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1 Introduction

An estimator is a mapping from data to parameters of interest. In many cases, it is possible to
show analytically how the estimates change as the data vary along particular dimensions. In other
cases, the estimator is sufficiently complicated that interrogating the mapping through brute-force
computation, or through direct inspection of the economic and econometric assumptions, is pro-
hibitively costly. In this paper, we introduce a quantitative measure of an estimator’s sensitivity
to specific features of the data that is easy to compute even for complex models. We then apply
the measure to gain new insight into empirical models in industrial organization, macroeconomics,
public economics, and finance.

Throughout the paper, we consider the following abstract setting. A researcher begins with
an estimator θ̂ of some economic parameters with true value θ0. The researcher also computes a
vector of statistics γ̂ that summarize the data features of interest. These may be the moments used
in estimating θ̂ in a GMM procedure, descriptive statistics such as means or variances, or estimates
of the parameters of an auxiliary model. The statistics θ̂ and γ̂ are jointly asymptotically normal,
and θ̂ is consistent for θ0.

We define the sensitivity of θ̂ to γ̂ to be the expected coefficient from a regression of θ̂ on γ̂ in
data drawn from the asymptotic distribution. In other words, suppose we: (i) draw samples of size
n from the true DGP of the data; (ii) compute θ̂s and γ̂s for each sample s; (iii) stack the θ̂s and γ̂s

and regress each column of the former on the latter plus a constant term. Then sensitivity is the
limit of the expected regression coefficients as the sample size n grows large. In the special case
in which θ̂ is fully determined by γ̂ , sensitivity corresponds to the derivative of θ̂ with respect to γ̂

at the probability limit of γ̂ . Sensitivity thus measures how θ̂ is related to the elements of γ̂ across
alternative realizations of the data.

Computing a consistent estimate of sensitivity does not require actually performing this re-
sampling experiment. When γ̂ is the vector of moments used in estimating θ̂ , sensitivity can be
estimated at essentially no computational cost using only the objects used to estimate asymptotic
standard errors. In a large class of remaining cases, sensitivity can be estimated using empirical
influence statistics that are available at low computational cost and without any simulation or re-
estimation of the model. Our measure can also be trivially extended to the case where the economic
quantity of interest is not a parameter itself but a function of underlying parameters: an elasticity,
a welfare effect, or a summary of a counterfactual simulation, for example.

Our main motivation for considering such a measure is to complement the discussions of iden-
tification that have become an increasingly important part of applied economics. Empirical papers
often devote whole sections to discussing, formally or informally, the features of the data that make

2



it possible to pin down the values of particular parameters.1 One may understand many of these as
attempts to establish constructive proofs of parametric or nonparametric identification in the sense
of Matzkin (2007; 2013) and Berry and Haile (forthcoming).

Our sensitivity measure adds value to these discussions in two ways. First, the data features
highlighted in a constructive proof of identification need not be the ones that actually drive the
estimator used in practice. For example, most papers that offer discussions of nonparametric iden-
tification still take a parametric model to the data. We know of no generally accepted way to
compare the behavior of the actual estimator to that of the hypothetical one constructed in the
proof. We propose sensitivity as a way to fill this gap: sensitivity quantifies which features of the
data the estimator depends on, and thus permits a comparison to the intuitive mapping laid out in
the discussion of identification. Second, identification in a formal sense is a binary characteristic—
either a feature of the data is sufficient to infer the value of a parameter or it is not. Yet applied
researchers often stop short of this sharp claim, instead making more quantitative statements, such
as that some aspect of the data is the “primary” or most “important” source of identification for
a particular parameter.2 To our knowledge no one has offered a formal way to understand these
statements. We propose to re-cast them as claims about sensitivity: across alternative realizations
of the data, variation in the estimated parameter will be explained only or mostly by variation in a
particular data feature.

Our sensitivity measure also allows us to develop a formal argument for why we might want
to know how a particular estimator maps data to parameters. We show that for a broad class of
estimators, sensitivity to empirical moments is formally equivalent to sensitivity to small viola-
tions of identifying assumptions. A decision maker who entertains the possibility that the model’s
assumptions may not hold exactly can use sensitivity to map beliefs about assumptions to beliefs
about the asymptotic behavior of the parameter estimates. We think that this reasoning explains at
least part of the effort in the literature devoted to discussing specific sources of identification.

Throughout the paper, we draw on simple examples to illustrate the mechanics of our measure
in familiar settings. Consider, for example, a two-stage least squares regression with dependent
variable y, one endogenous regressor x, and two instruments z1 and z2, where the researcher wishes
to assess the relative importance of the two instruments. To map this example to our framework,
we define θ̂ to be the 2SLS coefficient and γ̂ to be the respective covariances of z1 and z2 with

1See, for example, the discussions of identification in Einav et al. (2013), Berry et al. (2013), and Bundorf et al.
(2012).

2For example, Goettler and Gordon (2011) write, “The demand-side parameters ... are primarily identified by the
pricing moments, the Intel share equation moments, and the mean ownership quality relative to the frontier quality”
(p. 1161). Lee (2013) writes that “[a parameter] is primarily identified” by a particular source of variation (p. 2978).
Lim (2013) writes that particular dynamics in the data “play an important role in the separate identification of a judge’s
preference and reelection incentives” (p. 1378). Crawford and Yurukoglu (2012) write that “One may casually think
of [a set of moments] as ‘empirically identifying’ [a set of parameters]” (p. 662).
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y and x. We show that the sensitivity of θ̂ to the covariances involving z1 and z2 respectively is
proportional to the respective coefficients from the first-stage regression. Moreover, sensitivity
to these covariances is equivalent to sensitivity to small violations of the identifying assumptions
E (z′1ε) = 0 and E (z′2ε) = 0, where ε is the disturbance in the second stage equation. What we
recommend for more complex models thus boils down in this special case to the common practice
of inspecting the first-stage estimates to learn which exclusion restrictions are most important in
driving the second-stage estimate.

In the final sections of the paper, we present estimates of sensitivity for a number of empirical
papers. We begin with an extended application to Berry et al.’s (1995) empirical model of the auto-
mobile market. We quantify the importance of demand-side and supply-side estimation moments
in driving the estimated markup. We also show that estimates of a much simpler model—a logit
with no unobserved heterogeneity—do a poor job of capturing the information in the data that pins
down Berry et al.’s (1995) estimated parameters.

We turn next to an application to two models of intertemporal choice. Applying sensitivity
to Gourinchas and Parker’s (2002) model of lifecycle consumption and saving, we show how
information on consumption at different ages permits simultaneous inference about time and risk
preference. In an application to De Nardi et al.’s (2010) model of post-retirement saving, we show
how a government-policy parameter not present in Gourinchas and Parker’s (2002) model is pinned
down by data on the asset holdings of rich and poor households.

After these detailed applications we present shorter applications to Goettler and Gordon’s
(2011) study of competition between AMD and Intel, DellaVigna et al.’s (2012) model of char-
itable giving, and Nikolov and Whited’s (2014) model of corporate investment. For each paper
we show the sensitivity of key parameters to the empirical moments used in estimation and com-
pare our results to the authors’ discussions of identification. In most cases, our analysis accords
with the authors’ stated intuitions, but we also find cases in which parameter estimates depend on
information in the data that the authors did not highlight as important.

Our final applications are to Mazzeo’s (2002) model of motel entry, Gentzkow et al.’s (2014)
model of political competition in newspaper markets, and Gentzkow’s (2007) model of competition
between print and online newspapers. Because these papers use maximum likelihood estimators,
we focus on estimating the sensitivity of their parameter estimates or key counterfactuals to de-
scriptive statistics rather than to the estimation moments. We find that there is often a tight link
between the estimates of structural parameters and the corresponding descriptive statistics. For
example, in the case of Mazzeo’s (2002) model, we show that estimates of an analogous linear re-
gression model capture more than 80 percent of the information in the data that is used to estimate
key parameters. This finding suggests a way in which sensitivity can be used to build up linear
intuitions for the inner workings of nonlinear models.
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An important limitation of our formal approach is that, because we focus on properties of the
asymptotic distribution, the notion of sensitivity that we consider is intrinsically local. The ap-
proximations that we work with have the same mechanics and hence the same limitations as those
commonly used to compute asymptotic standard errors. Generalizing our approach to more global
exploration of model properties is conceptually straightforward but may be computationally expen-
sive. In our concluding section, we provide some guidance on how a researcher might minimize
computational costs in practice.

