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1 Introduction

Contemporary asset pricing theory remains in search of an empirically relevant stochastic

discount factor (SDF) linked to the marginal utility of investors. This study presents evidence

that a single macroeconomic factor based on growth in the capital share of aggregate income

exhibits significant explanatory power for expected returns across a wide range of equity

characteristic portfolio styles and non-equity asset classes, with positive risk price estimates

of similar magnitude. These assets include equity portfolios formed from sorts on size/book-

market, size/investment, size/operating profitability, long-run reversal, and non-equity asset

classes such as corporate bonds, sovereign bonds, credit default swaps, and options.

Why should growth in the share of national income accruing to capital (the “capital share”

hereafter) be a source of systematic risk? After all, a mainstay of contemporary asset pricing

theory is that assets are priced as if there were a representative agent, leading to an SDF

based on the marginal rate of substitution over aggregate household consumption. Under this

paradigm, the division between labor and capital of aggregate consumption (or alternatively

aggregate income, which finances aggregate consumption) is irrelevant for the pricing of

risky securities, once aggregate consumption risk is accounted for. The representative agent

model is especially convenient from an empirical perspective, since aggregate household

consumption is readily observed in national income data.

But there are reasons to question a model in which average household consumption is the

appropriate source of systematic risk for the pricing of risky financial securities. Wealth is

highly concentrated at the top and limited securities market participation remains pervasive.

The majority of households still own no equity but even among those who do, most own

very little. Although just under half of households report owning stocks either directly or

indirectly in 2013, the top 5% of the stock wealth distribution owns 75% of the stock market

value.1 It follows that any reasonably defined wealth-weighted stock market participation

1Source: 2013 Survey of Consumer Finances (SCF).
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rate will be much lower than 50%, as we illustrate below. Moreover, unlike the average

household, the wealthiest U.S. households earn a relatively small fraction of income as labor

compensation, implying that income from the ownership of firms and financial investments,

i.e., capital income, finances much more of their consumption.2 Consistent with this fact,

we find that the capital share explains a large fraction of variation in the income shares of

the wealthiest households in micro-level data and is strongly positively correlated with those

shares.

These observations suggest a different approach to explaining return premia on risky

assets. Recent inequality-based asset pricing models imply that the capital share should

be a priced risk factor whenever risk-sharing is imperfect and wealth is concentrated in the

hands of a few investors, or “shareholders,”while most households are “workers”who finance

consumption primarily out of wages and salaries (e.g., Greenwald, Lettau, and Ludvigson

(2014), GLL). In these models, limited participation combines with limited risk-sharing to

imply that fluctuations in the capital share are a source of aggregate risk. In the extreme

case where workers own no risky asset shares and there is no risk-sharing, a representative

shareholder who owns the entire corporate sector will have consumption in equilibrium equal

to Ct · KSt, where Ct is aggregate (shareholder plus worker) consumption and KSt is the

capital share of aggregate income. Redistributive shocks that shift the share of income

between labor and capital are therefore a source of systematic risk for asset owners. This

reasoning goes through as an approximation even if workers own a small fraction of the

corporate sector and even if there is some risk-sharing in the form of risk-free borrowing and

lending between workers and shareholders, as long as any risk-sharing across these groups is

imperfect.

With this theoretical motivation as backdrop, this paper explores whether growth in the

capital share is a priced risk factor for explaining cross-sections of expected asset returns. We

2In the 2013 SCF, the top 5% of the net worth distribution had a median wage-to-capital income ratio

of 18%, where capital income is defined as the sum of income from dividends, capital gains, pensions, net

rents, trusts, royalties, and/or sole proprietorship or farm.
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find that exposure to short-to-medium frequency (e.g., 4-8 quarter) fluctuations in capital

share growth have strong explanatory power for the cross-section of expected returns on

a range of equity characteristics portfolios as well as other asset classes. For the equity

portfolios and asset classes mentioned above, we find that positive exposure to capital share

risk earns a positive risk premium, with risk prices of similar magnitude across portfolio

groups. A preview of the results for equity characteristics portfolios is given in Figure 1,

which plots observed quarterly return premia (average excess returns) on each portfolio on

the y-axis against the portfolio capital share beta for exposures of H = 8 quarters on the

x-axis. The estimates show that the model fit is high across a variety of equity portfolio

styles. (We discuss this figure further below.) Pooled estimations of the many different stock

portfolios jointly and one that combines the stock portfolios with the portfolios of other asset

classes also indicate that capital share risk has substantial explanatory power for expected

returns. In principle, these findings could be consistent with the canonical representative

agent model if aggregate consumption growth were perfectly positively correlated with capital

share growth. But this is not what we find. For all but one portfolio group studied here,

aggregate consumption risk measured over any horizon either exhibits far lower explanatory

power for the cross-section of returns, and/or is not statistically important once we control

for exposures to capital share growth.

A notable result of our analysis is that an empirical model with capital share growth

as the single source of macroeconomic risk explains a larger fraction of expected returns

on equity portfolios formed from size/book-market sorts than does the Fama-French three-

factor model, an empirical specification explicitly designed to explain the large cross-sectional

variation in average return premia on these portfolios (Fama and French (1993)). Moreover,

the risk prices for the return-based factors SMB and HML are either significantly attenuated

or completely driven out of the pricing regressions by the estimated exposure to capital share

risk.

We also compare the empirical capital share pricing model studied here to two other
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empirical models recently documented to have explanatory power for cross-sections of ex-

pected asset returns, namely the intermediary-based asset pricing models of Adrian, Etula,

and Muir (2014) (AEM) and He, Kelly, and Manela (2016) (HKM). This comparison is apt

because the motivations behind the inequality- and intermediary-based asset pricing theories

are quite similar. Both theories are macro factor frameworks in which average household con-

sumption is not by itself an appropriate source of systematic risk for the pricing of financial

securities. In the intermediary-based paradigm, intermediaries are owned by “sophisticated”

or “expert” investors who are distinct from the majority of households that comprise the

majority of aggregate consumption. It is reasonable to expect that sophisticated investors of-

ten coincide with wealthy asset owners and face similar if not identical sources of systematic

risk. Indeed, we find that capital share growth exposure contains information for the pricing

of risky securities that overlaps with that of the banking sector’s equity capital ratio factor

studied by HKM and the broker-dealer leverage factor studied by AEM. But the information

in these intermediary balance-sheet exposures is almost always subsumed in part or in whole

by the capital share exposures, suggesting that the latter contain additional information

about the cross-section of expected returns that is not present in the intermediary-based

factor exposures.

The last part of the paper provides additional evidence from household-level data that

sharpens the focus on redistributive shocks as a source of systematic risk for the wealthy.

First, we show that growth in the income shares of the richest stockowners (e.g., the top

10% of the stock wealth distribution) is suffi ciently strongly negatively correlated with that

of non-rich stockowners (e.g., the bottom 90%), that growth in the product of these shares

with aggregate consumption is also strongly negatively correlated. This means that the in-

versely related component in the product operating through income shares outweighs the

common component operating through aggregate consumption. While this finding is sug-

gestive of limited risk-sharing, some income share variation between these groups is likely

to be idiosyncratic and capable of being diversified away. We therefore form an estimate of
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the component of income share variation that represents systematic risk as the fitted values

from a projection of each group’s income share on the aggregate capital share. Finally, we

form a proxy for the consumption of the wealthiest stockholders as the product of aggregate

consumption times the top group’s fitted income share. We find that estimated exposures to

this proxy variable helps explain return premia on the same equity characteristic portfolios

that are well explained by capital share exposures.

Our investigation is related to a classic older literature emphasizing the importance

for stock pricing of limited stock market participation and heterogeneity (Mankiw (1986),

Mankiw and Zeldes (1991), Constantinides and Duffi e (1996), Vissing-Jorgensen (2002),

Ait-Sahalia, Parker, and Yogo (2004), Guvenen (2009), and Malloy, Moskowitz, and Vissing-

Jorgensen (2009)). In contrast to this literature, the limited participation dimension relevant

for our analysis is not shareholder versus non-shareholder, but rather rich versus non-rich

investors who differ according to whether their income is earned primarily from supplying

labor or from owning assets. From this perspective, growth in the capital share of aggregate

income is likely to be a more important source of systematic risk than is growth in the

average consumption over all households who own any amount (however small) of equity.

Our work also ties into a growing body of literature that considers the role of redistributive

shocks that transfer resources between shareholders and workers as a source of priced risk

when risk sharing is imperfect (Danthine and Donaldson (2002); Favilukis and Lin (2013a,

2013b, 2015), Gomez (2016), GLL, Marfe (2016)). In this literature, labor compensation

is a charge to claimants on the firm and therefore a systematic risk factor for aggregate

stock and bond markets. In those models that combine these features with limited stock

market participation, the capital share matters for risk pricing. Finally, the findings here are

related to a body of evidence suggesting that the returns to human capital are negatively

correlated with those to stock market wealth (Lustig and Van Nieuwerburgh (2008); Lettau

and Ludvigson (2009); Chen, Favilukis, and Ludvigson (2014), Lettau and Ludvigson (2013),

GLL, Bianchi, Lettau, and Ludvigson (2016)).
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We note that estimated exposures to capital share risk do not explain cross-sections of

expected returns on all portfolio types. Results (not reported) indicate that these exposures

have no ability to explain cross-sections of expected returns on industry portfolios, or on

the foreign exchange and commodities portfolios that HKM find are well explained by their

intermediary sector equity-capital ratio. Moreover, momentum portfolios are particularly

puzzling both for the inequality-based and the intermediary-based models, since these factors

earn either a zero or strongly negative risk price when explaining cross-sections of expected

momentum returns. The exploration of this momentum-related puzzle is taken up in a

separate paper (Lettau, Ludvigson, and Ma (2018)).

The rest of this paper is organized as follows. The next section discusses data and presents

some preliminary analyses. Section 3 describes the econometric models to be estimated, while

Section 4 discusses the results of these estimations. Section 5 concludes.

2 Data and Preliminary Analysis

This section briefly describes our data. A more detailed description of the data and our

sources is provided in the Online Appendix. Our sample is quarterly and unless otherwise

noted spans the period 1963:Q3 to 2013:Q4 before loosing observations to computing long

horizon relations as described below.

We use equity return data available from Kenneth French’s Dartmouth website on 25

size/book-market sorted portfolios (size/BM), 25 size/operating profitability portfolios (size/OP),

10 long-run reversal portfolios (REV), and 25 size/investment portfolios (size/INV). We also

use the portfolio data recently explored by HKM to investigate other asset classes, includ-

ing the 10 corporate bond portfolios from Nozawa (2014) spanning 1972:Q3-1973:Q2 and

1975:Q1-2012:Q4 (“bonds”), six sovereign bond portfolios from Borri and Verdelhan (2011)

spanning 1995:Q1-2011:Q1 (“sovereign bonds”), 54 S&P 500 index options portfolios sorted

on moneyness and maturity from Constantinides, Jackwerth, and Savov (2013) spanning
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1986:Q2-2011:Q4 (“options”) and the 20 CDS portfolios constructed by HKM spanning

2001:Q2-2012:Q4.3

We define the capital share as KS ≡ 1 − LS, where LS is the labor share of national

income. Our benchmark measure of LSt is the labor share of the nonfarm business sector as

compiled by the Bureau of Labor Statistics (BLS), measured on a quarterly basis. Results

available upon request show that our findings are very similar if we use the BLS nonfinancial

labor share measure.

There are well known diffi culties with accurately measuring the labor share. Most notable

is the diffi culty with separating income of sole proprietors into components attributable to

labor and capital inputs. But Karabarbounis and Neiman (2013) report trends for the labor

share, i.e., changes, within the corporate sector that are similar to those for sectors that

include sole proprietors, such as the BLS nonfarmmeasure (which makes specific assumptions

on how proprietors’income is proportioned). Indirect taxes and subsidies can also create a

wedge between the labor share and the capital share, but Gomme and Rupert (2004) find

that these do not vary much over time, so that movements in the labor share are still strongly

(inversely) correlated with movements in the capital share. Thus the main diffi culties with

measuring the labor share pertain to getting the level of the labor share right. Our results

rely instead on changes in the labor share, and we maintain the hypothesis that they are

informative about opposite signed changes in the capital share. Figure 2 plots the rolling

eight-quarter log difference in the capital share over time. This variable is volatile throughout

our sample.

The empirical investigation of this paper is motivated by the inequality-based asset pric-

ing literature discussed above. One question prompted by this literature is whether there is

any evidence that fluctuations in the aggregate capital share are related in a quantitatively

important way to observed income shares of wealthy households, and the latter to expected

3We are grateful to Zhiguo He, Bryan Kelly and Asaf Manela for making their data and code available

to us.
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returns on risky assets. To address these questions, we make use of two household-level

datasets that provide information on wealth and income inequality. The first is the trien-

nial survey data from the survey of consumer finances (SCF), the best source of micro-level

data on household-level assets and liabilities for the United States. The SCF also provides

information on income and on whether the household owns stocks directly or indirectly. The

SCF is well suited to studying the wealth distribution because it includes a sample intended

to measure the wealthiest households, identified on the basis of tax returns. It also has a

standard random sample of US households. The SCF provides weights for combining the

two samples, which we use whenever we report statistics from the SCF. The 2013 survey is

based on 6015 households.

The second household level dataset uses the income-capitalization method of Saez and

Zucman (2016) (SZ) that combines information from income tax returns with aggregate

household balance sheet data to estimate the wealth distribution across households annually.4

This method starts with the capital income reported by households on their tax forms to

the Internal Revenue Service (IRS). For each class of capital income (e.g., interest income,

rents, dividends, capital gains etc.,) a capitalization factor is computed that maps total flow

income reported for that class to the amount of wealth from the household balance sheet

of the US Financial Accounts. Wealth for a household and year is obtained by multiplying

the individual income components for that asset class by the corresponding capitalization

factors. We modify the selection criteria to additionally form an estimate of the distribution

of wealth and income among just those individuals who can be described as stockholders.5

4We are grateful to Emmanuel Saez and Gabriel Zucman for providing making their code and data

available.
5We follow the “mixed”method of capitalizing income from dividends and capital gains proposed by SZ.

Specifically, when ranking households into wealth groups, only dividends are capitalized. Thus, if in 2000

the ratio of equities to the sum of dividend income reported on tax returns is 54, then a family’s ranking

in the wealth distribution is determined by taking its dividend income and multiplying by 54. By contrast,

when computing the wealth and or income of each percentile group, both dividends and capital gains are

capitalized. Thus, if in 2000 the ratio of equities to the sum of dividend and capital gain income reported

on tax returns is 10, a household’s equity wealth for that year is captured by multiplying it’s dividend and
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We define a stockholder in the SZ data as any individual who reports having non-zero income

from dividends and/or realized capital gains. Note that this classification of stockholder fits

the description of “direct”stockowner, but unlike the SCF, there is no way to account for

indirect holdings in e.g., tax-deferred accounts. The annual data we employ span the period

1963-2012. We refer to these data as the “SZ data”.

We note that the empirical literature on limited stock market participation and hetero-

geneity has often relied on the Consumer Expenditure Survey (CEX). We do not use this

survey because we wish to focus on wealthy households and there are several reasons the

CEX does not provide reliable data for this purpose. First, the CEX is an inferior measure

of household-level assets and liabilities as compared to the SCF and SZ data, which both

have samples intended to measure the wealthiest households identified from tax returns.

Second, CEX answers to asset questions are often missing for more than half of the sample

and much of the survey is top-coded. Third, wealthy households are known to exhibit very

high non-response rates in surveys such as the CEX that do not have an explicit administra-

tive tax data component that directly targets wealthy households (Sabelhaus, Johnson, Ash,

Swanson, Garner, Greenlees, and Henderson (2014)). The last section of the paper considers

a way to form a proxy for the top wealth households’consumption using the income data.

Panel A of Table 1 shows the distribution of stock wealth across households, conditional

on the household owning a positive amount of corporate equity. The left part of the panel

shows results for stockholdings held either directly or indirectly from the SCF.6 The right

part shows the analogous results for the SZ data, corresponding to direct ownership. Panel

B shows the distribution of stock wealth among all households, including non-stockowners.

The table shows that stock wealth is highly concentrated. Among all households, the top

5% of the stock wealth distribution owns 74.5% of the stock market according to the SCF in

capital gains income by 10. The purpose of this mixed method given by SZ is to smooth realized capital

gains and not overstate the concentration of wealth.
6For the SCF we start our analysis with the 1989 survey. There are two earlier surveys, but the survey

in 1986 is a condensed reinterview of respondents in the 1983 survey.
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2013, and 79.2% in 2012 according to the SZ data. Focusing on just stockholders, the top 5%

of stockholders own 61% of the stock market in the SCF and 63% in the SZ data. Because

many low-wealth households own no equity, wealth is more concentrated when we consider

the entire population than when we consider only those households who own stocks.

