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1 Introduction

Contemporary asset pricing theory remains in search of an empirically relevant stochastic

discount factor (SDF) linked to the marginal utility of investors. A mainstay of the literature

assumes that assets are priced as if there were a representative agent, leading to an SDF

based on the marginal rate of substitution over average household consumption. But a large

number of real-world frictions, individual-specific risks, and/or possible behavioral factors

could in theory lead to departures from the conditions under which such a pricing kernel is

an appropriate measure of systematic risk. These departures represent potentially important

sources of heterogeneity that can lead some households to own no stocks and to differences

within stockholding households as to which stocks are held.

One place where heterogeneity is clearly evident is in the distribution of stock market

wealth. Many households own no equity at all, but even among those who do, most own very

little. Although almost half of households report owning stocks either directly or indirectly

in 2013, the top 5% of the stock wealth distribution owns 61% of the stock market value.1

Thus the wealth-weighted stock market participation rate is much lower than 50%, equal

to 20% in 2013. If shareholders located in different percentiles of the wealth distribution

have heterogeneous incomes, information, beliefs, or preferences, they may pursue different

investment strategies, thereby creating an additional layer of heterogeneity important for the

pricing of stocks. A central question that to-date has no definitive empirical answer is how

quantitatively important such heterogeneity might be for explaining key patterns in U.S.

stock pricing, such as the persistently large return premia on well known portfolio strategies

like value and momentum.

The desire to jointly explain momentum and value premia within a single empirical

model is a long-standing objective of finance research. This objective presents a special

challenge for asset pricing theories because both strategies produce high average returns yet

are negatively correlated (Asness, Moskowitz, and Pedersen (2013)). As a consequence, the

empirical models that have so far worked best to explain the data rely on separate priced

factors for momentum and value (Fama and French (1996), Asness, Moskowitz, and Pedersen

1Source: Survey of Consumer Finances (SCF).
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(2013)). But this approach creates a new puzzle, since it is unclear what economic model

of investor utility would imply separate risk factors for different high return strategies. The

essential unanswered question is, why are the two strategies negatively correlated?

The empirical model we study implies that a large part of the negative correlation in U.S.

data is driven by opposite signed exposure to low frequency capital share risk. This key find-

ing is displayed in Figure 1 (discussed further below), which plots average quarterly returns

on size-book/market portfolios (top panel) and momentum portfolios (bottom panel) against

estimated capital share betas for exposures over a horizon of H = 8 quarters. Because of this

strong opposite signed exposure, models with capital share risk can simultaneously explain

economically large magnitudes of the return premia on momentum and size-book/market

portfolios without requiring separate factors to do so. From the perspective of canonical

asset pricing theories, this finding presents its own puzzle. Why is the capital share an

important risk factor, and why are value and momentum premia inversely exposed to it?

This paper shows that opposite signed exposure of value and momentum to capital share

risk can be explained if shareholders located in different percentiles of the stock wealth dis-

tribution have marginal utilities that vary inversely with the capital share and differentially

pursue value and momentum strategies. In previous work studying the aggregate stock mar-

ket, Lettau and Ludvigson (2013) (LL) and Greenwald, Lettau, and Ludvigson (2013) (GLL)

estimate an important role for a persistent factors-share shock that shifts labor income with-

out moving aggregate consumption. Given that consumption is financed out of labor and

capital income, such a shock must eventually move capital income opposite to labor income.

This paper turns to the cross-section of equity returns and considers the implications of such

capital share risk for shareholders located at different points in the wealth distribution.

To understand why shareholders located in different percentiles of the stock wealth dis-

tribution are likely to have marginal utilities that vary inversely with the capital share, ob-

serve that—because wealth is so concentrated—most working-age households (including most

shareholders) have relatively small amounts of capital income and finance most of their con-

sumption out of labor earnings. Fixing aggregate consumption, these shareholders are, on

average, likely to benefit from an increase in the labor share. By contrast, the wealthiest

households earn large amounts of income from investments and are likely to be made worse
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off by an increase in the labor share (conversely better off by an increase in the capital

share). Consistent with this, we find that an increase in the national capital share is posi-

tively correlated with the income share of the top 10% of stockholders in the SCF, while it is

strongly negatively correlated with the income share of the bottom 90%. This implies that

an increase in the capital share is itself very unevenly distributed, with all the gains going

to the top 10% at the expense of the bottom 90%. Opposite signed exposure of value and

momentum to the capital share is really a phenomenon of opposite signed exposure to the

income shares of these two groups of stockholders.

To investigate whether risks associated with the capital share are empirically related to

equity premia in cross sections of stock returns, we proceed in three steps.

First, we investigate a model of the SDF in which the systematic cash flow risk over

which investors derive utility depends directly on the capital share. This capital share

SDF is derived from a power utility function over “capital consumption,”defined to equal

aggregate (average across households) consumption Ct, times the capital share raised to

a power χ. The standard Lucas-Breeden (Lucas (1978) and Breeden (1979)) representative

agent consumption capital asset pricing model (CCAPM) is a special case when χ = 0. When

non-zero, the sign of χ governs the sign of an asset’s exposure to capital share risk. In an

approximate linearized version of this SDF there are two risk factors: aggregate consumption

growth and capital share growth, and the sign on the price of capital share risk is governed

by the sign of χ. Since a risky asset is defined to be one that is positively correlated with

an investor’s consumption growth (negatively correlated with marginal utility), estimates of

χ should be positive when this model is confronted with cross-sections of returns primarily

held by the top 10% of shareholders who are likely to benefit from an increase in the capital

share, and negative when estimated on cross-sections held by the bottom 90% who are likely

to suffer. Observe that if the representative agent specification were a good description of

the data, χ = 0 and the share of national income accruing to capital should not be priced

positively or negatively.

Second, we pay close attention to the horizon over which movements in the capital share

may matter for return premia, with special focus on lower frequency fluctuations. The focus

on lower frequencies is motivated by evidence in LL and GLL indicating the presence of a slow
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moving factors-share shock that affects the aggregate stock market over long horizons. These

slow moving, low frequency shocks can nevertheless have large effects on unconditional ex-

pected return premia measured over short horizons. In order to isolate potentially important

low frequency components in capital share risk, we follow the approach of Bandi, Perron,

Tamoni, and Tebaldi (2014) and Bandi and Tamoni (2014) and estimate covariances be-

tween long-horizon returns Rt+H,t and long-horizon risk factors. These lower frequency risk

exposures can then be related to cross-sections of short-horizon average return premia.

The third step in our investigation is to explicitly relate movements in the aggregate

capital share to movements in the income shares of households located in different percentiles

of the stock wealth distribution. In analogy to the capital share SDF, we study percentile-

specific SDF proxies based on the marginal rate of substitution from a power utility function

over aggregate consumption times a share θit, where θ
i
t equals the ith percentile’s share of

national income raised to a power χi ≥ 0. Because observations on income shares across

the wealth distribution are available less frequently and over a shorter time period than

are capital share data, we use a regression along with quarterly observations on the capital

share to generate a longer time-series of income share “mimicking factors”that are used to

construct values for θit and proxies for percentile-specific SDFs.

Our main findings are summarized as follows. First, we show that fluctuations in the

capital share matter a lot for explaining cross-sections of quarterly average return premia,

especially as we isolate lower frequency exposures over horizons H from 8 to 12 quarters.

Specifications using the capital share SDF explain up to 85% of the variation in average

returns on size-book/market sorted portfolios and up to 95% of the variation on momentum

portfolios. We also consider portfolios sorted on long-run reversal and find that models with

capital share risk explain up to 90% of the quarterly return premia on these portfolios. The

estimations strongly favor positive values for χ when pricing size-book/market portfolios and

long-run reversal portfolios, and negative values when pricing momentum portfolios, indicat-

ing the presence of opposite signed exposure of value and momentum to capital share risk.

Similarly, the risk prices for capital share exposure in linearized models are strongly posi-

tive when pricing size-book/market portfolios and long-run reversal portfolios, but strongly

negative when pricing momentum portfolios.
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Given our evidence on how the capital share varies with income shares, these results sug-

gest that value investors are largely located in the top 10% of the stock wealth distribution,

while momentum investors are more likely to be located in the bottom 90%. Estimations

based on the percentile-specific SDFs are consistent with this hypothesis. When we allow

the SDF to be a weighted average of the top 10 and the bottom 90th percentiles’SDFs, the

estimations overwhelmingly place virtually all the weight on the top 10% for pricing size-

book/market portfolios (and long-run reversal portfolios), while they put the vast majority

of weight on the bottom 90% for pricing momentum portfolios. This result is inconsistent

with a world in which heterogeneous agents invest in the same assets. In such a model, the

marginal rate of substitution of any household long in the priced assets, or any weighted av-

erage of these, should be a valid SDF. These results suggest instead that shareholders located

in different percentiles of the wealth distribution largely pursue different trading strategies.

The SDFs we study depend both on aggregate consumption growth and on growth in the

capital share. To distinguish their roles, we estimate expected return-beta representations

using approximate linear SDFs where these two variables are separate priced risk factors.

Doing so, we confirm the findings of a growing literature showing that exposure to lower

frequency aggregate consumption growth has greater explanatory power for cross-sections

of average returns than do models based on short-run exposure.2 But we find that these

lower frequency components of aggregate consumption growth are simply proxying for lower

frequency capital share risk that appears to be the true driver of return premia. Capital

share risk exposure explains a much larger fraction of every set of test portfolios we study

and long-horizon consumption betas lose their explanatory power once the corresponding

long-horizon capital share beta is included.

Finally, we compare the performance of the long-horizon capital share betas for explain-

2See for example Bansal, Dittmar, and Kiku (2009), Hansen, Heaton, and Li (2008), Dew-Becker and

Giglio (2013), and Bandi and Tamoni (2014). These models all implicitly or explicitly explain short-run

returns with covariances between long-horizon aggregate consumption growth and either short or long-horizon

returns or dividend growth. Parker and Julliard (2004) study a slightly different model in which short-run

returns are driven by covariances between short-run returns and future consumption growth, motivated by

a sluggish adjustment story for consumption. We discuss this paper further below.
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ing value and momentum portfolios with several other models: the Fama-French three-factor

model for pricing size-book/market portfolios (Fama and French (1993)), the Fama-French

four-factor model for pricing momentum portfolios (Fama and French (1996)), and the

intermediary-based SDF model of Adrian, Etula, and Muir (2014) which uses the single

leverage factor LevFact for pricing both sets of returns. Models with low frequency fluctua-

tions in the capital share as the single source of aggregate risk generate lower pricing errors

than these other models and explain a larger fraction of the variation in average returns on

both sets of portfolios. In a horse race where the capital share beta is included alongside

betas for these other factors, the latter loose their statistical significance while the capital

share beta remains strongly significant.

This paper presents a model of heterogeneity in capital share risk exposure and investment

strategies that is consistent with large premia on value and momentum strategies, as well as

their negative correlation. We also find supportive evidence for differential capital share risk

exposure based on movements in income shares. Our data do not furnish direct evidence

on the specific investment strategies taken by individual households located at different

places in the wealth distribution, or an empirical explanation for why they might differ (the

conclusion discusses one simple story). Providing this type of direct evidence requires both

an extensive micro-level study that is beyond the scope of this paper and, more crucially, far

more detailed information on individual households’investments and returns over time than

what is currently publicly available for U.S. investors. However, a burgeoning literature on

retail investment using richer datasets from other countries provides some evidence, which

we discuss below.

The rest of this paper is organized as follows. The next section discusses related lit-

erature not discussed above. Section 3 discusses data and preliminary analyses. Section 4

describes the econometric models to be estimated and Section 5 discusses the results of these

estimations. Section 6 concludes.
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2 Related Literature

Partial evidence on the implications of our model can be found in a growing literature on

retail investing that studies style tilts in portfolio decisions. As mentioned, U.S. datasets

are typically not rich enough to provide a complete analysis of a household’s investment

decisions over time. One approach is to instead study trades from proprietary brokerage

service account data. But brokerage service accounts from a single service provider may

not be representative of the entire portfolio of an investor, if that investor has multiple ac-

counts, or untracked mutual fund, IRA, or 401K investments. They are also unlikely to

be representative samples of U.S. investors as a whole. There are a very small number of

other developed countries, however, for which the available data offer a more comprehen-

sive picture of investors’wealth over time. Betermier, Calvet, and Sodini (2014) examine

Swedish data and find that the value tilt is strongly increasing in both financial and real

estate wealth, consistent with the model considered here. But the annual frequency of these

data makes it diffi cult to consider higher-frequency trading patterns such as momentum.

Campbell, Ramadorai, and Ranish (2014) study a higher frequency dataset from India that

has information on both trades and holdings. This dataset sidesteps some of the problems

with U.S. brokerage service account data because they are able to observe direct equity hold-

ings of a single household over time for a large number of stock market participants whose

trades are tracked by India’s largest securities depository. They find that the log of account

value correlates negatively with value and positively with momentum tilts. An important

feature of these findings is that India is an emerging market economy whose investor and

capitalization rates have grown quickly in recent years, suggesting that investors are less

experienced than those in developed economies with mature markets. They are also much

less wealthy, as indicated by the small average account sizes in these data. Thus the Indian

households studied by Campbell, Ramadorai, and Ranish (2014) are arguably more compa-

rable to those in the bottom 90% of the U.S. wealth distribution rather than the top 10%,

more akin to a U.S. investor who is a recent first-time stockowner with little initial wealth

for whom investing is a relatively new experience. If new investors with low wealth are, for

whatever reason, more likely to tilt toward momentum, it is reasonable to expect that they
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increasingly do so over a range as stockholdings increase from zero.

Trend-following is a phenomenon that is likely to be closely related to active momentum

tilting, since both involve investing in the most popular stocks that have recently appre-

ciated. Greenwood and Nagel (2009) find that younger mutual fund managers are more

likely to engage in trend-chasing behavior in their investments than are older managers. By

contrast, value tilting requires a contrarian view, and Betermier, Calvet, and Sodini (2014)

find that value tilting investors are not only wealthier, they are older than non-value-tilting

investors. These patterns are consistent with the hypothesis and evidence of this paper be-

cause investors in the top 10% of the SCF stock wealth distribution are substantially older

than those in the bottom 90%. In 2013, the median age of a stockholder in the bottom 90%

was 50 while it was 61 for the top 10%.

We build on a previous literature emphasizing the importance for stock pricing of limited

stock market participation and heterogeneity (Mankiw (1986), Constantinides and Duffi e

(1996), Mankiw and Zeldes (1991), Vissing-Jorgensen (2002), Ait-Sahalia, Parker, and Yogo

(2004), Guvenen (2009), and Malloy, Moskowitz, and Vissing-Jorgensen (2009)). The form

of heterogeneity and limited participation considered in this paper is, differently from this

literature, specifically concerned with shareholders located in different percentiles of the

wealth distribution who are differentially exposed to capital share risk and who, due to

heterogeneous risks, information, beliefs, or preferences, may pursue different investment

strategies. These factors create an additional layer of heterogeneity that could be important

for the pricing of stocks. Just as we cannot expect the marginal rates of substitution of

non-stockholders to explain stock returns, there is no reason to expect the marginal rates of

substitution of a subset of shareholders to price cross-sections of stocks they don’t invest in.

Part of our results have a flavor similar to those of Malloy, Moskowitz, and Vissing-

Jorgensen (2009). These authors show that, for shareholders as a whole, low-frequency

exposure to shareholder consumption growth explains the cross-section of average returns

on size-book/market portfolios better than low frequency exposure to aggregate consump-

tion growth. Their study does not investigate momentum returns. We add to their insights

by showing that low frequency exposure to capital share risk (an important determinant of

inequality between shareholders) drives out long horizon aggregate consumption for explain-
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ing both sets of portfolio return premia, and in doing so helps to explain why value and

momentum strategies are negatively correlated.

We view our findings as indirectly related to the intermediary-based asset pricing liter-

ature. The time-varying balance sheet capacity of intermediaries that drives risk premia in

these models is fundamentally determined by the households that supply them with capital

and so must ultimately be linked back to their marginal utilities. In this sense, our findings

are complementary to and consistent with the implicit interpretation in Adrian, Etula, and

Muir (2014) of LevFact as a summary risk factor that proxies for the marginal utilities of

diverse investors who are all likely to trade through intermediaries. Although LevFact does

not work as well as existing multi-factor models for pricing both momentum and value stocks

separately, we find that LevFact has some ability to explain both strategies because it picks

up at least part of the opposite signed capital share exposure we document here. Additional

results (not reported) show that the betas for LevFact are positively cross-sectionally corre-

lated with the capital share betas for size-book/market portfolios, but negatively correlated

for momentum portfolios. More work is needed to understand the precise linkages between

intermediary balance sheets and the marginal utilities of shareholders.

3 Data and Preliminary Analysis

This section describes our data. A complete description of the data and our sources is

provided in the Appendix. Our sample is quarterly and unless otherwise noted spans the

period 1963:Q1 to 2013:Q4 before loosing observations to computing long horizon relations

as described below.

We use return data available from Kenneth French’s Dartmouth website on 25 size-

book/market sorted portfolios, 10 momentum portfolios, and 10 long-run reversal portfolios.3

Aggregate consumption is measured as real, per capita expenditures on nondurables and

services, excluding shoes and clothing from the Bureau of Labor Statistics (BLS).

We denote the labor share of national income as LS, and the capital share as 1 − LS.

Our benchmark measure of LSt is the labor share of the nonfarm business sector as compiled

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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by the BLS, measured on a quarterly basis. Results (available upon request) show that our

findings are all very similar if we use the BLS nonfinancial labor share measure. There are

well known diffi culties with accurately measuring the labor share. Perhaps most notable is

the diffi culty with separating income of sole proprietors into components attributable to labor

and capital inputs. But Karabarbounis and Neiman (2013) report trends for the labor share

within the corporate sector that are similar to those of the BLS nonfarm measure (which

makes specific assumptions on how proprietors’income is proportioned). Indirect taxes and

subsidies can also create a wedge between the labor share and the capital share, but Gomme

and Rupert (2004) find that these do not vary much over time, so that movements in the

labor share are still strongly (inversely) correlated with movements in the capital share. In

short, the main diffi culties with measuring the labor share primarily pertain to getting the

level right. Our results rely on changes in the labor share, and we maintain the hypothesis

that they are likely to be informative about opposite signed changes in the capital share.

