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Abstract

This paper studies housing markets with multiple segments searched by heterogeneous

clienteles. We document market and search activity for the San Francisco Bay Area. Vari-

ation within narrow geographic areas is large and differs significantly from variation across

those areas. In particular, search activity and inventory covary positively within cities and

zip codes, but negatively across those units. A quantitative search model shows how the

interaction of broad and narrow searchers drives housing market activity at different levels

of aggregation and shapes the response to shocks as well as price discounts due to market

frictions.

1 Introduction

Home buyers typically look for properties in a search range that depends on their geographic

preferences, budget, or family size. For example, they might only consider houses in a certain

price range that are also within reasonable commuting distance from their workplace. A family

with children might in addition require that the house be located in a good school district. An

individual property that comes on the market is thus considered by a clientele of potential buyers

whose search ranges contain that property. The interaction of these clienteles then determines

how turnover, inventory and prices differ across segments of the housing market.

Existing studies of housing search typically assume that clienteles are homogeneous. In partic-

ular, two common assumptions are that the market under consideration is either fully integrated

– that is, the clientele for each house consists of all potential buyers – or that it is perfectly seg-

mented, that is, it can be partitioned into submarkets, each with its own buyer type who considers

all houses in the submarket. However, when studying, say, a metro area, homogeneity of clienteles
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tute, Northwestern, Tsinghua, NYU, Philadelphia Fed, SITE, SED, Stanford, Yale, UCLA, and USC. This research
is supported by a grant from the National Science Foundation.
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is not a priori obvious. For example, a neighborhood with good schools might see competition

between families with children – who search narrowly in that neighborhood – and other potential

buyers, who search more broadly. More generally, the distribution of workplaces, preferences over

amenities, and commuting costs in the population is likely to generate clienteles whose search

ranges only partially overlap.

This paper considers housing search, trading and valuation in interconnected housing market

segments with heterogeneous clienteles. We introduce a novel dataset on housing search behavior

in the San Francisco Bay Area to document stylized facts on the search ranges of home buyers.

When we divide the Bay Area into market segments based on these observed search ranges, we

find substantial heterogeneity not only for market outcomes across segments but also for clienteles

both within and across segments. We then use a search model with multiple segments to relate

market outcomes to the distribution of preferences and the matching technology. We show that the

interaction of heterogeneous clienteles is a quantitatively important force in the housing market.

We infer search ranges from online housing search via the real estate website trulia.com. Home

searchers on trulia.com can set an email alert that triggers an email whenever a house with their

desired characteristics comes on the market. We find that housing search occurs predominantly

along three dimensions: geography, price and, to a lesser extent, house size as captured by the

number of bathrooms. Most searchers look for houses in contiguous areas that differ in geographic

breadth. In cheaper urban areas, there are fewer searchers per house; those searchers consider

broad search ranges to look for low prices. In contrast, clienteles in more expensive and more

suburban areas tend to be larger but also more selective.

To analyze market activity, we divide the San Francisco Bay Area into 564 distinct market

segments along dimensions suggested by the observed search behavior. We then measure the cross

section of turnover and inventory at the segment level by matching search alert data to deeds and

assessment records as well as feeds of “for sale”listings. We find that about half of the variation

in market activity occurs within zip codes, our finest geographic unit. Inventory and turnover

comove strongly, both at the segment level and when we aggregate to the zip code or city level. In

particular, in cheaper areas or segments, houses turn over faster, but there is also more inventory

for sale.

To relate market and search activity, we express search ranges as subsets of the set of all

segments, resulting in 11,503 distinct ranges. We measure search activity at the segment level in

terms of searchers per house. We find that the relationship between inventory and search activity

depends critically on the level of aggregation. Across cities, inventory and search activity are

inversely related – in other words, the “Beveridge curve”slopes down across cities. For example,

in expensive cities like San Francisco, many people search scarce inventory, while in cheaper cities

like San Jose, plenty of inventory is considered by few searchers. In contrast, the Beveridge curve

slopes up within most cities : for example, cheaper segments within San Francisco have higher

inventory and are considered by more searchers.
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Our model exercise builds on a version of the Diamond-Mortensen-Pissarides random matching

model with fixed numbers of both houses and agents. Moving shocks induce agents to sell their

current house (at a cost) and search for another house. What is new in the model is the presence

of multiple market segments as well as heterogeneous agent types identified by search ranges –

subsets of the set of all segments, as in our data. While matching is random, agents are more likely

to match in those segments within their search range where inventory is higher. Prices reflect the

present value of housing services less a discount due to search and transaction costs.

The equilibrium of the model relates the cross sectional distribution of turnover, inventory,

price and search activity to the distribution of preferences, moving shocks and the matching tech-

nology. The distribution of preferences – including search ranges – allows the model to capture

the rich clientele patterns we observe in the data. The key theoretical effect added by heteroge-

neous clienteles is that broad searchers flow to high inventory segments and compete with narrow

searchers there. This effect is stronger in more integrated areas, for example within cities that

have a larger share of broad searchers. It implies that the nature of clientele patterns matters

both for how market activity responds to changes in the economic environment and for what we

can infer about parameters from the cross section of market activity.

If there is perfect segmentation, then identification of the three forces that drive segment

heterogeneity is straightforward. In more stable segments – where moving shocks arrive less

frequently – turnover and inventory are both lower. In more liquid segments – where matching

is faster holding fixed the buyer and seller pools – turnover is also higher but inventory is lower.

The same is true in more popular segments that have more potential buyers per house. However,

more popular segments also see more search activity.

Our quantitative exercise suggests that patterns at the city level are driven by differences in

popularity and stability. More expensive cities like San Francisco are both more stable and more

popular than cheaper cities like San Jose. The former explains why turnover and inventory are

both lower in San Francisco. The latter explains why search activity is higher there as well; it also

helps generate a downward sloping Beveridge curve in the cross section of cities.

Within cities, the Beveridge curve is affected not only by the correlation of exogenous forces, but

also by the endogenous interaction of heterogeneous clienteles. Indeed, consider two segments that

are equally popular and differ only in stability. Broad searchers who scan both segments will tend

to flow to the less stable segment where inventory is higher. As a result, narrow searchers in the

unstable segment find it harder to find a house and must search more. Within partially integrated

areas such as cities, differences in stability alone thus generate an upward sloping Beveridge curve.

We show that this endogenous response of broad searchers is quantitatively important.

We use our estimated parameters to infer liquidity discounts for houses across segments. These

discounts are quantitatively large, between 10 percent and 40 percent of the frictionless house value

(defined as the present discounted value of future housing services by the house.) The liquidity

discounts are larger in segments that are less stable, where houses turn over more often. They are
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also larger in illiquid segments, where houses take a long time to sell for whatever reason. High

turnover and high time on market increase the value of the trading frictions that the current and

future buyers face, which amount to the liquidity discount.

Finally, we illustrate the role of search patterns for the transmission of shocks with comparative

statics exercises. In particular, we ask how time on market and inventory change if a segment

becomes more popular in the sense that more buyers want to narrowly buy there. The answer

crucially depends on the number of searchers and what other markets those searchers look at. For

example, shocks to a downtown San Francisco segment with many searchers who search broadly

are transmitted widely across the city. In contrast, shocks to a suburban segment close to the San

Francisco city boundary have virtually no effect on the market in the city itself.

These results suggest that the impact of policies on local housing markets will depend crucially

on the characteristics of the local clientele. For example, whether local zoning regulations to

increase the available housing stock in a neighborhood have a large impact on local prices and

time on market will depend on whether a neighborhood is considered primarily by narrow or broad

searchers.

Related Literature

Our paper contributes to a growing body of empirical work that analyzes housing market

activity in the cross section. The typical approach is to sort houses within geographic units (such as

cities) based on similarity along property characteristics, and to then compare measures of market

activity such as turnover and time on market across these segments (see, for example, Goodman

and Thibodeau (1998), Leishman (2001), as well as the survey by Islam and Asami (2009)). There

is, however, little direct evidence on housing search behavior. An exception is Genesove and Han

(2012) who build a time series for search activity at the city level from survey data on buyers’

house hunting experience. Our paper offers a new source of demand side information and uses

the distribution of online searchers’ criteria to define segments for which market activity is then

measured. Our approach emphasizes the heterogeneity of market and search activity within cities.

There is a large literature on search models of housing (see Han and Strange (2014) for a

comprehensive survey). Recent studies have turned to quantitative evaluations using micro data,

for example Diaz and Perez (2013), Burnside, Eichenbaum and Rebelo (2014), Head, Lloyd-Ellis

and Sun (2014), Ngai and Tenreyro (2014), Anenberg and Bayer (2014), Halket and Pignatti (2014)

and Guren and McQuade (2014). Most of these authors are interested in how search modifies the

time series dynamics of house prices and market activity in homogeneous housing markets.1 In

contrast, our focus is on steady states of markets with rich cross sections of houses and buyers.

Our theoretical model builds on earlier random matching models such as Wheaton (1990), Krainer

(2001), Albrecht, Anderson, Smith and Vroman (2007), Novy-Marx (2009), Piazzesi and Schneider

1Davis and Van Nieuwerburgh (2014) survey the broader literature on business cycles, asset prices and housing,
including studies that do not rely on search frictions.
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(2009); the new element is that we allow for matching across multiple interconnected segments.

In the labor search literature, Manning and Petrongolo (2011) estimate a search and matching

model for local labor markets. They also divide space into many small areas (U.K. wards in

their case, as supposed to U.S. zip codes in ours) and allow searchers to look in many areas

simultaneously, thus generating spillover effects across areas. Their demand side data consists

of addresses for both a job seeker’s home as well as the vacancies he applies to. They infer a

distribution of preferences that consists of each searcher’s home address as well as a common

parameter that determines how quickly utility declines with commuting time. Our approach puts

less structure on utility in order to exploit our detailed search data: we infer the distribution of

preferences from the nature of online search behavior, using both spatial and quality information

to define the commodity space.

Our paper also contributes to a recent literature that considers house valuation within metro

areas. For example, Poterba, Weil and Shiller (1991) consider the role of demographics for prices,

Bayer, Ferreira and McMillan (2007) look at school quality, and Hurst, Guerrieri and Hartley

(2014) study the effects of gentrification. Stroebel (2014) and Kurlat and Stroebel (2014) investi-

gate asymmetric information about property and neighborhood characteristics, respectively. Stein

(1995) as well as Mian and Sufi (2011) emphasize the role of credit constraints. Landvoigt, Pi-

azzesi and Schneider (2014) study the effect of credit constraints on prices in an assignment model

with many quality segments. They consider competitive equilibria of a model with homogeneous

preferences. In contrast, this paper emphasizes liquidity discounts due to search frictions and

transactions costs, as well as heterogeneity in preferences within a metro area.

2 Dimensions of Housing Search

In this section we document housing search behavior in the San Francisco Bay Area using email

alerts set on the real estate website trulia.com. We first describe the data and then provide

summary statistics on the major search dimensions. The discussion provides answers to three broad

questions. First, can search ranges inferred from trulia.com email alerts be plausibly interpreted as

reflecting the considerations of a typical home buyer? Second, how much heterogeneity in search

behavior do we observe? Third, is there a simple way to describe search ranges as subsets of a

space of characteristics (including geography and quality)?

The San Francisco Bay Area is a major urban agglomeration in Northern California that

includes the cities of San Francisco, San Jose and Oakland. Our analysis combines data on

two Metropolitan Statistical Areas (MSAs) bordering the San Francisco Bay. The San Francisco-

Oakland-Hayward, CA Metropolitan Statistical Area comprises Alameda, Contra Costa, San Fran-

cisco, San Mateo, and Marin counties. The San Jose-Sunnyvale-Santa Clara, CA Metropolitan

Statistical Area consists of Santa Clara and San Benito counties. As of the 2010 Census, these

counties were home to about 6 million people who live in about 2.2 million housing units.
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2.1 Email Alerts

Visitors to trulia.com can set alerts that trigger regular emails when houses with certain charac-

teristics come on the market. The web form for setting alerts is shown in Figure 1. Every alert

must specify the fields in the first line: “Type” is either “For sale,” “For rent,” or “Recently sold.”

The field “Location” allows for a list of zip codes, neighborhoods, or cities. Neighborhoods are

geographic units commonly listed on realtor maps that are often aligned with zip codes. When

users fill out the form, an autocomplete function suggests names of neighborhoods or cities.

The second row in the form provides the option of specifying house characteristics beyond

geography. Price ranges may be set by providing a lower bound, an upper bound or both. For

bedrooms, bathrooms and house size, there is the option to set a lower or an upper bound. In

the third row, “Property type” allows narrowing the search to “Single family home,” “Condo”

and several smaller categories. The remaining fields govern how emails are processed: for the

“New listing email alerts” relevant to our study, the options are “Email me daily” or “Email me

weekly.”2

Figure 1: Setting Email Alerts on Trulia.com

Pooling email alerts to obtain search ranges

We observe a random subset of 40,525 “For sale” search alerts set between March 2006 and

April 2012. Those alerts were set by 23,597 unique trulia.com users, identified by the (scrambled)

email address to which emails triggered by the alert are sent. Almost 70 percent of searchers

set only one alert, and more than 90 percent of searchers set three or fewer alerts. Since we are

interested in search ranges rather than individual alerts, we pool alerts set by the same searcher,

as described in the Appendix.

2Trulia also provides a second way for potential home buyers to set an email alert. After looking at results
from normal searches on their website, generally along the same dimensions as shown in Figure 1, users can press
a single button: “Send me an email whenever houses with these characteristics come on the market.”
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Representativeness

The interpretation of our findings depends to some extent on whether home searchers who use

trulia.com are representative of the overall pool of searchers. In particular, their use of the internet

in home search might signal that they are younger and richer than the average home buyer. While

we do not have direct demographic information on the searchers in our sample, recent surveys

conducted by the National Association of Realtors provide some useful background information

on modern home search.