Panel C of Table 1 reports the “raw” stock market participation rate from the SCF,

denoted rpr, across years, and also a “wealth-weighted”participation rate. The raw partic-

ipation rate is the fraction of households in the SCF who report owning stocks, directly or

indirectly. The wealth-weighted rate takes into account the concentration of wealth. As an

illustration, we compute a wealth-weighted participation rate by dividing the survey popula-

tion into three groups: the top 5% of the stock wealth distribution, the rest of the stockowning

households representing (rpr − .05) % of the population, and the residual who own no stocks

and make up (1− rpr) % of the population. In 2013, stockholders outside the top 5% are 46%

of households, and those who hold no stocks are 51% of households. The wealth-weighted

participation rate is then 5% ·w5%+(rpr − 0.05) % ·
(
1− w5%

)
+(1− rpr) % ·0, where w5% is

the fraction of wealth owned by the top 5%. The table shows that the raw participation rate

has steadily increased over time, rising from 32% in 1989 to 49% in 2013. But the wealth-

weighted rate is much lower than 49% in 2013 (equal to 20%) and has risen less over time.

Note that the choice of the top 5% to measure the wealthy is not crucial; any percentage at

the top can be used to illustrate how the concentration of wealth affects the intensive mar-

gin of stockmarket participation. The calculation shows that steady increases stock market

ownership rates do not necessarily correspond to quantitatively meaningful changes in stock

market ownership patterns, underscoring the conceptual challenges to explaining equity re-

turn premia using a representative agent SDF that is a function of aggregate household

consumption.

The inequality-based asset pricing literature predicts that the income shares of wealthy

capital owners should vary positively with the national capital share. Table 2 investigates this

implication by showing the output from regressions of income shares on the aggregate capital
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share KSt. The regressions are carried out for households located in different percentiles

of the stock wealth distribution. For this purpose, we use the SZ data, since the annual

frequency provides more information than the triennial SCF, though the results are similar

using either dataset. To compute income shares, income Y i
t from all sources, including wages,

investment income and other for percentile group i is divided by aggregate income for the

SZ population, Yt, and regressed on the aggregate capital share KSt.7 The left panel of the

table reports regression results for all households, while the right panel reports results for

stockowners.

The information in both panels is potentially relevant for our investigation. The wealth-

iest shareholders are likely to be affected by a movement in the labor share because corpo-

rations pay all of their employees more or less, not just the minority who own stocks. The

regression results on the left panel speak directly to this question and show that movements

in the capital share are strongly positively related to the income shares of those in the top

10% of the stock wealth distribution and strongly negatively related to the income share of

the bottom 90% of the stock wealth distribution. Indeed, this single variable explains 61% of

the variation in the income shares of the top 10% group (63% of the top 1%) and is strongly

statistically significant with a t-statistic greater than 8. These R2 statistics are quite high

considering that some of the income variation in these groups can still be expected to be

idiosyncratic and uncorrelated with aggregate variables. The right panel shows the same

regression output for the shareholder population only. The capital share is again strongly

positively related to the income share of stockowners in the top 10% of the stock wealth

distribution and strongly statistically significant, while it is negatively related to the income

share of stockowners in the bottom 90%. The capital share explains 55% of the top one

percent’s income share, 48% of the top 10%, and 50% of the bottom 90%. This underscores

the extent to which most households, even those who own some stocks, are better described

7We use the average of the quarterly observations on KSt over the year corresponding to the year for

which the income share observation in the SZ data is available.
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as “workers”whose share of aggregate income shrinks when the capital share grows.

Of course, the resources that support the consumption of each group contain both a

common and idiosyncratic components. Figure 3 provides one piece of evidence on how these

components evolve over time. The top panel plots annual observations on the gross growth

rate of Ct
Y it
Yt
for the top 10% and bottom 90% of the stockowner stock wealth distribution,

where Ct is aggregate consumption for the corresponding year, measured from the National

Income and Product Accounts, while Y it
Yt
is computed from the SZ data for the two groups

i = top 10, bottom 90. The bottom panel plots the same concept on quarterly data using

the fitted values Ŷ it
Yt
from the right-hand-panel regressions in Table 2, which is based on the

subsample of households that report having income from stocks.8 Growth in the productCt
Y it
Yt

is much more volatile for the top 10% than the bottom 90% of the stockowner stock wealth

distribution, but both panels of the figure display a clear negative comovement between

the two groups. Using the raw data, the correlation is -0.97. In the quarterly data, it is -

0.85. Thus the common component in this variable, accounted for by aggregate consumption

growth, is more than offset by the negatively correlated component driven by their inversely

related income shares, a finding suggestive of imperfect risk-sharing between the two groups.

3 Econometric Tests

Throughout the paper we use the superscript “o”to denote the true value of a parameter

and “hats”to denote estimated values.

Our main analysis is based on estimation of SDF models with familiar no-arbitrage Euler

equations taking the form

E
[
Mt+1R

e
jt+1

]
= 0, (1)

8Specifically, Ŷ i
t

Yt
is constructed using the estimated intercepts ς̂i0 and slope coeffi cients ς̂

i
1 from these

regressions along with quarterly observations on the capital share to generate a quarterly observations on

fitted income shares Ŷ
i
t

Yt
.

12



or equivalently,

E
(
Re
jt+1

)
=
−Cov

(
Mt+1, R

e
t+1

)
E (Mt+1)

, (2)

where Mt+1 is a candidate SDF and Re
jt+1 is the excess return on an asset indexed by j held

by the investor with marginal rate of substitution Mt+1 at time t+ 1. The excess return is

defined to be Re
j,t ≡ Rj,t − Rf,t, where Rj,t denotes the gross return on asset j, with Rf,t a

risk-free asset return that is uncorrelated with Mt+1.

In this paper we consider a stylized limited participation endowment economy in which

wealth is concentrated in the hands of a few investors, or “shareholders,”while most house-

holds are “workers”who finance consumption out of wages and salaries. We suppose that

workers own no risky asset shares and consume their labor earnings. There is no risk-sharing

between workers and shareholders. In this case, a representative shareholder who owns the

entire corporate sector and earns no labor income will then have consumption in equilibrium

that is equal to Ct ·KSt, where Ct is aggregate (shareholder plus worker) consumption and

KSt is the capital share of aggregate income. These features of the model follow GLL.

A simplified version of that model arises if stockholders have power utility over their own

consumption, in which case the SDF for pricing risky asset claims takes the form

Mt+1 = δ

(
Ct+1 ·KSt+1
Ct ·KSt

)−γ
, (3)

where δ is a subjective time-discount factor and γ is a coeffi cient of relative risk aversion.

Note that worker consumption plays no role in the SDF since workers do not participate in

risky asset markets. In the endowment economy, the capital share is equal in equilibrium to

the consumption share of shareholders.

An approximate linear factor model for this SDF takes the form

Mt+1 ≈ b0 − b1
(
Ct+1
Ct
− 1

)
− b2

(
KSt+1
KSt

− 1

)
, (4)

with b0 = 1 + ln (δ), and b1 = b2 = γ. Denote the vector f ≡
(
Ct+1
Ct
− 1, KSt+1

KSt
− 1
)′
and

b = (b1, b2)
′. Equations (2) and (4) together imply a representation in which expected returns
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are a function of factor risk exposures, or betas β′j, and factor risk prices λ:

E
(
Re
jt+1

)
= λ0 + β′jλ, (5)

β′j = Cov (f, f ′)
−1Cov

(
f,Re

jt+1

)
λ = E (Mt)

−1Cov (f, f ′) b.

Below we use the three month Treasury bill (T -bill) rate to proxy for a risk-free rate. The

parameter λ0 (the same in each return equation) is included to account for a “zero beta”

rate if there is no true risk-free rate (or quarterly T -bills are not an accurate measure of the

risk-free rate).

A common approach to estimating equations such as (5) is to run a cross-sectional re-

gression of average returns on estimates of the risk exposures β′j =
(
βjC,1, βjKS,1

)′
, where β′j

are obtained from a first-stage time series regression of excess returns on factors,9

Re
j,t+1,t = aj + βjC,1 (Ct+1/Ct) + βjKS,1 (KSt+1/KSt) + uj,t+1,t, t = 1, 2...T. (6)

The above uses the more explicit notation Re
j,t+1,t to denote the one-period return on asset

j from the end of t to the end of t + 1.10 The gross H-period excess return on asset j

from the end of t to the end of t + H is denoted Re
j,t+H,t.

11 Longer horizon risk exposures

9Restrictions on the SDF coeffi cients of multiple factors, such as b1 = b2, require restrictions on the λ in

the cross-sectional regression. We address this issue in the next section.
10The specification of factors in terms of gross versus net growth rates is immaterial and only affects the

units of the time-series coeffi cients.
11The gross multiperiod (long-horizon) return from the end of t to the end of t+H is denoted Rj,t+H,t:

Rj,t+H,t ≡
H∏
h=1

Rj,t+h,

and the gross H-period excess return

Rej,t+H,t ≡
H∏
h=1

Rj,t+h −
H∏
h=1

Rf,t+h.
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β′jH =
(
βjC,H , βjKS,H

)′
may be estimated from a regression of long-horizon returns on long-

horizon factors, i.e.,

Re
j,t+H,t = aj + βjC,H (Ct+H/Ct) + βjKS,H (KSt+H/KSt) + uj,t+H,t, t = 1, 2...T. (7)

Our objective in this paper is to investigate the potential empirical relevance of one pos-

sible source of marginal utility risk in the limited participation framework with concentrated

wealth, namely fluctuations in the capital share. For this purpose, the power utility SDF is

an especially convenient empirical framework, but as with all models it is an approximation

of reality and thus misspecified to some degree. We therefore make use of statistics for model

comparison such as the Hansen-Jaganathan distance (HJ-distance, Hansen and Jagannathan

(1997)) that explicitly recognize model misspecification. But we go one step further than the

use of such statistics to consider a particular type of misspecification that is likely to have

important implications for estimates of capital share risk exposures from regressions such as

(6).

Specifically, we consider the implications of an omitted or unobserved risk factor that is

negatively correlated with capital share growth on the right-hand-side of (6). In particular,

evidence suggests that the risk aversion or curvature parameter γ in the power utility spec-

ification varies over time and is negatively correlated with, but less persistent than, capital

share growth, which appears on the right-hand-side of (6).12 Such a negative correlation is

reminiscent of a Campbell and Cochrane (1999) style countercyclical risk aversion mecha-

nism, in this case applied directly to capital share component of shareholder consumption

12GLL and Lettau and Wachter (2007) fit a model of the SDF that is the same as above except that it

has a time-varying curvature γt parameter and a compensating factor in the subjective time-discount factor

that makes the risk-free rate constant. In this case the SDF may be written

Mt+1 = exp [−rf − lnEt exp (−γt∆dt+1)− γt∆dt+1]

where dt is log dividends. Lettau and Wachter (2007) show that γt must be negatively correlated with

dividend growth, which depends on capital share growth in the GLL model, to fit the data. Estimates of

the GLL model using the Hamilton filter to recover the latent risk aversion parameter also confirm that it is

negatively correlated with but less persistent than capital share growth.
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growth rather than to per capita aggregate consumption. The Online Appendix shows that

a time-varying γt effectively appears as an additional risk factor in the approximate linear

factor model of the SDF (4). If such an additional source of aggregate risk exists but an

estimate of its risk exposure is omitted from (6) for any reason (e.g., because the factor is

latent as in the case of risk aversion and/or diffi cult to measure), estimates of the included

factor risk exposures will tend to be biased down as long as the omitted source of aggregate

risk is negatively correlated with the included factor.

Fortunately, this bias can be mitigated under certain circumstances. In particular, if

the omitted source of risk (i.e., γt) is less persistent than the included risk factor with

which it is negatively correlated (i.e., KSt+1/KSt), estimates of multi-period capital share

risk exposures β̂jKS,H from (7) with H > 1 will often be much closer to the true one-

period exposures βojKS,1 than are estimates of the one-period risk exposures β̂jKS,1 from

(6). The Online Appendix gives a specific parametric example and simulation in repeated

finite samples of this phenomenon in which it is shown that a substantial downward bias

E
(
β̂jKS,1

)
<< β0jKS,1 in estimated one-period exposures can be significantly attenuated by

estimating the longer-horizon relationships in (7), with E
(
β̂jKS,H

)
→ β0jKS,1 as H increases.

In essence, this occurs because estimates of the long-horizon relationships in (7) filter out

the higher frequency “noise” generated by the less persistent omitted factor γt+1 that is

the source of the bias in the estimated one-period exposure β̂jKS,1. Under these conditions,

the best way to extract the true short-horizon capital share beta is to run longer-horizon

regressions. We refer the reader to the Online Appendix section on “Low Frequency Risk

Exposures”for details on the example and simulation.

This evidence motivates us to investigate whether multi-quarter, i.e., H-period estimated

risk exposures from regressions such as (7), for various H, explain cross-sections of one-

period (quarterly) expected return premia E
(
Re
j,t+1

)
. Note that the point of estimating

longer-horizon risk exposures in the first stage is not to ask how they affect longer-horizon
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expected return premia E
(
Re
j,t+H,t

)
in the cross section.13 The point is instead to obtain

a more accurate estimate of the true one-period exposure, which can be used to explain

one-period expected return premia E
(
Re
j,t+1,t

)
in the cross-section. In the presence of the

bias just described, we expect longer-horizon capital share exposures to do a better job

explaining one-period expected return premia in the cross-section than do estimates of one-

period exposures, a hypothesis we investigate below. For the linearized SDF model (4), this

may be implemented by running time-series regressions of the form (7) to obtain β̂
′
jH =(

β̂jC,H , β̂jKS,H

)
, and then running a second-pass cross-sectional regression of the form

E
(
Re
j,t

)
= λ0 + β̂j,C,HλC,H + β̂j,KS,HλKS,H + εj, j = 1, 2....N, (8)

where j = 1, ..., N indexes the asset with quarterly excess return Re
j,t.

For reasons discussed below, we also investigate a more parsimonious SDF model that

depends only on capital share growth. In this case, we use a univariate time-series regression

of H-period excess returns on H-period capital share growth to estimate β̂j,KS,H and a

cross-sectional regression to estimate the risk price λKS,H :

E
(
Re
j,t

)
= λ0 + β̂j,KS,HλKS,H + εj, j = 1, 2....N. (9)

In all the above equations, t represents a quarterly time period, and λ·,H are the H-

period risk price parameters to be estimated. We refer to the time-series and cross-sectional

regression approach as the “two-pass”regression approach, even though both equations are

estimated jointly in one Generalized Method of Moments (GMM Hansen (1982)) system as

detailed in the Online Appendix.

Although we maintain the linear SDF specifications as our baseline, we also undertake

a GMM estimation that applies the approach just discussed to the nonlinear power utility

13In the parametric example of in the Online Appendix, the true short- and long-horizon risk exposures

coincide, so estimated long-horizon exposures β̂b,H are less biased estimates of both β
0
b,H and β

0
b,1. It follows

that β̂b,H should explain cross-section of expected H-period returns as well as the cross-section of one-period

returns. Results available upon request confirm that this is the case in our data.
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SDF (3). The moment conditions upon which the estimation is based are in this case given

by

E

[
Re
t − λ01N +

(Mt+H,t−µH)Re
t+H,t

µH

Mt+H,t − µH

]
=

[
0

0

]
(10)

where

Mt+H,t = δH

[(
Ct+H
Ct

)−γ (
KSt+H
KSt

)−γ]
.

The equations to be estimated for the nonlinear SDF use H-period empirical covariances

between excess returns Re
t+H,t and the SDF Mt+H,t to explain short-horizon (quarterly)

average return premia E (Re
t ). This implements the approach just discussed that uses H-

period risk exposures to explain one-period expected returns in the cross-section. The details

of this estimation are given in the Online Appendix and will be commented on briefly below.

In the final empirical analysis of the paper, we explicitly connect aggregate capital share

fluctuations to fluctuations in the income shares of rich versus non-rich stockowners using

the SZ household-level data to investigate whether a proxy for the consumption of wealthy

stockholders is priced in our asset return data. This investigation is described below.

