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1 Introduction

A recent conversation in economics about the relative merits of “structural” and “reduced-form”
methods centers, in part, on the perception that “the often complex computational methods that are
required to implement [structural estimation] make it less transparent” (Heckman 2010, p. 358),
and that “it’s hard to see precisely which features of the data drive the ultimate results” (Angrist
and Pischke 2010, p. 21). Perhaps in response to this critique, it has become increasingly common
for articles using structural methods to describe informally how the results relate to key moments
of the data.

While these discussions are commonly framed in terms of “identification,” Keane (2010) notes
that they often do not speak to issues of identification in the formal sense.1 A model is identified
if, under its assumptions, alternative values of the parameters imply different distributions of ob-
servable data (Matzkin 2013). This is a binary property: claims that a moment is the “main” or
“primary” source of identification are hard to interpret.2 It is a property of a model, not the way it
is estimated: saying that a parameter is identified by a moment need not mean that changing that
moment would affect a particular estimate, or even that the moment must be involved in estima-
tion at all. Authors often acknowledge the imprecision of their statements by saying they discuss
identification “loosely,” “casually,” or “heuristically.”3

In this paper, we suggest a different way to look at the the relationship between an estimator and
the moments of the data it depends on. We introduce a measure that describes the sensitivity of an
estimator to small perturbations of individual moments, holding other relevant moments constant.
We show that this measure can be computed at low cost even for complex models. We argue
that it can shed light on which features of the data drive key conclusions, and so make structural

1Keane (2010) writes: “Advocates of the ‘experimentalist’ approach often criticize structural estimation because,
they argue, it is not clear how parameters are ‘identified’. What is meant by ‘identified’ here is subtly different from the
traditional use of the term in econometric theory — i.e., that a model satisfies technical conditions insuring a unique
global maximum for the statistical objective function. Here, the phrase ‘how a parameter is identified’ refers instead
to a more intuitive notion that can be roughly phrased as follows: What are the key features of the data, or the key
sources of (assumed) exogenous variation in the data, or the key a priori theoretical or statistical assumptions imposed
in the estimation, that drive the quantitative values of the parameter estimates, and strongly influence the substantive
conclusions drawn from the estimation exercise?” (p. 6).

2Altonji et al. (2005) write: “Both [exclusion restrictions and functional form restrictions] contribute to identifica-
tion.... We explore whether the source of identification is primarily coming from the exclusion restrictions or primarily
coming from the functional form restrictions” (p. 814). Goettler and Gordon (2011) write: “The demand-side param-
eters... are primarily identified by [a set of moments].... The supply-side parameters... are primarily identified by [a
different set of moments].” DellaVigna et al. (2012) write: “Though the parameters are estimated jointly, it is possible
to address the main sources of identification of individual parameters.” (Emphasis added.)

3Einav et al. (2015) write, “Loosely speaking, identification [of three key parameters] relies on three important
features of our model and data...” Crawford and Yurukoglu (2012) write, “One may casually think of [a set of mo-
ments] as ‘empirically identifying’ [a set of parameters].” Gentzkow et al. (2014) offer a “heuristic” discussion of
identification which they conclude by saying “Although [we treat] the different steps as separable, the... parameters
are in fact jointly determined and jointly estimated.” (Emphasis added.)

2



estimation more transparent. We also show that it can be interpreted as a measure of sensitivity
to violations of specific identifying assumptions, providing a way to translate heuristic discussion
into precise statements about the credibility of a researcher’s conclusions in the face of model
misspecification.

Our analysis takes as given that a model is identified and focuses on the way a specific esti-
mator maps data features into results. We see this as a complement to, not a substitute for, formal
analysis of identification. We think it is closer to the concept that some authors have in mind when
discussing identification informally.

We consider the following setting. A sample of size n is drawn from a distribution F (·|θ ,ψ),
where θ is a finite-dimensional parameter vector of interest with true value θ0, and ψ is a possibly
infinite-dimensional nuisance parameter with true value ψ0. A researcher computes an estimator
θ̂ that minimizes a criterion function ĝ(θ)′Ŵ ĝ(θ), where ĝ(θ) is a function of data and param-
eters and Ŵ is a data-dependent weight matrix. We assume standard regularity conditions such
that θ̂ is consistent and asymptotically normal (as in Newey and McFadden 1994). This class of
minimum distance estimators (MDEs) includes generalized method of moments (GMM), classical
minimum distance (CMD), maximum likelihood (MLE), and their simulation-based analogues,
and so encompasses most of the workhorse methods of structural point estimation. We focus on
characterizing the drivers of θ̂ , but we show that our approach extends naturally to the case where
the outcome of interest is a function of θ̂ , such as a counterfactual experiment or welfare calcula-
tion.

Our goal is to characterize the sensitivity of θ̂ to the estimation moments ĝ(·). We consider
two ways to pose this question. One starts from the observed realization of the data and asks how
θ̂ would change with small perturbations of the realized moment functions ĝ(·). The other asks
how the population value of θ̂ would change if we perturb the population values of the moments
g(θ) = plim ĝ(θ). We show that both questions have the same answer in large samples. Our
measure of sensitivity Λ is this limiting value. It can be written as Λ=− (G′WG)−1 G′W , where
G is the Jacobian of g(·) at θ0 and W is the probability limit of Ŵ . Since standard approaches to
inference on θ employ plug-in estimates of G and W , sensitivity can be consistently estimated at
essentially zero computational cost in most applications.

We show that Λ can be interpreted formally as a measure of sensitivity to local model mis-
specification. The standard econometric assumption that ĝ(θ0) converges to zero encodes a set
of economic assumptions, such as exclusion restrictions or optimality conditions. Perturbing the
population value of the moments is equivalent to allowing small violations of these assumptions.
Our measure captures the effect of such violations on the estimates of interest. In the case of CMD
or indirect inference, where the moments ĝ(θ) = ŝ−s(θ) are differences between predicted quan-
tities s(θ) and their empirical analogues ŝ, we show that it can be used to assess the bias resulting
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from either misspecification of s(θ) or mismeasurement of ŝ. In the case of nonlinear instrumental
variables (IV), where the moments ĝ(θ) = Z′ζ̂ (θ) are the product of excluded instruments Z and
structural error terms ζ̂ (θ), we show that it can be used to assess the effect of omitted variables
that introduce correlation between the errors and the instruments.

This latter result delivers a local analogue of the usual omitted variables bias formula that
applies to nonlinear IV settings such as the demand model of Berry et al. (hereafter “BLP,” 1995).
It generalizes the findings of Conley et al. (2012) on the effect of local misspecification in a linear
IV setting.

We argue that sensitivity can be a valuable addition to the applied economist’s toolkit. Most
simply, it provides a low-cost way to answer Angrist and Pischke’s (2010) question—“which fea-
tures of the data drive the ultimate results?”—in the context of computationally challenging mod-
els. Sensitivity is the limit of the partial derivative of the realized estimate with respect to the
realized moments ĝ

(
θ̂
)

in a particular sample. A moment “drives” an estimate in this sense to the
extent that small changes in the moment lead to substantially different results.

Sensitivity also provides a formal rationale for why we want to answer Angrist and Pischke’s
(2010) question in the first place. If the statistical model is correct and the estimator is efficient,
it is not obvious why we would care how the estimator translates data into conclusions. This
knowledge becomes essential, however, once we entertain the possibility of misspecification. An
estimator that depends on changes in individuals’ behavior over time will be valid under different
assumptions than an estimator that compares different individuals at a point in time. An estimator
that depends only on values of an outcome local to a discontinuity may be valid under more credible
assumptions than one that depends on data far from the discontinuity (Gelman and Imbens 2014).
Sensitivity is the effect of changing the population moments on the limiting value of the estimator.
It therefore tells us how the estimator will behave if population moments do not behave exactly as
the researcher has assumed.

We illustrate the utility of our approach with three applications. The first is to BLP’s (1995)
model of automobile demand and pricing. The moments ĝ(θ) used to estimate the model are
products of vehicle characteristics—used as excluded instruments—with demand- and supply-side
errors. The moment conditions encode the economic assumption that a particular vehicle charac-
teristic is orthogonal to unobserved variation in either utility or marginal cost. These assumptions
could be violated if vehicle characteristics respond to unobserved demand shocks (as in Fan 2013
and Wollmann 2016) or if economies of scope lead marginal costs to depend on the lines of vehicles
produced (as suggested by Levitt et al. 2013).

We apply our measure to assess sensitivity to such violations. We focus on one of the model’s
key outputs, the estimated average markup. This quantity is of direct interest as a measure of mar-
ket power, and it is one of the features of the estimates that informs evaluations of policies such
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as trade restrictions (BLP 1999), mergers (Nevo 2000), and the introduction of new goods (Petrin
2002). We find that the sensitivity of the markup to the supply moments is larger than the sensi-
tivity to the demand moments on average, with a single moment—the product of a car’s marginal
cost shock with the number of vehicle models produced by the same firm—playing a particularly
important role. This suggests that economies of scope may be among the most significant threats
to validity. We apply our misspecification results to evaluate quantitatively the bias that would be
introduced by such economies of scope, as well as by correlation between demand errors and the
composition of product lines. Both violations cause meaningful bias.

Our second application is to Gourinchas and Parker’s (2002) model of lifecycle consumption.
The model allows both consumption-smoothing (“lifecycle”) and precautionary motives for sav-
ings. The authors find that precautionary incentives dominate at young ages, while lifecycle mo-
tives dominate later in life, providing a rationale for the observed combination of a hump-shaped
consumption profile and high marginal propensity to consume out of income shocks at young ages.
We apply our measure to assess the sensitivity of the conclusions to violations of two key assump-
tions: separability of consumption and leisure in utility, and the absence of unobserved income
sources. We show that realistic violations of separability could substantially affect the results.
For example, we show that varying shopping intensity as in Aguiar and Hurst (2007) would mean
that the estimates substantially understate the importance of precautionary motives relative to life-
cycle savings. We also show that the presence of within-family transfers, a potential source of
unobserved income, would have a similar effect.