The internet has now become the most important tool in the home buying process, with over

90 percent of home buyers using the internet in their home search process (National Association

of Realtors, 2013). In particular, for 35 percent of home buyers, looking online is the first step

taken in the home purchase process. The fraction of people who deemed real estate websites ”very

important” as a source of information was 76 percent, larger than the 68 percent who found real

estate agents ”very important”. Moreover, use of the internet is not concentrated among younger

buyers: 86 percent of home buyers between the ages of 45 and 65 go online to search for a home.

The median age of home buyers using the internet is 42, the median income is $83,700 (National

Association of Realtors, 2011). This is only slightly younger than the median of all home buyers

(which is 45), and slightly wealthier (the median income of all home buyers was $80,900).

In addition to showing that online real estate search is almost universal, this suggests that

we can learn from online real estate search about overall housing search behavior. Moreover,

trulia.com, with approximately 24 million unique monthly visitors during our sample period (71

percent of whom report to plan to purchase in the next 6 months), has similar demographics to

those of the overall online home search audience (Trulia, 2013).

Major dimensions of search

All email alerts specify at least a geographic dimension of the potential home buyer’s search

range. Roughly a third of the queries do not specify any fields in addition to geography. The

other fields that are specified regularly include listing price and the number of bathrooms. Table 1

shows the distribution of our sample of search alerts across whether these dimensions are specified.

Just under a third of queries specify both price and the number of bathrooms, while another third

specify just a price range. The remaining 5 percent of queries specify just a bathroom criterion in

addition to the geographic restriction. Other fields in Figure 1 are used much less. For example,

only 1.3 percent of queries specify square footage while 2.7 percent of queries specify the number

of bedrooms. While the latter two fields are alternative measures of size, the minimum number of

bathrooms is the most commonly used filter to place restrictions on the size of homes.

In Section 2.2, we establish stylized facts on the geographic breadth of housing search. In

Appendix A.1 we discuss the key characteristics of housing search along the price and size di-

mensions; we also provide information about how the size and price dimension correlate with

geographic breadth of the search range. For example, we document that searchers that are more
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Table 1: Distribution of Email Alert Parameters

Price not specified Price specified Total

Baths not specified 13,019 13,777 26,796
Baths specified 1,848 11,881 13,729

Total 14,867 25,658 40,525

Note: Table shows the distribution of parameters that trulia.com users specify in addition to geography.

specific about the price range and home size cover larger geographic areas.

2.2 Search by Geography

Each email alert defines the desired search geography by selecting one or more city, zip code or

neighborhood. About 61 percent of alerts define the finest geographic unit in terms of cities, 18

percent in terms of zip codes, and the remaining 21 percent of alerts in terms of neighborhoods.

Some queries include geographies in terms of cities, zip codes, and neighborhoods in the same

query. In order to compare search queries that specify geography at different levels of aggregation,

we translate every query into the set of zip codes that are approximately covered by that query,

as discussed in Appendix A.2. The search queries cover a total of 191 unique Bay Area zip codes.

Distance

To summarize how search ranges reflect geographic considerations, we construct various mea-

sures of size of the area considered. 26 percent of searchers consider only a single zip code. For

the remaining searchers, we measure the average and maximal geographic distance and travel time

between all zip codes contained in their search ranges. We focus on distances between population-

weighted zip code centroids. Population weighting is useful, since we are interested in the distance

between agglomerations within zip codes that might reflect searchers’ commutes.

Table 2 reports these measures of the geographic breadth of housing search. Geographic

distance is measured in miles, and is direct “as the crow flies.” We also report the maximum and

average travel times by car or public transport between the population-weighted zip code centroids.

Travel times are calculated using Google Maps, and are measured as of 8am on Wednesday, March

20, 2013.3 The size of the typical search range is consistent with reasonable commuting times

guiding geographic selections. For example, the median search range includes zip codes with a

maximum travel time by car of about 20.5 minutes, and a maximum geographic distance of 6.8

miles. Moreover, there is sizable heterogeneity in the geographic breadth of housing search.

3A few zip code centroids are inaccessible by public transport as calculated by Google. Public transport distances
to those zip code centroids were replaced by the 99th percentile of travel times between all zip code centroids for
which this was computable. This captures that these zip codes are not well connected to the public transport
network.
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Table 2: Distribution of Distances Across Zip Codes

Population-Weighted Zip Code Centroids

Min Bottom Decile Median Top Decile Max Mean

Max Geographic Distance 0.5 2.3 6.8 21.1 103.3 9.7
Mean Geographic Distance 0.5 1.8 3.2 8.9 74.0 4.7

Max Car Travel Time 4.0 9.5 20.5 38.5 143.5 22.8
Mean Car Travel Time 3.8 8.9 13.1 19.7 132.5 14.0

Max Public Transport Time 10.5 40.5 79.0 375.0 573.5 140.1
Mean Public Transport Time 9.3 27.3 48.0 120.0 375.0 169.9

Note: Table shows summary statistics of geographic distance and travel time between the population-weighted
centroids of all zip codes selected by a searcher. We focus on searchers who select more than one zip code. Travel
times are measured in minutes, distances are measured in miles.

In Appendix A.3 we show that the geographic patterns of housing search are constant across

the years in our sample, as well as across the seasonality of the housing market, suggesting that

they truly represent time-invariant measures of household preferences.

Contiguity & Circularity

To guide our modeling of clientele heterogeneity, we analyze whether there is a simple or-

ganizing principle for observed search ranges, namely that searchers consider contiguous areas,

possibly centered around a focal point such as a place of work or a school. We say a search range

is contiguous if it is possible to drive between any two zip code centroids in the range without

ever leaving the range. Here we allow for travel across one of the six Bay Area bridges. Details on

the construction of our measure of contiguity, full summary statistics, and examples of contiguous

and non-contiguous searches are provided in Appendix A.4. About 18 percent of searchers have

non-contiguous search ranges. These tend to be broad searchers, who consider more than five

distinct zip codes and hence provide market integration across neighborhood and city boundaries.

A stylized model of geographic search might view a search range as being circular around a

central point such as a job or a school. We ask whether the observed search ranges can be suitably

approximated by such a model. To do this, we compute, for each searcher, the geographic center

of the search range as the average longitude and latitude of all zip code centroids selected by

that searcher. We then determine the maximum distance to this center of any zip code centroid

contained in the search range. On average, the maximum distance is 3.95 miles, while the 10th

percentile is 1.31 miles and the 90th percentile is 12.78 miles. We next compute the number of

zip code centroids (not necessarily contained in the search range) that are within the maximum

distance to the center. We say a search range is circular if all zip codes within maximum distance

to the center are also contained in the search range. Figure 2 illustrates this procedure.

Overall, 47 percent of all searchers that cover more than one zip code have circular search

ranges. This number is highest, at 83 percent, for ranges that only cover two zip codes, and
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Figure 2: Explanation of Circularity Test

Note: Figure provides examples of the circularity measure. All zip codes that are part of the search set are shown
in blue. The geographic center of each search set is given in green. The circle is centered around this geographic
center and has radius equal to the furthest distance of any zip code centroid in the search set. All zip codes whose
center lies within the circle (and who are thus at least as close as the furthest zip code center in the search set) are
shaded. The left panel shows a non-circular search set, the right panel a circular search set.

declines for queries that cover more zip codes. In addition, for search sets with a larger maximum

distance, the proportion of searches that cover all zip codes within this maximum distance from the

center declines. On average, searchers cover 78 percent of all zip codes within maximum distance

of their search range center. For non-contiguous ranges, the share of zip codes covered falls to 33

percent.

We conclude from these results that it is difficult to arrive at a parsimonious description of

the geographic preferences defined by the search ranges. In particular, a modeling approach

that describes search ranges in terms of contiguous and/or circular subsets of the plane will fail

to account for the behavior of broad searchers who integrate markets. This finding guides our

approach in the next section, where we define a discrete grid of market segments, using zip codes

as the geographic units. Geographic selection can then be represented as subsets of the set of

all zip codes. This approach allows us to accommodate non-contiguous and non-circular search

patterns.
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3 Housing Market Segments

In this section, we divide the San Francisco Bay Area into a finite number of housing market

segments, motivated by the search ranges inferred from email alerts. We then establish stylized

facts on market and search activity at the segment level.

3.1 Data

To measure housing market activity, we combine three main datasets. We start with the universe of

ownership-changing deeds in the Bay Area between 1994 and 2011. The property to which a deed

relates is uniquely identified by the Assessor Parcel Number (APN). From the deeds data, we obtain

the property address, transaction date, transaction price, type of deed (e.g. Intra-Family Transfer

Deed, Warranty Deed), and the type of property (e.g. Apartment, Single-Family Residence). We

identify armslength transactions using information on the type of deed (see Appendix A.6).

We combine the transaction deeds with the universe of tax assessment records in the Bay Area

for the year 2009. Properties are again identified by their APN. This dataset includes information

on property characteristics such as construction year, owner-occupancy status, lot size, building

size, and the number of bedrooms and bathrooms.

Finally, we use a dataset of all property listings on trulia.com between October 2005 and

December 2011. The variables we use here are listing date, listing price, and the listing address.

The latter can be used to match listings data to deeds data. We can then construct a measure of

time on market for each property that eventually sells, as well as the average inventory that is for

sale in a market segment at each point in time.

Throughout, we pool observations for the period 2008-2011, a time period for which we observe

information on both housing search and housing market activity. The goal of this paper is to

understand the cross section of market activity. Pooling observations across years helps us achieve

a finer description of cross sectional heterogeneity. In particular, there are sufficiently many

observations to measure market activity in segments with few listings and low housing turnover

rates. To make prices comparable across years, we convert all prices to 2010 dollars using zip code

level repeat sales price indices.

3.2 Defining Segments

The next step is to partition the Bay Area housing stock into different market segments. The

finest partition that can be motivated by search data is obtained by the join of all search ranges

in our sample. Any division of houses into segments would then characterize the preferences of at

least one searcher. Moreover, the preferences of any one searcher could be expressed exactly as

a subset of the set of all segments. However, the problem with this approach is sample size: the

number of houses per segment would be too small to accurately measure moments such as time

on the market and inventory.
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Our approach, therefore, is to get as close as possible to the finest partition, but subject to

the constraint that segments must be sufficiently large in terms of volume and housing stock.

This leads us to a set H of 564 segments and a set Θ of 11,503 search ranges that can each be

represented as a subset of H. These segments contain houses within a zip code that are of similar

quality (based on price) and size (based on bathrooms). We provide a detailed description of the

algorithm for constructing these segments in Appendix A.5. In what follows we only sketch the

main steps.

We start from our earlier finding that people search mostly according to (i) quality, by spec-

ifying price ranges, (ii) geography, where zip code is generally the finest unit, and (iii) size, by

specifying the number of bathrooms. Facts (ii) and (iii) lead us to first divide the Bay Area by

zip code, and to then divide each zip code into two size categories, either “up to 2 bathrooms” or

“more than 2 bathrooms.”

To accommodate search by quality, we further divide – zip code by zip code – each size group

into four price groups. Here we start from a set of candidate price cutoffs: $200K, $300K, $400K,

$500K, $750K and $1 million. We then select the three cutoffs from these candidates that are

most often close to price cutoffs appearing in our email alerts. The idea is that the resulting set of

segments is close to the ideal partition implied by the ranges. In particular, high price zip codes

will typically have higher cutoffs than lower price zip codes.

At this point, we have divided each zip code into eight size-price groups. It is possible, however,

that some of these groups are too small to provide accurate measures of segment level moments.

Our criteria here are that a segment must have enough transactions as well as a sufficiently large

housing stock. If this is not the case, we merge candidate segments to form a larger joint segment,

as described in the appendix. As a result, some zip codes that have very thin housing markets will

have fewer than eight segments. This procedure splits the Bay Area into 564 segments, ranging

in housing stock between 1,211 and 13,167, with a median housing stock of 3,298 (see Table 3).

The left panel of Figure 3 shows a map of the city of San Francisco in gray in addition to the

area south of the city. The black lines delineate zip codes. The white areas without boundaries are

water. Within each zip code, there are up to eight dots that represent segments. The segments are

aligned clockwise starting with the cheapest segment at the top of the clock. The colors of the dots

are the average house price in the segment, with the Dollar amounts in thousands indicated by

the colored legend. The map illustrates the substantial heterogeneity of house prices in a city like

San Francisco. There is also important heterogeneity within zip codes: the variance of log prices

across zip codes captures only 60 percent of the variance at the (more disaggregated) segment

level.

The map in the right panel of Figure 3 shows the entire Bay Area. The busy agglomeration

of segments in the upper-left quadrant of the Bay Area map is San Francisco. The mostly light

blue segments in the lower-right quadrant are the cheaper city of San Jose. The pink segments

between these two cities are Silicon Valley cities like Palo Alto and Atherton, while the light blue
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segments across the water are Oakland and other cheaper East Bay cities. The light blue dots in

the upper-right corner belong to the Sacramento Delta.

Figure 3: Maps with segments in San Francisco and the Bay Area
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Note: The left plot shows a map of downtown San Francisco as shaded area and areas south of downtown. The
right plot shows a map of the entire Bay Area. The color bar indicates the price of the segment in thousands of
Dollars.

Given the final set of segments, we express each search range as a subset of these segments.

Here we start from the raw search range, specified along the dimensions quality, size and geography,

ignoring other dimensions (which are rarely specified). We then determine the set of segments

that is (approximately) covered by the specified range, using the algorithm described in Appendix

A.2. There are 11,503 distinct search patterns.

3.3 Market Activity and Search Activity

We next present segment-level facts about market and search activity. These facts reveal a number

of interesting patterns that motivate the subsequent quantitative exercise. The following notation

is useful to organize facts reported at the segment level. Let H denote the set of all segments.

