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1 Introduction

The representative agent (RA) model has been used by macroeconomists to

understand business cycles for more than thirty years. This model, when

supplemented by price rigidities and financial frictions, does a reasonable

job of replicating the co-movements of consumption, investment, GDP and

employment in past data (Smets and Wouters, 2003, 2007). But it fails badly

when confronted with financial market facts (Cochrane, 2011).

The following three features of asset price data are anomalies from the

perspective of the RA model. 1) Asset prices are persistent and volatile

and price dividend ratios are mean reverting. 2) Aggregate consumption is

smooth but the return to a riskless asset is five hundred basis points less than

the return to the stock market. 3) Asset price volatility is non-constant and

non-Gaussian, and models that assume that asset prices are log normally

distributed with time-invariant volatility are rejected decisively by the data

(Bollerslev, Engle, and Nelson, 1994).1

This paper constructs a heterogenous agent general equilibrium model

that helps to explain all three anomalies. In this model, asset price fluctua-

tions are caused by random shocks to the price level that reallocate consump-

tion across two kinds of people. Asset prices are volatile and price dividend

ratios are persistent even though there is no fundamental uncertainty and

financial markets are sequentially complete.

My work differs in three ways from standard asset pricing models. First,

I allow for birth and death by exploiting Blanchard’s (1985) concept of per-

petual youth. Second, there are two types of people that differ in the rate

at which they discount the future.2 Third, my model contains an asset, gov-

1An active body of scholars seek to explain these anomalies. Some of the approaches

that have been tried include richer utility specifications (Abel, 1990; Constantinides, 1990;

Campbell and Cochrane, 1999) adding technology shocks with exogenous time-varying

volatility (Bansal and Yaron, 2004), and assuming that technology is occasionally hit by

rare disasters (Reitz, 1988; Barro, 2005, 2006; Wachter, 2013; Gabaix, 2012).
2Different discount rates may arise either because agents have different time-preference
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ernment debt, denominated in dollars. All three of these assumptions have

appeared before in previous work.3 My contribution is to combine them in

a way that generates novel results.

Because I am interested in the effects of distributional shocks, my baseline

model has no fundamental uncertainty of any kind. I characterize equilibria

as a first order non-linear difference equation in two state variables. This

equation has a unique feasible steady state that is a saddle point. I compute

the full set of dynamic equilibria by solving for a one dimensional manifold in

a two dimensional space. Trajectories that begin on this manifold converge

to the steady state and those trajectories completely characterize the set of

perfect foresight equilibria.

Because debt is denominated in dollars, there is a free initial condition

and the initial price level is indeterminate. I exploit this indeterminacy to

construct a set of stochastic rational expectations equilibria driven by purely

non-fundamental uncertainty. Following David Cass and Karl Shell (1983), I

refer to the random variables that drive these rational expectations equilibria

as sunspots.

Most sunspot models add a shock to the perfect foresight equilibria of a

model that has been linearized around an indeterminate steady state.4 This

method may be used to generate local sunspot equilibria but there is no

guarantee that the sunspot solutions of a linear approximation remain valid

rates (some agents are more patient) or because they have different ages. In this second

interpretation, explored in Farmer (2014a), the agents transit randomly from youth to

middle age to death.
3Farmer (2002a) develops a version of Blanchard’s (1985) perpetual youth model with

capital and aggregate uncertainty and Farmer (2002b) adds nominal government debt to

this framework to explain asset price volatility. Farmer, Nourry, and Venditti (2012), Gâr-

leanu, Kogan, and Panageas (2012) and Gârleanu and Panageas (2014) develop versions

of the Blanchard framework with two agents. The results in the current paper rely on all

three of these pieces; perpetual youth, multiple types and nominal debt.
4Farmer andWoodford (1984, 1997) is the first example of this type in a one dimensional

model and Woodford (1986) extends the technique to higher dimensions. See Benhabib

and Farmer (1999) and Farmer (1999), for further applications of this method to business

cycle models.
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once the variance of the shocks becomes large. In this paper, I exploit the

nonlinear nature of my solution to compute global sunspot equilibria. This

feature enables the model to generate a substantial term premium for assets

that exhibit duration risk.

Although I model an endowment economy, the framework I provide can

easily be extended to allow for production by adding capital and a labor

market. If my explanation for asset price volatility is accepted, models that

build on this framework have the potential to unify macroeconomics with

finance theory in a simple and parsimonious way.

2 Antecedents

This paper draws on ideas developed at the University of Pennsylvania in

the 1980s (Farmer, 2014b). Using the term “sunspots” to refer to nonfunda-

mental uncertainty, David Cass and Karl Shell (1983) showed that sunspots

can have real effects on consumption, even in the presence of a complete

set of financial markets. Using the term “self-fulfilling prophecies” to refer

to nonfundamental uncertainty, Costas Azariadis (1981) showed that non-

fundamental shocks could be added to a DSGE model to drive business cy-

cles. Drawing on both of these ideas, Roger Farmer and Michael Woodford

(1984; 1997) combined sunspots with indeterminacy to generate a model

where sunspot shocks explain persistent fluctuations in GDP.

In this paper I move the sunspot research agenda forward by developing

a sunspot model of asset pricing that represents an alternative to the widely

used representative agent approach (Abel, 1990; Campbell and Cochrane,

1999; Bansal and Yaron, 2004).

My work is most closely related to four unpublished working papers,

Farmer (2002a,b, 2014a) and Farmer, Nourry, and Venditti (2012). In Farmer

(2002a) and Farmer (2002b) I constructed a perpetual youth model of the

kind developed by Blanchard (1985). I added aggregate shocks, and I used
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the resulting framework to understand features of asset pricing data. The

models developed in those papers exploited the existence of an indeterminate

steady state, but they relied on the unrealistic feature that the equilibrium

is dynamically inefficient.