A second limitation is that the units of sensitivity are contingent on the units of γ̂ . We suggest a
normalization that serves as a useful default for many practical applications but acknowledge that
the appropriate scaling of sensitivity may be application-specific.

Our paper contributes to a methodological conversation about structural vs. “reduced-form” or
“program evaluation” methods. At the center of this conversation is a perceived tradeoff between
the realism of a model’s economic assumptions and the transparency of its mapping from data
to parameters.3 Our sensitivity measure makes this tradeoff shallower by permitting a precise
characterization of the dependence of a structural estimate on intuitive features of the data and on
small violations of modeling assumptions.4 Because our sensitivity measure correctly identifies
cases in which only a subset of empirical moments is needed to answer a question of interest,
sensitivity analysis may also be seen as a complement to the “sufficient statistics” approach of
Chetty (2009), Einav et al. (2010), and Jaffe and Weyl (2013).

Our measure facilitates traditional sensitivity analysis (Leamer 1983) by showing how data
map into parameters and by showing how small violations of model assumptions affect inference.
In this sense our paper also complements recent research on inference in the presence of possibly
misspecified exclusion restrictions (Conley et al. 2012; Nevo and Rosen 2012). Our work is
also closely related to the large literature on sensitivity analysis for scientific models (Sobol 1993;
Saltelli et al. 2008).5

The remainder of the paper is organized as follows. Section 2 defines our sensitivity measure.
Section 3 discusses its properties and interpretation, and section 4 shows how to estimate it. Section
5 compares our approach to alternatives. Sections 6 and 7 apply the measure to several empirical
papers. Section 8 concludes with a discussion of how to generalize the measure so that it is not

3Heckman (2010) writes that “The often complex computational methods that are required to implement [struc-
tural estimation] make it less transparent” (p. 358). Angrist and Pischke (2010) write that “in [Nevo’s (2000)] frame-
work, it’s hard to see precisely which features of the data drive the ultimate results” (p. 21).

4In this sense our measure exploits the fact that structural models often “make the relationship between the eco-
nomic model and the estimating equations transparent” (Pakes 2003, p. 193).

5Linear regression of model outputs on model inputs is a standard tool for model interrogation in the physical
sciences. Our primary contribution is to show that the asymptotic properties of common estimators used in economics
make it possible to perform such an analysis without repeatedly re-estimating or simulating the model, thus sparing
substantial computational expense.
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local to a particular sample.

2 Measure of Sensitivity and Sufficiency

2.1 Definitions

An econometrician possesses a sample of size n. She computes (i) a (P×1) estimator θ̂ of a
parameter θ with true value θ0; and (ii) a (J×1) vector of auxiliary statistics γ̂ with population
value γ0. Both θ̂ and γ̂ are functions of the data.6

We assume that there exist random variables
(
θ̃ , γ̃
)

such that

(1)
√

n

(
θ̂ −θ0

γ̂− γ0

)
d
→

(
θ̃ −θ0

γ̃− γ0

)
∼ N (0,Σ) ,

for some finite Σ. We assume throughout that the submatrix Σγγ of Σ corresponding to the variance
of γ̃ is nonsingular.

From equation (1) it follows that the conditional expectation of θ̃ given γ̃ is linear. Letting Σθγ

denote the submatrix of Σ corresponding to the covariance of θ̃ and γ̃ , we have:

(2) E
(
θ̃ −θ0|γ̃

)
= ΣθγΣ

−1
γγ (γ̃− γ0) .

Definition. The sensitivity of θ̂ to γ̂ is

Λ = ΣθγΣ
−1
γγ .

Sensitivity Λ is the expected coefficient from a regression of realizations of θ̃ on realizations of
γ̃ . An element Λp j of Λ is the effect of changing the realization of a particular γ̃ j on the expected
value of a particular θ̃p, holding constant the other elements of γ̃ .7

Note that, although we have defined sensitivity as a property of the statistics θ̂ and γ̂ , sensitivity
depends only on these statistics’ joint asymptotic distribution. Thus, two different estimators of θ

that converge to the same θ̃ must have the same sensitivity to γ̂ .
It is also helpful to be able to measure how much of the asymptotic variation in θ̂ is explained

by γ̂:

6Depending on the context, we use θ̂ and γ̂ to refer to both the random variables with a sample of size n and the
sequences of such random variables indexed by n.

7It follows from equation (2) that Λ2
p j is the partial derivative of the variance of E

(
θ̃p|γ̃

)
with respect to the

variance of γ̃ j. In this sense, Λ captures not only the impact of γ̃ on θ̃ , but also the impact of uncertainty about γ0 on
uncertainty about θ0.
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Definition. The sufficiency of γ̂ for an element θ̂p of θ̂ is

∆p =
Var
(
E
(
θ̃p|γ̃

))
Var
(
θ̃p
) =

(
ΛΣγγΛ′

)
pp

(Σθθ )pp
.

We let ∆ denote the column vector of ∆p.

We will say that γ̂ is sufficient for θ̂p if ∆p = 1 and that γ̂ is sufficient for θ̂ if ∆ = 1.

The value ∆p ∈ [0,1] is the probability limit of the R2 of a regression of realizations of θ̃p on
realizations of γ̃ , as the number of realizations grows large.

Most of our applications will have ∆= 1 or ∆≈ 1, and as we discuss below we believe Λ is most
informative when this is the case. When ∆= 1, γ̂ fully determines θ̂ asymptotically. When ∆≈ 1, γ̂

is “almost sufficient” for θ̂ in the sense that, asymptotically, knowing γ̂ allows the econometrician
to predict θ̂ with little error. Sufficiency ∆p provides a quantitative way to evaluate a researcher’s
claim that some low-dimensional representation of the data γ̂ captures the key information that
drives her estimator θ̂p.8

The applications we will discuss are all examples of minimum distance estimators (MDE),
a class that includes generalized method of moments (GMM), maximum likelihood (MLE), and
classical minimum distance (CMD), as well as simulated analogues such as simulated minimum
distance (SMD) and simulated method of moments (SMM). Formally:

Definition. θ̂ is a minimum distance estimator (MDE) if we can write

θ̂ = argmin
θ∈Θ

ĝ(θ)′Ŵgĝ(θ) ,(3)

where ĝ(θ) is a function of parameters and data, ĝ(θ0) is asymptotically normal with mean 0
and variance Ωgg, and the weight matrix Ŵg is positive semi-definite, as is its probability limit Wg.

Except where stated we will assume further regularity conditions so that θ̂ is consistent for θ0 and

asymptotically normal with asymptotic variance (G′WgG)−1 G′WgΩggWgG(G′WgG)−1, where G is

the Jacobian of an appropriate limit of ĝ evaluated at θ0.9

We will say that Λ is sensitivity to moments when θ̂ is an MDE and γ̂ = ĝ(θ0) is the vector of

estimation moments evaluated at the true paramter value.

An immediate consequence of these definitions is:

8We abuse the probability-theoretic term “sufficient” to emphasize that, when ∆ = 1, asymptotically θ̂ contains
no information about the data that is not also in γ̂ .

