns and fundamentals

within bull and bear episodes for the U.S., G7, and the OECD. As above, we compute

correlations for the G7 and the OECD countries by pooling data across all countries. In

sharp contrast with the positive correlations across episodes, correlations within bulls and

bear episodes are essentially zero.

Next, we assess the robustness of our key results to di§erent ways of combining observa-

tions for the G7 and OECD countries. The rows in Table 5 that are labeled “pooled” report

correlations obtained by pooling observations from the G7 and OECD countries. These sta-

tistics are the same as those reported in Table 3. The rows labeled “average” report the

average of country-specific statistics. While the magnitude of the correlations varies, the

episode correlations are roughly twice as high as the time-series correlations.

2.5. Dating the episodes with consumption and output data

Up to this point, we dated episodes using data on stock prices and argued that there is a high

correlation between stock returns and fundamentals across episodes. A natural question is:

does a similar correlation obtain if we date episodes using data on consumption or output?

Presumably, if stock returns are reacting to those fundamentals, there should be a similar

correlation to the one obtained dating episodes with the stock market.

Consider first the results obtained dating episodes with consumption data. According

to Table 6, the correlations between stock returns and consumption growth are similar to

those obtained dating the episodes with stock price data.6 This pattern also holds for the

correlation between stock returns and output growth.

Table 6 also displays the results obtained dating episodes with data on output. For the

U.S., taking sampling uncertainty into account, the correlations across episodes for both

consumption and output are very similar to those obtained when we date episodes with

stock-price data. For the G7 and OECD we find, once again, very high correlations between

stock returns and both consumption growth and output growth.

6Given the smooth behavior of consumption there are fewer consumption-based episodes than stock-price-
based episodes. This fact explains the relatively high standard errors associated with the U.S. correlations.
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We conclude that, regardless of how episodes are dated, there is a strong episode corre-

lation between stock returns and our measures of fundamentals.

2.6. Robustness checks

It is well known that Bry-Boschan-type filters applied to data generated by an univariate

random walk identify bull- and bear-like episodes. In fact, if we simulate a random walk

for stock prices and apply our version of the Bry-Boschan filter to the artificial data, the

filter identifies bull and bear episodes. From this perspective, one might be concerned that

the bull (bear) episodes identified by the Bry-Boschan filter simply result from a random

sequence of good (bad) shocks. In this case, there would be no reason to expect a correlation

across episodes between stock returns and consumption or output growth. Indeed, if we

simulate two independent random walks we find that both the time series and the episode

correlations are zero in population.

In this subsection, we conduct two additional experiments designed to shed light on

the possibility that the correlation across episodes between fundamentals and stock returns

emerges is simply an artifact of the properties of our version of the Bry-Boschan filter.

In the first experiment, we estimate a trivariate VAR(2) using annual data for the growth

rate of consumption, the growth rate of output, and stock returns. We obtain the following

representation:

2

4
100× ln(Ct+1/Ct)
100× ln(Yt+1/Yt)
100× ln(Rt+1)

3

5 =

2

4
0.7842
0.8273
7.1982

3

5+

2

4
0.0381 −0.0134 0.1072
−0.0446 0.3181 0.1135
−0.2431 0.0888 0.0029

3

5

2

4
100× ln(Ct/Ct−1)
100× ln(Yt/Yt−1)
100× ln(Rt)

3

5

2

4
0.1487 0.0131 −0.0048
0.2106 −0.0184 −0.0697
0.0244 0.0632 −0.1958

3

5

2

4
100× ln(Ct−1/Ct−2)
100× ln(Yt−1/Yt−2)
100× ln(Rt−1)

3

5+

2

4
ξ1t+1
ξ2t+1
ξ3t+1

3

5 .

The estimated covariance matrix for the vector error term is given by:

V̂ =

2

4
8.0567
6.0687
7.2453

6.0687
17.3227
10.2668

7.2453
10.2668
350.2595

3

5 .