In joint work with Carine Nourry and Alain Venditti (Farmer, Nourry, and

Venditti, 2012) we thought we had solved the problem of dynamic inefficiency

by constructing sunspot equilibria in a model with a unique perfect foresight

equilibrium. Unfortunately, that turns out not to be the case as the putative

equilibria we construct in that working paper fail to equate the marginal

rates of substitution of each type of agent in every state. Consequently, the

paper does not fulfil its claim to generate sunspot equilibria.

In this paper I combine ideas from all of these working papers in a novel

way. First, I reintroduce nominally denominated government debt as in my

(2002b) paper. Second, I exploit the idea that there are two types of agents,

as in Farmer, Nourry, and Venditti (2012). And third, I introduce a technique

to construct global sunspots that is a development of an idea first introduced

in Farmer (2014a).

This is not the only paper to explore heterogenous agents models to un-

derstand asset pricing data. Gârleanu, Kogan, and Panageas (2012) build a

two agent lifecycle model where the agents have recursive preferences but a

common discount factor and they show that this model generates intergen-

erational shifts in consumption patterns that they call ‘displacement risk’.

In a related paper Gârleanu and Panageas (2014) study asset pricing in a

continuous time stochastic overlapping generations model. In contrast to

my work, these papers focus on fundamental equilibria and they adopt the,

now common, assumption of Epstein Zin preferences (Epstein and Zin, 1991,

1989).

Challe (2004) generates return predictability in an overlapping gener-

ations model and Guvenen (2009) constructs a production economy that

he solves computationally. Constantinides and Duffie (1996) exploit cross-
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section heterogeneity of the income process to show that uninsurable income

risk across consumers can potentially explain any observed process for asset

prices. Kubler and Schmedders (2011) construct a heterogenous agent over-

lapping generations model with sequentially complete markets. By dropping

the rational expectations assumption, they are able to generate substantial

asset price volatility. In a related paper, Feng and Hoelle (2014) generate

large welfare distortions from sunspot fluctuations.

My work differs from these papers by providing a simple and analytically

tractable model that provides a bridge between asset pricing models and

business cycle models. In contrast to the now familiar assumption of Epstein

Zin preferences, my agents are expected utility maximizers with logarithmic

utility functions. I abstract from fundamental shocks and I assume that mar-

kets are sequentially complete. Despite the simplicity of these assumptions,

I am able to go a considerable way towards explaining features of asset pric-

ing models that have presented an obstacle to previous models that adopted

similar assumptions.

3 The Structure of my Model

This section lays out the structure of my model, and it explains how fiscal

and monetary policy interact. Sections 3.1 — 3.4 lay out the assumptions

about the environment and Section 3.5 discusses an important implication

of the absence of intergenerational transfers. This assumption implies that

the model is non-Ricardian in the sense of Barro (1974).

3.1 Assumptions about people, apples and trees

There are two types of people. Each type is endowed with one unit of a

unique perishable commodity in every period in which he is alive; I call this

an apple. The wealth of a person in the year of his birth is equal to the

discounted present value of his apples. I call this a tree.
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People have logarithmic preferences and discount factors 1 and 2. Type

1 people are more patient than type 2 people. This assumption is represented

by the inequalities,

0  2  1  1. (1)

People of each type die with probability 1− and when a person dies he

is replaced by a new person of the same type. The model contains  type 

people, where
P

  = 1, hence, there is a constant population of measure 1.

3.2 Assumptions about uncertainty

Uncertainty in period  is indexed by a random variable  with compact

support S

 ∈ S

I refer to a −period sequence 
 as a −period history with root ,


 = { +1 } 

The root is the initial date-state pair and a history, 
 is a  −  dimensional

random variable with support S−
 .

In the remainder of the paper, I will drop  subscripts to cut down on

notation. Instead, I will use the notation  to refer to  () and  (0)

to refer to +1 (
0)  All real date  variables are functions of the current

realization of .

3.3 Assumptions about the asset markets

Asset markets are sequentially complete. Three assets are actively traded;

Arrow securities, government debt, and trees.

An Arrow security costs  (0) apples at date  and pays one apple at

date + 1 if and only if state 0 occurs. In aggregate, people of type  hold
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 () type  securities at date  in state . The quantities of each security

demanded by each type may be positive or negative.5

Government debt costs 0 dollars at date  and is a claim to0 dollars

at date  + 1. Because the dollar price of apples is a random variable, the

real return to government debt is also random.

A tree costs  apples at date  and delivers one apple every period in

which the issuer of the asset remains alive. The price of a tree is computed

recursively from the pricing equation,

 = 1 +  [ (
0) (0)] 

The term  appears in this expression to reflect the fact that the tree will be

worthless next period with probability (1− ). This reflects the probability

that the person issuing the claim has died.

Let 
¡



¢
be the price today of a claim to one apple in history 

 . I

assume that

lim inf
→∞


¡



¢
= 0 for all 

 

This is the stochastic generalization, for this economy, of the assumption that

the interest rate is greater than the growth rate and it rules out equilibria

that are dynamically inefficient.

3.4 Assumptions about government

Government consists of a central bank and a treasury. The treasury issues

dollar denominated one-period debt and faces the budget constraint

0 =  −  (2)

5Because I make assumptions that allow me to aggregate the consumption decision of

each type, I do not refer to the asset holdings of individual agents. But in fact these asset

holdings display a rich pattern of heterogeneity. Asset holdings depend not just on type,

but also on the state into which a person was born.
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at every date  where  is the proportional tax rate and  is the dollar price

of an apple.

The central bank sets the gross interest rate equal to a constant, that I

denote by   where  ≡ 1 , in every period. A monetary policy rule

of this kind is called passive. The treasury issues sufficient nominal debt to

roll over its existing debt, net of tax revenues. A fiscal policy of this kind is

called active.6

MichaelWoodford (1995), has shown that, in representative agent economies,

the combination of an active fiscal policy and a passive monetary policy leads

to a unique equilibrium price level. This result is known as the fiscal theory

of the price level and it does not hold in the model I develop in this paper.7

Dividing Equation (2) by  and multiplying and dividing the left-hand

side by 0, we can write the following expression for the evolution of govern-

ment debt

00 = −   (3)

where

 ≡ 


 and 0 =

0




In Section 5.2 I will combine Equation (3) with a difference equation in 

and  that arises from the assumption that the marginal rates of substitution

of each type are equal state by state. This leads to two difference equations

in two variables,  and . For any given initial condition, pinned down by

the initial price of apples, these difference equations fully characterize the set

of perfect foresight equilibria.