For brevity, we refer to 1 − LSt, where LSt is the BLS nonfarm labor share, as the capital

share and study changes in this measure as it relates to U.S. stock returns.

Figure 2 plots the capital share over our sample. Over the last 20 years, this variable has

become quite volatile, and is at a post-war high at the sample’s end.

In constructing the percentile-based SDFs, we use triennial survey data from the SCF,

the best source of micro-level data on household-level assets and liabilities for the United

States. The SCF also provides information on income. The empirical literature on limited

stock market participation and heterogeneity has instead relied on the Consumer Expendi-

ture Survey (CEX). This survey has the advantage over the SCF of asking directly about

consumer expenditures. It also has a limited panel element. As a measure of assets and

liabilities though, it is considered far less reliable than the SCF and is unlikely to adequately

measure the assets, income, or consumption of the wealthiest shareholders.4 Since our analy-

sis considers heterogeneity related to the skewness of the wealth distribution, we require the

4The CEX surveys households in five consecutive quarters but asks about assets and liabilities only in

the fifth quarter. CEX answers to asset questions are often missing for more than half of the sample and

much of the survey is top-coded because the CEX gives the option of answering questions on asset holdings

by reporting either a top-coded range or a value.
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best available information on assets. The SCF is uniquely suited to studying the wealth

distribution because it includes a sample intended to measure the wealthiest households,

identified on the basis of tax returns. It also has a standard random sample of US house-

holds. The SCF provides weights for combining the two samples. The 2013 survey is based

on 6015 households. We start our analysis with the 1989 survey and use the survey weights

to combine the two samples in every year.5

We begin with a preliminary analysis of data from the SCF on the distribution of wealth

and earnings. Table 1 shows the distribution of stock wealth across households, conditional

on the household being a stockowner. Stock wealth is highly concentrated. The top 5% owns

61% of the stock market and the top 10% owns 74%. The top 1% owns 33%.

Table 2 reports the “raw”stock market participation rate, rpr, across years, and also a

“wealth-weighted”participation rate. The raw participation rate is the fraction of households

in the SCF who report owning stocks, directly or indirectly. The wealth-weighted rate takes

into account the concentration of wealth. To compute the wealth-weighted rate, we divide

the survey population into three groups: the top 5% of the stock wealth distribution, the rest

of the stockowning households representing (rpr − .05) % of the population, and the residual

who own no stocks and make up (1− rpr) % of the population. In 2013, stockholders outside

the top 5% are 46% of households, and those who hold no stocks are 51% of households.

The wealth-weighted participation rate is then 5% · w5% + (rpr − 0.05) % ·
(
1− w5%

)
+

(1− rpr) % · 0, where w5% is the fraction of wealth owned by the top 5%. The tables shows

that the raw participation rate has steadily increased over time, rising from 32% in 1989

to 49% in 2013. But the wealth-weighted rate is much lower than 49% in 2013 (equal to

20%) and has risen less over time. This shows that steady increases stock market ownership

rates do not necessarily correspond to quantitatively meaningful changes in stock market

ownership patterns.

Table 3 shows the relation between income shares of households located in different

percentiles of the stock wealth distribution and changes in the national capital share. Income

Y i
t (from all sources, including wages, investment income and other) for percentile group i

5There are two earlier surveys, but the survey in 1986 is a condensed reinterview of respondents in the

1983 survey.
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is divided by aggregate income for the SCF population, Yt, and regressed on (1−LSt) using

the triennial data from the SCF.6 The left panel of the table reports regression results for all

households, and the right panel reports results for stockowners. Note that the information in

both panels is potentially relevant for our analysis. The wealthiest shareholders are likely to

be affected by a movement in the labor share because corporations pay all of their employees

more or less, not just the minority who own stocks. The regression results on the left panel

speak directly to this question and show that movements in the capital share are strongly

positively related to the income shares of the top 10% and strongly negatively related to

the income share of the bottom 90% of the stock wealth distribution. Indeed, this single

variable explains 43% of the variation in the income shares of the top group, and about

the same fraction for the bottom group. This is especially impressive given that some of

the variation in income shares is invariably attributable to survey measurement error that

would create volatility in the estimated residual. The right panel shows that, conditioning

on the shareholder population, the top 10% still benefits and the bottom 90% still looses.

The estimated coeffi cients are similar, but the fractions explained are smaller and closer to

30% for these groups. This is not surprising because focusing on just shareholders masks

a potentially large part of gains to the wealthiest from a decline in the labor share that

arises from the ability to pay all workers (including nonshareholders) less, while households

in the bottom group who own stocks are at least partly protected from such a decline simply

by owning stocks. The estimates in the right panel are less precise, (although this is not

true for the subgroup in the 90-94.99 percentile), but this is also not surprising because the

sample excluding non-stockholding households is much smaller. It is striking, however, that

the estimated coeffi cients on the capital share are not dissimilar across the two panels for

the top 10 and bottom 90 percentile groups.

6Observations are available quarterly for LSt so we use the average of the quarterly observations on

(1− LSt) over the year corresponding to the year for which the income share observation in the SCF is

available.
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4 Econometric Models

Our main analysis is based on nonlinear Generalized Method of Moments (GMM Hansen

(1982)) estimation of cash flow models that are power utility functions over a measure of

systematic cash flow risk. These models imply familiar Euler equations taking the form

E
[
Mt+1R

e
t+1

]
= 0, (1)

or equivalently

E
(
Re
t+1

)
=
−Cov

(
Mt+1, R

e
t+1

)
E (Mt+1)

, (2)

where Mt+1 is a candidate SDF and Re
t+1 is a gross excess return on an asset held by the

investor with marginal rate of substitution M .

Throughout the paper, we denote the gross one-period return on asset j from the end of

t− 1 to the end of t as Rj,t, and denote the gross risk-free rate Rf,t. We use the three month

Treasury rate (T -bill) rate to proxy for a risk-free rate, although in the estimations below we

allow for an additional zero-beta rate parameter in case the T -bill is not a true risk-free rate.

The gross excess return is denoted Re
j,t ≡ Rj,t − Rf,t. The gross multiperiod (long-horizon)

return from the end of t to the end of t+H is denoted Rj,t+H,t:

Rj,t+H,t ≡
H∏
h=0

Rj,t+h,

and the gross H-period excess return

Re
j,t+H,t ≡

H∏
h=0

Rj,t+h −
H∏
h=0

Rf,t+h.

Our approach has three steps. First, we investigate a model of the SDF in which the

systematic cash flow risk over which investors derive utility depends directly on the capital

share. In this model, the cash flow “capital consumption”C k
t is equal to aggregate (average

across households) consumption, Ct, times the capital share raised to a power χ: C k
t ≡

Ct (1− LSt)χ. The capital share SDF is based on a standard power utility function over C k
t ,

i.e., Mk
t+1 = β

(
Ckt+1
Ckt

)−γ
, where β and γ are both nonnegative and represent a subjective

time-discount factor and a relative risk aversion parameters, respectively. We investigate
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more general long-horizon (H-period) versions of the SDF, as discussed below:

Mk
t+H,t = βH

[(
Ct+H
Ct

)−γ (
1− LSt+H

1− LSt

)−γχ]
. (3)

When H = 1, Mk
t+H,t = Mk

t+1.

Note that, fixing Ct+H/Ct, capital consumption growth Ck
t+H/C

k
t is either an increasing

or decreasing function of the growth in the capital share (1− LSt+H) / (1− LSt), depending

on the sign of χ. Since a risky asset is defined to be one that is positively correlated with

Ck
t+H/C

k
t (negatively correlated with M

k
t+H,t), estimates of χ from Euler equations pricing

cross sections of stock returns should be positive when those stocks are held shareholders

who benefit from an increase in the capital share, and negative when those stocks are held

by households who are made worse off. Based on evidence presented above, we argue that

the former are likely to be found in the top 10% of shareholders, while the latter are likely

to be in the bottom 90% of the stock wealth distribution.

The capital share SDF depends both on consumption growth and on growth in the

capital share. To distinguish their roles, we also consider approximate linearized versions of

the SDF, where the growth rates of aggregate consumption and the capital share are separate

risk factors:

Mk,lin
t+H,t ≈ b0 + b1

(
Ct+H
Ct

)
+ b2

(
1− LSt+H

1− LSt

)
. (4)

Although this is only an approximation of the true nonlinear SDF that omits higher order

terms, the sign of b2 is determined by the sign of χ and this in turn determines the sign of

the risk price for exposure to capital share fluctuations in expected return beta representa-

tions. We estimate these versions of the model, in addition to the nonlinear GMM models,

with explicit betas and risk prices for each factor. As above, we expect the risk price to be

positive for cross-sections of assets held by wealthy households and negative for those in the

bottom 90% of the stockholder wealth distribution. Observe that if the representative agent

specification were a good description of the data, the share of national income accruing to

capital should not be priced (positively or negatively) once a pricing kernel based on ag-

gregate consumption is introduced. The standard representative agent consumption CAPM

(CCAPM) of Lucas (1978) and Breeden (1979) is a special case when χ = b2 = 0.
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The second step in our analysis requires us to pay close attention to the horizon over

which movements in the capital share may matter for stock returns, with special focus on

lower frequency fluctuations. Although (2) implies that covariances between one-period-

ahead SDFs Mt+1 and one-period returns Re
j,t+1 are related to one-period average return

premia E
(
Re
j,t+1

)
, estimating this relation may not reveal all the true covariance risk that

determine return premia. This is likely to be the case when the SDF is subject to multiple

shocks operating at different frequencies where the most important drivers of this risk are

slow-moving shocks that operate at lower frequencies. As emphasized by Bandi, Perron,

Tamoni, and Tebaldi (2014) and Bandi and Tamoni (2014), important low frequency relations

can be masked in short-horizon data by higher frequency “noise”that may matter less for

unconditional expected returns. Factors shares in particular move more slowly over time

than do many macro series and most financial return variables. GLL report evidence of a

slow moving factors-share shock that plays a large role in aggregate stock market fluctuations

over long horizons but not over short horizons. These slow moving, low frequency shocks can

nevertheless have large effects on the long-run level of the stock market and on unconditional

return premia measured over shorter horizons. Indeed, this is precisely the outcome in the

model of GLL which is designed to match the evidence on the dynamics of the factors-

share shock in LL. That model produces a high unconditional (quarterly) equity premium

primarily due to the slow moving factors-share shock, which has long-term consequences for

dividend growth and therefore the stock price. A higher frequency risk aversion shock that

governs how future dividends are discounted dominates at short-horizons and causes volatility

in the conditional equity premium in this model, but is less quantitatively important for

the unconditional return premium. In order to identify possibly important low frequency

components in capital share risk exposure, we follow the approach of Bandi and Tamoni

(2014) and measure covariances between long-horizon returns Rt+H,t and risk factors
Ct+H
Ct

and
(
1−LSt+H
1−LSt

)
, or more generally between Rt+H,t and the long-horizon SDFs Mk

t+H,t, and

relate them to short-horizon average returns E (Rt+1).7

7Although we focus on cross-sections of quarterly return premia, results (available on request) show that

the long-horizon covariances betweenMk
t+H,t and Rj,t+H,t we study perform equally well in explaining cross-

sections of H-period returns. This would not be surprising if portfolio returns are roughly i.i.d. over time,
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The third step in our analysis is to explicitly relate movements in the aggregate capital

share to movements in the income shares of households located in different percentiles of

the stock wealth distribution. In analogy to the capital consumption SDF, we suppose

that the consumption of shareholders in the ith percentile of the stock wealth distribution

is a fraction θit of aggregate consumption, where θ
i
t is a non-negative function of the ith

percentile’s income share, Y i/Y . Thus consumption of percentile i is modeled as C i
t ≡ Ctθ

i
t

with θit =
(
Y it
Yt

)χi
and χi ≥ 0. This last inequality restriction is made on theoretical grounds.

Standard utility-theoretic axioms (i.e., nonsatiation) imply that an individual’s consumption

growth, expressed as a fraction of aggregate consumption growth, should be a nondecreasing

function of her share of aggregate income growth. Fixing aggregate consumption growth

(and assuming that constant aggregate consumption growth coincides with a nonnegative

change in aggregate income growth), a higher rate of income share growth implies higher

total income growth for that individual. If some of the increase is saved, χi < 1. If today’s

increase signals further increases tomorrow, we could observe χi > 1.8 But there is no

reason to expect χ i < 0. Under these axioms, we should be able to infer something about

the growth in the ith percentile’s consumption from the growth in their income shares.

Since observations on income shares are available from the SCF only on a triennial basis,

we relate income shares to capital shares using the regression output of Table 3 and use

estimated intercepts α̂i and slope coeffi cients β̂
i
from these regressions along with quarterly

observations on the capital share to generate a longer time-series of income share “mimicking

factors”that extends over the larger and higher frequency sample for which data on LSt are

available. This procedure also minimizes the potential for survey measurement error to bias

the estimates, since such error would not affect the mimicking factors but instead be swept

into the residual of the regression. With the mimicking factors in hand, we estimate models

implying the expected H-period gross return is the expected one-period gross return raised to the Hth power.
8If income growth is positively serially correlated, an increase today implies an even greater increase in

permanent income growth. Standard models of optimizing behavior predict that consumption growth should

in this case increase by more than today’s increase in income growth (Campbell and Deaton (1989)).
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based on percentile-specific SDFs M i
t+H,t taking the form

M i
t+H,t = βH,i

(Ct+H
Ct

)−γi ( ̂Y i
t+H/Yt+H

Ŷ i
t /Yt

)−γiχi , (5)

where Ŷ i
t /Yt = α̂i+ β̂

i
(1− LSt). The regression parameters are reported in Table 3. As

discussed, it is unclear whether the parameters should be taken from regressions using all

households, or only stockowners. For the reported results below, we use the parameters from

regressions using data just for the stockholding population, but it turns out not to matter

much.

4.1 Nonlinear GMM Estimation

Estimates of the benchmark nonlinear models are based on the following N + 1 moment

conditions

gT (b) = ET

 Re
t − α1N +

(Mk
t+H,t−µH)Re

t+H,t

µH

Mk
t+H,t − µH

 =

 0
0

 (6)

where ET denotes the sample mean in a sample with T time series observations, Re
t =[

Re
1,t...R

e
N,t

]′
denotes an N × 1 vector of excess returns, and the parameters to be estimated

are b ≡ (µH , γ, α, β)′ . The first N moments are the empirical counterparts to (2), with

two differences. First, the parameter α (the same in each return equation) is included to

account for a “zero beta”rate if there is no true risk-free rate and quarterly T -bills are not

an accurate measure of the zero beta rate.

The second difference is that the equations to be estimated specify models in which

long-horizon H-period empirical covariances between excess returns Re
t+H,t and the SDF

Mk
t+H,t are used to explain short-horizon (quarterly) average return premia ET (Re

t ). This

implements the approach that was the subject of prior discussion regarding low frequency

risk exposures. We estimate models of the form (6) for different values of H.9

9This approach and underlying model are different than that taken by Parker and Julliard (2004), which

studies covariances between short-horizon returns and future consumption growth over longer horizons. We

don’t pursue this approach here because such covariances are unlikely to capture low frequency components

in the stock return-capital share relationship, which requires relating long-horizon returns to long-horizon

SDFs.
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The equations above are estimated using a weighting matrix consisting of an identity

matrix for the first N moments, and a very large fixed weight on the last moment used

to estimate µH . By equally weighting the N Euler equation moments, we insure that the

model is forced to explain spreads in the original test assets, and not spreads in reweighted

portfolios of these.10 This is crucial for our analysis, since we seek to understand the large

spreads on size-book/market and momentum strategies, not on other portfolios. However,

it is important to estimate the mean of the stochastic discount factor accurately. Since the

SDF is less volatile than stock returns, this requires placing a large (fixed) weight on the

last moment.

For the estimations above, we also report a cross sectional R2 for the asset pricing block of

moments as a measure of how well the model explains the cross-section of quarterly returns.

This measure is defined as

R2 = 1−
V arc

(
ET
(
Re
j

)
− R̂e

j

)
V arc (ET (Re

i ))

R̂e
j = α̂ +

ET

[(
M̂k

t+H,t − µ̂H
)
Re
j,t+H,t

]
µ̂H

,

where V arc denotes cross-sectional variance and R̂e
j is the average return premium predicted

by the model for asset j, and “hats”denote estimated parameters.

GMM estimations for the percentile SDFs are conducted in the same way as above,

replacingMk
t+H,t withM

i
t+H,t but imposing the restriction χ

i ≥ 0. We also consider weighted

averages of the percentile SDFs as an SDF. We denote these weighted average SDFs Mωi

t+H,t,

where

Mωi

t+H,t ≡
∑
i∈G

ωiM i
t+H,t, (7)

where ωi is the endogenous weight (to be estimated) that is placed on the ith percentile’s

marginal rate of substitution (5).

10See Cochrane (2005) for a discussion of this issue.
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4.2 Linear Expected Return-Beta Estimation

When we want to assess the distinct roles of aggregate consumption and capital share risk

we investigate models with approximate linearized versions of the SDF (4), where the growth

rates of aggregate consumption and the capital share are separate risk factors. A time-series

regression is used to estimate betas for each factor by running one regression for each asset

j = 1, 2....N

Re
j,t+H,t = aj,H + βj,C,H (Ct+H/Ct) + βj,KS,H ([1− LSt+H ] / [1− LSt]) + uj,t+H,t t = 1, 2...T,

where βj,C,H measures exposure to aggregate consumption growth over H horizons and

βj,KS,H measures exposure to capital share risk over H horizons. Denote the factors to-

gether as

ft = [(Ct+H/Ct) , ([1− LSt+H ] / [1− LSt])]′

and let K generically denote the number of factors (two here). To estimate the role of the

separate exposures β̂i,C,H and β̂i,KS,H , we run a cross-sectional regression of average returns

on betas:

E
(
Re
j

)
= λ0 + β̂j,C,HλC + β̂j,KS,HλKS + εj j = 1, 2....N (8)

where λk is the price of risk for factor k. We also estimate models using the long-horizon

capital share beta alone, i.e.,

E
(
Re
j

)
= λ0 + β̂j,KS,HλKS + εj j = 1, 2....N , (9)

or the analogous expression using the long-horizon consumption beta alone.