We construct a synthetic time series of length 10, 000 using the estimated VAR(2). We

simulate the VAR by sampling the disturbances with replacement from the vector of actual

VAR residuals. We then calculate the time-series and episode correlations using the synthetic

data. The results are reported in Table 7. We find that the time-series correlations are
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quite similar to those estimated from actual data. However, the synthetic data implies that

the episode correlations are similar to the time-series correlations. This property contrasts

sharply with the results obtained from actual data. One possible interpretation of this result

is that the episode correlations reflect either non-linearities or non-stationarity not captured

by the VAR.

As an additional robustness check, we scramble the bull and bear episodes as follows.7

Define the sequence of stock returns for bull episode i by the vector Ui and the sequence of

stock returns for bear episode j by the vector Dj. We place the six booms in our data in

urn Ū and the six busts in urn D̄:

Ū = {U1, U2, U3, U4, U5, U6} ,

D̄ = {D1, D2, D3, D4, D5, D6} .

We choose the first episode to be a bull or bear with probability 1/2. We then sample without

replacement alternating between the two urns. We match the resulting time series for stock

returns with the original time series for consumption returns. The last row of Table 7 shows

that both the time-series and episode correlations are close to zero. We infer that the actual

timing of the bull and bear episodes reveals important information about the comovement

between fundamentals and stock returns.

2.7. Small-sample properties

In this subsection, we investigate the possibility that the di§erence between the episode

correlations and the time-series correlations simply reflects small-sample bias. Suppose that

the true data-generating process is a linear VAR. Then, consistent with Table 7, there should

be no di§erence in population between episode and time-series correlations at five-, ten-, and

15-year horizons. But, it is possible that in a small sample we would find seemingly significant

di§erences between time-series and episode correlations. To investigate this possibility, we

proceed as follows. For every country in the OECD, we estimate a trivariate VAR(2) for the

growth rate of consumption, the growth rate of output, and stock returns. We sample from

the VAR residuals to construct 10, 000 synthetic time series for each of the variables in the

VAR. For each country, each time series has the length equal to the corresponding number of

observations in our actual data set. For example, in the U.S. case the length is equal to 144

7We thank Òscar Jordà for suggesting this calculation.
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observations. Using the synthetic time series we calculate the frequency of various events of

interest.

For each synthetic time series we compute the time-series and episode correlations. Define

kci to be the ratio of the episode correlation and the time-series correlation between consump-

tion growth and stock returns at horizon i. Define kyi to be the ratio of the episode correlation

and the time-series correlation between output growth and stock returns at horizon i. Both

kci and k
y
i are computed with our empirical estimates of the correlations.

We define event 1 to be: the episode correlation between consumption growth and stock

returns is positive and greater than the product of kci and the analogue time-series correlation

at horizon i for either i = 1, 5, 10, and 15. In addition, the episode correlation between output

growth and stock returns is positive and greater than the product of kyi and the analogue

time-series correlation at horizon i for either i = 1, 5, 10. Event 2 di§ers from event 1 in only

one dimension: the contemporaneous correlation (i = 1) is excluded from the definition of

the event. The motivation for this specification is as follows. Bull and bear episodes last, on

average, 15 and three years, respectively. So, it seems reasonable to assess the robustness of

our results by excluding the contemporaneous correlation from the specification.

Table 11 reports results from two specifications. First, we consider VARs that are esti-

mated using ordinary least squares. For the U.S., events 1 and 2 occurs with less than one

percent probability, regardless of whether we look at simple episodes or weighted episodes.

The results are somewhat more mixed for the G7 and the OECD. In both cases, event 1 oc-

curs with less than 5 percent probability. Event 2 occurs with less than 5 percent probability

for simple episodes and slightly higher than 5 percent probability for weighted episodes.

Viewing the evidence as a whole, it seems unlikely that the di§erence between the time-

series and the episode correlations are an artifact of small sample bias.