9We allow some flexibility in the definition of G here so that our definition of MDE includes both standard cases
where ĝ(θ) is a smooth function of parameters (as in GMM or CMD), and cases where ĝ(θ) is not smooth (as in
SMM). For the precise regularity conditions and definition of G, see Newey and McFadden (1994) Theorem 3.2 for
the smooth case and Theorem 7.2 for the non-smooth case.
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Remark 1. If θ̂ is an MDE and Λ is sensitivity to moments, then ∆= 1 and Λ=−(G′WgG)−1 G′Wg.

Note that although we have focused attention for simplicity on the case in which θ̂ is a param-
eter, it is easy to extend our approach to cases in which the quantity of interest is a function of
the underlying parameters, such as a welfare calculation or other unobservable or counterfactual
implication. To emphasize this possibility, we establish the following definition:

Definition. We will say that c
(
θ̂
)

is a counterfactual if the function c() does not depend on the

data, and is continuously differentiable with non-zero gradient C at θ0.

It is immediate from the delta method that:

Remark 2. The sensitivity of counterfactual c
(
θ̂
)

to statistics γ̂ is given by CΛ, where Λ is the
sensitivity of θ̂ to γ̂ .

It is also easy to extend our approach to consider sensitivity to a function of the statistics γ̂:

Definition. We will say that a(γ̂) is a transformed statistic if the function a() does not depend on

the data, and is continuously differentiable with non-zero gradient A at γ0.

It is again immediate from the delta method that:

Remark 3. The sensitivity of θ̂ to transformed statistic a(γ̂) is given by ΣθγA′
(
AΣγγA′

)−1.

In our applications, we use this result, for example, to consider sensitivity of an MDE to an
average of conceptually related estimation moments.

2.2 Preliminaries

We now establish some useful properties of sensitivity and sufficiency. These help to build intuition
and to streamline derivations in the examples we present below.

Our main formal result is that when γ̂ is sufficient for θ̂p, sensitivity can be interpreted as the
derivative of an appropriately defined function of γ̂:

Proposition 1. The statistics γ̂ are sufficient for θ̂p if and only if there exists a continuously differ-

entiable function f () with nonzero gradient at γ0 such that
√

n
[
θ̂p− f (γ̂)

]
converges in probability

to 0. If such an f () exists, its partial derivative at γ0 is Λp·.

Proof. Suppose that γ̂ is sufficient for θ̂p. Define f () such that f (γ̂) = θ0p +Λp· (γ̂− γ0). That
√

n
[
θ̂p− f (γ̂)

] p→ 0 then follows from standard limit results and properties of normal random
variables. The other properties of f () are immediate.

Now suppose that there exists an f () satisfying the given conditions. Observe that

√
n

(
f (γ̂)− f (γ0)

γ̂− γ0

)
=
√

n

(
θ̂p−θ0p

γ̂− γ0

)
−
√

n

(
θ̂p− f (γ̂)

0

)
.
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The first term on the right-hand side converges in distribution to
(
θ̃p−θ0p, γ̃− γ0

)′
. The second

term on the right-hand side converges in probability to zero by construction. Therefore the term
on the left-hand side converges in distribution to

(
θ̃p−θ0p, γ̃− γ0

)′
. That ∆p = 1 and that f () has

partial derivative at γ0 given by Λp· then follow from standard limit results and the definitions of
∆p and Λ.

A case of special interest is when θ̂p = f (γ̂) for some suitable function f ():

Definition. The statistics γ̂ are strongly sufficient for θ̂p if there exists continuously differentiable

function f (), not dependent on θ0, such that θ̂p = f (γ̂) and f () has nonzero gradient at γ0.

Corollary 1. If γ̂ is strongly sufficient for θ̂p then γ̂ is sufficient for θ̂p.

Strong sufficiency obtains, for example, when θ̂ is a CMD estimator with fixed weight matrix W

and γ̂ is the vector of empirical moments used in estimation.
Proposition 1 is also useful in an important class of cases in which sufficiency obtains although

strong sufficiency does not:

Corollary 2. Suppose that we can write θ̂p−θ0p = M̂ · [h(γ̂)−h(γ0)] for some function h() that

is continuously differentiable with non-zero partial derivatives at γ0, and for some function M̂ of

the data that has probability limit M0. Then ∆p = 1 and Λp· = M0∇h(γ0).

Proof. Observe that
√

n
((

θ̂p−θ0p
)
−M0 [h(γ̂)−h(γ0)]

)
=
(
M̂−M0

)
(
√

n [h(γ̂)−h(γ0)])
p→ 0,

where the last step follows from Slutsky’s theorem. The result then follows from proposition
1.

As we show below, corollary 2 provides a convenient method to derive Λ in familiar examples.

2.3 Examples

In this section, we study several “pen and paper” examples, many of which are familiar. Our goal
is not to shed new light on these examples. Rather, we want to see whether sensitivity delivers
reasonable intuitions in simple cases that we already understand. If so, this may give us greater
confidence in applying sensitivity to more complex models.

Example. (OLS) θ̂ =
[

α̂ β̂

]′
is the constant term and coefficient from an OLS regression of

y on a scalar x. We assume standard conditions for the consistency and asymptotic normality
of θ̂ . Define γ̂ =

[
µ̂y σ̂xy σ̂2

x µ̂x

]′
, where µ̂y is the sample mean of y, σ̂xy is the sample

covariance of x and y, σ̂2
x is the sample variance of x, and µ̂x is the sample mean of x. We can write

α̂ = µ̂y− β̂ µ̂x and β̂ = σ̂xy/σ̂2
x , so by proposition 1 ∆ = 1 and we can solve for Λ by evaluating the
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partial derivatives of the estimates at the population values of γ̂ . Focusing on the first two columns
of Λ, which give sensitivity to µ̂y and σ̂xy respectively, we have:

Λ =

[
1 − µx

σ2
x

...

0 1
σ2

x
...

]
,

where µx and σ2
x are the population mean and variance of x. Consistent with intuition, we find that

when the mean of x is zero, the constant α̂ is sensitive only to µ̂y and β̂ is sensitive only to σ̂xy.
When the mean of x is not zero, α̂ is also sensitive to σ̂xy because this affects E

(
β̂x
)

. Note that it

is straightforward to generalize the example to multivariate regression.10

Example. (2SLS) θ̂ is the coefficient β̂ from a two-stage least squares regression with dependent
variable y, one endogenous regressor x, and two instruments z1 and z2. For simplicity, we assume
all variables are mean zero. We define γ̂ = 1

n

[
y′z x′z

]′
, with z =

[
z1 z2

]
. We assume standard

conditions for consistency and asymptotic normality of θ̂ . Letting x̂ = zφ̂ be the predicted values
from the first stage (where φ̂ = (z′z)−1 z′x with probability limit φ ), we have:

β̂ −β =
(
x̂′x̂
)−1 x̂′ (y− x̂β )

=
(
x̂′x̂
)−1

φ̂
′ (z′y− z′xβ

)
.

where β is the true value of β̂ . Letting Ωx̂x̂ = plim 1
n x̂′x̂, by corollary 2 we have that ∆ = 1 and

Λ = Ω
−1
x̂x̂

[
φ ′ −φ ′β

]
,

where φ =
[
φ1 φ2

]′
. Consistent with intuition, the sensitivities of β̂ to 1

nz′1y and 1
nz′2y respectively

are proportional to the first-stage coefficients φ1 and φ2. The sensitivities to 1
nz′1x and 1

nz′2x have
the opposite sign and are scaled by β . Note that the example can be generalized to a model with
multiple endogenous regressors.11

10Let independent variables be X = [x1, ...,xJ ] and let γ̂ = 1
n

[
y′X x′1x1 x′1x2 · · · x′jxk · · · x′JxJ

]′ with
j ∈ {1, ...,J} and k ∈ { j, ...,J} (so there are no redundant elements). Then ∆ = 1 and

Λ =
[

Ω
−1
XX · · ·

]
,

where ΩXX is the probability limit of 1
n X ′X . The columns of Λ equal to Ω

−1
XX give the sensitivity of β̂ to 1

n y′X .
11Let endogenous regressors be X = [x1, ...,xJ ] and instruments be Z = [z1, ...,zK ] with K ≥ J. If we let γ̂ =