Our final application is to DellaVigna et al.’s (2012) model of charitable giving. The authors use
a field experiment in conjunction with with a structural model to distinguish altruistic motives and
social pressure as drivers of giving. They find that social pressure is an important driver and that
the average household visited by their door-to-door solicitors is made worse off by the solicitation
as a result. We apply our measure to assess the sensitivity of these conclusions to a key functional
form assumption that causes households who are very sensitive to social pressure to bunch their
donations at $10. We show that even very small perturbations away from this assumption can
change the estimated social pressure, but that the implied bias is small, and adjusting for it would
tend to strengthen the qualitative conclusions.

In appendix A, we discuss two alternative approaches that have appeared in the literature. One
is to ask how the parameter estimates change when the moment of interest is dropped from the
estimation. We show that the limiting value of this change is the product of our sensitivity measure
and the degree of misspecification of the dropped moment. The other is to ask how the value of
the moments simulated from the model change when we vary a particular parameter. We show
that this has a limiting value proportional to a generalized inverse of our measure. Neither of these
alternative methods delivers a measure of sensitivity to misspecification, and neither is a reliable
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guide to which moments “drive” a parameter in the sense that changing the realized value of the
moment would change the realized estimate.

We emphasize two limitations to our approach. The first is that we consider sensitivity to local
perturbations only. The sensitivity of the estimator to perturbations over a larger range could in
principle look very different.

The second limitation is that the units of Λ are contingent on the units of ĝ(θ). Changing the
measurement of an element ĝ j (θ) from, say, dollars to euros, changes the corresponding elements
of Λ. This does not affect the bias we estimate for specific forms of misspecification, but it does
matter for qualitative conclusions about the relative importance of different moments. The problem
is analogous to the classic problem of comparing the magnitude of regression coefficients, and it
has no perfect solution. In the paper, we propose a default normalization that is analogous to
standardizing a regressor to have a standard deviation of unity.

Our work has a number of antecedents. Our approach is related to influence function calcula-
tions for determining the distribution of estimators (Huber and Ronchetti 2009), and is particularly
close to the large literature on moment estimators under local misspecification (for example Newey
1985; Berkowitz et al. 2008; Guggenberger 2012; Conley et al. 2012; Nevo and Rosen 2012; Ki-
tamura et al. 2013). Our results also relate the literature on sensitivity analysis (including Leamer
1983; Sobol 1993; Saltelli et al. 2008; Chen et al. 2015), though our focus is on local, rather than
global, deviations from the assumed model.

Relative to the existing literature on local misspecification, our main contribution is the pro-
posal to report the sensitivity matrix alongside structural estimates, both to complement heuristic
discussions of sensitivity and to allow readers to assess the impact of interesting forms of misspec-
ification. In this sense, our approach is similar to Müller’s (2012) measure of prior sensitivity for
Bayesian models, which allows readers to adjust reported results to better reflect their own priors.
A second contribution of this paper is to characterize the finite-sample derivative of the minimum
distance estimator with respect to the estimation moments, and to show that this derivative’s limit-
ing value is the sensitivity matrix.

The remainder of the paper is organized as follows. Section 2 defines sensitivity and char-
acterizes its properties. Section 3 derives results for the special cases of CMD and IV. Section
4 considers estimation. Section 5 presents our applications and Section 6 concludes. Appendix
A discusses some common alternatives, and the online appendix extends our main results along
several dimensions.
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2 Measure

We have observations Di ∈D for i = 1, ...,n, which comprise a sample D ∈Dn. A model implies
that Di follows F (·|θ ,ψ), where θ is a finite-dimensional parameter of interest with true value θ0

and ψ is a possibly infinite-dimensional nuisance parameter with true value ψ0. When it does not
introduce ambiguity, we abbreviate the distribution F (·|θ0,ψ0) of Di under this model by F , and
the sequence of distributions of the sample by Fn ≡ {×nF}n.

The estimator θ̂ solves

(1) min
θ∈Θ

ĝ(θ)′Ŵ ĝ(θ) ,

where Θ is a compact subset of RP known to contain θ0 in its interior.
The object ĝ(θ) is a J-dimensional function of parameters and data continuously differentiable

in θ with Jacobian Ĝ(θ). Under Fn: (i)
√

nĝ(θ0)
d→ N (0,Ω); (ii) Ŵ converges in probability to

a positive semi-definite matrix W ; (iii) ĝ(θ) and Ĝ(θ) converge uniformly in probability to con-
tinuous functions g(θ) and G(θ); and (iv) G′WG = G(θ0)

′WG(θ0) is nonsingular. We assume
that g(θ)′Wg(θ) has a unique minimum at θ0. Under these assumptions, θ̂ is consistent, asymp-
totically normal, and asymptotically unbiased with variance Σ = (G′WG)−1 G′WΩWG(G′WG)−1

(Newey and McFadden 1994).
Our measure of sensitivity is as follows.

Definition. The sensitivity of θ̂ to ĝ(θ0) is

Λ =−
(
G′WG

)−1 G′W.

We consider two interpretations of the sensitivity of the estimator θ̂ to small perturbations of the
moments. One is the effect of perturbing the realized moment functions ĝ(·) on the realization of
θ̂ in a particular sample. The other is the effect of perturbing the population values of the moments
g(θ0) on the asymptotic behavior of θ̂ . We show that Λ is the limiting value of the answer to the
first question, and that Λ is the answer to the second question posed either in terms of small fixed
perturbations to g(θ0) or perturbations that grow small with n.

Consider, first, how the estimate θ̂ in a particular sample changes when we perturb the real-
ized moment functions ĝ(θ). Define a family of perturbed moments ĝ(θ ,δ ), where the scalar δ

controls the degree of perturbation and ĝ(θ ,0) = ĝ(θ). Define the resulting estimator θ̂ (δ ) to
solve

(2) min
θ∈Θ

ĝ(θ ,δ )′Ŵ ĝ(θ ,δ ) .
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We assume that ĝ(θ ,δ ) and Ĝ(θ ,δ ) = ∂

∂θ
ĝ(θ ,δ ) are continuously differentiable in (θ ,δ ) on

Θ×Bδ , for some ball Bδ around zero. This is true, for example, if ĝ(θ ,δ ) = ĝ(θ)+ δ ·η for
some vector η .

Define the sample sensitivity of θ̂ to ĝ(·) to be

Λ̂S =−
(

Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ̂
)
+ Â
)−1

Ĝ
(
θ̂
)′

Ŵ ,

where
Â =

[
Ĝ1
(
θ̂
)′

Ŵ ĝ
(
θ̂
)

... ĜP
(
θ̂
)′

Ŵ ĝ
(
θ̂
) ]

,

and Ĝp
(
θ̂
)

is the partial derivative of Ĝ
(
θ̂
)

with respect to the p-th element of θ .
Sample sensitivity measures the derivative of θ̂ with respect to perturbations of the moments

without any assumptions on the data generating process. Specifically, if θ̂ is the unique solution to
(1) and lies in the interior of Θ, then

∂

∂δ
θ̂ (δ ) = Λ̂S

∂

∂δ
ĝ
(
θ̂ ,0
)

whenever Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ̂
)
+ Â is non-singular. (This is proved in the online appendix as a conse-

quence of a more general result.)
To relate Λ̂S to Λ, we make an additional technical assumption.

Assumption 1. For 1 ≤ p ≤ P and Bθ a ball around θ0, supθ∈Bθ
‖Ĝp (θ)‖ is asymptotically

bounded.4

This condition is satisfied if, for example, Ĝp (θ) converges to a continuous function Gp (θ) uni-
formly on Bθ . Assumption 1 is sufficient to ensure that Â

p→ 0. Since the sample analogues of G

and W converge to their population counterparts, Λ̂S converges to Λ.

Proposition 1. Under assumption 1, Λ̂S
p−→ Λ under Fn as n→ ∞.

Proof. See appendix.

Consider, next, what happens to the asymptotic distribution of θ̂ as we perturb the population
value of the moments g(θ0). Define a family of perturbed distributions F (·|θ ,ψ,µ), where µ con-
trols the degree of perturbation and F (·|θ ,ψ,0) = F (·|θ ,ψ). Let Fn (µ) ≡ {×nF (·|θ0,ψ0,µ)}n.
When µ 6= 0, the model is misspecified in the sense that under Fn (µ), ĝ(θ0) X

p−→ 0. Proposition 2
below shows that Λ relates changes in the population values of the moments resulting from such
misspecification to changes in the limiting value of the estimator.

4In particular, for any ε > 0, there exists a finite constant r (ε) such that
limsupn→∞ Pr

{
supθ∈Bθ

‖ ∂

∂θp
Ĝ(θ)‖> r (ε)

}
< ε .
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Assumption 2. For a ball Bµ around zero, we have that under Fn (µ) for any µ ∈Bµ , (i) ĝ(θ)

and Ĝ(θ) converge uniformly in θ to functions g(θ ,µ) and G(θ ,µ) that are continuously dif-

ferentiable in (θ ,µ) on Θ×Bµ , and (ii) Ŵ
p→W (µ) for W (µ) continuously differentiable on

Bµ .

Proposition 2. Under assumption 2, there exists a ball B∗µ ⊂Bµ around zero such that for any

µ ∈B∗µ , θ̂ converges in probability under Fn (µ) to a continuously differentiable function θ (µ),

and
∂

∂ µ
θ (0) = Λ

∂

∂ µ
g(θ0,0) .

Proof. See appendix.