3. Three asset-pricing models

We consider three models: the external-habit model of Campbell-Cochrane (1999), the long-

run risk model of Bansal, Kiku and Yaron (2012), and the valuation-risk model of Al-

buquerque, Eichenbaum and Rebelo (2014). We assume that agents make decisions on a

monthly basis. We aggregate the monthly data simulated from the parameterized models to

produce annual data.
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3.1. The external-habit model

The representative agent maximizes utility given by:

U = E

1X

t=0

δt
(Ct −Xt)

1−γ − 1
1− γ

,

Ct denotes consumption at time t.

The dynamics of the habit variable, Xt, are implied by the law of motion of consumption

and surplus consumption. The latter is given by:

St =
Ct −Xt

Ct
.

The variable st = ln(St) evolves according:

st+1 = (1− φ)s̄+ φst + λ(st) [∆ct+1 − E (∆ct+1)] ,

where s̄ is the unconditional mean of st, φ is a parameter that controls the persistence of st,

and ct = ln(Ct). The deterministic function λ(st) is given by:

λ(st) =

{ (
1/S̄

)p
1− 2(st − s̄)− 1,
0,

when st < smax,
when st ≥ smax,

where S̄ is equal to:

S̄ = συ

r
γ

1− φ
,

and

smax = s̄+
1

2
(1− S̄2).

The logarithm of consumption follows a random walk with drift:

ct+1 = ct + µ+ υt+1,

where υt+1 is an i.i.d. normally distributed variable with mean zero and variance σ2υ. We solve

the model using the algorithm discussed in Wachter (2005).8 We take the parameter values

from Table 1 in Wachter (2005). These values correspond to those used by Campbell and

Cochrane (1999), adapted for simulating the model at a monthly frequency. We summarize

these parameter values in Table 9. As in Wachter (2005), we consider a version of the model

in which equities are a claim to consumption.

8We thank Jessica Wacher for sharing her program for solving the Campbell-Cochrane model with us.
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3.2. The long-run risk model

The representative agent has the constant-elasticity version of Kreps-Porteus (1978) prefer-

ences used by Epstein and Zin (1991) and Weil (1989). The life-time utility of the represen-

tative agent is a function of current utility and the certainty equivalent of future utility:

Ut =
h
(1− δ)C

(1−γ)/θ
t + δ

(
EtU

1−γ
t+1

)1/θiθ/(1−γ)
,

where δ is a positive scalar. The variable θ is given by:

θ =
1− γ

1− 1/ 
.

The parameters  and γ represent the elasticity of intertemporal substitution and the coef-

ficient of relative risk aversion, respectively.

The process for consumption growth is given by:

log(Ct+1/Ct) = µ+ xt + σt"
c
t+1,

xt+1 = ρxt + φeσtet+1,

When ρ is close to one, this process captures the notion that there are shocks to the long-run

growth rate of consumption.

Dividends evolve according to:

log(Dt+1/Dt) = µ+ φxt + πσtηt+1 + 'σt"
d
t+1.

The volatility of consumption growth evolves according to:

σ2t+1 = σ2(1− ν) + νσ2t + σw"
σ
t+1.

The variables "ct+1, et+1, "
d
t+1, and "

σ
t+1 are mutually uncorrelated and follow a standard-

normal distribution.

We use the parameter values proposed by Bansal, Kiku and Yaron (2012), which we

summarize in Table 10.

3.3. The valuation-risk model

The preferences of the representative agent are given by:

Ut = max
Ct

h
λtC

(1−γ)/θ
t + δ

(
EtU

1−γ
t+1

)1/θiθ/(1−γ)
. (3.1)

13



The variable Λt+1 = log(λt+1/λt) determines how agents trade o§ current versus future

utility. This ratio is known at time t. We refer to Λt+1 as the time-preference shock.

The growth rate of the time-preference shock evolves according to:

Λt+1 = xt + σηηt+1, (3.2)

xt+1 = ρxt + σΛ"
Λ
t+1.

Here "Λt+1 and ηt+1 are uncorrelated, i.i.d. standard normal shocks. We think of xt as

capturing low-frequency changes in the growth rate of the discount rate. In contrast, ηt+1
can be thought of as high-frequency changes in investor sentiment that a§ect the demand

for assets as in the model proposed by Dumas, Kurshev, and Uppal (2009).