The above regressions are implemented in one step using a GMM system estimation,

thereby simultaneously correcting standard errors for first-stage estimation of the βs, as well

as cross-sectional and serial correlation of the time-series errors terms. A Newey-West (Newey

and West (1987)) estimator is used to obtain serial correlation and heteroskedasticity robust

standard errors. Denote the K × 1 vector βi =
[
β̂i,C,H , β̂i,LS,H

]′
. The moment conditions

19



are

gT (b) =



ET

Re
t+H,t︸ ︷︷ ︸
N×1

− a︸︷︷︸
N×1

− β︸︷︷︸
(N×K)

ft︸︷︷︸
(K×1)


ET
((
Re
t+H,t − a− βf t

)
⊗ ft

)
ET

 Re
t︸︷︷︸

N×1

− λ0 − β︸︷︷︸
(N×K)

λ︸︷︷︸
(K×1)




=


0

0

0

 (10)

where a = [a1...aN ]′ and β = [β1...βN ]′ , with parameter vector b′ = [a,β, λ0,λ]′ . To obtain

OLS time-series estimates of a and β and OLS cross sectional estimates of λ0 and λ, we

choose parameters b to set the following linear combination of moments to zero

aTgT (b) = 0,

where

aT =

 I 0

0 [1N ,β]′

 .
The Appendix provides additional details on this estimation.

Our final expected return-beta estimations run horse races with other models by including

different betas in the cross-sectional regression, e.g.,

E
(
Re
j,t

)
= λ0 + β̂j,KS,HλKS + β̂j,MKTλMKT + β̂j,SMBλSMB + β̂j,HMLλHML + εj,t (11)

when we include the Fama-French three-factor model betas. Analogous estimations includ-

ing the Fama-French four-factor model betas and the intermediary-based model using the

estimated beta for LevFact are also considered and various combinations of risk exposures

across models are explored. For these estimations we use the more commonly employed

Fama-MacBeth procedure (Fama and MacBeth (1973)). In each case, we explain quarterly

return premia (excess over the T -bill) with betas for each model that are estimated in the

same way as they were in the original papers introducing those risk factors.

4.3 Additional Statistics

To assess the degree of misspecification in each model, we present two additional statistics.

First, we compute a Hansen-Jagannathan (HJ) distance for each model (Hansen and Jagan-
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nathan (1997)). In no case do we choose a model’s parameters to minimize the HJ distance.

Instead, they are chosen based on the estimations described above. But, as emphasized by

Hansen and Jagannathan (1997), we can still use the HJ distance to compare specification

error across any competing set of approximate SDFs. We also report root mean squared

pricing errors (RMSE) for each model. To give a sense of the size of these errors relative to

the size of the average returns being explained, we report RMSE/RMSR, where RMSR is

the square root of the average squared returns on the portfolios being studied. We do not

compute statistics designed to assess whether the mean pricing errors or the HJ distance of

a particular model are exactly zero. As Hansen and Jagannathan (1997) point out, owing to

the axiom that all models are approximations of reality and therefore misspecified, such tests

are uninformative: any nonrejection of the null of zero specification error can only occur as

a result of sampling error, not because the model truly has a zero HJ distance or RMSE.

Moreover, since tests of the null of zero specification error rely on a model-specific weighting

matrix, they cannot be used to compare models. In short, we don’t need a statistical test

to tell us whether a particular model is misspecified, since we know it is. The interesting

question is, which models are least misspecified? The HJ distance and RMSE statistics are

well suited to making such comparisons across models.

We also present estimates of the finite sample distribution of the cross-sectional R
2
statis-

tic for the linear models, using a bootstrap procedure. Doing so for the nonlinear estimations

is prohibitively time consuming since those estimations require exhaustive searches to avoid

getting stuck at a local minimum. Fortunately, the R
2
statistics for the approximate linear

SDF models are very similar to those of the nonlinear models, so the sampling procedure for

the linear models should give a sense of the distribution in both cases.

Before presenting results, we note that the estimations above are generally not subject to

the criticisms of Lewellen, Nagel, and Shanken (2010), namely that any multifactor model

with three (or four) factors even weakly correlated with the three- (or four-) Fama-French

factors could possibly explain returns with implausibly large risk prices and tiny spreads in

betas, for several reasons. First, although our benchmark model has two factors, our main

findings are driven by one of those two factors (capital share risk) and opposite signed ex-

posure of momentum and value to this single factor, not by different multifactor models for
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pricing value and momentum separately that have the same number of factors as the separate

Fama-French models. Second, the spreads in betas for capital share risk exposure are large

(Figure 1). Moreover, the capital share betas perform better and drive out the betas for

both Fama-French mutifactor models for pricing both sets of returns. Third, our benchmark

capital share SDF model is an explicit nonlinear function of the primitive theoretical para-

meters that determine the risk prices (χ and γ) and our GMM estimation provides direct

estimates of these. By and large, these estimates satisfy the theoretical restrictions of the

model and are reasonable. Fourth, the appendix presents one way of sorting firms (under

some assumptions) into portfolios on the basis of low frequency labor share exposure. As we

explain there, the usual procedure of unconditionally using firm-level data to estimate the

betas for firms’exposures to a factor, forming portfolios on the basis of these betas, and then

comparing average returns across these portfolios is inappropriate in a world where there is

opposite signed exposure to a single risk factor. We use an alternative sorting procedure that

explicitly conditions on characteristics using estimates from the original characteristic-sorted

portfolios. Portfolios sorted according to labor share betas under these assumptions have

large spreads in average returns, of the predicted sign.

5 Results

This section presents the results, beginning with the benchmark nonlinear models.

5.1 Nonlinear GMM Estimation using Capital Share SDF

Table 4 presents results from estimations based on the moment conditions (6) of the nonlinear

capital share SDF Mk
t+H,t using 25 size-book/market portfolios. Results are presented for

values of H from 1 to 15 quarters. The left panel shows results for χ = 0, which is the special

case where the SDF is equal to the standard power utility CCAPM. The right panel is the

more general case where χ is nonzero.

The left panel confirms a long list of previous findings (Bansal, Dittmar, and Kiku (2009);

Hansen, Heaton, and Li (2008) Dew-Becker and Giglio (2013); Bandi and Tamoni (2014))
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showing that lower frequency exposures to aggregate consumption growth have a greater

ability to explain the cross-section of average returns on these portfolios than do short-

horizon exposures. The cross-sectional R2 statistics rise from 7% for H = 1 to a peak of

44% at H = 8 and are still 41% at H = 15. There is a commensurate decline in the RMSE

pricing errors as H increases.

The right panel shows the performance of the capital share SDF with χ freely estimated.

No matter what the horizon, this model has much larger R2 statistics, much lower HJ

distances, and much lower pricing errors than the model with χ = 0 that excludes the cap-

ital share. The R2 rises from 36% for H = 1 to a peak of 87% at H = 8 and remains

high at 85% for H = 15. The pricing errors in this right panel are roughly half as large

as those in the left panel in most cases. The standard errors for the parameters χ and

γ are large, however, indicating that the estimation has diffi culty distinguishing the sepa-

rate roles of these two parameters. But recall that the capital share SDF takes the form

Mk
t+H,t = βH

[(
Ct+H
Ct

)−γ (
1−LSt+H
1−LSt

)−γχ]
. Large standard errors for these parameters are not

surprising given that most of the explanatory power of the capital share SDF is attributable

to the capital share term, as confirmed in estimations discussed below. If the term involving

aggregate consumption growth contributed nothing but noise, the estimation would only be

able to identify the product χγ, but not the individual terms in this product.

For this reason, we will often abandon the attempt to separately identify the two parame-

ters and instead restrict χ to a reasonable central value such as χ = 1 for size-book/market

portfolios or χ = −1 for momentum portfolios, as explained below. This allows for more

precise estimates of the relative risk aversion coeffi cient γ. Note that imposing such a re-

striction can only worsen the model’s ability to fit the cross-section of return premia, since if

the constraint binds the Euler equation errors are at least as large as the unconstrained case,

while they are the same if the constraint is nonbinding. Table 5 shows the results under the

restriction χ = 1. The R2, RMSE pricing errors and HJ distances are all very similar to the

unconstrained case, indicating that the restriction has little effect on the model’s ability to

explain return data. But the estimates of γ are now precise, and indicate reasonable values

that monotonically decline with H from a high of γ = 30 at H = 1 to γ = 1.5 at H = 15.

Note also that estimates of the zero-beta terms are in most cases small and not statistically
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distinguishable from zero.

The finding that estimates of risk aversion γ decline with the horizon H is of interest

because it is consistent with a model in which low frequency capital share fluctuations gen-

erate sizable systematic cash flow risk for investors, such that fitting return premia does not

require out-sized risk aversion parameters. By contrast, when H is low, estimates of risk

aversion must be higher to fit high average return premia because covariances between the

SDF and returns over short horizons are unlikely to reveal important low frequency cash

flow risks, thereby biasing upward estimates of risk aversion.11

Table 6 turns to nonlinear GMM estimation ofMk
t+H,t using 10 momentum portfolios. For

the reasons just mentioned, the table reports results obtained when restricting χ = −1, but

the fit is similar when χ is freely estimated, where the important result is that it always takes

on negative values. This is the opposite signed exposure of value and momentum to capital

share risk that we foreshadowed above. Even when restricting χ = −1, the table shows that

the capital share SDF explains 95% of the variation in momentum returns for exposures over

H = 4 quarters, 90% for exposures over H = 6 quarters, and 83% for exposures over H = 8

quarters. As for tests on size-book/market portfolios, estimates of the zero-beta terms are

small and not statistically distinguishable from zero in almost every case, while estimates

of γ are small and precisely estimated when the horizon over which exposure is measured is

suffi ciently large. The RMSE is often just 30% of that for the aggregate consumption growth

CCAPM with χ = 0.

Table 7 reports results for the same estimations on 10 long-run reversal portfolios.12

11The model in GLL is one with these implications. Risk aversion in that framework varies over time

at higher frequencies than do capital share shocks, but the median and mode value is close to risk neutral

(equal to unity). The unconditional equity premium in that model would be too large if the typical value

for risk aversion were higher because shareholders are exposed to a large amount of systematic cash flow risk

attributable to low frequency fluctuations in the capital share. But because of high frequency “noise”from

risk tolerance shocks, it is diffi cult to detect the low frequency nature of capital share risk from short-horizon

exposures which are dominated by the risk aversion shocks.
12These portfolios are formed on the basis of prior (13-60 month) returns. The highest yielding portfolio

is comprised of stocks with the lowest prior returns while the lowest yielding portfolio is comprised of stocks

with the highest prior returns.
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Like the size-book/market portfolios, the key parameter χ is now estimated to be positive.

The table reports results restricting χ = 1. The capital share SDF explains 88% of return

premia on these portfolios when measuring exposures over H = 6 and H = 8 quarters,

84% for exposures over H = 10 quarters, and 78% for exposures over H = 12 quarters. As

above, estimates of the zero-beta terms are small and not statistically distinguishable from

zero while estimates of γ are small and precisely estimated for most longer horizons. The

CCAPM with χ = 0 does not explain large fractions of the return premia on these portfolios.

5.2 Expected Return-Beta Representations

The capital share SDF models just estimated depend on two variables: aggregate consump-

tion growth and growth in the capital share. To distinguish their roles, now turn to esti-

mations of expected return-beta representations using approximate linear SDFs where these

two variables are separate priced risk factors, as in (8). Table 8 reports the results from this

estimation on size-book/market portfolios, and also includes results for estimations where

only the H-period consumption growth beta β̂j,C,H , or only the capital share growth beta

β̂j,KS,H are used as regressors in the second-stage cross-sectional regression. Table 9 reports

the same set of results for the 10 momentum portfolios. In both tables, all coeffi cients

including the constant are multiplied by 100.

First consider the results for size-book/market portfolios in Table 8. The table shows

that, by themselves, the long-horizon aggregate consumption betas perform better than

short-horizon betas. For H = 8 and H = 12, the R2 statistics are 33 and 30%, respectively,

compared to 6% for H = 1. But in each case, the capital share betas β̂j,KS,H explain a much

larger fraction of the return premia (80% for H = 8 and 76% for H = 12). When both betas

are included in the cross-sectional regression, the risk prices on the aggregate consumption

betas are driven nearly to zero and rendered statistically insignificant, while the risk price

for capital share beta β̂j,KS,H remains large, positive, and different from zero statistically.

This happens because the long-horizon consumption betas are strongly positively correlated

cross-sectionally with the long horizon capital share betas (table in the Appendix), and so

proxy for the latter’s explanatory power when the capital share beta is excluded. But these
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results imply that it is not long-horizon aggregate consumption growth, but instead long-

horizon growth in the capital share, that is the true driver of quarterly return premia. Once

the latter is included, there is little left for exposure to low frequency aggregate consumption

growth to explain.13

The finding that capital share risk is more important for return premia than is consump-

tion risk, even at longer horizons, is consistent with both theory and evidence. LL and

GLL find empirically that shocks to consumption have small effects on the aggregate stock

market over any horizon, while a factors share shock is increasingly important at the horizon

extends. GLL explain these findings with a model that naturally implies aggregate shocks

(such as total factor productivity shocks that drive aggregate consumption and benefit both

workers and shareholders) have smaller effects on the equilibrium share price than those that

redistribute rewards from a fixed amount of output.

Table 9 reports the same set of results for the momentum portfolios. The punchline

is much the same as it is for size-book/market portfolios, except that, importantly, the

estimated risk prices for the capital share betas β̂j,KS,H are strongly negative, rather than

positive. Interestingly, for momentum portfolios, the consumption betas explain more of the

cross-sectional variation at the shortest H = 1 horizon than do the capital share betas, but

they are surpassed in explanatory power as the horizon increases past H = 1. At H = 8,

exposure to capital share risk explains 93% of the variation in the return premia on these

portfolios and drives out consumption risk.

Table 10 shows estimates of the finite sample distribution of the cross-sectional R
2
sta-

tistics for the regressions using the capital share betas as the single risk factor. The table

reports the 90% confidence interval for these statistics constructed from a bootstrap proce-

dure described in the Appendix. As is well known, finite sample distributions show fairly

wide intervals, but for the horizons H = 8, 12 that work best in the historical data, the in-

tervals have lower bounds that are all close to 70% for both sets of portfolios. These findings

reinforce the conclusion that the single capital share risk factor explains large fractions of

13In results not reported, we also find that the long-horizon capital share betas drive out various S-period

ahead future consumption growth betas formed from regressions of quarterly returns on future consumption

growth over S periods, as studied by Parker and Julliard (2004).
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the return premia on these portfolios even if we consider the lowest ranges of what is likely

in our finite sample.

The estimated size of the zero-beta rate parameter from these linear regressions is about

10 times as large as those from the nonlinear SDFs estimations, where they are in most cases

small and statistically indistinguishable from zero for both sets of portfolios. But recall

that the true model is presumed to be the nonlinear one. The linearization is merely an

approximation that omits higher order terms. If these higher order terms are not irrelevant

for return premia and there is a common component in the exposure to them across assets,

the linear regression is likely to deliver an upwardly biased estimate of the zero-beta constant

in the second stage regression.

A visual impression of the key result from these regressions is given in Figure 1, which

plots observed quarterly return premia (average excess returns) on each portfolio on the

y-axis against the portfolio capital share beta for exposures of H = 8 quarters on the x-axis.

The top panel plots these relations for the 25 size-book/market portfolios; the bottom panel

for the 10 momentum portfolios. The solid line shows the fitted return implied by the model

using the single capital share beta as a measure of risk. Size-book/market portfolios are

denoted SiBj, where i, j = 1, 2, ..., 5, with i = 1 denoting the smallest size category and i = 5

the largest, while j = 1 denotes the lowest book-market category and j = 5 the largest.

Momentum portfolios are denoted M1, ...M10, where M10 has the highest returns over the

prior (2-12) months and M1 the lowest.

Figure 1 illustrates several important findings. First, as is known, the largest spread in

returns on size-book/market portfolios is found by comparing the high and low book-market

portfolios is the smallest size categories. The largest value premium is between the H=1 and

H=5 book/market categories in the smallest S=1 size category. Value spreads for the largest

S=5 or S=4 size category are much smaller. This shows that the value premium is more of a

small-stock phenomenon in the U.S., and underscores the importance of using double-sorted

(on the basis of size and book-market) portfolios for studying the value premium in U.S. data.

The Figure shows that the betas for size-book/market portfolios line up strongly with return

spreads for the smaller sized portfolios, but the model performs least well for larger stock

portfolios, e.g., S4B2 and S4B3. Second, the capital share model explains the small-stock
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growth portfolio S1B1 extremely well, something that most models (e.g., the Fama-French

three-factor model) find challenging. Indeed, the average return for this portfolio is spot

on the fitted line for the model-predicted average return. Third, the model fits the extreme

high and extreme low portfolio returns almost perfectly for both sets of portfolios. The high

returns are on the S1B5 and M10 portfolios, while the lowest returns are on the S1B1 and

M1 portfolios. These portfolios lie almost spot on the fitted lines. This indicates that the

model explains virtually 100% of the maximal return obtainable from a long-short strategy

designed to exploit these spreads. Fourth, the figure shows that the spread in betas for both

sets of portfolios is large. The spread in the capital share betas between S1B5 and S1B1 is

3.5 compared to a spread in returns of 2.6% per quarter. The spread in the capital share

betas between M1 and M10 is 4.5 compared to a spread in returns of (negative) 3.8%.