Under the fixed levels of misspecification µ contemplated in proposition 2, many conventional
asymptotic approximations—in particular the usual standard errors—are no longer valid. For this
reason, the literature on misspecification (e.g., Newey 1985; Conley et al. 2012) often allows the
perturbation to shrink with the sample size. Under appropriate rate conditions, the asymptotic
effect of the perturbation is on the same order as sampling uncertainty, and it is often possible
to characterize the bias in the asymptotic distribution of the estimator and adjust inference for
hypothesized misspecification of the data generating process.

We will say that a sequence {µn}∞

n=1 is a local perturbation if under Fn (µn): (i) θ̂
p→ θ0; (ii)

√
nĝ(θ0) converges in distribution to a random variable g̃; (iii) ĝ(θ) and Ĝ(θ) converge uniformly

in probability to g(θ) and G(θ); and (iv) Ŵ
p→W . Any sequence µn such that Fn (µn) is contiguous

to Fn (0) (see van der Vaart 1998) and under which
√

nĝ(θ0) has a well-defined limiting distribution
is a local perturbation. Under this approach, we wish to relate changes in the expectation of g̃ to
bias in the asymptotic distribution of the estimator.

Proposition 3. For any local perturbation {µn}∞

n=1,
√

n
(
θ̂ −θ0

)
converges in distribution under

Fn (µn) to a random variable θ̃ with

θ̃ = Λg̃

almost surely. This implies in particular that the first-order asymptotic bias E
(
θ̃
)

is given by

E
(
θ̃
)
= ΛE(g̃) .

Proof. See appendix.

Propositions 1, 2, and 3 are our main formal results. Together they show that Λ describes the
relationship between the parameter estimates and the moments in several distinct senses. It is the
limit of the partial derivative of the realized estimate with respect to the realized moments in a
particular sample. In this sense, it provides a direct answer to the question “which features of the
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data drive the results.” A moment “drives” a parameter estimate to the extent that changing the
moment would affect the estimate holding the value of other moments constant.

Sensitivity also captures the effect of a perturbation of the population moments on the asymp-
totic behavior of the estimator, whether we think of a small, fixed perturbation µ 6= 0 affecting
the probability limits, or a shrinking perturbation µn affecting the asymptotic distribution. In this
sense, it can be interpreted as a measure of sensitivity to model misspecification. The tight rela-
tionship between sample sensitivity and sensitivity to misspecification implicit in our main results
provides a reason to be interested in knowing which features of the data drive the results.

Several extensions of our results are immediate.

Remark 1. In some cases, we are interested in the sensitivity of a counterfactual or welfare calcu-
lation that depends on θ̂ , rather than the sensitivity of θ̂ per se. Suppose c

(
θ̂
)

is a continuously
differentiable function not dependent on the data, with non-zero gradient C = C (θ0) =

∂

∂θ
c(θ0)

at θ0. Then under any local perturbation, the delta method implies that E
(
c
(
θ̃
))

=CΛE(g̃). We
will refer to CΛ as the sensitivity of c

(
θ̂
)
.5

Remark 2. We may be interested in the sensitivity of some elements of the parameter vector holding
other elements constant. Decomposing θ into subvectors (θ1,θ2), the conditional sensitivity of the
first subvector, fixing the second, is

Λ1 =−
(
G′1WG1

)−1 G′1W

for G1 =
∂

∂θ1
g(θ1,0,θ2,0), where θ1,0 and θ2,0 are the true values of θ1 and θ2 respectively. Condi-

tional sensitivity Λ1 measures the first-order asymptotic bias of θ̂1 under local perturbations when
θ̂2 is held fixed at θ2,0. We can calculate the conditional version of sample sensitivity in an analo-
gous manner.

Other extensions can also be developed. Our MDE setup directly accommodates maximum
likelihood or M-estimators with θ̂ = argminθ

1
n ∑i m(Di,θ) if we take ĝ(θ) to be the first-order

conditions of the objective and assume that these suffice to identify θ .6 The online appendix
shows how to extend our asymptotic results to the case where the sample moments ĝ(θ) are non-
differentiable, as in many simulation-based estimators. The online appendix also shows how to
generalize our notion of sample sensitivity to allow perturbations that affect the weight matrix.

We conclude this section with two simple examples that illustrate the computation of Λ and the
application of these results. We focus for simplicity on the application of proposition 3, though the

5Analogously, by the chain rule the sample sensitivity of c
(
θ̂
)

is C
(
θ̂
)

Λ̂S.
6Our results can also be extended to accommodate, say, models with local maxima or minima in the objective

following the reasoning in Newey and McFadden (1994, section 1).
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analogous results for proposition 2 are transparent.7 Here and in what follows we let ΩAB denote
plim

[1
nA′B

]
for matrices A and B.

Example 1. (OLS) Suppose the data are D = [Y,X ] and under the assumed model Fn

Y = Xθ0 + ε,

where E(ε|X) = 0. The OLS regression of Y on X can be written as a GMM estimator with
ĝ(θ) = 1

nX ′ (Y −Xθ) and weight matrix Ŵ = I. Sensitivity is Λ = Ω
−1
XX . Because the model is

linear, sample sensitivity Λ̂S is just the sample analogue
(1

nX ′X
)−1

.
Consider now a perturbed model Fn (µ) under which

Y = Xθ0 +µV + ε,

where µ is a scalar and V is an (unobserved) omitted variable with ΩXV 6= 0. Applying proposition
3 with µn =

µ∗√
n for a fixed µ∗, we see that the resulting bias in the estimator is

E
(
θ̃
)
= Ω

−1
XX ΩXV µ

∗.

This is of course the standard omitted variables bias formula—the product of the coefficients on
the omitted variable (µ∗) and the coefficients from the regression of the omitted variable on the
endogenous regressors (Ω−1

XX ΩXV ). Through the lens of sensitivity, we see that a one unit change
in the moments ĝ(θ0) induces a bias of Ω

−1
XX in the estimator, and adding the omitted variable

changes these moments by ΩXV µ∗.

Example 2. (2SLS) Suppose the data are D = [Y,X ,Z] and the expression for Y under the assumed
model is the same as in example 1 with E(ε|Z) = 0 and E(ε|X) 6= 0. The 2SLS estimator can be
written as a GMM estimator with ĝ(θ) = 1

nZ′ (Y −Xθ) and Ŵ =
(1

nZ′Z
)−1

. Sensitivity Λ in this
case is Λ=

(
Ω′ZX Ω

−1
ZZ ΩZX

)−1
Ω′ZX Ω

−1
ZZ , and sample sensitivity Λ̂S is the same expression replacing

the population expectations with their sample analogues.
Conley et al. (2012) consider a perturbed model Fn (µ) in which ε is replaced by 1√

nZµ∗+ ε .

Applying proposition 3, and noting that the asymptotic mean of
√

nĝ(θ0) under Fn

(
µ∗√

n

)
is E(g̃) =

ΩZZµ∗, we see that the first-order asymptotic bias of the estimator is

E
(
θ̃
)
=
(
Ω
′
ZX Ω

−1
ZZ ΩZX

)−1
Ω
′
ZX µ

∗.

This is the expression Conley et al. (2012) derive in section III.C. Note that if we consider the
7We do not verify that the conditions for a local perturbation are satisfied in each case, but this follows directly

from the sufficient conditions given in lemma 1 below.
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exactly identified case where Ŵ = I and replace µ∗√
nZ in the perturbation with a general omitted

variable µ∗√
nV , we obtain E

(
θ̃
)
= Ω

−1
ZX ΩZV µ∗. We can think of this as a generalized omitted

variables bias formula where the coefficient Ω
−1
XX ΩXV from the regression of V on X is replaced by

the 2SLS coefficient Ω
−1
ZX ΩZV from the regression of V on X instrumenting with Z.

3 Special Cases

Two special cases encompass the applications we present below and provide a template for many
other cases of interest. Proposition 1 applies to both of these cases without further assumptions.
In order to apply propositions 2 and 3, we must consider perturbations of the model that satisfy
the relevant assumptions. We provide sufficient conditions for proposition 3 here, and sufficient
conditions for proposition 2 in the online appendix.

The first case of interest is where θ̂ is a classical minimum distance estimator, with moments
corresponding to differences between sample statistics ŝ and corresponding predictions s(θ) under
the model. Our definition of this case also includes estimation by indirect inference (Gourieroux
et al. 1993; Smith 1993).

Definition. θ̂ is a classical minimum distance (CMD) estimator if ĝ(θ) = ŝ−s(θ) , where E(ŝ) =

s(θ0) and s(θ) is a function that does not depend on the data.

When θ̂ is a CMD estimator, sensitivity is Λ = (S′WS)−1 S′W, where S is the matrix of partial
derivatives of s(θ0).

A natural category of perturbations to consider in this case is additive shifts of the moment
functions due to either misspecification of s(θ) or measurement error in ŝ. The following lemma
gives sufficient conditions for such shifts to be local perturbations as defined above.

Lemma 1. Consider a sequence {µn}∞

n=1. Suppose that under Fn (µn)

ĝ(θ) = â(θ)+ b̂

where the distribution of â(θ) is the same under Fn (0) and Fn (µn) for every n, and
√

nb̂ converges

in probability. Also, Ŵ
p→W under Fn (µn).8 Then {µn}∞

n=1 is a local perturbation.

Proof. See appendix.

8This is true in particular if Ŵ either does not depend on the data or is equal to w
(
θ̂ FS
)
, where w is a continuous

function and θ̂ FS is a first-stage estimate that solves (1) for Ŵ equal to a positive semi-definite matrix W FS not
dependent on the data. In the latter case, the fact that ĝ(θ)′W FSĝ(θ) converges uniformly to g(θ)′W FSg(θ) implies
that we have θ̂ FS p→ θ0 by theorem 2.1 of Newey and McFadden (1994). Thus, Ŵ

p→W by the continuous mapping
theorem.
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Applying lemma 1 and proposition 3 yields a simple characterization of the first-order asymp-
totic bias of a misspecified CMD estimator.