6This terminology is due to Leeper (1991).
7The fiscal theory of the price level treats the government budget constraint as a val-

uation equation. For a given net present value of tax revenues, there is a unique price

level for which the budget is exactly balanced. That is not true in my model. Instead,

variations in the price level redistribute the tax burden of the debt between the current

generation and future generations.
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3.5 Aggregate wealth and Ricardian equivalence

The aggregate wealth of the private sector consists of the after tax value of

existing trees, plus the value of government debt.

I will use the symbol  to represent aggregate private wealth,

 =  −  +  (4)

and the symbols  and  to represent the tax rate and the tax obligations

of current generations.  and  are related by the identity,

 ≡  

Because the economy is closed, government debt is the liability of private

agents. But some of the people who will repay that debt have not yet been

born.8 Using ̄ to represent the tax liability of future generations, the net

present value of the government’s assets must equal the net present value of

its liabilities,

 ≡  + ̄  (5)

Note however that

 6= 

This model is non-Ricardian in the sense of Barro (1974) because future,

as yet unborn generations, are partially liable for the debts incurred by the

treasury on behalf of the current generation.

The fact that the model is non-Ricardian depends, not just on demograph-

ics, but also on the assumption that there are no active intergenerational

8Gârleanu, Kogan, and Panageas (2012) refer to the risk introduced by incomplete

participation as ‘displacement risk’. In their work, all uncertainty is fundamental. Farmer,

Nourry, and Venditti (2012) also cite incomplete participation as a reason for the existence

of sunspot equilibria. However, their paper does not allow for a nominal asset. As a

consequence, the equilibrium in Farmer, Nourry, and Venditti (2012) is unique. I am

indebted to Pawel Zabczyk, Markus Brunnermeir and Valentin Haddad for discussions

which helped me to clarify this issue.

9



transfers. This is an important assumption because it allows me to construct

sunspot equilibria in which people born into different sunspot states have

different utilities. One might think that, if people cared for their children,

they would make asset market trades on their behalf that would eliminate

the effects of nonfundamental uncertainty. That argument is incorrect.

In order for asset market trades to eliminate sunspot uncertainty it must

be possible for a person to leave his children with positive bequests in some

states of nature and with negative bequests in others. Although these trades

would never be observed on the equilibrium path, their conceptual existence

is required in order to enforce uniqueness of the fundamental equilibrium.

The fact that western legal codes prohibit debt bondage is sufficient to rule

out trades of this kind.

4 Household choice

In this section I solve individual maximization problems and, in Sections 5

and 6, I put the solutions to these problems together with the market clearing

conditions to characterize equilibria.

4.1 Utility maximization as a recursive problem

Agents have logarithmic preferences and an agent of type  solves the problem

 [] = max
{(0)}

{log +  [
0
 (

0)]} 

such that X
0

 (0) 0
 (

0) +  ≤  ()  (6)

and

 ≡  () 
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 is wealth at date  in state , and  is the holding of a type  agent of

security . In the period of his birth, the wealth of a person of type  is equal

to

0 =  () (1− )  (7)

4.2 Annuities, life insurance and lifecycle utility

Because this is a lifecycle economy I must keep track of peoples’ assets when

they die. I follow Blanchard (1985) by assuming that there exist complete

annuities markets. The term  multiplies each security price in Equation (6)

because a person who holds a positive amount of security 0 simultaneously

purchases an annuities contract. He earns a return greater than the market

return in state 0 in return for leaving his assets to the annuities company

in the event of his death. Similarly, a person who borrows security 0 is

required to purchase a life insurance policy that discharges his debt in the

event of his death.

4.3 Consumption demand functions

I have made three strong assumptions. First, every person has the same

probability of death, independent of his current age. Second, preferences are

logarithmic, and third, markets are sequentially complete. The first two of

these assumptions are common to all models that use Blanchard’s 1985 per-

petual youth model. The third assumption, of sequentially complete markets,

allows me to easily solve my model when there are two types of people.

I show, in Appendix A, that these assumptions imply that the aggregate

consumption of the two types are linear functions of their wealth.

1 =1 ≡ 1 ()  2 =2 ≡ 2 ()  (8)

where the parameters  and  are functions of the discount factors,  and
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of the survival probability, 

 =
1

1− 1
  =

1

1− 2


The assumption that type 1 agents are more patient than type 2 agents

implies that

  

5 Perfect foresight equilibria

In this section I derive an expression for the equilibrium price of an Arrow

security and I characterize perfect foresight equilibria as the solution to a

pair of difference equations.

5.1 Marginal rates of substitution

Let  be the marginal rate of substitution of a type  person who is alive in

two consecutive periods. When preferences are logarithmic and markets are

complete, the marginal rates of substitution of each type are equal to the ra-

tios of their consumptions, weighted by the discount rate and the probability

that they will survive,

1 =
11

1 (
0)
 and 2 =

22

2 (
0)
 (9)

I am using lower-case  to represent the consumption of an individual

person of type , and upper case  to mean the aggregate consumption of

all people of type . The superscript  on the term  indexes a person who

was alive in the previous period.

Following this convention,  (
0) is the consumption, next period, of a

type  person who is still alive and 
 (

0) is the aggregate consumption

of all of these people. I show in Appendix B, that Equation (9) can be
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aggregated across people and that the ratios of consumptions of each type

in two consecutive periods obeys the same equation as individual marginal

utilities,

1 =
11


1 (

0)
 and 2 =

22


2 (

0)
 (10)

Further, I show that the numerators and denominators of Equations (10) can

be expressed as affine functions of the components of aggregate wealth,

 = 0 + 1 [ (1− ) + ]  (11)


 (

0) = 0 + 1
0
 (

0) (1− ) + 2 (
0)  (12)

where the coefficients of these equations are functions of the deep parameters,

1 2 and .