The consumption process is given by:

log(Ct+1/Ct) = µ+ αc
(
σ2t+1 − σ2

)
+ πcΛΛt+1 + σt"

c
t+1.

A share of stock is a claim on dividends which evolve according to:

log(Dt+1/Dt) = µ+ αd
(
σ2t+1 − σ2

)
+ σdσt"

d
t+1 + πdΛΛt+1 + πdcσt"

c
t+1.

Volatility follows the process:

σ2t+1 = σ2(1− ν) + νσ2t + σw"
σ
t+1

Variables "ct+1, "
d
t+1, "

Λ
t+1, and "

σ
t+1 are mutually uncorrelated and follow a standard-normal

distribution.

We use the parameter values estimated in Albuquerque, Eichenbaum and Rebelo (2014)

for their extended model. We summarize these parameters in Table 11.

3.4. Evaluating the models

To evaluate the performance of the models, we compare their implications for time-series

and episode correlations with estimates for the U.S. Our results are summarized in Table 12.

First, consider the external habit model of Campbell and Cochrane (1999). As discussed

in Albuquerque, Eichenbaum, and Rebelo (2014), the time-series correlations between stock

returns and consumption growth are uniformly too high relative to the data, even taking

sampling uncertainty into account. This shortcoming reflects the fact that the only source

of uncertainty in that model comes from the endowment side of the economy. Interestingly,

14



the non-linearities in the model imply that the episode correlations are higher than the

time-series correlations. So, arguably this model does well at accounting for the episode

correlations but does not do well at accounting for the time-series correlations.

Next, consider the long-risk model of Bansal, Kiku and Yaron (2012). Like the Campbell-

Cochrane model, this model does reasonably well at accounting for the high episode corre-

lations. But it implies counterfactually high time-series correlations, even taking sampling

uncertainty into account. As with the external-habit model, this shortcoming reflects the

fact that all uncertainty stems from the production side of the economy. However, unlike

the external-habit model, the long-run risk model does not generate an episode correlation

that is substantially higher than the time series correlations.

Next, consider the valuation-risk model of Albuquerque, Eichenbaum and Rebelo (2014).

The time-series correlations implied by this model are uniformly lower than the corresponding

point estimates from the data. Taking sampling uncertainty into account, the model accounts

for the time-series correlations at all horizons. However, the model does not capture the high

episode correlations.

4. Conclusion

Our main finding in this paper is that there is a high correlation between stock returns

and fundamentals across bull and bear episodes. This high correlation stands in sharp

contrast with the low time-series correlations between stock returns and fundamentals that

have been documented in the literature. We show that several asset-pricing models cannot

simultaneously account for the low time-series correlations and the high episode correlations.

There were two words for time in ancient Greece. Chronos is the word for calendar time.

Kairos refers to a moment of indeterminate time in which something special happens. To

account for our findings, we need a model in which the relation between stock returns and

consumption growth is di§erent in chronos and kairos time.
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Bulls Bears
Full)

sample Bulls Bears
Full)

sample Bulls Bears
Full)

sample

Length)in)years 14.8 3.2 12.7 4.1 11.5 4.3

Fraction)of)time 0.8 0.2 0.8 0.2 0.7 0.3

Equity)returns 14.2 A15.5 8.1 14.4 A14.5 6.9 17.0 A13.3 8.3
Volatility 16.4 18.9 20.7 21.2 19.4 24.3 26.4 17 27.7

Bond)returns 1.1 A1.1 0.7 2.1 A5.2 0.2 1.9 A2.5 0.7
Volatility 4.1 6.4 4.7 7.8 17.6 11.6 8.2 13 10

Equity)premium 13 A14.3 7.5 12.3 A9.3 6.7 15.1 A10.9 7.6
Volatility 16 20.7 20.2 22.7 18.9 23.7 27.8 17.6 27.9