1
n

[
y′Z x′1z1 x′1z2 · · · x′jzk · · · x′JzK

]′ where j,k are defined so there are no redundant elements (in case
some elements of X are included in Z), then

Λ =
[
Ω
−1
X̂ X̂

φ
′ · · ·

]
,
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Example. (Sample Mean) θ̂ is the average of a scalar variable y in a random sample. The popula-
tion mean of y is θ0. The population consists of J groups indexed by j, each of which represents
share ρ j of the population, and we wish to assess the sensitivity of θ̂ to the sample means γ̂ j in
each group. Note that θ̂ = ρ̂ ′γ̂ , where ρ̂ = [ρ̂1, ..., ρ̂J]

′ is the vector of sample shares. In this case,
we cannot write that θ̂ = f (γ̂) because the mapping from γ̂ to θ̂ depends on the sample shares
ρ̂ . However, we can write θ̂ −θ0 = ρ̂

′ (
γ̂ j−θ0

)
, and so invoke corollary 2 to find that ∆ = 1 and

Λ = ρ . Consistent with intuition, the sensitivity of θ̂ to the sample mean of group j is proportional
to its population share ρ j.

3 Interpretation of Sensitivity and Sufficiency

3.1 Identification

Figure 1 shows the dramatic increase in the number of articles published in top economic jour-
nals containing a claim that some estimator is “identified by” some feature of the data. In 2013,
the American Economic Review published 14 empirical papers that include structural models; of
these, 10 contain a section or subsection with “identification” in the title, while two others provide
similar discussion without breaking it out into a separate subsection.12 Consistent with figure 1,
these discussions typically relate specific variation or data features to the identification of specific
parameters.13

We can interpret these discussions as efforts to build a constructive argument for identification
in the sense defined by Matzkin (2007; 2013). Such an argument reveals a functional that maps the
true distribution of the data into the economic quantities of interest. As Matzkin (2013) observes,
such a construction provides a candidate estimator of the quantities of interest, obtained by simply
applying the functional to the observed data. Identification is “nonparametric” if the functional is
valid without restrictions on functional forms other than those derived from economic theory.

To make this precise, we introduce a stripped-down version of Matzkin’s (2013) framework.
A model is a family of primitive functions and distributions S (e.g., utility or production functions,
distributions of unobservable shocks, etc.), and a mapping that for any ζ ∈ S determines the joint
population distribution of all observable variables. Two primitives ζ and ζ ′ are observationally

where ΩX̂ X̂ is the probability limit of 1
n X̂ ′X̂ and φ is the matrix of first-stage coefficients.

12The online appendix lists these articles and shows how we classify them.
13For example, Barseghyan et al. (2013) write “given three or more deductible options, it is exogenous variation in

premiums for a fixed [claim probability] that allows us to pin down [the coefficient of absolute risk aversion] and [the
probability distortion function]” (p. 2511). Fan (2013) writes that “Identification of [the diminishing utility parameter]
comes from the variation in the number of newspapers in a county” (p. 1610). Kawai and Watanabe (2013) write “we
use the systematic difference between the predicted vote share and the actual vote share to partially identify the fraction
of strategic voters” (p. 643).
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equivalent if they imply the same joint distribution. An economic quantity c (e.g., a vector of
elasticities, welfare effects, etc.) is a functional of ζ ,14 and is identified if for any observationally
equivalent ζ and ζ ′, c(ζ ) = c(ζ ′).

This definition says that c is identified when the complete distribution of the observed data is
enough to pin down c’s value. We can naturally extend this definition to say what it means for
c to be identified by a particular statistic or vector of features γ of the population distribution of
the observable data, noting that any such vector can itself be written as a functional γ (ζ ) of the
underlying primitives ζ .

Definition. Economic quantity c is identified by data features γ if for any primitives ζ and ζ ′ such

that γ (ζ ) = γ (ζ ′), we have c(ζ ) = c(ζ ′).

If economic quantity c is identified by data features γ , there must be some function Φ such that
c = Φ(γ). A natural estimator for c is then ĉ = Φ(γ̂).

Applied researchers’ treatments of identification depart from this roadmap in two main ways.
First, the estimator they take to the data is usually different from the Φ implicitly defined by
their discussion of identification. For example, it is common for authors to provide an argument
for nonparametric identification, then go on to use a parametric model due to data limitations
or other practical concerns.15 The estimators used in practice may therefore depend on features
of the data other than γ , and may be valid only under stronger assumptions than those needed
to justify Φ. Second, researchers sometimes discuss identification as a quantitative rather than
a qualitative property, arguing that a given feature γ “mostly” or “primarily” identifies a given
economic quantity c.16 Such claims do not have a formal meaning in Matzkin’s framework.

Sensitivity and sufficiency complement analysis of identification and speak directly to these
two common departures. As quantitative measures, they can support the claim that a particular
estimated quantity ĉp (or parameter θ̂p) depends primarily on a particular data feature γ̂ j (∆p ≈ 1
and Λpk ≈ 0 for k 6= j). Yet they also retain a tight connection with identification in the limiting
case of strong sufficiency:

14Matzkin (2007; 2013) refers to such quantities as “features” of a model, and uses a definition that includes the
case where the object of interest is a distribution function or other high-dimensional object. We use different language
to avoid confusion with the term “features of the data” which we use as a synonym for sample statistics above.

15Einav et al., “Selection on Moral Hazard,” (2013) write that “our actual data depart from the ideal data ... we
thus make additional parametric assumptions to aid us in identification” (p. 201). Kawai and Watanabe (2013) write
that “while our identification argument does not rely on the particular functional form [of preferences], our estimation
does impose these functional forms” (p. 639).

16Lee (2013) writes that “[the price sensitivity of hardware] is primarily identified as hardware sales responds
to variation in software utility (both within and across platforms), which in turn is caused by variation in software
availability and sales over time” (pp. 2978-2979). Lim (2013) writes that “the dynamics of sentencing relative to
changes in political climate and the variation in judges’ sentencing across different stages of their career play an
important role in the separate identification of a judge’s preference and reelection incentives” (p. 1378).
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Proposition 2. Suppose that there is a statistic γ̂ that is consistent for data feature γ and asymptot-

ically normal. Then the following are equivalent: (i) economic quantity c is identified by γ through

a continuously differentiable function Φ; (ii) there exists consistent and asymptotically normal

estimator ĉ for which γ̂ is strongly sufficient.

Proof. That (i) implies (ii) follows by setting ĉ = Φ(γ̂). To see that (ii) implies (i), pick ζ ,ζ ′

such that γ (ζ ) = γ (ζ ′) = γ0. There is some consistent estimator ĉ and continuously differentiable
function f () such that ĉ = f (γ̂). By standard limit results ĉ

p→ f (γ0). Because ĉ is consistent,
f (γ0) = c(ζ ) = c(ζ ′), and we can set Φ = f .

A crucial distinction is that sensitivity and sufficiency are properties of an estimator, whereas
identification is a property of the underlying model. This means that when a given model admits
many different estimators that in turn depend on different data features γ , identification arguments
alone cannot show which features are being exploited in practice. Sensitivity and sufficiency, on
the other hand, do show which features are being exploited, and they capture the effect of any para-
metric assumptions that are used in estimation but not in the constructive proof of identification.

In fact, all models admit multiple estimators which differ in their sensitivities to different data
features, including estimators that depend on features unrelated to model identification:

Remark 4. Suppose that the hypothesis of proposition 2 holds, feature γ j identifies quantity cp, and
feature γk does not. Then there exists a consistent and asymptotically normal estimator ĉp that is
sensitive to both γ̂ j and γ̂k .

Proof. By proposition 2 there exists ĉ∗p for which γ̂ j is strongly sufficient. Then ĉp = ĉ∗p+α (γ̂k− γk)

is sensitive to both γ̂ j and γ̂k for some appropriate α > 0.