Although the coefficients of  depend only on the sum,  +  , the

terms  (
0) and  (0) appear in the expression for 

 (
0) with different

coefficients. This important property follows from the fact that the newborns

next period do not hold government debt. It is important because the fact

that 1 and 2 are different implies that variations in the composition of

wealth between trees and government debt will influence the pricing kernel.

5.2 Characterizing perfect foresight equilibria

To characterize equilibria I will derive two functions  and . The function

 describes a relationship between the price of a tree and the value of debt.

The function  describes the pricing kernel.

In a competitive equilibrium with complete markets, the marginal utility

of consumption of each type must be equal in every state. Combining equa-

tions (10), (11) and (12), these marginal utilities can be written as functions

of   
0
 and 0

1 (  
0
 

0) = 2 (  
0
 

0)  (13)
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Solving (13) for 0 leads to the definition of ,

0 =  (  
0)  (14)

Replacing Equation (14) in the either of the functions (·), for  ∈ {1 2}
we obtain the following definition of the pricing kernel ,

 (  
0) ≡  [   (  

0)  0]  (15)

Next, I derive a pair of difference equations that characterize competitive

equilibria. Equation (14), defines one difference equation in two variables,

 and  Substituting from Equation (15) into the government budget con-

straint leads to a second difference equation in  and 

 =  +  (  
0) 0. (16)

To study the properties of a perfect foresight equilibrium, I define a vari-

able 0

0 =  (  
0)  (17)

and, in Appendix , I derive a transformation of variables that rewrites

equations (14) and (16) as an equivalent system in the variables {}.9
The transformed system has the form,"

0 −  ( )

0 − ( )

#
= 0 (18)

In a separate Appendix, available online, I publish the code used to solve

the model and I show that, for the parameter values used in my calibration,

9This transformation is convenient because, as I will demonstrate in Section 6, there

are equilibria of this model where 0 is a random variable. Given an expression for

the evolution of the sequence {}, I can price any asset by computing the conditional
expectation of its return with 0.
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there exists a unique feasible steady state,
©
̄ ̄

ª
that satisfies the equation"

̄− 
¡
̄ ̄

¢
̄−

¡
̄ ̄

¢ # = 0 (19)

Further, this steady state is a saddle point

.

1D

2D
'm

m

m

b b 'b
Figure 1: The set of pefect foresight equilibria

The axes of Figure 1 represent values of {}. The map defined in
Equation (18) sends every point in this space to some other point. The

upward sloping solid green curve is the stable manifold and the downward

sloping dashed red curve is the unstable manifold. The stable manifold is a

set  = [12] and a function  : → R,

 =  ()  (20)

with the property that every point that begins on this manifold follows a
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first order difference equation  : → 

0 =  ()  (21)

that converges to the steady state
©
̄ ̄

ª
.

5.3 Why there are multiple perfect foresight equilibria

The stable manifold,  () is one of two solutions to the functional equation,

0 =  [  ()] ≡  () 

 (0) =  [  ()] ≡  [ ()] 
(22)

In the first period of the model, type 1 people enter the period with a net

claim on type 2 people that I represent by 10. This initial condition imposes

a linear restriction on 0 and 0

0 + 10 + 20 = 10 (23)

where 0 1 and 2 are functions of the deep parameters. After transforming

the system to the new coordinates { }, Equation (23) implicitly imposes
a linear restriction on 0 and 0.

The trajectory that originates at {0 0}, calculated by iterating the
equation,

0 =  ()  0 = ̄ (24)

characterizes a perfect foresight equilibrium. If 0 were fixed in units of

apples, the point {0 0} would be unique. But because debt is denominated
in dollars, Equation (23) does not uniquely determine the values 0 and 0

As a consequence, there are multiple initial price levels, all associated with

a different perfect foresight equilibrium and a different initial point on the

stable manifold.
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6 Rational expectations equilibria

In this section, I show how to construct a set of rational expectations equi-

libria by randomizing over the perfect foresight equilibria of the underlying

model. In these equilibria, people form self-fulfilling beliefs about the distri-

bution of future prices. These beliefs are functions of the realization of an

extraneous random variable, a sunspot, and they are enforced by the exis-

tence of a complete set of Arrow securities that trigger payments between

agents of different types in response to the realization of the sunspot.

6.1 Randomizations over perfect foresight equilibria

In the finite Arrow-Debreu model there is, generically, a finite odd number of

equilibria. But one cannot construct new stochastic equilibria by randomiz-

ing across the existing perfect foresight equilibria. This is a direct implication

of the first welfare theorem which asserts that every competitive equilibrium

is Pareto optimal. Because people are assumed to be risk averse, they would

always prefer the mean of a gamble to the gamble itself. And, in the case of

sunspot fluctuations, that mean is available.

That result breaks down when there is incomplete participation in asset

markets as a consequence of birth and death (Cass and Shell, 1983). In that

case, one can construct randomizations across the perfect foresight equilibria

of the model that are themselves equilibria.

To construct equilibria of this kind, I generate sequences of random vari-

ables
n
̃ ̃

o
that satisfy the equations,



"
̃0 −  ( )

̃0 − ( )

#
= 0 (25)

Because there is a complete set of Arrow securities, Equation (26) also holds
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in every state, "
0 (0)−  ( )

0 (0)− ( )

#
= 0 (26)

For any pair of values {} there are many values of 0 and 0 that

are consistent with (26). But not all of these continuation values are valid

rational expectations equilibria since most of them eventually violate either a

boundedness condition or a non-negativity constraint. There is, nevertheless,

a large set of continuation values that are valid equilibria. These are the ones

that begin on, and remain on, the stable manifold.

Conventional rational expectations models select the initial price level by

choosing the unique belief that is consistent with the existence of a stationary

equilibrium. The fact that this initial price is indeterminate allows me to

construct rational expectations equilibria that are enforced by self-fulfilling

beliefs, encoded into the prices of Arrow securities.