The measure µH counts houses, so µH (h) is the housing stock in segment h. Let V (h) denote the

average monthly turnover rate in segment h, defined as the number of armslength transactions

divided by total housing stock. Let T (h) denote the mean time on the market in segment h,

defined as months between listing and sales date, less one month for the typical escrow period.

Our measure of average inventory in segment h is µS (h) := T (h)V (h)µH (h).4 We also define the

4This measure of inventory for houses conditions on houses that are eventually sold, since time on market T
is based on actual sales. Alternatively, one can construct measures of inventory directly from listings data. The
resulting series are noisy because they require assumptions on when the few listings that do not sell are removed.
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inventory share I (h) = µS (h) /µH (h), which is the fraction of the housing stock that is currently

for sale.

Every search range in our sample is a subset of the set of all segments H. We index the ranges

by θ ∈ Θ and refer to the set Θ as the set of searcher “types.”5 A searcher of type θ scans inventory

in the set of segments H̃ (θ) ⊂ H. The total housing stock that is of interest to searcher θ is

νH (θ) =
∑

h∈H̃(θ)

µH (h) .

Similarly, we define the total inventory considered by searcher θ, denoted νS(θ), as the sum over

all inventory µS for sale in segments in θ’s search range H̃ (θ).

The clientele of segment h consists of all searchers who consider segment h as part of their

search range, that is,

Θ̃ (h) =
{
θ ∈ Θ : h ∈ H̃ (θ)

}
. (1)

The pattern of clienteles reflects the interconnectedness of segments. As an extreme example,

in a perfectly segmented market, there are #H types with search ranges each consisting of a

single segment, and each segment has a homogeneous clientele of one type who searches only that

segment, that is H̃ (θ) = {h}. In contrast, in a perfectly integrated market, there is a single

type with H̃ (θ) = H, and all clienteles are identical and contain only that type. More generally,

clienteles are heterogeneous and may consist of distinct types with only partially overlapping

search ranges. Let β (θ) denote the relative frequency of search range θ in the data sample. The

distribution of searchers interested in segment h follows by integrating the distribution β(θ) over

Θ̃ (h).

As one summary statistic of overall search activity in segment h, we compute the weighted

number of searchers per house

σ (h) =
∑
θ∈Θ̃(h)

β(θ)

νH (θ)
. (2)

Weighting here captures the idea that search effort is somewhat diluted if it is broader. Indeed, if

every searcher was looking only at one segment, then σ (h) simply reflects the number of searchers

per house in h. More generally, some searchers θ in the clientele of h may consider segments other

than h. Dividing the number β(θ) of type θ by the housing stock νH (θ) that this type is interested

in makes broader searchers (who are interested in more housing stock) count less towards search

activity in h.

So far, all summary statistics have been defined at the segment level only. We are also interested

in how market and search activity vary at different levels of aggregation. Since V, I and σ are all

5For the presentation of facts in this section, “type” is no more than a label for search ranges. The notation is
motivated by our model below, where each search range will indeed correspond to a different type of agent (with
the search range a feature of preferences).
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defined as ratios relative to housing stock, aggregation uses housing stock as weights. For example,

the turnover rate over some subset G ⊂ H, such as a zip code or city, is computed as

∑
h∈G

µH (h)V (h)∑
h∈G µ

H (h)
.

In addition to administrative geographic units, we are also interested in aggregating to sets of

segments that are more closely integrated, in the sense that there is is a sufficiently large common

clientele. We define the area connected to h as the set of segments h̃ such that the weighted share

of searchers scanning both h and h̃ is at least a fraction φ of searchers scanning h,

Aφ (h) =

h̃ ∈ H :
∑

θ:h,h̃∈H̃(θ)

β (θ)

νH (θ)
≥ φ

∑
θ:h∈H̃(θ)

β (θ)

νH (θ)

 . (3)

The distribution of market and search activity

Table 3 presents summary statistics on market and search activity for the Bay Area as a whole,

as well as by segment. The housing market is illiquid: on average only 1.1 percent of Bay Area

housing stock is for sale at any point in time, and the average monthly turnover rate is 0.24 percent,

so that the typical house turns over once every 100/(0.24 × 12) = 35 years. The cross-sectional

variation in market activity at the segment level is substantial. For example, the upper quartile

inventory share is 1.5 percent, over twice as much as the 0.6 percent inventory share in the lower

quartile. Houses in the upper quartile volume segments turn over more than twice as fast as at

the lower quartile segments.

Table 3: Summary Statistics of Market and Search Activity

Inventory Share Turnover Rate Search Activity Mean Price Housing Stock
I (in percent) V (in percent) σ (in thous.)

Bay Area 1.14 0.24 1.00 649 2,216,021
Min 0.00 0.00 0.05 72 1,221
Q25 0.61 0.16 0.51 306 2,333
Q50 0.94 0.21 0.81 518 3,298
Q75 1.51 0.29 1.31 790 4,858
Max 6.66 0.97 7.05 2,491 13,167

Note: Table shows summary statistics for market and search activity, both for the entire Bay Area as well
as across the 564 housing market segments. We consider inventory share, volume share, search activity σ (see
equation 2 for the definition), mean price and total housing stock.

The measure of search activity in equation (2) has an average of one by construction. Its

distribution is positively skewed: the majority of segments have less than one weighted searcher

per house. The minimum of 0.05 is achieved by a segment in Martinez in the Sacramento Delta,
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which is primarily considered by a few very broad searchers. In contrast, some segments have

substantially more search activity, all the way to a maximum of 7.05 in a segment in central San

Francisco, which attracts many narrow searchers in addition to broad searchers.

Variation across submarkets

Table 4 reports cross sectional variation in observables at different levels of aggregation. There

are 564 segments, 191 zip codes and 96 cities in our data. The three left-hand panels show volatil-

ities and correlation coefficients across segments, zip codes and cities, respectively. Comparison

of volatilities shows that there is substantial variation across segments which is below the zip code

and city level. Indeed, the zip code-level movements account for only 46, 44, and 64 percent of the

segment-level variance in inventory share I, turnover rate V , and search activity σ, respectively.

Our market activity indicators – inventory share and turnover rate – comove strongly across

any type of “submarket”: segment, zip code, or city. Both variables also tend to be higher in

cheaper submarkets. In contrast, the comovement of search activity and market activity depends

crucially on the level of aggregation. While it is close to zero at the segment level, it turns negative

at the zip code, and even more negative at the city level. At the same time, the relationship with

price also changes: while more expensive segments do not see higher search activity on average,

more expensive zip codes and cities are searched more.

Variation within submarkets

The three right hand panels of Table 4 consider segment-level variation within submarkets.

The bottom two panels report volatilities and correlations within the average zip code and city.

There are 191 zip codes and 96 cities in our data. All moments are weighted using housing stock.6

The top right panel shows segment-level variation within areas connected by significant common

clienteles Aφ (h) , evaluating (3) with φ = 0.3. There are as many such areas as there are segments.7

For market activity indicators and prices, the nature of covariation across and within sub-

markets is essentially the same: inventory share and turnover rate move together and are both

negatively correlated with price. For zip code and city, the within-correlation coefficients in the

right hand panels are also quantitatively close to the across-correlation coefficients in the left hand

panels.

In contrast, the sign of the comovement between search activity on the one hand and market

activity and prices on the other depends crucially on whether we look within or across submarkets.

Indeed, for both zip codes and cities, search activity moves together with market activity and

against price across units, but it moves against market activity and with price within units. The

signs of within correlations are the same for connected areas that are defined on the basis of

common clienteles as opposed to geographic closeness.

6The unweighted median number of segments for both zip codes and cities is equal to 3. However, the distribution
of number of segments for cities is skewed. For example, San Francisco and San Jose contain 79 segments each.

7The median and 75th percentile connected area by number of segments consist of 5 and 10 segments, respec-
tively. The main qualitative message below is not sensitive to the choice φ.
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Table 4: Cross-Sectional Variation in Market and Search Activity

variation across units avg. variation within units
I V σ log(p) I V σ log(p)

segment conn. area
vol 0.74 0.12 0.81 0.64 vol 0.56 0.09 0.75 0.33

corr 1 0.93 0.03 -0.63 corr 1 0.87 0.34 -0.47
1 0.01 -0.48 1 0.27 -0.36

1 0.08 1 -0.18
1 1

zip code zip code
vol 0.50 0.08 0.65 0.50 vol 0.60 0.09 0.55 0.41

corr 1 0.91 -0.18 -0.67 corr 1 0.83 0.58 -0.76
1 -0.15 -0.52 1 0.41 -0.55

1 0.41 1 -0.54
1 1

city city
vol 0.42 0.07 0.48 0.46 vol 0.54 0.09 0.40 0.42

corr 1 0.93 -0.42 -0.74 corr 1 0.88 0.51 -0.67
1 -0.34 -0.59 1 0.42 -0.52

1 0.53 1 -0.51
1 1

Note: Table shows cross-sectional variation in market and search activity at different levels of aggregation:
564 segments, 191 zip codes and 96 cities. The left column presents statistics across units, the right column
presents statistics across segments within units. We consider inventory share, volume share, search activity σ
(see equation 2 for definition) and log(price). We present both volatilities (standard deviations) as well as within
and across unit correlations. Connected areas are defined as in equation (3), with φ = 0.3.

The relationship between inventory and measures of search activity is reminiscent of the “Bev-

eridge curve” that relates vacancies and unemployment in labor market statistics. The stylized

fact here is that the housing market Beveridge curve is downward sloping across broad units of

aggregation, while it is on average upward sloping within broad units. Panel A in Figure 4 shows

this relationship across cities, and Panel C across all segments within the city of San Francisco.

The Beveridge curve is upward sloping within 64 out of the 74 cities with at least two segments,

representing 84% of the total Bay Area housing stock. One notable exception is Oakland, which

has a correlation coefficient of -0.05. The fact is not primarily driven by small cities, however.

The within-city Beveridge curve slopes up for 23 of the largest 25 cities by housing stock, with

an average correlation of 0.44 and a 25th percentile correlation of 0.23. The correlation for San

Francisco is 0.61. Negative correlations among the top 25 cities are close to zero, at −0.05 and

−0.04.

Panel B in Figure 4 shows the positive correlation between inventory and turnover across cities.

Panel D shows the positive correlation between inventory and turnover within San Francisco.
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Figure 4: Inventory, Search and Volume
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(A) Beveridge curve across cities
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(B) Inventory vs. turnover across cities

0 2 4 6 8

1

2

Weighted # searchers σ

In
ve

nt
or

y 
S

ha
re

 I

(C) Beveridge curve within SF

0.1 0.15 0.2 0.25 0.3 0.35 0.4

1

2

Turnover rate V

In
ve

nt
or

y 
S

ha
re

 I

(D) Inventory vs. turnover within SF

Note: Figure shows inventory I, weighted number of searchers σ, and turnover rate V across and within cities.
Panel A shows inventory shares and weighted number of searchers (the Beveridge curve) across cities. Panel B
shows inventory share and turnover rate across cities. Panel C shows the Beveridge curve within the city of San
Francisco. Panel D shows inventory share and turnover rate within San Francisco. The size of the dots reflects
the size of the housing stock (from small to large). The color of the dots reflects housing prices from cheap (blue)
to expensive (pink).

Breadth of search & integration

The summary measure σ (h) reflects the average search activity in a segment, but it does

not tell us whether that activity is due to narrow local searchers or due to broader searchers

who provide connection to other segments. To summarize interconnectedness, we now compare

segments in terms of the inventory scanned by their typical client. The left-hand panel of Figure

5 plots the share of inventory in segment h in total Bay Area inventory (measured along the

horizontal axis) against the share of Bay Area inventory scanned by the median client of segment
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h (measured along the vertical axis). Every dot represents a segment, and color reflects the value

on the vertical axis so the segments can be recognized in the map in the right-hand panel.

Figure 5: Scanned Inventory
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Note: Figure shows scanned inventory by median household searching in each segment. In both panels, each
dot corresponds to one segment. In the left panel, the horizontal axis shows the inventory in that segment as a
fraction of entire Bay Area inventory. The vertical axis shows the fraction of total Bay Area inventory scanned
by the median searcher in that segment. The right panel shows the geographic distribution of these segments.

If the Bay Area were perfectly segmented, then any given segment would only have clients who

scan that particular segment. As a result, all points would have to line up along the 45-degree

line. At the opposite extreme, if the Bay Area were perfectly integrated, then every client of every

segment would scan all houses, so all points should line up along a horizontal line at 100 percent

of total inventory. Not surprisingly, the truth is in the middle: the median searcher in a segment

scans multiple times more inventory than is available in the segment itself, but far less than 100

percent of the Bay Area total.

Areas with a large common clientele appear in the plot as near-horizontal clusters: if any subset

of segments were perfectly integrated but not connected to other segments, then it would form a

horizontal line at the level of its aggregate inventory. This effect is visible for the top cluster of

pink dots. The map in the right hand panel shows that those dots represent cheaper segments in

the city of San Jose. More generally, clusters of dots with high scanned inventory correspond to

cheap urban areas, where broad search appears to be more common.
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The first column of Table 5 summarizes the distribution of inventory scanned by the median

searcher. In the average segment, the median searcher scans 2.1 percent of the total inventory

in that segment, or about 47 houses. The table also clarifies that most dots in Figure 5 are

clustered in the bottom left; the upper quartile is at only at 2.5 percent of total inventory. The

second column in Table 5 shows the distribution of within segment interquartile ranges for scanned

inventory. There is substantial within-segment heterogeneity in the clientele’s breadth of housing

search. Indeed, the average within-segment IQ range of inventory scanned by different searchers

is, at 1.75 percent, larger than the across-segment IQ range of inventory scanned by the median

searcher. Interestingly, clientele heterogeneity comoves strongly with overall connectedness: the

correlation coefficient between the first and second columns is 65 percent. In other words, in

segments that are, on average, more integrated with other segments, there are larger within-

segment differences between the interacting narrower and broader searchers.