Proposition 4. Suppose that θ̂ is a CMD estimator and under Fn (µ) ŝ = s̃+ µη̂ , where η̂ con-

verges in probability to a vector of constants η and the distribution of s̃ does not depend on µ . Take

µn =
µ∗√

n , and suppose that Ŵ
p→W under Fn (µn). Then taking µn =

µ∗√
n , we have E

(
θ̃
)
= Ληµ∗.

Proof. That {µn}∞

n=1 is a local perturbation follows from lemma 1 with â(θ) = s̃− s(θ) and
b̂ = µnη̂ . The expression for E

(
θ̃
)

then follows by proposition 3.

The second case of interest is where θ̂ is estimated by non-linear instrumental variables, with
moments formed by interacting the instruments with estimated structural errors.

Definition. θ̂ is an instrumental variables (IV) estimator if ĝ(θ) = 1
n ∑i Zi⊗ ζ̂i (θ), where Zi is a

vector of instruments and ζ̂i (θ) is a function of data and parameters with E
(

ζ̂i (θ0) |Zi

)
= 0 under

Fn.9

When θ̂ is an IV estimator, sensitivity is Λ=−
(

Ω
′

ZX̃WΩZX̃

)−1
Ω
′

ZX̃W, where ΩZX̃ = plim 1
nZ′X̃

and X̃ are the “pseudo-regressors” ∂ ζ̂ (θ0)/∂θ . A natural perturbation to consider in this case is
the introduction of an omitted variable Vi that causes the errors ζ to be correlated with the instru-
ments Z. We provide sufficient conditions for this form of misspecification to be a local perturba-
tion. These conditions apply more generally than nonlinear IV.

Assumption 3. The observed data Di = [Yi,Xi] consist of iid draws of endogenous variables Yi

and exogenous variables Xi, where Yi = h(Xi,ζi;θ) is a one-to-one transformation of the vector

of structural errors ζi given Xi and θ with inverse ζ̂ (Yi,Xi;θ) = ζ̂i (θ). There is also an unob-

served (potentially omitted) variable Vi. Under Fn: (i) ζi is continuously distributed with full

support conditional on Xi; (ii) (ζi,Xi,Vi) has a density f with respect to some base measure v; (iii)√
f (ζi,Xi,Vi) is continuously differentiable in ζi; (iv) we have

0 < E

(V ′i
∂

∂ζ
f (ζi,Xi,Vi)

f (ζi,Xi,Vi)

)2< ∞;

and (v) the moments are asymptotically linear in the sense that

√
nĝ(θ0) =

1√
n ∑

i
ϕ (ζi,Xi,Vi,θ0)+op (1) ,

9For notational simplicity we have assumed that all the instruments Zi are interacted with each element of ζ̂i (θ).
The results derived below continue to apply, however, if we use different instrument sets for different elements of
ζ̂i (θ) .
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where ϕ (ζi,Xi,Vi,θ0) has finite variance.

The main substantive restriction imposed by assumption 3 is that the structural errors have full
support and map one-to-one to the outcomes Y . This is satisfied, for example, in BLP (1995) and
similar models of aggregate demand. The remaining assumptions are regularity conditions that
hold in a wide range of contexts.

Lemma 2. Consider a sequence {µn}∞

n=1 with µn =
µ∗√

n for a constant µ∗. Suppose that assumption

3 holds, and that under Fn (µ) we have ζ̂i (θ0) = ζ̃i+µVi, where the distribution of
(

ζ̃i,Xi,Vi

)
does

not depend on µ . Then {µn}∞

n=1 is a local perturbation.

Proof. See appendix.

Applying lemma 2 and proposition 3 allows us to characterize the effects of omitted variables
in nonlinear IV estimators.

Proposition 5. Suppose that θ̂ is an IV estimator satisfying assumption 3, and that under Fn (µ)

we have ζ̂i (θ0) = ζ̃i + µVi, where Vi is an omitted variable with 1
n ∑i Zi⊗Vi

p→ ΩZV 6= 0 and the

distribution of ζ̃i does not depend on µ . Then, taking µn =
µ∗√

n , we have E
(
θ̃
)
= ΛΩZV µ∗.

Proof. That {µn}∞

n=1 is a local perturbation follows from lemma 2. The expression for E
(
θ̃
)

then
follows by proposition 3.

We can think of proposition 5 as yielding a local analogue of the omitted variables bias formula
for nonlinear models. Plugging in for the value of Λ, and focusing for simplicity on the exactly
identified case where W = I, we can restate the conclusion of the proposition as

E
(
θ̃
)
= Ω

−1
ZX̃ ΩZV µ

∗.

This has the same form as the omitted variables bias formula for 2SLS in example 2, except that
the regressors X are replaced by the pseudo-regressors X̃ .

4 Estimation

Because consistent estimators of G and W are typically needed to perform inference on θ , a con-
sistent plug-in estimator of sensitivity is available at essentially no additional computational cost.

Definition. Define plug-in sensitivity to be

Λ̂ =−
(

Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ̂
))−1

Ĝ′
(
θ̂
)

Ŵ .
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Proposition 6. For any local perturbation {µn}∞

n=1, Λ̂
p−→ Λ under Fn (µn) .

Proof. By assumption Ĝ(θ)
p−→G(θ) uniformly in θ , so consistency of θ̂ implies that Ĝ

(
θ̂
) p−→G.

Since G′WG has full rank, the result follows by the continuous mapping theorem.

The online appendix develops an analogous result for the non-vanishing perturbations considered
in proposition 2. It also extends proposition 1 to show that, under mild conditions, sample sensitiv-
ity Λ̂S is consistent for Λ under any local perturbation {µn}∞

n=1. In this sense, Λ̂S can be interpreted
as an alternative estimator of Λ.

Turn next to inference. Under standard regularity conditions the bootstrap will provide a valid
approximation to the sampling variability of Λ̂. To illustrate, we present bootstrap confidence
intervals on functions of Λ for one of our applications below. An important caveat is that, under
local perturbations, Λ̂ has asymptotic bias of order 1√

n (just as θ̂ does). Thus, the location (but not
the width) of bootstrap confidence intervals is distorted and their coverage is not correct.

A final practical issue concerns the units of sensitivity. The elements of Λ have the same
units as the coefficients from a regression of θ̂ on the realizations of ĝ(θ0). Comparing the relative
magnitudes of these coefficients is therefore only coherent if we can compare the different elements
of ĝ(θ0) in some meaningful way. This is an example of the age-old problem of assessing the
relative importance of regressors in a regression model (Kim and Ferree 1981; Bring 1994; Gelman
2008). To establish a default, by analogy to the standardized regression coefficient we define the
standardized sensitivity of θ̂p to be Λp j

√
Ω j j
Σpp

(recalling that Ω is the asymptotic variance of the
moments and Σ is the asymptotic variance of the parameter estimate). We define standardized plug-
in sensitivity and standardized sample sensitivity analogously. Standardized sensitivity is invariant
to changing the units of ĝ(θ0), say by converting an element from dollars to euros.10 Whether
this attribute is desirable or whether it is preferable to compare elements of Λ directly ultimately
depends on the economic application.

5 Applications

5.1 Automobile Demand

BLP (1995) use data on US automobiles from 1971 to 1990 to estimate a structural model of
demand and pricing. The model yields estimates of markups and cross-price elasticities, which
can in turn be used to evaluate changes such as trade restrictions (BLP 1999), mergers (Nevo

10Formally, for strictly positive diagonal matrices A and B, the standardized sensitivity of Aθ̂ to Bĝ(θ0) with weight
matrix B−1ŴB−1 is equal to the standardized sensitivity of θ̂ to ĝ(θ0) with weight matrix Ŵ .
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2000), and the introduction of a new good (Petrin 2002). We follow BLP (1995) in suppressing
the time dimension of the data in our notation.

The data D = [S,P,X ,Z] consist of a vector of endogenous market shares S; a vector of en-
dogenous prices P; a matrix X of exogenous car characteristics such as size and mileage; and a
matrix Z =

[
Zd Zs

]
of instruments partitioned into those used to estimate the demand-side and

supply-side equations respectively. An observation i is a vehicle model. The instruments Z are
functions of X , with row Zi containing functions of the number and characteristics X−i of models
other than i (including other car models produced by the same firm).11

Under the assumed model Fn

S = s(X ,ξ ,ω;θ0)

P = p(X ,ξ ,ω;θ0) ,

where ξ and ω are structural errors in utility and marginal cost, respectively, and E(ξi|Zdi) =

E(ωi|Zsi) = 0. The functions s(·) and p(·) are known and invertible, so we can compute the errors
ξ̂ (θ) and ω̂ (θ) implied by given parameters and data. The estimator θ̂ solves (1) with moments

ĝ(θ) =
1
n

[
∑i Z

′
di⊗ ξ̂i (θ)

∑i Z
′
si⊗ ω̂i (θ)

]
.

The weight matrix is the inverse of the variance-covariance matrix of ĝ
(

ˆ̂
θ

)
computed at first-stage

estimates ˆ̂
θ .