6.2 Beliefs and sunspots

What enforces a sunspot equilibrium? Suppose that Mr.  and Mr. 

believe the writing of an influential financial journalist, Mr.  Mr. 

writes a weekly column for the, fictitious, Lombard Street Journal and his

writing is known to be an uncannily accurate prediction of asset prices. Mr.

 only ever writes two types of article; one of them, his optimistic piece,

has historically been associated with a 10% increase in the price of trees. His

second, pessimistic piece, is always associated with a 10% fall in the price of

trees.

Mr.  and Mr.  are both aware that Mr.  makes accurate predictions

and, wishing to insure against wealth fluctuations, they use the articles of

Mr.  to write a contract. In the event that Mr.  writes an optimistic

piece, Mr.  agrees, in advance, that he will transfer wealth to Mr. .

In the event that Mr.  writes a pessimistic piece, the transfer is in the

other direction. These contracts have the effect of ensuring that Mr.  ’s
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predictions are self-fulfilling.10 How can that be an equilibrium?

There are three groups of people involved in any potential trade. Pa-

tient agents alive today, impatient agents alive today, and agents of both

types who will be born tomorrow. Fluctuations in the price of trees cause a

wealth redistribution from the newly born, to the existing generations. This

wealth redistribution operates by a transfer of tax obligations to or from the

unborn. Because the existing agents have different propensities to consume

out of wealth, they choose to change their net obligations to each other in

different ways depending on whether the transfer from the unborn is positive

or negative. In a rational expectations equilibrium, the different behaviors

of Mr. A and Mr. B are self-fulfilling.

7 Global numerical approximations to equi-

libria

In this section I introduce a new method for computing sunspot-driven ratio-

nal expectations equilibria. The usual method of computing sunspot equilib-

ria proceeds by linearizing a dynamic stochastic general equilibrium model

around an indeterminate steady state and adding random shocks to the re-

sulting linear system (Farmer, 1999; Woodford, 1986). This method produces

a valid approximation to the equilibria of a non-linear model but the accuracy

of the approximation decreases as the variance of the shocks becomes larger.

In this section, I show how to construct a higher order global approximation

that remains valid for shocks that move the pricing kernel over the entire

range of its support.

10I have shown in Farmer (2002c), that self-fulfilling beliefs can be enforced by what

I call a ‘belief function’; a new fundamental that has the same methodological status as

preferences, technology and endowments. In Farmer (2012), I estimated a model in which

the belief function is a primitive and I showed that it fits post-war US data better than a

standard New-Keynesian model.
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7.1 The method described

To construct global sunspot equilibria, I map the pricing kernel into the

interval [0 1] and I assume that, for any value of , the variable ̃0 has a

Beta distribution with mean  (), where 0 =  () is the stable manifold

of the map (26). That assumption implies that in any given period, people

believe that ̃0 is a random variable with support for every value of ∈ .

In words, however well the economy is doing today, there is always positive

probability that next period will be associated with an extreme value in which

the discount factor is at its upper or lower bound.

The Beta distribution, (Johnson, Kotz, and Balakrishnan, 1995, Chap-

ter 21), is characterized by two parameters,  and  and if ̃0 has a beta

distribution, its conditional expectation is given by the expression,

 [̃0 | ] = 

+ 
.

Alternatively, one may parameterize the Beta distribution by the mean 

and the ‘sample size’,  , where

 =   and  =  (1− ) 

By modeling ̃0 as a Beta distributed random variable, I am able to

capture in a parsimonious way, the idea that people believe that equilibria

will be selected by the psychology of market participants.

One possible approach to modeling sunspots would be to fix the sample

size,  . This leads to the following dependence of the parameters  and 

on 

 () =   ()   () =  (1−  ()) 

However, this approach is problematic since for  close to 1 or 2, prob-

ability mass piles up at the boundaries. It seems desirable to retain the

property that the distribution has a single interior peak, a condition that
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requires that  and  are both greater than 1. For that reason, I chose to

let  be state dependent.

In my simulations, I chose a parameter   1 and I picked  such that

 () = max

∙
1

 ()


1

1−  ()

¸
 (27)

This choice of  guarantees that  and  are both greater than 1 (and hence

the distribution has a single interior mode), with strict equality only when

 = 1.

Figure 2 depicts the distribution of ̃0 for three different values of The

figure is drawn for the choice of  = 2, which corresponds to my baseline

calibration. Higher values of  generate pictures with the same qualitative

features but with a lower variance for each distribution.
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Figure 2: The Distribution of 0 when  = 2

The three dashed vertical red lines on Figure 2 depict values of. I chose
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values,

 =
h
0903 0945 0988

i


which correspond to the midpoint of the support of ̃0 and a distance of 001

from each end.

The dot-dashed vertical green lines depict the function  (). These

correspond to the values,

 () =
h
0904 0947 0987

i


For each value of  the associated single-peaked curve is the Beta distri-

bution associated with that realization of ̃0, with mean  (). Notice that

the variance of ̃0 is greater when  is in the center of the set  than at

either end. This property is dictated by three assumptions. First, ̃0 has

a Beta distribution, second, ̃0 has full support for every , and third, the

distribution of ̃0 has a single interior peak.

7.2 Calibrating the model

We have many examples of sunspot models. The interesting question is

whether a calibrated version of a sunspot model can help us understand the

behavior of asset prices. To address this question, I calibrated the model to

the parameter values reported in Table 1.

The parameter  is the probability that a person will survive into the

subsequent period and, when  = 098, the typical person has an expected

life of 50 years. I arrived at this number by splitting the age distribution of the

US population into quintiles and weighting each quintile by life expectancy

using mortality tables.

The choice of 1 to be 05 was arbitrary. I did, however, conduct robust-

ness checks and the results I report below are not sensitive to alternative

choices.
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Table 1

Parameter Description Parameter Name Parameter Value

Survival probability  098

Fraction of type 1 in the population 1 05

Gross nominal interest rate  105

Discount factor of type 1 1 098

Discount factor of type 2 2 090

Variance parameter  2

Primary surplus  002

To describe monetary policy, I chose  = 105. That choice is frequently

cited by central bankers as the ‘normal value’ for interest rates and it is

consistent with a safe real rate of 3% and an inflation target of 2%. It would

be interesting to study the properties of the model under the assumption

that  reacts to realized inflation. I will leave that task for future work.