Table 5: Variation in Scanned Inventory by Clienteles

Segment: total inv. Zip code: share of search City: share of search types
scanned (in percent) ranges (in percent) (in percent)
median IQ range one many subset other one many subset other

Mean 2.10 1.75 5.9 4.4 5.8 84.5 10.7 8.1 16.8 64.4
Q25 0.94 1.04 0 0 0.8 72.3 0 0 3.1 53.2
Q50 1.55 1.56 1.2 1.2 2.4 93.0 8.0 1.7 12.4 66.6
Q75 2.53 2.17 6.5 4.7 6.5 97.1 17.0 6.3 25.4 77.2

Note: Table provides information on the inventory scanned by clienteles at different levels of aggregation. The
second column measures the inventory scanned by the median searcher in a segment. The third column is the
interquartile range of inventory scanned across all searchers in a segment. The other columns report mean and
quartiles for the share of different searcher categories across segments. For each of the two geographies, zip code
and city, a searcher is a category “one” searcher if the reason he searches the segment is because he uniquely
selected that geography. The searcher is a category “many” searcher, if he only selected on that geography, but
included more than one unit. A “subset” searcher covers the segment, but only selected a subset of one zip code
or city to be included. “Other” searchers cover subsets of multiple zip codes or cities.

Search at the city and zip code level

The right-hand columns of Table 5 demonstrate the importance of detailed segment-level in-

formation for understanding search patterns. For each zip code and city, we consider all searchers

who are active in that zip code or city. We then separate these searchers into how they searched

in that geography. We first classify the share of searchers who scan exactly one zip code or city

in its entirety (column “one”). The category “many” captures searchers that scan only based on

the particular geography, but consider more than one zip code or city. Together, they indicate the

share of searchers for whom detailed segment level information beyond geography is not impor-

tant. The category labeled “subset” collects searchers who scan only a subset of the geography

(i.e. they scan less than one zip code, or less than one city), for example because they select that

zip code in addition to a price cutoff. The final category ”other” collects searchers for whom seg-
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ment information matters because their range intersects with multiple zip codes or cities, without

covering them in their entirety.

The table reports mean and quartiles for the shares of each category of searcher in the cross

section of segments. For example, in the average segment, only 5.9 percent of searchers select

exactly the zip code containing that segment. An additional 4.4 percent of searchers specify their

search query only in terms of zip codes, but specify more than just one zip code. The distribution

is highly skewed: in 75 percent of segments, the share of searchers scanning exactly the zip code

is 6.5 percent or less. The order of magnitude of the numbers is larger at the city level but still

relatively small. We therefore conclude that the clientele patterns at work in our data are not

simply driven by searches selecting a single zip code or city. Instead, other characteristics defining

a segment, in particular size and quality, play an important role.

4 Model

We now introduce a search model with multiple segments to interpret the stylized facts presented

above. In particular, we show how the interaction of heterogeneous clienteles helps to understand

the slope of the Beveridge curve within and across cities. More generally, the model relates ob-

served market outcomes (inventory, turnover and search) to the distribution of searcher preferences

and the matching technology. We can then use it to perform counterfactuals as well as to assess

the effect of search frictions and transactions costs on house values. We can also use our model to

analyze the transmission of shocks to local housing markets. We do this in Section 6.

4.1 Setup

The model describes a small open economy, such as the San Francisco Bay Area. Time is continu-

ous and the horizon is infinite. Agents live forever and discount the future using the risk-free rate

r.

Segments, search ranges and clienteles

We assume that different household types search across different segments of the housing

market, as in our data. We use the notation introduced in Section 3.3. There is a finite set H

of market segments. The measure µH on H counts the number of houses in each segment. We

normalize the total number of houses in the economy to one:∑
h∈H

µH(h) = 1.

Agents have quasilinear utility over two goods: numeraire and housing services. Agents own at

most one house. When an agent moves into a house in segment h, he obtains housing services

v (h) > 0, until the house falls out of favor, which happens at the rate η (h). After the house falls

out of favor, the agent no longer receives housing services from that particular house. The agent
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can then put the house on the market in order to sell it and subsequently search for a new house.

We assume that search for a new house is costless. While putting a house on the market is also

costless, sellers incur a proportional cost c upon sale of a house.

Agent type θ is identified by a search range, a subset H̃(θ) ∈ H of market segments that he

is interested in. Search ranges are part of the description of preferences, and type θ never moves

into a house outside of H̃(θ). We use a measure µΘ on the set of all types Θ to count the number

of agents of each type. The total number of agents is

µ̄Θ =
∑
θ∈Θ

µΘ(θ) > 1.

Since there are more agents than houses and agents own at most one house, some agents are always

searching. These µ̄Θ − 1 agents rent or stay in a hotel while they search for a house to buy.

The clientele Θ̃ (h) of segment h is the set of all agents who are interested in segment h, as

defined in (1). It is helpful to consider two extremes. The market is perfectly segmented if every

segment is searched by a single type who is interested only in that segment. The clienteles Θ̃ (h)

are then disjoint sets that each contain a single type θ. In contrast, the market is fully integrated if

there is only one type who searches all segments; all clienteles Θ̃ (h) are then identical and consist

only of that type. The inventory scanned by type θ is νS (θ).

Matching

Matching in the housing market involves searchers who scan inventory, identify suitable prop-

erties and make contact with sellers. We capture the entire process by a random matching tech-

nology. We make two assumptions. First, searchers flow into segments within their search range

in proportion to segment inventory. This assumption is natural if searchers are equally likely to

find a favorite house anywhere in their search range. Formally, let µ̃B (θ) denote the number of

buyers of type θ. We define the number of buyers in segment h as

µB (h) =
∑
θ∈Θ̃(h)

µS (h)

νS (θ)
µ̃B (θ) . (4)

For a given segment h, buyers can belong to any type in the clientele Θ̃ (h). If a type θ searches

only in segment h, then νS (θ) = µS (h) and all buyers µ̃B (θ) of type θ are in fact buyers in h.

In particular, if the market is perfectly segmented, then the only buyers in h are searchers of the

type who looks exclusively in h. More generally, the more inventory is available in h relatively to

the total inventory in type θ’s search range, the larger the share of type θ buyers who flow into h.

If the market is perfectly integrated, there is only one type and the number of buyers is always

proportional to inventory; put differently, the buyer-seller ratio is equated across segments.

Our second assumption is the presence of a matching function. The match rate in segment h
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is given by

m (h) = m̃
(
µB (h) , µS (h) , h

)
,

where m̃ is increasing in the number of buyers and sellers and satisfies m̃
(
0, µS, h

)
= m̃

(
µB, 0, h

)
=

0. At this point, we do not make further assumptions on the functional form of the function m̃.

What is important is that it is allowed to depend on the segment h directly (other than through

the number of buyers and inventory). For example, the process of scanning inventory could be

faster in some segments because the properties there are more standardized, or because more open

houses are available to view properties.

Once a buyer and seller have been matched, the seller makes a take-it-or-leave-it offer. If

the buyer rejects the offer, the seller keeps the house and the buyer continues searching. If the

buyer accepts the offer, the seller pays the offer price. The seller receives the offer price net of

the proportional cost c which goes, say, to a real estate agent. The seller then starts to search,

whereas the buyer moves into the house and begins to receive utility v (h).

Equilibrium

In equilibrium, agents choose optimally given the distribution of others’ choices. In particular,

owners decide whether or not to put their houses on the market, sellers choose price offers and

buyers choose whether or not to accept those offers. In what follows, we focus on steady state

equilibria in which (i) owners put their house on the market if and only if their house has fallen

out of favor, so that the owners do not receive housing services from it, and (ii) all offers are

accepted.

4.2 Characterizing Equilibrium

We derive a system of equations that determines the steady state distribution of agent states

(that is, searching for a house, listing one for sale, or owning without listing). Since there are

fixed numbers of agents and houses, that distribution can be studied independently of prices and

value functions. We need notation for the number of agents in each state. Let µH (h; θ) denote the

number of type θ agents who are homeowners in segment h, and let µS (h; θ) denote the number

of type θ agents whose house is listed in segment h. In steady state, all those numbers, as well as

the numbers of buyers by type µ̃B (θ) and by segment µB (h), are constant.

The first set of equations uses the fact that µS (h), the number of houses for sale in segment h,

is constant in steady state. As a result, the number of houses newly put on the market in segment

h must equal the number of houses sold in segment h:

η (h)
(
µH (h)− µS (h)

)
= m̃

(
µB (h) , µS (h) , h

)
. (5)

The left-hand side shows houses coming on the market, given by the rate at which houses fall out

of favor multiplied by the number of houses that are not already on the market. The right-hand
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side shows the number of matches and thus the number of houses sold.

The second set of equations uses the fact that the rate at which houses fall out of favor in

segment h is the same for all types in the clientele of h. As a result, the share of houses owned by

type θ agents in h must equal the share of houses bought by type θ agents in h:

µH (h; θ)

µH (h)
=
µS (h)

νS (θ)

µ̃B (θ)

µB (h)
. (6)

On the right-hand side, the share of type θ buyers in segment h equals the number of type θ

buyers that flow to h in proportion to inventory, as in (4), divided by the total number of buyers

in segment h. The equation also says that the buyer-owner ratio for any given type θ in segment

h is the same and equal to the segment level buyer-owner ratio µB (h) /µH (h).

Finally, the number of agents and the number of houses must add up to their respective totals:

µH (h) =
∑
θ∈Θ̃(h)

µH (h; θ) ,

µΘ (θ) = µ̃B (θ) +
∑

h∈H̃(θ)

µH (h; θ) . (7)

Equations (5), (6) and (7) jointly determine the unknown objects µH (h; θ), µS (h), µB (h) and

µ̃B (θ), a system of 2#H + #Θ (1 + #H) equations in as many unknowns.

4.3 Parameters and Identification

The model distinguishes three forces that determine market activity and prices in the cross section.

Two forces operate at the segment level. First, the rate η (h) at which houses fall out of favor

represents differences in the supply of houses across segments. In what follows, we refer to η (h) as

a measure of instability : a more unstable segment is one where more houses come on the market

per period. The second force is the segment-specific effect on match rates summarized by m̃ (., ., h),

which represents differences in market frictions across segments. The third force is the demand for

housing, which is captured by the distribution of search ranges H̃ (θ) and the number of agents

µΘ(θ) of type θ.

Housing demand parameters are the most complex, since their effect depends on the entire

clientele pattern. It is nevertheless helpful to consider a summary measure at the segment level.

We define the popularity of a segment by

π (h) =
∑
θ∈Θ̃(h)

µΘ (θ)

νH (θ)
. (8)

A segment is more popular if there are more agents per house who include it in their search

ranges. The weighting of agents is the same as for our measure of search activity σ (h) defined
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in (2): broad searchers who are interested in multiple segments other than h (and thus a larger

housing stock) count less towards the popularity of segment h than narrow searchers. A key

difference between σ (h) and π (h) is that the latter is an exogenous determinant of demand for

segment h; it depends only on the distribution of types µΘ(θ). In contrast, σ (h) is determined

endogenously; in particular, it depends on the equilibrium share of agents of each type that are

searching at any point in time.

Observables

The observables described in Section 3.3 all have model counterparts. The inventory share is

I (h) = µS (h) /µH (h) and the turnover rate is V (h) = m (h) /µH (h). Search alerts represent a

sample of buyers. The relative frequencies of the search ranges H̃ (θ) in the model are given by

β (θ) = µ̃B (θ) /
(
µ̄Θ − 1

)
, and are thus observable up to the constant µ̄Θ − 1. Our measure of

search activity at the segment level can be written as

σ (h) =
1

µ̄Θ − 1

∑
θ∈Θ̃(h)

Ĩ (θ)
µ̃B (θ)

νS (θ)
, (9)

where Ĩ (θ) = νS (θ) /νH (θ) is the inventory share measured over the search range of type θ.

Exact identification

The structure of the model implies that the supply and demand parameters — η (h) and

µΘ (θ), respectively — can be identified without taking a stand on the exact shape of the matching

function. All that is required is that the dependence of the matching function on the segment

is sufficiently flexible that the model can jointly match inventory, turnover and search behavior.

Our results on the relative importance of heterogeneous clienteles for understanding the Beveridge

curve as well as for determining price discounts will be independent of the exact matching function.

Our formal identification result, derived in Appendix A.7, says that, under the assumption

stated above, the model implies a one-to-one mapping between two sets of numbers. The first set

consists of the parameters η (h) and µΘ (θ) as well as the vector of rates at which buyers find houses

in a given segment, defined as α (h) = m (h) /µB (h). The second set consists of the inventory

share I (h), the turnover rate V (h), the relative frequencies of search ranges β (θ) and the average

time it takes for a buyer to find a house.

To quantify the model, we can therefore use the second set of numbers as targets and derive the

first set in closed form; this delivers the complete vector of supply parameters η (h) and demand

parameters µΘ (θ). Numbers for inventory, turnover and searcher frequencies come directly from

the data reported in Section 3. We do not have information on the overall number of buyers

µ̄Θ − 1. As an additional target moment, we set the average match rate for a buyer to 20 percent

per month, the average match rate for inventory in our data. The average time it takes for a buyer

to find a house is therefore about 5 months. This choice does not affect the relative behavior of
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market and search activity across segments, and therefore is not particularly important for most

of our results.

4.4 Search with heterogeneous clienteles

Before reporting numerical estimation results, we illustrate the main economic mechanisms using

example markets with stylized clientele patterns. There are two broad themes. First, local con-

ditions in a segment – for example, its popularity – matter relatively more if the segment is less

integrated with other segments. Second, the interaction of broad and narrow searchers generates

patterns for observables – in particular, an upward sloping Beveridge curve – in ways that cannot

occur in either perfectly segmented or perfectly integrated markets.

Perfect segmentation

To illustrate the role of local conditions, we start with the extreme case of perfect segmentation.