Consumption)growth 2.3 0.7 2 2.4 1.3 2.1 2.4 1.9 2.2
Volatility 3.1 3.9 3.3 3.5 6.7 4.6 4.4 5.7 4.8

Output)growth 2.4 2 2.3 2.8 0.9 2.3 2.8 1.7 2.4
Volatility 4.7 6.8 5.2 3.9 8.1 5.4 3.9 6 4.6

Basic)statistics

Table)1

United)States G7 OECD



Boom/bust)episode Historical)events

186991915 Victory)on)Spanish)American)war,)technical)progress)(telegraph,)escalator,)movies,
Yukon)goldrush,)car)production)starts)

1915920 World)War)I)(1914))and)its)aftermath
1920928 Period)of)fast)technological)progress,)automobiles,)road)building,)telephone

electricity)spreads,)urbanization
1928931 The)Great)Depression

1931936
Innovations)in)chemical)engineering,)infrastructure,)diffusion)of)electricity,)machinery,)and)
the)automotive

1936941 Uncertainty)associated)with)World)War)II
1941972 Pax)Americana,)commercial)aviation,)interstate)highway)system
1972974 Oil)shocks
1974999 Computers)for)businesses,)personal)computers,)robotics,)the)internet
199992002 Nasdaq)crash)and)9/11
2002907 Housing)boom
2007908 Financial)crisis,)onset)of)Great)Recession

Table)2
U.S.)booms)and)busts)and)historial)events



1"year 5"year 10"year 15"year Episodes
Weighted"
episodes

Consumption"growth 0.099 0.401 0.240 0.239 0.635 0.626
(0.079) (0.173) (0.171) (0.196) (0.246) (0.207)

Output"growth 0.136 0.253 0.017 B0.034 0.462 0.328
(0.085) (0.133) (0.106) (0.146) (0.223) (0.210)

Consumption"growth 0.013 0.189 0.280 0.307 0.757 0.794
(0.061) (0.105) (0.130) (0.175) (0.107) (0.041)

Output"growth 0.178 0.345 0.397 0.373 0.788 0.821
(0.079) (0.091) (0.117) (0.170) (0.090) (0.050)

Consumption"growth 0.038 0.130 0.151 0.134 0.579 0.604
(0.033) (0.067) (0.103) (0.139) (0.086) (0.026)

Output"growth 0.125 0.272 0.262 0.210 0.644 0.656
(0.045) (0.067) (0.104) (0.148) (0.075) (0.028)

Correlation"between"stock"returns"and"fundamentals

United'States

G7

OECD

Table"3



Bulls Bears Bulls Bears

(United(States 0.045 0.042 (United(States 0.151 0.186
(0.095) (0.196) (0.107) (0.201)

G7 0.033 =0.107 G7 0.086 0.158
(0.054) (0.172) (0.058) (0.124)

OECD 0.066 =0.028 OECD 0.094 0.129
(0.029) (0.098) (0.034) (0.087)

Consumption(growth(and(stock(returns Output(growth(and(stock(returns

Correlation(within(episodes

Table(4



1"year 5"years 10"years 15"years Episodes Weighted"
episodes

Pooled
"""G7 0.013 0.189 0.280 0.308 0.757 0.794
"""OECD 0.038 0.130 0.151 0.134 0.579 0.604

Average
"""G7 0.035 0.164 0.191 0.225 0.406 0.436
"""OECD 0.039 0.087 0.023 C0.028 0.270 0.220

Pooled
"""G7 0.178 0.354 0.397 0.373 0.788 0.821
"""OECD 0.125 0.272 0.262 0.210 0.644 0.656

Average
"""G7 0.173 0.222 0.206 0.188 0.466 0.450
"""OECD 0.098 0.186 0.099 0.027 0.384 0.325

Stock&returns&and&consumption&growth

Stock&returns&and&output&growth

Table"5



Correlation*between*stock*returns*and*consumption*growth Correlation*between*stock*returns*and*consumption*growth

Simple Weighted Simple Weighted
U.S. 0.83 0.73 U.S. 0.25 0.43

(0.39) (0.18) (0.25) (0.15)