The parameters 1 and 2, affect the steady state discount factor and

one can show that

2  ̄  1

I chose values of 098 and 09 by experimenting with the model to find values

that led to a mean safe rate of 3%. The gap between these two discount

factors determines the possible range of sunspot fluctuations and it needs

to be relatively large if the model is to have a hope of capturing observed

asset price movements. For any value of the support of ̃0, the parameter

 determines the variance of the sunspot distribution for any given . I

experimented with different values of  and chose  = 2 to match asset

returns with an approximate range of plus or minus 20%. Higher values of 

lead to lower asset return volatility and lower values lead to higher volatility.

Finally, I chose a value of  of 2% to match the mean post-war primary

government budget surplus.
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Table 2

Variable Name Parameter Name Parameter Value

Equilibrium discount factor ̄ 097

Equilibrium government debt ̄ 069

Equilibrium asset price ̄ 206

Return to a tree  103

Return to debt  103

The calibration of Table 1 implies the steady state values for ̄, ̄ ̄ 


and , reported in Table 2. Here,  and  are the real gross returns to

holding a tree, or to holding government debt, in the non-stochastic steady

state. These are the same and both are equal to 103, corresponding to a

real interest rate of 3%.

7.3 Approximate global solutions

A perfect foresight solution to the model is characterized by a set  and a

pair of functions  () : →  and  () : → R such that

0 =  [  ()] ≡  () 

 (0) =  [  ()] ≡  [ ()] 
(28)

for all  ∈ . To solve these equations I used Chebyshev collocation as

described in Judd (1998). That method converts the operator equation,

(28), into a non-linear algebraic equation in the coefficients of two unknown

polynomials ̂ () and ̂ (). These polynomials approximate the functions

 () and  () and by increasing the number of terms in the polynomial,

one can achieve an arbitrary close approximation to  and . In practice, I

used polynomials of order 3.

To compute the boundaries of the set , I solved Equation (29)

1 [1  (1)] = 0 2 [2  (2)] = 0 (29)
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to find the two points where one or the other type consumes the entire endow-

ment of the economy. For the calibration from Table 1 the lower boundary,

1 is equal to 0893 and the upper boundary, 2, is equal to 0998. When

 = 1, type 2 agents consume all of GDP. When  = 2, type 1 agents

consume everything.
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Figure 3: Some properties of the global solution

The top left panel of Figure 3 graphs the function ̂ () −  on the

vertical axis as a function of  on the horizontal axis. The point where the

curve crosses the zero axis corresponds to the steady state ̄ = 097 and

the range of  is defined by the set . I have graphed the change in 

as a function of  rather than 0 as a function of , because in a plot of
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0 against , it is difficult to discern the difference between 0 and the 45

degree line.

The top right panel of Figure 2 graphs the consumption of type 1 people,

this is the upward sloping curve, and the consumption of type 2 people, this is

the downward sloping curve. The lower left panel of Figure 3 is the function

 = ̂ (). This panel shows that, when the primary surplus is 2% of GDP,

government debt can attain values between 20% and 85% of GDP.

The lower right panel of Figure 3 is the price of a tree as a function of .

This panel demonstrates that, for the calibration in Table 1, the price of a

tree can vary between 8 and 24. This fact is significant since  determines

the lifetime wealth of a newborn. A person born into the world when  = 24

will be three times better off during his life than a person born into the world

when  = 8.

8 Explaining the three puzzles

In the introduction, I identified three asset pricing puzzles. 1) Asset prices

are persistent, volatile and mean reverting. 2) Aggregate consumption is

smooth but the return to a riskless asset is five hundred basis points less

than the return to the stock market, and 3) Asset price volatility is non-

constant and non-Gaussian. This section describes the method I used to

simulate data from the model and it presents a series of graphs that depict

the characteristics of these simulated data. I use these simulations to ask:

how far can my model go towards explaining the three asset pricing puzzles?

8.1 Excess volatility

To simulate data, I initialized 0 = ̄ and I generated 60 years of data

by drawing a sequence of Beta distributed random variables that obey the

recursion,

0 = 
h
 ()  ̂ ()

i
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where  ( ) is the beta distribution parameterized by sample size  and

mean . I chose  to be a function of , using the method described in

Section 7.1, Equation (27).
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Figure 4: 60 Years of Simulated Data

Figure 4 plots the data generated from a single 60 year simulation. The

green dashed series, is the real risky return, . This is the payoff from

buying a tree in period  and selling it again in period + 1.

 ≡ 100
µ

0
 − 1 − 1

¶


The solid blue line is the real safe return . This is equal to

 ≡ 100
⎛⎝ 1R 2

1
Pr

h
0; ()  ̂ ()

i
0
− 1
⎞⎠ 
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where Pr
h
0; ()  ̂ ()

i
is the density function of a Beta distributed ran-

dom variable, defined over the set, with mean ̂ () and sample size  ().

A person could earn this return by buying a bundle of Arrow securities, one

for each realization of the future value of 0.

The dashed red line is the realized inflation rate predicted by the model.

Notice that the movements in inflation are small, relative to asset price fluctu-

ations. That is encouraging since it means that the model does not generate

asset price volatility at the cost of counterfactually large fluctuations in goods

prices and inflation.

Table 3 reports the means and standard deviations of  and  for this

draw of sixty years of data, along with the Sharpe ratio, defined as

Sharpe =
 − 




where  is the standard deviation of .

Table 3: Safe Rate Risky Rate Sharpe Ratio

Mean 259 346

Std. Dev. 14 86 01

Two features stand out from this simulation. First; the risky return is

highly volatile fluctuating in this sample between a high of 30% and a low of

−16%. Second; the return from buying a long claim and holding it for a year
has a return which is almost 1% higher than the riskless rate. The fact that

asset prices are volatile and mean reverting, even when aggregate consump-

tion is constant, is the first feature of the data that I set out to understand.