Suppose there are exactly as many types as segments and each type scans exactly one segment. We

use the label θ = h for the type scanning segment h and otherwise drop θ arguments. The number

of buyers µB(h) is the difference between the number of types interested in h and the number of

houses in segment h, µΘ (h)− µH (h). Substituting into equation (5), equilibrium inventories are

determined segment by segment by

η (h)
(
µH (h)− µS (h)

)
= m̃

(
µΘ (h)− µH (h) , µS (h) , h

)
. (10)

The equation determines equilibrium inventory µS(h) and volume m(h) or equivalently the inven-

tory share I(h) and the turnover rate V (h). 8

Figure 6 plots both sides of the equilibrium condition (10) for segment h. The left-hand side is

the rate at which houses come on the market in segment h. It is strictly decreasing in inventory:

if inventory is higher, fewer agents live in their favorite house and fewer houses come on the

market each instant. The right-hand side of (10) is the rate at which houses are sold. It is strictly

increasing in inventory: if inventory is higher, matches occur at a faster rate. It follows that there

is a unique equilibrium level of inventory µS(h) – if inventory is too low, then too many houses

come on the market whereas if inventory is too high, then too many houses are sold.

Comparative statics show how the cross section of segments depends on local conditions. In

the left panel of Figure 6, we consider a more popular segment by increasing µΘ (h) and thus

π (h) = µΘ (h) /µH (h) as defined in (8). There are now more buyers per house; the upward-

sloping curve shifts up. The increased demand for houses implies higher equilibrium volume (and

turnover rate) but lower equilibrium inventory (and inventory share). From (10), a segment with a

matching technology that allows more matched per period for given buyer and seller pools similarly

has higher volume and lower inventory. Finally, in the right hand panel of Figure 6, we consider

8Indeed, after dividing by the housing stock µH(h) in the segment, we can view both sides as representing the
turnover rate as a function of inventory share, with µH(h) as a parameter.
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Figure 6: Equilibrium and Comparative Statics with Perfect Segmentation
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Note: The plots show the curves on the left and right hand side of the equilibrium condition (10) together with
comparative statics exercises. In the left panel, the exercise increases the popularity of the segment by increasing
µΘ (h) and thus the number of buyers µB(h). The left panel increases its instability η(h).

a more unstable segment by increasing η (h). Houses now come on the market more quickly in

h; the downward-sloping curve shifts to the right. The increased supply of houses implies that

equilibrium volume and inventory are both higher.

Suppose we want to explain the data in Table 4 with a perfectly segmented model. At any

level of aggregation, we observe a strong positive relationship between the inventory share and the

turnover rate. It follows that differences in supply – the parameter η (h) – must be important,

whereas differences in popularity or the matching technology must be weak enough so as not to

overturn the positive relationship between inventory share and turnover rate. At the same time,

equation (9) says that search activity in the perfectly segmented case simply reflects the relative

number of buyers scanning segment h

σ (h) =
µΘ (h)− µH (h)

(µ̄Θ − 1)µH (h)
=
π (h)− 1

µ̄Θ − 1
. (11)

Variation in search activity across segments is thus driven only by variation in popularity;

instability or the matching technology do not matter. Since more popular segments have lower

inventory shares, such variation in itself will always generate a downward sloping Beveridge curve.

To generate instead an upward sloping Beveridge curve with a perfectly segmented model would

thus require comovement of π (h) and η (h): if more unstable segments are also more popular,

then high inventory and turnover driven by ample supply could in principle go along with more

search activity driven by high demand.

Partial integration and the role of broad searchers

We now extend the example by adding one additional type: a ”broad searcher” who scans
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all segments h ∈ H. We denote this type by 0 so νS (0) is total inventory. The new buyer pool

of segment h thus contains both narrow searchers of type h and broad searchers who flow into

segment h depending on the share of segment h inventory in total inventory (by the definition

of buyers (4)). Equilibrium inventories again adjust to equate the flow of houses coming on the

market to the volume of sales:

η (h)
(
µH (h)− µS (h)

)
= m̃

(
µ̃B (h) +

µS (h)

νS (0)
µ̃B (0) , µS (h) , h

)
. (12)

The key new feature with partial integration is that the buyer pool is endogenous and tends

to move positively with inventory in equilibrium. Two effects are relevant here. The first is that a

larger share of broad type 0 searchers flows to segments with higher inventory. This effect comes

from integration only; it is present also with perfect integration. Indeed, if µ̃B (h) = 0, then buyers

are proportional to inventory; in equilibrium all markets are equally tight. The second effect comes

from the interaction of broad and narrow searchers: competition from broad searchers implies that

the number of narrow searchers looking for a house in h also increases with inventory. To see this,

use the implication of (6) that buyer-owner ratios in any given segment are equated across all

types in the clientele. Comparing narrow and broad buyers and owners in the clientele of h, we

have
µ̃B (h)

µΘ (h)− µ̃B (h)
=
µS (h)

νS (0)

µ̃B (0)

[µH (h)− (µΘ (h)− µ̃B (h))]
, (13)

where the second denominator on the right hand side determines broad owners in h as a residual.

Holding fixed the number of houses and narrow types, a segment with a higher share of inventory

must have more narrow buyers.9

How could a model with partial integration account for the facts in Table 4? For the cross

section of inventory shares and turnover rates, the role of parameters is qualitatively similar to the

perfect segmentation case. Indeed, in more unstable segments, inventory and volume both tend to

be higher. However, the effect on inventory is typically weaker because more searchers flow into

segment h as more houses come on the market there. In other words, greater supply endogenously

gives rise to an offsetting increase in demand. An increase in the speed of matching or a larger

number of types interested in h will increase turnover and decrease inventory. Of course, the

interdependence of segments implies that the magnitude of effects is now more complicated to

assess. For example, how the relative inventory of two segments depends on their stability now

depends on the stability of other segments as well.

An important difference to the perfectly segmented case is that the presence of broad searchers

9The remaining equations determining equilibrium is the definition of νS (0) as total inventory and the require-
ment that buyers add up to the correct total, that is,

µ̄Θ − 1 = µ̃B (0) +
∑
h∈H

µ̃B (h) .
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alters the mapping between parameters and search activity. With partial integration, search

activity (2) becomes

σ (h) =
1

µ̄Θ − 1

(
µ̃B (h)

µH (h)
+ µ̃B (0)

)
. (14)

Differences in search activity across segments are driven only by differences in narrow buyers per

house, since the contribution of broad searchers is the same for all segments. It then follows from

(12)-(13) that for two equally popular segments (which have identical µΘ (h) and µH (h)), the

segment with more instability or slower matching must have higher inventory together with higher

search activity. In other words, with partial integration, differences in stability or the speed of

matching can account for an upward sloping Beveridge curve.

5 Quantitative Results

Table 6 summarizes properties of the estimated demand and supply parameters. We report mo-

ments of instability η (h) as well as popularity π (h), our segment-level summary statistic of de-

mand. Panel A provides information on the distribution of the parameters across segments. Panel

B reports correlations both among the parameters themselves and between parameters and ob-

servables. Here we compare variables at the segment level, city-level averages as well as variation

across segments within the city of San Francisco. Table 6 also reports the properties of the in-

ferred match rate α (h). While α (h) is an endogenous object rather than a parameter, it contains

information about the role of matching frictions.10 Since we do not have information to identify

the shape of the matching function, we do not directly draw conclusions about the matching tech-

nology. We only record what can be inferred about the distribution of match rates from search

behavior.

5.1 Instability and popularity at the segment and city level

Instability η (h) tracks turnover almost exactly: its moments in Table 6 are essentially the same

as those reported for the turnover rate in Table 3. The intuition follows from the equilibrium

condition (5) together with the summary statistics in Table 3. Indeed, inventory shares are so

small – their 75th percentile is at 1.5% – that η(h) ≈ V . Intuitively, because the time a house

remains on the market is much shorter than the time that it is occupied by an owner, turnover

is almost entirely accounted for by the frequency of moving shocks. We thus infer that unstable

segments are cheaper and have more turnover and larger inventories. This is true not only across

segments, but also across cities and within San Francisco.

Popularity at the segment level, π (h), ranges between 0.2 and 2.4, with an IQ range between

0.80 and 1.15. The fact that popularity is below one for many segments is indicative of the

10For example, with a Cobb-Douglas matching function m (h) = m̄ (h)µB (h)
δ
µS (h)

1−δ
, we would have

log m̄ (h) = δ logα (h) + (1− δ) log (V (h) /I (h)) .
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Table 6: Quantitative Results from Estimating the Model

Panel A: Estimated parameters vs. hypothetical segmentation

estimated parameters hypothetical perfectly
segmented benchmark

100× η (h) π (h) α (h) σ̂(h)− σ(h) π̂(h)− π(h)

Mean 0.24 1.00 0.19 0 0.02
Q25 0.16 0.80 0.07 −0.17 −0.13
Q50 0.21 1.00 0.13 −0.04 0.03
Q75 0.29 1.15 0.23 0.12 0.21

Panel B: Correlation between estimated parameters

η (h) π (h) α (h) I (h) V (h) σ (h) log(p(h))

Across segments
η (h) 1 −0.01 0.24 0.93 1.00 0.13 −0.48
π (h) 1 −0.53 −0.03 −0.01 0.73 0.07
α (h) 1 0.27 0.23 −0.43 −0.22
σ̂ (h)− σ (h) 0.44 0.10 −0.04 0.46 0.44 0.28 −0.16

Across cities
η (h) 1 −0.23 0.52 0.93 1.00 −0.24 −0.55
π (h) 1 −0.62 −0.27 −0.23 0.69 0.36
α (h) 1 0.57 0.52 −0.70 −0.65
σ̂ (h)− σ (h) 0.37 −0.01 −0.00 0.39 0.37 0.09 −0.11

Within San Francisco
η (h) 1 0.16 −0.01 0.89 1.00 0.26 −0.35
π (h) 1 −0.59 0.18 0.16 0.86 −0.04
α (h) 1 −0.17 −0.01 −0.57 0.07
σ̂ (h)− σ (h) 0.67 0.16 −0.12 0.67 0.67 0.32 −0.14

Note: The estimated parameters from the model exactly match three moments from the data: the inventory
share I(h), the turnover rate V (h) and the relative frequency of search ranges β(θ). The total number of buyers
µ̄Θ − 1 is set to match a 5 month average buyer search time.

importance of partial integration. Indeed, if segments were either perfectly segmented or perfectly

integrated, then the number of weighted buyers would be larger than the number of houses in all

segments, and popularity would have to be above one.11 Popularity also comoves strongly with

search activity at all levels of aggregation.

Does the correlation between segment characteristics contribute to the slope of the Beveridge

11To see how partial integration can imply π (h) < 1, consider a simple example: assume there are two equally
large and equally unstable segments 1 and 2, say, as well as an equal number of narrow searchers who scan only
segment 1 and broad searchers who scan both segments. We then have π (1) = 3/2 and π (2) = 1/2. Intuitively, a
segment that is considered largely by broad searchers will tend to have low popularity.
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curve? From our discussion in Section 4, this would require that the correlation between popularity

and instability takes on different signs at different levels of aggregation. In fact, this correlation is

weakly positive within San Francisco, zero across segments and negative across cities. We conclude

that the Beveridge curve slopes down across cities in part because more popular cities are also

less stable. Similarly, the Beveridge curve slopes up within San Francisco in part because more

popular segments within the city are less stable. However, the within-city correlation is only 0.15

which already suggests that other forces are at work as well. We discuss those in the next section.

5.2 The role of partial integration: a perfectly segmented benchmark

How does the interaction of heterogeneous clienteles contribute to the shape of the Beveridge

curve? What goes wrong if a modeler ignores that interaction? We now provide quantitative

answers to both questions by comparing the actual economy – for which the estimated parameters

reflect partial integration – with a hypothetical perfectly segmented benchmark economy. For

the benchmark economy, we change demand parameters so as to remove integration, but hold all

other parameters fixed. At the same time, we require that the benchmark economy still matches

the same observed inventory shares and turnover rates as the actual economy. This pins down

a unique vector of hypothetical demand parameters µ̂Θ. From the equilibrium condition (5) and

the fact that the matching function remains unchanged, the benchmark economy also predicts the

same number of buyers and buyer match rates α (h) as the actual economy. We can therefore

view the benchmark economy as a model estimated by an econometrician who observes I (h) and

V (h) as well as buyer match rates by segment (or, equivalently, who knows the segment-specific

matching functions), but who does not have information on integration and proceeds by assuming

that the economy is perfectly segmented.

The key source of error for an econometrician who observes inventory, turnover and buyer

match rates (or matching functions) is that he may misjudge the relative popularity of segments.

Indeed, the equilibrium condition (5) implies that the parameter η(h) closely tracks turnover

regardless of the clientele pattern. However, the benchmark economy can differ from the actual

economy in the demand parameters µΘ(h) and will typically imply a different cross section of the

popularity parameters, denoted by π̂(h). We use the distribution of the difference π̂(h) − π(h)

to assess the error made by an econometrician who ignores the possibility of partial integration.

Moreover, the benchmark economy may predict a different cross section of search activity, denoted

by σ̂(h), and hence a different Beveridge curve. We use the difference in search activity σ̂(h)−σ(h)

to assess the contribution of partial integration to the Beveridge curve: if integration were not

important, then the actual and hypothetical Beveridge curves would coincide.

An analytical example

We illustrate properties of the benchmark economy using the example from section Section

4.4, for which we can derive the Beveridge curve in closed form. Indeed, if there are only narrow
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searcher types who look at one segment as well as one broad searcher type who looks at all

segments, the type distribution for the benchmark economy is given by µ̂Θ (0) = 0 and µ̂Θ (h) =

µH (h) +µB (h) . Combining equations (11) and (14), search activity in the benchmark economy is

σ̂ (h) = σ (h) + β (0)

(
I (h)

Ĩ (0)
− 1

)
, (15)

where Ĩ (0) is the average inventory share in broad searchers’ range (that is, the economy as a

whole). The actual Beveridge curve consists of the locus (σ (h) , I (h)). The hypothetical bench-

mark Beveridge curve coincides with the actual one only if the second term is zero. This could be

either because there are no broad searchers or because all inventory shares are the same, so that

broad searchers flow equally into all segments and their effect is neutral.