The demand and supply moment conditions E(ξi|Zdi) = 0 and E(ωi|Zsi) = 0 encode distinct
economic assumptions. The demand-side condition E(ξi|Zdi) = 0 requires that the unobserved
component ξi of the utility from purchasing model i is mean-independent of the number and char-
acteristics of cars other than i in a given year. The assumption is especially reasonable if the

11The elements of Zdi are (i) a constant term (equal to one); (ii) horsepower per 10 pounds of weight; (iii) an
indicator for standard air conditioning; (iv) mileage measured in ten times miles per dollar (miles per gallon divided
by the average real retail price per gallon of gasoline in the respective year); (v) size (length times width); (vi) the
sum of (i)-(v) across models other than i produced in the same year by the same firm as i; and (vii) the sum of (i)-(v)
across models produced in the same year by rival firms. This yields 15 instruments, of which all except (i)-(v) are
“excluded” in the sense that they do not also enter the utility function directly. We drop two of these instruments—the
sums of (v) across same-firm and rival-firm models—because they are highly collinear with the others. This leaves
13 instruments (8 excluded) for estimation. The elements of Zsi are (i) a constant term; (ii) the log of horsepower per
10 pounds of weight; (iii) an indicator for standard air conditioning; (iv) the log of ten times mileage measured in
miles per gallon; (v) the log of size; (vi) a time trend equal to the year of model i minus 1971; (vii) mileage measured
in miles per dollar; (viii) the sum of (i)-(vi) across models other than i produced in the same year by the same firm
as i; and (ix) the sum of (i)-(vi) across models produced in the same year by rival firms. This yields 19 instruments,
of which all except (i)-(vi) are “excluded.” The inclusion of (vii) as an “excluded” instrument in Zsi is motivated
by the assumption that marginal cost depends on miles per gallon but not on the retail gasoline price (which creates
variation in miles per dollar conditional on miles per gallon). The sum of (vi) across rival firms’ models is dropped
due to collinearity, leaving 18 instruments (12 excluded) for estimation. We demean all instruments other than those
involving the constant terms.
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determinants of ξ are unknown until after product line decisions are made. The assumption could
be violated if ξ depends on anticipated shocks to preferences that affect the number of models
introduced or their characteristics. Draganska et al. (2009), Fan (2013), and Wollmann (2016)
estimate models with endogenous choice of product characteristics and find substantial responses
of characteristics to consumer demand.

The supply-side condition E(ωi|Zsi) = 0 requires that the unobserved component ωi of the
marginal cost of producing model i is mean-independent of the number and characteristics of cars
other than i. This assumption could be violated if a firm’s product line affects the cost of producing
a given model through economies of scope or scale.12

We apply our measure to assess the sensitivity of BLP’s (1995) estimates to violations of the
demand-side and supply-side assumptions respectively. We estimate the model using BLP’s (1995)
data and our own implementation of the authors’ estimator.13

We consider a perturbed model Fn (µ) in which omitted variables lead to a correlation between
the instruments and structural errors. Specifically, we assume that under Fn (µ),

(3)

[
ξ̂i (θ0)

ω̂i (θ0)

]
=

[
ξ̃i

ω̃i

]
+µ

[
Vdi

Vsi

]
,

where
[

Vdi Vsi

]′
is a vector of supply-side and demand-side omitted variables, the distribution

of
[

ξ̃i ω̃i

]′
does not depend on µ , and plim

[
1
n ∑i Z

′
di⊗Vdi

1
n ∑i Z

′
si⊗Vsi

]
=ΩZV . We consider the sequence

of perturbations µn =
1√
n and assume that the regularity conditions of assumption 3 are satisfied.

Sensitivity is
Λ =

(
Ω
′
ZX̃WΩZX̃

)−1
Ω
′
ZX̃ ,

where the pseudo-regressors are X̃ = −
[

∂ξ (S,P,X ;θ0)
∂θ

∂ω(S,P,X ;θ0)
∂θ

]
. By proposition 5, the first-

order asymptotic bias in the estimator is E
(
θ̃
)
= ΛΩZV .

We focus on the sensitivity of the average markup, defined as the ratio of price minus marginal

12Levitt et al. (2013) show that learning-by-doing leads to large economies of scale in automobile production,
though the effects they document accrue within rather than across models. BLP (1995) also discuss the possibility of
within-model increasing returns, finding some support for it in their reduced-form estimates (p. 876).

13We obtained data and estimation code for BLP (1999) from an archived version of Jim Levinsohn’s web page
(https://web.archive.org/web/20041227055838/http://www-personal.umich.edu/~jamesl/verstuff/instructions.html,
accessed July 16, 2014). We confirm using the summary statistics in BLP (1995) that the data are the same as
those used in the BLP (1995) analysis. Since the algorithms in the two papers are almost identical, we follow the
BLP (1999) code as a guide to implementing the estimation, and in particular follow the algorithm in this code for
choosing which instruments to drop due to collinearity. We use the published BLP (1995) parameters as starting
values and in computing importance sampling weights. We compute sensitivity at the parameter vector θ̂ we estimate,
which is similar though not identical to the published estimates. The online appendix reports the numerical values of
standardized plug-in sensitivity for all parameter estimates.
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cost to price, which is a key object of economic interest. Letting C denote the gradient of this
markup at θ0, we can apply remark 1 to obtain sensitivity CΛ.

Figure 1 plots the standardized plug-in sensitivity of the average markup. The left panel plots
standardized sensitivity to the demand moments ĝd (θ); the right panel plots standardized sensi-
tivity to the supply moments ĝs (θ). Sensitivity to supply moments is generally larger (in absolute
value) than sensitivity to demand moments. The estimate is most sensitive to the product of unob-
served marginal cost with the number of cars produced by the same firm as the car in question. This
suggests qualitatively that firm-level economies of scope may be a particularly important threat to
validity of the estimates. The online appendix presents analogous plots based on sample sensitivity
and an alternative normalization of plug-in sensitivity.

Figure 2 shows for each parameter the mean absolute value of standardized sensitivity across
all supply moments and all demand moments respectively. Across all parameters (including those
from the demand side of the model), we find that the sensitivities to supply moments are larger,
sometimes substantially so. Finding large sensitivities to the supply moments is consistent with a
sense in the literature that the supply-side moments play a critical role in estimation. In the original
article, BLP (1995) note that they had estimated the model with the demand moments alone and
found that this led to “much larger estimated standard errors” (p. 875). In subsequent work, the
authors recall finding that “estimates that used only the demand system were too imprecise to be
useful” (BLP 2004, p. 92).

To translate these qualitative intuitions into quantitative statements, table 1 considers specific
examples of omitted variables V . On the supply side, we assume that, for a car with average
marginal cost at the midpoint sample year, removing a different car from the firm’s product line
increases the marginal cost by one percent of the average price, say because of lost economies of
scope. On the demand side, we assume that removing a car from a firm’s product line decreases the
average willingness to pay for the firm’s other cars by one percent of the average price, say because
buyers have a preference for buying a car from a manufacturer with a more complete line of cars.
We also repeat both exercises for the effect of removing a car from rival firms’ product lines,
which could matter because of industry-wide economies of scope (on the supply side) or effects
on consumer search behavior (on the demand side). The table presents the first-order asymptotic
bias implied by perturbation as well as bootstrap standard errors.

Table 1 shows that all of these omitted variables introduce meaningful first-order asymptotic
bias in the estimated average markup. The first violation of the supply-side exclusion restriction,
for example, would mean that the estimated markup of 0.33 is biased downward by 17 percentage
points, implying a corrected estimate of 0.50. The violation of the demand-side exclusion restric-
tion has an effect of similar magnitude, biasing the markup downward by 13 percentage points.
We conclude that economically plausible violations of both supply and demand-side assumptions
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could lead to meaningful bias in the results.

5.2 Lifecycle Consumption

Gourinchas and Parker (2002) estimate a structural model of lifecycle consumption with uncertain
income. In the model, households’ saving decisions are driven by both precautionary and lifecycle
motives. The estimates suggest that precautionary motives dominate up to the mid-40s, with con-
sumers acting as “buffer stock” agents who seek to maintain a target level of assets and consume
any additional income over that threshold. Lifecycle savings motives (i.e., saving to smooth con-
sumption at retirement) dominate at older ages, with consumers acting in rough accordance with
the permanent income hypothesis. The results provide an economic rationale for the observed
combination of a hump-shaped consumption profile with high marginal propensity to consume out
of income shocks at young ages.

The data D are aggregated to a vector ŝ consisting of average log consumption at each age a,
adjusted in a preliminary stage for differences in family size, cohort, and regional unemployment
rates. The parameters of interest θ are the discount factor, coefficient of relative risk aversion,
and two parameters governing consumption in retirement. The model also depends on a second
vector of parameters χ , including the real interest rate and the parameters of the income generating
process, for which the authors compute estimates χ̂ of the true values χ0 in a first stage. Under the
assumed model Fn

ŝa = sa (θ0,χ0)+ εa,

where sa (θ ,χ) is the average log consumption predicted by the model and εa is a measurement
error satisfying E(εa) = 0 for all a. The estimator θ̂ solves (1) with moments

ĝ(θ) = ŝ− s(θ , χ̂) .

The weight matrix Ŵ is a constant that does not depend on the data. Following the authors’ initial
approach to inference (Gourinchas and Parker 2002, Table III), we proceed as if χ̂ is also a constant
not dependent on the data.14 This is then a CMD estimator as defined above.

The condition E(ŝ) = s(θ0,χ0) depends on a number of underlying economic assumptions. A
central one is that consumption and leisure are separable. This implies that the level of income in
a given period is not correlated with the marginal utility of consumption. Subsequent literature,
however, has shown that working can affect marginal utility in important ways. Aguiar and Hurst

14If we instead let χ̂ depend on the data, the analysis below and, by lemma 1, its interpretation in terms of mis-
specification are preserved, provided that the distribution of χ̂ does not vary with the perturbation parameter µ . This
assumption seems reasonable in this context because estimation of χ̂ is based on separate data that does not involve
the consumption observations underlying ŝ.
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(2007) show that shopping intensity increases when consumers work less, implying that lower
income increases the marginal utility a consumer can obtain from a given expenditure on con-
sumption. Aguiar and Hurst (2013) show that a meaningful portion of consumption goes to work
related expenses, implying a second reason for non-separability. Since work time and work-related
expenses both vary systematically with age, these forces would change the age-consumption pro-
file relative to what the Gourinchas and Parker (2002) model would predict.