The following section probes more deeply into the second feature, the ability

of my model to understand the equity premium puzzle.
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8.2 The Sharpe ratio, the equity premium and the

term premium

In the US data, the mean return to equity has been, on average, 5% higher

than the return to government bonds. Because it is possible to leverage

returns through borrowing, finance economists focus instead on a different

statistic; the Sharpe ratio. The Sharpe ratio, defined as the excess return

on a risky asset divided by its standard deviation, has varied in US data

between 025 and 05 depending on the time period and the frequency over

which it is measured (Cochrane, 2001).

Figure 4 suggests my model can explain part, but not all, of the equity

premium. In one simulated data series of 60 years, the excess return was

approximately 1% and the Sharpe ratio was 01. This fact raises raises several

questions. First; is the result a fluke?

The average Sharpe ratio in 60 years of simulated data is a random vari-

able and because asset returns are so volatile, its standard deviation is high.

To examine the ability of my model to produce a high Sharpe ratio, I sim-

ulated 500 draws of 60 years of data and I plotted the empirical frequency

distributions of the riskless rate, the mean return to holding a tree and the

Sharpe ratio. The results are graphed in Figure 5.

The lower panel of Figure 5 plots the distributions of safe and risky re-

turns. The more dispersed distribution, plotted in red, is the safe return.

The more concentrated blue curve is the return to holding a tree. This figure

shows that a 1% equity premium is not a fluke; it is characteristic of the

invariant distribution of returns.

The upper panel of Figure 5 plots the distribution of Sharpe ratios in these

500 simulations. This figure shows that the mean Sharpe ratio is around 01

and there is a non-trivial probability of observing a Sharpe ratio of 02 or

higher.

Andrew Abel (1999) has pointed to the important distinction between the

equity premium and the term premium. The equity premium is the excess
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return to holding a long dated claim to an uncertain income stream such as

equity. The term premium is the excess return to holding a long-dated claim

to a safe income stream such as a thirty year treasury bond. Abel finds that

about 14 of the equity premium puzzle can be attributed solely to the term

premium, a finding that is consistent with the data generated by my model.

Figure 5: The Sharpe ratio and the equity premium

Is this a success? Partially. My model has logarithmic preferences, ex-

pected utility and no fundamental uncertainty and yet it is able to generate

a substantial Sharpe ratio. It seems likely that a version of my model that

allows for more risk aversion and aggregate fundamental uncertainty will be

able to do much better in this dimension.
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8.3 Conditional volatility

Traditional asset pricing models rely on time varying volatility to explain

asset prices (Bansal and Yaron, 2004). The fact that asset prices display

bursts of volatility was highlighted by the ARCH and GARCH models of

Engle (1982) and Bollerslev (1986) and has since become a staple feature of

asset pricing models.

In much of the finance literature, conditional volatility is introduced by

assuming that shocks to dividend growth are driven by an exogenous sto-

chastic process with a time-varying standard deviation. The model I develop

in this paper generates endogenous conditional volatility.

The intuition for this result is contained in Figure 2. The assumption that

expectations are rational requires that the pricing kernel should be mean re-

verting. The fact that the support of ̃0 is bounded implies that the variance

of ̃0 is endogenously higher when is in the middle of its support than when

it is at either end.

If the discount factor strays towards the middle of its range following

a large negative shock, there is an increased probability that it will be hit

with an even larger negative shock that sends it towards the lower bound

of its support. Once it reaches that region, the variance of future shocks

falls and it takes a longer time to escape back towards the mean of the

invariant distribution. This feature generates endogenous bursts of stochastic

volatility.

One such burst is depicted in Figure 6. The top panel of this figure depicts

the risky rate, the safe rate and the inflation rate for one draw of sixty years of

data. The shaded region between observations 23 and 43 depicts an episode

where the volatility of the return to a tree is higher than at other times. The

lower panel blows up this picture to show more clearly the behavior of the

safe return and the inflation rate. Notice that a period of high volatility is

associated with a higher than average safe rate and a period of deflation.
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Figure 6: A Burst of Volatility
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The safe rate of interest climbs to nearly 10% over the period of increased

volatility and the inflation rate becomes negative for more than a decade.

These results are suggestive of the Great Depression or the 2008 financial

crisis.

9 Conclusion

In this paper, I have presented a theory that explains asset pricing data in

a new way. In contrast to much of the existing literature in both macro-

economics and finance, my work is based on the idea that most asset price

fluctuations are caused by non-fundamental shocks to beliefs. My model pro-

duces data that display volatile asset prices, a sizeable term premium and

bursts of time varying volatility. If one accepts the argument that a simpler

explanation is a better one, the fact that I am able to reproduce these empir-

ical facts in a model with logarithmic preferences and no fundamental shocks

suggests that the model is on the right track.

My model is rich in its implications. It provides a simple theory of the

pricing kernel that can be used to price other assets. The model is open

to more rigorous econometric testing and its parameters can be estimated,

rather than calibrated, using non-linear methods. It provides a theory of

the term structure of interest rates that can be tested against observed bond

yields and by adding a richer theory, in which output fluctuates as a conse-

quence of labor supply or because of movements in the unemployment rate,

the theory can be expanded to distinguish between the term premium and

the equity premium. I view all of these extensions as grist for the mill of fu-

ture research. Conducting these extensions is an important task because my

model is not just a positive theory of asset prices; it is ripe with normative

implications.

In my baseline calibration, I chose parameters to match key features of

the data and I generated simulated data series that closely mimic observed
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inflation, interest rates and asset prices in the real world. In these simula-

tions, asset price fluctuations cause Pareto inefficient reallocations of wealth

between current and future generations and these reallocations lead to sub-

stantial fluctuations in welfare. If my model is correct, and these fluctuations

are the main reason why asset prices move in the real world, stabilizing as-

set prices through monetary and fiscal interventions will be unambiguously

welfare improving.