Remark 4 shows the limits to proposition 2: while there always exists some estimator for which
an identifying feature is sufficient, there also exist some estimators for which the identifying feature
is not sufficient. It is therefore valuable to show what statistics an estimator is sensitive to, even if
it can be shown that identification requires only a subset of the corresponding features.

3.2 Misspecification

If the model is correctly specified and the estimator has desirable econometric properties (consis-
tency, efficiency, etc.), we might not care which features identify which parameters. We believe
the reason that researchers devote so much attention to these issues is that empirical models are
typically not correctly specified. Important substantive assumptions such as exclusion restrictions
are almost always open to reasonable doubt. And nearly every empirical model includes some
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“whimsical assumptions” that are made purely for convenience and are not defensible on eco-
nomic grounds (Leamer 1983). Knowing which data features drive the estimates provides valuable
insight into the relative importance of these assumptions, and thus the robustness of the results.

In this subsection, we show formally that the sensitivity of an estimator to particular statistics
is informative about the sensitivity of the estimator to violations of particular assumptions. In
showing this, we justify the emphasis in applied work on discussing the way an estimator maps
data to parameters, and we offer an additional reason to be interested in estimating sensitivity.

We motivate our analysis with the following example:

Example. (Standard Deviation of Exponential Random Variable) We wish to use a random sample
to estimate the population standard deviation θ0 of an exponentially distributed random variable x.
Let µx and σx be the population mean and standard deviation, respectively, with sample analogues
µ̂x and σ̂x. Clearly σx identifies θ0 but so too does µx because σx = µx for x exponential. Let θ̂ be
an MDE with diagonal weight matrix and estimation moments ĝ(θ0) =

[
(µ̂x−θ0) (σ̂x−θ0)

]′
,

which implies that θ̂ = ŵµ̂x + (1− ŵ) σ̂x for some ŵ ∈ [0,1] with probability limit w. If Λ is
sensitivity to moments, Λ =

[
w 1−w

]
. If θ̂ is MLE, then w = 1.

That the estimate of the population standard deviation depends on the sample mean does not bother
us if we are confident that x is exponential. But if we entertain the possibility that x is not expo-
nential, and therefore that the population mean and standard deviation may be quite different, then
the more sensitive θ̂ is to µ̂x, the more concerned we will be about using θ̂ as an estimator.

More precisely, suppose that x is not exponential, and (σ̂x−θ0)
p→ 0 but (µ̂x−θ0)

p→ ε 6=
0. Then

(
θ̂ −θ0

) p→ wε . Under the maximum likelihood estimator, w = 1 and misspecification
translates one-for-one into asymptotic bias; under a method-of-moments estimator with w = 0,
misspecification has no asymptotic impact. Therefore w, the sensitivity of θ̂ to µ̂x, measures the
impact of misspecification of the moment condition on asymptotic bias.

Put differently, we may think of Λ as a linear map that translates misspecification of assump-
tions (moment conditions) into asymptotic bias of the estimator. This property of Λ holds in a
large class of MDEs. To see this we must first generalize our definition of an MDE to allow for the
possibility of misspecification:

Definition. The estimator θ̂ε is a misspecified minimum distance estimator (MMDE) if we can

write

θ̂ε = argmin
θ∈Θ

ĝ(θ)′Ŵgĝ(θ) ,

with ĝ(θ0)
p→ ε . We assume that the function ĝ(θ) is continuously differentiable and converges

uniformly in probability to a continuously differentiable function g(θ), the gradient Ĝ(θ) of ĝ(θ)

converges uniformly in probability to the gradient G(θ) of g(θ), the weight matrix Ŵg is positive
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semi-definite, as is its probability limit Wg, and g(θ)′Wgg(θ) is uniquely minimized at some θε in

the interior of the (compact) domain of θ .

With this definition in hand the intuition from the exponential example generalizes easily:

Proposition 3. Suppose θ̂ε is a MMDE with ĝ(θ) affine in θ . Then
(
θ̂ε −θ0

) p→ Λε , where Λ ≡
−
(
G(θ0)

′WgG(θ0)
)−1 G(θ0)

′Wg is the sensitivity to moments at θ0.

Proof. Because ĝ(θ) is affine we can write ĝ(θ) = Ĝθ + ŝ for gradient Ĝ and some statistic ŝ not
dependent on θ . An immediate implication is that ĝ

(
θ̂ε

)
= ĝ(θ0)+ Ĝ

(
θ̂ε −θ0

)
. The first-order

condition for θ̂ε is Ĝ′Ŵgĝ
(
θ̂ε

)
= 0. Combining the preceding expressions, we have

(
θ̂ε −θ0

)
=

Λ̂ĝ(θ0) where Λ̂ = −
(
Ĝ′ŴgĜ

)−1
Ĝ′Ŵg. Note that ĝ(θ0)

p→ ε , Ĝ
p→ G(θ0), and Ŵg

p→Wg , so
Λ̂

p→ Λ and
(
θ̂ε −θ0

) p→ Λε by the continuous mapping theorem.

Proposition 3 applies in our 2SLS example with one endogenous regressor and two instruments.
Either instrument alone is sufficient for identification of θ0 but estimators differ in the weight
they give to each. We can think of the 2SLS estimator as an MDE with estimation moments
ĝ(β ) = 1

nz′ (y− xβ ). Sensitivity Λ allows us to translate beliefs about violations of the identifying
assumptions E(z′ (y− xβ )) = 0 into beliefs about the asymptotic bias of β̂ .17

Building intuition about robustness to misspecification is especially difficult in nonlinear mod-
els where, unlike in our exponential and 2SLS examples, estimators cannot typically be written
as closed-form functions of intuitive statistics. Importantly, the interpretation of Λ suggested by
proposition 3 generalizes to nonlinear models under small misspecification:

Proposition 4. Let θ̂ be an MDE with weights Ŵg, distance function ĝ(θ), and sensitivity to

moments Λ. Suppose there is a sequence of MMDEs θ̂ε indexed by ε → 0 with weights Ŵg and

distance functions ĝ(θ)+ ε . Then for any ε , θ̂ε −θ0
p→ Λε ε for some Λε , with Λε → Λ as ε → 0.

Proof. Pick some ε . By assumption θ̂ε
p→ θε . Taking the probability limit of the first-order condi-

tion for θ̂ε yields G(θε)
′Wg (g(θε)+ ε) = 0. Note that g(θε) = g(θ0)+G

(
θ̄ε

)
(θε −θ0) where θ̄ε

is a mean value and g(θ0) = 0. Combining the preceding expressions, we have (θε −θ0) = Λε ε

where
Λε =−

(
G(θε)

′WgG
(
θ̄ε

))−1 G(θε)
′Wg.

Therefore
(
θ̂ε −θ0

) p→ Λε ε . Because g() and G() are continuous in θ , θε is continuous in ε ,
which implies θε → θ0 as ε → 0. Together with the continuity of G() this yields Λε → Λ.

17In particular, for 2SLS, sensitivity to moments Λ is plim

((
x′z
n

(
z′z
n

)−1
z′x
n

)−1(
x′z
n

)(
z′z
n

)−1
)

(Conley et al.

2012).
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In other words, Λ is a linear map from misspecification to bias, local to a correctly specified
model. This means Λ can serve as a fast tool for obtaining intuitions about the sensitivity of an
estimator to various types of misspecification. Of course, in any given instance a Bayesian with
a fully-specified prior over the space of models could in principle compute the parameter value
implied by each model and then form the correct posterior. In practice, however, this is usually
prohibitively costly, whereas computing a valid estimate of Λ is trivial.