More generally, the benchmark economy contains more searchers per house than the actual

economy in a segment if and only if that segment has an inventory share that is larger than the

economy average. This is because both economies must generate the same equilibrium inventory

and number of buyers via different mechanisms. In the actual partially integrated economy, the

endogenous flow of broad searchers toward inventory endogenously generates more buyers in high

inventory segments. This mechanism is absent from the perfectly segmented benchmark economy,

where a segment has more buyers if and only if it is more popular. Since search activity is driven

in turn by the number of narrow searchers, high (low) inventory segments must also see more

(less) search activity. It follows that in the (I, σ) plane, the benchmark Beveridge curve is flatter

than the actual Beveridge curve. Moreover, the correlation between inventory and the difference

in search activity σ̂(h) − σ(h) measures the impact of partial integration: if it is zero, then the

perfectly segmented benchmark also explains the data.

Quantitative importance of partial integration

Table 6 reports key moments of the differences in search activity as well as popularity between

the benchmark and actual economies. There are two main results here. First, the error incurred

by an econometrician who ignores partial integration is large. This follows from the quantiles for

the difference in popularities π̂(h)−π(h) reported in the rightmost column in panel A. Indeed, the

interquartile range for this difference is of the same order of magnitude as that for the estimated

parameter π(h) itself, reported on the top left. The reason is that the range of popularities is

much narrower for the benchmark economy: the 25th percentile for π̂(h) is at 1.01, while the 75th

percentile is at 1.03.

The intuition here is again the absence of an endogenous flow of broad searchers. In order to

explain the data on market activity, the perfectly segmented benchmark economy must assume

small differences in narrow searchers, rather than broad searchers who flow towards inventory

in unpopular segments. An econometrician who postulates a perfectly segmented model in the

absence of data on clientele patterns will mistakenly infer that unpopular segments have a sizable
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clientele who look for housing only there. He will miss the fact that buyers in those segments are

broad searchers who are happy to buy elsewhere. The difference matters also for considering the

response to shocks, which we consider in Section 6.2 below.

The second result is that partial integration is an important force that works towards an

upward-sloping Beveridge curve. This follows from the lines in panel B that report cross-sectional

correlations between the difference in search activity σ̂(h)− σ(h) and inventory at different levels

of aggregation. From the expression for search activity (15), we would expect this correlation to be

higher in integrated areas (that is, shutting down integration flattens the Beveridge curve for such

areas). In fact, the correlation coefficient within San Francisco is 0.67. A one standard-deviation

increase in inventory thus implies that σ̂(h) − σ(h) is higher by 0.67 standard deviations; this

corresponds to 0.45 standard deviations of the search activity measure σ(h) itself. Put differently,

the absence of broad searchers flattens the Beveridge curve within San Francisco by adding about

half a standard deviation worth of search activity per unit of inventory. Across cities or segments,

the effect is smaller because there is less integration and the effects average across areas. For

example, across cities, the absence of broad searchers adds only about 10 percent worth of search

activity per unit of inventory.

What exogenous forces drive broad searchers towards high inventory segments? In principle,

differences in instability, popularity or matching frictions could all generate difference in inventory.

In fact, all forces are unconditionally correlated with inventory share. The flow of broad searchers,

however, is directed to a large extent by differences in instability alone. Indeed, the correlation of

σ̂(h)− σ(h) with η(h) is much larger than that with π(h) or α(h). We can therefore sum up the

key mechanism as follows: in more unstable segments, more houses come on the market; if they

are part of an integrated area, then broad searchers are attracted to those houses and crowd out

narrow searchers, generating an upward sloping Beveridge curve.

6 Prices and spillovers

6.1 Equilibrium prices & liquidity discounts

Our model captures two distinct housing market frictions. The first is search: owners whose house

falls out of favor spend time first looking for a buyer and then for a new house; during this time

they forgo the flow utility of living in their favorite house. The second friction is the transaction

cost paid upon sale. In equilibrium, both costs are capitalized and reduce the house price: every

buyer takes into account that both he and all potential future buyers may have to sell and hence

search and pay transactions costs.

We now derive a convenient formula to show how the resulting liquidity discount reflects both

frictions. Let V F (h; θ) be the utility of a type θ agent who obtains housing services from a house

in segment h. Since sellers make take-it-or-leave offers and observe buyers’ types, they charge

prices equal to buyers’ continuation utility. The price paid by a type θ buyer in segment h is thus
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p (h, θ) = V F (h; θ) . We now show that prices are the same in all transactions in segment h. We

start from the Bellman equation of a seller who puts his house on the market

rV S (h; θ) =
m (h)

µS (h)

(
E [p (h, θ) (1− c) |h]− V S (h; θ)

)
,

where the expectation uses the equilibrium distribution of buyers µB (h; θ) /µB (h). It follows that

the value function of the seller is independent of type. Intuitively, a seller knows that once he

becomes a buyer, his continuation value is zero. Seller utility thus derives only from the expected

sale price, about which all seller types care equally.

Consider next the Bellman equations of an owner who does not put his house up for sale

rV F (h; θ) = v (h) + η (h)
(
V S (h; θ)− V F (h; θ)

)
.

Since utility v (h) and the arrival of moving shocks are also independent of type, so is V F (h; θ).

As a result, the same price p (h) is paid in all transactions in segment h. We can combine these

equations and determine the price from

p (h) =
v(h)

r
− η (h)

r +m (h) /µS (h) + η (h)

(
v(h)

r
+ cp (h)

m (h)

µS (h)

)
. (16)

The first term on the right-hand side is the present value of a permanent flow of housing services.

This frictionless price obtains if houses never fall out of favor (η = 0) or else if sales involve no

transaction costs (c = 0) as well as no search costs. Search costs are zero if matching is infinitely

fast (m/µS → ∞). Indeed, if a new buyer can be found instantaneously once a house is listed,

then the price must also reflect the permanent flow of services. More generally, the house price

reflects a liquidity discount – the second term – that capitalizes search and transaction costs. The

liquidity discount is larger if houses fall out of favor more quickly (η higher) or if it is more difficult

to sell a house in the sense that time on market µS (h) /m (h) is longer or the cost c is higher.

To decompose the liquidity discount, we use our knowledge of the relative magnitudes of

parameters to derive an approximate formula. The key observation is that the fraction multiplying

the big bracket in equation (16) is approximately equal to the inventory share I. Indeed, both the

monthly interest rate r and the parameter η ≈ V (h) are small relative to m(h)/µs(h) = V (h)/I(h).

We thus obtain a useful shortcut to interpret the numerical results below: solving out, we write

the price (up to an approximation error of at most 15 basis points) as

p (h) ≈
v (h) (1− I (h))

r + cV (h)
=
v(h)

r
(1− I (h))

r

r + cV (h)
. (17)

Frictions thus modify the frictionless price v/r by first reducing housing services proportion-

ately by I and then increasing the discount rate to r + cV . The second expression distinguishes

34



two separate discounts. First, the inventory share measures the loss in value due to search fric-

tions. It is zero in the absence of search frictions when there is no inventory as all houses are sold

immediately. From Table 3, the size of the search discount is typically a few percentage points.

The interest rate does not matter for its size (at least approximately) because time on market

is fairly short. The second discount measures the present value of transaction costs: it is zero if

there is no turnover or if selling houses is costless. Here the interest rate is important: if future

transaction costs are discounted at a lower rate, then the discount is larger.

Liquidity discounts by segment

We now ask how market frictions identified by our estimation quantitatively affect the disper-

sion of house prices across segments. To compute the liquidity discount in the pricing equation

(16), we need an estimate of the fundamental value. Our equilibrium computations imply values

for matches m(h) and houses for sale µS(h). Together with a real interest rate of 1% and a trans-

action cost equal to 6% of the resale value of the house, we can back out the utility values v(h)

such that the model exactly matches the cross section of transaction prices on the left-hand side

of (16).

Figure 7: Liquidity Discounts
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Note: Left panel: mean segment price versus segment liquidity discount in percent of frictionless price. Color
coding reflects liquidity discount. Right panel: map with dots for each segment in same color as in left panel.
Dots for segments within the same zip code arranged clockwise by price with lowest priced segment at noon.

Figure 7 shows the results. The left-hand panel plots transaction prices by segment against

the liquidity discounts, stated as a percentage of frictionless price. The right-hand panel shows
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the geographic distribution of the liquidity discounts. There are two notable results here. First,

liquidity discounts are large. The median discount is 14 percent and 90th percentile is at 24

percent. From Table 3 and the approximating formula above, both search and transactions costs

contribute to this result, but transactions costs are quantitatively more important. While search

costs generate discounts up to 6 percent, the capitalized value of transaction costs is what leads

to double digit discount numbers.

The second result is that liquidity discounts differ widely by segment, often within the same

zip code. Table 4 shows that inventory and turnover exhibit about the same amount of variation

within and across zip codes. The search and transaction costs inherit these properties, respectively.

In poor segments with high volume and high inventory, both search and transaction costs are high.

As a consequence, prices are significantly lower than they would be in a frictionless market. In

rich segments discounts are still significant, but they are considerably smaller.

6.2 Comparative statics

In this section, we perform comparative statics exercises to show how clientele patterns matter

for the transmission of shocks across segments. Motivated by recent debates on gentrification in

San Francisco, we ask what happens when a neighborhood becomes more popular, that is, more

searchers are specifically interested in that neighborhood. We compare two neighborhoods that

are similar in size and price, but differ in clientele patterns.

The first neighborhood is zip code 94015 in Daly City, a suburb right outside of the San

Francisco city limits. It contains about 11,000 houses with an average price of $480K. The average

inventory is 105 houses; at our estimated parameters, this inventory is considered by 430 active

searchers. We choose Daly City because narrow buyers are prevalent: depending on the segment

within the zip code, between 12 and 35 percent of buyers were looking only in 94015, with the

largest narrow buyer share in the most expensive segment.

The second neighborhood is the Outer Mission area of San Francisco, zip code 94112. For

comparability with 94015, we select only the cheapest three segments in this zip code; we thereby

obtain the same total housing stock and average price. However, the population of searchers is

quite different: there are now 2000 searchers looking at an inventory of 84 houses. Moreover, the

share of broad searchers is large: at our parameter values at most 3 percent of buyers are looking

exclusively within zip code 94112.

We now recompute equilibrium under the assumption that 500 additional agents are interested

either in 94015 or in the Outer Mission. In other words, we identify the two types in Θ whose search

ranges consist of the five segments of 94015 or the three cheapest segment in 94112, respectively.

We increase the corresponding entries in µΘ by 500 agents. This counterfactual captures long-run

effects on inventory, turnover and prices if a neighborhood becomes more popular.

Greater popularity of a segment implies that inventory there declines: more buyers stand ready

to snap up houses that go on sale. At the same time, turnover rates remain essentially unchanged
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since houses come on the market at the same rates η(h) as before. The time to sell a house thus

moves proportionally with inventory. Moreover, price effects follow from equation (17): while

changes in the transaction cost discount are negligible, changes in inventory directly move the

search discount. The left-hand panels of Figure 8 show the magnitude of inventory share declines

(and hence also declines in time on market and increases in price) for Daly City on the top and

Outer Mission on the bottom. Both figure display only the San Francisco peninsula where both

zip codes are located. The colors range from light blue for no effect to pink for the largest effect,

which obtains in both cases within the zip codes that become more popular, shaded in gray.

Clientele patterns imply dramatically different behavior of inventory shares across the two

local shocks. If 94015 becomes more popular, then the market reacts strongly in 94015 itself. The

average inventory share decline within the zip code is 18 percent. Houses sell about 5 times faster,

reducing time on market by about 1 month in the long run. Strong spillover effects are present

to the adjacent zip code 94014, with some smaller effects transmitting to the towns to the south;

here the change is around 1-2 percent of inventory. There is no notable effect on the city of San

Francisco to the north, shaded in light gray.

In contrast, if similar segments in the Outer Mission become more popular, then there are

sizable spillover effects within the entire city of San Francisco. The average decline in inventory

in the segments that have become more popular is only 8 percent. However, we have declines of 3

percent or more in all San Francisco neighborhoods. Since changes in inventory translate directly

into search discounts, price responses are also relatively small and diluted if the shock hits Outer

Mission, but large and concentrated in Daly City.

Data on clientele patterns are critical for the conclusions of this section. A perfectly segmented

economy would not be able to distinguish the spillover effects of more versus less integrated

neighborhoods. It would also provide misleading summary information about the demand for

housing. For example, at our estimated parameters, mean popularity is 1.08 for 94015 and 0.82

for the three cheapest segments of 94112: since the Outer Mission has more broad searchers,

it has a more elastic demand which leads to smaller responses to shocks. In contrast, in the

perfectly segmented benchmark economy introduced in Section 5, mean popularities are 1.01 and

1.03, respectively. An econometrician using a perfectly segmented economy to assess the inflow of

new searchers would therefore expect more competition for scarce housing in the Outer Mission

compared to Daly City.

Spillovers along chains of integration

According to our model, the difference in spillovers is due to differences in clientele patterns.

One immediate effect is that if a segment that becomes more popular is connected to a second

segment by a broad searcher, then one would expect inventory to decline in both segments. Indeed,

as more narrow searchers reduce inventory in the first segment, broad searchers turn to the second

segment and reduce inventory there also. This need not be the end of the story, however: suppose
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Figure 8: Inventory Response to an Increase in Popularity; Joint Searchers

(A) More searchers in Daly City

(B) More searchers in San Francisco Outer Mission

Note: Top left panel: percent change in inventory with 500 more searchers in zip code 94015 (Daly City). Top
right panel: joint searcher share with 94015. Lower left panel: percent change in inventory with 500 more searchers
in the three cheapest segments of zip code 94112 (San Francisco Outer Mission). Lower right panel: joint searcher
share with 94112.
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the second segment is connected to a third segment via another broad searcher, then inventory

might decline also in that third segment even though it might not share any joint searchers with

the first segment where the original shock occurred.