But the key result in Figure 1 is that the top panel has a fitted line that slopes strongly

up, while the bottom panel has a fitted line that slopes strongly down. The highest return

size-book/market portfolio is positively correlated with growth in the capital share, while the

highest return momentum portfolio is negatively correlated with growth in the capital share.

The desire to jointly explain momentum and value premia within a single empirical model

has so far presented a special challenge for asset pricing theories because both strategies

produce high average returns yet are negatively correlated (Asness, Moskowitz, and Pedersen

(2013)). Figure 1 shows that the negative correlation can be partly explained by opposite

signed exposure to low frequency capital share risk.

Table 11 presents additional evidence on the negative correlation between these strategies.

The return on the value strategy is taken to be the return on a long-short position designed to

exploit the maximal spread in returns on the size-book/market portfolios. This is the return

on a strategy that goes long in S1B5 and short in S1B1, i.e., RS1B5,t+H,t − RS1B1,t+H,t. The

return on the momentum strategy is taken to be the return on a long-short position designed

to exploit the maximal spread in returns on the momentum portfolios. This is the return on a

strategy that goes long in M10 and short in M1, i.e., RM10,t+H,t−RM1,t+H,t. Panel A of Table

11 shows the correlation between the two strategies, for different quarterly horizons H. We

confirm the negative correlation reported in Asness, Moskowitz, and Pedersen (2013) who

consider a larger set of countries, a different sample period, and a similar but not identical
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definition of value and momentum strategies. We find in this sample that the negative

correlation is relatively weak at short horizons but becomes increasingly more negative as

the horizon increases from 1 to 12 quarters. Panel B shows results from regressions of value

and momentum strategies on capital share growth, again for different quarterly horizons

H. This panel shows that capital share risk is strongly significantly positively related to

value strategy returns, and strongly significantly negatively related to momentum strategy

returns. Moreover, the adjusted R
2
statistics increase with the horizonH in tandem with the

increasingly negative correlation between the two strategies. Movements in the capital share

explain 25% of the variation in both strategies when H = 12. Given that financial returns

appear to be subject to common shocks that shift the willingness of investors to bear risk

independently from macro variables such as the labor share, we find this to be surprisingly

large.14 These results reinforce the conclusion that opposite exposures to capital share risk

for value and momentum contribute importantly to their negative correlation.

To insure that the our results are not unduly influenced by the use of overlapping long-

horizon return data in the first stage estimation of betas, we also conducted the same esti-

mations above using non-overlapping long-horizon data. For a return horizon of H = 4, for

example, there are four ways to do this: use non-overlapping data from Q1 to Q1, Q2 to

Q2, Q3 to Q3, or Q4 to Q4 of each year. We estimate the long horizon capital share beta in

the first stage using non-overlapping data from samples formed all four ways and take the

average beta across these as an estimate of capital share risk exposure. We proceed analo-

gously for the other horizons. Estimates of the second-stage expected return beta relations

using the betas estimated in this way are presented in the Appendix Tables (Table A8). The

results are very similar to those using the longer sample formed from overlapping data, with

14GLL present evidence of independent shocks to risk tolerance that dominate return fluctuations over

shorter horizons. Even in this model, where an independent factors-share shock plays the largest role in the

large unconditional equity premium, risk aversion shocks create short-run noise so that R2 from time-series

regressions of market returns on labor share growth are small over horizons reported above, although they

increase with H. R2 are also small because the model is nonlinear while the regressions are not. A Table

in the Appendix reports results from model-based regressions for the single market return on labor share

growth, using simulated data from the GLL model, and shows that R2 found in the data are by comparison

surprisingly large.
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high fractions of variation in the returns explained by these betas, strongly significant risk

prices for H ≥ 4, and opposite signed exposures of size-book/market and momentum port-

folios to capital share risk. Thus, the use of overlapping long-horizon return data does not

appear to be a factor in whether long-horizon exposures explain the cross-section of return

premia in the second stage. On the contrary, long-horizon exposures to the three Fama-

French factors actually perform worse than their short-horizon counterparts for explaining

size-book/market portfolio returns (Appendix Table A9).

One explanation for the opposite signed exposure documented above is that shareholders

located in different percentiles of the stock wealth distribution have marginal utilities that

vary inversely with the capital share and differentially pursue value and momentum strate-

gies. The next section considers this possibility with estimations using our proxies for the

percentile-specific SDFs discussed above.

5.3 Nonlinear GMM Estimation of Percentile SDF Models

Table 12 reports results of nonlinear GMM estimations on size-book/market portfolios using

the percentile SDFs M i
t+H,t as well as an SDF based on an estimated weighted average

of percentile SDFs Mωi

t+H,t as in (7) where we freely estimated the weights ω
i. The right

panel shows estimates using an SDF Mωi

t+H,t where weight is placed on the marginal rate of

substitution (MRS) M<90
t+H,t of the bottom 90% and on the MRS M top10

t+H,t for those in the top

10% of the stock wealth distribution. The right panel reports the weight ω<90 assigned to

the bottom 90% MRS. As Table 12 shows, the estimation always chooses ω<90 equal to a

tiny value, less than or equal to 0.001 in most cases. By placing effectively no weight on the

MRS of the bottom 90%, this SDF performs as well explaining the cross-section of average

returns as an SDF that uses the MRS of just the top 10% (results shown in left panel).

Together, these models perform as well quantitatively as the capital share SDFs with χ = 1.

Additional results in the Appendix tables show that using the percentile-specific SDFs for

the top 5% or top 1% work about as well as these.

Table 13 shows how the model with percentile SDF M top10%
t+H,t compares to the CCAPM

model with χtop10% = 0. (This estimation restricts χtop10% to unity for the same reasons given
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above for restricting χ = 1.) The results are much the same as that for the capital share

SDF when compared to the aggregate consumption CCAPM: theM top10%
t+H,t explains over 80%

of the cross-sectional variation in size-book/market returns for most horizons H; estimates

of the zero-beta rate are small and not statistically distinguishable from zero, and estimates

of γ are small and precisely estimated for many horizons. The RMSE is often close to 50%

of that for the model based on corresponding long-horizon aggregate consumption growth

exposure alone.

The same estimations are performed on momentum portfolios. Table 15 (right panel)

reports the results where we again use a weighted average SDF and allow the estimation to

choose how much weight to place on the bottom 90% and the top 10% MRS. The right panel

reports that the weight ω<90 assigned to the bottom 90% MRS is now unity for H ≤ 6, and

it exceeds 0.76 for all greater horizons, implying that the estimations seek to place all of the

weight, or close to all of it, on the MRS of the bottom 90% of shareholders. But the left

panel shows that a percentile SDF equal to the proxy for the bottom 90%, M<90
t+H,t, performs

about as well, explaining almost the same large fraction (up to 95%) of average returns on

these portfolios as the model where we allow the estimation to freely place weight on both

groups.

Table 15 shows that the SDF M<90
t+H,t with χ

<90 restricted to unity also performs well,

and again far better than the long-horizon CCAPM model with χ<90 = 0 (left panel).

5.4 Fama-MacBeth Regressions: Comparisons With Other Mod-

els

The last two tables report estimates of expected return beta representations using betas

from several alternative factor models: the Fama-French three-factor model using the market

return Rmt, SMBt and HMLt as factors, the Fama-French four-factor model using these

factors and the momentum factorMoMt, and the intermediary SDF model of Adrian, Etula,

and Muir (2014) using their LevFact, which measures the leverage of securities broker-

dealers. We estimate each model’s betas in a first stage using the same procedure employed

in the original papers where the model was introduced. To conserve space, we report results
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for capital share betas for H = 8 only, but the findings are similar for other horizons when

H > 4.

Table 16 shows results for size-book/market portfolios. The single aggregate risk factor

based on low frequency fluctuations in the aggregate capital share generates pricing errors

that are lower than both the Fama-French three-factor model and the LevFact model. This

model also explains a larger fraction of the variation in average returns than do each of these

models, with the cross-sectional R
2

= 0.79 for the capital share model, 0.73 for the Fama-

French three-factor model and 0.68 for the LevFact model. Note that the risk prices (all

multiplied by 100 in the table) for the capital share beta are two orders of magnitude smaller

than that for the LevFact beta, indicating that the capital share model explains the same

spread in returns with a much larger spread in betas. As a fraction of the root mean squared

average return RMSR on these portfolios, the RMSE pricing errors from all three models are

small: 12% for capital share model, 13% for the Fama-French three-factor model and 16%

for the LevFact model, each of which are much smaller than those of models using long-

horizon aggregate consumption betas alone, reported above. The risk prices on the betas for

the Fama-French HML factor and the LevFact are strongly statistically significant when

included on their own, as reported in previous work. But in a horse race where the capital

share beta is included alongside betas for these other factors, the latter loose their statistical

significance while the capital share beta retains its statistically significant explanatory power.

Table 17 shows the same comparisons for momentum portfolios. The RMSE pricing

errors for the capital share model are a third smaller than the Fama-French four-factor

model, and 70% smaller than the LevFact model. The adjusted cross-sectional R
2
statistics

are 0.93, 0.75, and 0.17, for the three models respectively. The key reason that this single

capital share risk factor outperforms these models for pricing both sets of portfolios is that

the risk price on the capital share beta is now negative and opposite in sign to that for the

size-book/market portfolios. The absolute value of the capital share risk price is two orders

of magnitude smaller than that for LevFact and one order smaller than that for MoMt,

indicating that the capital share model explains the same large spread in returns with a

much larger spread in betas. As for size-book/market portfolios, the risk prices for the betas

of the Fama-French factors and the LevFact are strongly significant when included on their
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own. But when included alongside the capital share beta, they are smaller in absolute value

and they loose their statistical significance, while the capital share beta retains its strong

explanatory power.

6 Conclusion

This paper considers the role of capital share risk for explaining return premia on cross-

sections of U.S. stocks. Our empirical approach pays close attention to the low frequency

nature of this potential risk exposure. We show that a single aggregate risk factor based

on low frequency fluctuations in the national capital share can simultaneously explain the

large excess returns on momentum and value portfolios while at the same time explaining

why the two investment strategies are negatively correlated. The results imply that the

negative correlation is in large part the result of opposite signed exposure to capital share

risk. Models with capital share risk explain up to 85% of the variation in average returns on

size-book/market portfolios and up to 95% of momentum returns.

Our analysis is motivated by the idea that high wealth inequality is likely to mean that

households located in different percentiles of the stock wealth distribution have marginal

utilities that very inversely with the national capital share. Consistent with this, we show

that income shares of the top 10% of the stock wealth distribution are strongly positively

correlated with the capital share, while those of the bottom 90% are strongly negatively corre-

lated. To the extent that households located in different percentiles of the wealth distribution

differentially pursue value and momentum strategies, the model provides a marginal utility-

based explanation for the large twin return premia on these negatively correlated strategies.

Estimations based on proxies for percentile-specific SDFs support this explanation.

Although capital share risk appears strongly related to value, momentum, and long-run

reversal portfolio returns, unreported results show that it bears little relation to the spread

in average returns on industry portfolios. This is perhaps not surprising since the small,

statistically indistinguishable spreads in average returns on industry portfolios are unlikely

to load on true risk factors, which would imply a large spread in average returns.

The findings here raise intriguing questions about the role of clientele effects in U.S.
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stock pricing. A question left unanswered from our analysis is why high wealth investors

might be more likely to pursue value and long-run reversal strategies, while the majority of

shareholders who occupy the bottom 90% of the stock wealth distribution are more invested

in momentum strategies. One simple story is that growth in the capital share tends to be

positively correlated with current and recent lagged changes in the stock market, but nega-

tively related with labor income growth (Lettau and Ludvigson (2013)). Thus shareholders

in the bottom 90% of the wealth distribution may seek to hedge risks associated with an

increase in the capital share by chasing returns and flocking to stocks whose prices have

appreciated most recently. On the other hand, those in the top 10%, such as corporate

executives whose fortunes are highly correlated with recent stock market gains, may have

compensation structures that are already “momentum-like.”These shareholders may seek to

hedge their compensation structures by undertaking contrarian investment strategies that go

long in stocks whose prices are low or recently depreciated. To the extent that more detailed

micro-level datasets can be brought to bear on these questions, much could be learned about

how, why, and by whom, return premia on diverse investment strategies are earned in U.S.

equity markets. All of these themes warrant investigation in future research.
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Appendix

Data Description

CONSUMPTION

Consumption is measured as either total personal consumption expenditure or expen-

diture on nondurables and services, excluding shoes and clothing. The quarterly data are

seasonally adjusted at annual rates, in billions of chain-weighted 2005 dollars. The com-

ponents are chain-weighted together, and this series is scaled up so that the sample mean

matches the sample mean of total personal consumption expenditures. Our source is the

U.S. Department of Commerce, Bureau of Economic Analysis.

LABOR SHARE

We use nonfarm business sector labor share throughout the paper. For nonfarm business

sector, the methodology is summarized in Gomme and Rupert (2004). Labor share is mea-

sured as labor compensation divided by value added. The labor compensation is defined as

Compensation of Employees - Government Wages and Salaries- Compensation of Employ-

ees of Nonprofit Institutions - Private Compensation (Households) - Farm Compensation of

Employees - Housing Compensation of Employees - Imputed Labor Compensation of Self-

Employed. The value added is defined as Compensation of Employees + Corporate Profits +

Rental Income + Net Interest Income + Proprietors’Income + Indirect Taxes Less Subsidies

+ Depreciation. The quarterly, seasonally adjusted data spans from 1963Q1 to 2013Q4 with

index 2009=100. The source is from Bureau of Labor Statistics.15

TEST PORTFOLIOS

All returns of test asset portfolios used in the paper are obtained from professor French’s

online data library.16 The test portfolio includes 25 portfolios formed on Size and Book-to-

Market (5 x 5), 10 Portfolios Formed on Momentum and 10 Portfolios formed on Long-Term

reversal. All original returns are monthly data and we compounded them into quarterly

data. For example, denote RJan
t to be the gross monthly return in January of year t, then

15Available at http://research.stlouisfed.org/fred2/series/PRS85006173
16Link: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html



the first-quarter gross return RQ1
t is computed as

1 +RQ1
t =

(
1 +

RJan
t

100

)(
1 +

RFeb
t

100

)(
1 +

RMarch
t

100

)
The analogue is applied to every year and every quarter. The log quarterly returns is

calculated analogously. In the empirical implementation, we use the excess returns (in excess

of quarterly risk free rate) for each portfolios. The sample spans from 1963Q1 to 2013Q4.

FAMA FRENCH PRICING FACTORS

We obtain Fama French pricing factor HML, SMB, Rm, MoM (momentum factor) and

risk free rates from professor French’s online data library. All original returns are monthly

data and we compounded them into quarterly data using the same method as described in

test portfolios. The sample spans 1963Q1 to 2013Q4.

LEVERAGE FACTOR

The broker-dealer leverage factor LevFac is constructed as follows. Broker-dealer (BD)

leverage is defined as

LeverageBDt =
Total Financial AssetsBDt

Total Financial AssetsBDt − Total LiabilitiesBDt

The leverage factor is constructed as seasonally adjusted log changes

LevFact =
[
∆ log

(
LeverageBDt

)]SA
.

This variable is available from Tyler Muir’s website over the sample used in Adrian, Etula,

and Muir (2014), which is 1968:Q1-2009:Q4.17 In this paper we use the larger sample 1963Q1

to 2013Q4. There are no negative observations on broker-dealer leverage in this sample. To

extend the sample to 1963Q1 to 2013Q4 we use the original data on the total financial

asset and liability of brokers and dealers data from flow of funds, Table L.128 available

at http://www.federalreserve.gov/apps/fof/DisplayTable.aspx?t=l.128. Adrian, Etula, and

Muir (2014) seasonally adjust ∆ log
(
LeverageBDt

)
by computing an expanding window re-

gression of ∆ log
(
LeverageBDt

)
on dummies for three of the four quarters in the year at

each date using the data up to that date. The initial series 1968Q1 uses data from previous

10 quarters in their sample and samples expand by recursively adding one observation on

17Link: http://faculty.som.yale.edu/tylermuir/LEVERAGEFACTORDATA_001.txt



the end. Thus, the residual from this regression over the first subsample window 1965:Q3-

1968:Q1 is taken as the observation for LevFac68:Q1. An observation is added to the end

and the process is repeated to obtain LevFac68:Q2, and so on. We follow the same proce-

dure (starting with the same initial window 1965:Q3-1968:Q1) to extend the sample forward

to 2013Q4. To extend backwards to 1963:Q1, we take data on ∆ log
(
LeverageBDt

)
from

1963:Q1 to 1967:Q4 and regress on dummies for three of four quarters and take the resid-

uals of this regression as the observations on LevFact for t =1963:Q1-1967:Q4. Using this

procedure, we exactly reproduce the series available on Tyler Muir’s website for the overlap-

ping subsample 1968Q1 to 2009Q4, with the exception of a few observations in the 1970s, a

discrepancy we can’t explain. To make the observations we use identical for the overlapping

sample, we simply replace these few observations with the ones available on Tyler Muir’s

website.

STOCK PRICE, RETURN, DIVIDENDS

The stock price is measured using the Center for Research on Securities Pricing (CRSP)

value-weighted stock market index covering stocks on the NASDAQ, AMEX, and NYSE.

The data are monthly. The stock market price is the price of a portfolio that does not

reinvest dividends. The CRSP dataset consists of vwretx(t) = (Pt/Pt−1)− 1, the return on

a portfolio that doesn’t pay dividends, and vwretdt = (Pt +Dt) /Pt − 1, the return on a

portfolio that does pay dividends. The stock price index we use is the price P x
t of a portfolio

that does not reinvest dividends, which can be computed iteratively as

P x
t+1 = P x

t (1 + vwretxt+1) ,

where P x
0 = 1. Dividends on this portfolio that does not reinvest are computed as

Dt = P x
t−1 (vwretdt − vwretxt) .

