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1 Introduction

Admissions to public schools in the United States and abroad commonly use assignment

mechanisms based on student priorities, a lottery, and importantly, reported ranking of vari-

ous school options (Abdulkadiroglu and Sonmez, 2003; Pathak and Sonmez, 2008). Data on

reported rankings generated by these mechanisms promise several opportunities for academic

research and directing school reforms. However, with rare exceptions, mechanisms used in

the real world are susceptible to gaming (Pathak and Sonmez, 2008), making it difficult to

directly interpret reported lists in as true preference orderings. Table 1 presents a partial list

of mechanisms in use at school districts around the world. To our knowledge, only Boston

currently employs a mechanism that is not manipulable.1

[Table 1 about here.]

Previous empirical work has typically assumed that observed rank order lists are truth-

ful representation of the students’ preferences (Hastings et al., 2009; Abdulkadiroglu et al.,

2014; Ayaji, 2013), allowing a direct extension of discrete choice demand methods with such

data (c.f. McFadden, 1973; Beggs et al., 1981; Berry et al., 1995, 2004).2 The assumption is

usually motivated by properties of the mechanism or by arguing that strategic behavior may

be limited under a sudden change in the choice environment. This standard approach may

not be valid if students have a strategic incentives to manipulate their reports. Anecdotal

evidence from Boston suggests that parent groups and forums for exchanging information

about the competitiveness of various schools and discussing ranking strategies are fairly

active (Pathak and Sonmez, 2008). Laboratory experiments also suggest that agents par-

ticipating in manipulable mechanisms are more likely to engage in strategic behavior (Chen

and Sonmez, 2006; Calsamiglia et al., 2010).

This paper proposes a general method for estimating the underlying student preferences

for schools using data from manipulable mechanisms. We make several methodological

and empirical contributions. Our main empirical contributions are an analysis of strategic

behavior in elementary school admissions Cambridge, an application of our methods to

estimate preferences, and counterfactual analysis of an alternative school choice mechanism.

Our main technical contributions include a new class of mechanisms for which preference

1The student proposing deferred acceptance mechanism is a commonly used mechanism that is strategy-
proof if students are not restricted to list fewer schools than are available. However, with the exception of
Boston since 2005, all implementations of the mechanism known to us, severely restrict the length of the
rank-order list. Abdulkadiroglu et al. (2009) and Haeringer and Klijn (2009) show that with this restriction,
the mechanism provides incentives for students to drop competitive schools from their rank-order list.

2He (2012) and Calsamiglia et al. (2014) are notable exceptions that allows for agents to be strategic. We
compare our results with this paper in further detail below.
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parameters can be consistently estimated, a study non-parametric identification in such

an environment, and a computationally tractable estimator. These innovations allow for

using our methods to estimate preferences in manipulable school choice mechanism, while

accounting for strategic behavior.

Ignoring the possibility of strategic behavior can have important implications. First,

school accountability and improvement programs, or district-wide reforms, are liable to us-

ing stated rank order lists as direct indicators of school desirability or student preferences.

For instance, Boston’s Controlled Choice Plan used the number of applications to a school as

a formal indicator of school performance in a school improvement program. Several manip-

ulable mechanisms provide students incentives to avoid reporting competitive schools, and

therefore, using stated rank lists reported to inform policy can misdirect resources. Second,

recent empirical studies in economics have used estimates of student preferences assuming

truthful behavior to evaluate student welfare under alternative matching mechanisms (see

Abdulkadiroglu et al., 2014, for example). Strategyproof mechanisms are advocated on the

basis of their simplicity, robustness to information available to participants and fairness

(see Azevedo and Budish, 2013, and references therein). While it is well-known that such

mechanisms may compromise student welfare (Miralles, 2009; Abdulkadiroglu et al., 2011),

we are able to quantify potential welfare costs of switching to such a mechanism. Third,

recent studies have used preference estimates for studying implications for student achieve-

ment (Hastings et al., 2009), and school competition (Nielson, 2013). These approaches may

not be suitable for data from manipulable assignment mechanisms if strategic behavior is

widespread.

Our analysis of ranking behavior for admissions into public elementary schools in Cam-

bridge indicates significant gaming. The school district uses a variant of the Boston Mech-

anism, that is highly manipulable. We find large strategic incentives in this school system:

some schools are rarely assigned to students that rank it second, while others are have spare

capacity after all students have been considered. Students therefore risk losing their priority

if they do not rank one of the competitive schools as their first choice. We investigate whether

students appear to respond to these incentives using a regression discontinuity design. The

design leverages the fact that students receive proximity priority at the two closest schools.

We find that student ranking behavior changes discontinuously with the change in priority.

This finding is not consistent with a model in which students state their true preferences,

and a distribution of preferences that is continuous with respect to distance.

Therefore, instead of interpreting stated rank order lists as true preferences, our empirical

approach is based on interpreting a student’s choice of a report as a choice of a probability

distribution over assignments. Each rank-order list results in a probability of getting assigned
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to each of the schools on that list. This probability depends on the student’s priority type

and report, a randomly generated lottery (if there is one), as well as the reports and priorities

of the other students. If agents have correct beliefs about this probability and are expected

utility maximizers, the chosen report then reveals comparisons of expected utilities with

other reports the agent could have chosen. Formally, we require that student behavior is

described by a Bayesian Nash Equilibrium. This assumption implies sophisticated agent

behavior an is an important baseline model for accounting the strategic behavior observed.

In order to learn about preferences from the reports made by a student, we first estimate

the probabilities of assignment associated with each report and priority type. Constructing

consistent estimates of these probabilities requires a consideration of potential dependent

data since the assignment of an individual agent depends on the reports of all other agents

in the economy. We present a general convergence condition on the mechanism under which

data from a large market can be used to consistently estimate these probabilities without

directly estimating preferences or solving for an equilibrium. The ability to do this circum-

vents difficulties that may arise due to computational difficulties in solving for an equilibrium

or multiplicity of equilibria.

A priori, this convergence condition can be hard to verify because assignment mecha-

nisms are usually described in terms of algorithms rather than functions with well-known

properties such as continuity. We therefore introduce a new class of mechanisms called report-

specific priority + cutoff mechanisms for which we prove that this condition is satisfied. All

mechanisms in Table 1, except the Top Trading Cycles mechanism, can be represented as

report-specific priority + cutoff mechanisms. Our results additionally require that a lottery

is used to break ties in assignments and that there are coarsely defined priority types. This

rules out admissions in some school districts for exam schools or other programs that use

test scores to determine admissions.

Since the assignment probabilities as a function of reports and priority types can be

consistently estimated, we study identification of preferences treating these probabilities

as known both to the econometrician and to agents that maximize expected utility. The

problem is equivalent to identifying the distribution over preferences over discrete objects

with choice data on lotteries over these objects. Indeed, the classical discrete choice demand

model is a special case with degenerate lotteries. We follow the discrete choice literature

in specifying preferences using a flexible random utility model that allows for student and

school unobservables (see Block and Marshak, 1960; McFadden, 1973; Manski, 1977). We

show conditions under which the distribution of preferences is non-parametrically identified.

We exploit two types of variation to identify the distribution of preferences. First, we use

variation in choice environments (as defined by the lotteries available to the agents). Such
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variation may arise from differences in agent priorities that are excludable from preferences,

or if the researcher observed data from two identical populations of agents facing different

mechanisms or availability of seats. We characterize the identified set of preference distribu-

tions under such variation. Although sufficient variation in choice environments can point

identify the preference distribution, we should typically expect set identification. Our second

set of identification results relies on the availability of a special regressor that is additively

separable in the indirect utility function (Lewbel, 2000). The assumption is commonly made

to identify preferences in discrete choice models (Berry and Haile, 2010, 2014, for example).

We show that local variation in this regressor can be used to identify the density of distribu-

tion of utility in a corresponding region. A special regressor with full support can be used

to identify the full distribution of preferences.

We propose an estimation procedure for the distribution of preferences using a Gibbs’

sampler adapted from McCulloch and Rossi (1994).3 The estimator lends itself naturally

to our setting because the set of utility vectors for which a given report is optimal can be

expressed as a convex cone. This allows us to implement an estimation procedure that does

not involve solving for the optimal report given a simulated draw of the utility.

We apply this two-step method to estimate student preferences in Cambridge. The

estimated preferences can be used to address a wide range of issues. We investigate the

extent to which students avoid ranking competitive schools in order to increase their chances

of assignment at less competitive options. Prevalence of such behavior can result in certain

schools mis-estimating the attractiveness of schools if stated ranks were interpreted on face

value. Ignoring strategic behavior may therefore result in inefficient allocation of public

resources to improve school quality. Further, a large number of students assigned to their

first choice may not be an indication of student satisfaction or heterogeneity in preferences.

We therefore investigate if strategic behavior results in fewer students are assigned to their

true first choice as compared to their stated first choice.

Finally, we compare the welfare effects of a switch to the student proposing Deferred

Acceptance Mechanism. The welfare comparison between the two mechanisms is theoreti-

cally ambigious. The mechanisms also cannot be empirically evaluated without estimating

preferences because of strategic reporting. Our method recovers the true preference distribu-

tion when agents are strategic, which allows us to compare welfare effects of counterfactual

designs of the market.

Related Literature

3We view our non-parametric identification results as justifying that parametric assumptions are not
essential for learning about the primitives of interest but are made to assist estimation in finite samples.
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Our approach to studying large sample properties of our estimator and defining a limit

mechanism is motivated by recent theoretical work studying matching markets by Kojima

and Pathak (2009) and Azevedo and Leshno (2013). Some of our proposed results rely on

and extend the large market results in Azevedo and Leshno (2013). In large markets, agents

act as price-takers but may still be able to manipulate outcomes by submitting a report that

misrepresents their ordinal preferences (Azevedo and Budish, 2013).

Our empirical approach of considering strategic behavior is similar in spirit to He (2012)

and Calsamiglia et al. (2014). He (2012) estimates preferences using data from the Boston

mechanism in Beijing under the assumption that agents’ reports are undominated. The set

of undominated reports is derived using a limited number of restrictions implied by ratio-

nality, the specific number of schools and ranks that can be submitted in Beijing, and that

the mechanism treats all agents symmetrically. The approach fully specifies the likelihood

of reporting each of the undominated strategies. Calsamiglia et al. (2014) considers a model

with strategic and non-strategic agents and fully specifies a likelihood for a boundedly ra-

tional decision maker. They model a strategic decision-maker that uses heuristics motivated

by common strategic concerns in the Boston mechanism to pick the set of schools to rank

before optimizing the list.

Compared to these previous approaches, we allow for a more general class of mecha-

nisms that includes mechanisms with student priority groups. The proposed method does

not require the researcher to analytically derive implications of rationality or pick ranking

heuristics for estimation. Further, our aim is to characterize the identified set or show point

identification under the restrictions imposed on the data and directly study the properties

of an appropriate estimator, aspects which are not considered in these previous studies.

Previous research has questioned the extent to which agents are sophisticated. For exam-

ple, Abdulkadiroglu et al. (2006) use particulars of the Boston mechanism to deduce reports

that are clearly suboptimal and tabulate the fraction of agents that make one these re-

ports. Recent evidence in Calsamiglia and Guell (2014) suggests that students in Barcelona

responded to a change in strategic incentives when the system of assigning neighborhood

priorities was administratively changed. We present a sharp condition for an agent’s report

to be consistent with equilibrium behavior that does not depend on details of the mechanism.

This allows us to estimate the fraction of agents with reports that are not consistent with

equilibrium behavior. It also shows that the equilibrium restriction we use in our approach is

testable in the data. Extensions to formally test and/or relax the assumption of equilibrium

behavior are left for future research.

We use techniques and build on insights from the identification of discrete choice demand

(Matzkin, 1992, 1993; Lewbel, 2000; Berry and Haile, 2010). While the primitives are similar,
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unlike discrete choice demand, each report is a risky prospect that determines a probability

of assignment to the schools on the list. Since choices over lotteries depend on expected

utilities, our data contain direct information on cardinal utilities when the lotteries are not

degenerate. In this sense, our paper is similar to Chiappori et al. (2012), although their

paper focuses on risk attitudes rather than the value of underlying prizes.