Another important assumption is that there are no unobserved components of income that vary
systematically over the lifecycle. If younger consumers receive transfers from their families, for
example, consumption relative to income would look artificially high at young ages. An example
is the in-kind housing support from parents studied by Kaplan (2012). Gourinchas and Parker
(2002) note that their data exhibit consumption in excess of income in the early years of adulthood
(something that is impossible under the assumptions of their model), and they speculate that this
could be explained by such unobserved transfers.

We apply our measure to assess the way small violations of these key assumptions would affect
the results. We estimate the model using the authors’ original code and data.15

We focus on the sensitivity of the two key preference parameters—the discount factor and the
coefficient of relative risk aversion—which in turn determine the relative importance of consump-
tion smoothing and precautionary incentives.16 Each violation we consider leads to a divergence
between observed consumption and the consumption quantity predicted by the model. Formally,
we consider perturbed models Fn (µ) under which ε = ε̃ + µη , where the distribution of ε̃ does
not depend on µ and η is a vector of constants that will differ depending on the alternative model
at hand. We take µn =

1√
n . By proposition 4, the first-order asymptotic bias is then E

(
θ̃
)
= Λη .

Figure 3 presents standardized plug-in sensitivities for the discount factor and the coefficient
of relative risk aversion. The two plots are essentially inverse to one another. This reflects the
fact that both a higher discount factor and a higher coefficient of relative risk aversion imply the
same qualitative change in the consumption profile: lower consumption early in life and greater
consumption later in life. A change in consumption at a particular age that leads to higher estimates
of one parameter thus tends to be offset by a reduction in the other parameter in order to hold
consumption at other ages constant. The two parameters are separately identified because they
have different quantitative implications at different ages, depending on the relative importance of
precautionary and lifecycle savings.

15We are grateful to Pierre-Olivier Gourinchas for providing the original GAUSS code, first-stage parameters, and
input data. We use the published parameter values as starting values. We compute sensitivity at the value θ̂ to which
our run of the solver converges, and report this value as the baseline estimate in table 2 below. This value is similar,
though not identical, to the published parameters.

16We fix the two retirement parameters at their estimated values for the purposes of our analysis. The online
appendix reports the numerical values of standardized sensitivity of the discount factor and the coefficient of relative
risk aversion.
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The plots suggest that we can divide the lifecycle into three periods. Up to the late 30s, saving is
primarily precautionary, so risk aversion matters comparatively more than discounting and higher
consumption is interpreted as evidence of low risk aversion. From the late 30s to the early 60s,
incentives shift toward retirement savings, so discounting matters comparatively more than risk
aversion and higher consumption is interpreted as evidence of a low discount factor. From the
early 60s on, retirement savings continues to be the dominant motive, but now we are late enough
in the lifecycle that high consumption signals the household has already accumulated substantial
retirement wealth and thus is interpreted as evidence of a high discount factor. These divisions
align well with the phases of precautionary and lifecycle savings that Gourinchas and Parker (2002)
highlight in their figure 7.

Table 2 considers four specific perturbations. First, to allow for variable shopping intensity, we
define the elements ηa to match the age-specific log price increments that Aguiar and Hurst (2007)
estimate in their table I, column 1. Second, to allow for work-related consumption expenses,
we define ηa so that true consumption at each age is overstated by 5 percent of work-related
expenses as calculated in Aguiar and Hurst’s (2013) table 1 and figure 2a. Third, to allow for
young consumers receiving family transfers, we choose ηa so that true average consumption prior
to age 30 is one percent below average income (rather than above average income as the raw data
suggest). Finally, to allow older consumers to make corresponding transfers to their children, we
choose ηa so that consumption from age 50 through 65 is overstated by an annual amount whose
lifetime sum is equal to the total gap between consumption and income over ages 26-29.

Table 2 shows the first-order asymptotic bias E
(
θ̃
)

implied by each perturbation. The first row
shows that if shopping intensity changes with age as in Aguiar and Hurst (2007), the estimated
discount factor is over-stated by 0.4 percentage points and the estimated coefficient of relative
risk aversion is under-stated by a third. The direction of these effects is consistent with what we
would expect given figure 3: increasing the true consumption of older workers relative to what the
expenditure data suggest tends to raise risk aversion and reduce discounting (though the effect after
age 62 would work in the opposite direction). The second row shows that if there are significant
work-related expenses as in Aguiar and Hurst (2013), the estimated discount factor and coefficient
of relative risk aversion are biased in the opposite direction. This again matches the intuition from
figure 3 since we are now reducing consumption for older workers (since they have more work-
related expenses). The third row shows that if part of the measured consumption of young workers
is funded by unobserved transfers, the discount factor is overstated by more than a percentage
point and the coefficient of relative risk aversion is understated by half. The fourth row shows
that allowing for older consumers to fund such transfers has a more modest effect in the opposite
direction. The final row shows the net effect when we account for transfers both from the old
and to the young. Putting these results together, we conclude that reasonable alternatives imply
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meaningful first-order asymptotic bias in estimates of parameters of interest.

5.3 Charitable Giving

DellaVigna et al. (2012) use data from a field experiment to estimate a model of charitable giv-
ing. In the model, charitable giving may be motivated by altruism (caring about the aims of the
charity or “warm glow”) and social pressure. In the experiment, solicitors go door to door asking
households to either donate to a charity or complete a survey. In some treatments, households are
warned ahead of time via a flyer that a solicitor will be coming to their home, and in others they
are both warned and given a chance to opt out. Households’ responses to these warnings, as well
as variation across treatments in amounts given and survey completion, pin down the preference
parameters and allow the authors to assess the welfare effects of solicitation. The main results are
that social pressure is an important driver of giving and that the average visited household is made
worse off by the solicitation.

From household-level data D, the authors construct a vector of statistics ŝ, including the share
opening the door in each treatment, the share giving donations in various ranges in the charity
treatments, the share completing the survey in the survey treatments, and the share opting out when
this was allowed. The parameter vector θ includes determinants of the distribution of altruism and
the social pressure cost of choosing not to give. The estimator θ̂ solves (1) with moments

ĝ(θ) = ŝ− s(θ) ,

where s(θ) is the predicted value of each statistic under the model, computed numerically by
quadrature. The weight matrix Ŵ is equal to the diagonal of the variance-covariance matrix of the
observed statistics ŝ. Under the assumed model Fn, E(ŝ) = s(θ0). This is a CMD estimator as
defined above.

The model predictions s(θ0) reflect a number of economic assumptions, including functional
forms for the distribution of altruism, the utility function, and the social pressure cost as a function
of the amount given. The authors present evidence that the results are not sensitive to alternatives
to many of these assumptions. One assumption that they do not vary, however, is the form of the
social pressure cost, assumed throughout to decrease linearly in the amount given up to a threshold
d∗ = $10, after which there is no social pressure. The threshold value of $10 is motivated as the
sample median donation. The choice of this threshold is potentially significant because it means
bunching of donations at $10 will be taken to be evidence of social pressure.17

17DellaVigna et al. (2012) write: “The social pressure Sch is identified from two main sources of variation: home
presence in the flyer treatment... and the distribution of small giving (the higher the social pressure, the more likely is
small giving and in particular bunching at [$10])” (38).
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We apply our measure to assess how misspecification of the threshold affects estimates of the
key social pressure parameter. We obtained the estimates of G and W needed to compute Λ̂ directly
from the authors.18

We consider perturbed models Fn (µ) under which fraction µ of households have a different
threshold d∗ = d′, while fraction (1−µ) of households use the assumed threshold d∗ = 10. Let
s(θ ,d) be the expectation of ŝ in a population with threshold d, so s(θ) = s(θ ,10). Then under
Fn (µ), ŝ = s̃+µη̂ , where the distribution of s̃ does not depend on µ and η̂ converges in probability
to the vector of constants s(θ0,d′)− s(θ0).19 Taking µn = 1√

n and noting that the probability
limit of Ŵ is unchanged under Fn (µn), proposition 4 implies that the first-order asymptotic bias is
E
(
θ̃
)
= Λ [s(θ ,d′)− s(θ)].

Of those solicited in the experiment, some are asked to donate to the local La Rabida Children’s
Hospital and others are asked to donate to the East Carolina Hazard Center (ECU). The social
preference parameter is allowed to be different for the two charities. We focus for simplicity on the
estimates for ECU, and we assume that the perturbation to the threshold d∗ only affects the utility
function for giving to ECU. We present analogous results for the La Rabida social preference
parameter in the online appendix.

Figure 4 presents the column of Λ corresponding to the social pressure cost S of giving $0 to
ECU. The estimated value of this parameter is $1.44 with a standard error of $0.78 (DellaVigna et
al. 2012). We plot the sensitivities with respect to the elements of ĝ(θ0) associated with the ECU
treatments; sensitivities with respect to other elements of ĝ(θ0) are shown in the online appendix.
We indicate with solid circles the elements that DellaVigna et al. (2012) single out as important
for this parameter: donations at $10, donations less than $10, and the share of people opening the
door in the treatment where they were warned by a flyer. The results line up well with the authors’
expectations, reinterpreted as statements about sensitivity rather than identification. The share of
people bunching at $10 increases estimated social pressure. Donations of less than $10 decrease it.
The share of people opening the door in the flyer treatment also decreases it, reflecting the model’s
prediction that a household that anticipates high social pressure costs should not open the door. The
absolute magnitude of sensitivity is highest for bunching at $10, suggesting that misspecification
of the threshold may be a significant concern.