To explore the relevance of these effects, we compute a measure that isolates the first-round

spillover effects. Starting from an initial segment, we compute, for each other segment, the share

of its clientele that also searches in the initial segment. This joint searcher share is 100 percent if

the segments are perfectly integrated and zero if they share no common searchers. The measure

is plotted in the right-hand panels of Figure 8. For the case of Daly City, we find that the joint

searcher share tightly matches the inventory response. In the neighboring segments where the

inventory response is large, the joint searcher share is around 70 percent. Spillovers from a shock

to Daly City are therefore largely transmitted through first-round effects.

The situation is very different for the case of San Francisco. Here the joint searcher share shows

that the Outer Mission is directly connected only to the relatively cheaper segments of other San

Francisco zip codes. Indeed, for a given zip code pink dots appear at noon and the first few dots

in a clockwise directions. At the same time, the inventory response is large throughout the city.

This is because richer neighborhoods are in turn connected to somewhat cheaper neighborhoods by

common searchers so that higher-round spillover effects occur. Altogether the chain of connections

generates strong spillovers throughout the city.
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A Online Appendix – Not for Publication

A.1 Search by Price and Size

Out of the 63 percent of email alerts that specify a price criterion, 50 percent specify both an upper

and a lower bound, whereas 48 percent specify only an upper bound; only 2 percent select just

a lower bound. Panels A and B of Figure A.1 show the distribution of minimum and maximum

prices selected in the email alerts. Price range bounds are typically multiples of $50, 000, with

particularly pronounced peaks at multiples of $100, 000.

There is significant heterogeneity in the breadth of the price ranges selected by different home

searchers. Among those searchers who set both an upper and a lower bound, the 10th percentile

selects a price range of $100,000, the median a price range of $300,000, and the 90th percentile a

price range of $1.13 million. Panel C of Figure A.1 shows the distribution of price ranges both for

those agents that select an upper and a lower bound, as well as for those agents that only select

an upper bound.

Panel D shows that searchers who consider more expensive houses specify wider price ranges.

We bin the midprice of price ranges into 10 groups. The solid line (with values measured along

the right-hand vertical axis) shows that the price range considered increases monotonically with

the midpoint of the price range. One simple hypothesis consistent with this is that searchers set

price ranges by choosing a fixed percentage range around a benchmark price. The bar chart (with

percentages measured on the left hand vertical axis) shows that this is not the case: the percentage

range is in fact U-shaped in price.

In addition to geography and price, the third dimension that is regularly populated in the

email alerts is a constraint on the number of bathrooms. Panels E and F of Figure A.1 show the

distribution of bathroom cutoffs selected for the Bay Area. 68% of all bathroom limits are set

a value of 2, most of them as a lower bound. This setting primarily excludes 1 and 2 bedroom

apartments and very small houses.

Tradeoffs between search dimensions

The three major search dimensions we have identified (geography, price, and size) are not

necessarily orthogonal. For example, one can search for houses in a particular price range by

looking only at zip codes in that price range or only at homes of a certain size. Table A.1 provides

evidence on how different search dimensions interact. It shows that searchers who are more specific

on price or home size search more broadly geographically. For example, searchers who specify a

price restriction cover an average of 10.3 zip codes with an average maximum distance between

centroids of 10.6 miles, while other searchers cover only 7.3 zip codes with an average maximum

distance of 7.9 miles. Our segment construction discretizes the space of search characteristics

and deals with searchers expressing their budget constraint or size preferences via geographic

restrictions.
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Figure A.1: Price and Size Criteria of Housing Search
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Note: Panels A and B show histograms in steps of $10,000 of the minimum and maximum listing price parameters
selected in email alerts. Panel C shows the distribution of price ranges across queries both for queries that only
select a price upper bound (dashed line), as well as for those queries that select an upper bound and a lower bound
(solid line). Panel D shows statistics only for those alerts that select an upper and a lower bound. The line chart
shows the average price range by for different groups of mid prices, the bar chart shows the average of the price
range as a share of the mid price. Panels E and F show histograms in steps of 0.5 of the minimum and maximum
bathroom selected.
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Table A.1: Geography, Price and Bath Parameter Interaction

No Price Price No Bath Bath

# Zips Covered 7.3 10.3 8.8 10.0
Max Distance (Miles) 7.9 10.6 8.9 11.1
Max Time Car (Min) 20.8 24.5 22.5 24.7
Max Time Public Transport (Min) 75.8 92.4 82.1 95.9
Is Contiguous 54% 62% 59% 60%

Note: Table shows summary statistics across queries that cross-tabulate moments across different search pa-
rameters.

A.2 Assigning Zip Codes and Segments to Search Alerts

To analyze segments in terms of their search clientele we need to analyze each query and determine

which segments are covered by that query. We first focus on the geographic dimension of the

search query, and determine which zip codes are covered by each query. To implement this, we

need to deal with alerts that specify geography at a unit that might not perfectly overlap with

zip codes. For alerts that select listings at the city level, we assign all zip codes that are at least

partially within the range of the city that is covered by the search query (i.e. for a searcher who

is looking in Mountain View, we assign the query to cover the zip codes 94040, 94041 and 94043).

Neighborhoods and zip codes also do not line up perfectly, and so for each neighborhood we again

consider all zip codes that are at least partially within the neighborhood that is covered by the

search query (i.e. for a searcher who is looking in San Francisco’s Mission District, we assign the

query to cover zip codes 94103 and 94110). This provides us, for each search query, with a list of

zip codes that are covered by that search alert.

We next incorporate the price and size dimensions of housing search to determine the set of

segments covered by each query. The challenge is that price ranges selected by queries will usually

not overlap perfectly with the price cutoffs of the individual segments. For those queries that

specify a price dimension, we assign a query to cover a particular segmented in one of three cases:

1. When the query completely covers the segment (that is, when the query lower bound is

below the segment cutoff and the query upper bound is above the segment cutoff).

2. When the segment is open-ended (e.g. $1 million +), and the upper bound of the query

exceeds the lower bound (in this case, all queries with an upper bound in excess of $1 million).

3. For queries that partially cover a non-open ended segment, we determine the share of the

segment price range covered by the query. For example, for a segment $300k - $500k, the

query 0-$250k covers 25% of the segment, and the query $300k - $700k covers 50% of the

segment. We assign all queries that include at least 50% of the price range of a segment to

cover that segment.
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To incorporate the bathroom dimensions, we let a query cover a segment unless it is explicitly

excluded. For example, queries that want at least two bathrooms will not cover the < 2 bathroom

segments and vice versa.

The housing market segments constructed above allow us to pool across all search alerts set

by the same individual. In particular, we add all segments that are covered by at least one search

alert of an individual to that individual’s search set. After pooling all segments covered by at

least one email alert set by each searcher, we arrive at a total of 11,503 unique search profiles, set

by the 23,597 unique users that comprise our dataset. Figure A.2 shows the distribution of how

often each search profile is selected. A total of 9,264 search profiles are selected by only a single

searcher, 940 queries are selected by 2 searchers. 438 queries are selected by at least 7 searchers,

with the most common query getting selected 788 times.

Figure A.2: Number of Searchers per Unique Profile
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Note: Figure shows how often each of the 11,503 individual search profiles is selected.

A.3 Stability of Search Patterns

Our model interprets the observed search ranges as a time-invariant feature of buyer preferences.

It is then interesting to ask whether empirically the search ranges are indeed invariant to changes

in market conditions. In particular, do searchers narrow the range of houses they consider when

market activity is higher, and there is more inventory in each segment? We provide two tests that

show no evidence that the parameters of housing search vary with market activity.

In a first test, we analyze the important summary statistics on the geographic breadth of

each query between 2008 and 2011, split by the year in which the query was set. The results

are presented in Figure A.3. We include the maximum distance between geographic zip code

centroids (Panel A), the average distance between geographic zip code centroids (Panel B), the

share of searches that yield contiguous search sets (Panel C), and the share of “circular” queries
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(Panel D). We find that these important parameters of search activity are very stable across

the years in our sample. This suggests that they do indeed capture time-invariant preference

parameters of households over the Bay Area housing stock.

Figure A.3: Non-Cyclicality of Search Parameters
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Note: Figure shows average values of search parameters by year of search query. We report the maximum
distance between zip code centroids (Panel A), the mean distance between zip code centroids (Panel B), the
share of contiguous queries (Panel C) and the share of circular queries (Panel D).

A second test of this hypothesis exploits seasonal variation in housing market activity: more

houses typically trade in the summer as compared to the winter. This can be seen in Panel A

of Figure A.4, which shows the share of total annual transaction volume over our sample in each

month. Market activity is twice as high in June than it is in January. Panels B to E of Figure

A.4 show averages of the same summary statistics on the search queries as Figure A.3, split by

the month of the year when the query was set. As before, none of the search dimensions exhibit

meaningful seasonality, consistent with an interpretation of search parameters as time-invariant

measures of preferences that do not vary with market activity.
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Figure A.4: Non-Seasonality of Search Parameters
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Note: Panel A shows the share of total annual transaction volume in each month. Panels B - E show average
values of search parameters by month of search query. We report the maximum distance between zip code
centroids (Panel B), the mean distance between zip code centroids (Panel C), the share of contiguous queries
(Panel D) and the share of circular queries (Panel E). Months increase from January to December on the
horizontal axis.
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A.4 Constructing Contiguity Measures

To analyze whether all zip codes covered by a particular search query are contiguous, one challenge

is provided by the San Francisco Bay. The location of this body of water means that two zip codes

with non-adjacent borders should sometimes be considered as contiguous, since they are connected

by a bridge such as the Golden Gate Bridge. Figure A.5 illustrates this. Zip codes 94129 and 94965

should be considered contiguous, since they can be traveled between via the Golden Gate Bridge.

To take the connectivity provided by bridges into account, we manually adjust the ESRI shape

files to link zip codes on either side of the Golden Gate Bridge, the Bay Bridge, the Richmond-San

Rafael Bridge, the Dumbarton Bridge and the San Mateo Bridge. In addition, there is a further

complication in that the bridgehead locations are sometimes in zip codes that have essentially no

housing stock, and are thus never selected in search queries. For example, 94129 primarily covers

the Presidio, a recreational park that contains only 271 housing units. Similarly, 94130 covers

Treasure Island in the middle of the SF Bay, again with only a small housing stock. These zip

codes are very rarely selected by search queries, which would suggest, for example, that 94105 and

94607 are not connected. This challenge is addressed by manually merging zip codes 94129 and

94130 with the Golden Gate and Bay bridge respectively. This ensures, for example, that 94118

and 94955 are connected even if 94129 was not selected.

Figure A.5: Bridge Adjustments - Contiguity Analysis

Note: This figure shows how we deal with bridges in the Bay Area for the contiguity analysis.

In the following we provide examples of contiguous and non-contiguous search sets. In Figure

A.6 we show four actual contiguous search sets. The top left panel shows all the zip codes covered

by a searcher that searched for homes in Berkeley, Fremont, Hayward, Oakland and San Leandro.
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Figure A.6: Sample Contiguous Queries

Note: This figure shows a sample of contiguous search sets. The zip codes selected by the searcher are circled
in red. Zip code centroids of contiguous zip codes are connected.

This is a relatively broad set, covering most of the East Bay. The top right panel shows a

contiguous set of jointly searched zip codes, with connectivity derived through the Golden Gate

Bridge. The searcher queried homes in cities north of the Golden Gate Bridge (Corte Madera,

Larkspur, Mill Valley, Ross, Kentfield, San Anselmo, Sausalito and Tiburon), but also added zip

codes 94123 and 94115. The bottom left panel shows the zip codes covered by a searcher that

selected a number of San Francisco neighborhoods. The final contiguous search set (bottom right

panel) was generated by a searcher that selected a significant number of South Bay cities.12 These

are all locations with reasonable commuting distance to the tech jobs in the Silicon Valley. Notice

how the addition of Newark adds zip code 94550 in the East Bay, which is connected to the South

Bay via the Dumbarton Bridge.

12Atherton, Belmont, Burlingame, El Granada, Emerald Hills, Foster City, Half Moon Bay, Hillsborough, La
Honda, Los Altos Hills, Los Altos, Menlo Park, Millbrae, Mountain View, Newark, Palo Alto, Portola Valley,
Redwood City, San Carlos, San Mateo, Sunnyvale, Woodside.
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Figure A.7: Sample Non-Contiguous Queries

Note: This figure shows a sample of non-contiguous search sets. The zip codes selected by the searcher are
circled in red. Zip code centroids of contiguous zip codes are connected.

In Figure A.7 we show four actual non-contiguous search sets. The top left panel shows the

zip codes covered by a searcher that selects the cities of Cupertino, Fremont, Los Gatos, Novato,

Petaluma and San Rafael. This generates three contiguous set of zip codes, rather than one large,

contiguous set. The zip codes in the bottom right belong to a searcher that selected zip code 94109

and the neighborhoods Nob Hill, Noe Valley and Pacific Heights. Again, this selection generates

more than one set of contiguous zip codes.

Table A.2 shows summary statistics of our measure of contiguity by the number of zip codes

included in the search range. The second column reports the share of searchers who select contigu-

ous geographies. While overall only 18 percent of searchers have non-contiguous search ranges,

they tend to be broad searchers, who consider more than five distinct zip codes and hence pro-

vide market integration across neighborhood and city boundaries. The third and fourth columns

report the mean and max number of contiguous areas covered by a search range. Broad searchers
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often consider multiple distinct contiguous areas. Preference for certain cities plays a role here:

the increase in the share of contiguous queries for the group with 21-30 zip codes selected can be

explained by the prevalence of searches for “San Francisco” and “San Jose” in that category.