This paper is related to the large, primarily theoretical, literature that has taken a

mechanism design approach to the student assignment problem (Gale and Shapley, 1962;

Shapley and Scarf, 1974; Abdulkadiroglu and Sonmez, 2003). Theoretical results from this

literature has been used to guide redesigns of matching markets (Roth and Peranson, 1999;

Abdulkadiroglu et al., 2006, 2009). While preferences are fundamental primitives that influ-

ence mechanism comparisons, prospective analysis of a proposed change in the school choice

mechanism is rare (see Pathak and Shi, 2013, for an exception). A significant barrier is that

the fundamental primitives are difficult to estimate since a large number of school choice

mechanisms are susceptible to manipulation (Pathak and Sonmez, 2008, 2013). Results in

this paper may allow such analysis. For instance, our techniques will allow comparing the

welfare effects of a change to the Deferred Acceptance mechanism for a school district that

uses the Boston mechanism. The relative benefits of these two mechanisms has been de-

bated in the theoretical literature. Ergin and Sonmez (2006) show that full-information

Nash equilibria of the Boston Mechanism are Pareto inferior to outcomes under the De-

ferred Acceptance mechanism. However, when analyzing Bayesian Nash Equilibria, stylized

theoretical models with an assumed distribution of preferences have arrived at ambiguous

conclusions about the welfare comparison between the two mechanisms (Miralles, 2009; Ab-

dulkadiroglu et al., 2011; Featherstone and Niederle, 2011; Troyan, 2012). In the context of

a multi-unit assignment problem, Budish and Cantillon (2012) use preferences solicited from

a strategyproof mechanism for assigning courses to evaluate average assignment ranks under

a manipulable mechanism.

Our methods may also be useful in extending recent work on measuring the effects of

school assignment on student achievement that jointly specifies the preferences for schools

and test-score gains (Hastings et al., 2009; Walters, 2013; Nielson, 2013). This work has

been motivated by the fact that without data from a randomized assignment of students

to schools, a researcher must account for sorting on unobservable preferences/characteristics

that are also related to achievement gains. Additionally, estimates of preferences may be

useful in extrapolating lottery based achievement designs if there is selection on the types of

students that participate in the lottery (Walters, 2013). Methods for estimating preferences

in a broader class of data-environments may expand our ability to study the effects of school

assignment on student achievement.
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This paper also contributes to the growing literature on methods for analyzing preferences

in matching markets. Many recent advances have been made in using pairwise stability as

an equilibrium assumption on the final matches to recover preference parameters (Choo and

Siow, 2006; Fox, 2010b,a; Chiappori et al., 2011; Agarwal, 2013; Agarwal and Diamond,

2014). The data environment considered here is significantly different and pairwise stability

need not be a good approximation for assignments from manipulable mechanisms. Another

strand of the literature directly interprets agent behavior in matching markets in terms

of preferences. For example, Hitsch et al. (2010) estimate preferences in an online dating

marketplace that strategically avoid costs of emailing potential mates that are unlikely to

respond. Similar considerations related to probability of success arise when applying to

colleges and other search environments (Chade and Smith, 2006).

The proposed two-step estimator leverages insights from the industrial organization lit-

erature, specifically the estimation of empirical auctions (Guerre et al., 2000; Cassola et al.,

2013) and dynamic games (Bajari et al., 2007). As in the methods used in those contexts,

we use a two-step estimation procedure where the distribution of actions from other agents

is used to construct probabilities of particular outcome as a function of the agents’ own

action and a second step is used to recover the primitives of interest. However, the nature

of primitives, reports, the mechanism and economic environment are significantly different

than in our context.

Overview

Section 2 describes the Cambridge Controlled Choice Plan and presents evidence that stu-

dents are responding to strategic incentives provided by the mechanism. Section 3 sets up the

model and notation for the results on identification and estimation. Section 4 presents the

main insight of the paper on how to interpret submitted rank order lists. Section 5 presents

the main convergence condition needed for our analysis, and describes and analyzes the

class of report-specific priority + cutoff mechanisms. Section 6 studies identification under

varying choice environments and the availability of a special regressor. Section 7 proposes a

particular two-step estimator based on Gibbs’ sampling. Section 8 applies our techniques to

the dataset from Cambridge, MA. A reader interested in the empirical application instead

of the econometric techniques may skip Sections 5-7. Section 9 concludes.
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2 Evidence on Strategic Behavior

2.1 The Controlled Choice Plan in Cambridge, MA

We will use data from the Cambridge Public School’s (CPS) Controlled Choice Plan for the

academic years 2004-2005 to 2008-2009. Elementary schools in the CPS system assign about

41% of the seats through a partnerships with pre-schools (junior kindergarten or Montessori)

or an appeals process for special needs students. The remaining seats are assigned through

a “lottery process” that takes place in January for students entering kindergarten. We will

focus on students and seats that are allocated through this process.

[Table 2 about here.]

Table 2 summarizes the students and schools. The CPS system has 13 schools and about

400 students participating in it each year. One of the schools, Amigos, was divided into

bilingual Spanish and regular programs in 2005. Bilingual Spanish speaking students are

considered only for the bilingual program, and students that are not bilingual are considered

only for the regular program.4 King Open OLA is a Portuguese immersion school/program

that any student may apply to. Tobin, a Montessori school, divided admissions for four and

five year olds starting 2007.

One of the explicit goals of the Controlled Choice Plan is to achieve socio-economic

diversity by maintaining the proportion of students who qualify for the federal free/reduced

lunch program in each school close to the district-wide average. Except Amigos and only

for the purposes of the assignment mechanism, all schools are divided into paid lunch and

free/reduced lunch programs. Students eligible for federal free or reduced lunch are only

considered for the corresponding program.5 About 34% of the students are on free/reduced

lunch. Each program has a maximum number of seats and the overall school capacity may

be lower than the sum of the seats in the two programs. Our dataset contains both the total

number of seats in the school as well as the seats available in each of the programs.

The Cambridge Controlled Choice Mechanism

We now describe the process used to place students at schools. The process prioritizes

students at a given school based on two criteria:

1. Students with siblings who are attending that school get the highest priority.

4A student voluntarily declares whether she is bilingual on the application form.
5Households with income below 130% (185%) of the Federal Poverty line are eligible for free (reduced)

lunch programs. For a household size of 4, the annual income threshold was approximately $29,000 ($41,000).
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2. Students receive priority at the two schools closest to their residence.

Students can submit a ranking of up to three programs at which they are eligible. A variant

of the Boston Mechanism assigns students as follows:

Step 0: Draw a single lottery number for each student

Step k ∈ 1,2,3: Each school considers all students that have not been previously assigned

and have listed it in the k-th position and arranges them in order of priority, breaking

ties using the lottery number. Starting from the first student in the list, students are

considered sequentially:

• The student under consideration is assigned to the paid lunch program if she is

not eligible for a federal lunch subsidy and there is an open seat in both the paid

lunch program and the school. If she is eligible for a federal lunch subsidy, then

she is assigned to the free/subsidized lunch program as long as seats are remaining

in both the free lunch program and the school.

2.2 Descriptive Evidence on Ranking Behavior

Panels A and D in Table 3 show that over 80% of the students rank the maximum allowed

number of schools and over 80% of the students are assigned to their top ranked choice in a

typical year. Researchers in education have interpreted similar statistics in school districts

as indicators of student satisfaction and heterogeneity in student preferences. For instance,

Glenn (1991) argues that school choice caused improvements in the Boston school system

based on observing an increase in the number of students that were assigned to their top

choice.6 Similarly, Glazerman and Meyer (1994) interpret a high fraction of students getting

assigned to their top choice in Minneapolis as indicative of heterogeneous student preferences.

[Table 3 about here.]

Conclusions based on interpreting stated preferences as truthful are suspect when a mech-

anism provides strategic incentives for students. It is well understood that students risk

“losing their priority” if a school is not ranked at the top of the list in mechanisms like the

Boston mechanism (Ergin and Sonmez, 2006). Table 3, Panel E shows that students tend

to rank schools where they have priority closer to the top. For instance, schools where a

student has sibling priority is ranked first 32% of the time as compared to 35% of the time

6The argument is based on ranking and assignment data generated when Boston used a manipulable
assignment system.
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anywhere on the list. Likewise, schools where a student has proximity priority are also more

likely to be ranked higher. These statistics do not necessarily indicate that this behavior

is in response to strategic incentives because having priority may be correlated with prefer-

ences. However, given that strategic incentives may also result in similar patterns, it may be

incorrect to estimate preferences by treating stated lists as true preferences. For example,

Panels D and of Tables 2 and 3 respectively show that the top-ranked school is closer than

the average school, and closer than other ranked schools. One may incorrectly conclude that

students have strong preferences for going to school close to home if proximity priority is

influencing this choice.

2.3 Strategic Incentives in Cambridge

Table 4 takes a closer look at the strategic incentives for students in Cambridge. Panel A

shows the frequency with which students rank the various school options, the capacity at

the various schools and the rank, and priority type of the first rejected student in a school.

Panels B and C present identical statistics, but split by free/reduced lunch status of students.

The table indicates significant heterogeneity in the competitiveness of the schools. Baldwin,

Haggerty, Amigos, Morse, Tobin, Graham & Parks, and Cambridgeport are competitive

schools with many more students ranking them than there is capacity. Panel A indicates

that a typical student would be rejected in these schools if she does not rank it as her top

choice. Indeed, Graham and Parks rejected all non-priority students even if they had ranked

it first in three of the five years. The other schools typically admit all students that were

not assigned to higher ranked schools. Additionally, the competitiveness of schools differs

by paid lunch status. While Graham & Parks is very competitive for students that pay for

lunch, it did not reject any free/reduced lunch students that applied to it in a typical year.

[Table 4 about here.]

There are two other features that are worth noting. First, there are few instances where

students were rejected at their second or third choices. This suggests that, in Cambridge at

least, strategic incentives may be particularly important when considering which school to

rank first. Second, several paid lunch students rank competitive schools as their second or

third choice. This may appear hard to rationalize as optimal behavior. However, it should

be noted that despite the large number of students ranking competitive schools second, these

choices are often not pivotal, as evidenced by the extremely large number of students that

are assigned to their top choice. Another possibility is that students are counting on back-up

schools, either at the third ranked school, a private or a charter school in case they remain

unassigned. We will discuss these findings after we present our estimates.
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2.4 Strategic Behavior: A Regression Discontinuity Approach

We now present evidence that students are responding strategically when choosing which

school to rank first. Our empirical strategy is based on the assignment of proximity priority

in Cambridge. A student receives priority at the two closest schools to her residence. We can

therefore compare the ranking behavior of students that are on either side of the boundary

where the proximity priority changes. If students are not behaving strategically and the

distribution of preferences are continuous in distance to school, we would not expect the

ranking behavior to change discretely at this boundary. On the other hand, the results in

Table 4 indicate that a sophisticated student risks losing her proximity priority at competitive

schools if she does not rank it first. We now test whether students are responding to this

strategic incentive.

[Figure 1 about here.]

Figure 1 presents bin-scatter plots of the probability of ranking a school against the

distance from a boundary. In panels (a) through (d), students have proximity priority at

schools to the left of the dashed line. Panel (a) shows that the probability that a student ranks

a school first increases discontinuously at the proximity boundary. Further, the response to

distance to school is also high. The jump at the boundary may be attenuated because a

student can rank only one of the two schools she has priority as her top choice. In contrast

to panel (a), we do not see a discrete jump at the proximity boundary for the probability a

school is ranked second or third. This should be expected because we saw earlier that one’s

priority is unlikely to be pivotal in the second or third choices. Panel (d) focuses on the

probability of ranking the second and third closest schools at the top rank. The discontinuity

is particularly clear, with students more likely to rank the closer school, i.e. the one where

they have proximity priority. Together, panels (a) and (d) strongly suggest that students

are responding to the proximity priority in their decision of which school to rank first. We

consider two placebo tests of our design. First, we repeated the exercise in panel (d) for the

two closest schools. Note that a student has proximity priority at both schools. Reassuringly,

we do not see a discrete change in behavior. Second, we repeated the exercise in panel (a)

considering only the set of schools where a student does not have proximity priority. Again,

we do not see a remarkable change in ranking behavior at the placebo boundary.

While these results suggest an aggregate change in ranking behavior as a function of

proximity priority, there are two important caveats that must be noted. First, the results do

not show that all students are responding to strategic incentives in the mechanism, or that

their reports are optimal. In what follows, we will assume that all agents are sophisticated

in their choice. Second, it is possible that the response is primarily driven by residential

11



choices with which parents picking a home so that the student receives priority at a more

preferred school. A full model that considers the joint decision residential and school choices

is left for future research.

These results contrast with Hastings et al. (2009), who find that the average quality

of schools ranked did not respond to a change in the neighborhood boundaries in the year

the change took place. Assuming that students prefer higher quality schools, their finding

suggests that students did not strategically respond to the change in incentives. As suggested

by Hastings et al. (2009), strategic behavior may not be widespread if the details of the

mechanism and the change in neighborhood priorities are not well advertised. Charlotte-

Mecklenberg had adopted the lottery system just a year prior to their study and the district

did not make the precise mechanism clear. In contrast, Cambridge’s Controlled Choice Plan

is published on the school district’s website and has been in place for several years. These

institutional features may account for the observed differences in the student behavior.