The above give monthly returns, dividends and prices. The annual log return is the sum of

the 12 monthly log returns over the year. We create annual log dividend growth rates by

summing the log differences over the 12 months in the year: dt+12 − dt = dt+12 − dt+11 +

dt+11 − dt+10 + · · · + dt+1 − dt. The annual log price-dividend ratio is created by summing

dividends in levels over the year to obtain an annual dividend in levels, DA
t , where t denotes



a year hear. The annual observation on P x
t is taken to be the last monthly price observation

of the year, PAx
t . The annual log price-dividend ratio is ln

(
PAx
t /DA

t

)
.

SCF HOUSEHOLD STOCK MARKET WEALTH

We obtain the stock market wealth data from the triennial Survey of Consumer Finance

(SCF) conducted by Board of Governors of the Federal Reserve System from 1989-2013.

Stock Wealth includes both direct and indirect holdings of public stock. Stock wealth for

each household is calculated according to the construction in SCF, which is the sum of

following items: 1. directly-held stock. 2. stock mutual funds: full value if described as

stock mutual fund, 1/2 value of combination mutual funds. 3. IRAs/Keoghs invested in

stock: full value if mostly invested in stock, 1/2 value if split between stocks/bonds or

stocks/money market, 1/3 value if split between. 4. other managed assets w/equity interest

(annuities, trusts, MIAs): full value if mostly invested in stock, 1/2 value if split between

stocks/MFs & bonds/CDs, or "mixed/diversified," 1/3 value if "other" stocks/bonds/money

market. 5. thrift-type retirement accounts invested in stock full value if mostly invested in

stock, 1/2 value if split between stocks and interest earning assets. 6. savings accounts

classified as 529 or other accounts that may be invested in stocks.

Households with a non-zero/non-missing stock wealth by any of the above are counted

as a stockowner. All stock wealth values are in real terms adjusted to 2013 dollars.

All summary statistics (mean, median, participation rate, etc) are computed using SCF

weights. In particular, in the original data, in order to minimize the measurement error,

each household has five imputations. We follow the exact method suggested in SCF website

by computing the desired statistic separately for each implicate using the sample weight

(X42001). The final point estimate is given by the average of the estimates for the five

implicates.

SCF HOUSEHOLD INCOME

The total income is defined as the sum of three components. Y i
t = Y L

i,t + Y c
i,t + Y o

i,t.

The mimicking factors for the income shares is computed by taking the fitted values Ŷ i
t /Yt

from regressions of Y i
t /Yt on (1− LSt) to obtain quarterly observations extending over the

larger sample for which data on LSt are available.We obtain the household income data from

the triennial Survey of Consumer Finance (SCF) conducted by Board of Governors of the



Federal Reserve System from 1989-2013. All the income is adjusted relative to 2013 dollars.

Throughout the paper, we define the labor income as

Y L
i,t ≡ wagei,t + LSt × sei,t

where wagei,t is the labor wage at time t and sei,t is the income from self-employment at

time t, and LSt is the labor share at time t

Similarly, we define the capital income

Y c
i,t ≡ sei,t + inti,t + divi,t +cgi,t + pensioni,t

where inti,t is the taxable and tax-exempt interest, div is the dividends, cg is the realized

capital gains and pensiY oni,t is the pensions and withdrawals from retirement accounts.

The other income is defined as

Y o
i,t ≡ govi,t + ssi,t + almi,t + othersi,t

where govi,t is the food stamps and other related support programs provided by government,

ssi,t is the social security, almi,t is the alimony and other support payments, othersi,t is

the miscellaneous sources of income for all members of the primary economic unit in the

household.

GMM Estimation Detail

The point estimates from GMM are identical to those from Fama MacBeth regressions. To

see this, in order to do OLS cross sectional regression of E (Ri,t) on β, recall that the first

order necessary condition for minimizing the sum of squared residual is

β̃
(
E (Ri,t)− β̃ [λ0,λ]

)
= 0 =⇒

[λ0,λ] =
(
β̃
′
β̃
)−1

β̃E (Ri,t)

where β̃ = [1N ,β] to account for the intercept. If we multiply the first moment conditions

with the identity matrix and the last moment condition with (K + 1)×N vector β̃
′
, we will



then have OLS time-series estimates of a and β and OLS cross sectional estimates of λ. To

estimate the parameter vector b, we set

aTgT (b) = 0

where

aT︸︷︷︸
#Params×#Moments

=


I(K+1)N︸ ︷︷ ︸

(K+1)N×(K+1)N

0︸︷︷︸
(K+1)N×N

0︸︷︷︸
(K+1)×(K+1)N

[1N ,β]′︸ ︷︷ ︸
(K+1)×N


In order to use Hansen’s formulas for standard errors, we compute the d matrix of

derivatives

d︸︷︷︸
(K+2)N×[(K+1)N+K+1]

=
∂gT

∂b′

=



−IN︸ ︷︷ ︸
N×N

−IN ⊗ ET (f1) · · · −IN ⊗ ET (fK)︸ ︷︷ ︸
N×KN

0︸︷︷︸
N×(K+1)

−IN ⊗ ET (f1)
...

−IN ⊗ ET (fK)︸ ︷︷ ︸
KN×N

−IN ⊗ ET
(
f21
)

· · · −IN ⊗ ET (fKf1)
...

. . .
...

−IN ⊗ ET (f1fK) · · · −IN ⊗ ET
(
f2K
)︸ ︷︷ ︸

KN×KN

0︸︷︷︸
KN×(K+1)

0︸︷︷︸
N×N

−IN ⊗ λ′1 · · · −IN ⊗ λ′K︸ ︷︷ ︸
N×KN

− [1N ,β]︸ ︷︷ ︸
N×(K+1)



We also need S matrix, the spectral density matrix at frequency zero of the moment

conditions

S =

∞∑
j=−∞

E




Re
t+H,t − a− βf t(

Re
t+H,t − a− βf t

)
⊗ ft

Re
t − λ0 − βλ




Re
t+H−j,t−j − a− βf t−j(

Re
t+H−j,t−j − a− βf t−j

)
⊗ ft−j

Re
t−j − λ0 − βλ


 .

Denote

ht (b) =


Re
t+H,t − a− βf t(

Re
t+H,t − a− βf t

)
⊗ ft

Re
t − λ0 − βλ

 .
We employ a Newey west correction to the standard errors with lag L by using the

estimate

ST =

L∑
j=−L

(
L− |j|
L

)
1

T

T∑
t=1

ht

(
b̂
)
ht−j

(
b̂
)′



To get standard errors for the factor risk price estimates, λ, we use Hansen’s formula for

the sampling distribution of the parameter estimates

V ar
(
b̂
)

︸ ︷︷ ︸
[(K+1)N+K+1]×[(K+1)N+K+1]

=
1

T
(aTd)−1 aTSTa

′
T (aTd) ′−1.

Labor Share Beta Spread

A procedure sometimes employed in empirical work that studies a new factor is to use firm-

level stock data from CRSP to estimate the betas for firms’exposures to the factor and

then to sort stocks into portfolios on the basis of these betas. The objective is to then

look at spreads in average returns across portfolios sorted on the basis of beta. Note that

this procedure treats each firm equally and does not condition on any firm-level character-

istics. Importantly, this procedure will not work when there is opposite signed exposure of

different classes of firms to the same factor, as here. Sorting firms into labor (or capital)

share beta categories without first conditioning on characteristics, specifically on their size

and book/market ratios, and then separately their (2-12 month) prior returns, will result

in a mix of firms that belong to these different groups. If there is opposite signed expo-

sure to a single risk factor, the spread in betas can be expected to be small or nonexistent

since high average return firms with one set of characteristics (e.g., high 2-12 month prior

returns) will have betas of one sign, while high average return firms with another set of

characteristics (e.g., the smallest stocks with the highest book/market ratios) will have be-

tas of the opposite sign, and vice versa for the low average return firms of these respective

characteristic-conditional groups. In short, the common procedure of unconditionally sorting

all firms into beta portfolios to investigate the spread in returns on these portfolios is predi-

cated on the assumption that the a single factor should produce the same signed exposure of

all firms to that factor. But this view of the world is inconsistent with a fundamental aspect

of the data, in which portfolios of two different types of firms earn high average returns but

are negatively correlated.

A separate reason that this procedure is inappropriate for our application is that it does

not work well for long-horizon exposures, even if we condition on characteristics. The labor



share beta using all available data for each firm is based on a time-series regression of long

horizon gross excess returns on the long horizon labor share

Re
j,t+H,t = a+ βj,LS,H (LSt+H/LSt) + uj,t .

This requires firms in the sample to be alive at least H quarters, but substantially more

than this to have degrees of freedom left to run a regression. However, for H = 8, 10, 12

quarters, there are far fewer firms left that survive long enough. This creates an important

survivorship bias and high degree of noise in estimated betas as estimations are conducted

over relatively short samples for which a few individual firms are alive.

The bottom line: firms have to be placed into portfolios that condition on characteristics

in order to find spreads in average returns on portfolios of firms sorted by the beta. If

there is opposite signed exposure of different types of stocks to a single risk factor, the

usual unconditional procedure should lead to no spread in average returns on beta-sorted

portfolios. In addition, using actual firm-level data is impractical for assessing long-horizon

exposures due to survivorship bias and estimation error.

As an alternative to this procedure, we proceed as follows. We assign each firm that is

included in computation of the Fama-French 25 size-book/market portfolios in a given size

category the labor share beta of the book/market portfolio of which it is a part. Under this

assumption, we can use labor share betas estimated on size/book-market portfolios to infer

spreads in returns on portfolios of individual stocks sorted on the basis of labor share beta:

firms in a given size category sorted into portfolios on the basis of labor share beta will

have the labor share beta and average returns of the size/book-market portfolio to which

they belong. For example, the labor share beta for firms in the smallest size category and

lowest book-market group will have the same labor share beta and average return as the

S1B1 size-book/market portfolio. Panel C of Table A1 shows how the labor share betas

are assigned to firms that exist in different size and book-to-market categories. Note that

because we study labor share betas here, the signs of the risk exposures are the opposite of

those for capital share betas.

With average returns on portfolios sorted on basis of LS beta from Panel C of Table A1,

we compute average returns on the LS beta portfolio in a given size category for m = 1, .., 5



groups formed on the basis LS beta from lowest LS beta group (m = 1) to highest LS beta

group (m = 5) and construct the spread in average returns

E
(
R

(5−1)

st

)
= E

(
R
(1)
st

)
− E

(
R
(5)
st

)
,

where s = 1, ...5 size categories, and where E
(
R
(m)
st

)
is the average return on the labor share

beta portfolio with the mth highest beta, in size category s. Note that for betas formed on

labor share, as opposed to capital share, the highest labor share beta groups have the lowest

average returns. The OLS t-statistic for the null hypothesis that the spread in returns across

LS beta portfolios is zero is computed from a regression of spread E
(
R

(5−1)
st

)
on a constant.

The results are presented in Panel B of Table A1.They show that firms sorted on the basis

of labor share betas in each size category have the right sign and exhibit large spreads.

Bootstrap Procedure

This section describes the bootstrap procedure for assessing the small sample distribution of

cross-sectional R2 statistics. The bootstrap consists of the following steps.

1. For each test asset j, we estimate the time-series regressions on historical data for

each H period exposure we study:

Re
j,t+H,t = aj,H + βj,KS,H ([1− LSt+H ] / [1− LSt]) + uj,t+H,t (12)

We obtain the full-sample estimates of the parameters of aj,H and βj,KS,H , which we denote

âj,H and β̂j,KS,H .

2. We estimate an AR(1) model for capital share growth also on historical data:

1− LSt+H
1− LSt

= aKG,H + ρH

(
1− LSt+H−1

1− LSt−1

)
+ et+H,t.

3. We estimate λ0 and λ using historical data from cross-sectional regressions

E
(
Re
j,t

)
= λ0 + λβ̂j,KS,H + εj

where Re
j,t is the quarterly excess return. From this regression we obtain the cross sectional

fitted errors {̂εj}j and historical sample estimates λ̂0 and λ̂.



4. For each test asset j, we draw randomly with replacement from blocks of the fitted

residuals from the above time-series regressions:
ûj,1+H,1 ê1+H,1

ûj,2+H,2 ê2+H,2
...

...

ûj,T,T−H êT,T−H

 (13)

The mth bootstrap sample
{
u
(m)
j,t+H,t, e

(m)
t+H,t

}
is obtained by sampling blocks of the raw

data randomly with replacement and laying them end-to-end in the order sampled until a

new sample of observations of length equal to the historical dataset is obtained. To choose

the block length, we follow the recommendation of Hall, Horowitz, and Jing (1995) who

show that the asymptotically optimal block length for estimating a symmetrical distribution

function is l ∝ T 1/5; also see Horowitz (2003).

Next we recursively generate new data series for 1−LSt+H
1−LSt by combining the initial value

of 1−LS1+H
1−LS1 in our sample along with the estimates from historical data âKG,H , ρ̂H and the

new sequence of errors
{
e
(m)
t+H,t

}
t
thereby generating an mth bootstrap sample on capital

share growth
{(

1−LSt+H
1−LSt

)(m)}
t

. We then generate new samples of observations on long-

horizon returns
{
R
(m)
j,t+H,t

}
t
from new data on

{
u
(m)
j,t+H,t

}
t
and

{(
1−LSt+H
1−LSt

)(m)}
t

and the

sample estimates âj,H and β̂j,KS,H .

5. We generatemth observation β(m)j,KS,H from regression of
{
R
e(m)
j,t+H,t

}
t
on
{(

1−LSt+H
1−LSt

)(m)}
t

and a constant.

6. We obtain an mth bootstrap sample
{
ε
(m)
j

}
j
by sampling the fitted errors {̂εj}j ran-

domly with replacement and laying them end-to-end in the order sampled until a new sample

of observations of length N equal to the historical cross-sectional sample is obtained. We

then generate new samples of observations on quarterly average excess returns
{
E
(
R
e(m)
j,t

)}
j

from new data on
{
ε
(m)
j

}
j
and

{
β
(m)
j,KS,H

}
j
and the sample estimates λ̂0 and λ̂.

7. We form the mth estimates λ(m)0 and λ(m) by regressing
{
E
(
R
e(m)
j,t

)}
j
on the mth

observation
{
β
(m)
j,KS,H

}
j
and a constant. We store the mth sample cross-sectional R

2
, R

(m)2
.

8. We repeat steps 4-7 10,000 times, and report the 95% confidence interval of
{
R
(m)2
}
m
.
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Figure 1: Capital share betas. Betas constructed from Fama-MacBeth regressions of average returns

on capital share beta using 25 size-book/market portfolios (top panel) or 10 momentum portfolios (bottom

panel). βKS,H . H = 8 indicates the horizon in quarters over which capital share exposure is measured. The

sample spans the period 1963Q1 to 2013Q4.
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Figure 2: Capital share. The capital share is constructed by 1−LSt where LSt is the seasonally adjusted
quarterly non-farm sector labor share obtained from BLS. The sample spans the period 1963Q1 to 2013Q4.



Percent of Stock Wealth, sorted by Stock Wealth, Stock Owner

Percentile of Stock Wealth 1989 1992 1995 1998 2001 2004 2007 2010 2013

< 70% 7.80% 8.53% 8.09% 9.15% 8.96% 8.86% 7.52% 7.15% 7.21%

70− 85% 11.76% 11.27% 10.45% 10.95% 12.69% 12.08% 10.00% 10.99% 11.32%

85− 90% 8.39% 7.73% 7.02% 6.59% 8.21% 7.88% 7.13% 7.98% 7.42%

90− 95% 12.52% 12.66% 11.71% 11.18% 13.38% 13.33% 12.81% 13.80% 13.40%

95− 100% 59.56% 59.92% 62.52% 62.09% 56.49% 57.95% 62.58% 60.08% 60.74%

Percentile of Stock Wealth 1989 1992 1995 1998 2001 2004 2007 2010 2013

95− 96% 4.50% 3.77% 4.12% 3.96% 3.77% 3.76% 3.90% 4.07% 4.05%

96− 97% 5.30% 4.63% 5.09% 5.02% 4.55% 4.55% 4.90% 5.55% 5.55%

97− 98% 6.69% 6.25% 6.32% 6.54% 5.88% 6.02% 6.71% 7.45% 7.15%

98− 99% 12.63% 10.79% 9.64% 10.47% 9.32% 9.20% 10.29% 11.25% 10.49%

99− 100% 30.37% 34.44% 37.48% 36.30% 33.12% 34.28% 36.77% 31.75% 33.44%

(Total) 59.56% 59.92% 62.52% 62.09% 56.49% 57.95% 62.58% 60.08% 60.74%

Table 1: Distribution of stock market wealth. Stock Wealth ownership is based on indirect and indirect holdings of public equity. Indirect
holdings include annuities, trusts, mutual funds, IRA, Keogh Plan, other retirement accounts. Source: Survey of Consumer Finances.

Stock Market Participation Rates

1989 1992 1995 1998 2001 2004 2007 2010 2013

Raw Participation Rate 31.7 36.9 40.5 49.3 53.4 49.7 53.1 49.9 48.8

Wealth-weighted Participation Rate 13.8 15.8 16.4 19.9 23.9 21.7 21.1 20.9 20.2

Table 2: Weighted and unweighted stock market participation rates. Households with non-zero stock wealth held di-

rectly or indirectly is counted as a stockowner. The wealth-weighted participation rate is calculated as Value-weighted ownership ≡
5%
(
w5%

)
+(rpr − 0.05)%

(
1− w5%

)
+ (1− rpr) % (0) where rpr is the raw participation rate (not in percent) in the first row. w5% is the proportion

of stock market wealth owned by top 5% .



OLS Regression
Y i
t

Yt
= αi + βi (1− LSt)

All Household Stock Owner

Group α β R2 Group α β R2

< 90% 1.035 −0.981 42.12 < 90% 0.977 −0.788 29.20

(6.26) (−2.26) (5.54) (−1.70)

90− 94.99% 0.018 0.208 29.90 90− 94.99% −0.046 0.358 48.10

(0.40) (1.73) (−0.86) (2.55)

95− 100% −0.058 0.789 32.44 95− 100% 0.062 0.448 12.86

(−0.36) (1.83) (0.37) (1.02)

99− 100% −0.023 0.348 14.58 99− 100% −0.032 0.350 13.29

(−0.19) (1.09) (−0.25) (1.04)

90− 100% −0.981 0.997 43.43 90− 100% 0.016 0.806 29.97

(−0.25) (2.32) (−1.70) (1.73)

Table 3: Regressions of income shares on the capital share. OLS t-values in parenthesis. Coeffi cients that are statistically significant at
the 5%. level appear in bold. Y i

t

Yt
is the income share for group i. LS is the BLS non-farm labor share. Stockowner group includes households who

have direct or indirect holdings of equity.