3.3 Descriptive Statistics

Much of the preceding discussion focuses on cases, such as sensitivity to moments, in which γ̂ is
sufficient for θ̂ . It is also common for researchers to discuss the relationship between structural
parameters and model-free “descriptive statistics.”18 In principle, indirect inference makes it pos-
sible to base estimation solely on such descriptive statistics (Gourieroux et al. 1993; Smith 1993).
In practice, either for econometric or computational reasons, researchers often choose not to base
estimation directly on descriptive statistics. In such cases the link between parameter estimates
and descriptive statistics is typically not formalized.

Sensitivity and sufficiency quantify the relationship between descriptive statistics and parame-
ter estimates. Suppose that θ̂p estimates a structural parameter of interest and that γ̂ j is a descriptive
statistic—say, a regression coefficient—that seems intuitively useful for estimating parameter p.
A researcher can test this claim by computing the sensitivity of θ̂p to γ̂ j: if sensitivity is very small
or has an unexpected sign, then the researcher’s intuition is likely misleading. Likewise, analysis
of sufficiency allows a test of whether a vector of statistics γ̂ captures most of the information in
the data that is used to estimate structural parameters. If γ̂ is almost sufficient for θ̂ , then in a large
sample a researcher in possession of γ̂ (and Λ) can predict θ̂ very well. We will show examples of
real applications in which simple descriptive statistics can be used to “emulate” structural estimates
in exactly this way.

It can also happen, of course, that the vector γ̂ of interesting descriptive statistics has low
sufficiency for θ̂ . In that case, θ̂ depends on the data in ways that are not well captured by γ̂ . This
raises the possibility of omitted variable bias: because Λ is just a measure of covariance, it will
“pick up” the influence on θ̂ of statistics correlated with those in γ̂ . We therefore think Λ is most
reliable and meaningful when ∆ is close to 1, though it remains well-defined even in cases with
low ∆.

18Einav et al., “Selection on Moral Hazard,” (2013), for example, relate the identification of the moral hazard
parameters in their model to a preceding difference-in-difference analysis housed in a section called “Descriptive
Evidence of Moral Hazard” (p. 192). Lim (2013) relates the identification of key parameters in her model to evidence
contained in a data plot that is “not dependent on any particular modeling decision or estimated parameter values of
the model” (p. 1378).
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4 Estimation of Sensitivity and Sufficiency

In this section we show that it is easy to estimate sensitivity Λ and sufficiency ∆ even for computa-
tionally difficult models. We focus on the case in which θ̂ is an MDE, a class that as noted above
encompasses a large range of estimators including GMM and MLE. We do not explicitly discuss
the case in which the magnitude of interest is a counterfactual or the statistics of interest are trans-
formations of γ̂ , but we note that the results below extend immediately to those cases following the
logic of remarks 2 and 3.

4.1 Sensitivity to Moments

If Λ is sensitivity to moments, then by remark 1, we know that ∆ = 1 and Λ =−
(

G
′
WgG

)−1
G
′
Wg.

By assumption the researcher possesses Ŵg, a consistent estimate of Wg. A consistent estimate Ĝ of
G is typically in hand to estimate the asymptotic variance of θ̂ .19 Therefore in typical applications
estimating Λ imposes no additional computational burden beyond the estimation of the asymptotic
variance.

Remark 5. If θ̂ is an MDE and Ĝ is a consistent estimate of G then Λ̂ = −
(

Ĝ
′
ŴgĜ

)−1
Ĝ
′
Ŵg is a

consistent estimate of sensitivity to moments. If the researcher has computed a plug-in estimator
of Var

(
θ̃ −θ0

)
, then computing Λ̂ requires only matrix algebra and no additional simulation or

estimation.

4.2 Sensitivity to Descriptive Statistics

If Λ is not sensitivity to moments, then the most convenient way to estimate Λ depends on how γ̂

is defined. We assume throughout that γ̂ is also an MDE, an assumption that is not very restric-
tive as most common summary statistics—first or second moments, many functions of estimation
moments, regression coefficients, etc.—can be represented as MDE.

Let m̂(γ), M, and Wm denote the analogues of ĝ(θ), G, and Wg respectively that are used to
estimate γ̂ . We assume conditions so that ĝ(θ) and m̂(γ) can be “stacked” to form an MDE

(
θ̂ , γ̂
)
,

in particular that ĝ(θ0) and m̂(γ0) are jointly asymptotically normal with variance Ω. We let Ωgg,
Ωmm, and Ωgm denote the sub-matrices of Ω corresponding to the variance of ĝ(θ0), the variance
of m̂(γ0), and the covariance of ĝ(θ0) and m̂(γ0) respectively.

Under these assumptions, it is straightforward to show that

Σθγ =
(
G′WgG

)−1 G′WgΩgmWmM
(
M′WmM

)−1
.

19In CMD or SMD where ĝ(θ) = π̂−h(θ), H =−G where H is the jacobian of h() at the true value θ0.
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Standard estimators Σ̂θθ and Σ̂γγ are available for Σθθ and Σγγ . If we can construct an estimator
Σ̂θγ for Σθγ , we can form consistent estimators Λ̂ = Σ̂θγ Σ̂−1

γγ and ∆̂p =
(
Λ̂Σ̂γγ Λ̂′

)
pp /
(
Σ̂θθ

)
pp for

Λ and the elements of ∆.
Of the components of Σθγ , Wg and Wm are consistently estimated by Ŵg and Ŵm which are in

hand from estimation, and G and M are consistently estimated by the sample analogues Ĝ = G
(
θ̂
)

and M̂ =M (γ̂). All that remains is to estimate Ωgm. In cases such as CMD or SMD, it is common to
use a bootstrap to estimate Ωgg; in such cases the same bootstrap can typically be used to estimate
Ωgm.

Remark 6. If θ̂ and γ̂ are MDEs and the researcher has computed plug-in estimators of Var
(
θ̃ −θ0

)
and Var(γ̃− γ0) then computing a consistent estimate Λ̂ requires only computing a consistent esti-
mate Ω̂gm of the asymptotic covariance of the moment conditions.

An important special case is when θ̂ and γ̂ are both estimated via GMM (Hansen 1982). (Recall
that this case includes MLE.) Then ĝ(θ) = 1

n ∑
n
i=1 g(zi,θ) and m̂(γ) = 1

n ∑
n
i=1 m(zi,γ) for i.i.d.

data zi and functions g(z,θ) and m(z,γ) satisfying E(g(z,θ0)) = E(m(z,γ0)) = 0. In this case a
consistent estimator for Ωgm is Ω̂gm = 1

n ∑
n
i=1 g

(
zi, θ̂

)
m(zi, γ̂)

′.
An alternative representation of the estimator for Λ̂ is useful for building intuition in this case.

Definition. Let g̃i = −
(
Ĝ′ŴgĜ

)−1
Ĝ′Ŵgg

(
zi, θ̂

)
and define m̃i analogously. These (P×1) and

(J×1) vectors are the influence of observation i on θ̂ and γ̂ respectively (Hampel et al. 1986;

Ronchetti and Trojani 2001).

Intuitively, through the first-order condition g̃i tells us how much (and in what direction) ob-
servation i affects θ̂ . The same property holds for m̃i. Then by regressing g̃i on m̃i we recover how
the influence of an observation on γ̂ relates to its influence on θ̂ , and hence how γ̂ and θ̂ are related
under the data-generating process:

Proposition 5. The transposed coefficient matrix Λ̂ = (g̃′m̃)(m̃′m̃)−1 from a regression of g̃′i on m̃′i
is a consistent estimator of the sensitivity Λ of θ̂ to γ̂ . The R2 from the regression is a consistent

estimator of ∆p.