Table A.2: Contiguity Analysis – Summary Statistics

Contiguous Areas

Number of Zips Covered Share Contiguous Mean Max Total

2 91% 1.09 2 2,927
3 83% 1.18 3 1,761
4 91% 1.10 3 2,248
5 67% 1.37 4 844
6-10 71% 1.38 5 2,612
11-20 74% 1.38 8 2,071
21-30 91% 1.13 10 4,213
30+ 48% 1.94 9 798

Total 82% 1.24 10 17,474

Note: Table shows summary statistics for contiguity measures across searchers that select different number of zip
codes.

A.5 Segment Construction

This section describes the process of arriving at the set of 564 distinct housing market segments

for the San Francisco Bay Area. As before, we select the geographic dimension of segments to

be a zip code. Since we will compute average price, volume, time on market and inventory for

each segment, we restrict ourselves to zip codes with at least 800 arms-length housing transactions

between 1994 and 2012. This leaves us with 191 zip codes with sufficient observations to construct

these measures.

We next consider how to further split these zip codes into segments based on a quality (price)

and size dimension. Importantly, we will need to observe the total housing stock in each segment

in order to appropriately normalize moments such as turnover and inventory. The residential

assessment records do contain information on the universe of the housing stock. However, as

a result of Proposition 13, the assessed property values in California do not correspond to true

market value, and it is thus not adequate to divide the total zip code housing stock into different

price segments based on this assessed value.13 To measure the housing stock in different price

segments we use the U.S. Census Bureau’s 2011 American Community Survey 5-year estimates,

which report the total number of owner-occupied housing units per zip code for a number of price

bins. We combine a number of these bins to construct the total number of housing units in each

of the following price bins: < $200k, $200k−$300k, $300k−$400k, $400k−$500k, $500k−$750k,

13Allocating homes that we observe transacting into segments based on value is much easier, since this can be
done on the basis of the actual transaction value, which is reported in the deeds records.
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$750k−$1m, > $1m. These bins provide the basis for selecting price cut-offs to delineate quality

segments within a zip code. One complication is that the price boundaries are reported as an

average for the sample years 2006-2010. Since we want segment price cut-offs to capture within

zip code time-invariant quality segments, we need to adjust for average market price changes of the

same-quality house over time. To do this, we adjust all prices and price boundaries to correspond

to 2010 house prices.14

Not all zip codes have an equal distribution of houses in each price (quality) bin. For example,

Palo Alto has very few homes valued at less than $200,000, while Fremont has very few million-

dollar homes. Since we want to avoid cutting a zip code into too many quality segments with

essentially no housing stock to allow us to measure segment-specific moments such as time on

market, we next determine a set of three price cut-offs for each zip code by which to split that

zip code. To determine which of the seven census price bin cut-offs should constitute segment

cut-offs, we use information from the search queries. This proceeds in two steps: First we change

the price parameters set in the email alerts to account for the fact that we observe queries from

the entire 2006 - 2012 period. This adjusts the price parameters in each alert by the market price

movements of homes in that zip code between the time the query was set and 2010.15 Second,

we determine which set of three ACS cutoffs is most similar to the distribution of actual price

cut-offs selected in search queries that cover a particular zip code. For each possible combination

of three (adjusted) price cut-offs from the list of ACS cut-offs, we calculate for every email alert

the minimum of the absolute distance from each of the (adjusted) search alert price restrictions

to the closest cut-off.16 We select the set of segment price cut-offs that minimizes the average of

this value across all queries that cover a particular zip code. This ensures, for example, that if

there are many queries that include a high limit such as $1 million, $1 million is likely to also be

a segment boundary.

14This is necessary, because the Census Bureau only adjusts the reported values for multi-year survey periods by
CPI inflation, not by asset price changes. This means that a $100,000 house surveyed in 2006 will be of different
quality to a $100,000 house surveyed in 2010. We choose the price that a particular house would fetch in 2010
as our measure of that home’s underlying quality. To transform the housing stock by price bin reported in the
ACS into a housing stock by 2010 “quality” segment, we first construct zip code specific annual repeat sales price
indices. This allows us to find the average house price changes by zip code for each year between 2006 and 2010 to
the year 2010. We then calculate the average of these 5 price changes to determine the factor by which to adjust
the boundaries for the price bins provided in the ACS data. Adjusting price boundaries by a zip code price index
that looks at changes in median prices over time generates very similar adjustments.

15This ensures that the homes selected by each query correspond to our 2010 quality segment definition. Imagine
that prices fell by 50% on average between 2006 and 2010. This adjustment means that a query set in 2006 that
restricts price to be between $500,000 and $800,000 will search for homes in the same quality segment as a query
set in 2010 that restricts price to a $250,000 - $400,000 range.

16For example, imagine testings how good the the boundaries 100k, 300k and 1m fit for a particular zip code.
A query with an upper bound of 500k has the closest absolute distance to a cut-off of min{|500 − 100|, |500 −
300|, |500 − 1000|} = 200. A query with an upper bound of 750k has the closest absolute distance to a cut-off of
250. A query with a lower bound of 300k and an upper bound of 600k has the closest absolute distance to a cut-off
of 0. For each possible set of price cut-offs, we calculate for every query the smallest absolute distance of a query
limit to a cut-off, and then find the average across all search alerts.
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To determine the total housing stock in each price by zip code segment, one additional adjust-

ment is necessary. Since the ACS reports the total number of owner-occupied housing units, while

we also observe market activity for non owner-occupied units, we need to adjust the ACS-reported

housing stock for each price bin by the corresponding homeownership rate. To do this, we use

data from all observed arms-length ownership-changing transactions between 1994 and 2010 as

reported in our deeds records. We first adjust the observed transaction price with the zip code

level repeat sales price index, to assign each house for which we observe a transaction to one of

our 2010 price (quality) bins. For each of these properties we also observe from the assessor data

whether they were owner-occupied in 2010. This allows us to calculate the average homeownership

rate for each price segment within a zip code, and adjust the ACS-reported stock accordingly.17

To assess the quality of the resulting adjustment, note that the total housing stock across our

segments is approximately 2.2 million, very close to the total Bay Area housing stock reported in

the 2010 census.

The other search dimension regularly specified in the email alerts, and that we hence want to

incorporate in our segment definition, is the number of bathrooms as a measure of the size of a

house conditional on its location and quality. Since Section A.1 showed that the vast majority

of constraints on the number of bathrooms selected homes with either more or fewer than two

bathrooms, we further divide each zip code by price bucket group into two segments: homes with

less than two bathrooms, and homes with at least two bathrooms. Unfortunately the ACS does

not provide a cross-tabulation of the housing stock by home value and the number of bathrooms.

To split the housing stock in each price and zip code segment into the two groups by home size,

we apply a similar method as above to control for homeownership rate. We use the zip code level

repeat sales price index to assign each home transacted between 1994 and 2010 to a 2010 price

(quality) bin. For these homes we observe the number of bathrooms from the assessor records.

This allows us to calculate the average number of bathrooms for transacted homes in each zip

code by price segment. We use this share to split the total housing stock in those segments into

two bathroom size groups.

The approach described above splits each zip code into eight initial segments along three price

cutoffs and one size cutoff. For each of these segments, we have an estimate of the total housing

stock. Since we need to measure specific moments such as the average time on market with some

precision, we need to ensure that each segment has a housing stock of at least 1,200 units. If this

is not the case the segment is merged with a neighboring segment until all remaining segments

have a housing stock of sufficient size. For price segments where either of the two size subsegments

have a stock of less than 1,200, we merge the two size segments. We then begin with the lowest

17For example, the 2010 adjusted segment price cutoffs for zip code 94002 are $379,079, $710,775 and $947,699.
This splits the zip code into 4 price buckets. The homeownership rate is much higher in the highest bucket
(95%) than in the lowest bucket (65%). This shows the need to have a price-bucket specific adjustment for the
homeownership rate to arrive at the correct segment housing stock.
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price segment, see whether it has a stock of less than 1,200, and merge it with the next higher

price segment. This procedure generates 564 segments. Figure A.8 shows how many segments

each zip code is split into. 26 zip codes are not split up further into segments. 52 zip codes are

split into two segments, 53 zip codes are split into 3 segments. The right panel of figure A.8 shows

the distribution of housing stock across segments. On average, segments have a stock of 3,929,

with a median value of 3,298. The largest segment has a housing stock of 13,167.

Figure A.8: Segment Overview
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Note: Figure shows summary statistics across segments. The left panel shows the number of segments that
the 191 zip codes are split into. The right panel shows the distribution of the number of housing units across
segments.

A.6 Construction of Segment-Level Market Activity

Our model links the characteristics of search patterns to segment specific measures of market

activity such as price, volume, time on market and inventory. In this section we describe how

we construct these moments at the segment level. We begin by identifying a set of arms-length

transactions, which are defined as transactions in which both buyer and seller act in their best

economic interest. This ensures that transaction prices reflect the market value (and hence the

quality) of the property. This excludes, for example, intra-family transfers. We drop all observa-

tions that are not a Main Deed or only transfer partial interest in a property (see Stroebel, 2014,

for details on this process of identifying arms-length transactions).

We can then calculate the total number of transactions per segment between 2008 and 2011,

and and use this to construct annual volume averages. In order to allocate houses to particular

segments, we adjust transaction prices for houses sold in years other than 2010 by the same price

index we used to adjust listing price boundaries (see Appendix A.5). We arrive at our measure of

“volume share” by dividing the annual transaction volume by the segment housing stock.

To calculate the average time on market, we use the dataset on all home listings on trulia.com,

beginning in January 2006, and match those home listings with final transactions from the deeds

13



database. We find segment-specific measures of time on market by averaging the time on market

across all transactions that sold between 2008 and 2011.18

A.7 Identification

This appendix shows that our model implies a one-to-one mapping between two sets of numbers.

The first set consists of the parameters η (h) and µΘ (θ) as well as the vector of rates at which

buyers find houses in a given segment, defined as α (h) = m (h) /µB (h). The second set consists

of the inventory share I (h), the turnover rate V (h), the relative frequencies of search ranges β (θ)

and the average time it takes for a buyer to find a house.

We use equations (5)-(7) to derive closed form expressions for the first set of numbers in terms

of the second. The frequency of moving shocks η(h) can be written directly as a function of

inventory and turnover: we divide the market clearing condition (5) by the housing stock µH (h)

to obtain

η(h) (1− I(h)) = V (h). (A.1)

The match rate for a buyer who flows to segment h is α (h) = m (h) /µB (h). Using the

definition of buyers (4), it can be expressed in terms of observables (up to a constant) as

1

α (h)
=
∑
θ∈Θ̃(h)

I (h)

Ĩ (θ)

β (θ)
(
µ̄Θ − 1

)
νH (θ)

1

V (h)
. (A.2)

Interpreting terms from the right, we have that matching is fast – at a high rate α(h) – in segment

h if the volume share is high in h, if the buyer-owner ratio is high for types in the clientele of h,

and if the inventory share is low in h relative to other segments in its clientele’s search ranges.

It remains to identify the distribution of searcher types µΘ. We determine the constant µ̄Θ− 1

by setting the average of the buyer match rates α (h) to the average of the inventory match rate

I (h) /V (h). The average inventory-weighted match rate across types θ is the same as the average

inventory-weighted match rate across segments. Indeed, let µ̄S denote total inventory and consider

the identity

(
µ̄S
)−1
∑
θ∈Θ

νS (θ)

µ̃B (θ)

∑
h∈H̃(θ)

µS (h)

νS (θ)

µ̃B (θ)

µB (h)
m (h) =

(
µ̄S
)−1

∑
h∈H̃(θ)

µS (h)

µB (h)
m (h) .

Here the right hand side is the average match rate across segments and the left hand side is the

average match rate across types. In particular, the second sum on the left hand side is number of

matches entered by type θ which depends on the relative inventory available in θ’s search range

18In the very few instances when the listing price and the final sales price would suggest a different segment
membership for a particular house – i.e. cases where the house is close to being at a segment boundary and sells
for a price different to the listing price – we allocate the house to the segment suggested by the sales price, not the
listing price.
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as well as the share of θ in each segment’s buyer pool.

Once the total number of buyers is determined, the number of buyers by type µ̃B (θ) =

β(θ)
(
µ̄Θ − 1

)
and by segment µB (h) = µH (h)V (h) /α (h) follow immediately. Substituting for

µH (h; θ) in (7) using (6) we can solve out for the type distribution µΘ (θ) from

µΘ (θ)− µ̃B (θ)

µ̃B (θ)
=
∑

h∈H̃(θ)

µS (h)

νS (θ)

µH (h)

µB (h)
. (A.3)

The adding up constraint says that the owner-buyer ratio for type θ agents should be the inventory

weighted average of owner-buyer ratios at the segment level. We will therefore infer the presence of

more types θ not only if we observe more buyers of type θ (higher β (θ) and hence higher µ̃B (θ)),

but also if type θ’s search range has on average relatively more owners relative to buyers. In the

latter case, more types θ agents are themselves owners, so their total number is higher.

At this point we have identified the supply and demand parameters of the model without

specific assumptions on the functional form of the matching function. If we postulate such a

functional form, restrictions on its parameters follow from equation (5). For example, consider the

Cobb-Douglas case with a multiplicative segment-specific parameter m̄(h) that governs the speed

of matching

m̃
(
µB (h) , µS (h) , h

)
= m̄ (h)µB (h)δ µS (h)1−δ .

For a given weight δ, the speed of matching parameter m̄ (h) can be backed out from observables

as m̄ (h) = α (h)δ (V (h) /I (h))1−δ. The speed of matching parameter is thus a geometric average

of the buyer and inventory match rates.
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