Nonlinear GMM, Capital Share SDF, 25 Size/book-market Portfolios

Aggregate Consumption (χ = 0) Capital Consumption, Unrestricted χ

H R2 (%) α γ HJ RMSE RMSE
RMSR R2 (%) α γ χ HJ RMSE RMSE

RMSR

1 6.9 0.010 56.50 0.85 0.71 0.30 36.3 0.06 27.62 1.10 0.69 0.58 0.25

(0.010) (52.41) (0.010) (84.53) (3.80)

2 28.2 −0.016 69.92 0.79 0.62 0.26 59.1 −0.006 5.08 1.34 0.78 0.47 0.20

(0.022) (34.59) (0.017) (47.57) (5.11)

4 36.7 −0.004 19.44 0.68 0.58 0.25 64.1 0.001 5.28 1.70 0.53 0.44 0.19

(0.016) (10.45) (0.012) (6.60) (2.00)

6 38.7 0.001 10.14 0.69 0.57 0.24 83.0 0.005 3.82 1.49 0.50 0.30 0.13

(0.014) (5.66) (0.011) (3.12) (1.23)

8 43.9 0.004 6.17 0.69 0.55 0.23 87.0 0.010 2.89 1.38 0.47 0.26 0.11

(0.011) (3.33) (0.010) (2.10) (1.02)

10 43.2 0.008 4.09 0.69 0.55 0.24 84.5 0.012 1.98 1.34 0.46 0.29 0.12

(0.008) (2.25) (0.008) (1.36) (1.01)

12 41.2 0.010 2.93 0.69 0.56 0.24 83.4 0.014 1.69 1.26 0.45 0.30 0.13

(0.007) (1.71) (0.006) (1.00) (0.86)

15 40.9 0.013 1.92 0.71 0.56 0.24 85.1 0.017 1.13 1.57 0.47 0.28 0.12

(0.006) (1.15) (0.005) (0.51) (0.81)

Table 4: Nonlinear GMM estimation of capital share SDF.HJ refers to HJ distance, defined as

√
gT

(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error

in parenthesis. GMM uses an identity matrix except that the weight on the last moment is large. Covariance matrices are calculated using NeweyWest

procedure with lags H+ 1. The cross sectional R2 is defined as R2 = 1− V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂+

ET [(Mk
t+H,t−µ̂)Re

t+H,t]
µ̂ .The

pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR =
√

1
N

∑N
i=1 (ET (Rei ))

2
.RMSE is reported in quarterly percentage

point. The SDF Mk
t+H,t = βH

(
Ck
t+H

Ck
t

)−γ
. The capital consumption is defined as Ckt = Ct (1− LSt)χ. Bolded indicate significance at 5 percent or

better level. The sample spans the period 1963Q1 to 2013Q4.



Nonlinear GMM, Capital Share SDF, 25 Size/book-market Portfolios

Aggregate Consumption (χ = 0) Capital Consumption, χ = 1

H R2 (%) α γ HJ RMSE RMSE
RMSR R2 (%) α γ HJ RMSE RMSE

RMSR

1 6.9 0.010 56.50 0.85 0.71 0.30 36.3 0.005 30.50 0.79 0.58 0.25

(0.010) (52.41) (0.022) (29.61)

2 28.2 −0.016 69.92 0.79 0.62 0.26 50.8 −0.013 24.73 0.74 0.51 0.22

(0.022) (34.59) (0.019) (11.09)

4 36.7 −0.004 19.44 0.68 0.58 0.25 63.8 −0.001 8.12 0.53 0.44 0.19

(0.016) (10.45) (0.011) (3.58)

6 38.7 0.001 10.14 0.69 0.57 0.24 82.4 0.003 5.23 0.51 0.31 0.13

(0.014) (5.66) (0.011) (1.82)

8 43.9 0.004 6.17 0.69 0.55 0.23 86.4 0.008 3.63 0.48 0.27 0.12

(0.011) (3.33) (0.010) (1.15)

10 43.2 0.008 4.09 0.69 0.55 0.24 84.0 0.011 2.44 0.46 0.29 0.13

(0.008) (2.25) (0.008) (0.71)

12 41.2 0.010 2.93 0.69 0.56 0.24 82.9 0.013 1.98 0.46 0.30 0.13

(0.007) (1.71) (0.007) (0.57)

15 40.9 0.013 1.92 0.71 0.56 0.24 83.3 0.015 1.49 0.47 0.30 0.13

(0.006) (1.15) (0.006) (0.38)

Table 5: Nonlinear GMM estimation of capital share SDF.HJ refers to HJ distance, defined as

√
gT

(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error

in parenthesis. GMM uses an identity matrix except that the weight on the last moment is large. Covariance matrices are calculated using NeweyWest

procedure with lags H+ 1. The cross sectional R2 is defined as R2 = 1− V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂+

ET [(Mk
t+H,t−µ̂)Re

t+H,t]
µ̂ .The

pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR =
√

1
N

∑N
i=1 (ET (Rei ))

2
.RMSE is reported in quarterly percentage

point. The SDF Mk
t+H,t = βH

(
Ck
t+H

Ck
t

)−γ
. The capital consumption is defined as Ckt = Ct (1− LSt)χ. Bolded indicate significance at 5 percent or

better level. The sample spans the period 1963Q1 to 2013Q4.



Nonlinear GMM, Capital Share SDF, 10 Momentum Portfolio

Aggregate Consumption (χ = 0) Capital Consumption, χ = −1

H R2 (%) α γ HJ RMSE RMSE
RMSR R2 (%) α γ HJ RMSE RMSE

RMSR

1 15.8 −0.002 83.56 0.43 0.88 0.52 39.9 0.003 39.38 0.39 0.74 0.44

(0.008) (36.51) (0.012) (22.98)

2 43.1 −0.010 54.20 0.32 0.72 0.42 92.8 0.023 30.59 0.31 0.26 0.15

(0.018) (27.99) (0.012) (12.35)

4 36.1 −0.006 18.00 0.31 0.77 0.45 94.7 0.016 9.92 0.28 0.22 0.13

(0.014) (9.97) (0.011) (5.26)

6 35.2 −0.004 10.23 0.30 0.78 0.45 90.0 0.009 5.70 0.27 0.31 0.18

(0.012) (5.55) (0.012) (2.91)

8 38.5 −0.003 6.98 0.29 0.76 0.44 82.8 0.006 3.60 0.27 0.40 0.23

(0.011) (3.82) (0.010) (1.61)

10 41.8 −0.000 5.12 0.29 0.73 0.43 80.7 0.007 2.48 0.27 0.42 0.25

(0.010) (3.10) (0.008) (1.16)

12 47.5 0.002 4.14 0.29 0.70 0.41 77.8 0.007 1.85 0.27 0.45 0.27

(0.009) (2.72) (0.007) (0.92)

15 55.3 0.004 3.11 0.27 0.64 0.38 77.1 0.007 1.36 0.27 0.46 0.27

(0.009) (2.29) (0.006) (0.71)

Table 6: Nonlinear GMM estimation of capital share SDF.HJ refers to HJ distance, defined as

√
gT

(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error

in parenthesis. GMM uses an identity matrix except that the weight on the last moment is large. Covariance matrices are calculated using NeweyWest

procedure with lags H+ 1. The cross sectional R2 is defined as R2 = 1− V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂+

ET [(Mk
t+H,t−µ̂)Re

t+H,t]
µ̂ .The

pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR =
√

1
N

∑N
i=1 (ET (Rei ))

2
.RMSE is reported in quarterly percentage

point. The SDF Mk
t+H,t = βH

(
Ck
t+H

Ck
t

)−γ
. The capital consumption is defined as Ckt = Ct (1− LSt)χ. Bolded indicate significance at 5 percent or

better level. The sample spans the period 1963Q1 to 2013Q4.



Nonlinear GMM, Capital Share SDF, Long-run Reversal Portfolios

Aggregate Consumption (χ = 0) Capital Consumption, χ = 1

H R2 (%) α γ HJ RMSE RMSE
RMSR R2 (%) α γ HJ RMSE RMSE

RMSR

1 12.6 0.010 45.08 0.22 0.45 0.24 26.4 0.012 13.54 0.21 0.42 0.22

(0.009) (55.60) (0.007) (14.45)

2 2.3 0.014 12.10 0.31 0.48 0.25 49.7 0.004 11.69 0.24 0.34 0.18

(0.094) (28.82) (0.010) (7.37)

4 9.9 0.005 12.63 0.24 0.46 0.24 74.0 0.004 6.12 0.23 0.25 0.13

(0.014) (12.50) (0.012) (3.44)

6 5.2 0.008 6.01 0.23 0.47 0.25 88.0 0.008 3.79 0.20 0.17 0.09

(0.010) (5.44) (0.010) (2.08)

8 14.3 0.002 6.85 0.30 0.45 0.24 88.4 0.012 2.72 0.19 0.17 0.09

(0.014) (5.18) (0.009) (1.51)

10 24.1 −0.000 6.60 0.36 0.42 0.22 84.8 0.013 1.99 0.21 0.19 0.10

(0.016) (5.26) (0.008) (1.04)

12 18.9 0.002 5.04 0.36 0.44 0.23 78.0 0.015 1.69 0.23 0.23 0.12

(0.014) (4.18) (0.007) (0.83)

15 4.7 0.011 2.17 0.28 0.47 0.25 63.9 0.016 1.30 0.26 0.29 0.15

(0.008) (2.13) (0.007) (0.62)

Table 7: Nonlinear GMM estimation of capital share SDF.HJ refers to HJ distance, defined as

√
gT

(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error

in parenthesis. GMM uses an identity matrix except that the weight on the last moment is large. Covariance matrices are calculated using NeweyWest

procedure with lags H+ 1. The cross sectional R2 is defined as R2 = 1− V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂+

ET [(Mk
t+H,t−µ̂)Re

t+H,t]
µ̂ .The

pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR =
√

1
N

∑N
i=1 (ET (Rei ))

2
.. RMSE is reported in quarterly percentage

point. The SDF Mk
t+H,t = βH

(
Ck
t+H

Ck
t

)−γ
. The capital consumption is defined as Ckt = Ct (1− LSt)χ. Bolded indicate significance at 5 percent or

better level. The sample spans the period 1963Q1 to 2013Q4.



Linear Expected Return-Beta Regressions

ET

(
Rei,t

)
= λ0 + λ′β + εi

Estimates of Factor Risk Prices λ, 25 Size/book-market Portfolios

H Constant Ct+H/Ct
1−LSt+H
1−LSt R̄2 H Constant Ct+H/Ct

1−LSt+H
1−LSt R̄2

1 1.53 0.26 0.06 8 1.07 0.37 0.33

(1.76) (1.27) (1.16) (2.20)

1 2.24 0.43 −0.03 8 1.54 0.71 0.79

(4.87) (0.71) (1.46) (2.89)

1 1.44 0.25 0.28 0.03 8 1.07 0.10 0.58 0.84

(1.64) (1.17) (0.46) (0.92) (0.65) (3.60)

4 0.77 0.46 0.30 12 1.53 0.28 0.30

(0.62) (2.10) (2.39) (2.19)

4 0.64 0.79 0.50 12 1.94 0.49 0.76

(0.63) (1.99) (2.87) (2.91)

4 0.12 0.23 0.62 0.55 12 1.57 0.05 0.39 0.83

(0.11) (1.26) (1.96) (2.31) (0.50) (3.49)

6 0.91 0.42 0.30 15 1.61 0.23 0.31

(0.82) (2.07) (2.94) (2.23)

6 1.04 0.79 0.75 15 2.07 0.43 0.78

(0.90) (2.48) (3.62) (2.57)

6 0.67 0.11 0.67 0.78 15 1.73 0.01 0.33 0.84

(0.55) (0.72) (2.71) (3.12) (0.19) (3.11)

Table 8: Expected return-beta regressions with separately priced consumption and capital share factors. Estimates from GMM using

25 size-book/market portfolios are reported for each specification. Newey West t-statistics in parenthesis. Bolded coeffi cients indicate significance

at 5 percent or better level. R̄2 is adjusted R2 statistic, corrected for the number of regressors. All Coeffi cients are scaled by multiple of 100. The

sample spans the period 1963Q1 to 2013Q4..



Linear Expected Return-Beta Regressions

ET

(
Rei,t

)
= λ0 + λ′β + εi

Estimates of Factor Risk Prices λ, 10 Momentum Portfolios

H Constant Ct+H/Ct
1−LSt+H
1−LSt R̄2 H Constant Ct+H/Ct

1−LSt+H
1−LSt R̄2

1 0.39 0.52 0.40 8 0.41 0.45 0.43

(0.35) (2.20) (0.41) (2.09)

1 2.84 −2.21 0.06 8 2.17 −0.77 0.93

(4.06) (−2.46) (3.01) (−2.82)

1 1.76 0.54 −2.56 0.03 8 2.07 0.10 −0.75 0.92

(1.52) (1.81) (−1.82) (3.42) (0.81) (−2.60)

4 0.25 0.51 0.52 12 0.72 0.41 0.42

(0.20) (1.96) (0.85) (1.91)

4 3.52 −0.96 0.76 12 1.65 −0.55 0.85

(4.21) (−2.61) (3.11) (−2.78)

4 2.27 0.33 −0.77 0.96 12 1.83 0.03 −0.59 0.83

(2.65) (2.03) (−1.83) (3.68) (0.23) (−2.66)

6 0.32 0.48 0.42 15 0.76 0.39 0.47

(0.29) (2.03) (0.96) (1.86)

6 2.83 −0.92 0.91 15 1.44 −0.46 0.84

(3.32) (−2.52) (2.60) (−2.72)

6 2.20 0.21 −0.82 0.95 15 1.63 0.04 −0.49 0.83

(3.30) (1.69) (−2.15) (2.92) (0.37) (−2.61)

Table 9: Expected return-beta regressions with separately priced consumption and capital share factors. Estimates from GMM

using 10 momentum portfolios are reported for each specification. Newey West t-statistics in parenthesis. Bolded coeffi cients indicate significance

at 5 percent or better level. R̄2 is adjusted R2 statistic, corrected for the number of regressors. All Coeffi cients are scaled by multiple of 100. The

sample spans the period 1963Q1 to 2013Q4..



Finite Sample Cross-Sectional R2 Distribution

R
2
from ET

(
Rej,t

)
= λ0 + λ′βj,KS,H + εj

95% Confidence Interval of R̄2

H 25 Size/book-market 10 Momentum Portfolios

4 [36.6, 82.9] [61.3, 97.6]

8 [68.8, 90.4] [70.6, 97.8]

12 [67.8, 89.9] [75.0, 98.4]

16 [65.2, 89.3] [69.8, 97.0]

20 [37.9, 80.3] [64.5, 96.3]

Table 10: Finite sample distribution of cross-sectional R̄2 statistic. The table reports finite sample 95 percent confidence interval for R̄2

from the bootstrap procedure described in the Appendix.. The historical sample spans the period 1963Q1 to 2013Q4.



Value and Momentum Strategies

A : Correlation between long-short strategies

H Corr (RS1B5,t+H,t −RS1B1,t+H,t, RM10,t+H,t −RM1,t+H,t)

1 −0.0254

4 −0.2285

8 −0.3337

12 −0.4044

16 −0.3833

B: Regression of strategies on 1−LSt+H
1−LSt

RS1B5,t+H,t −RS1B1,t+H,t RM10,t+H,t −RM1,t+H,t

H βH t-stat R̄2 βH t-stat R̄2

4 1.56 3.09 0.04 −2.98 −4.55 0.09

8 3.48 6.09 0.16 −4.47 −6.66 0.18

12 5.27 8.12 0.25 −5.88 −8.06 0.25

16 6.43 7.99 0.25 −7.68 −8.62 0.28

Table 11: Value and momentum strategies. Panel A reports the correlation between returns on value and momentum strategies. Panel B

reports the results of regressions of these strategies on capital share growth. The long horizon return on the value strategy is RS1B5,t+H,t−RS1B1,t+H,t

≡
H∏
h=1

RS1B5,t+h −
H∏
h=1

RS1B1,t+h. The long-horizon return on the momentum strategy is RM10,t+H,t − RM1,t+H,t ≡
H∏
h=1

RM10,t+h −
H∏
h=1

RM1,t+h.

Panel B reports the time series slope coeffi cients for each regression, βH , t-statistics “t-stat,”and adjusted R̄
2 statistic. Bolded coeffi cients indicate

statistical significance at the 5The sample spans the period 1963Q1 to 2013Q4.