Proof. Let g̃ and m̃ denote the matrices whose rows are g̃′i and m̃′i, respectively. The first statement
follows from the continuous mapping theorem and the definition of sensitivity after noting that Λ̂=

(g̃′m̃)(m̃′m̃)−1, 1
n g̃′m̃

p→ Σθγ and 1
nm̃′m̃

p→ Σγγ . The second statement follows from the continuous
mapping theorem and definition of sufficiency after noting that:

R2 =

(
Λ̂ ·
(1

nm̃′m̃
)
· Λ̂′
)

pp(1
n g̃′g̃

)
pp

and that 1
n g̃′g̃

p→ Σθθ .
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Example. (Sensitivity of MLE to Sample Mean) Suppose the data are zi ∈ RD, with elements zdi,
the parameter of interest θ is a scalar, and θ̂ is an MLE with likelihood function f (zi|θ):

θ̂ = argmax
θ

n

∑
i=1

ln f (zi|θ) .

Suppose we wish to assess sensitivity to the means of the elements of zi, so we define γ̂ ≡ z ≡
1
n ∑

n
i=1 zi.
We can interpret θ̂ as a GMM estimator with moment functions g(zi|θ) = ∂ ln f (zi|θ)/∂θ ,

weight matrix Wg = I, and Jacobian G(θ) = E
(
∂ 2 ln f (zi|θ)/∂θ 2). We can interpret γ̂ as a GMM

estimator with moment functions m(zi|γ)= zi−γ , weight matrix Wm = I, and Jacobian M (γ)=−I.
We can consistently estimate Λ with the coefficients from a regression of the (scaled) score of
observation i:

g̃i =−
1
Ĝ
· ∂ ln f (zi|θ)

∂θ

∣∣∣∣
θ=θ̂

on the deviation from the mean of observation i:

m̃i = (zi− z) .

Intuitively, θ̂ is more sensitive to the mean of a particular variable zdi when observations with high
values of zdi have high values of the score (holding the other elements of zi constant).

This approach is easily extended to look at the sensitivity of θ̂ to higher-order moments of the
data. Suppose we define γ̂ to be all first and (centered) second empirical moments of zi. Then
the elements of m̃i corresponding to the mean of the various zdi are equal to (zdi− zd), the ele-
ments corresponding to the variances of the various zdi are equal to (zdi− zd)

2, and the elements
corresponding to the covariances of various zdi and zd′i are equal to (zdi− zd)(zd′i− zd′). We can
consistently estimate Λ with the coefficients from a regression of g̃i on this redefined m̃i. By con-
tinuing to add empirical moments, we can flexibly explore the way θ̂ depends on the moments of
the data.20

4.3 Units of Measurement

We have noted that Λ has an interpretation as the probability limit of coefficients from a regression
of θ̂ on γ̂ . As with any regression coefficients, the elements of Λ depend on the units of mea-
surement of the regressors γ̂ . Determining which element of γ̂ is most “important” for a given
θ̂p therefore requires judgment. The problem of assessing the relative importance of regressors is

20It may also be possible to use variable selection methods such as the Lasso to search for a low-dimensional set
of moments with high predictive power.
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age-old and no solution is satisfactory in all situations (Kim and Ferree 1981; Bring 1994; Gelman
2008). But it is helpful to have a default. For this we propose the analogue of the standardized
regression coefficient:

Definition. The standardized sensitivity of θ̂p to γ̂ j is

Λ̃p j = Λp j

√
Var
(
γ̃ j
)

Var
(
θ̃p
) .

Standardized sensitivity measures how much a one-standard-deviation change in the realization
of γ̃ j affects the expected value of θ̃p, fixing other elements of γ̃ , in units of the standard deviation
of θ̃p. If the elements of γ̂ are asymptotically independent (i.e., if Σγγ is diagonal) then the matrix
Λ̃ of standardized sensitivities is the correlation matrix of θ̃ with γ̃ .

An attractive property of standardized sensitivity is that it is invariant to changes in units.
Formally, for vectors a,c and strictly positive diagonal matrices B,D the standardized sensitivity
of a+Bθ̂ to c+Dγ̂ is equal to the standardized sensitivity of θ̂ to γ̂ . This means that, for example,
if we switched from measuring an element of γ̂ in dollars to measuring it in euros, our conclusions
about the relative importance of different moments would be unchanged.21

Comparisons in units of standard deviations will not always be appropriate or necessary. If two
statistics are in comparable economic units, it may be meaningful to compare their unstandardized
sensitivities directly. For example, in the sample means case presented in section 2.3, the empir-
ical moments are averages of the same variable in different populations, making unstandardized
comparisons very natural. Nevertheless, abstracting from any particular context it seems attractive
to have a unitless measure as a default, and we will report estimates of standardized sensitivity for
all of our applications.

5 Alternatives

Here we compare our sensitivity measure to two alternative methods of developing intuition for
the mapping from data to parameter estimates.

5.1 Inverse Sensitivity

Our sensitivity measure asks how the expected values of the parameters change as we vary the data
features of interest. An alternative way to investigate what drives an estimator would be to ask how

21There are other transformations of Λ, such as the matrix of partial correlations of θ̃p with γ̃ j (conditional on γ̃∼ j),
that would also exhibit this invariance property.
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the expected values of the data features change when we vary the parameters. Intuitively, we might
say that a particular θ̂p will depend heavily on a particular γ̂ j if varying θp in the model causes
large changes in the expected value of γ̂ j. This approach can easily be implemented by simulating
data from the model at alternative parameter values. Goettler and Gordon (2011), Kaplan (2012),
Morten (2013), and Berger and Vavra (forthcoming) are examples of papers that refer to such
simulations in their discussions of identification.22

This approach can be thought of as the “inverse” of our proposed sensitivity measure. To see
why, suppose that θ̂ is a GMM estimator and Λ is sensitivity to moments. The alternative approach
would infer that the j-th moment γ̂ j =

1
n ∑

n
i=1 g j (zi,θ0) is an important driver of θ̂p if the absolute

value of ∂

∂θp
E
[
g j (zi,θ)

]∣∣∣
θ=θ0

is large. Notice that the matrix of these partial derivatives is simply

the Jacobian G. Since Λ = −
(

G
′
WgG

)−1
G
′
Wg, we have −ΛG = I, and so when Λ is square

G =−Λ−1.
How does the intuition delivered by G about the relative importance of moments compare to

the intuition delivered by Λ? There is a special case where they yield the same intuition: when the
model has a single parameter (P = 1), and the weight matrix Wg = I. In this case, (G′WgG)−1 is
simply a constant, so |Λ| ∝ |G|. If γ̂ j changes more than γ̂k when we vary the single parameter θ ,
θ̂ will be more sensitive to γ̂ j than to γ̂k.

Outside of this special case, the intuitions from Λ and G can be very different. While examining
G can be a useful way to build economic intuition about a model, we argue that it can actually be
very misleading if interpreted as a guide to the sensitivity properties of an estimator or to sources
of identification in the sense defined above.

The reason that G is not a good guide to the sensitivity properties of an estimator is that it is
not a property of an estimator; rather, it is a (local) property of a model. An easy way to see this is
to note that G does not depend on the weight matrix Wg. For an overidentified model, this means
that G can’t tell us which features of the data drive a particular θ̂ . Consider our earlier example in
which θ0 is the population standard deviation of an exponential random variable. In this case, G

tells us that θ is equally related to the mean and the standard deviation, because under the model
both change by the same amount when we vary θ . By contrast, Λ reveals the weights employed
by the estimator we are using, and so shows us which empirical moments drive the result.

The reason that G is not a good guide to identification is that the relationship established in

22Goettler and Gordon (2011) describe specific parameters as “primarily identified by” particular moments if those
moments respond sharply to changes in those parameters (p. 1161). Kaplan (2012) writes: “I address the question of
identification in three ways ... Third, below I provide an informal argument that each of the parameters has influence
on a subset of the chosen moments and give some intuition for why this is the case” (p. 478). Morten (2013) writes:
“As a check on how well the identification arguments for the simple model apply ... I simulate the dynamic model for
a range of parameter values. I vary each parameter ... and then plot the responses of each of the main moments as the
parameter changes” (p. 33).
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proposition 2 does not hold for G: it can easily happen that G assigns zero sensitivity to fea-
tures that are needed for identification, and non-zero sensitivity to features that are not needed
for identification. Recall our OLS example in which γ̂ =

[
µ̂y σ̂xy σ̂2

x µ̂x

]′
. The coefficient

β is identified by σxy and σ2
x alone. Consistent with this, the row of Λ corresponding to β̂ has

non-zero entries for σ̂xy and σ̂2
x and zeros elsewhere. The corresponding column of G, however,

has non-zero entries only for µy and σxy (assuming µx 6= 0).23 Changing β affects the mean of
y and its covariance with x, but leaves the mean and variance of x unchanged; however, β is not
identified by the mean of y and its covariance with x alone, and the mean of y is not necessary for
identification of β .