For all estimations above, we report a cross sectional R
2
for the cross-sectional block of

moments as a measure of how well the model explains the cross-section of quarterly returns.14

Bootstrapped confidence intervals for the R
2
are reported. Also reported are the root-mean-

squared pricing errors (RMSE) as a fraction of the root-mean-squared return (RMSR) on

14This measure is defined as

R2 = 1−
V arc

(
E
(
Rej
)
− R̂ej

)
V arc

(
E
(
Rej
))

R̂ej = λ̂0 + β̂
′
j,H︸︷︷︸
1×K

λ̂H︸︷︷︸
K×1

,

where K are the number of factors in the asset pricing mode, V arc denotes cross-sectional variance, R̂ej is

the average return premium predicted by the model for asset j, and “hats”denote estimated parameters.
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the portfolios being priced, i.e.,

RMSE ≡

√√√√ 1

N

N∑
j=1

(
E
(
Re
j

)
− R̂e

j

)2
, RMSR ≡

√√√√ 1

N

N∑
j=1

(
E
(
Re
j

))2
where Re

j refers to the excess return of portfolio j and R̂
e
j = λ̂0 + β̂

′
j,H λ̂H .

4 Results

This section presents empirical results. We begin with a preliminary analysis of the relative

importance of aggregate consumption growth versus capital share growth in linearized SDF

model (4).

4.1 The Relative Importance of Ct+H
Ct

versus KSt+H
KSt

As discussed above, we investigate whether H-quarter risk exposures explain quarterly ex-

pected return premia in the cross-section. For the linearized SDF, this is tantamount to

asking whether covariances of H-period excess returns Re
t+H,t with the H-period linearized

SDF Mt+H,t, where

Mt+H,t ≡ b0 − b1
(
Ct+H
Ct
− 1

)
− b2

(
KSt+H
KSt

− 1

)
, (11)

have explanatory power for one-period expected return premia E
(
Re
j,t+1,t

)
. Although the

specification (11), which follows from (3), restricts the coeffi cients b1 = b2 = γ, it need not

follow that the two factors are equally priced in the cross-section. That is, λC,H in (8) could

be much smaller than λKS,H , in which case, capital share risk would be a more important

determinant of the cross-section of expected returns than is aggregate consumption risk,

despite their equally-weighted presence in the linearized SDF. To see why, observe that the

factor risk prices λH = (λC,H , λKS,H)′ are related to the SDF coeffi cients b1 and b2 according

to

λH = E (Mt+H,t)
−1Cov (fH , f

′
H) b, (12)
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where fH =
(
Ct+H
Ct
− 1, KSt+H

KSt
− 1
)′
, and b = (b1, b2)

′ . Equation (12) shows that, even if

b1 = b2 6= 0, λC,H will be smaller than λKS,H whenever consumption growth is less volatile

than capital share growth and the two factors are not too strongly correlated.

We use GMM to estimate the elements of Cov(fH , f ′H) along with the parameters b, while

restricting b1 = b2 and using data on the same cross-sections of asset returns employed in

the main investigation of the next section. Doing so provides estimates of the risk prices

λH from (12). The following results are reported in the Online Appendix, for H = 4 and

H = 8 quarters. First, estimates of Cov(f ′H , fH) show that consumption growth is much less

volatile than capital share growth while the off-diagonal elements of Cov(f ′H , fH) are small.

As a consequence, estimates of λC,H from (12) using data on different asset classes and equity

characteristic portfolios are in most cases several times smaller than those of λKS,H despite

b1 = b2. (See Table A1. The big exception to this are the estimates using options data for

H = 8). Note that if aggregate consumption growth were constant, λC,H = 0 no matter what

the value of b1 = b2. This reasoning and the foregoing result suggests that an approximate

empirical SDF that eliminates consumption growth altogether is likely to perform almost as

well as one that includes it.

This is the essence of what we find. Table A2 of the Online Appendix shows the GMM

restricted parameter estimates of b1 = b2 (denoted b in the table) along with cross-sectional

R2 and RMSE/RMSR for explaining quarterly expected return premia when both H-

period consumption and capital share growth are included in the H-period SDF. Table A3

shows the same when b1 is restricted to be zero, effectively eliminating consumption growth

from the SDF. The results show that little is lost in terms of cross-sectional explanatory

power or pricing errors by estimating a model with b1 constrained to be zero. By contrast,

restricting b2 to be zero, i.e., dropping capital share growth from the linearized SDF, makes

a big difference to the cross-sectional fit, which is typically far lower than the previous two

cases (Table A4). This estimation is described in the Section on GMM Estimations of the

Online Appendix.
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Given these results, we make the more parsimonious SDF that depends only on capital

share growth our baseline empirical model, i.e., Mt+H,t = b0 − b2
(
KSt+H
KSt

− 1
)
, referred to

hereafter as the capital share SDF. This is estimated with a univariate time-series regres-

sion to obtain β̂j,KS,H combined with the cross-sectional regression (9) to explain quarterly

expected return premia. Of course, if risk-sharing between shareholders and workers were

perfect, capital share growth should not appear in the SDF at all (i.e., b2 = 0) and only

growth in aggregate consumption should be priced in the cross-section once the betas for

both variables are included. But the results just reported show that this is not what we

find. The findings are therefore strongly supportive of a model with limited participation

and imperfect risk-sharing between workers and shareholders.

The next subsection presents our main results on whether capital share risk is priced

in the cross-section when explaining expected returns on a range of equity styles and non-

equity asset classes. This is followed by subsections reporting results that control for the

betas of empirical pricing factors from other models, statistical significance of our estimated

beta spreads, and tests that directly use the distribution of income shares and wealth from

the household-level SZ data. In all cases we characterize sampling error by computing

block bootstrap estimates of the finite sample distributions of the estimated risk prices and

cross-sectional R
2
, from which we report 95% confidence intervals for these statistics. The

bootstrap procedure corrects for the “first-stage” estimate of the risk exposures β̂ as well

as the serial dependence of the data in the time-series regressions used to compute the risk

exposures. The Appendix provides a description of the bootstrap procedure.

4.2 A Parsimonious Capital Share SDF

Panels A-E of Table 3 report results from estimating the cross-sectional regressions (9)

on four distinct equity characteristic portfolio groups: size/BM, REV, size/INV, size/OP

and a pooled estimation of the many different stock portfolios jointly. To give a sense of

which portfolio groups are most mispriced in the pooled estimation, Panel F reports the
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RMSEi/RMSRi for each group i computed from the pooled estimation on “all equity”

characteristics portfolios. Panels G-J report results from estimating the cross-sectional re-

gressions on portfolios of four non-equity asset classes: bonds, sovereign bonds, options, and

CDS. Finally Panel K reports these results for the pooled estimation on the many different

stock portfolios with the portfolios of other asset classes. For each portfolio group, and for

H = 4 and 8 quarters, we report the estimated capital share factor risk prices λ̂KS,H and

the R
2
with 95% confidence intervals for these statistics in square brackets, along with the

RMSE/RMSR for each portfolio group in the final column. Estimates for other horizons H

are available upon request and generally show that estimated shorter horizon capital share

risk exposures, e.g., H = 1 or H = 2, explain far less of the cross-sectional variation in

expected quarterly returns, consistent with the specification bias discussed above.

Turning first to the equity characteristic portfolios, Table 3 shows that the risk price

for capital share growth is positive and strongly statistically significant in each of these

cross-sections, as indicated by the 95% bootstrapped confidence interval which includes only

positive values for λ̂KS that are bounded well away from zero. Exposure to this single

macroeconomic factor explains a large fraction of the cross-sectional variation in return

premia on these portfolios. For H = 4 and H = 8, the cross-sectional R
2
statistics are 51%

and 80%, respectively for size/BM, 70% and 86% for REV, and 39% and 62% for size/INV,

and 78% and 76% for size/OP. The R
2
statistics remain sizable for all three portfolio groups

even after taking into sampling uncertainty and small sample biases. And while the 95%

bootstrap confidence intervals for the cross-sectional (adjusted) R
2
statistics are fairly wide

in some cases especially for H = 4, for H = 8 most show relatively tight ranges around high

values, i.e., [52%, 91%] , [68%, 96%] , [29%, 81%], and [42%, 90%] for size/BM, REV, size/INV

and size/OP, respectively. The interval for all equities combined is [51%, 84%]. Moreover,

the estimated risk prices are similar across the different equity portfolio characteristic groups.

This is reflected in the finding that the pooled estimation on the different equity portfolios

combined retains substantial explanatory power with an R
2
equal to 0.74% and a risk price
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estimate from the pooled “all equity” group that is about the same magnitude as those

estimated on the individual portfolio groups. Panel F, which shows the RMSEi/RMSRi

for each equity portfolio group i shows that the pricing errors are all very similar as a fraction

of the mean squared expected returns on those each group.

A caveat with the results above is that the estimated zero-beta rates λ0 are large for

some cross-sections, a result suggestive of misspecification. (The numbers are multiplied by

100 in the Table.) However, estimation of the full nonlinear SDF show that these zero-beta

parameters are often half as large or smaller than those reported above for the linear SDF

models. We discuss this further below.

Turning to the non-equity asset classes (corporate bonds, sovereign bonds, options, and

CDS), we find that the risk prices for the capital share betas are again positive and strongly

statistically significant in each case. For H = 4 the capital share beta explains 86% of the

cross-sectional variation in expected returns on corporate bonds, 79% on sovereign bonds,

95% on options, and 84% on CDS. ForH = 8, the fit is similar with the exception of sovereign

bonds, where the R
2
is lower at 32%. The magnitudes of the risk prices are somewhat larger

on average for these asset classes than they are for the equity characteristics portfolios,

but they remain roughly in the same ballpark. This is reflected in the finding that the

pooled estimation on “all assets”that combines the many different stock portfolios with the

portfolios of other asset classes retains substantial explanatory power, with an R
2
equal to

78% for H = 4. For H = 8, the R
2
from this pooled estimation is lower, equal to 44%, in

part because the fit for sovereign bonds is lower for this horizon.

Figure 1 and Figure 4 give a visual impression of these results. Figure 1 focuses on the

equity characteristic portfolios and plots observed quarterly return premia (average excess

returns) on each portfolio on the y-axis against the portfolio capital share beta for exposures

of H = 8 quarters on the x-axis. The solid lines show the fitted return implied by the

model using the single capital share beta as a measure of risk. Size-book/market portfolios

are denoted SiBj, where i, j = 1, 2, ..., 5, with i = 1 the smallest size category and i = 5
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the largest, while j = 1 denotes the lowest book-market category and j = 5 the largest.

Analogously, size/INV portfolios are denoted SiIj, size/OP portfolios are denoted SiOj, and

REV portfolios are denote REVi.

Figure 1 shows that the largest spread in returns on size/book-market portfolios is found

by comparing the high and low book-market portfolios is the smaller size categories. Value

spreads for the largest S=5 or S=4 size category are much smaller. This underscores the

importance of using double-sorted (on the basis of size and book-market) portfolios for

studying the value premium in U.S. data. The betas for size/book-market portfolios line up

strongly with return spreads for the smaller sized portfolios, but the model performs least

well for larger stock portfolios, e.g., S4B2 and S4B3 where the return spreads are small. At

the same time, the model fits the extreme high and extreme low portfolio returns almost

perfectly for both sets of portfolios. Observations for the high return S1B5 and low return

S1B1 portfolios lie almost spot on the fitted lines. Thus, capital share exposure explains

virtually 100% of the maximal return obtainable from a long-short strategy designed to

exploit these spreads. Moreover, exposure to capital share risk alone produces virtually no

pricing error for the challenging S1B1 “micro cap”growth portfolio that Fama and French

(2015) find is most troublesome for their new five factor model. The pooled estimation for

all equities shows a similar result. Finally, the figure shows that the spread in betas for all

sets of portfolios is large. For example, the spread in the capital share betas between S1B5

and S1B1 is 3.5 compared to a spread in returns of 2.6% per quarter. Thus, these findings

are not a story of tiny risk exposures multiplied by large risk prices.

Figure 4 shows the analogous plot for the pooled estimation that combines the many

different equity portfolios with the portfolios from the other asset classes. The results show

that the options portfolios are the least well priced in the estimations with H = 4 while CDS

and sovereign bonds are less well priced when H = 8. On the other hand, the micro cap

S1B1 and most equity portfolios remain well priced in the pooled estimation on all assets.

It is worth emphasizing that the estimates of λKS,H reported in Table 3 imply reasonable
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levels of risk aversion. These estimates, which use the two-pass regression approach, are

very close to the estimates of λKS,H obtained from estimating the empirical model Mt+H,t =

b0 − b2
(
KSt+H
KSt

− 1
)
using GMM and the restriction (12). (The GMM estimates of λKS,H

for each portfolio group are given in Table A5 of the Online Appendix.) For example, for

the size/BM portfolio group, the two-pass regression approach produces λ̂KS,H = 0.74 and

λ̂KS,H = 0.68 for H = 4, and 8 respectively, while the GMM estimates of λ̂KS,H = 0.74 and

λ̂KS,H = 0.69. Moreover, the GMM estimates of λKS,H correspond to estimates of b2 that

are 10.1 and 4.9 for H = 4, and H = 8 respectively. (See Table A3 of the Online Appendix).

Bearing in mind that b2 should equal γ from the theoretical model, this demonstrates that

the estimates of λKS,H reported in Table 3 are consistent with plausible levels of risk aversion.

We close this section by briefly commenting on the results for the nonlinear SDF estima-

tion (equations 10). These results are reported in Table A6. Several results are worth noting.

First, the estimates of the (constant) risk aversion parameter γ imply reasonable values that

monotonically decline with H from γ = 9.2 at H = 4 to γ = 4.2 at H = 8. (These values

are also very close to those obtained when estimating the linearized specifications; see Table

A3 of the Online Appendix.) The finding that estimates of risk aversion γ decline with the

horizon H is consistent with a model in which low frequency capital share exposures capture

sizable systematic cash flow risk for investors, such that fitting return premia does not re-

quire an outsized risk aversion parameter. Second, estimates of measures of cross-sectional

fit are similar to those for the linear SDF specifications. Third, estimates of the zero-beta

term λ0 are in almost all cases much smaller than for the linear SDF and typically not sta-

tistically distinguishable from zero.(the intercept values reported in the table are multiplied

by 100). The smaller values can occur if higher order terms that are omitted in the linear

SDF specification contain a common component across assets, thereby biasing upward the

estimate of the zero-beta constant in the second stage regression.
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4.3 Controlling for Other Pricing Factors

In this section we consider whether the explanatory power of capital share risk is merely

proxying for exposure to other risk factors. To address this question we include estimated

betas from several alternative factor models and explore whether the information in our

capital share beta is captured by other pricing models by estimating cross-sectional regres-

sions that include the betas from competing models alongside the capital share betas. For

example, we estimate a baseline Fama-French three-factor specification taking the form,

E
(
Re
j,t

)
= λ0 + β̂j,KS,HλKS + β̂j,MKTλMKT + β̂j,SMBλSMB + β̂j,HMLλHML + εj,t

and then include β̂j,KS,H as an additional regressor. Analogous specifications are estimated

controlling for the intermediary-based factor exposures, i.e., the beta for the leverage factor,

LevFact, advocated by AEM, or the beta for the banking sector’s equity-capital ratio advo-

cated by HKM, which we denote EqFact in this paper. The betas for the alternative models

are are estimated in the same way as in the original papers introducing those risk factors.

For size/BM we compare the model to the Fama-French three-factor model, which uses

the market excess return Re
m,t, SMBt and HMLt as factors, an empirical specification

explicitly designed to explain the large cross-sectional variation in average return premia

on these portfolios. We also consider the intermediary SDF model of AEM using their

broker-dealer leverage factor LevFact, and the intermediary SDF model of HKM using their

banking equity-capital ratio factor EqFact jointly with the market excess return Re
m,t, which

HKM argue is important to include. In all cases we compare the betas from these models to

capital share betas for H = 8 quarter horizons. Because the number of factors varies widely

across these models, we rank competing specifications according to a Bayesian Information

Criterion (BIC) that adjusts for the number of free factor risk prices λ chosen to minimize

the pricing errors. The smaller is the BIC criterion, the more preferred is the model.

Table 4 reports results that control for the Fama-French factor betas. The first set

of results forms the relevant benchmark by showing how these models perform on their
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own. Comparing to this benchmark, the results in Panel A of Table 4 for size/book-market

portfolios show that the capital share risk model generates pricing errors that are lower than

the Fama-French three-factor model. The RMSE/RMSR pricing errors are 12% for capital

share model and 15% for the Fama-French three-factor model. The cross-sectional R
2

= 0.80

for the capital share model, as compared to 0.69 for the Fama-French three-factor model.

Panel B shows a similar comparison holds for the pooled estimation on all four types of

equity characteristic portfolios.

Once the capital share beta is included alongside the betas from the Fama-French model

in the cross-sectional regression, the risk prices on the exposures to SMBt and HMLt fall

by large magnitudes. For example, the risk price for HMLt declines 82% from 1.35 to 0.24.