Nonlinear GMM, Weighted Average Percentile SDFs, 25 Size/book-market Portfolios

Top 10% Group, Unconstrained GMM Two Groups (<90%, 90-100%), Restrict χi, γ > 0

H R2 (%) α γ χtop 10% HJ RMSE RMSE
RMSR R2 (%) α γ ω<90% HJ RMSE RMSE

RMSR

1 36.4 0.005 29.94 1.08 0.69 0.58 0.25 36.4 0.005 30.13 0.001 0.69 0.58 0.25

(0.011) (84.35) (3.48) (0.012) (106.91) (0.90)

2 57.9 −0.001 14.29 2.15 0.82 0.47 0.20 61.2 −0.001 22.09 0.022 0.80 0.46 0.20

(0.017) (45.70) (7.35) (0.019) (24.29) (0.40)

4 64.1 0.001 5.28 1.80 0.53 0.44 0.19 64.1 0.000 6.02 0.001 0.53 0.44 0.19

(0.012) (6.60) (2.11) (0.014) (5.85) (2.29)

6 82.9 0.005 3.82 1.58 0.50 0.30 0.13 82.9 0.005 3.66 0.002 0.50 0.30 0.13

(0.011) (3.12) (1.30) (0.011) (3.13) (2.75)

8 87.0 0.010 2.89 1.46 0.47 0.26 0.11 87.0 0.010 2.89 0.001 0.47 0.26 0.11

(0.010) (2.10) (1.08) (0.012) (2.20) (5.30)

10 84.5 0.012 1.98 1.42 0.46 0.29 0.12 84.5 0.012 1.98 0.004 0.46 0.29 0.12

(0.008) (1.36) (1.06) (0.008) (1.28) (10.65)

12 83.4 0.014 1.69 1.33 0.45 0.30 0.13 83.4 0.014 1.69 0.005 0.45 0.30 0.13

(0.006) (1.00) (0.90) (0.006) (0.90) (9.98)

15 85.1 0.017 1.13 1.65 0.47 0.28 0.12 85.1 0.017 1.13 0.001 0.47 0.28 0.12

(0.005) (0.51) (0.85) (0.005) (0.53) (10.33)

Table 12: GMM estimation of percentile SDFs. HJ refers to HJ distance, defined as

√
gT

(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error in parenthe-

sis. GMM uses an identity matrix except that the weight on the last moment is large. Covariance matrices are calculated using Newey West procedure

with lags H+1. The cross sectional R square is defined as R2 = 1− V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂+

ET [(Mωi
t+H,t−µ̂)Re

t+H,t]
µ̂ . The pric-

ing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR =
√

1
N

∑N
i=1 (ET (Rei ))

2. RMSE is reported in quarterly percentage point.

The weighted average SDF Mωi
t+H,t = ω<90%M<90%

t+H,t +
(
1− ω<90%

)
M>90%
t+H,t . The percentile SDF M i

t+H,t = βH
(
Ct+H
Ct

)−γ {[( ̂Y i
t+H/Yt+H

Ŷ i
t /Yt

)χi]−γ}
,

where Ŷ it /Y t is the fitted value of regression of i’s group stock owner income share Y
i
t /Y t on the capital share (1− LSt). Bolded indicate significance

at 5 percent or better level. The sample spans the period 1963Q1 to 2013Q4.



Nonlinear GMM, Percentile SDF, 25 Size/book-market Portfolios

Aggregate Consumption (χtop10% = 0) Top 10% Group, Restrict χtop10% = 1

H R2 (%) α γ HJ RMSE RMSE
RMSR R2 (%) α γ HJ RMSE RMSE

RMSR

1 6.9 0.010 56.50 0.85 0.71 0.30 36.3 0.008 32.41 0.50 0.58 0.25

(0.010) (52.41) (0.023) (31.48)

2 28.2 −0.016 69.92 0.79 0.62 0.26 49.9 0.004 25.31 0.73 0.52 0.22

(0.022) (34.59) (0.017) (10.91)

4 36.7 −0.004 19.44 0.68 0.58 0.25 63.6 0.001 8.46 0.53 0.44 0.19

(0.016) (10.45) (0.011) (3.72)

6 38.7 0.001 10.14 0.69 0.57 0.24 82.2 0.002 5.44 0.51 0.31 0.13

(0.014) (5.66) (0.011) (1.89)

8 43.9 0.004 6.17 0.69 0.55 0.23 86.2 0.007 3.77 0.48 0.27 0.12

(0.011) (3.33) (0.010) (1.20)

10 43.2 0.008 4.09 0.69 0.55 0.24 83.8 0.010 2.53 0.47 0.29 0.13

(0.008) (2.25) (0.008) (0.73)

12 41.2 0.010 2.93 0.69 0.56 0.24 82.7 0.013 2.05 0.46 0.30 0.13

(0.007) (1.71) (0.007) (0.59)

15 40.9 0.013 1.92 0.71 0.56 0.24 82.9 0.014 1.53 0.48 0.30 0.13

(0.006) (1.15) (0.006) (0.39)

Table 13: GMM estimation of percentile SDFs. HJ refers to HJ distance, defined as

√
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(
b̂
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)−1
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(
b̂
)
. Standard error in

parenthesis. GMM uses an identity matrix except that the weight on the last moment is large. Covariance matrices are calculated using Newey West

procedure with lags H+1. The cross sectional R square is defined as R2 = 1− V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂+

ET [(Mωi
t+H,t−µ̂)Re

t+H,t]
µ̂ .

The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR=
√

1
N

∑N
i=1 (ET (Rei ))

2. RMSE is reported in quarterly percentage

point. The percentile SDF M i
t+H,t = βH

(
Ct+H
Ct

)−γ {[( ̂Y i
t+H/Yt+H

Ŷ i
t /Yt

)χi]−γ}
, where Ŷ it /Y t is the fitted value of regression of i’s group stock owner

income share Y it /Y t on the capital share (1− LSt). The right panel restricts to 90%-100% stock wealth holders. Bolded indicate significance at 5

percent or better level. The sample spans the period 1963Q1 to 2013Q4.



Nonlinear GMM, Weighted Average Percentile SDFs, 10 Momentum Portfolios

Bottom 90% Group, Unconstrained GMM Two Groups (<90%, 90-100%), Restrict χi, γ > 0

H R2 (%) α γ χ<90% HJ RMSE RMSE
RMSR R2 (%) α γ ω<90% HJ RMSE RMSE

RMSR

1 40.2 −0.001 62.83 1.14 0.34 0.74 0.43 40.2 −0.000 67.10 1.000 0.34 0.74 0.43

(0.008) (54.91) (1.31) (0.011) (61.40) (0.14)

2 93.1 0.012 43.92 1.45 0.27 0.25 0.15 95.0 0.012 45.46 0.967 0.27 0.22 0.13

(0.010) (29.49) (1.80) (0.015) (34.11) (0.08)

4 95.4 0.016 9.77 2.31 0.27 0.21 0.12 95.4 0.016 9.76 0.999 0.27 0.21 0.12

(0.008) (8.19) (2.58) (0.018) (8.65) (0.84)

6 94.1 0.016 2.43 6.63 0.29 0.23 0.14 94.1 0.016 2.41 1.000 0.29 0.23 0.14

(0.007) (4.72) (14.77) (0.015) (4.84) (0.92)

8 90.4 0.014 0.24 49.15 0.33 0.30 0.17 94.5 −0.005 2.96 0.757 0.33 0.23 0.13

(0.007) (2.93) (61.2) (0.019) (3.62) (0.07)

10 88.7 0.013 0.07 121.25 0.33 0.32 0.19 91.5 0.008 2.16 0.775 0.33 0.28 0.16

(0.006) (2.05) (364.4) (0.012) (3.71) (0.07)

12 86.2 0.011 0.04 174.30 0.33 0.36 0.21 94.1 0.009 1.72 0.756 0.33 0.23 0.14

(0.006) (1.68) (799.8) (0.010) (2.29) (0.07)

15 84.6 0.010 0.02 232.33 0.32 0.38 0.22 91.3 0.009 0.41 0.767 0.32 0.28 0.17

(0.006) (1.39) (1525.7) (0.007) (1.32) (0.07)

Table 14: GMM estimation of percentile SDFs. HJ refers to HJ distance, defined as
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(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error in parenthe-

sis. GMM uses an identity matrix except that the weight on the last moment is large. Covariance matrices are calculated using Newey West procedure

with lags H + 1. The cross sectional R square is defined as R2 = 1− V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂ +

ET [(Mωi
t+H,t−µ̂)Re

t+H,t]
µ̂ . The

pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR=
√

1
N

∑N
i=1 (ET (Rei ))

2. RMSE is reported in quarterly percentage point.

The weighted average SDF Mωi
t+H,t = ω<90%M<90%

t+H,t +
(
1− ω<90%

)
M>90%
t+H,t . The percentile SDF M i

t+H,t = βH
(
Ct+H
Ct

)−γ {[( ̂Y i
t+H/Yt+H

Ŷ i
t /Yt

)χi]−γ}
,

where Ŷ it /Y t is the fitted value of regression of i’s group stock owner income share Y
i
t /Y t on the capital share (1− LSt). The right panel restricts

to 0%-90% stock wealth holders. Bolded indicate significance at 5 percent or better level. The sample spans the period 1963Q1 to 2013Q4.



Nonlinear GMM, Percentile SDF, 10 Momentum Portfolios

Aggregate Consumption (χ<90% = 0) Only Bottom 90%, Restrict χ<90% = 1

H R2 (%) α γ HJ RMSE RMSE
RMSR R2 (%) α γ HJ RMSE RMSE

RMSR

1 15.8 −0.002 83.56 0.43 0.88 0.52 40.2 −0.000 66.09 0.33 0.74 0.44

(0.008) (36.51) (0.008) (32.84)

2 43.1 −0.010 54.20 0.32 0.72 0.42 93.2 0.007 45.28 0.25 0.25 0.15

(0.018) (27.99) (0.019) (27.36)

4 36.1 −0.006 18.00 0.31 0.77 0.45 88.8 0.005 16.02 0.26 0.32 0.19

(0.014) (9.97) (0.016) (9.12)

6 35.2 −0.004 10.23 0.30 0.78 0.45 79.8 0.002 8.81 0.26 0.43 0.25

(0.012) (5.55) (0.013) (4.47)

8 38.5 −0.003 6.98 0.29 0.76 0.44 72.8 0.001 5.50 0.26 0.50 0.29

(0.011) (3.82) (0.011) (2.63)

10 41.8 −0.000 5.12 0.29 0.73 0.43 72.1 0.003 3.81 0.25 0.51 0.30

(0.010) (3.10) (0.009) (1.91)

12 47.5 0.002 4.14 0.29 0.70 0.41 71.2 0.004 2.85 0.25 0.52 0.30

(0.009) (2.72) (0.008) (1.52)

15 55.3 0.004 3.11 0.27 0.64 0.38 72.0 0.006 2.04 0.25 0.51 0.30

(0.009) (2.29) (0.007) (1.18)

Table 15: GMM estimation of percentile SDFs. HJ refers to HJ distance, defined as

√
gT

(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error in

parenthesis. GMM uses an identity matrix except that the weight on the last moment is large. Covariance matrices are calculated using Newey West

procedure with lags H+1. The cross sectional R square is defined as R2 = 1− V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂+

ET [(Mωi
t+H,t−µ̂)Re

t+H,t]
µ̂ .

The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR=
√

1
N

∑N
i=1 (ET (Rei ))

2. RMSE is reported in quarterly percentage

point. The percentile SDF M i
t+H,t = βH

(
Ct+H
Ct

)−γ {[( ̂Y i
t+H/Yt+H

Ŷ i
t /Yt

)χi]−γ}
, where Ŷ it /Y t is the fitted value of regression of i’s group stock owner

income share Y it /Y t on the capital share (1− LSt). The right panel restricts to 0%-90% stock wealth holders. Bolded indicate significance at 5

percent or better level. The sample spans the period 1963Q1 to 2013Q4.



Explaining Quarterly Excess Returns on 25 Size-Book/Market Portfolios

LH Consumption and Labor Share Betas for H =8

Estimates of Factor Risk Prices λ, 25 Size-book/market Portfolios
Constant Ct+H

Ct

1−LSt+H
1−LSt Rmt SMBt HMLt LevFact R̄2 RMSE RMSE

RMSR

1.54 0.71 0.79 0.31 0.12
(2.18) (4.45)
[2.14] [4.37]
1.07 0.10 0.58 0.84 0.26 0.10

(1.50) (1.06) (4.37)
[1.47] [1.05] [4.31]
0.61 14.19 0.68 0.39 0.17

(0.69) (3.54)
[0.46] [2.39]
0.97 0.52 5.51 0.82 0.28 0.12

(1.00) (2.79) (1.09)
[0.91] [2.54] [0.99]
2.53 1.06 0.38 0.54 0.22
(3.59) (2.33)
[3.53] [2.29]
1.46 0.67 0.18 0.79 0.31 0.12
(2.72) (3.04) (0.29)
[2.67] [3.00] [0.29]
3.09 −1.61 0.68 1.28 0.73 0.34 0.14
(3.19) (−1.39) (1.64) (2.94)
[3.02] [−1.31] [1.56] [2.79]
3.34 0.50 −2.02 0.29 0.45 0.84 0.25 0.10
(3.41) (3.53) (−1.72) (0.65) (0.94)
[3.26] [3.38] [−1.65] [0.62] [0.90]
3.11 0.15 0.64 −2.21 0.01 −0.03 0.85 0.24 0.10
(3.19) (1.94) (4.71) (−1.87) (0.03) (−0.07)
[3.00] [1.83] [4.44] [−1.76] [0.03] [−0.06]

Table 16: Fama-MacBeth regressions of average returns on factor betas. Fama-MacBeth t-statistics in parenthesis and Shanken (1992)
Corrected t-statistics in brackets. Bolded coeffi cients indicate statistical significance at 5 percent or better level. All coeffi cients have been scaled

by 100. The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR =
√

1
N

∑N
i=1 (ET (Rei ))

2 where R̂ei ≡ α̂+ β̂
′
λ̂. Rm, SMB,

HML are three Fama French factors for pricing size - book/market portfolios. LevFac is the leverage factor from Adrian, Etula, and Muir (2014).

The sample spans the period 1963Q1 to 2013Q4.



Explaining Quarterly Excess Returns on 10 Momentum Portfolios

LH Consumption and Labor Share Betas for H =8

Estimates of Factor Risk Prices λ, 10 Momentum

Constant Ct+H
Ct

1−LSt+H
1−LSt Rmt SMBt HMLt MoMt LevFact R̄2 RMSE RMSE

RMSR

2.17 −0.77 0.93 0.23 0.13

(3.54) (−3.86)

[3.47] [−3.78]

2.07 0.10 −0.75 0.92 0.23 0.12

(3.91) (0.78) (−2.92)

[3.83] [0.77] [−2.87]

0.36 14.29 0.17 0.83 0.48

(0.35) (2.28)

[0.24] [1.53]

1.71 −0.76 3.53 0.93 0.23 0.13

(1.74) (−3.87) (0.61)

[1.65] [−3.68] [0.58]

2.24 1.91 0.79 0.42 0.22

(3.70) (3.31)

[3.59] [3.21]

2.05 −0.70 0.29 0.91 0.25 0.13

(3.52) (−3.50) (0.37)

[3.46] [−3.44] [0.36]

7.01 −5.82 3.52 1.54 2.02 0.73 0.37 0.20

(3.42) (−2.51) (2.29) (1.19) (3.51)

[2.08] [−1.53] [1.40] [0.72] [2.14]

2.52 −0.80 −0.57 0.75 1.75 0.10 0.88 0.22 0.12

(1.14) (−4.36) (−0.24) (0.47) (1.34) (0.14)

[1.04] [−3.96] [−0.22] [0.43] [1.22] [0.13]

Table 17: Fama-MacBeth regressions of average returns on factor betas. Fama-MacBeth t-statistics in parenthesis and Shanken Corrected
t-statistics in bracket. Bolded coeffi cients indicate statistical significance at 5 percent or better level. All coeffi cients have been scaled by 100. The

pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR =
√

1
N

∑N
i=1 (ET (Rei ))

2 where R̂ei ≡ α̂ + β̂
′
λ̂. Rm, SMB, HML and

MoM are Fama French factors for pricing momentum. LevFac is the leverage factor from Adrian, Etula, and Muir (2014). The sample spans the

period 1963Q1 to 2013Q4.



Appendix Tables

Average Excess Returns Spread, H = 8

Panel A: Average Excess Returns Sorted by Size (Row) and BM (Column)

1(low) 2 3 4 5 (high) 5− 1
t (5− 1)

1(small) 1.19 2.66 2.75 3.27 3.80 2.61

(4.53)

2 1.69 2.37 2.97 3.02 3.28 1.59

(2.70)

3 1.68 2.52 2.51 3.92 3.41 1.72

(2.91)

4 1.98 1.84 2.24 2.70 2.76 0.78

(1.36)

5 (big) 1.48 1.60 1.49 1.73 1.97 0.49

(0.98)

5− 1 0.29 −1.05 −1.26 −1.54 −1.83
t (5− 1) (0.37) (−1.59) (−2.09) (−2.83) (−2.95)

Panel B: Average Excess Returns Sorted by Size (Row) and LS Beta (Column)

1(low) 2 3 4 5 (high) 5− 1
t (5− 1)

1(small) 3.80 3.27 2.75 2.66 1.19 −2.61
(−4.53)

2 3.28 2.97 3.02 2.37 1.69 −1.59
(−2.70)

3 3.41 2.51 3.92 2.52 1.68 −1.72
(−2.91)

4 2.76 2.70 2.24 1.84 1.98 −0.78
(−1.36)

5 (big) 1.97 1.73 1.49 1.60 1.48 −0.49
(−0.98)

5− 1 −1.83 −1.54 −1.26 −1.05 0.29

t (5− 1) (−2.95) (−2.83) (−2.09) (−1.59) (0.37)

Panel C: Labor Share Betas Sorted by Size (Row) and BM (Column)

1(low) 2 3 4 5 (high)

1(small) 0.78 −1.94 −2.63 −2.74 −5.27
2 −1.48 −2.21 −2.95 −2.61 −3.81
3 −1.16 −2.61 −3.30 −3.15 −3.74
4 −0.27 −2.66 −2.69 −2.70 −3.22

5 (big) 1.19 −0.34 −0.36 −0.56 −0.85

Table A1: Equally weighted portfolio excess returns are reported in quarterly percentage point. Labor
share betas are estimated using long horizon regression of long horizon quarterly returns on long horizon

Labor Share Growth. 5-1 stands for the difference between returns in corresponding group 5 and 1. The

sample spans the period 1963Q1 to 2013Q4



Non linear GMM, Gross Excess Return, 25 Size/book-market Portfolios

Aggregate Consumption (χ = 0) Top 1%, Unrestricted χ

H R2 (%) α γ HJ RMSE RMSE
RMSR R2 (%) α γ χ HJ RMSE

1 8.4 −0.001 89.89 0.61 0.7 0.30 22.4 0.001 81.21 0.43 0.38 3.3

(0.013) (42.40) (0.011) (55.66) (0.28)

2 19.0 −0.009 54.97 0.46 0.7 0.28 27.1 0.003 20.06 0.42 0.34 3.1

(0.018) (30.94) (0.010) (21.27) (0.53)

4 31.6 −0.004 19.56 0.30 0.6 0.26 52.3 −0.002 9.69 0.57 0.22 2.5

(0.017) (11.08) (0.011) (6.55) (0.52)

6 34.8 0.001 10.18 0.21 0.6 0.25 69.3 −0.007 9.94 0.39 0.20 2.0

(0.014) (5.87) (0.016) (5.17) (0.28)

8 39.9 0.004 6.25 0.16 0.6 0.25 82.8 0.005 4.88 0.55 0.13 1.5

(0.011) (3.44) (0.010) (2.30) (0.28)

10 41.1 0.008 4.16 0.13 0.6 0.24 83.5 0.011 2.44 0.82 0.10 1.5

(0.009) (2.31) (0.008) (1.42) (0.51)

12 39.4 0.011 2.97 0.11 0.6 0.24 81.4 0.012 2.26 0.62 0.10 1.6

(0.007) (1.73) (0.006) (1.04) (0.34)

15 38.9 0.013 1.96 0.10 0.6 0.25 83.3 0.018 0.71 2.17 0.09 1.5

(0.006) (1.19) (0.006) (0.62) (1.90)

Table A2: HJ refers to HJ distance, defined as

√
gT

(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error in parenthesis. GMM uses an identity matrix

except that the weight on the last moment is large. Covariance matrices are calculated using Newey West procedure with lags H + 1. The cross

sectional R square is defined as R2 = 1 − V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂ +

ET [(Mωi
t+H,t−µ̂)Re

t+H,t]
µ̂ . The pricing error is defined as

RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR=
√

1
N

∑N
i=1 (ET (Rei ))

2. RMSE is reported in quarterly percentage point. The percentile SDF

M i
t+H,t = βH

(
Ct+H
Ct

)−γ {[( ̂Y i
t+H/Yt+H

Ŷ i
t /Yt

)χi]−γ}
, where Ŷ it /Y t is the fitted value of regression of i’s group stock owner income share Y

i
t /Y t on the

capital share (1− LSt). The right panel restricts to 99%-100% stock wealth holders. Bolded indicate significance at 5 percent or better level. The

sample spans the period 1963Q1 to 2013Q4.