3 Model

We consider school choice mechanisms in which students are indexed by i ∈ {1, . . . , n} and

schools indexed by j ∈ {0, 1, . . . , J} = S. School 0 denotes being unmatched. Each school

has qnj seats, with q0 =∞. We now describe how students are assigned to these seats, their

preferences over the assignments, and the equilibrium behavior.

3.1 Assignment Mechanisms

School choice mechanisms typically use submitted rank-order lists and defined student prior-

ity types to determine final assignments. As is the convention in the school choice literature,

let Ri ∈ Ri be a rank-order list, where jRij
′ indicates that j is ranked above j′.7 Student,

if they so choose, may submit a rank-order list that does not reflect their true preferences

over schools. Let student i’s priority type be denoted ti ∈ T . In Cambridge, ti defines the

free-lunch type, the set of schools the student has proximity priority at and whether or not

the student has a sibling in the school

A mechanism is usually described as an outcome of an algorithm that takes these rank-

order lists and priorities as inputs. To study properties of a mechanism and our methods,

it will be convenient to define a mechanism as a function that depends on the number of

students n instead of the outcome of an algorithm.

7The set Ri may depend on the student’s priority type ti and may be constrained. For example, students
in Cambridge can rank up to three schools, and programs are distinguished by paid-lunch status of the
student.
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Definition 1. A mechanism Φn is a function (Φ1, . . . ,Φn) where

Φn
i : Rn × T n → ∆S

such that for all R = (R1, . . . , Rn) ∈ Rn, and t = (t1, . . . , tn) ∈ T n,

1

n

n∑
i=1

Φn
ij(R, t) ≤ qnj .

In this notation, the i− j component of Φn(R), denoted Φn
ij(R, t) is the probability that

student i is assigned to school j. Hence, the outcome for each student is in the J-simplex

∆S. In the Cambridge school system, there is a lottery that breaks ties between students.

Such lotteries are a common source of uncertainty faced by students.

3.2 Utilities and Preferences

We assume that student i’s utility from assignment into program j is given by V (zij, ξj, εi),

where zij is a vector of observable characteristics that may vary by program or student or

both, and ξj and εi are (vector-valued) unobserved characteristics. Let

vi = (vi1, . . . , viJ)

be the random vector of indirect utilities for student i with density fV (vi1, . . . , viJ |ξ, zi),
where ξ = (ξ1, . . . , ξJ) and zi = (zi1, . . . , ziJ). We normalize the utility of not being assigned,

vi0, to zero.8

This formulation allows for heterogeneous preferences conditional on observables. For

instance, one may specify these indirect utilities as

vij = zijβi + ξj + εij,

with parametric assumptions on the distribution of βi, ξj, and/or εi = (εij, . . . , εiJ). The

primary restriction thus far is that a student’s indirect utility depends only on their own

assignment and not of other students. This rules out preferences for peer groups or for

convenience that carpool arrangements may afford.

8Scale normalizations needed for identification and estimation will be discussed in Section 6.
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3.3 Equilibrium

We assume that agent behavior is described by a symmetric Bayesian Nash Equilibrium.

Specifically, let σ : RJ × T → ∆R be a (symmetric) mixed strategy. The first argument of

σ is the vector of utilities over the various schools, and the second argument is the priority

type of the student. If a student forecasts that other students in the district are playing

according to σ, her (ex ante) probability of assignment probability when she reports Ri ∈ Ri

is given by the vector

Lσn,Ri,ti
= Eσ[Φn((Ri, ti), (R, T ))|Ri, ti]

=

∫
Φn((Ri, ti), (R, T ))

∏
k 6=i

σR(vk, tk)dFV−i,T−i
, (1)

where σR(v, t) is the probability that an agent with utility vector v and priority type t reports

R and FV−i,T−i
=
∏

k 6=i FV,T is the distribution of utility and priority types of the other agents

in the population. The (ex ante) probability of assignment therefore depends on both the

lottery draw and the realization of the reports by the other students in the district.

Definition 2. The strategy σ∗ is a type-symmetric Bayesian Nash Equilibrium if

v · Lσ∗n,R,t ≥ v · Lσ∗n,R′,t for all R′ ∈ R whenever σ∗R(v, t) > 0.

The focus on equilibrium play implies that students submit the report that maximizes

their expected utility with correct notions of the distribution of play by other students. A

student faces uncertainty due to both the distribution of reports that the other students will

submit and due to uncertainty inherent in the mechanism. This approach contrasts with

ex-post concepts of Nash Equilibria common in the literature on assignment mechanisms (see

Ergin and Sonmez, 2006, for example). However, it is a natural starting point for analyzing

mechanisms that are not dominant-strategy and is commonly taken in the empirical analysis

of auction mechanisms (Guerre et al., 2000; Cassola et al., 2013, among others). Models of

bounded rationality are beyond the scope of this paper.

Evidence presented in Section 2 suggests that agents are responding to strategic incentives

in the Cambridge Mechanism. Further, anecdotal evidence suggests that parent groups and

forums discussing ranking strategies are active (Pathak and Sonmez, 2008), and laboratory

experiments suggests that strategic behavior is more common for manipulable mechanisms

than strategyproof mechanisms (Chen and Sonmez, 2006; Calsamiglia et al., 2010). While

direct evidence showing that agents play equilibrium strategies is limited, Calsamiglia and

Guell (2014) observe a strategic response in the distribution of reports to a change in the

allocation of neighborhood priorities. However, the assumption implies a strong degree of
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rationality and knowledge, particularly if parents vary in their level of sophistication as

postulated by Pathak and Sonmez (2008, 2013).

4 A Revealed Preference Approach

This section illustrates the key insight of how we learn about the preferences of students from

their (potentially manipulated) report, and present an overview of our method for estimating

preferences.

Equation (1) reveals that a student’s optimal choice depends on the (expected) assign-

ment probabilities. These assignment probabilities depend on the strategies of the other

agents, her report and her priority-type. In a Bayesian Nash Equilibrium, the expected

assignment probabilities are consistent with the strategies of the other agents. The choice

of a report by a student can be interpreted as a choice over the set of lotteries,

Lσ∗ti =
{
Lσ
∗

Ri,ti
: Ri ∈ Ri

}
.

These are the assignment probabilities that a student with priority type ti can achieve by

making different reports to the mechanism when the other agents are playing according to

σ∗. We will suppress the dependence on σ∗ and ti in the notation for expositional simplicity,

focusing on students with a given priority type and a Bayesian Nash Equilibrium.

Assume, for the moment, that the assignment probabilities available to a student is

known to the analyst and consider her decision problem.9 Figure 2 illustrates an example

with two schools and an outside option. Each possible report corresponds to a probability of

assignment into each of the schools and a probability of remaining unassigned. Figure 2(a)

depicts three lotteries LR, LR′ , LR′′ corresponding to the reports R, R′ and R′′ respectively

on a unit simplex.10 The dashed lines show the linear indifference curves over the lotteries

for an agent with utility vector v ∈ RJ . A student that is indifferent between LR and LR′

must have indifference curves that are parallel to the line segment connecting the two points

and a utility vector vR,R′ that is orthogonal to it. Figure 2(b) shows such utility vector.

Likewise, students with a utility vector proportional to vR,R′′ are indifferent between LR and

LR′′ . It is now easy to see that the shaded region in this figure denotes all utility vectors for

which LR is the optimal choice. More generally, for any J and set of lotteries L, choosing

9The next section presents conditions under which the available data can be used to consistently estimate
the assignment probabilities available to a student in the Bayesian Nash Equilibrium that generated the
observed data.

10The simplex is often referred to as the Marschak-Machina triangle.
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LR is optimal if the utility vector belongs to the normal cone (or the polar dual):

CR = {v ∈ RJ : v · (LR − LR′) ≥ 0 for all R′ ∈ R}.

For all values of v in this cone, the expected payoff from choosing R is at least as large as

choosing any other report. Figure 2(c) illustrates the regions that correspond to R′ and R′′

being optimal choices in our example. It easy to see that the normal cones to any set of

lotteries may intersect only at their boundaries, and together cover the utility space. Figure

2(d) shows this visually in our example. Specifically, in the space of utilities, the types

vR,R′ , vR,R′′ and vR′,R′′ are indifferent between two of the three choices. Reports R, R′ and

R′′ are optimal for students with utility vectors in the regions CR, CR′ and CR′′ respectively.

[Figure 1 about here.]

The student’s report therefore reveals which of the normal cones, CR ⊆ RJ for R ∈ R,

contains her utility vector. We can use this insight to construct the likelihood of observing

a given choice as a function of the distribution of utilities, fV :

P(R|z, ξ) =

∫
1{v ∈ CR}fV (v|z, ξ)dv. (2)

This expression presents a link between the observed choices of the students in the market

and the distribution of the underlying preferences, and will be the basis of our empirical

approach. Note that the number of regions of the utility space that we can learn about from

observed choices is equal to the number of reports that may be submitted to a mechanism,

which grows rapidly with the number of schools or the number of ranks submitted.

There are three remaining issues to consider which we address in the subsequent sections.

First, we propose a large class of mechanisms show for which the equilibrium assignment

probabilities can be consistently estimated. This is essential for determining the regions

CR needed to construct the likelihood. The objective is to estimate the assignment prob-

abilities for the equilibrium that generate the data, and therefore our procedure allows for

multiple equilibria. Second, we provide conditions under which the distribution of utilities

is non-parametrically identified. We can obtain point identification by “tracing out” the

distribution of utilities with either variation in lottery sets faced by students or by using an

additively separable student-school specific observable characteristic. Third, we propose a

computationally tractable estimator based on Gibbs’ sampling that can be used to estimate

a parametric form for fV . This estimator uses an estimate of the lotteries obtained from a

first step.
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5 A Class of Mechanisms and their Limit Properties

The first step of our procedure requires an estimate of the assignment probabilities. These

probabilities are a result of mechanisms that are usually described in terms of algorithms that

take in a profile of reports and priority types of all the students in the district. There are few a

priori restrictions on these algorithms, allowing for mechanisms that may be ill-behaved. For

instance, a small changes in number of students or their reports could potentially have large

effects on the assignment probabilities.11 Moreover, our objective is to estimate assignment

probabilities simultaneously for all priority-types and each possible rank-order list that can

be submitted by a student. These complications can create difficulties in obtaining precise

estimates of assignment probabilities from the data.

This section presents a large class of mechanisms that have properties that allow for

consistent estimation of assignment probabilities.

5.1 A Convergence Condition

To state our convergence condition, we first restrict attention to semi-anonymous mecha-

nisms. These mechanisms treat students with the same priority type and report symmetri-

cally. Formally,

Definition 3. Φn is semi-anonymous if there exists a function φn : (R×T )×∆(R×T )→
∆S, such that

φn((Ri, ti),m−i) = Φn
i ((Ri, ti), (R−i, t−i)),

where m−i = 1
n−1

∑
i′∈−i δ(Ri′ ,ti′ )

is the measure of reports of students other than i.12

Semi-anonymous mechanisms use only the priority types and reports of students to de-

termine assignments, and do not depend directly on the identities of the specific students.

Therefore, only the number of reports made by each priority-type affect the final outcomes

for each student. Additionally, a student’s assignment probabilities only depends on the

reported rank-order list and her priority type. The restriction that there are only finitely

many priority types rules out a fine metric such as test scores that can be used to distinguish

11Two pathological examples allowed by Definition 1 are instructive. First, the assignment of all students
depends only student 1’s report. Second, an algorithm could depend on whether an odd or even number of
students apply to schools.

12This definition is equivalent to the more usual definition: A mechanism is semi-anonymous with
priorities T if (1) for all R, t ∈ Rn × Tn, and i, i′ such that ti = ti′ , we have that Φni (R, t) = Φni′(R, t) and
(2) for all Ri, R−i and permutations π of −i = (1, . . . , i−1, i+1, . . . , n), we have that Φni ((Ri, ti), R−i, t−i) =
Φni ((Ri, ti), Rπ(−i), tπ(−i)).
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any two test scores.13

Our identification and estimation results are based on properties of the assignment prob-

abilities in a large market. The key property that will allow us to proceed with the analysis

for a mechanism is that outcomes of the mechanism evaluated at the empirical distribution

of the reports converge in probability to the limiting values as the market grows in size. We

state this condition formally as follows:

Condition 1 (Convergence at m). Suppose the sequence of empirical measures mn−1 on

R× T converges in probability to the population measure m ∈M. Then, for each (R, t),

|φn((R, t),mn−1)− φ∞(R, t,m)| p→ 0

where φ∞((R, t),m) = limn→∞ φ
n((R, t),m).

This condition guarantees that if the distribution of reports and priority-types of other

students converges to a limit m, then the sampling error in estimating the assignment prob-

abilities using the observed sample vanishes as the sample size increases. It provides the

basis for using the sample of reports observed for estimating assignment probabilities.