G7 0.76 0.66 G7 0.81 0.78
(0.15) (0.02) (0.14) (0.03)

OECD 0.69 0.61 OECD 0.77 0.70
(0.11) (0.02) (0.10) (0.02)

Correlation*between*stock*returns*and*output*growth Correlation*between*stock*returns*and*output*growth

Simple Weighted Simple Weighted
U.S. 0.85 0.72 U.S. 0.27 0.31

(0.49) (0.22) (0.24) (0.14)

G7 0.81 0.75 G7 0.82 0.78
(0.16) (0.03) (0.13) (0.04)

OECD 0.71 0.64 OECD 0.78 0.71
(0.12) (0.02) (0.11) (0.02)

Concordance*between*episodes*dated*with*stock*
market*and*consumption*or*output

Consumption Output
U.S. 0.84 0.78

G7 0.63 0.68

OECD 0.61 0.61

Episodes*dated*using*consumption Episodes*dated*using*output

Table*6



1"year 5"year 10"year 15"year Episodes
Weighted"
episodes

Ordinary"least"squares 0.116 0.459 0.520 0.543 0.460 0.585
U.S."Data 0.099 0.401 0.240 0.239 0.635 0.626

Ordinary"least"squares 0.126 0.301 0.307 0.308 0.425 0.474
U.S."Data 0.099 0.401 0.240 0.239 0.635 0.626

0.02 0.00 C0.01 0.00 C0.02 C0.02

Table"7

Correlation"between"consumption"growth"and"permutations"of"stock"returns

Correlation"between"stock"returns"and"consumption"growth

Correlation"between"stock"returns"and"fundamentals

Correlation"between"stock"returns"and"output"growth

Implied"by"VAR(2),"consumption"growth,"output"growth,"and"stock"returns



Episodes Weighted,episodes
U.S. 0.001 0.001
G7 0.024 0.039
OECD 0.015 0.031

Episodes Weighted,episodes
U.S. 0.002 0.002
G7 0.047 0.076
OECD 0.037 0.062

Correlations,at,5A,,10A,,and,15Ayear,horizons

Event,1

Event,2

Correlations,at,1A,,5A,,10A,,and,15Ayear,horizons

VAR,estimated,with,OLS

Table,8
Small,sample,properties



Table 9

Parameter values

Campbell and Cochrane (1999) model

Preferences δ γ φ
0.901/12 2 0.871/12

Consumption µ σν
1.89/12 1.50/

p
12

19



Table 10

Parameter values

Bansal, Kiko, and Yaron (2012) model

Preferences δ γ  
0.9989 10 1.5

Consumption µ ρ φe
0.0015 0.975 0.038

Dividends µ φ π '
0.0015 2.5 2.6 5.96

Volatility σ v σw
0.0072 0.999 0.0000028

20



Table 11

Parameter values

Albuquerque, Eichenbaum and Rebelo (2014) model

Preferences δ γ  
0.9980 1.334 1.291

Consumption µ αc πcΛ
1.58× 10−3 −20.4 0.0001

Dividends µ αd σd πdλ πdc
1.58× 10−3 −140.7 1.4121 −0.1859 −0.0008

Preference shocks ρ σΛ
0.997 2.80× 10−4

Volatility σ v σw
0.0061 0.939 7.03× 10−6
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1"year 5"year 10"year 15"year Episodes
Weighted"
episodes

US"data 0.099 0.401 0.240 0.239 0.635 0.626

External"habit"(Campbell"and"Cochrane"(1999)) 0.53 0.69 0.62 0.56 0.92 0.88

LongFrun"risk"(Bansal,"Kiku"and"Yaron"(2012)) 0.34 0.50 0.53 0.53 0.52 0.58

Valuation"risk"(Albuquerque,"Eichenbaum"and"Rebelo"(2014)) 0.03 0.07 0.08 0.07 0.07 0.10

Table"12

Correlation"between"stock"returns"and"consumption"growth