Moreover, the 95% confidence intervals for these risk prices are far wider, which now include

values around zero. By contrast, the risk price for the capital share beta retains its strong

explanatory power and most of its magnitude. According to the BIC criterion, the single

capital share risk factor performs better than the three-factor model in explaining these

portfolios. A similar finding holds for the pooled regression on all equities (Panel B). It is

striking that a single macroeconomic risk factor drives out better measured return-based

factors that were designed to explain these portfolios.

Table 5 compares the pricing power of the capital share model to the intermediary-based

models for the four equity characteristics portfolios, as well as the pooled estimation on all

equity portfolios jointly. For the most part, the intermediary-models do well on their own,

and we reproduce the main findings of these studies. For all portfolios types, however, the

capital share risk model has the lowest pricing errors, lowest BIC criterion, and highest R
2
.

Once we include the capital share beta alongside the betas for these factors we find that the

risk prices for intermediary factors are either significantly attenuated or driven out of the

pricing regressions by the estimated exposure to capital share risk. This is especially true of

the equity-capital ratio factor EqFact where the confidence intervals are wide and include

zero once the capital share beta is included while the risk price for the capital share beta
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retains its strong explanatory power and most of its magnitude in all cases. These findings

suggest that the information contained in the intermediary balance sheet factors for risk

pricing is largely subsumed by that in capital share growth.

Table 6 further compares the capital share model’s explanatory power for cross-sections

of expected returns on the non-equity asset classes with the HKM intermediary model, which

was also employed to study a broad range of non-equity classes. As shown above, the risk

price for the capital share beta is positive and statistically significant in non-equity port-

folio case, explaining 89% of the cross-sectional variation in expected returns on corporate

bonds, 81% on options, 94% on CDS, and 32% on sovereign bonds. In a separate regression,

the risk prices for the betas of EqFact and Re
m,t are positive and have strong explanatory

power for each of these groups, consistent with what HKM report. But when we include

the capital share betas alongside the betas of EqFact and Re
m,t, we find that the risk prices

for exposures to EqFact become negative when pricing corporate bonds and CDS and sta-

tistically insignificant when pricing every category except options. By contrast, the capital

share risk price remains positive and strongly significant in each case. When pricing options,

both the capital share beta and those for EqFact and Re
m,t retain independent statistical

explanatory power. However, for both models, the magnitudes of the estimated risk prices

when estimated on the options portfolios are somewhat larger than those estimated on other

portfolios. For example, compared to the estimations on size/BM portfolios, the estimated

options risk price for KS growth (alone) is a bit over twice as large, while that for EqFact

is more than three times as large. When all three betas are included to explain the cross-

section of options returns, the risk-price for KS growth is then about the same as it is for

explaining size/BM, while that for EqFact is still more than twice as large.

4.4 Spreads Between the Betas

Figures (1) and (4) discussed above show large spreads in the estimated capital share betas

between the high and low return portfolios in each asset group. These findings suggest that
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the explanatory power of capital share risk exposure for the cross-section of expected asset

returns is not the product of tiny risk exposures multiplied by large risk prices. A potential

concern, however, is that the estimated betas may be imprecisely measured, so that the

spreads are not statistically significant. To address this concern, we compute the spread

in capital share betas between the highest and lowest average quarterly return portfolio for

each portfolio group, along with 95% bootstrapped confidence interval for the spread. For

comparison, we also report the same numbers for the spread in the Fama-French factor betas

and the intermediary-based factor betas. For the size/BM portfolio group, we separately

analyze the largest attainable value premium (the spread in returns/betas between the S1B5

and S1B1 portfolios), and the largest attainable size premium (the spread in returns/betas

between the S1B5 and S5B5 portfolios). To facilitate the comparison across models, all

factors are standardized to unit variance before performing the calculation.15 The results

are reported in Table 7.

Panel A of Table 7 shows the spreads in betas for the value premium. The spread in

capital share betas when H = 4 is slightly smaller than that of the HML beta, but is more

than two times larger than the HML beta spread when H = 8. (The spread in H = 8

quarter capital share betas is 0.13, versus 0.06 for HML beta spread, 0.041 for the EqFac

beta spread, and 0.015 for the LevFac beta spread.) For all models except LevFac, these

spreads are statistically different from zero, as indicated by the 95% confidence sets for the

spreads that exclude zero. Panel B shows the analogous results for the size premium. The

spread in the H = 8 quarter capital share betas corresponding to the size premium is 0.093,

versus 0.076 for the SMB beta spread, 0.002 for the EqFac beta spread, and 0.005 for

the LevFac beta spread. In this case the spreads in the capital share and SMB betas are

statistically significant, while those for EqFac and LevFac are statistically significant.

Panels C-J of Table 7 present results for the other eight portfolio groups and may be sum-

marized as follows.16 There are three sets of portfolios for which the spread in capital share
15For this reason the units of the betas are than those in Figures (1) and (4).
16The numbers in Panel F for “All Equities” are itdentical to those in Panel A for the value premium
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betas between the high and low average return portfolios for each group are quantitatively

sizable but not statistically significant. These are: size/INV, sovereign bonds, and options.

However, the spreads in HML, SMB, EqFac and LevFac betas are also insignificant for

two of these (sovereign bonds and options), and smaller in magnitude than the capital share

beta spread. On the size/INV portfolio group, the spread in SMB betas is of the same

magnitude as the spread in H = 8 quarter capital share betas, but in contrast to the spread

in capital share betas, statistically significant. For the remaining five other portfolios groups

(REV, size/OP, all equities, bonds, and CDS), the spread in capital share betas is in each

case several times larger than the spreads in HML, SMB, EqFac and LevFac betas, and

statistically significant. For the all equities portfolio group, only the spreads in H = 8 capi-

tal share betas, EqFac betas, and HML betas are statistically significant, with the largest

spread magnitude identified with the capital share betas equal to 0.129, followed by 0.056 for

the HML beta spread and 0.041, for the EqFac beta spread. For size/OP, only the spread

in the capital share betas (for both H = 4, 8) and the spread in SMB betas are statistically

significant, with the H = 8 capital share beta spread 1.3 times as large as the SMB beta

spread. For corporate bonds, the spread in H = 8 capital share betas is 4.9 times larger than

the model with the next largest spread, (the HML beta), while the spread in all other betas

are statistically insignificant. Finally, for the CDS portfolio group, only the spread in H = 8

capital share betas is statistically significant, and is five times large in magnitude than the

model with the next largest spread, (the EqFac beta). Taken together, these results indicate

that the capital share exposures consistently exhibit large spreads for a range of portfolio

groups and compare favorably relative to competing models, even when taking into account

sampling error.

because the spread in average returns between the S1B5 and S1B1 portfolios is the largest in the All Equities

category.

30



4.5 An SDF Based On Household-Level Data

A core hypothesis of this investigation is that an SDF based on the marginal utility of the

wealthiest households is more likely to be relevant for the pricing of risky securities than is

one based on that of the average household. In the final empirical analysis of the paper, we

therefore explicitly connect capital share variation to fluctuations in the micro-level income

shares of rich and non-rich stockowners using the SZ household-level data. The SZ household-

level income and wealth data are especially advantageous for this purpose because they are

of high quality and detailed and, as discussed above, reliable household-level consumption

data are unavailable for the wealthy. Thus we use the SZ household-level income and wealth

data to construct a proxy for the consumption growth and SDF of rich stockowners.

To motivate this exercise, first note that the consumption of a representative stockowner

in the ith percentile of the stock wealth distribution can be tautologically expressed as Ctθ
i
t,

where θit is the ith percentile’s consumption share in period t. We do not observe Ctθ
i
t

because reliable observations on θit are unavailable for wealthy households. We do observe

reliable estimates of income shares, Yit
Yt
, however, and a crude estimate of the ith percentile’s

consumption could be constructed as Ct YitYt . But since some of the variation in
Yit
Yt
across

percentile groups is likely to be idiosyncratic, capable of being insured against and therefore

not priced, a better measure would be one that isolates the systematic risk component of the

income share variation. Given imperfect insurance between workers and capital owners, the

inequality-based literature discussed above implies that fluctuations in the aggregate capital

share should be a source of non-diversifiable income risk to which investors are exposed. We

therefore form an estimate of the component of income share variation for the ith percentile

that represents systematic risk by replacing observations on Yit
Yt
with the fitted values from a

projection of Yit
Yt
on KSt. (Note that this is not the same as using KSt itself as a risk-factor.)

That is, we ask whether betas for the H-period growth in Ct
Ŷ it
Yt
are priced, where Ŷ i

t /Yt =

ς̂ i0+ ς̂ i1 (KSt) are quarterly observations on fitted income shares from the ith percentile. The

parameters ς̂ i0 and ς̂
i
1 are the estimated intercepts and slope coeffi cients from the regressions
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of income shares on the capital share reported in the right panel of Table 2 pertaining

to households who are stockholders. We refer to Ct
Ŷ it
Yt
as a proxy for the ith percentiles

consumption. Finally, we focus on i = top 10% of the stockowner stock wealth distribution.

Estimates from the cross-sectional regressions of expected returns on the five equity portfolios

are given in Table 8.

Table 8 shows that the betas for this proxy for rich stockowner’s consumption growth

strongly explains return premia on all equity portfolios. For size/BM portfolios, the H = 8

quarter growth in Ct
Ŷ >10t

Yt
(where “> 10”denotes top 10% in the table) explains 85% of the

cross-sectional variation in expected returns, with a positive and strongly statistically sig-

nificant risk price. It explains 84%, 69%, and 74%, respectively, of the variation in expected

returns on the REV, size/INV and size/OP portfolios. These findings are consistent with

the hypothesis that rich stockowners are marginal investors for these portfolio groups.

5 Conclusion

This paper finds that exposure to a single macroeconomic variable, namely fluctuations

in the growth of the capital share of national income, has substantial explanatory power

for expected returns across a range of equity characteristics portfolios and other asset

classes. These assets include equity portfolios formed from sorts on size/book-market,

size/investment, size/operating profitability, long-run reversal, and non-equity asset classes

such as corporate bonds, sovereign bonds, credit default swaps, and options. Positive ex-

posure to capital share risk earns a significant, positive risk premium with estimated risk

prices of similar magnitude across portfolio groups. The information contained in capital

share exposures subsumes the information contained in the financial factors SMB andHML

for pricing equity characteristics portfolios as well as previously successful empirical factors

that use intermediaries’balance sheet data. A proxy for the consumption growth of the top

10% of the stock wealth distribution using household-level income and wealth data exhibits
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similar substantial explanatory power for the equity characteristic portfolios. These findings

are commensurate with the hypothesis that wealthy households, whose income shares are

strongly positively related to the capital share, are marginal investors in many asset markets

and that redistributive shocks that shift the allocation of rewards between workers and asset

owners are an important source of systematic risk.
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Figure 1: Capital share betas. Betas constructed from Fama-MacBeth regressions of average returns on capital share beta for

different equity characteristic portfolios or using all equity portfolios together (size/bm, REV, size/INV and size/OP). H indicates

the horizon in quarters over which capital share exposure is measured. The sample spans the period 1963Q3 to 2013Q4.



Figure 2: Capital share, 8 quarter log difference. The vertical lines correspond to the NBER recession

dates. The sample spans the period 1963Q3 to 2013Q4.
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Figure 3: Growth in aggregate consumption times income share. The top panel reports annual

observations on the annual value of Ct
Ct−1

[
Y i
t /Yt

Y i
t−1/Yt−1

]
corresponding to the years for which SZ data are

available. Y it /Yt is the shareholder’s income share for group i calculated from the SZ. The bottom panel

reports quarterly observations on quarterly values of Ct
Ct−1

[
Ŷ i
t /Yt
̂Y i

t−1/Yt−1

]
using the mimicking income share

factor Ŷ it /Yt = α̂i + β̂
i
KSt. The annual SZ data spans the period 1963 - 2012. The quarterly sample spans

the period 1963Q3 to 2013Q4.
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Panel (b) All Assets, H = 8

R2 =  0.44

Figure 4: Capital share betas. Betas constructed from Fama-MacBeth regressions of average returns on capital share beta using

all assets (size/bm, REV, size/INV, size/OP equities plus bonds, sovereign bonds, CDS and Options). H indicates the horizon in

quarters over which capital share exposure is measured. The sample spans the period 1963Q3 to 2013Q4.



Panel A: Percent of Stock Wealth, sorted by Stock Wealth, Stockowners

SCF (indirect + direct stock holdings) SZ (direct stock holdings)
Percentile of Stock Wealth 1989 1998 2004 2013 1989 1998 2004 2012

< 70% 7.80% 9.15% 8.86% 7.21% 23.62% 15.50% 18.93% 16.51%

70− 85% 11.76% 10.95% 12.08% 11.32% 9.56% 9.37% 7.90% 6.91%

85− 90% 8.39% 6.59% 7.88% 7.42% 5.91% 6.09% 4.97% 5.10%

90− 95% 12.52% 11.18% 13.33% 13.40% 9.86% 10.69% 8.27% 8.06%

95− 100% 59.56% 62.09% 57.95% 60.74% 51.05% 58.35% 59.93% 63.43%

Panel B: Percent of Stock Wealth, sorted by Stock Wealth, All Households
SCF (indirect + direct stock holdings) SZ (direct stock holdings)

< 70% 0.01% 1.30% 1.35% 0.84% 11.32% 4.95% 8.48% 6.92%

70− 85% 3.12% 7.42% 7.41% 5.92% 4.22% 3.76% 4.68% 3.77%

85− 90% 4.19% 6.45% 6.70% 6.17% 4.20% 4.25% 3.86% 3.29%

90− 95% 11.16% 11.28% 13.26% 12.67% 8.81% 9.39% 7.43% 6.71%

95− 100% 81.54% 73.93% 71.21% 74.54% 71.44% 77.65% 75.55% 79.29%

Panel C: Stock Market Participation Rates, SCF (indirect + direct stock holdings)
1989 1992 1995 1998 2001 2004 2007 2010 2013

Raw Participation Rate 31.7% 36.9% 40.5% 49.3% 53.4% 49.7% 53.1% 49.9% 48.8%

Wealth-weighted Participation Rate 13.8% 15.8% 16.4% 19.9% 23.9% 21.7% 21.1% 20.9% 20.2%

Table 1: Distribution of stock market wealth. The table reports the percentage of the stock weath owned by the percentile

group reported in the first column. Panel A is conditional on the household being a stockowner, while Panel B reports the distribution

across all households. SCF stock wealth ownership is based on direct and indirect holdings of public equity where indirect holdings

include annuities, trusts, mutual funds, IRA, Keogh Plan, other retirement accounts. Stock ownership in SZ data is based on direct

stock holdings only. Panel C reports stock market participation rate. The wealth-weighted participation rate is calculated as Value-

weighted ownership ≡ 5%
(
w5%

)
+(rpr − 0.05)%

(
1− w5%

)
+ (1− rpr) % (0) where rpr is the raw participation rate (not in percent)

in the first row. w5% is the proportion of stock market wealth owned by top 5% .



OLS Regression
Y i
t

Yt
= ς i0 + ς i1KSt + εt

All Households Stockowners

Group ς̂ i0 ς̂ i1 R2 Group ς̂ i0 ς̂ i1 R2

< 90% 1.18∗∗ −1.13∗∗ 0.61 < 90% 1.24∗∗ −1.27∗∗ 0.49
(23.60) (−8.65) (17.36) (−6.82)

95− 100% −0.24∗∗ 1.08∗∗ 0.61 95− 100% −0.28∗∗ 1.20∗∗ 0.53
(−5.10) (8.65) (−4.47) (7.34)

99− 100% −0.24∗∗ 0.82∗∗ 0.62 99− 100% −0.27∗∗ 0.93∗∗ 0.59
(−6.71) (8.88) (−6.16) (8.25)

99.9− 100% −0.16∗∗ 0.48∗∗ 0.65 99.9− 100% −0.17∗∗ 0.54∗∗ 0.63
(−7.91) (9.41) (−7.61) (9.13)

90− 100% −0.18∗∗ 1.13∗∗ 0.61 90− 100% −0.24∗∗ 1.27∗∗ 0.49
(−3.54) (8.64) (−3.32) (6.82)

Table 2: Regressions of income shares on the capital share. OLS t-values in parenthesis. The groups refer to the

percentiles of the stock wealth distribution. “∗”and “∗ ∗”indicate statistical significance at the 10% and 5% level, respectively.
Y i
t

Yt
is the income share for group i. KS is the capital share. The sample spans the period 1963Q3 to 2013Q4.