Specifically, consider assignment probabilities under samples with reports and priority

types drawn from a sequence fo type-symmetric strategies σnR(v, t). These strategies may or

may not be part of an equilibrium. We assume the sample of reports and priority types of

the other players, mn−1, is an empirical measure for a sample from

mσn

(R, t) =

∫
σnR(v, t)dFV,T .

We now show that Condition 1 allows us to consistently estimate the assignment probabilities

when the samples are generated from a sequence of type-symmetric strategies.

Theorem 1. Assume that the sequence of type-symmetric strategies, σn, are such that ‖σn−
σ‖F → 0,14 and φn satisfies Condition 1 at mσ, then

|φn((R, t),mn−1)− φ∞((R, t),mσ)| p→ 0.

Proof. The proof follows from Condition 1. To apply this condition, we need to show that

supR,t |mn−1(R, t) −mσ(R, t)| p→ 0. Note that mn−1(R, t) is a sample of n − 1 independent

13Note that Φni only restricts φn((Ri, ti),m(R−i, t−i)) at a subset of probability measures m, namely,
probability measures of the form 1

n−1
∑
i δRi,ti . We are free to choose φn at other values. Henceforth, we

refer to a specific choice of φn when discussing a semi-anonymous mechanism.
14We use the norm ‖σ − σ̃‖F = supR,t

∫
|σR(v, t)− σ̃R(v, t)|dFV |t.
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draws from mσn
(R, t) = FT (t)

∫
σnR(v, t)dFV |T . The triangle inequality implies that

sup
R,t
|mn−1(R, t)−mσ(R, t)|

≤ sup
R,t
|mn−1(R, t)−mσn

(R, t)|+ sup
R,t
|mσn

(R, t)−mσ(R, t)|.

The first term, converges in probability to 0 uniformly in R, t by the Glivenko-Cantelli

theorem since R × T is finite and therefore a universal Glivenko-Cantelli class. To show

that the second term converges to zero, note that it can be rewritten and bounded using the

triangle inequality as follows:

sup
R,t

∣∣∣∣∫ (σnR(v, t)− σR(v, t))dFV |t

∣∣∣∣
≤ sup

R,t

∫
|σnR(v, t)− σR(v, t)|dFV |t

= ‖σnR − σR‖F → 0.

The condition above allows us to show that if σn is a convergent sequence of type-

symmetric strategies, then the corresponding assignment probabilities converge to a limit.

The condition therefore yields consistent estimates of assignment probabilities under alterna-

tive assumptions on behavior. Condition 1 is therefore agnostic about the solution concept

and is best seen as a regularity condition guaranteeing consistent estimation of assignment

probabilities. The techniques developed in this section may therefore be useful for exten-

sions in which students need not be best responding to correct beliefs about assignment

probabilities.

For our preference estimates, we will assume that student behavior is described by an

equilibrium. The result above shows that we can construct consistent estimates of agent

beliefs using the observed sample of reports. For instance, one can assume that the data

are generated from any sequence of BNE that converges to a point where Condition 1 is

satisfied. Requiring a convergent sequence of BNE ensures that the equilibrium behavior

of agents is well-behaved under the data generating process. Conditions that guarantee

the existence of such a sequence are presented in Menzel (2012). These conditions are

presented in terms of smoothness conditions on the best-response function at the equilibrium

of the limit game (the game defined by φ∞). Unfortunately, these are not easily mapped

to primitives. Alternatively, we can assume a behavioral model in which agent reports are

made according to a limit equilibrium with a continuum of agents (Kalai, 2004; Azevedo and
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Budish, 2013).15 The advantage of this approach is that it avoids analyzing sequences of

equilibria to derive consistency results. It may also be a reasonable behavioral assumption

in itself. Appendix A shows that the difference in payoffs to agents under these two solution

concepts are not significant when there are a large number of agents. Specifically, we show

that the limit of a sequence of BNE is a limit equilibrium and that all limit equilibria are

approximate BNE.

In both approaches, aggregate uncertainty about the distribution of the reports disap-

pears in the limit, although it is present in any finite BNE. This feature is not unique to

our setting and is implied in any large game (Kalai, 2004; Menzel, 2012). We return to

this point when proposing an estimator for assignment probabilities. Second, we allow for

the possibility of multiple equilibria. The objective is to estimate assignment probabilities

for the equilibrium that generated the data. We can achieve this objective because these

are only a function of the distribution of reported preferences and priority types, which are

observed.

Verifying Condition 1 may not be straightforward because matching mechanisms are usu-

ally described using algorithms instead of functions that take a measure of reports as inputs.

Continuity or uniform convergence properties that often allow for econometric consistency

are therefore not directly available. A representation of the mechanism as a function may

be necessary before proceeding. The next subsection describes a large class of mechanisms

in which the condition is satisfied.

5.2 Report-Specific Priority and Cutoff Mechanisms

This section introduces a class of mechanisms called report-specific priorities + cutoff mech-

anisms. These mechanisms admit a particular representation of how reports and priorities

map into assignment probabilities.16

We consider mechanisms in which each student is assigned an eligibility score for each

school, and the student is assigned to her highest ranked choice for which her eligibility score

exceeds the school’s cutoff. In symbols, given cutoffs, p1, . . . , pj, we consider mechanisms that

a student with eligibility scores ei = (ei1, . . . , eiJ) that submitted report Ri is assigned to

school j if

D
(Ri,ei)
j (p) = 1{eij ≥ pj, jRi0}

∏
j′ 6=j

1{jRij
′ or eij′ < pj′}. (3)

We now describe how student eligibility scores and the school-specific cutoffs are determined.

15We say that σ∗ is a Limit Equilibrium if σ∗R(v, t) > 0 implies that v · φ∞((R, t),mσ∗) ≥ v ·
φ∞((R′, t),mσ∗) for all R′ ∈ R.

16Our representation is for any set of reports, not only for those generated from an equilibrium.
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As the name suggests, eligibility scores in report-specific priority + cutoff mechanisms

are modified based on the report made by the student and the priority type. Formally, we

assume that there is a lottery νi that is not known to a student at the time the student

makes her report. Let γν|t denote the distribution of the lottery given the priority type. The

vector eligibility scores is given by ei = f(Ri, νi).

By allowing for the distribution of lotteries to depend on t, we allow for the case that

sibling priority receive a more favorable distribution of lotteries than other students. We

also allow for the distribution of the random priority to be correlated with the student’s

priority type and across schools. The dependence on f allows us to consider cases such as

the Boston mechanism or First Preferences First prioritize all students that rank a school

first over other students.

Finally, the allocations are determined by a school-specific cutoff pj ∈ [0, 1]. The cutoff,

pj, will be determined as a function of reports, priorities and lottery draws for all the students

to ensure that schools are not assigned more students than there are positions available. Let

η ∈ ∆
(
R× [0, 1]J

)
be a measure of student reports, and eligibility scores. We can now write

the measure of students that are eligible for j and rank it above other eligible schools:

Dj(p|η) = η

(
{eij ≥ pj, jRi0}

⋂
j′ 6=j

({jRij
′} ∪ {eij′ < pj′})

)
.

Given D(p|η) and school capacities q, we can define the set of cutoffs that clear the market

as follows:

Definition 4. The vector of cutoffs p is a market clearing cutoff for economy (η, q) if

for all j ∈ S, Dj(p|η)− qj ≤ 0, with equality if pj > 0.

At a market clearing cutoff, the total number of students that are eligible and seek

assignment at any given school is no higher than the capacity at the school. Moreover, a

school has a strictly positive cutoffs only if assigning students to their highest ranked choice

for which they are eligible would exhaust the school’s capacity. We consider mechanisms

that use market clearing cutoffs to determine who is assigned to any given school.

Formally, we say that a mechanism φn is a report-specific priorities + cutoff mech-

anism if there exists a function f : R × [0, 1]J → [0, 1]J and a measure γν|t over [0, 1]J for

each t ∈ T such that

(i) φnj ((Ri, ti),m(R−i, t−i)) is given by∫
. . .

∫
D(Ri,f(Ri,νi))(pn)dγν1|t1 . . . dγνn|tn
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where f(Ri, νi)) is the modified priority,

(ii) pn are market clearing cutoffs for capacity qn and ηn =
1

n

∑
i δ(Ri,f(Ri,νi)).

(iii) f strictly increasing in the last J arguments.

The representation highlights two ways in which these mechanisms can be manipulable.

First, the report of an agent can modify her eligibility. Fixing a cutoff, agents may have the

direct incentive to make reports that may not be truthful. Second, even if eligibility does

not depend on the report, an agent may (correctly) believe that the cutoff for a school will

be high, making it unlikely that she will be eligible. If the rank-order list is constrained in

length, she may choose to omit certain competitive schools.

This representation extends the characterization of stable matchings by Azevedo and

Leshno (2013) in terms of demand-supply and market clearing to discuss mechanisms. Par-

ticularly, we can use the framework to consider mechanisms that produce matchings that

are not stable. As we show in the next section, a remarkable feature of this representation

is that it encompasses a very broad class of mechanisms that differ essentially by the choice

of f . The representation may therefore be of independent theoretical interest.

5.2.1 Examples

This subsection shows that most commonly used mechanisms can be expressed as report-

specific lottery + cutoff mechanisms. The main text focuses on the two most commonly used

mechanisms:

The Student Proposing Deferred Acceptance Mechanism: For reports R1, . . . , RN

and priorities t1, . . . , tN ,

Step 1: Students apply to their first listed choice and their applications are tentatively held

in order of priority and a lottery number until the capacity has been reached. Schools

reject the remaining students.

Step k: Students that are rejected in the previous round apply to their highest choice that

has not rejected them. Schools pool new applications with those held from previous

steps, and tentatively hold applications in order of priority and lottery number un-

til capacity has been reached. The remaining students are rejected. The algorithm

continues if any rejected student has not been considered at all their listed schools.

Otherwise, each student is assigned to the school that currently holds her application.

This mechanism is strategy-proof for the students if the students can rank all J schools

(Dubins and Freedman, 1981; Roth, 1982), but provides strategic incentives for students if
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students are constrained to list K < J schools (see Abdulkadiroglu et al., 2009; Haeringer

and Klijn, 2009, for details).

The Boston Mechanism: For reports R1, . . . , RN and priorities t1, . . . , tN , each school

Step 1: Assign students to their first choice in order of priority and a lottery number until

the capacity has been reached. Reject the remaining students.

Step k: Assign students that are rejected in the previous round to their k-th choice in order

of priority and a lottery number until the capacity has been reached. Schools reject

the remaining students. Continue if any rejected student has not been considered at

all their listed schools.

This mechanism is a canonical example for one that provides strategic incentives to students

(Abdulkadiroglu et al., 2006).

Proposition 1. The Deferred Acceptance Mechanism and the Boston Mechanism with lot-

teries are report-specific priority + cutoffs mechanisms.

Proof. See Appendix B.3. We use e = f(R, ν) = ν for deferred acceptance and ej =

fj(R, ν) =
νj −#{k : kRj}

J
+
J − 1

J
for the Boston Mechanism. This choice of f for Boston

upgrades the priority of the student at her first choice relative to all students that list that

school lower.

Remark 1. Serial Dictatorship, First Preferences First, Chinese Parallel Mechanism and

the Pan London Admissions scheme are also report-specific priority + cutoff mechanisms.

For completeness, we discuss these mechanisms in Appendix B.3.

Hence, all mechanisms in Table 1 except the TTC and Cambridge mechanisms are report-

specific priority + cutoffs mechanisms. As we discuss below, our convergence result will

require an additional assumption that the mechanism uses a lottery to break ties.

A researcher with data from one of these mechanisms will need to verify that priorities

used by the mechanism satisfy our Assumptions above before applying the methods that

follow. An important restriction is that the function f does not depend on the reports and

priorities of the other agents. This may rule out some mechanisms that use the reports of

other agents to determine eligibility in a program. Alternatively, one may prove Condition

1 directly, as we do for the Cambridge mechanism.

5.2.2 Condition 1 for Report-Specific Priority + Cutoff mechanism

Our main result in this section shows that this class of mechanism satisfy the key convergence

condition needed to proceed with the rest of our analysis, and that this class contains the

most commonly used mechanisms.
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We make the following assumption on η in the limit continuum economy:

Assumption 1. 1. (Non-degenerate lotteries) For some κ > 0, and each p, p′ ∈ [0, 1]J ,

(R, t) ∈ R× T and j, ηe|R,t({pj ∧ p′j ≤ ej ≤ pj ∨ p′j}) ≤ κ|pj − p′j|.

2. (Unique Cutoff) (η, q) admits a unique market clearing cutoff, p∗.