Figure 5 shows the first-order bias associated with misspecification of the threshold at each
possible value of d′ ranging from $0 to $20. The value at d′ = $10 is zero by definition. The figure

18We are grateful to Stefano DellaVigna and his co-authors for providing these inputs. We received the parameter
vector θ̂ , covariance matrix Ω̂, jacobian Ĝ, and weight matrix Ŵ resulting from 12 runs of an adaptive search algo-
rithm. These values differ very slightly from those reported in the published paper, which correspond to 500 runs. To
evaluate specific forms of misspecification, we code our own implementation of the population moment function s(θ)
and confirm that our calculation of s

(
θ̂
)

closely matches the published results.
19Define η̂ = 1

µ
(ŝ− s̃). We have under Fn (µ): (i) E(s̃) = s(θ0) for all µ; (ii) E(ŝ) = µs(θ0,d′)+ (1−µ)s(θ0);

and so (iii) E(η̂) = s(θ0,d′)− s(θ0). Convergence in probability follows by the law of large numbers.
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shows that that even a small change of d′ away from this value implies that the estimated social
pressure is biased downward, and that the sign of this bias is the same regardless of whether the
threshold is higher or lower. This is intuitive: any d′ 6= $10 redistributes probability mass from
giving exactly $10 to giving either $0-10 or $10-20; figure 4 shows that either of these will reduce
the estimated social pressure. The different magnitudes above and below $10 reflect the different
sensitivities to the $0-10 and $10-20 moments, and the slopes of the lines reflect the fact that as
the threshold moves further from $10 other model predictions s(θ ,χ) (such as the probability of
opening the door) change as well. Any d′ 6= $10 would imply that the correct social pressure cost
is not $1.44 but about $0.10-0.15 higher. We thus find that the estimated social pressure is quite
sensitive to the assumed threshold, but that the magnitude of the bias is modest and if anything
adjusting for it tends to strengthen the main qualitative conclusions.

6 Conclusions

We propose a new way to inspect the local relationship between an estimator and the moments of
the data it depends on. The measure of sensitivity that we propose is essentially costless to estimate
even in complex models. It has a precise interpretation in terms of both perturbations to sample
realizations of the moments and to their population counterparts. And it provides a formal link be-
tween the descriptive question “what features of the data drive the estimates?” and the econometric
question “how robust are the conclusions to deviations from the model’s assumptions?”

What do we suggest that researchers do in practice? We think that heuristic discussions of the
link between data and parameters, commonly framed as statements about identification, could be
usefully reframed as statements about sensitivity. Authors could provide economic intuition about
which moments are likely to matter most for a given parameter estimate, and back these intuitions
up by providing estimates of Λ. This would have several advantages: replacing imprecise heuristic
statements with precise ones, supporting intuitive claims with quantitative evidence, and providing
a formal rationale for the discussions as a way to gauge sensitivity to model misspecification. Sen-
sitivity could also be used to supplement existing discussions of robustness, with authors evaluating
specific hypothetical violations of their assumptions as we do in the applications above.

We do not recommend that researchers abandon the analysis of identification. On the contrary,
we think formal analysis of identification and sensitivity are complementary tools for understand-
ing a model and assessing the credibility of results.
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Table 1: Sensitivity of average markup in BLP (1995) to beliefs about misspecification

Bias in
average markup

Violation of supply-side exclusion restrictions:
Removing own car increases average marginal cost -0.1731
by 1% of average price (0.0444)

Removing rival’s car increases average marginal cost 0.2095
by 1% of average price (0.0728)

Violation of demand-side exclusion restrictions:
Removing own car decreases average willingness to pay -0.1277
by 1% of average price (0.0920)

Removing rival’s car decreases average willingness to pay 0.2515
by 1% of average price (0.1309)

Baseline estimate 0.3272
(0.0907)

Note: The average markup is the average ratio of price minus marginal cost to price across all vehicles. The table
reports the estimated first-order asymptotic bias in the parameter estimates from BLP’s (1995) estimator under various
forms of misspecification, as implied by proposition 5 under the setup in equation (3). Our calculations use the plug-in
estimator of sensitivity. In the first two rows, we set Vdi = 0 and Vsi =−0.01(P/mc)Numi, where Numi is the number
of cars produced by the [same firm / other firms] as car i in the respective year, mc is the sales-weighted mean marginal
cost over all cars i in 1980, and P is the sales-weighted mean price over all cars i in 1980. In the second two rows, we
set Vsi = 0 and Vdi = 0.01(P/Kξ )Numi, where Kξ is the derivative of willingness to pay with respect to ξ for a 1980
household with mean income. Standard errors are obtained from a non-parametric block bootstrap over sample years
with 70 replicates. We hold the average price P, the marginal cost mc, and the derivative Kξ constant across bootstrap
replications.
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Table 2: Sensitivity of preference parameters in Gourinchas and Parker (2002) to beliefs about
misspecification

Bias in Bias in
discount factor coefficient of relative

risk aversion

Consumption and leisure are nonseparable:
Shopping intensity changes with age 0.0041 -0.2913
Exclude 5% of work-related expenses -0.0073 0.3997

Consumption includes interhousehold transfers:
Consumption at early ages includes transfers in 0.0107 -0.6022
Consumption at later ages includes transfers out -0.0041 0.2673
Include both early and late transfers 0.0065 -0.3349

Baseline estimate 0.9574 0.6526

Note: The table reports the estimated first-order asymptotic bias in Gourinchas and Parker’s (2002) published param-
eter values under various forms of misspecification, as implied by proposition 4. Our calculations use the plug-in
estimator of sensitivity. We consider perturbations under which measured log consumption overstates true log con-
sumption at each age a by an amount equal to ηa/

√
n. In the row labeled “shopping intensity changes with age,”

ηa is chosen to match the age-specific log price increment estimated in Aguiar and Hurst (2007, table I, column 1).
Aguiar and Hurst (2007) report these increments for ages 30 and above. We set increments for younger ages to zero.
In the row labeled “exclude 5% of work-related expenses,” ηa is chosen so that the true consumption at each age a is
overstated by 5% of work-related expenses as calculated in Aguiar and Hurst (2013, table 1 and figure 2a). In the row
labeled “consumption at early ages includes transfers in,” ηa is chosen so that true average consumption prior to age
30 is one percent below average income. In the row labeled “consumption at later ages includes transfers out,” ηa is
chosen so that from age 50 through age 65 consumption is overstated by a constant annual amount whose lifetime sum
is equal to the total gap between consumption and income over ages 26-29. In the row labeled “include both early and
late transfers,” ηa combines the early age and later age transfers.
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Figure 2: Sensitivity of parameters to supply and demand moments in BLP (1995)
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Notes: Rows correspond to parameters of the model. For each parameter, we plot the mean over the all
supply and demand moments, respectively, of the absolute value of the standardized plug-in sensitivity. The
first group of rows is for standard deviations of the random coefficients in the utility function, the second
group is for the means of the random coefficients in the utility function, and the final group is for the
parameters of the marginal cost equation.
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Figure 3: Sensitivity of select parameters in Gourinchas and Parker (2002)
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Panel B: Coefficent of relative risk aversion
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Notes: Each plot shows the standardized plug-in sensitivity of the parameter named in the plot title with
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Figure 4: Sensitivity of ECU social pressure cost in DellaVigna et al. (2012)
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Notes: The plot shows the absolute value of standardized plug-in sensitivity of the social pressure cost of
soliciting a donation for the East Carolina Hazard Center (ECU) with respect to the vector of estimation
moments, with the sign of sensitivity in parentheses. While sensitivity is computed with respect to the
complete set of estimation moments, the plot only shows those corresponding to the East Carolina Hazard
Center treatment. Each moment is the observed probability of a response for the given treatment group. The
leftmost axis labels in larger font describe the response; the axis labels in smaller font describe the treatment
group. Filled circles correspond to moments that DellaVigna et al. (2012) highlight as important for the
parameter.
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A Relationship to Alternative Measures of Sensitivity to Mo-
ments

A.1 Dropping Moments

One common method for assessing the relevance of particular moments is to re-estimate the model
parameters after dropping the corresponding moment condition from the function ĝ(θ) (see, e.g.,
Altonji et al. 2005). The following result specifies how this procedure is related to sensitivity Λ.

Corollary 1. Consider the setup of proposition 3, and suppose that under the local perturbation

{µn}∞

n=1 only one moment j is potentially misspecified (E(g̃k) = 0 for k 6= j). Let θ̂ j be the estima-

tor that results from excluding the jth moment condition and suppose that this estimator satisfies

our maintained assumptions for θ̂ . Then, under Fn (µn), the difference between the first-order

asymptotic biases of
(
θ̂ j−θ0

)
and

(
θ̂ −θ0

)
is Λ. j E

(
g̃ j
)
, for Λ. j the jth column of Λ.

Proof. Applying proposition 3, under Fn (µn),
√

n
(
θ̂ −θ0

)
converges in distribution to a random

variable with mean Λ. j E
(
g̃ j
)
, and

√
n
(
θ̂ j−θ0

)
converges in distribution to a random variable

with mean zero.

Dropping moments does not yield an estimate of sensitivity to misspecification. Rather, when
a given moment j is suspect (and the other moments are not), re-estimating after dropping the
moment gives a first-order asymptotically unbiased estimate of Λ. j E

(
g̃ j
)
, the product of the sen-

sitivity of the original estimator to moment j and the degree of misspecification of moment j.
Dropping moments need not be informative about what moments “drive” a parameter in the

sense that changing the realized value of the moment would affect the realized estimate. Consider,
for example, an over-identified model for which all elements of ĝ

(
θ̂
)

happen to be exactly zero.
Then dropping any particular moment leaves the parameter estimate unchanged, but changing its
realized value will affect the parameter estimate so long as its sample sensitivity is not zero.

A.2 Effect of Parameters on Moments

Another common method for assessing the importance of moments is to ask (say, via simulation)
how the population values of the moments change when we vary a particular parameter of interest
(see, e.g., Goettler and Gordon 2011; Kaplan 2012; Morten 2016; and Berger and Vavra 2015).

What this approach yields is an estimate of minus one times a right inverse of our sensitivity
measure. The large-sample effect of a small change in the parameters θ on the moments is given

by G. Recalling that Λ =−
(

G
′
WG

)−1
G
′
W , we have −ΛG = I, so that Λ is a left inverse of −G.