Expected Return-Beta Regressions

E
(
Re
j,t

)
= λ0 + λ′HβH + εj, Estimates of Factor Risk Prices λH

Equity Portfolios

Panel A: Size/BM Panel B: REV
H Constant KSt+H

KSt
R̄2 RMSE

RMSR Constant KSt+H
KSt

R̄2 RMSE
RMSR

4 0.65 0.74 0.51 0.19 0.83 0.63 0.70 0.11
[0.01, 1.23] [0.42, 1.08] [0.13, 0.77] [0.35, 1.32] [0.33, 0.92] [0.17, 0.91]

8 1.55 0.68 0.80 0.12 1.73 0.41 0.86 0.08
[1.39, 1.71] [0.53, 0.83] [0.52, 0.91] [1.62, 1.84] [0.30, 0.50] [0.68, 0.96]

Panel C: Size/INV Panel D: Size/OP
H Constant KSt+H

KSt
R̄2 RMSE

RMSR Constant KSt+H
KSt

R2 RMSE
RMSR

4 0.92 0.61 0.39 0.19 0.60 0.70 0.78 0.12
[0.20, 1.54] [0.27, 0.96] [0.03, 0.70] [0.26, 0.94] [0.54, 0.87] [0.48, 0.89]

8 1.70 0.55 0.62 0.16 1.61 0.57 0.76 0.12
[1.50, 1.90] [0.37, 0.74] [0.29, 0.81] [1.46, 1.77] [0.45, 0.71] [0.42, 0.90]

Panel E: All Equities Panel F: All Equities RMSEi
RMSRi

H Constant KSt+H
KSt

R2 RMSE
RMSR Size/Bm REV Size/INV Size/OP

4 0.74 0.68 0.58 0.17 0.19 0.12 0.19 0.20
[0.45, 1.01] [0.54, 0.83] [0.28, 0.73]

8 1.65 0.57 0.74 0.14 0.13 0.11 0.16 0.16
[1.56, 1.74] [0.49, 0.66] [0.51, 0.84]

Table 3 continued next page



Expected Return-Beta Regressions

E
(
Re
j,t

)
= λ0 + λ′HβH + εj, Estimates of Factor Risk Prices λH

Other Asset Classes

Panel G: Bonds Panel H: Sovereign Bonds
H Constant KSt+H

KSt
R̄2 RMSE

RMSR Constant KSt+H
KSt

R̄2 RMSE
RMSR

4 0.43 0.82 0.86 0.17 −0.32 1.41 0.79 0.18
[0.35, 0.51] [0.59, 1.03] [0.32, 0.96] [−1.08, 0.34] [0.88, 1.93] [0.44, 0.99]

8 0.23 0.57 0.89 0.15 0.16 1.18 0.32 0.33
[0.13, 0.32] [0.40, 0.72] [0.34, 0.96] [−1.00, 1.62] [0.20, 2.19] [0.20, 0.99]

Panel I: Options Panel J: CDS
H Constant KSt+H

KSt
R̄2 RMSE

RMSR Constant KSt+H
KSt

R̄2 RMSE
RMSR

4 0.56 1.87 0.95 0.18 −0.24 1.26 0.84 0.34
[0.10, 1.07] [1.43, 2.35] [0.32, 0.99] [−0.36,−0.11] [0.84, 1.71] [0.17, 0.97]

8 3.68 1.80 0.81 0.34 −0.16 0.77 0.94 0.20
[1.35, 6.11] [0.83, 2.76] [0.01, 0.95] [−0.22,−0.09] [0.64, 0.89] [0.68, 0.99]

Panel K: All Assets
H Constant KSt+H

KSt
R2 RMSE

RMSR

4 0.39 0.83 0.78 0.25
[−0.91, 0.63] [0.71, 1.21] [0.28, 0.79]

8 1.34 0.63 0.44 0.41
[0.81, 1.72] [0.63, 0.96] [0.42, 0.84]

Table 3: (cont.) Expected return-beta regressions. The table reports estimates of risk prices λH . All estimates are

multiplied by 100. Bootstrap 95% confidence intervals are reported in square brackets. Panel F reports the RMSEi/RMSRi

attributable to the group i named in the column. The pricing error is defined as RMSRi =
√

1
Ni

∑Ni

j=1

(
E
(
Reji
))2

where Reji

refers to the return of portfolio j in group i and RMSEi=

√
1
Ni

∑Ni

j=1

(
E
(
Reji
)
− R̂eji

)
where R̂eji = λ̂0 + β̂

′
ji,H λ̂H . The sample

spans the period 1963Q3 to 2013Q4.



Expected Return-Beta Regressions: Competing Models, Equities

E
(
Re
j,t

)
= λ0 + λ′HβH + εj, Estimates of Factor Risk Prices λH , H = 8

Panel A: Size/BM

Constant KSt+H
KSt

Re
m,t SMBt HMLt R̄2 RMSE

RMSR BIC

1.55 0.68 0.80 0.12 −283.41
[1.39, 1.71] [0.53, 0.83] [0.52, 0.91]

3.63 −1.96 0.70 1.35 0.69 0.15 −268.12
[1.19, 5.99] [−4.30, 0.41] [0.40, 1.01] [0.76.1.90] [0.54, 0.89]

3.57 0.50 −2.04 0.22 0.24 0.84 0.10 −282.29
[1.91, 5.39] [0.33, 0.74] [−4.01,−0.61] [−0.10, 0.45] [−0.37, 0.72] [0.67, 0.94]

Panel B: All Equities

Constant KSt+H
KSt

Re
m,t SMBt HMLt R̄2 RMSE

RMSR BIC

1.65 0.57 0.74 0.14 −966.12
[1.56, 1.74] [0.49, 0.66] [0.51, 0.84]

3.02 −1.28 0.67 1.37 0.68 0.15 −943.11
[2.02, 4.06] [−2.30,−0.30] [0.52, 0.83] [1.00, 1.74] [0.58, 0.81]

2.89 0.39 −1.25 0.25 0.40 0.78 0.12 −970.29
[2.13, 3.94] [0.28, 0.52] [−2.45,−0.67] [0.04, 0.39] [−0.10, 0.73] [0.60, 0.86]

Table 4: Fama-MacBeth regressions of average returns on factor betas. The table reports estimates of risk prices

λH . All estimates are multiplied by 100. Bootstrap 95% confidence intervals are reported in square brackets. The sample

spans the period 1963Q3 to 2013Q4.



Expected Return-Beta Regressions: Competing Models, Equities

E
(
Rej,t

)
= λ0 + λ′HβH + εj , Estimates of Factor Risk Prices λH , H = 8

Panel A: Size/BM

Constant KSt+H
KSt

Rem,t LevFact EqFact R̄2 RMSE
RMSR BIC

1.55 0.68 0.80 0.12 −283.41
[1.39, 1.71] [0.53, 0.83] [0.52, 0.91]

0.89 13.91 0.66 0.16 −270.41
[1.39, 1.71] [10.23, 17.67] [0.37, 0.90]

1.24 0.50 4.96 0.82 0.11 −284.67
[0.49, 1.53] [0.32, 0.70] [1.36, 8.64] [0.62, 0.92]

0.48 1.19 6.88 0.49 0.20 −258.63
[−1.16, 2.05] [−0.18, 2.59] [3.22, 10.53] [0.19, 0.85]

3.19 0.62 −1.53 −2.72 0.81 0.13 −279.07
[1.85, 4.53] [0.43, 0.82] [−2.68,−0.38] [−5.91, 0.48] [0.56, 0.92]

Panel B: REV

Constant KSt+H
KSt

Rem,t LevFact EqFact R̄2 RMSE
RMSR BIC

1.73 0.41 0.86 0.08 −124.54
[1.62, 1.84] [0.30, 0.50] [0.68, 0.96]

1.44 6.53 0.01 0.21 −104.63
[0.37, 2.69] [−3.52, 15.55] [−0.12, 0.78]

1.86 0.42 −1.73 0.85 0.07 −122.80
[1.14, 2.13] [0.26, 0.49] [−4.33, 2.86] [0.68, 0.97]

0.71 1.10 4.23 0.79 0.08 −120.86
[−0.05, 1.43] [0.41, 1.88] [3.03, 5.70] [0.54, 0.98]

0.86 0.20 0.92 2.32 0.76 0.10 −116.75
[−0.32, 2.08] [−0.02, 0.42] [−0.15, 2.03] [−0.91, 5.64] [0.56, 0.98]

Panel C: Size/INV

Constant KSt+H
KSt

Rem,t LevFact EqFact R̄2 RMSE
RMSR BIC

1.70 0.55 0.62 0.16 −272.08
[1.50, 1.90] [0.37, 0.74] [0.29, 0.81]

0.59 18.06 0.52 0.16 −272.03
[−0.01, 1.20] [13.29, 22.75] [0.40, 0.92]

0.97 0.32 10.33 0.70 0.13 −276.07
[−0.02, 1.34] [0.08, 0.49] [6.12, 16.45] [0.45, 0.92]

1.35 0.46 7.51 0.60 0.16 −269.89
[0.17, 2.46] [−0.55, 1.46] [4.56, 10.40] [0.33, 0.92]

2.28 0.30 −0.58 2.37 0.73 0.14 −277.09
[1.11, 3.38] [0.12, 0.49] [−1.57, 0.43] [−0.91, 5, 64] [0.48, 0.92]

Table 5 continued next page



Expected Return-Beta Regressions: Competing Models, Equities

E
(
Rej,t

)
= λ0 + λ′HβH + εj , Estimates of Factor Risk Prices λH , H = 8

Panel D: Size/OP

Constant KSt+H
KSt

Rem,t LevFact EqFact R̄2 RMSE
RMSR BIC

1.61 0.57 0.76 0.12 −286.55
[1.46, 1.77] [0.45, 0.71] [0.42, 0.90]

0.62 16.83 0.58 0.16 −272.43
[0.02, 1.18] [12.26, 21.47] [0.37, 0.91]

1.42 0.50 2.69 0.76 0.12 −283.83
[0.68, 1.88] [0.34, 0.74] [−2.89, 6.27] [0.44, 0.89]

1.45 0.36 4.60 0.11 0.23 −255.09
[−0.16, 3.02] [−1.06, 1.77] [0.98, 8.29] [−0.05, 0.61]

2.47 0.43 −0.85 −0.23 0.60 0.17 −270.80
[1.21, 3.73] [0.24, 0.61] [−1.95, 0.26] [−3.26, 2.77] [0.23, 0.85]

Panel E: All Equities

Constant KSt+H
KSt

Rem,t LevFact EqFact R̄2 RMSE
RMSR BIC

1.65 0.57 0.74 0.14 −966.12
[1.56, 1.74] [0.49, 0.66] [0.51, 0.84]

0.80 15.03 0.59 0.17 −927.89
[0.49, 1.12] [12.77, 17.38] [0.44, 0.86]

1.24 0.43 5.70 0.77 0.13 −975.12
[0.70, 1.30] [0.32, 0.52] [4.03, 8.25] [0.57, 0.87]

1.20 0.59 5.55 0.43 0.20 −904.68
[0.51, 1.87] [−0.02, 1.19] [3.99, 7.09] [0.26, 0.71]

2.54 0.41 −0.85 −0.17 0.70 0.16 −949.95
[1.87, 3.20] [0.31, 0.51] [−1.43,−0.27] [−1.80, 1.50] [0.48, 0.82]

Table 5: (cont.) Fama-MacBeth regressions of average returns on factor betas. The table reports estimates of risk

prices λH . All estimates are multiplied by 100. Bootstrap 95% confidence intervals are reported in square brackets. The

sample spans the period 1963Q3 to 2013Q4.



Expected Return-Beta Regressions: Competing Models, Other Asset Classes

E
(
Re
i,t

)
= λ0 + λ′HβH + εi, Estimates of Factor Risk Prices λH , H = 8

Panel A: Bonds
Constant KSt+H

KSt
EqFact Re

m,t R̄2 RMSE
RMSR BIC

0.23 0.57 0.89 0.15 −262.49
[0.13, 0.32] [0.40, 0.72] [0.34, 0.96]

0.41 7.56 1.43 0.82 0.19 −249.97
[0.28, 0.54] [4.16, 10.94] [−0.25, 3.06] [0.43, 0.95]

0.20 0.50 −1.80 1.31 0.84 0.16 −257.26
[0.07, 0.33] [0.18, 0.81] [−5.34, 1.74] [−0.43, 2.97] [0.27, 0.95]

Panel B: Sovereign Bonds
Constant KSt+H

KSt
EqFact Re

m,t R̄2 RMSE
RMSR BIC

0.16 1.18 0.32 0.33 −54.91
[−1.00, 1.62] [0.20, 2.19] [0.20, 0.99]

0.34 7.05 1.24 0.68 0.20 −59.45
[−0.58, 1.34] [2.77, 11.50] [−2.63, 5.37] [0.05, 0.99]

−1.33 1.11 4.07 3.44 0.74 0.15 −62.84
[−2.73, 0.06] [0.46, 1.73] [−2.46, 10.49] [0.61, 6.32] [0.37, 0.99]

Panel C: Options
Constant KSt+H

KSt
EqFact Re

m,t R̄2 RMSE
RMSR BIC

3.68 1.80 0.81 0.34 −178.57
[1.35, 6.11] [0.83, 2.76] [0.01, 0.95]

−1.11 22.42 2.81 0.99 0.09 −222.10
[−2.40, 0.29] [18.62, 26.62] [1.18, 4.34] [0.78, 0.99]

5.36 0.73 15.08 −4.40 0.98 0.10 −221.04
[2.52, 8.21] [0.29, 1.24] [10.62, 19.60] [−7.16,−1.61] [0.75, 0.99]

Panel D: CDS
Constant KSt+H

KSt
EqFact Re

m,t R̄2 RMSE
RMSR BIC

−0.16 0.77 0.94 0.20 −263.27
[−0.22,−0.09] [0.64, 0.89] [0.68, 0.99]

−0.39 11.08 1.11 0.63 0.50 −224.44
[−0.63,−0.12] [6.39, 16.61] [−2.94, 6.16] [0.20, 0.95]

−0.06 0.93 −3.17 −0.60 0.94 0.20 −256.54
[−0.18, 0.06] [0.66, 1.19] [−6.61, 0.28] [−2.68, 1.46] [0.71, 0.99]

Table 6: Expected return-beta regressions. The table reports estimates of risk prices λH . All estimates are multiplied

by 100. Bootstrap 95% confidence intervals are reported in square brackets. The sample spans the period 1970Q1 to 2012Q4.



Beta Spread —All Factors Standardized Unit Variance

Equity

Panel A: 25 Size/Bm Portfolios (Value Spread)
KS(H = 4) KS(H = 8) LevFac EqFac HML

βS1B5 − βS1B1 0.043 0.129 0.015 0.041 0.056

[−0.00, 0.06] [0.06, 0.15] [0.00, 0.03] [0.02, 0.06] [0.04, 0.07]

Panel B: 25 Size/Bm Portfolios (Size Spread)
KS(H = 4) KS(H = 8) LevFac EqFac SMB

βS1B5 − βS5B5 0.075 0.093 0.005 0.002 0.076

[0.03, 0.09] [0.02, 0.12] [−0.01, 0.02] [−0.02, 0.02] [0.07, 0.09]

Panel C: REV
KS(H = 4) KS(H = 8) LevFac EqFac SMB HML

βHigh − βLow 0.054 0.119 0.001 0.041 0.057 0.035

[0.01, 0.07] [0.06, 0.16] [−0.02, 0.02] [0.01, 0.07] [0.04, 0.07] [0.02, 0.05]

Panel D: Size/INV
KS(H = 4) KS(H = 8) LevFac EqFac SMB HML

βHigh − βLow 0.041 0.082 0.010 0.018 0.086 0.031

[−0.02, 0.07] [−0.00, 0.13] [−0.01, 0.03] [0.01, 0.03] [0.08, 0.10] [0.02, 0.05]

Panel E: Size/OP
KS(H = 4) KS(H = 8) LevFac EqFac SMB HML

βHigh − βLow 0.055 0.082 0.005 −0.015 0.064 −0.003

[0.03, 0.07] [0.03, 0.12] [−0.01, 0.02] [−0.04, 0.01] [0.06, 0.07] [−0.02, 0.01]

Panel F: All Equities
KS(H = 4) KS(H = 8) LevFac EqFac SMB HML

βHigh − βLow 0.043 0.129 0.015 0.041 −0.019 0.056

[−0.00, 0.06] [0.06, 0.15] [0.00, 0.03] [0.02, 0.06] [−0.03,−0.01] [0.04, 0.07]

Table 7 continued next page



Beta Spread —All Factors Standardized Unit Variance

Other Asset Classes

Panel G: Bonds
KS(H = 4) KS(H = 8) LevFac EqFac SMB HML

βHigh − βLow 0.043 0.093 0.000 0.018 0.007 0.019

[0.01, 0.06] [0.02, 0.11] [−0.02, 0.01] [−0.00, 0.04] [−0.00, 0.01] [0.01, 0.03]

Panel H: Sovereign Bonds
KS(H = 4) KS(H = 8) LevFac EqFac SMB HML

βHigh − βLow 0.046 0.037 0.004 0.049 0.007 0.026

[−0.04, 0.13] [−0.11, 0.12] [−0.06, 0.06] [0.00, 0.08] [−0.02, 0.03] [−0.00, 0.06]

Panel I: Options
KS(H = 4) KS(H = 8) LevFac EqFac SMB HML

βHigh − βLow 0.057 0.071 −0.01 0.022 0.004 0.018

[−0.00, 0.09] [−0.04, 0.12] [−0.05, 0.02] [−0.01, 0.05] [−0.01, 0.02] [−0.00, 0.03]

Panel J: CDS
KS(H = 4) KS(H = 8) LevFac EqFac SMB HML

βHigh − βLow 0.030 0.075 −0.013 0.015 0.003 0.006

[0.00, 0.05] [0.03, 0.09] [−0.03,−0.00] [−0.00, 0.03] [−0.01, 0.02] [−0.01, 0.02]

Table 7: (cont.) Beta spread. The table reports the spread in betas between the highest and lowest average return portfolio for each portfolio group.