Non-degenerate lotteries is a strengthening of strict preferences in Azevedo and Leshno

(2013). The assumption is straightforward to verify with knowledge of the mechanism. For

example, it is satisfied if a lottery is used to break ties between multiple students with the

same priority type. It also allows for a situation in which a single tie-breaking lottery that

is used by all schools to break ties. This assumption, however, is not satisfied if the school

district uses an exam with finitely many possible scores to determine eligibility and does not

use a lottery to break ties between students with identical exam scores.

Assuming a unique cutoff restricts the joint distribution of reports and priorities, and

the school capacities. Existence of a market clearing cutoff is guaranteed by Corollary A1 of

Azevedo and Leshno (2013) for any η. Uniqueness is a restriction on an equilibrium object.

Although the assumption is not made on primitives, it is a restriction on features that are

observed in the data. Sufficient conditions that imply this assumption are therefore testable

in principle. Further, using the reports observed in the data it is feasible to check if there

are multiple cutoffs that approximately clear the market, but are sufficiently different. Not

finding approximate market clearing cutoffs that are far might provide confidence in the

assumption above. We refer the reader to Appendix B.1 for a more formal discussion of

sufficient conditions for Assumption 1. This discussion borrows from results in Azevedo and

Leshno (2013) and Berry et al. (2013).

We are now ready to state the first main result of this section.

Theorem 2. Assume that (η, q) satisfies Assumptions 1, where

η({R, e ≤ p}) =
∑
t∈T

m(R, t)γν|t({f(R, ν) ≤ p}).

φn satisfies Condition 1 if it is a report-specific priority + cutoff mechanism.

Proof. See Appendix B.2.

The proof is based on a lemma showing that the market clearing cutoffs faced by an

individual agent in the finite economy converges to the limiting cutoff p∗, irrespective of

their lottery draw. This uniform convergence follows from standard empirical process results

applied to the aggregate demand function. Intuitively, any single agent has a negligible
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effect on the aggregate demand function in the large market. We then use Assumption

1, which implies that the probability that a student with priority ti and report Ri has an

eligibility draw that is pivotal is negligible. Hence, the assignment probabilities in a large

finite economy approach the limiting case.

An important feature of the representation of the mechanism in terms of the cutoffs and

the use of these cutoffs in the proof is that is significantly reduces the dimensionality of the

assignment probabilities that need to be estimated. The number of cutoffs is equal to the

number of schools which is far fewer than |R × T |, the number of assignment probabilities

that need to be estimated. This representation also implies that students only need to

have correct beliefs about the (distribution of the) cutoffs in equilibrium. This is a lower

dimensional object than assignment probabilities over which beliefs need to be formed.

6 Identification

In Section 4, we showed that the choice of report by a student allows us to determine the

normal cone, CR ⊆ RJ for R ∈ R, that contains her utility vector v. This deduction required

knowledge of the assignment probabilities LR, which we showed can be consistently estimated

under certain regularity conditions on the mechanism. We now articulate how one can learn

about the distribution of utilities fV |T (v|z, ξ) by using implications of Equation 2:

P(R ∈ R|z, t, ξ, b) =

∫
1{v ∈ Cb,R,t}fV |t(v|z, ξ)dv,

where b is a market subscript and the dependence on t has been reintroduced for notational

clarity. It allows us to consider different market conditions for the same set of schools or

students with different priority types.

The expression above shows that two potential sources of variation is available to the

analyst that can be used to “trace out” the densities fV |T (v|z, ξ). First, we can consider

choice environments with different values of Cb,R,t. Second we can consider variation in the

observable characteristics z. We consider each of these in the subsequent sections. Appendix

C.1 shows that the equilibrium assumption that reports are consistent with BNE is testable

in principle under certain conditions on the mechanism.17

As is standard in the literature, our results consider the case when an infinitely large

dataset is observed. Hence, the assignment probabilities and the fraction of students that

17The statistical testing problem is beyond the scope of this paper. Studying the problem may require
proposing an alternative behavioral model and we suspect that it may involve testing for a parameter on the
boundary.

25



choose any report are observed without sampling noise. We view these results as articulating

the role of parametric assumptions as assisting estimation in finite samples.

6.1 Identification Under Varying Choice Environments

In some cases, a researcher is willing to exclude certain elements of the priority structure t

from preferences, or may observe data from multiple years in which the set of schools are

the same, but the capacity at schools varies across years. For instance, some students are

grandfathered into Kindergarten from pre-K before the January lottery in Cambridge. This

affects the number of seats available at a school during the lottery. This variation assists in

identification if it is excluded from the distribution of utilities. This section illustrate what

can be learned from such variation without any further assumptions.

[Figure 2 about here.]

When t is excluded from the distribution of preferences, i.e. v|z, ξ, t ∼ v|z, ξ, t̃ for t, t̃ ∈ T ,

we have students with the same distribution of preferences facing two different choice sets

for assignment probabilities. For example, assume that the choice sets faced by t and t̃ are

L = {LR, LR′ , LR′′} and L̃ = {LR, L̃R′ , LR′′} respectively. Figure 3(a) illustrates these choice

sets. The change from LR′ to L̃R′ affects the set of utilities for which the various choices

are optimal. The set of types for with LR is optimal is presented as the dotted cone. These

utilities can be written as linear combinations of ṽR,R′ and vR,R′ with positive coefficients.

Observing the difference in likelihood of reporting R for students with the two types allows

us to determine the weight on this region:

P(R|z, t̃)− P(R|z, t) =

∫
(1{v ∈ C̃R} − 1{v ∈ CR})fV |t(v|z)dv.

Since utilities may be determined only up to positive affine transformations, normalizing the

scale as ‖vi‖ = 1 for each student i is without loss of generality. Hence, it is sufficiently to

consider the case when fV |t has support only on the unit circle. Figure 3(b) illustrates that

this variation allows us to determine the weight on the arc h̃R− hR. Appendix C.3 formally

characterizes the identified set.

The discussion suggests that enough variation in the set of lotteries faced by individuals

with the same distribution of utilities can be used to identify the preference distribution.

If such variation is available, the arc above traces the density of utilities along the circle.

Of course, we do not expect that typical variation in the data will be rich enough to use

non-parametric estimation methods based on such variation. However, this observation
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articulates the sources of choice set variation that are implicitly used when utilities are not

linked directly with priority types.

While this variation may not be rich enough for a basis for non-parametric identification,

it makes minimal restrictions on the distribution of utility. In particular, the result allows for

the distribution of utility to depend arbitrarily on residential locations. Although beyond

the scope of this paper, this framework may be a useful building block for a model that

incorporates both residential and schooling choices.

6.2 Identification With Preference Shifters

In this section we assume that the indirect utilities are given by

V (zij, ξj, εi) = U(z2
ij, ξj, εi)− z1

ij (4)

where εi ⊥ z1
ij. The magnitude of the coefficient on z1 is most appropriately viewed as a scale

normalization, and the model is observationally equivalent to one with random coefficient

αi that has support only on negative real numbers. This scale normalization replaces the

normalization, ‖vi‖ = 1, made in the previous section. For simplicity of notation, we will

drop ξ, z2 with the reminder that these are variables that the researcher needs to condition

on. Let ζ be the support of z1. Since fV (v|z1) is a location family, this implies that

fV (v|z1) = g(v + z1) where g is the density of u. Since the distribution of z1 is observed in

the data, our objective in this section is to identify the density g.

The term z1
ij is sometimes referred to as a special regressor (Lewbel, 2000; Berry and

Haile, 2010, 2014). The linearly separable form and independence assumptions are the main

restrictions in this formulation. In the school choice context, these assumptions needs to be

made on a characteristic that varies by student and school. For instance, Abdulkadiroglu

et al. (2014) assume that distance to school is independent of student preferences. The

assumption is violated if unobserved determinants of student preferences simultaneously

determine residential choices.

[Figure 3 about here.]

We now illustrate how variation in z1 can be used to “trace-out” the density of u. Consider

the lottery set faced by a set of students in Figure 2 and the corresponding region, CR, of the

utility space that rationalizes choice R. A student with z1 = z chooses R if v = u− z ∈ CR.

The values of u that rationalize this choice is given by z + a1vR,R′ + a2vR,R′′ for any two

positive coefficients a1 and a2. Figure 4 illustrates the values of u that make R optimal.

As discussed in Section 4, observing the choices of individuals allows us to determine the
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fraction of students with utilities in this set. Similarly, by focusing on the set of students with

z1 ∈ {z′, z′′, z′′′}, we can determine the fraction of students with utilities in the corresponding

regions. Figure 4 illustrates the sets that make R optimal for each of these values of z1. By

appropriately adding and subtracting the fractions, we can learn the fraction of students

with utilities in the parallelogram defined by z − z′ − z′′′ − z′′. This allows us to learn the

total weight placed by the distribution g on such parallelograms of arbitrarily small size.

It turns out that we can learn the density of g around any point z in the interior of ζ by

focusing on local variation around z. The next result formalizes this intuition.

Theorem 3. Suppose CR is spanned by J linearly independent vectors {w1, . . . , wJ}. If

hCR
(z1) = P (v ∈ CR|z1) is observed on an open set containing z1, then g(z1) is identified.

Hence, fV (v|z1) is identified everywhere if ζ = RJ .

Proof. Let W = (w′1, . . . , w
′
J)′ be the matrix containing linearly independent vectors such

that CR = {v : v = Wa for some a ≥ 0}. Assume, wlog, |detW | = 1. Evaluating hCR
at

Wx, we have that

hCR
(Wx) =

∫
RJ

1{u−Wx ∈ C}g (u) du.

After the change of variables u = Wa:

hCR
(Wx) =

∫
RJ

1{W (a− x) ∈ CR}g(Wa)da

=

∫ x1

−∞
. . .

∫ xJ

−∞
g (Wa) da

where the second inequality follows because 1{W (a− x) ∈ CR} = 1{a− x} ≤ 0. Then:

∂JhCR
(Wx)

∂x1 . . . ∂xJ
= g (Wx)

and g (z1) is given by ∂JhC(Wx)
∂x1...∂xJ

evaluated at x = W−1z1.

Intuitively, we use local changes in z1 to shift the distribution of cardinal utilities to favor

certain lotteries over others. Since simplicial cones are spanned by linearly independent

vectors, we can decompose the change in how often a lottery is chosen into the principal

directions to identify the density.

Note that the local nature of this identification result articulates precisely the fact that

identification of the density at a point does not rely on observing extreme values of z1. Of

course, identification of the tails of the distribution of u will rely on support on extreme

values of z1. Also note that our identification result requires only one convex cone generated
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by a lottery, and therefore, observing additional lotteries with simplicial cones generates

testable restrictions on the special regressor.

It turns out that considering cones CR that are spanned by linearly independent vectors is

sufficient for J = 2, but may not be useful for some sets of assignment probabilities if J > 3.

This is because for J = 2, the normal cone CR is spanned by linearly independent vectors

if LR is extremal (in the convex hull of L). Intuitively, an extremal lottery can have only

two other adjacent lotteries and therefore the cone CR is spanned by two vectors. However,

when J > 2, a lottery may have more than J adjacent lotteries, resulting in a cone CR that

is spanned by more than J vectors. These vectors cannot be linearly independent.

Fortunately, we can still identify g if z1 has full support on RJ as long as the tails of g are

exponentially decreasing. Theorem C.3 in Appendix C.4 states the results and conditions

formally. The proof is based on Fourier-deconvolution techniques since the distribution of

v is given by a location family parametrized by z1. This allows us to learn about g from

observing how choices over lotteries change with z1. However, because the result is based

on deconvolution techniques, it requires stronger support assumptions than in Theorem

3. Nonetheless, the conditions on G are quite weak, and are satisfied for commonly used

distributions with additive errors such as normal distributions, generalized extreme value

distributions or if u has bounded support.18

7 Estimation

Non-parametric estimation of random utility models can be computationally prohibitive

and imprecise in finite samples, particularly if there are several options. Following the

discrete choice literature, we parametrize the distribution of indirect utilities FV (v|z, ξ) with

FV ;θ(v|z, ξ) where θ belongs to a compact set Θ ∈ RK . This parametric representation is a

parsimonious approximation to the identified primitives that is specifically chosen to answer

a particular economic question. The identification results in the previous section show that

these parametric assumptions may be relaxed in the presence of richer data.

We consider a two-step estimator where in the first step we replace φ∞((R, t),m) with

a consistent estimate φ̂(R, t). For example, φ̂(R, t) = φn((R, t),mn−1) where mn−1 is the

empirical measure on the reports and priority types of n−1 agents in the sample. Condition

18We do not require that g has a non-vanishing characteristic function. When u has bounded support, the
support conditions on ζ can also be relaxed. In this case, we can allow for ζ to be a corresponding bounded
set.

29



1 implies that φ̂(R, t)
p→ φ∞((R, t),m). Our second step is defined as an extremum estimator:

θ̂ = inf
θ∈Θ

Qn(θ, φ̂)

Consistency of such a procedure is straightforward to establish under mild conditions on Qn.