When G is square, Λ = (−G)−1. When θ̂ is a CMD estimator, and ĝ(θ) = ŝ− s(θ), we have
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−G = ∇θ s(θ0), so Λ is minus one times a left inverse of the matrix we obtain by perturbing the
parameters and looking at the resulting changes in the model’s predictions s(θ).

The matrix G is not a measure of the sensitivity of an estimator to misspecification. Indeed,
G is not a property of the estimator at all, but rather a (local) property of the model. A moment can
respond to a change in the value of a parameter even if that moment plays no role in estimation
at all. This is true, for example, for an over-identified MDE in which we set the elements of Ŵ

corresponding to a particular moment equal to zero.

B Proofs for Results in Main Text

B.1 Proof of Proposition 1

Noting that Fn = Fn (0) is a local perturbation, the proposition is a special case of the consistency
of sample sensitivity under local perturbations, which is proved in the online appendix.

B.2 Proof of Proposition 2

By the differentiability of g(θ ,µ) in µ , we know that g(θ ,µ)→ g(θ) pointwise in θ as µ → 0.
Moreover, since G(θ ,µ) is continuous in (θ ,µ) ∈ Θ×Bµ , for B̃µ ⊂Bµ a closed ball around
zero we know that sup(θ ,µ)∈Θ×B̃µ

λmax
(
G(θ ,µ)′G(θ ,µ)

)
is bounded, where λmax (A) denotes

the maximal eigenvalue of a matrix A. This implies that g(θ ,µ) is uniformly Lipschitz in θ for
µ ∈ B̃µ , and thus that g(θ ,µ)→ g(θ) uniformly in θ as µ→ 0. Thus, g(θ ,µ)′W (µ)g(θ ,µ) con-
verges uniformly to g(θ)′Wg(θ) as µ → 0. Since θ0 is the unique solution to minθ g(θ)′Wg(θ),
this implies that, for any ε > 0, there exists µ (ε) > 0 such that ‖θ (µ)−θ0‖ < ε whenever
|µ|< µ (ε) , where θ (µ) is the unique solution to

min
θ∈Θ

g(θ ,µ)′W (µ)g(θ ,µ) .

Moreover, standard consistency arguments (e.g., theorem 2.1 in Newey and McFadden 1994) imply
that θ̂

p−→ θ (µ) under Fn (µ).
Next, note that, for any µ such that θ (µ) belongs to the interior of Θ, θ (µ) satisfies the first

order conditions (in θ )

f (θ (µ) ,µ) = G(θ (µ) ,µ)′W (µ)g(θ (µ) ,µ) = 0.

Note that
∂

∂θ
f (θ (µ) ,µ) = G(θ (µ) ,µ)′W (µ)G(θ (µ) ,µ)+A(µ)
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for

A(µ) =
[

G1 (θ (µ) ,µ)′W (µ)g(θ (µ) ,µ) . . . GP (θ (µ) ,µ)′W (µ)g(θ (µ) ,µ)
]

with
Gp (θ (µ) ,µ) =

∂

∂θp
G(θ (µ) ,µ) .

Since we have assumed that G′WG is non-singular and ∂

∂θ
f (θ ,µ) is continuous in θ and µ ,

∂

∂θ
f (θ (µ) ,µ) has full rank for µ sufficiently close to zero. Thus, by the implicit function theo-

rem, for µ in an open neighborhood of zero we can define a unique continuous function θ̃ (µ) such
that f

(
θ̃ (µ) ,µ

)
= 0 and

∂

∂δ
θ̃ (µ) =

−
(
G(θ (µ) ,µ)′W (µ)G(θ (µ) ,µ)+A(µ)

)−1

×
(

G(θ (µ) ,µ)′W (µ) ∂

∂ µ
g(θ (µ) ,µ)+B(µ)

)
for

B(µ) = G(θ (µ) ,µ)
∂

∂ µ
W (µ)g(θ (µ) ,µ) .

By the argument at the beginning of this proof, uniqueness implies that θ (µ) = θ̃ (µ) for µ suffi-
ciently small. This means that θ̃ (0) = θ (0) = θ0. Thus, since g(θ (0) ,0) = g(θ0) = 0, both A(0)
and B(0) are equal to zero, from which the conclusion follows immediately for B∗µ sufficiently
small.

B.3 Proof of Proposition 3

Because θ0 ∈ interior (Θ) and ĝ(θ) is continuously differentiable in θ , the following first-order
condition must be satisfied with probability approaching one:

Ĝ
(
θ̂
)′

Ŵ ĝ
(
θ̂
)
= 0.

By the mean value theorem,

ĝ
(
θ̂
)
= ĝ(θ0)+ Ĝ

(
θ̄
)(

θ̂ −θ0
)

for some θ ∈
(
θ0, θ̂

)
which may vary across rows. Substituting this expression into the FOC yields

Ĝ
(
θ̂
)′

Ŵ ĝ(θ0)+ Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ̄
)(

θ̂ −θ0
)
= 0.
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Rearranging, we have (
θ̂ −θ0

)
= L̂ĝ(θ0) ,

where L̂ =−
(

Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ̄
))−1

Ĝ
(
θ̂
)′

Ŵ .

We know that θ̂
p→ θ0 under Fn (µn), so θ

p→ θ0. This plus uniform convergence of Ĝ(θ) to
G(θ) implies that under Fn (µn), Ĝ

(
θ̂
)

and Ĝ
(
θ
)

both converge in probability to G. Recalling
that Λ =−(G′WG)−1 G′W , the above, along with Ŵ

p→W , implies L̂
p→ Λ.

Then

√
n
[(

θ̂ −θ0
)
−Λĝ(θ0)

]
=
√

n
[
L̂ĝ(θ0)−Λĝ(θ0)

]
=

(
L̂−Λ

)√
nĝ(θ0) ,

which converges in probability to zero by the Slutsky theorem (using the fact that
√

nĝ(θ0) con-
verges in distribution). Therefore, under Fn (µn),

√
n
(
θ̂ −θ0,Λĝ(θ0)

)
converges in distribution to

a random vector
(
θ̃ , g̃
)

with Pr
{

θ̃ = Λg̃
}
= 1. This implies in particular that E

(
θ̃
)
= ΛE(g̃).

B.4 Proof of Lemma 1

Uniform convergence of Ĝ(θ) under Fn (µn) follows from the fact that b̂ does not depend on θ and
that the distribution of â(θ) is unaffected by µ . Convergence in distribution of

√
nĝ(θ0) follows

from the fact that
√

nâ(θ0) converges in distribution and
√

nb̂ converges in probability. That
θ̂

p→ θ0 then follows from the observation that ĝ(θ)′Ŵ ĝ(θ) converges uniformly to g(θ)′Wg(θ).

B.5 Proof of Lemma 2

By assumption 3 part (ii) we know that (ζi,Xi,Vi) has density f (ζi,Xi,Vi) with respect to ν under
F (0). Thus, the density f (ζi,Xi,Vi|µ) is given by f (ζi−µ ·Vi,Xi,Vi). By assumption 3 part (iii),√

f (ζi−µ ·Vi,Xi,Vi) is continuously differentiable in ζi, which implies that

∂

∂ µ

√
f (ζi−µ ·Vi,Xi,Vi) =−

1
2

V ′i
∂

∂ζi
f (ζi−µ ·Vi,Xi,Vi)√

f (ζi−µ ·Vi,Xi,Vi)

is continuous in µ for all (ζi−µ ·Vi,Xi,Vi). By assumption 3 part (iv) we know that

0 <
∫ (V ′i

∂

∂ζi
f (ζi,Xi,Vi)

f (ζi,Xi,Vi)

)2

f (ζi,Xi,Vi)dν < ∞,
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but using the linear structure of the model we see that this is equal to the information matrix for µ

Iµ =
∫ (V ′i

∂

∂ζi
f (ζi−µ ·Vi,Xi,Vi)

f (ζi−µ ·Vi,Xi,Vi)

)2

f (ζi−µ ·Vi,Xi,Vi)dν

for all µ . Thus, the information matrix for estimating µ is continuous in µ , finite, and non-zero.
Given these facts, lemma 7.6 of van der Vaart (1998) implies that the family of distributions

F (µ) is differentiable in quadratic mean in a neighborhood of zero. Thus, if we take µn =
1√
n µ∗

for a fixed value µ∗, then by theorem 7.2 of van der Vaart 1998) we have that under Fn (0) ,

log
dFn (µn)

dFn (0)
=

1√
n ∑

i
µ
∗
V ′i

∂

∂ζi
f (ζi,Xi,Vi)

f (ζi,Xi,Vi)
− 1

2
(µ∗)2 Iµ +op (1) .

Moreover, the Cauchy-Schwarz inequality, assumption 3 parts (iv) and (v), and the central limit
theorem imply that under Fn (0),( √

nĝ(θ0)

log dFn(µn)
dFn(0)

)
→d N

((
0

−1
2 (µ

∗)2 Iµ

)
,

(
Ω µ∗ ·Ξ

µ∗ ·Ξ (µ∗)2 Iµ

))

for Ξ the asymptotic covariance of
√

nĝ(θ0) and 1√
n ∑i

(
V ′i

∂

∂ζi
f (ζi,Xi,Vi)

)
/ f (ζi,Xi,Vi) . However,

by LeCam’s first lemma (lemma 6.4 in van der Vaart 1998), this implies that the sequences Fn (0)
and Fn (µn) are contiguous. Moreover, by LeCam’s third lemma (example 6.7 of van der Vaart
1998),

√
nĝ(θ0)

d−→ N (µ∗ ·Ξ,Ω)

under Fn (µn) . Furthermore, contiguity immediately implies that the other conditions for a local
perturbation are satisfied, since any object with converges in probability under Fn (0) must, by the
definition of contiguity, converge in probability to the same limit under Fn (µn) .
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