βHigh denotes the highest average return portfolio beta; and βlow denotes the lowest average return portfolio beta. In the case of size/BM portfolios,

these are separated into spreads along the value dimension (value spread) adn size dimension (size spread) where e.g., S1B5 denotes the highest return

portfolio along the value dimension, which is the portfolio is the smallest size category and largest book-market category. Bootstrap 95% confidence

intervals are reported in square brackets.



Expected Return-Beta Regressions Using Top Income Shares

E
(
Re
j,t

)
= λ0 + λ′HβH + εj, Estimates of Factor Risk Prices λH

Panel A: Size/BM Panel B: REV

H Constant Ct+H
Ct

̂
Y >10%t+H /Yt+H

̂
Y >10%t /Yt

R̄2 RMSE
RMSR Constant Ct+H

Ct

̂
Y >10%t+H /Yt+H

̂
Y >10%t /Yt

R̄2 RMSE
RMSR

4 0.39 1.47 0.55 0.18 0.65 1.25 0.66 0.12
[−0.31, 1.05] [0.89, 2.05] [0.16, 0.81] [0.07, 1.23] [0.64, 1.84] [0.19, 0.91]

8 1.11 1.24 0.85 0.11 1.46 0.82 0.84 0.08
[0.91, 1.30] [1.01, 1.47] [0.64, 0.93] [1.32, 1.61] [0.61, 1.02] [0.68, 0.96]

Panel C: Size/INV Panel D: Size/OP

H Constant Ct+H
Ct

̂
Y >10%t+H /Yt+H

̂
Y >10%t /Yt

R̄2 RMSE
RMSR Constant Ct+H

Ct

̂
Y >10%t+H /Yt+H

̂
Y >10%t /Yt

R̄2 RMSE
RMSR

4 0.70 1.21 0.42 0.19 0.34 1.41 0.71 0.13
[−0.10, 1.44] [0.58, 1.85] [0.05, 0.75] [−0.11, 0.82] [1.01, 1.78] [0.38, 0.87]

8 1.22 1.15 0.69 0.14 1.13 1.18 0.74 0.13
[0.93, 1.48] [0.82, 1.49] [0.36, 0.88] [0.88, 1.38] [0.86, 1.50] [0.39, 0.89]

Panel E: All Equities

H Constant Ct+H
Ct

̂
Y >10%t+H /Yt+H

̂
Y >10%t /Yt

R2 RMSE
RMSR

4 0.63 1.37 0.59 0.17
[0.33, 0.93] [1.10, 1.65] [0.31, 0.77]

8 1.43 1.16 0.78 0.12
[1.32, 1.53] [1.01, 1.31] [0.57, 0.87]

Table 8: Top Income Shares and the Cross Section. The table reports estimates of risk prices λH . All estimates are multiplied by 100. Bootstrap 95%

confidence intervals are reported in square brackets. The factor is Ct
Ct−1

[
̂Y >10%

t /Yt
̂Y >10%

t−1 /Yt−1

]
using the mimicking SZ data income share factor ̂Y >10%t /Yt = ς̂>10%0 + ς̂>10%1 KSt

for the top 10% of shareholder wealth distribution. The sample spans the period 1963Q3 to 2013Q4.



Appendix: For Online Publication

Data Description

CONSUMPTION

Consumption is measured as expenditures on nondurables and services, excluding shoes

and clothing. The quarterly data are seasonally adjusted at annual rates, in billions of

chain-weighted 2005 dollars. The components are chain-weighted together, and this series

is scaled up so that the sample mean matches the sample mean of total personal consump-

tion expenditures. Our source is the U.S. Department of Commerce, Bureau of Economic

Analysis.

LABOR SHARE

We use nonfarm business sector labor share throughout the paper. For nonfarm business

sector, the methodology is summarized in Gomme and Rupert (2004). Labor share is mea-

sured as labor compensation divided by value added. The labor compensation is defined as

Compensation of Employees - Government Wages and Salaries- Compensation of Employ-

ees of Nonprofit Institutions - Private Compensation (Households) - Farm Compensation of

Employees - Housing Compensation of Employees - Imputed Labor Compensation of Self-

Employed. The value added is defined as Compensation of Employees + Corporate Profits

+ Rental Income + Net Interest Income + Proprietors’Income + Indirect Taxes Less Subsi-

dies + Depreciation. The quarterly, seasonally adjusted data spans from 1963:Q3 to 2013:Q4

with index 2009=100. The source is from Bureau of Labor Statistics. The labor share index

is available at http://research.stlouisfed.org/fred2/series/PRS85006173 and the quarterly LS

level can be found from the dataset at https://www.bls.gov/lpc/special_requests/msp_dataset.zip.

QUARTERLY RETURNS

The return in quarter Q of year Y , denoted RQ,Y , is the compounded monthly return

over the three months in the quarter, m1,...,m3:

1 +RQ,Y =

(
1 +

Rm1
Q,Y

100

)(
1 +

Rm2
Q,Y

100

)(
1 +

Rm3
Q,Y

100

)
As test portfolios, we use the excess return constructed by subtracting the quarterly 3-month

Treasury bill rate from the above. The sample spans from 1963Q1 to 2013Q4.

FAMA FRENCH PRICING FACTORS
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We obtain quarterly Fama French pricing factor HML, SMB, Rm, and risk free rates from

professor French’s online data library http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-

F_Benchmark_Factors_Quarterly.zip. The sample spans 1963:Q3 to 2013:Q4.

LEVERAGE FACTOR

The broker-dealer leverage factor LevFac is constructed as follows. Broker-dealer (BD)

leverage is defined as

LeverageBDt =
Total Financial AssetsBDt

Total Financial AssetsBDt − Total LiabilitiesBDt

The leverage factor is constructed as seasonally adjusted log changes

LevFact =
[
∆ log

(
LeverageBDt

)]SA
.

This variable is available from Tyler Muir’s website over the sample used in Adrian, Etula,

and Muir (2014), which is 1968:Q1-2009:Q4.17 In this paper we use the larger sample 1963:Q3

to 2013:Q4. There are no negative observations on broker-dealer leverage in this sample. To

extend the sample to 1963:Q3 to 2013:Q4 we use the original data on the total financial

asset and liability of brokers and dealers data from flow of funds, Table L.128 available

at http://www.federalreserve.gov/apps/fof/DisplayTable.aspx?t=l.128. Adrian, Etula, and

Muir (2014) seasonally adjust ∆ log
(
LeverageBDt

)
by computing an expanding window re-

gression of ∆ log
(
LeverageBDt

)
on dummies for three of the four quarters in the year at

each date using the data up to that date. The initial series 1968Q1 uses data from previous

10 quarters in their sample and samples expand by recursively adding one observation on

the end. Thus, the residual from this regression over the first subsample window 1965:Q3-

1968:Q1 is taken as the observation for LevFac68:Q1. An observation is added to the end

and the process is repeated to obtain LevFac68:Q2, and so on. We follow the same proce-

dure (starting with the same initial window 1965:Q3-1968:Q1) to extend the sample forward

to 2013Q4. To extend backwards to 1963:Q1, we take data on ∆ log
(
LeverageBDt

)
from

1963:Q1 to 1967:Q4 and regress on dummies for three of four quarters and take the residuals

of this regression as the observations on LevFact for t =1963:Q1-1967:Q4. Using this proce-

dure, we exactly reproduce the series available on Tyler Muir’s website for the overlapping

subsample 1968:Q1 to 2009:Q4, with the exception of a few observations in the 1970s, a

17Link: http://faculty.som.yale.edu/tylermuir/LEVERAGEFACTORDATA_001.txt
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discrepancy we can’t explain. To make the observations we use identical for the overlapping

sample, we simply replace these few observations with the ones available on Tyler Muir’s

website.

SCF HOUSEHOLD STOCK MARKET WEALTH

We obtain the stock market wealth data from the triennial Survey of Consumer Finance

(SCF) conducted by Board of Governors of the Federal Reserve System from 1989-2013.

Stock Wealth includes both direct and indirect holdings of public stock. Stock wealth for

each household is calculated according to the construction in SCF, which is the sum of

following items: 1. directly-held stock. 2. stock mutual funds: full value if described as

stock mutual fund, 1/2 value of combination mutual funds. 3. IRAs/Keoghs invested in

stock: full value if mostly invested in stock, 1/2 value if split between stocks/bonds or

stocks/money market, 1/3 value if split between. 4. other managed assets w/equity interest

(annuities, trusts, MIAs): full value if mostly invested in stock, 1/2 value if split between

stocks/MFs & bonds/CDs, or "mixed/diversified," 1/3 value if "other" stocks/bonds/money

market. 5. thrift-type retirement accounts invested in stock full value if mostly invested in

stock, 1/2 value if split between stocks and interest earning assets. 6. savings accounts

classified as 529 or other accounts that may be invested in stocks.

Households with a non-zero/non-missing stock wealth by any of the above are counted

as a stockowner. All stock wealth values are in real terms adjusted to 2013 dollars.

All summary statistics (mean, median, participation rate, etc) are computed using SCF

weights. In particular, in the original data, in order to minimize the measurement error,

each household has five imputations. We follow the exact method suggested in SCF website

by computing the desired statistic separately for each implicate using the sample weight

(X42001). The final point estimate is given by the average of the estimates for the five

implicates.

SCF HOUSEHOLD INCOME

The total income is defined as the sum of three components. Y i
t = Y L

i,t + Y c
i,t + Y o

i,t. The

mimicking factors for the income shares is computed by taking the fitted values Ŷ i
t /Yt from

regressions of Y i
t /Yt on (1− LSt) to obtain quarterly observations extending over the larger

sample for which data on LSt are available. We obtain the household income data from

the triennial Survey of Consumer Finance (SCF) conducted by Board of Governors of the

Federal Reserve System from 1989-2013. All the income is adjusted relative to 2013 dollars.
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Throughout the paper, we define the labor income as

Y L
i,t ≡ wagei,t + LSt × sei,t

where wagei,t is the labor wage at time t and sei,t is the income from self-employment at

time t, and LSt is the labor share at time t

Similarly, we define the capital income

Y c
i,t ≡ sei,t + inti,t + divi,t +cgi,t + pensioni,t

where inti,t is the taxable and tax-exempt interest, div is the dividends, cg is the realized

capital gains and pensiY oni,t is the pensions and withdrawals from retirement accounts.

The other income is defined as

Y o
i,t ≡ govi,t + ssi,t + almi,t + othersi,t

where govi,t is the food stamps and other related support programs provided by government,

ssi,t is the social security, almi,t is the alimony and other support payments, othersi,t is

the miscellaneous sources of income for all members of the primary economic unit in the

household.

A Stylized Model of Asset Owners and Workers

We consider a stylized limited participation endowment economy in which wealth is con-

centrated in the hands of a few asset owners, or “shareholders,”while most households are

“workers”who finance consumption out of wages and salaries. Workers own no risky as-

set shares and consume their labor earnings. There is no risk-sharing between workers and

shareholders. A representative firm issue no new shares and buys back no shares. Therefore,

dividends are equal to output minus a wage bill:

Dt = Yt − wtNt

where wt equals the wage and Nt is aggregate labor supply. The wage bill is equal to Yt
times a time-varying labor share αt:

wtNt = αtYt => Dt = (1− αt)Yt. (A1)
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We rule out short sales in the risky asset:

θit ≥ 0.

Asset owners can trade with one another in a one-period bond with price at time t denoted

qt. The real quantity of bonds are denoted Bt+1, where Bt+1 < 0 represents a borrowing

position. The bond is in zero-net supply among asset owners. Asset owners could also have

idiosyncratic investment income ζ it. The gross financial assets of investor i at time t is defined

Ait ≡ θit (Vt +Dt) +Bi
t.

The budget constraint for the ith investor is

Ci
t +Bi

t+1qt + θit+1Vt = Ait + ζ it (A2)

= θit (Vt +Dt) +Bi
t + ζ it,

where Ci
t denotes the consumption of investor i.

A large number of identical non-rich workers, denoted by w, recieve labor income do not

participate in asset markets. The budget constraint for the representative worker is therefore

Cw = αtYt. (A3)

Equity market clearing requires ∑
i

θit = 1.

Bond market clearing requires ∑
i

Bi
t = 0.

Aggregating (A2) and (A3) and imposing market clearing and (A1) implies that aggregate

(worker plus shareholder) consumption, Ct, is equal to total output Yt. Aggregating over the

budget constraint of the shareholders shows that their consumption is equal to the capital

share times Ct:

CS
t = Dt = (1− αt)︸ ︷︷ ︸

KSt

Ct.

A representative shareholder who owns the entire corporate sector will therefore have con-

sumption equal to Ct ·KSt. This reasoning goes through as an approximation if workers own
a small fraction of the corporate sector even if there is some risk-sharing in the form of risk-

free borrowing and lending between workers and shareholders, as long as any risk-sharing

across these groups is imperfect.
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Low Frequency Risk Exposures

This Section provides a parametric example of conditions underwhich longer horizon (e.g.,

multi-quarter) risk exposures more acurately measure the true short horizon (e.g., one-

quarter) exposure in finite samples. We start with the SDF

Mt = δ

(
Cs
t

Cs
t−1

)−γt
,

or

logMt = log (δ)− γt∆ lnCs
t ,

where Cs
t stands for shareholder consumption. We suppose that the preference parameter

γt varies over time. A first-order Taylor expansion around γ̄ and ∆ lnCs
t = g implies

γt∆ lnCs
t ≈ γ̄g + ∆ lnCs

t (γt − γ̄) + γt (∆ lnCs
t − g) .

It follows that

logMt ≈ log (δ)− {γ̄g + ∆ lnCs
t (γt − γ̄) + γt (∆ lnCs

t − g)}
= log (δ)− {γ̄g + γt∆ lnCs

t − γ̄∆ lnCs
t γt + γt∆ lnCs

t − γtg}
= log (δ)− γ̄g − 2γt∆ lnCs

t + γ̄∆ lnCs
t + γtg

With γt∆ lnCs
t = log (δ)− logMt, we have

logMt = log (δ)− γ̄g − 2 (log (δ)− logmt) + γ̄∆ lnCs
t + γtg

= [γ̄g + log (δ)]− γ̄∆ lnCs
t − gγt

≈ [γ̄g + log (δ)]− γ̄
(
Cs
t

Cs
t−1
− 1

)
− gγt

Finally, using the approximation logMt ≈Mt − 1, we have

Mt ≈ [1 + γ̄g + log (δ)]− γ̄
(
Cs
t

Cs
t−1
− 1

)
− gγt

which takes the form

Mt = b0 − b1
(
Cs
t

Cs
t−1
− 1

)
− b2γt.

This is an approximately linear two factor model with factors given by Cst
Cst−1
− 1 and the

latent risk aversion variable γt.
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Let stockholder consumption be Cs
t = CtKSt, where Ct is aggregate (shareholder plus

worker) consumption. Aggregate consumption growth is very stable compared to capital

share growth in our sample. For the sake of illustration in this appendix, we assume it is

constant. Then KSt is the only source of variation in stockholder consumption growth and

the two factors are now the latent γt and KSt. We denote the true value of the parameters

with superscript “o”. Suppose the data generating processes (DGPs) of gross returns Rj,t+1

and ∆ lnKSt+1 are given by

Rj,t+1 = exp
(
βoγγt+1 + βoKS,1∆ lnKSt+1 + uj,t+1

)
= 1 + βoγγt+1 + βoKS,1

KSt+1
KSt

+ ζj,t+1 +O
(
x2
)

(
KSt+1
KSt

− µoKS
)

= ρoKS

(
KSt
KSt−1

− µoKS
)

+ εKS,t+1

γt+1 = ρoγγt + εγ,t+1

where the second line uses the approximation ln (1 + x) ≈ x, ζj,t+1 is an idiosyncratic shock,

and O (x2) represents higher-order terms ignored by a first-order approximation. Under this

DGP for returns, long-horizon returns Rj,t+H,t =
∏H

k=1Rj,t+k take the form

Rj,t+H,t = exp

(
β0γ

H∑
k=1

γt+k + βoKS,1

H∑
k=1

∆ lnKSt+k +
H∑
k=1

ζj,t+k

)

= 1 + βoγ

H∑
k=1

γt+k + βoKS,1
KSt+H
KSt

+ ζj,t+H,t +OH
(
x2
)
.