The result is formally stated and proves in Appendix D.1.

The objective function Qn could be based on a likelihood or a method of moments.

We will implement our second-step as a Gibbs’ sampler, and interpret the posterior mean

of this sampler as asymptotically equivalent to the Maximum Likelihood Estimator. We

now describe each of the steps for the Cambridge Mechanism and the particular parametric

specification used in the second step.

7.1 First Step: Estimating Assignment Probabilities

The first step requires a (consistent) estimate of the assignment probabilities φ((R, t),m)

as function of the reports and priority types, (R, t). Given Condition 1, there are several

feasible methods for obtaining consistent estimates. For instance, one may use the observed

assignment probabilities conditional on the ranks and priority types of the students. A

significant disadvantage of this method is that several feasible rank-order lists may not be

observed for a given priority-type, or may not be observed frequently enough to obtain

accurate estimates.

Our preferred method is to simulate the mechanism directly and resample other students

for each rank and priority type from the observed data. This uses the knowledge of the

details of the mechanism and avoids the small sample size problem that a method that uses

the observed assignments confronts. While one may simply use the observed reports of the

other students, we believe that resampling the other students is likely to better approximate

the uncertainty the students face in finite samples. In our dataset, we implement this by cat-

egorizing students into various types and iterating through feasible rank order lists. For each

list, we use 1,000 draws of the lotteries and N − 1 other students (drawn with replacement)

along with their observed rank-order lists and priority types.

A final possibility is to take advantage of the representation of mechanisms as report-

specific priority + cutoff mechanism and directly simulate the cutoffs. Then, for each rank-

order list, one may compute the probability of assignment for each student. This can alleviate

computational difficulties in simulating the mechanism when the number of feasible rank

order lists or the number of priority types is large. The complexity grows exponentially in

number of schooling options because one iterates through various rank lists. In contrast, the
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cutoffs grow linearly in the number of schools, this method may ease computation.19 We

cannot apply this method because the Cambridge mechanism is not a Rank Specific Priority

+ Cutoffs mechanism, although it satisfies Condition 1.

7.2 Second Step: Preference Estimates

While our identification results do not make parametric assumptions on utilities, we imple-

ment the following parametric specification to assist estimation in finite samples. Student

i’s utility school j is:

vij =
K∑
k=1

δkjxik − dij + εij (5)

vi0 = 0

where dij is the road distance between student i’s home and school j; xik are indicators of

student demographic characteristics such as ethnicity, home language, and sibling priority;

δkj are school specific parameters to be estimated; εi = (εi1, . . . , εiJ) ∼ N(0,Σ).20 The

normalization of ui0 = 0 is without loss of generality, and the scale normalization is embedded

in the assumption that the coefficient on dij is −1.

We specify independent prior distributions for δ = {δjk}j=1..J,k=1..K ∈ RJK and Σ. It is

convenient to use a normal prior on δ, δ ∼ N(δ, A−1) and an independent inverse Wishart

prior on Σ,Σ ∼ IW (ν0, V0). We follow McCulloch and Rossi (1994) and use a Gibbs’ sampler

to obtain draws of δ and Σ from the posterior distribution exploiting the fact that the chosen

priors are conditionally conjugate.

We construct a chain of draws (vs, δs,Σs)Ss=1 using a Gibbs Sampler. The initial conditions

v0,Σ0 are set such that for every student i, v0
i ∈ CRi

, where CRi
is the cone associated with

Ri, the observed report chosen by i; and Σ0 is a random draw from IW (ν0, V0).

For each draw s, the sampler uses vs−1 to obtain the parameters δ of equation (5). We use

the standard procedure in Bayesian approaches to draw δs from the posterior distribution of

δ given its prior, the data (vs−1, x) and the distribution of error terms N(0,Σs−1). A new

draw Σs is drawn from the posterior distribution of Σ given its prior and the data εs which

consists on the error terms implied by equation (5) when v = vs−1 and δ = δs. The last step

in draws vs. We set vs = vs−1 and update each of its elements iterating over students and

19Lemma B.1 in the appendix shows consistency of the cutoffs estimated from the data for a Rank Specific
Priority + Cutoff mechanism.

20Note that our specification allows for heteroskedastic errors εij and arbitrary correlation between εij
and εij′ . This specification relaxes homoskedastic and independent preference shocks commonly used in logit
specifications.
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schools. For student i and school j, we draw vsij from a truncated normal distribution with

mean determined by δs, variance determined by Σs and truncation points determined by

vsi,−j.
21 This procedure ensures that vsi ∈ CRi

for every student i in every step s. Additional

details on the implementation of our Gibbs’ sampler are in Appendix D.2.

The sampler can be initialized at any starting value for Σ and v as long as vi ∈ CRi
for

all i. Values of vi consistent with the constraint vi ∈ CRi
can be obtained using well known

linear programming techniques. Notice that an empty solution set to vi ∈ CRi
is equivalent

to a choice that cannot be rationalized as being strictly optimal.

8 Application to Cambridge

8.1 Estimated Assignment Probabilities

Table 5 presents the lottery estimates. As in Table 4, the estimates indicate considerable

heterogeneity in school competitiveness. The typical student isn’t guaranteed assignment at

the more competitive schools even if she ranks it first. On the other hand, several schools

are sure shots for students that rank them first. The probability of not getting assigned

to a school also differs with paid lunch status. A comparison of estimates in Panel A with

those in Panels D and E indicates that having priority at a school significantly improves the

chances of assignment. The differential is larger if the school is ranked first.

[Table 5 about here.]

Perhaps one surprising feature is that the estimated probability of assignment is zero in

very few cases. Indeed, paid lunch students ranking Graham & Parks as the second choice,

or one of Graham & Parks, Haggerty or Baldwin as the third choice are the only cases in

which the probability of assignment is estimated to be zero. Table 4 might have suggested

that it students are much less likely to be assigned to the latter two schools if they rank

it second. One reason for this difference is that the calculation in Table 5 accounts for

uncertainty in the set of students that are drawn. Although this uncertainty vanishes in the

large market, the calculation that resamples students from the observed data may better

approximate the uncertainty perceived by students if they do not know exactly what the

other students report.

21Our problem is therefore slightly is different from, although not more difficult than, a Gibbs’ sampler
approach to estimating standard discrete choice models in McCulloch and Rossi (1994). The standard
discrete choice models only involve sampling from one-sided truncated normal distributions.
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8.2 Preference Estimates: Truthful vs Sophisticated Players

We compute the posterior distribution of preference parameters using the set of students that

submitted a rank-order list consistent with optimal play (i.e. submitted a list corresponding

to an extremal lottery). A total of 1,958 students (92% of the sample) submitted a ratio-

nalizable list.22 The large fraction of students with rationalizable lists may initially appear

surprising. However, Theorem C.1 indicates that the lists that are not rationalized are likely

the ones where assignment probabilities for one of the choices is zero. Our estimates in Table

5 suggest that this is rare, except for a few schools. Indeed, most of the students with lists

that cannot be rationalized listed Graham & Parks as their second choice. Therefore, one

concern with dropping students with lists that cannot be rationalized is that we are liable

to underestimate the desirability of competitive schools.

[Table 6 about here.]

Panel A of Table 6 presents the (normalized) mean utility for various schools net of

distance, by student group for two specifications. The first specification treats the agent

reports as truthful, while the second treats all agents as sophisticated. The underlying

parameter estimates for the model with sophisticated agents are presented in Appendix

Table F.2. In both specifications, we find significant heterogeneity in willingness to travel

for the various school options. Paid lunch students, for instance, place a higher value on the

competitive schools as compared to the non-competitive schools. Although not presented

in the mean utilities, Spanish and Portuguese speaking students disproportionately value

schools with bilingual and immersion programs in their home language. Students also place

a large premium on going to school with their siblings.

The estimates suggest that treating stated preferences as truthful may lead to underes-

timates of the value of competitive schools relative to non-competitive schools. This differ-

ential is best illustrated using Graham & Parks as an example. Treating stated preferences

as truthful, we estimate that paid lunch students have an estimated mean utility that is an

equivalent of 1.26 miles higher than the average public school option. This is an underes-

timate relative to the model that treats agents as sophisticated. In contrast, the value of

Graham & Parks for free lunch students is over-estimated by the truthful model. Specifi-

cally, treating agents as sophisticated reveals that it is less desirable than the typical public

school option for the average student. The difference can be explained by observing that

Graham & Parks is not competitive for free lunch students, and therefore, the low number of

applications it receives indicates particular dislike for the school from this group of students.

22One student was dropped because the recorded home address data could not be matched with a valid
Cambridge street address.
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Another significant difference between the two sets of estimates is the number of schools

students find preferable to the outside option. Panel B shows that estimates that treat

stated preferences as truthful suggest that more than half the students have five or more

schools where assignment is preferable to the outside option. On the other hand, treating

agents as sophisticated suggests that more than half the students find assignment at three or

fewer schools in the system preferable to the outside option. Treating preferences as truthful

extrapolates from the few students (about 13%) that do not have complete rank order lists.

On the other hand, the model that treats students as sophisticated interprets the decision

to rank long-shots in the second and third choices as evidence of dislike for the remaining

schools relative to the outside option. These results should be viewed in light of Cambridge’s

thick after-market. About 92.56% of the students that are not assigned though the lottery

choice process are assigned to one of the schools in the system. In fact, more than a quarter

of unassigned students are placed at their top ranked school through the wait-list. There

are also charter school and private school options that unassigned students may enroll in.

The value of the outside option is therefore best interpreted in terms of the inclusive value

of participating in this after-market.23

8.3 Ranking Behavior and Assignment

In this section we investigate the ranking strategy of agents, whether they would suffer

large losses from out-of-equilibrium truth-telling, and how strategic manipulation may affect

student welfare.

Table 7 presents the fraction of students that find truthful reporting optimal and losses

from truthful behavior as estimated using the two assumptions on student behavior. The first

three columns can be interpreted as analyzing the true loss to students from not behaving

strategically if they are indeed out-of-equilibrium truth-tellers. The estimates suggest that

the truthful report is optimal for 56% of the students. The average student suffers a loss

equal to 0.19 miles by making a truthful report, or 0.43 miles conditional on regretting

truthful behavior. The losses are heterogeneous both within and across student groups.

Free-lunch students, for instance, suffer losses from truthful play less often and suffer lower

losses conditional on any losses. This reflects the fact that the Cambridge school system is

not competitive for these students because of the seats specifically reserved for them.

[Table 7 about here.]

23To some extent, students that are assigned through the process can choose to enroll elsewhere, should
there be open seats. This may question the interpretation of the mean utility estimates for the inside options.
However, approximately 91% of the students that are assigned through the lottery process enroll in their
assigned school.
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The last three columns estimate preferences assuming that agents are sophisticated but

tabulate losses from non-strategic behavior. Again, these estimates suggest that a little less

than half the students, and disproportionately paid-lunch students have strategic incentives

to manipulate their reports. Together, the observations suggest that markets where students

face large competitive pressures are precisely the markets where treating preferences as

truthful may lead to biased assessments of how desirable various schools are.

[Table 8 about here.]

Our estimates that about half the students find it optimal to behave truthfully is likely to

affect our assessment of how many students are assigned to their top choice. Table 8 presents

this fraction by student paid lunch status. The last column indicates that, on average, 88%

of the students rank their top choice first. This occurs because many students avoid ranking

competitive schools as their top rank in favor of increasing the odds of assignment to a less

preferred option. As a result, fewer students rank Graham & Parks as their top choice,

instead favoring Haggerty or Baldwin. We therefore see over-subscription to Haggerty and

Baldwin by paid lunch students relative to the true first choice. Consequently, the last column

indicates that while 84% were assigned to their stated first choice, only 75% were assigned

to their true first choice. This pattern is particularly stark for paid lunch students, who are

assigned to their true first choice only 68% of the time. Table 5 indicated that assignment

to competitive schools is less likely for paid lunch students. Together, these results suggest

that calculations of whether students are assigned to their preferred options based on stated

preferences may be misleading, and differentially so by student demographics.

8.4 Welfare Effects of Redesigning the Mechanism

A central question in the mechanism design literature is whether variants of the Boston

Mechanism are worse for student welfare as compared to strategy-proof mechanisms such

as the Deferred Acceptance Mechanism. This question has been debated in the theoretical

literature with stylized assumptions on the preference distribution (see Miralles, 2009; Ab-

dulkadiroglu et al., 2011; Featherstone and Niederle, 2011). The Boston mechanism exposes

students to the risk that they are not assigned to their top listed choices, which can harm

welfare when they strategically choose not to report their most preferred schools. However,

this risk has a countervailing force that only agents with particularly high valuations for

their top choice will find it worthwhile listing the schools on top. Hence, the mechanism

screens agents for cardinal preferences and can increase aggregate welfare.