Non linear GMM, Gross Excess Return, 25 Size/book-market Portfolios

Aggregate Consumption (χ = 0) Top 5%, Unrestricted χ

H R2 (%) α γ HJ RMSE RMSE
RMSR R2 (%) α γ χ HJ RMSE

1 8.4 −0.001 89.89 0.61 0.7 0.30 16.7 0.002 66.27 0.73 0.54 3.4

(0.013) (42.40) (0.009) (43.84) (0.69)

2 19.0 −0.009 54.97 0.46 0.7 0.28 29.2 0.003 16.15 1.19 0.34 3.1

(0.018) (30.94) (0.012) (28.26) (2.24)

4 31.6 −0.004 19.56 0.30 0.6 0.26 51.7 −0.003 11.57 0.84 0.23 2.5

(0.017) (11.08) (0.012) (7.35) (0.81)

6 34.8 0.001 10.18 0.21 0.6 0.25 79.0 0.006 3.43 2.40 0.16 1.7

(0.014) (5.87) (0.011) (3.30) (2.26)

8 39.9 0.004 6.25 0.16 0.6 0.25 86.0 0.010 2.71 2.21 0.16 1.4

(0.011) (3.44) (0.010) (2.30) (1.83)

10 41.1 0.008 4.16 0.13 0.6 0.24 84.0 0.012 2.13 1.82 0.12 1.5

(0.009) (2.31) (0.008) (1.44) (1.29)

12 39.4 0.011 2.97 0.11 0.6 0.24 83.3 0.015 1.49 2.15 0.10 1.5

(0.007) (1.73) (0.006) (1.06) (1.63)

15 38.9 0.013 1.96 0.10 0.6 0.25 82.4 0.019 0.63 4.57 0.09 1.5

(0.006) (1.19) (0.006) (0.63) (4.67)

Table A3: HJ refers to HJ distance, defined as

√
gT

(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error in parenthesis. GMM uses an identity matrix

except that the weight on the last moment is large. Covariance matrices are calculated using Newey West procedure with lags H + 1. The cross

sectional R square is defined as R2 = 1 − V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂ +

ET [(Mωi
t+H,t−µ̂)Re

t+H,t]
µ̂ . The pricing error is defined as

RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR=
√

1
N

∑N
i=1 (ET (Rei ))

2. RMSE is reported in quarterly percentage point. The percentile SDF

M i
t+H,t = βH

(
Ct+H
Ct

)−γ {[( ̂Y i
t+H/Yt+H

Ŷ i
t /Yt

)χi]−γ}
, where Ŷ it /Y t is the fitted value of regression of i’s group stock owner income share Y

i
t /Y t on the

capital share (1− LSt). The right panel restricts to 95%-100% stock wealth holders. Bolded indicate significance at 5 percent or better level. The

sample spans the period 1963Q1 to 2013Q4.



Non linear GMM, Gross Excess Return, Long Reversal Portfolio

Aggregate Consumption (χ = 0) Top 5%, Unrestricted χ

H R2 (%) α γ HJ RMSE RMSE
RMSR R2 (%) α γ χ HJ RMSE

1 6.6 0.012 33.63 0.21 0.5 0.25 23.3 0.011 22.42 1.04 0.21 1.3

(0.013) (42.75) (0.011) (88.03) (5.80)

2 0.1 0.018 2.51 0.24 0.5 0.25 41.3 0.000 21.69 0.83 0.19 1.2

(0.018) (26.26) (0.011) (38.05) (1.89)

4 3.2 0.011 7.31 0.19 0.5 0.25 70.7 0.005 5.26 1.75 0.11 0.8

(0.017) (9.23) (0.008) (10.66) (4.44)

6 1.0 0.014 2.75 0.17 0.5 0.25 89.0 0.010 2.56 2.18 0.07 0.5

(0.014) (5.72) (0.008) (4.61) (4.65)

8 5.6 0.008 4.67 0.17 0.5 0.25 90.1 0.014 1.82 2.21 0.05 0.5

(0.011) (4.10) (0.007) (2.87) (4.09)

10 15.2 0.003 5.77 0.19 0.4 0.23 87.2 0.018 0.08 39.62 0.05 0.6

(0.009) (2.87) (0.007) (2.36) (120.2)

12 19.4 0.003 5.15 0.19 0.4 0.23 81.3 0.016 1.10 2.22 0.04 0.7

(0.007) (1.73) (0.007) (1.86) (4.38)

15 7.2 0.009 2.69 0.06 0.5 0.24 33.4 0.012 4.98 0.28 0.08 1.3

(0.005) (1.19) (0.012) (3.47) (0.49)

Table A4: HJ refers to HJ distance, defined as

√
gT

(
b̂
)′ (

1
TR

e′
t R

e
t

)−1
gT

(
b̂
)
. Standard error in parenthesis. GMM uses an identity matrix

except that the weight on the last moment is large. Covariance matrices are calculated using Newey West procedure with lags H + 1. The cross

sectional R square is defined as R2 = 1 − V arc(ET (Re
i )−R̂e

i )
V arc(ET (Re

i ))
, where the fitted value R̂ei = α̂ +

ET [(Mωi
t+H,t−µ̂)Re

t+H,t]
µ̂ . The pricing error is defined as

RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR=
√

1
N

∑N
i=1 (ET (Rei ))

2. RMSE is reported in quarterly percentage point. The percentile SDF

M i
t+H,t = βH

(
Ct+H
Ct

)−γ {[( ̂Y i
t+H/Yt+H

Ŷ i
t /Yt

)χi]−γ}
, where Ŷ it /Y t is the fitted value of regression of i’s group stock owner income share Y

i
t /Y t on the

capital share (1− LSt). The right panel restricts to 95%-100% stock wealth holders. Bolded indicate significance at 5 percent or better level. The

sample spans the period 1963Q1 to 2013Q4.



Linear Two Pass Regression, Log Excess Returns

ET

(
rei,t

)
+ 1

2V ar
(
rei,t

)
= λ0 + λ′β+ui

Estimates of Factor Risk Prices λ, 25 Size/book-market Portfolios

H Constant ∆ct+H,t ∆ log (1− LSt+H,t) R̄2 H Constant ∆ct+H,t ∆ log (1− LSt+H,t) R̄2

1 1.52 0.24 0.05 12 1.66 0.29 0.15

(1.79) (1.17) (2.15) (1.47)

1 2.39 −0.08 −0.04 12 1.83 0.74 0.71

(5.23) (−0.18) (2.40) (2.39)

1 1.56 0.24 −0.09 0.01 12 1.44 0.05 0.63 0.68

(1.90) (1.19) (−0.14) (1.82) (0.47) (2.71)

4 1.01 0.12 16 1.88 0.25 0.15

(0.82) (0.82) (2.80) (1.52)

4 0.91 0.74 0.34 16 2.13 0.65 0.67

(0.96) (1.53) (3.59) (2.48)

4 0.21 0.23 0.65 0.37 16 1.81 −0.01 0.53 0.75

(0.16) (0.99) (1.52) (3.03) (−0.09) (2.53)

8 1.30 0.32 0.12 20 2.08 0.22 0.13

(1.29) (1.38) (3.09) (1.57)

8 1.40 0.89 0.72 20 2.19 0.61 0.51

(1.22) (2.18) (3.22) (2.31)

8 0.83 0.10 0.79 0.76 20 1.91 −0.03 0.49 0.67

(0.58) (0.65) (2.42) (2.85) (−0.29) (2.10)

Table A5: Estimates from GMM are reported for each specification. Newey West t-stats in parenthesis corrected with lag 20. Bolded indicate

significance at 5 percent or better level. R̄2 is adjusted R2 statistics, corrected for the number of regressors. A Jensen corrected term is included in

the estimation. All Coeffi cients are scaled by multiple of 100. The sample spans the period 1963Q1 to 2013Q4.



Percent of Total Income Y , sorted by Stock Wealth, Stock Owner

Percentile of Stock Wealth 1989 1992 1995 1998 2001 2004 2007 2010 2013

< 70% 46.70% 49.24% 48.57% 48.02% 43.33% 44.80% 41.09% 42.40% 41.32%

70− 85% 15.40% 17.04% 17.32% 14.88% 15.90% 16.01% 15.34% 15.60% 16.29%

85− 90% 5.32% 7.74% 6.09% 6.17% 6.92% 7.43% 6.90% 7.53% 6.95%

90− 95% 8.15% 6.90% 8.80% 9.92% 8.65% 8.45% 9.08% 11.27% 9.70%

95− 100% 24.45% 19.02% 19.34% 20.83% 25.26% 23.38% 27.70% 23.27% 25.81%

Top 5 Percentile

95− 96% 3.90% 2.63% 1.55% 2.59% 2.71% 2.27% 2.59% 2.77% 2.15%

96− 97% 2.35% 2.98% 2.37% 2.07% 2.52% 2.55% 2.74% 3.64% 2.95%

97− 98% 2.42% 2.94% 2.37% 3.40% 4.54% 3.22% 3.93% 4.10% 3.56%

98− 99% 4.23% 4.24% 3.93% 4.82% 5.08% 4.26% 5.41% 4.33% 4.44%

99− 100% 11.53% 6.29% 9.08% 7.99% 10.38% 11.08% 13.05% 8.40% 12.75%

(Total) 24.45% 19.02% 19.34% 20.83% 25.26% 23.38% 27.70% 23.27% 25.81%

Table A6: Source from Survey of Consumer Finances 1989-2013. Stock Wealth include both direct and indirect holdings of public stock. Indirect

holdings include annuities, trusts, mutual funds, IRA, Keogh Plan, other retirement accounts.



Cross Sectional Correlation Between Betas

H 25 Size-Book/Market 10 Long Reversal

Panel B: corr
(
β̂j,C,H , β̂j,KS,H

)
1 0.11 0.69

2 0.54 0.63

4 0.52 0.37

8 0.65 0.72

12 0.73 0.89

16 0.82 0.91

Table A7: The beta β′s are estimated from time series regression of long horizon excess returns of each test portfolios with horizon H on

both long horizon consumption and labor shares. Labor shares are using non-farm sector. β∆c =
Cov(rei,t+H,t,lnCt+H−lnCt)

V ar(lnCt+H−lnCt)
, β∆ log(1−LS) =

Cov
(
rei,t+H,t,ln

1−LSt+H
1−LSt

)
V ar

(
ln

1−LSt+H
1−LSt

) . Sample spans the period 1963Q1 to 2013Q3



Linear Expected Return-Beta Regressions

ET

(
Rei,t

)
= λ0 + λ′β + εi

Estimates of Factor Risk Prices λ, Non-overlapping Samples

25 Size/Book-Market Portfolio 10 Momentum Portfolio

H λ0
1−LSt+H
1−LSt R̄2 RMSE RMSE

RMSR λ0
1−LSt+H
1−LSt R̄2 RMSE RMSE

RMSR

1 2.24 0.43 −0.03 0.68 0.27 2.84 −2.21 0.06 0.84 0.45

(4.87) (0.71) (4.06) (−2.46)

4 0.72 0.72 0.47 0.49 0.20 3.53 −0.92 0.74 0.44 0.24

(1.29) (2.93) (5.73) (−3.24)

6 1.07 0.74 0.75 0.34 0.14 2.77 −0.87 0.91 0.26 0.14

(1.72) (3.95) (4.74) (−3.60)

8 1.69 0.69 0.77 0.32 0.13 2.03 −0.76 0.94 0.22 0.12

(2.40) (4.45) (3.20) (−3.91)

12 2.10 0.45 0.81 0.29 0.12 1.35 −0.58 0.87 0.32 0.17

(2.94) (4.31) (2.01) (−4.17)

15 2.28 0.39 0.81 0.30 0.12 1.08 −0.50 0.89 0.29 0.16

(3.18) (4.45) (1.53) (−4.26)

Table A8: Fama-MacBeth regressions of average returns on factor betas. Fama-MacBeth t-statistics in parenthesis. Bolded coeffi cients
indicate statistical significance at 5 percent or better level. All coeffi cients have been scaled by 100. The pricing error is defined as RMSE =√

1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

and RMSR =
√

1
N

∑N
i=1 (ET (Rei ))

2 where R̂ei ≡ α̂ + β̂
′
λ̂. The non overlapping sample spans the period 1963Q1 to

2013Q4.



Explaining Quarterly Excess Returns on 25 Size-Book/Market Portfolios

LH Consumption and Labor Share Betas for H =8

Estimates of Factor Risk Prices λ, 25 Size-book/market Portfolios

Constant Ct+H
Ct

1−LSt+H
1−LSt Rmt+H,t SMBt+H,t HMLt+H,t R̄2 RMSE RMSE

RMSR

1.54 0.71 0.79 0.31 0.12

(2.18) (4.45)

[2.14] [4.37]

1.07 0.10 0.58 0.84 0.26 0.10

(1.50) (1.06) (4.37)

[1.47] [1.05] [4.31]

2.24 −0.44 −0.04 0.70 0.30

(3.84) (−0.06)

[3.84] [−0.06]

1.27 0.73 1.24 0.79 0.31 0.13

(2.34) (4.38) (0.17)

[2.29] (4.29) [0.17]

0.60 −37.98 −2.74 −10.29 0.33 0.53 0.23

(0.78) (−3.36) (−0.34) (−1.38)

[0.41] [−1.77] [−0.18] [−0.72]

0.29 0.72 −8.77 −11.95 1.58 0.79 0.29 0.13

(0.39) (5.20) (−0.82) (−1.64) (0.24)

[0.33] [4.36] [−0.69] [−1.38] [0.20]

−0.07 0.17 0.69 −2.64 −13.60 2.41 0.84 0.25 0.11

(−0.08) (1.80) (5.22) (−0.24) (−1.93) (0.37)

[−0.07] [1.50] [4.32] [−0.20] [−1.61] [0.31]

Table A9: Fama-MacBeth regressions of average returns on factor betas. Fama-MacBeth t-statistics in parenthesis and Shanken (1992)
Corrected t-statistics in brackets. Bolded coeffi cients indicate statistical significance at 5 percent or better level. All coeffi cients have been scaled by

100. The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
ET (Rei )− R̂ei

)2

andRMSR =
√

1
N

∑N
i=1 (ET (Rei ))

2 where R̂ei ≡ α̂+β̂
′
λ̂. Rm, SMB,HML

are three Fama French factors for pricing size - book/market portfolios. The long horizon Fama French factors Rmt+H,t =
H∏
h=1

Rmt+h, where Rm is

market gross return. The long horizon SMB and HML are constructed using 2×3 size-book/market portfolios according to the formula in professor

French’s data library. SMBt+H,t =
H∏
h=1

Rsmallt+h −
H∏
h=1

Rbigt+h where R
small = 1

3 (RS1B1 +RS2B1 +RS3B1) and Rbig = 1
3 (RS1B2 +RS2B2 +RS3B2).

HMLt+H,t =
H∏
h=1

RValuet+h −
H∏
h=1

RGrowtht+h where RValue = 1
2 (RS3B1 +RS3B2) and RValue = 1

2 (RS1B1 +RS1B2). The sample spans the period 1963Q1

to 2013Q4.



Estimation of Labor Share Beta using Simulation Data

Gross LH market returns RM
t+H,t regressed on

LSt+H
LSt

H 1 4 8 10 12 16

βMLS,H −0.47 −0.53 −0.62 −0.67 −0.70 −0.75

t
(
βMLS,H

)
−10.40 −13.35 −16.50 −17.81 −18.97 −20.46

R̄2 0.011 0.017 0.026 0.031 0.035 0.040

Table A10: OLS estimation of coeffi cient, OLS t-stats, and adjusted R-sq reported. Simulated Data from Greenwald, Lettau and Ludvigson (2013)
spans 10,000 quarters