The true one-period exposure βoKS,1 coincides with the true H-period exposure β
o
KS,H .

We let ζj,t+1 be drawn from Normal distribution N (0, 1) and (εKS,t+1, εγ,t+1) be jointly

drawn from a bivariate Normal distribution, i.e,

ζj,t ∼ N (0, 1)

(εγ,t, εKS,t)
′ ∼ N (µ̄,Σ)

where

µ̄ =
(
µγ, 0

)′
Σ =

[
σ2γ σγKS

σγKS σ2KS

]
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Suppose γt is omitted from the econometrician’s set of risk factors for any reason (e.g.,

because its latent and diffi cult to measure or due to misspecification), so that capital share

risk exposures are estimated using the univariate regressions

Rj,t+H,t = a+ βKS,H
KSt+H,t
KSt

+ uj,t+1,

for various H = 1, 2, ..., where H represents the horizon over which returns and capital share

growth are measured and Rj,t+H,t denotes the gross return from the end of t to the end of

t+H. We now consider a parameteric example intended to be illustrative of the conditions

under which longer horizon risk exposures more accurately measure true risk exposures even

at short horizons. The parametrization is given in the table below.

Parameters

βγ βKS ρKS ργ σγ σKS µγ µKS σγKS

0.1 0.1 0.95 0.5 0.9 0.27 1.7 1.3 −0.1

The key aspects of this parametrization are that σγKS < 0 and ργ < ρKS. That is, the

omitted factor γt is negatively correlated with the included factor
KSt+H,t
KSt

but less persistent

than the included factor. These parameter choices are roughly in line with evidence in

updated work by Greenwald, Lettau, and Ludvigson (2014) that estimates the model above

along with the latent risk aversion parameter using the Hamilton filter. Because γt is an

omitted factor, β̂KS,H will be biased down compared to the true β
0
KS,1, but more so for H

small. The results for a sample size of T = 202 as in our data are below. The estimated

betas are reported as averages over N = 10, 000 samples for β̂KS,H

Average Estimated β̂KS,H , with N = 10, 000 Samples

H 1 4 8 12 16 True

ργ = 0.5 0.0393 0.0521 0.0614 0.0851 0.0935 0.1000

The long-horizon estimated exposures β̂KS,H for H = 8 or 12 are a better estimates of

both the true one-period capital share exposure β0KS,1 as well as the true H-period exposure,

which coincides with the one-period exposure. Under these conditions, the multi-quarter
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exposure β̂KS,H provides a better estimate in finite samples of the true one-period exposure.

The reason is that the long-horizon regressions attenuate the bias in short—horizon betas

created by omitting the less persistent but more volatile γt. This factor is a source of noise

at in the short-horizon regressions but is largely dissipated in the long-horizon relationships.

GMM Estimations

Nonlinear SDF Estimation Estimates of the benchmark nonlinear models are based on

the following N + 1 moment conditions

gT (b) = ET

[
Re
t − λ01N +

(Mt+H,t−µH)Re
t+H,t

µH

Mt+H,t − µH

]
=

[
0

0

]
(A4)

where ET denotes the sample mean in a sample with T time series observations, Re
t =[

Re
1,t...R

e
N,t

]′
denotes an N × 1 vector of excess returns, and the parameters to be estimated

are b ≡ (µH , γ, λ0, β)′ . The first N moments are the empirical counterparts to E
(
Re
jt+1

)
=

−Cov(Mt+1,Ret+1)
E(Mt+1)

, with two differences. First, the parameter λ0 (the same in each return

equation) is included to account for a “zero beta”rate if there is no true risk-free rate and

quarterly T -bills are not an accurate measure of the zero beta rate. Second, the equations to

be estimated specify models in which long-horizon H-period empirical covariances between

excess returns Re
t+H,t and the SDF Mk

t+H,t are used to explain short-horizon (quarterly)

average return premia E (Re
t ). This implements the approach that is discussed in the text

regarding low frequency risk exposures. We estimate models of the form (A4) for different

values of H.18

The equations above are estimated using a weighting matrix consisting of an identity

matrix for the first N moments, and a very large fixed weight on the last moment used

to estimate µH . By equally weighting the N Euler equation moments, we insure that the

model is forced to explain spreads in the original test assets, and not spreads in reweighted

portfolios of these.19 This is crucial for our analysis, since we seek to understand the large
18This approach and underlying model are different than that taken by Parker and Julliard (2004), which

studies covariances between short-horizon returns and future consumption growth over longer horizons. We

don’t pursue this approach here because such covariances are unlikely to capture low frequency components

in the stock return-capital share relationship, which requires relating long-horizon returns to long-horizon

SDFs.
19See Cochrane (2005) for a discussion of this issue.
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spreads on size-book/market and momentum strategies, not on other portfolios. However,

it is important to estimate the mean of the stochastic discount factor accurately. Since the

SDF is less volatile than stock returns, this requires placing a large (fixed) weight on the

last moment.

For these estimations, we report a cross sectionalR2 for the asset pricing block of moments

as a measure of how well the model explains the cross-section of quarterly returns. This

measure is defined as

R2 = 1−
V arc

(
ET
(
Re
j

)
− R̂e

j

)
V arc (ET (Re

i ))

R̂e
j = λ̂0 +

ET
[(
M̂k

t+H,t − µ̂H
)
Re
j,t+H,t

]
µ̂H

,

where V arc denotes cross-sectional variance and R̂e
j is the average return premium predicted

by the model for asset j, and “hats”denote estimated parameters.

Linear SDF Estimation The nonlinear SDF is

Mt+H,t = δH
(
Ct+H
Ct

)−γ (
KSt+H
KSt

)−γ
We take a linear approximation of the above as follows. Taking logs, we have

ln (Mt+H,t) = ln
(
δH
)
− γ ln

(
Ct+H
Ct

)
− γ ln

(
KSt+H
KSt

)
.

Using ln (1 + x) ≈ x, we have

Mt+H,t − 1 ≈ ln (Mt+H,t) = ln
(
δH
)
− γ ln

(
Ct+H
Ct

)
− γ ln

(
KSt+H
KSt

)
≈ ln

(
δH
)
− γ

(
Ct+H
Ct
− 1

)
− γ

(
KSt+H
KSt

− 1

)
Or,

Mt+H,t ≈
[
1 + ln

(
δH
)]︸ ︷︷ ︸

b0

− b1
(
Ct+H
Ct
− 1

)
− b2

(
KSt+H
KSt

− 1

)
b1 = b2 = γ.
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We use the above linearized Mt+H,t in GMM moment conditions (A4). However, since we

are using excess return data, b0 and therefore the mean of the SDF µH cannot be identified

in the linear SDF specification. Thus we calibrate δ = (0.95)
1
4 , which pins down both b0

and µH ≡ E (Mt+H,t) = b0 − b1E
(
Ct+H
Ct
− 1
)
− b2E

(
KSt+H
KSt

− 1
)
. We estimate three cases,

(i) b1 = b2 = γ (ii) b1 = 0, b2 = γ (iii) b1 = γ, b2 = 0 using the moment conditions

gT (b) = ET



Re
t − λ01N +

(Mt+H,t−µH)Re
t+H,t

E(Mt+H,t)(
Ct+H
Ct
− 1
)
− µc,H(

KSt+H
KSt

− 1
)
− µKS,H(

Ct+H
Ct
− 1
)(

KSt+H
KSt

− 1
)
− σC,KS(

Ct+H
Ct
− 1
)2
− σ2c(

KSt+H
KSt

− 1
)2
− σ2KS


= 0.

The first block of moment conditions estimate the Euler equations, while the remaining

blocks estimate the parameter elements of the covariance matrix of factors. The factor risk

prices λH can be derived from

E (Re
t ) = λ0 −

(Mt+H,t − µH)Re
t+H,t

µH

= λ0 +
Cov

(
Re
t+H,t, f

′
H

)
b

µH

= λ0 +
Cov

(
Re
t+H,t, f

′
H

)
Cov (fH , f

′
H)−1Cov (fH , f

′
H) b

µH

= λ0 +
βHCov (fH , f

′
H) b

µH
,

where µH = E (Mt+H,t) . It follows that

λH =
Cov (fH , f

′
H) b

µH
.
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The estimated Cov(fH , f ′H) is

Cov(f ′H , fH), fH =
(
Ct+H
Ct−1

− 1, KSt+H
KSt−1

− 1
)

all units are in multiple of 1000

H = 4 0.1968 −0.0164

−0.0164 0.6709

H = 8 0.5736 −0.1405

−0.1405 1.2184

.

Table A2 shows the cross-sectional explanatory power for quarterly expected returns of the

model with the restriction b1 = b2 imposed. Table A1 shows that the estimates of λC,H
are often several times smaller than those of λKS,H despite b1 = b2. From the estimates

of Cov(f ′H , fH), we see the off-diagonal elements are small, implying that the correlation

between the factors is low (equal to -0.04 for H = 4 and -0.17 for H = 8). With these

estimates, an empirical model that eliminates the eliminates consumption growth from the

SDF altogether is likely to perform about as well as one that includes it. Table A3 shows

that this is what is found: little is lost in terms of cross-sectional R2 or pricing errors by

estimating a model with b1 constrained to be zero, compared to the case where b1 = b2 in

Table A2. By contrast, dropping capital share growth from the SDF makes a big difference

to the cross-section fit, as shown in A4.

Two Pass Regression GMM Estimation Denote a generic vector of K factors for any

model as ft (where K could be one, as in the capital share SDF). This appendix gives the

general approach to our estimation of factor risk prices using two pass (time series and

cross-sectional) regressions for any linear factor model.

The moment conditions for the expected return-beta representations are

gT (b) =



E

Re
t+H,t︸ ︷︷ ︸
N×1

− a︸︷︷︸
N×1

− β︸︷︷︸
(N×K)

ft︸︷︷︸
(K×1)


E
((
Re
t+H,t − a− βf t

)
⊗ ft

)
E

 Re
t︸︷︷︸

N×1

− λ0 − β︸︷︷︸
(N×K)

λ︸︷︷︸
(K×1)




=

 00
0

 (A5)
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where a = [a1...aN ]′ and β = [β1...βN ]′ , with parameter vector b′ = [a,β, λ0,λ]′ . To obtain

OLS time-series estimates of a and β and OLS cross sectional estimates of λ0 and λ, we

choose parameters b to set the following linear combination of moments to zero

aTgT (b) = 0,

where

aT =

[
I 0

0 [1N ,β]′

]
.

The point estimates from GMM are identical to those from Fama MacBeth regressions.

To see this, in order to do OLS cross sectional regression of E (Ri,t) on β, recall that the

first order necessary condition for minimizing the sum of squared residual is

β̃
(
E (Ri,t)− β̃ [λ0,λ]

)
= 0 =⇒

[λ0,λ] =
(
β̃
′
β̃
)−1

β̃E (Ri,t)

where β̃ = [1N ,β] to account for the intercept. If we multiply the first moment conditions

with the identity matrix and the last moment condition with (K + 1)×N vector β̃
′
, we will

then have OLS time-series estimates of a and β and OLS cross sectional estimates of λ. To

estimate the parameter vector b, we set

aTgT (b) = 0

where

aT︸︷︷︸
#Params×#Moments

=


I(K+1)N︸ ︷︷ ︸

(K+1)N×(K+1)N

0︸︷︷︸
(K+1)N×N

0︸︷︷︸
(K+1)×(K+1)N

[1N ,β]′︸ ︷︷ ︸
(K+1)×N


In order to use Hansen’s formulas for standard errors, we compute the d matrix of

13



derivatives

d︸︷︷︸
(K+2)N×[(K+1)N+K+1]

=
∂gT

∂b′

=



−IN︸ ︷︷ ︸
N×N

−IN ⊗ E (f1) · · · −IN ⊗ E (fK)︸ ︷︷ ︸
N×KN

0︸︷︷︸
N×(K+1)

−IN ⊗ E (f1)
...

−IN ⊗ E (fK)︸ ︷︷ ︸
KN×N

−IN ⊗ E
(
f21
)

· · · −IN ⊗ E (fKf1)
...

. . .
...

−IN ⊗ E (f1fK) · · · −IN ⊗ E
(
f2K
)︸ ︷︷ ︸

KN×KN

0︸︷︷︸
KN×(K+1)

0︸︷︷︸
N×N

−IN ⊗ λ′1 · · · −IN ⊗ λ′K︸ ︷︷ ︸
N×KN

− [1N ,β]︸ ︷︷ ︸
N×(K+1)



We also need S matrix, the spectral density matrix at frequency zero of the moment

conditions

S =
∞∑

j=−∞
E


 Re

t+H,t − a− βf t(
Re
t+H,t − a− βf t

)
⊗ ft

Re
t − λ0 − βλ


 Re

t+H−j,t−j − a− βf t−j(
Re
t+H−j,t−j − a− βf t−j

)
⊗ ft−j

Re
t−j − λ0 − βλ


 .

Denote

ht (b) =

 Re
t+H,t − a− βf t(

Re
t+H,t − a− βf t

)
⊗ ft

Re
t − λ0 − βλ

 .
We employ a Newey west correction to the standard errors with lag L by using the

estimate

ST =
L∑

j=−L

(
L− |j|
L

)
1

T

T∑
t=1

ht

(
b̂
)
ht−j

(
b̂
)′

Asymptotic standard errors for the factor risk price estimates, λ, can beobtained using

Hansen’s formula for the sampling distribution of the parameter estimates

V ar
(
b̂
)

︸ ︷︷ ︸
[(K+1)N+K+1]×[(K+1)N+K+1]

=
1

T
(aTd)−1 aTSTa

′
T (aTd) ′−1.

Bootstrap Procedure

This section describes the bootstrap procedure for assessing the small sample distribution of

cross-sectional R2 statistics. The bootstrap consists of the following steps.
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1. For each test asset j, we estimate the time-series regressions on historical data for

each H period exposure we study:

Re
j,t+H,t = aj,H + βj,KS,H ([KSt+H ] / [KSt]) + uj,t+H,t (A6)

We obtain the full-sample estimates of the parameters of aj,H and βj,KS,H , which we denote

âj,H and β̂j,KS,H .

2. We estimate an AR(1) model for capital share growth also on historical data:

KSt+H
KSt

= aKG,H + ρH

(
KSt+H−1
KSt−1

)
+ et+H,t.

3. We estimate λ0 and λ using historical data from cross-sectional regressions

E
(
Re
j,t

)
= λ0 + λβ̂j,KS,H + εj

where Re
j,t is the quarterly excess return. From this regression we obtain the cross sectional

fitted errors {̂εj}j and historical sample estimates λ̂0 and λ̂.
4. For each test asset j, we draw randomly with replacement from blocks of the fitted

residuals from the above time-series regressions:
û1,1+H,1 · · · ûN,1+H,1 ê1+H,1

û1,2+H,2 ûN,2+H,2 ê2+H,2
...

...
...

û1,T,T−H · · · ûN,T,T−H êT,T−H

 (A7)

The mth bootstrap sample
{
u
(m)
1,t+H,t, ..., û

(m)
N,T,T−H , e

(m)
t+H,t

}H
t=1
is obtained by sampling blocks

of the raw data randomly with replacement and laying them end-to-end in the order sampled

until a new sample of observations of length equal to the historical dataset is obtained.

To choose the block length, we follow the recommendation of Hall, Horowitz, and Jing

(1995) who show that the asymptotically optimal block length for estimating a symmetrical

distribution function is l ∝ T 1/5; also see Horowitz (2003).

Next we recursively generate new data series for KSt+H
KSt

by combining the initial value

of KS1+H
K1

in our sample along with the estimates from historical data âKG,H , ρ̂H and the

new sequence of errors
{
e
(m)
t+H,t

}
t
thereby generating an mth bootstrap sample on capital
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share growth
{(

KSt+H
KSt

)(m)}
t

. We then generate new samples of observations on long-

horizon returns
{
R
(m)
j,t+H,t

}
t
from new data on

{
u
(m)
j,t+H,t

}
t
and

{(
KSt+H
KSt

)(m)}
t

and the sample

estimates âj,H and β̂j,KS,H .