Appendix A: Optimal decision rules

Let  ( ) represent the value function of a person of type . This function

obeys the Bellman equation,

 [] = max
{(0)}

(
log

"
 −

X
0

 (0) 0
 (

0)

#
+ [

0
 (

0)]}  (A1)

where

 −
X
0

 (0) 0
 (

0) ≡  (A2)

The unknown functions  ( ) must satisfy the following envelope condition,

 [] =
1



 (A3)

and the Euler equations for each state

− (
0)

1
+  [

0 (0)] = 0 (A4)
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Since this is a logarithmic problem with complete markets I will guess that

the value functions take the form

1 ( ) =  log (1)  2 () =  log (2)  (A5)

and verify this conjecture by finding values for the numbers  and  such

that equations (A3) and (A4) hold. By replacing the unknown functions

 (·) with their conjectured functional forms from Equation (A5) we arrive

at Equations (A6) and (A7).

1 =
1


 2 =

2


 (A6)

1 =
0 (0) 0

1 (
0)


 2 =

0 (0) 0
2 (

0)


 (A7)

The two budget equations, for each type, (A2), together with the four first

order conditions, (A6) — (A7), constitute six equations in the six unknowns,

 0
1, 

0
2 1, 2,  and . To solve these equations, substitute from (A7),

state by state, into Equation (A2), and cancel  from each side to give the

expressions

 =
1

1− 1
  =

1

1− 2
 (A8)

Combining these solutions for  and  with (A6) gives the consumption

rules that we seek.

Appendix B: Deriving an expression for the

pricing kernel

In Appendix B we seek to establish that the first order condition

 (0) =


0 (0)
 (B1)
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implies that

 (0) =
0 + 1 [ (1− ) + ]

0 + 1
0
 (

0) (1− ) + 2
0 (0)

 (B2)

The following argument follows closely from the argument developed in Farmer,

Nourry, and Venditti (2011). We begin with some definitions. Let  be the

consumption of a type  person who was alive in the previous period and let

 denote the consumption of a newborn of type . Further, let 

 be the

aggregate consumption of all newborns of type . To prove that (B2) follows

from (B1), we must find expressions for  and 0 as functions of  and .

The following steps imply that Equation (B1) must also hold not only for

individuals, but also in aggregate. Multiplying both sides of (B1) by 0 (
0)

and adding up over all people of type  who are alive in two consecutive

periods gives the expression,

 (0) 0
 =  (B3)

Rearranging, leads to the expression.

 (0) =


 0
 (

0)
 (B4)

This establishes the claim following Equation (9) in Section 5.1.

Goods and asset market clearing imply

1 + 2 = 1 (B5)

and

1 +2 =  (1− ) +  (B6)

Combing these equations with the solutions for consumption from Appendix
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, we have that,

1 =
[ (1− ) + −]

−
 and 2 =

[−  (1− )− ]

−
 (B7)

It follows that the coefficients of the numerators of (B2) are given by the

following definitions,

10 ≡ −1
−

 11 ≡ 1

−
 (B8)

20 ≡ 2

−
 21 ≡ −2

−
 (B9)

Next we seek expressions for the denominator of Equation (B2).

The aggregate consumption of all type  people alive in period + 1 can

be decomposed into the consumption of those who were alive in period  and

the consumption of the newborns. Let A be the index set of all type  people

alive at date  and let N+1 be the index set of all type  newborns at date

+ 1. Using these definitions,X
A+1

0 (
0) = 

X
A

0 (
0) +

X
N+1

0 (
0)  (B10)

where  premultiplies the first term on the right-side of this expression to

reflect the fact a fraction 1− of the previous generations have died. We can
rewrite Equation (B10), using the definitions of  0

 
0
 and  0

  as follows,

 0
 (

0) =
 0
 (

0)−  0
 (

0)


 (B11)

Now we seek an expression for  0
 () as a function of wealth. There are

1− newborns of each type, each of whom consumes a fraction of his wealth.
These facts lead to the equations,

 0
1 (

0) = −1 (
0) (1− ) (1− )  (B12)
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and

 0
2 (

0) = −1 (
0) (1− ) (1− )  (B13)

which determine the aggregate consumptions of newborns of each type. Com-

bining (B12) and (B13) with (B11), making use of (B7), leads to the expres-

sions we seek,

 0
1 (

0) =
[ (

0) (1− ) +  (0)−]

 (−)
−  (

0) (1− ) (1− )


 (B14)

and

 0
2 (

0) =
[−  (

0) (1− )−  (0)]
 (−)

−  (
0) (1− ) (1− )


 (B15)

These equations express the denominators of Equations (B2) as functions of

the components of wealth. It follows that the coefficients 0 1 and 2

from Equation (12) in Section 5.1 are defined as,

10 ≡
−

 (−)
 11 ≡ (1− )

∙
1

 (−)
− (1− )



¸
 (B16)

12 ≡
1

 (−)


and

20 ≡


 (−)
 21 ≡ − (1− )

∙
1

 (−)
+
(1− )



¸
 (B17)

22 ≡
−1

 (−)


Appendix C: Transforming variables

We seek to derive a map {}→ {00} given the functions  and ,

0 =  (  
0)  (C1)
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0 =  (  
0)  (C2)

and the government budget equation,

 = 00 +   (C3)

Equations (C1)—(C3) constitute three equations in the three unknowns , 

and 0 which may be solved to find three functions

 = 1 (
00)  0 = 2 (

00) and  = 3 (
00)  (C4)

Substituting 2 (·) and 3 (·) from (C4) into (C1),

2 (
00) =  [3 (

00)   0]  (C5)

Solving equations (C3) and (C5) for 0 and 0 as functions of  and  leads

to the functions we seek,

0 =  ( )  (C6)

0 =  ( )  (C7)

The existence of the functions  and is not guaranteed for all parameter

values. The online Appendix provides code to compute  and  for my

baseline calibration and to establish numerically that equations (C6) and

(C7) have a unique steady state for which debt and the consumptions of

each group are non-negative.
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