Table 9 presents two different analyses of this question. The first assumes that students

report their preferences truthfully to the Cambridge mechanism, while the second imple-
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ments our proposed method that treats agents as sophisticated. In both cases, we compare

the outcomes to the Student Proposing Deferred Acceptance Mechanism.24 An approach

that treats agents’ stated preferences in the Cambridge Mechanism as truthful finds little

difference in the average welfare between the two mechanisms. This estimate may be biased

if strategic behavior is widespread.

[Table 9 about here.]

In contrast, the results that treat agents as sophisticated indicate that the Cambridge

mechanism outperforms the Deferred Acceptance mechanism. Particularly, both the fraction

of students assigned to their true first choice choice and the average utility of students is

higher under the Cambridge mechanism. Paid lunch students would benefit more from

such a change than free/reduced lunch students. However, only half the students prefer the

Cambridge Mechanism to the Deferred Acceptance Mechanism. This observation suggests

that the mechanism is effectively screening based on cardinal utilities. The magnitude of

the difference between the Cambridge Mechanism and the Deferred Acceptance Mechanism

is similar to the difference between Deferred Acceptance and Pareto Efficient Matching in

New York City, as measured by Abdulkadiroglu et al. (2014). We do not advocate for the

Cambridge mechanism based on our results for two reasons. First, only about half the

students prefer the Cambridge Mechanism to Deferred Acceptance. Second, there may be

welfare consequences to strategic behavior due to strategizing or distributional consequences

to naive behavior.

Our quantitative results contribute to the debate in the theoretical literature about the

welfare properties of the Boston mechanism, which is similar to the Cambridge mechanism.

The results are different in spirit from Ergin and Sonmez (2006), that suggests that full-

information Nash equilibria of the Boston Mechanism are Pareto inferior to outcomes under

Deferred Acceptance. This difference stems from our focus on Bayesian Nash Equilibria that

accounts for uncertainty faced by the students. Abdulkadiroglu et al. (2011) theoretically

show that the Boston Mechanism can effectively screens for the intensity of preferences

and can have better welfare properties than the Deferred Acceptance Mechanism. Troyan

(2012) shows that the theoretical results in this literature that are based on notions of

interim efficiency are not robust to students having priorities, and advocates for an ex-ante

comparison such as the one performed in this paper.

24We construct the school choice function by adapting the Cambridge Controlled Choice Plan. Schools
consider students according to their total priority + lottery. A paid lunch student’s application is held if the
total number of applications in the paid lunch category is less than the number of available seats and if the
total number of held applications is less than the total number of seats. Free lunch student applications are
held in a similar manner. We allow students to rank all available choices.
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Evaluating the counterfactual market in which the student proposing deferred accep-

tance mechanism is adopted is relatively straightforward. This is because the mechanism is

strategy-proof. Evaluating a counterfactual mechanism that is manipulable may be harder.

However, it may be easier to solve for equilibrium cutoffs for a rank-specific priority + cutoff

mechanism and use the cutoffs to compute assignment probabilities. This approach allows

for analysis of counterfactual mechanisms that are manipulable.

It is important to note that there may be distributional consequences if agents vary

in their ability to strategiz (Pathak and Sonmez, 2008). Additionally, agents may face

costs when strategizing since it may require students to gather additional information before

formulating ranking strategies. Our calculations ignore these costs, which weigh against

using Boston-like mechanisms for school assignment.

9 Conclusion

We develop a general method for analyzing preferences from reports made to a single unit

assignment mechanism that may not be truthfully implementable. We view the choice of

report as a choice from available assignment probabilities. The available probabilities can

be consistently estimated under a weak condition on the convergence of a sequence of mech-

anism to a limit. The condition is verified for a broad class of lottery-based school choice

mechanisms including the Boston mechanism or the Deferred Acceptance mechanism. We

then characterize the identified set of preference distributions under the assumption that

agents play a Bayesian Nash Equilibrium. The set of preference distributions are typically

not point identified, but may be with sufficient variation in the lottery set. We then obtain

point identification if a special regressor is available.

The methods in this paper rely on sophisticated agents participating in the mechanism.

Ranking behavior in Cambridge indicates that agents respond to the strategic incentives in

the mechanism. Specifically, students that reside on either side of the boundary where prox-

imity priority changes have observably different ranking behavior. We take this as evidence

against the assumption that agents are ranking schools according to true preferences. We

then implement our method using the proposed estimator. Our estimates indicate that treat-

ing preferences as truthful is likely to result in biased estimates in markets where students

face stiff competition for their preferred schools. The stated preferences therefore exaggerate

the fraction of students assigned to their top choice. We also illustrate how our method

can be used to evaluate changes in the design of the market. Specifically, we find that the

typical student would be worse-off by an equivalent of 0.1 miles if Cambridge switched to the

student proposing deferred acceptance mechanism. These losses are concentrated at the paid
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lunch students, who are assigned to their top choice less often under the Deferred Accep-

tance mechanism. This calculation, however, ignores potential distributional consequences

of heterogeneous agent sophistication and costs of strategizing.

Our methods can be extended in several directions. In the context studied here, schools

are passive players who express their preferences with only coarse priorities and a random

lottery. Extending the techniques to allow for exam scores may be of interest to allow

for finely defined priority groups may allow for broader applicability of the results, but may

require technical innovations for estimating the assignment probabilities. Another important

extension is to consider a college admissions setting where students make optimal applications

while considering their probabilities of admissions. A challenge in directly extending our

approach is that we observe all priorities relevant for admissions in the data. In the college

applications context, admissions may depend on unobservables that also affect preferences,

complicating the analysis. A closely related context is a multi-unit assignment mechanism

such as course allocation mechanisms where agents play truthfully. The preferences in this

context would need to be richer in order to allow for complementarities over the objects in a

bundle that are assigned to an individual. Last, but not least, relaxing the assumptions on

the sophistication of agents is an important avenue for future research with several possible

alternative approaches to consider. These extensions are interesting avenues for expanding

our ability to analyze agent behavior in assignment mechanisms.
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Figure 2: A Revealed Preference ArgumentFigure X 

 

 

 

  

1 

0 1 
�� 

�� 

�� 

�
�
� 

�
�
��

� 

(a) Indifference curves for utility vector
v, and choices over three lotteries

Figure X 

 

 

 

1 

0 1 
�� 

�� 

�
�,�

�� 

�
�,�

� 

�� 

�
�
� 

�
�
��

(b) LR is optimal for v in the normal
cone (shaded region), which is given by
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Table 1: School Choice Mechanisms

Mechanism Manipulable Examples
Boston Mechanism Y Barcelona1, Beijing2, Boston (pre 2005),

Charlotte-Mecklenberg3, Chicago (pre 2009),
Denver, Miami-Dade, Minneapolis,
Seattle (pre 1999 and post 2009),
Tampa-St. Petersburg.

Deferred Acceptance
w/ Truncated Lists Y New York City4, Ghanian Schools,

various districts in England (since mid ‘00s)
w/ Unrestricted Lists N Boston (post 2005), Seattle (1999-2008)

Serial Dictatorships
w/ Truncated Lists Y Chicago (2009 onwards)

First Preferences First Y various districts in England (before mid ‘00s)
Chinese Parallel Y Shanghai and several other Chinese provinces5

Cambridge Y Cambridge6

Pan London Admissions Y London7

Top Trading Cycles
w/ Truncated Lists Y New Orleans8

Notes: Source Table 1, Pathak and Sonmez (2008) unless otherwise stated. See several references therein

for details. Other sources: 1 Calsamiglia and Guell (2014); 2He (2012); 3Hastings et al. (2009);
4Abdulkadiroglu et al. (2009); 5Chen and Kesten (2013); 6 “Controlled Choice Plan” CPS, December 18,

2001; 7Pennell et al. (2006);
8http://www.nola.com/education/index.ssf/2012/05/new orleans schools say new pu.html

accessed May 20, 2014.
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Table 2: Cambridge Elementary Schools and Students

Year 2004 2005 2006 2007 2008 Average

Schools 13 13 13 13 13 13

Programs 24 25 25 27 27 25.6

Seats 473 456 476 508 438 470

Students 412 432 397 457 431 426

Free/Reduced Lunch 32% 38% 37% 29% 32% 34%

Paid Lunch 68% 62% 63% 71% 68% 66%

White 47% 47% 45% 49% 49% 47%

Black 27% 22% 24% 22% 23% 24%

Asian 17% 18% 15% 13% 18% 16%

Hispanic 9% 11% 10% 9% 9% 10%

English 72% 73% 73% 78% 81% 76%

Spanish 3% 4% 4% 4% 3% 3%

Portuguese 0% 1% 1% 1% 1% 1%

Closest School 0.43 0.67 0.43 0.47 0.45 0.49

Average School 1.91 1.93 1.93 1.93 1.89 1.92

Panel A: District Characteristics

Notes: Students participating in the January Kindergarten Lottery. Free/Reduced lunch 

based on student's application for Federal lunch subsidy.

Panel D: Distances(miles)

Panel B: Student's Ethnicity

Panel C: Language spoken at home
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Table 3: Cambridge Elementary Schools and Students

Year 2004 2005 2006 2007 2008 Average

First 81% 84% 85% 83% 75% 82%

Second 8% 3% 4% 7% 5% 5%

Third 5% 2% 2% 2% 4% 3%

Unassigned 6% 11% 9% 8% 16% 10%

First 80% 77% 78% 79% 68% 76%

Second 5% 4% 5% 8% 5% 5%

Third 6% 3% 4% 2% 3% 4%

Unassigned 9% 16% 14% 11% 24% 15%

First 85% 95% 98% 94% 89% 92%

Second 14% 1% 2% 4% 6% 5%

Third 2% 1% 0% 1% 4% 1%

Unassigned 0% 4% 0% 2% 1% 1%

One 2% 6% 9% 5% 12% 7%

Two 5% 6% 9% 7% 7% 7%

Three 93% 89% 82% 88% 81% 87%

Sibling at Ranked School 42% 38% 33% 26% 36% 35%

Sibling at 1st Choice 38% 34% 32% 24% 34% 32%

Sibling Priority at 2nd Choice 4% 3% 1% 2% 2% 2%

Sibling Priority at 3rd Choice 0% 2% 1% 1% 0% 1%

Proximity at 1st Choice 53% 52% 50% 51% 52% 51%

Proximity at 2nd Choice 42% 34% 37% 33% 37% 36%

Proximity at 3rd Choice 22% 24% 24% 25% 21% 23%

Ranked first 1.19 1.18 1.24 1.29 1.19 1.22

All ranked schools 1.37 1.41 1.38 1.40 1.34 1.38

Assigned School 1.10 1.01 1.07 1.12 0.92 1.04

Panel A: Round of assignment

Panel D: Number of Programs Ranked

Panel E: Ranking Schools with Priority

Notes: Proximity priority as reported in the Cambridge Public School assignment files.

Panel F: Distance (miles)

Panel C: Round of assignment: Free Lunch Students

Panel B: Round of assignment: Paid Lunch Students
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Table 4: School Popularity and Competitiveness
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Ranked First 60 56 53 47 37 34 33 31 25 18 16 12 5

Ranked Second 72 37 66 25 18 44 39 38 17 10 18 20 0

Ranked Third 56 33 46 31 19 44 37 32 20 15 16 15 0

Ranked Anywhere 192 120 166 102 75 113 114 105 64 48 54 51 6

Capacity 41 41 41 42 41 27 51 48 35 38 41 37 15

First Rejected 1-P 1-R 1-R 1-R 1-R 1-R NR NR 1-R NR NR NR NR

Ranked First 49 45 40 29 25 24 25 17 13 4 7 4 2

Ranked Second 60 28 56 14 12 29 23 27 10 3 6 6 0

Ranked Third 47 29 33 19 15 34 24 18 11 4 8 10 0

Ranked Anywhere 152 95 128 60 51 87 70 65 33 9 21 20 3

Capacity 29 27 27 29 41 18 36 34 29 35 34 27 15

First Rejected 1-P 1-R 1-R 1-R 1-R 1-R NR NR 3-R NR NR NR NR

Ranked First 9 12 12 17 12 11 13 10 12 16 10 9 2

Ranked Second 13 8 7 11 5 12 17 12 8 8 14 11 0

Ranked Third 10 4 9 10 4 12 13 13 9 10 11 4 0

Ranked Anywhere 29 24 25 40 20 36 44 38 31 36 34 25 2

Capacity 25 23 26 26 41 17 33 31 19 18 26 24 15

First Rejected NR NR NR 1-R 1-R 2-P NR NR 1-R NR NR NR NR

Notes: Median number of applicants and seats over the years 2004-2008. First rejected is the round and 

priority of the first rejected student, e.g., 1-P indicates that a student with proximity priority was rejected in 

the first round. S: Sibling priority, PS: both proximity and sibling priority, R: regular/no prioirity, and NR: no 

student was rejected in any round. Free/Reduced lunch based on student's application for Federal lunch 

subsidy.