5. We generatemth observation β(m)j,KS,H from regression of
{
R
e(m)
j,t+H,t

}
t
on
{(

KSt+H
KSt

)(m)}
t

and a constant.

6. We obtain an mth bootstrap sample
{
ε
(m)
j

}
j
by sampling the fitted errors {̂εj}j ran-

domly with replacement and laying them end-to-end in the order sampled until a new sample

of observations of length N equal to the historical cross-sectional sample is obtained. We

then generate new samples of observations on quarterly average excess returns
{
E
(
R
e(m)
j,t

)}
j

from new data on
{
ε
(m)
j

}
j
and

{
β
(m)
j,KS,H

}
j
and the sample estimates λ̂0 and λ̂.

7. We form the mth estimates λ(m)0 and λ(m) by regressing
{
E
(
R
e(m)
j,t

)}
j
on the mth

observation
{
β
(m)
j,KS,H

}
j
and a constant. We store the mth sample cross-sectional R

2
, R

(m)2

along with the mth values of λ(m)0 and λ(m).

8. We repeat steps 4-7 10,000 times, and report the 95% confidence intervals for
{
R
(m)2

, λ
(m)
0 , λ(m)

}
m
.

Procedure Controlling for Other Pricing Factors The bootstrap for cross-sectional

regressions in which we control for other pricing factors is modified as follows.

1. Follow steps 1-5 separately for KS and the additional pricing factor(s) f and generate

β
(m)
j,KS,H and β

(m)
j,f,H for the mth bootstrap.

2. Obtain an mth bootstrap sample
{
ε
(m)
j

}
j
from the cross-sectional regression

E
(
Re
j,t

)
= λ0 + λKSβ̂j,KS,H + λHSβj,f,H + εj.

As before, sample the fitted errors {̂εj}j randomly with replacement, laying them end-to-end
in the order sampled until a new sample of observations of length N equal to the historical

cross-sectional sample is obtained. Generate new samples of observations on quarterly aver-

age excess returns
{
E
(
R
e(m)
j,t

)}
j
from new data on

{
ε
(m)
j

}
j
and

{
β
(m)
j,KS,H , β

(m)
j,f,H

}
j
and the

sample estimates λ̂0, λ̂KS and λHS
3. Form the mth estimates λ(m)0 and λ(m) =

(
λ
(m)
KS , λ

(m)
f

)
by regressing

{
E
(
R
e(m)
j,t

)}
j

16



on the mth observation
{
β
(m)
j,KS,H , β

(m)
j,f,H

}
j
and a constant. We store the mth sample cross-

sectional R
2
, R

(m)2
.

4. We repeat steps 1-3 10,000 times, and report the 95% confidence interval of
{
R
(m)2

, λ
(m)
KS , λ

(m)
f

}
m
.
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Appendix Tables and Figures

GMM, Linear SDF with f ′H =

(
Ct+H
Ct

,
KSt+H
KSt

)
λH = −E (Mt+H,t)

−1Cov(f ′H , fH) b, b= [b1, b2]
′, b1 = b2

Equity Portfolios

Panel A: Size/BM Panel B: REV Panel C: Size/INV
H λC,H λKS,H λC,H λKS,H λC,H λKS,H

4 0.17∗∗ 0.61∗∗ 0.15∗ 0.53 0.14∗ 0.49∗

(2.22) (2.35) (1.82) (1.79) (1.68) (1.76)

8 0.15∗∗ 0.53∗∗ 0.12∗ 0.30 0.18∗ 0.44∗

(2.81) (2.97) (1.69) (1.59) (1.77) (1.92)

Panel D: Size/OP Panel E: All Equities
H λC,H λKS,H λC,H λKS,H

4 0.16∗ 0.57∗ 0.15∗ 0.55∗∗

(1.72) (1.84) (1.93) (2.02)

8 0.18 0.45 0.17∗∗ 0.43∗∗

(1.36) (1.50) (2.01) (2.19)

Other Asset Classes

Panel F: Bonds Panel G: Sovereign Bonds Panel H: Options
H λC,H λKS,H λC,H λKS,H λC,H λKS,H

4 0.13∗ 0.56∗ 0.04 0.92 0.11 1.01∗∗

(1.95) (1.74) (0.34) (1.18) (1.03) (2.25)

8 0.11∗ 0.31 0.07 0.52 1.17 0.71∗

(1.72) (1.52) (0.81) (1.07) (1.31) (1.81)

Panel I: CDS
H λC,H λKS,H

4 0.19 0.78

(1.46) (1.24)

8 0.34∗ 0.59∗

(1.74) (1.75)

Table A1: GMM estimation of linear capital share SDF. The table reports estimates of risk prices λH . All
estimates are multiplied by 100. The estimated b is from GMM estimation imposing b1 = b2. Serial correlation and

heteroskedasticity robust t-stats are reported in parenthesis. ∗∗ and ∗ indicate significance at 5 and 10 percent or
better level, respectively. The sample spans the period 1963Q3 to 2013Q4.



GMM, Linear SDF with f ′H =

(
Ct+H
Ct

,
KSt+H
KSt

)
SDF: Mt+H,t = b0 − b1

(
Ct+H
Ct
− 1
)
− b2

(
KSt+H
KSt

− 1
)
, b1 = b2 = b

Equity Portfolios

Panel A: Size/BM Panel B: REV Panel C: Size/INV
H b R2 RMSE

RMSR b R2 RMSE
RMSR b R2 RMSE

RMSR

4 7.38∗∗ 0.56 0.20 6.57∗∗ 0.64 0.14 6.16∗∗ 0.41 0.21

(2.69) (2.09) (1.97)

8 3.21∗∗ 0.83 0.12 2.24∗ 0.83 0.09 3.14∗∗ 0.69 0.15

(3.84) (1.83) (2.42)

Panel D: Size/OP Panel E: All Equities
H b R2 RMSE

RMSR b R2 RMSE
RMSR

4 6.95∗∗ 0.59 0.17 6.74∗∗ 0.53 0.19

(2.09) (2.29)

8 3.17∗ 0.62 0.17 3.04∗∗ 0.73 0.15

(1.91) (2.74)

Other Asset Classes

Panel F: Bonds Panel G: Sovereign Bonds Panel H: Options
H b R2 RMSE

RMSR b R2 RMSE
RMSR b R2 RMSE

RMSR

4 7.82∗∗ 0.76 0.23 13.37∗ 0.85 0.18 15.90∗∗ 0.97 0.14

(2.06) (1.80) (3.84)

8 2.52 0.69 0.26 4.11 0.84 0.17 5.99∗∗ 0.96 0.15

(1.64) (1.43) (2.99)

Panel I: CDS
H b R2 RMSE

RMSR

4 12.22∗ 0.33 0.75

(1.74)

8 5.32∗∗ 0.52 0.63

(2.14)

Table A2: GMM estimation of linear capital share SDF. Serial correlation and heteroskedasticity robust

t-stats are reported in parenthesis. The cross sectional R2 is defined as R2 = 1 − V arc(E(Re
i )−R̂

e
i )

V arc(E(Re
i ))

, where the fitted

value R̂ei = α̂+
E[(Mk

t+H,t−µ̂)Re
t+H,t]

µ̂ . The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
E (Rei )− R̂ei

)2
and RMSR =√

1
N

∑N
i=1 (E (Rei ))

2
. ∗∗ and ∗ indicate significance at 5 and 10 percent or better level, respectively. The sample spans

the period 1963Q3 to 2013Q4.



GMM, Linear SDF with f ′H =

(
KSt+H
KSt

)
SDF: Mt+H,t = b0 − b1

(
Ct+H
Ct
− 1
)
− b2

(
KSt+H
KSt

− 1
)
, b1 = 0

Equity Portfolios

Panel A: Size/BM Panel B: REV Panel C: Size/INV
H b2 R2 RMSE

RMSR b2 R2 RMSE
RMSR b2 R2 RMSE

RMSR

4 10.10∗∗ 0.51 0.21 8.48∗ 0.74 0.12 8.15 0.40 0.21

(1.99) (1.82) (1.62)

8 4.90∗∗ 0.81 0.13 2.65 0.88 0.08 3.94∗ 0.62 0.17

(2.96) (1.59) (1.86)

Panel D: Size/OP Panel E: All Equities
H b2 R2 RMSE

RMSR b2 R2 RMSE
RMSR

4 9.47∗ 0.77 0.13 9.15∗ 0.56 0.19

(1.89) (1.89)

8 4.17 0.77 0.13 4.12∗∗ 0.73 0.15

(1.53) (2.05)

Other Asset Classes

Panel F: Bonds Panel G: Sovereign Bonds Panel H: Options
H b2 R2 RMSE

RMSR b2 R2 RMSE
RMSR b2 R2 RMSE

RMSR

4 12.32∗ 0.88 0.17 19.41 0.86 0.17 29.16∗∗ 0.95 0.18

(1.81) (1.46) (2.74)

8 4.03∗ 0.86 0.17 5.59∗ 0.58 0.27 12.04∗∗ 0.81 0.35

(1.86) (1.78) (2.11)

Panel I: CDS
H b2 R2 RMSE

RMSR

4 18.62∗ 0.82 0.38

(1.92)

8 7.15∗∗ 0.94 0.23

(2.53)

Table A3: GMM estimation of linear capital share SDF. Serial correlation and heteroskedasticity robust

t-stats are reported in parenthesis. The cross sectional R2 is defined as R2 = 1 − V arc(E(Re
i )−R̂

e
i )

V arc(E(Re
i ))

, where the fitted

value R̂ei = α̂+
E[(Mk

t+H,t−µ̂)Re
t+H,t]

µ̂ . The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
E (Rei )− R̂ei

)2
and RMSR =√

1
N

∑N
i=1 (E (Rei ))

2
. ∗∗ and ∗ indicate significance at 5 and 10 percent or better level, respectively. The sample spans

the period 1963Q3 to 2013Q4.



GMM, Linear SDF with f ′H =

(
Ct+H
Ct

)
SDF: Mt+H,t = b0 − b1

(
Ct+H
Ct
− 1
)
− b2

(
KSt+H
KSt

− 1
)
, b2 = 0

Equity Portfolios

Panel A: Size/BM Panel B: REV Panel C: Size/INV
H b1 R2 RMSE

RMSR b1 R2 RMSE
RMSR b1 R2 RMSE

RMSR

4 15.11∗∗ 0.30 0.25 −4.70 0.00 0.23 10.46∗ 0.13 0.25

(2.66) (−0.35) (1.92)

8 4.53∗∗ 0.33 0.25 2.19 0.01 0.22 2.93 0.11 0.26

(2.21) (0.88) (1.47)

Panel D: Size/OP Panel E: All Equities
H b1 R2 RMSE

RMSR b1 R2 RMSE
RMSR

4 −8.87 0.06 0.26 7.95 0.07 0.27

(−0.66) (1.64)

8 −1.41 0.02 0.28 2.69∗ 0.10 0.27

(−0.49) (1.69)

Other Asset Classes

Panel F: Bonds Panel G: Sovereign Bonds Panel H: Options
H R2 RMSE

RMSR b1 R2 RMSE
RMSR b1 R2 RMSE

RMSR

4 10.52 0.17 0.43 7.04 0.05 0.44 34.40∗∗ 0.99 0.09

(1.25) (0.69) (2.48)

8 2.09 0.07 0.45 2.69 0.20 0.37 10.73∗ 0.99 0.08

(0.92) (0.78) (1.91)

Panel I: CDS
H b1 R2 RMSE

RMSR

4 −47.05 0.45 0.68

(−0.89)

8 −10.38 0.28 0.76

(−1.48)

Table A4: GMM estimation of linear capital share SDF. Serial correlation and heteroskedasticity robust

t-stats are reported in parenthesis. The cross sectional R2 is defined as R2 = 1 − V arc(E(Re
i )−R̂

e
i )

V arc(E(Re
i ))

, where the fitted

value R̂ei = α̂+
E[(Mk

t+H,t−µ̂)Re
t+H,t]

µ̂ . The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
E (Rei )− R̂ei

)2
and RMSR =√

1
N

∑N
i=1 (E (Rei ))

2
. ∗∗ and ∗ indicate significance at 5 and 10 percent or better level, respectively. The sample spans

the period 1963Q3 to 2013Q4.



GMM, Capital Share SDF

λH= −E (Mt+H,t)
−1
Cov (fH , f

′
H)b, b = [b1, b2]

′, b1 = 0

Equity Portfolios

Panel A: Size/BM Panel B: REV Panel C: Size/INV
H λKS,H λKS,H λKS,H

4 0.74∗∗ 0.62∗ 0.59

(2.00) (1.77) (1.61)

8 0.69∗∗ 0.37 0.55∗

(2.82) (1.52) (1.82)

Panel D: Size/OP Panel E: All Equities
H λKS,H λKS,H

4 0.69∗ 0.67∗

(1.90) (1.90)

8 0.58 0.57∗∗

(1.51) (2.00)

Other Asset Classes

Panel F: Bonds Panel G: Sovereign Bonds Panel H: Options
H λKS,H λKS,H λKS,H

4 0.81∗ 1.50 1.87∗∗

(1.87) (1.36) (2.41)

8 0.54∗ 0.99∗ 1.72∗

(1.95) (1.95) (1.66)

Panel I: CDS
H λKS,H

4 1.24∗

(1.81)

8 0.83∗∗

(2.93)

Table A5: GMM estimation of linear capital share SDF. The table reports estimates of risk prices λH . All estimates are multiplied by 100. The estimated
b is from GMM estimation imposing b1 = 0. Serial correlation and heteroskedasticity robust t-stats are reported in parenthesis. ∗∗ and ∗ indicate significance at 5
and 10 percent or better level, respectively. The sample spans the period 1963Q3 to 2013Q4.



GMM, Nonlinear SDF with f ′H =

(
Ct+H
Ct

,
KSt+H
KSt

)
SDF: Mt+H,t = δH

(
Ct+H
Ct

KSt+H
KSt

)−γ
Equity Portfolios

Panel A: Size/BM Panel B: REV Panel C: Size/INV
H λ0 γ R2 RMSE

RMSR λ0 γ R2 RMSE
RMSR λ0 γ R2 RMSE

RMSR

4 −0.07 10.41∗∗ 0.56 0.20 0.42 8.14 0.57 0.15 0.42 8.13 0.40 0.21

(−0.07) (2.19) (0.36) (1.54) (0.39) (1.54)

8 0.66 4.46∗∗ 0.84 0.12 1.14 2.93 0.84 0.09 0.67 4.54∗∗ 0.71 0.15

(0.64) (3.27) (1.30) (1.59) (0.70) (2.18)

Panel D: Size/OP Panel E: All Equities
H λ0 γ R2 RMSE

RMSR λ0 γ R2 RMSE
RMSR

4 −0.13 10.16∗ 0.63 0.16 0.14 9.28∗ 0.53 0.19

(−0.12) (1.73) (0.14) (1.85)

8 0.63 4.48 0.62 0.17 0.75 4.23∗∗ 0.74 0.15

(0.63) (1.49) (0.82) (2.46)

Other Asset Classes

Panel F: Bonds Panel G: Sovereign Bonds Panel H: Options
H λ0 γ R2 RMSE

RMSR λ0 γ R2 RMSE
RMSR λ0 γ R2 RMSE

RMSR

4 0.38 9.31∗ 0.76 0.23 0.20 16.41 0.88 0.16 −1.56 23.70∗∗ 0.96 0.17

(1.63) (1.75) (0.27) (1.49) (−1.46) (2.30)

8 0.25 3.10 0.68 0.26 0.41 5.45 0.83 0.17 −0.29 9.02∗∗ 0.96 0.16

(1.20) (1.48) (0.75) (1.18) (−0.23) (2.15)

Panel I: CDS
H λ0 γ R2 RMSE

RMSR

4 −0.18∗∗ 14.34 0.30 0.76

(−2.48) (1.27)

8 −0.30∗∗ 7.44 0.49 0.64

(−3.70) (1.59)

Table A6: Nonlinear GMM estimation of capital share SDF. Notes: Serial correlation and heteroskedasticity robust t-stats are reported in parenthesis.

The cross sectional R2 is defined as R2 = 1 − V arc(E(Re
i )−R̂

e
i )

V arc(E(Re
i ))

, where the fitted value R̂ei = α̂ +
E[(Mk

t+H,t−µ̂)Re
t+H,t]

µ̂ . The pricing error is defined as RMSE =√
1
N

∑N
i=1

(
E (Rei )− R̂ei

)2
and RMSR =

√
1
N

∑N
i=1 (E (Rei ))

2
. ∗∗ and ∗ indicate significance at 5 and 10 percent or better level, respectively. λ0 is reported in unit

of 100. The sample spans the period 1963Q3 to 2013Q4.