Panel A: All Students

Panel C: Free Lunch Students

Panel B: Paid Lunch Students
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Table 5: Estimated Assignment Probabilities
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First 0.44 0.58 0.62 0.57 0.73 0.98 0.51 1 0.95 0.86 0.28 0.35 0.92 1 1 1

Second 0.24 0.23 0.23 0.21 0.33 0.95 0.15 0.9 0.83 0.75 0.03 0.13 0.85 1 0.99 1

Third 0.16 0.15 0.13 0.09 0.2 0.78 0.08 0.59 0.54 0.62 0.02 0.06 0.72 0.84 0.83 0.85

First 0.23 0.44 0.48 0.53 0.73 1 0.42 1 0.94 0.93 0.28 0.37 1 1 1 1

Second 0 0.03 0.04 0.16 0.32 1 0.05 0.86 0.82 0.78 0.01 0.15 1 1 1 1

Third 0 0 0 0.07 0.2 0.83 0.01 0.52 0.54 0.64 0.01 0.08 0.86 0.86 0.86 0.86

First 0.85 0.86 0.89 0.64 0.73 0.97 0.7 1 0.95 0.72 0.28 0.28 0.77 1 1 1

Second 0.7 0.63 0.59 0.3 0.33 0.91 0.35 0.97 0.85 0.71 0.05 0.1 0.55 0.99 0.98 1

Third 0.49 0.44 0.4 0.15 0.2 0.73 0.21 0.73 0.56 0.59 0.03 0.03 0.44 0.8 0.77 0.81

First 0.65 0.97 0.95 0.92 0.94 0.99 0.89 1 0.99 0.92 0.55 0.55 0.95 1 1 1

Second 0.11 0.19 0.15 0.23 0.38 0.97 0.26 0.97 0.84 0.79 0.04 0.14 0.76 1 1 1

Third 0.08 0.08 0.05 0.11 0.24 0.83 0.11 0.69 0.61 0.64 0.02 0.09 0.63 0.87 0.84 0.88

First 0.38 0.55 0.59 0.53 0.71 0.97 0.47 1 0.94 0.86 0.25 0.33 0.92 1 1 1

Second 0.28 0.23 0.23 0.21 0.32 0.96 0.15 0.89 0.83 0.76 0.02 0.13 0.87 1 0.99 1

Third 0.19 0.15 0.14 0.09 0.2 0.81 0.08 0.58 0.53 0.63 0.02 0.06 0.73 0.84 0.83 0.85

Note: Average estimates weighted by number of students of each type. Probabilities estimated from 1,000 simulations 

of the Cambridge mechanism. Ranks and priority types of opposing students are drawn with replacement from the 

observed data. Second and third rank assignment probabilities are conditional on no assignment to higher ranked 

choices, averaged across feasible rank order lists.

Panel A: All Students

Panel B: Paid Lunch

Panel C: Free/Reduced Lunch

Panel D: Proximity Priority

Panel E: No Priority
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Table 6: Estimated Mean Utilities

 Graham Parks 0.96 1.26 0.35 0.9 1.44 -0.18

  [0.05]  [0.06]  [0.08]  [0.11]  [0.12]  [0.19]

 Haggerty 1.13 1.36 0.67 1.02 1.3 0.45

  [0.06]  [0.07]  [0.11]  [0.11]  [0.11]  [0.19]

 Baldwin 0.98 1.24 0.46 0.97 1.14 0.63

  [0.06]  [0.06]  [0.09]  [0.08]  [0.09]  [0.11]

 Morse 0.64 0.63 0.66 0.82 0.79 0.89

  [0.06]  [0.07]  [0.08]  [0.09]  [0.10]  [0.11]

 Amigos -0.19 -0.06 -0.45 0.02 0.11 -0.16

  [0.12]  [0.13]  [0.15]  [0.21]  [0.21]  [0.24]

 Cambridgeport 0.54 0.74 0.14 0.5 0.58 0.33

  [0.05]  [0.06]  [0.07]  [0.17]  [0.17]  [0.19]

 King Open 0.54 0.63 0.36 0.51 0.6 0.32

  [0.06]  [0.06]  [0.07]  [0.08]  [0.09]  [0.10]

 Peabody 0.28 0.19 0.45 0.03 0.04 0.02

  [0.07]  [0.08]  [0.09]  [0.10]  [0.10]  [0.13]

 Tobin -0.14 -0.52 0.6 -0.33 -0.69 0.37

  [0.10]  [0.11]  [0.12]  [0.18]  [0.20]  [0.21]

 Flet Mayn -0.87 -1.28 -0.05 -1.4 -2.01 -0.18

  [0.12]  [0.15]  [0.10]  [0.30]  [0.37]  [0.19]

 Kenn Long 0 -0.21 0.43 -0.09 -0.24 0.19

  [0.07]  [0.09]  [0.07]  [0.14]  [0.15]  [0.15]

 MLK -0.44 -0.69 0.04 -0.7 -0.95 -0.19

  [0.09]  [0.10]  [0.09]  [0.13]  [0.15]  [0.13]

 King Open Ola -3.41 -3.28 -3.66 -2.24 -2.12 -2.49

  [0.32]  [0.31]  [0.41]  [0.33]  [0.35]  [0.38]

Outside Option -1.96 -2.18 -1.52 -0.69 -0.54 -0.98

 [0.08]  [0.09]  [0.10]  [0.05]  [0.06]  [0.06]

Up to 1 7% 5% 10% 6% 7% 3%

Up to 2 13% 10% 20% 24% 30% 14%

Up to 3 21% 16% 30% 53% 63% 36%

Up to 4 29% 23% 40% 75% 84% 58%

Up to 5 40% 34% 51% 87% 93% 75%

Notes: Panel A presents the average estimated utility for each school, normalizing the 

mean utility of the inside options to zero. Utilities calculated averaging over all students 

the predicted utility given their non-distance covariates and the estimated coefficients. 

Standard errors (standard deviation of the posterior distribution) in brackets.  Panel B 

presents the cumulative distribution of the number of acceptable schools, i.e. schools 

that are preferred to the outside option, as implied by the posterior distribution of 

utilities.

Truthful Sophisticated

Panel B: Number of Acceptable Schools

Panel A: Mean Utility

Paid 

Lunch

Free 

Lunch

All 

Students

Paid 

Lunch

Free 

Lunch

All 

Students

52



Table 7: Losses from Truthful Reports

mean s.e.  mean s.e.  mean s.e. mean s.e.  mean s.e.  mean s.e.

All 56% 0.01 0.19 0.02 0.55 0.05 55% 0.01 0.05 0.01 0.20 0.02

Free Lunch 67% 0.02 0.02 0.00 0.12 0.03 71% 0.02 0.01 0.00 0.08 0.02

Paid Lunch 51% 0.01 0.27 0.03 0.65 0.06 47% 0.02 0.07 0.01 0.23 0.03

Black 65% 0.02 0.07 0.02 0.32 0.06 68% 0.02 0.03 0.01 0.15 0.04

Asian 56% 0.03 0.21 0.04 0.58 0.08 55% 0.03 0.05 0.01 0.18 0.05

Hispanic 60% 0.03 0.11 0.03 0.38 0.10 57% 0.04 0.03 0.01 0.14 0.04

White 52% 0.01 0.26 0.03 0.64 0.06 49% 0.02 0.06 0.01 0.23 0.03

Other Race 46% 0.06 0.22 0.07 0.52 0.15 50% 0.06 0.07 0.03 0.19 0.07

Notes: Estimated loss from reporting preferences truthfully, relative to optimal report in distance units (miles).

Truthful Sophisticated

No Loss  Mean Loss Std Loss No Loss  Mean Loss Std Loss
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Table 8: Ranking and Assignment of Top Choice
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Preferred School 20.6 11.2 9.2 10.9 7.9 6.7 7.7 7.3 5.9 4.0 4.0 2.5 1.1 98.9

Ranked #1 (simul) 15.4 12.1 10.7 11.4 8.3 7.5 9.2 8.3 5.5 4.0 4.0 2.6 1.1 100.0

Ranked #1 (data) 14.3 12.6 11.9 11.0 8.8 7.7 8.2 7.8 5.7 4.4 3.8 2.7 1.2 100.0

Preferred and Ranked #1 13.9 10.1 8.3 10.3 7.5 6.1 7.7 7.3 4.9 3.9 4.0 2.5 1.1 87.5

Preferred and Assigned 9.4 8.3 6.6 8.5 6.8 5.1 7.7 7.2 4.1 3.5 4.0 2.5 1.1 74.7

Ranked #1 and Assigned 10.0 9.7 8.3 9.4 7.4 6.1 9.2 8.1 4.3 3.6 4.0 2.6 1.1 83.7

Preferred School 8.7 7.1 6.5 12.9 7.1 6.6 7.4 7.9 10.5 10.7 7.5 4.8 1.6 99.4

Ranked #1 (simul) 8.9 7.6 6.9 13.0 7.3 6.9 7.6 8.3 9.0 10.5 7.6 4.9 1.6 100.0

Ranked #1 (data) 6.7 8.3 8.0 12.2 7.8 6.4 7.7 9.0 8.5 10.8 7.1 5.5 2.0 100.0

Preferred and Ranked #1 8.5 7.0 6.4 12.5 6.9 6.4 7.4 7.9 8.7 10.2 7.5 4.8 1.6 95.9

Preferred and Assigned 7.9 6.6 6.1 10.6 6.2 5.5 7.4 7.8 6.8 9.3 7.5 4.7 1.6 88.0

Ranked #1 and Assigned 8.2 7.1 6.5 11.0 6.5 5.9 7.6 8.2 6.9 9.5 7.6 4.9 1.6 91.4

Preferred School 26.6 13.3 10.5 9.9 8.2 6.7 7.9 7.0 3.5 0.7 2.2 1.4 0.8 98.6

Ranked #1 (simul) 18.8 14.4 12.7 10.6 8.8 7.8 10.0 8.2 3.7 0.7 2.2 1.4 0.8 100.0

Ranked #1 (data) 18.1 14.8 13.9 10.5 9.3 8.3 8.4 7.2 4.3 1.1 2.1 1.3 0.9 100.0

Preferred and Ranked #1 16.7 11.7 9.2 9.2 7.8 6.0 7.9 7.0 2.9 0.7 2.2 1.4 0.8 83.3

Preferred and Assigned 10.1 9.2 6.9 7.4 7.1 4.8 7.8 6.8 2.7 0.7 2.2 1.4 0.8 67.9

Ranked #1 and Assigned 10.8 11.1 9.3 8.5 7.9 6.1 10.0 8.0 3.1 0.7 2.2 1.4 0.8 79.8

Panel A: All Students

Panel B: Free Lunch Students

Panel C: Paid Lunch Students
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Table 9: Deferred Acceptance vs Cambridge

Assigned to First Choice 66.74 56.95 86.12 70.00 60.53 88.74

Assigned to Second Choice 12.93 15.20 8.44 14.82 17.78 8.96

Assigned to Third Choice 5.95 8.52 0.85 4.36 6.15 0.81

Assigned to Fourth Choice 3.58 5.33 0.11 1.07 1.57 0.08

Assigned to Fifth Choice 2.15 3.23 0.02 0.16 0.24 0.01

Assigned to First Choice 78.09 73.65 86.88 74.38 67.44 88.13

Assigned to Second Choice 6.97 7.17 6.58 13.26 15.77 8.27

Assigned to Third Choice 3.21 4.09 1.48 3.24 4.15 1.46

Assigned to Fourth Choice 0 0 0 0.84 1.1 0.32

Assigned to Fifth Choice 0 0 0 0.13 0.18 0.05

Mean Utility DA - Cambridge -0.02 -0.04 0.01 -0.10 -0.15 0.00

Std. Utility DA - Cambridge 0.41 0.48 0.21 0.29 0.33 0.14

Percent DA > Cambridge 51.49 51.38 51.71 50.5 48.92 53.63

Truthful Sophisticated

Panel A: Deferred Acceptance

Panel B: Cambridge Mechanism

Panel C: Deferred Acceptance vs Cambridge

Notes:  Panels A and B present percentages of students assigned to true k-th choice. Panel C 

compares the expected utility difference between Deferred Acceptance and Cambridge Mechanism. 

Simulations of the Deferred Acceptance mechanism draw other student reports using the estimated 

utility distribution. All simulations based on the posterior means of the parameters and 1,000 draws.

All 

Students

Paid 

Lunch

Free 

Lunch

Free 

Lunch

Paid 

Lunch

All 

Students
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