5.2 Dropping Moments

In the case of an overidentified MDE, an alternative way to check sensitivity to an empirical mo-
ment is to drop the moment and re-estimate the model. To fix ideas, assume that equation (3)
has a solution when the jth element of ĝ(θ) is excluded, and denote the resulting estimator by
θ̂∼ j. Comparing the parameters estimated with and without moment j amounts to calculating(
θ̂ − θ̂∼ j).

Suppose that the jth moment (and only the jth moment) is possibly misspecified. Then the fol-
lowing corollary of proposition 4 shows that the measure

(
θ̂ − θ̂∼ j) combines information about

sensitivity Λ with information about the degree of misspecification:

Corollary 3. Suppose that θ̂ is an MMDE with ĝ j (θ0)
p→ ε j and that θ̂∼ j is an MDE. Then

θ̂ − θ̂∼ j p→ Λε ε j for some Λε with limε j→0 Λε = Λ· j where Λ· j is the sensitivity to moment j of the

MDE corresponding to θ̂ .

Proof. By the continuous mapping theorem plim
(
θ̂ − θ̂∼ j)= plim

(
θ̂
)
−plim

(
θ̂∼ j). By consis-

tency plim
(
θ̂∼ j)= θ0. By proposition 4 plim

(
θ̂
)
= θ0 +Λε ε j with limε j→0 Λε = Λ· j.

When ε j = 0, θ̂ − θ̂∼ j p→ 0 and therefore the limiting behavior of
(
θ̂ − θ̂∼ j) is unrelated to

sensitivity. Sensitivity will continue to play a role in any finite sample, however, in the sense that(
θ̂ − θ̂∼ j) will be related both to Λ’s finite-sample analogue and to the realization of ĝ j (θ0).

23To restate this example as an MDE, let θ =
[

α β σ2
x µx

]′ and ĝ(θ) = γ̂ − h(θ) where h(θ) =[
α +β µx βσ2

x σ2
x µx

]′. Then

G =


−1 −µx 0 −β

0 −σ2
x −β 0

0 0 −1 0
0 0 0 −1

 .
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6 Main Applications

6.1 Automobile Demand

Our first application is to Berry et al.’s (1995) model of automobile demand. We follow Berry et
al. (1995) closely, using their data and SMM procedure, with moments from both the demand and
supply sides of the model.24

The estimation moments are derived from two sets of identifying assumptions. On the demand
side, the model assumes that the expected unobserved quality ξ j of car j is zero conditional on
instruments zd

j . Berry et al. (1995) construct zd
j from a set of demand-side variables: a constant, a

dummy for whether car j has air conditioning, and car j’s horsepower-per-weight, miles-per-dollar
of gasoline, and size. For each variable, zd

j includes: (i) the value of the variable for car j; (ii) the
sum of the variable across other cars produced by the firm that produces car j; (iii) the sum of
the variable across cars produced by rival firms. The demand-side moments are the product of ξ j

(computed as a residual inverted from market shares) with each element of zd
j .

On the supply side, the model assumes that the expected unobserved cost component ω j of
car j is zero conditional on instruments zs

j. Berry et al. (1995) construct zs
j in the same way as

zd
j , but using instead a set of supply-side variables: a constant, a dummy for whether car j has air

conditioning, a time trend, and the logarithms of car j’s horsepower-per-weight, miles-per-gallon
of gasoline, and size. In addition, zs

j includes an excluded demand variable, miles-per-dollar of
gasoline for car j (but not the sums of this variable across other cars). The supply-side moments
are the product of ω j (computed as a residual inverted from estimated marginal costs) with each
element of zs

j.
We first apply our method to analyze the relative importance of the various instruments in

driving estimated markups. We define the counterfactual c
(
θ̂
)

of interest to be the average es-
timated markup across all cars.25 We define γ̂ to be the complete set of estimation moments(

zd′
j ξ j zs′

j ω j

)
, but plot sensitivity only for moments involving the “excluded” instruments—

i.e., those that do not enter the utility or cost j directly.26

These results are presented in figure 2. We find that markups are overall more sensitive to the

24Since the code for Berry et. al (1995) does not appear to be publicly available, we extract automobile data and
guide our implementation using the GAUSS code for Berry et al. (1999), downloaded from the Internet Archive’s
April 2005 web capture of James Levinsohn’s (now defunct) website at the University of Michigan. Table 1 from
Berry et al. (1995) and table 2 from Berry et al. (1999) imply that the two use the same dataset. We used code from
Petrin (2002), Dubé et al. (2012), and Knittel and Metaxoglou (2014) as additional references.

25The markup is tightly related to the own-price elasticity, and, therefore, to the price coefficient. We show in the
online appendix that the pattern of sensitivities for either the average own-price elasticity or the price coefficient are
similar to those we present here.

26The online appendix reports the complete standardized sensitivity matrix Λ̃, with values for all parameters and
moments.
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supply moments than the demand moments. We also find that the supply-side instruments that play
the largest role in driving markups is simply the number of other products produced by the same
firm (i.e., the sum of the constant term across other products produced by the same firm), the gas
mileage of these cars, and the number of products produced by rival firms. To build intuition for
this, recall that the model is estimated using data from 1971-1990, a period that saw the large-scale
entry of Japanese cars and a shift toward higher mileage. A possible interpretation, therefore, is
that the model is using the changes in prices predicted as a result of this increased competitiveness
and product differentiation and as the key exogenous source of variation.

Next, we apply our method to ask to what extent the relationship of moments to estimated
elasticities in the full BLP model is well approximated by the relationship of moments to estimated
elasticities in the aggregate logit version of the model. The latter model, which has no random
coefficients, can be estimated by two-stage least squares. Berry et al. (1995) present estimates from
this logit model as a point of departure. We define the counterfactuals c

(
θ̂
)

to be mean elasticities
of demand with respect to price and product attributes implied by the estimated parameters of the
full BLP model, and transformed statistics a(γ̂) to be the same mean elasticities implied instead
by the estimated parameters of the logit model. We compute sensitivity of each elasticity in the
full model to the elasticities implied by the logit model.

These results are presented in figure 3. We find that sufficiency ∆p is low for all elasticities,
ranging from 0.02 for the air conditioning dummy to 0.13 for miles-per-dollar. Moreover, there is
no systematic pattern in which the estimated demand elasticity to a particular attribute in the full
model is primarily related to the estimated demand elasticity for that same attribute in the logit
model. This suggests, consistent with the discussion in Berry et al. (1995), that carrying forward
simple intuitions from the logit model is not a useful way to understand the full model.

6.2 Life-cycle Consumption and Savings

6.2.1 Gourinchas and Parker (2002)

Our next application is to Gourinchas and Parker’s (2002) model of life-cycle consumption. Gour-
inchas and Parker (2002) model the behavior of a consumer with a time-separable constant-relative-
risk-aversion felicity function and a stochastic income process. The parameters of the income
process are estimated in a first step and are taken as given in a second step, in which preference
parameters are estimated from moments corresponding to mean consumption at different ages (ad-
justed for family size and business cycle shocks).

Figure 4 presents results for the second-step model’s two key preference parameters: the dis-
count factor and the coefficient of relative risk aversion.27 The plot reveals three periods of life

27The baseline specification in Gourinchas and Parker (2002) has two additional parameters, which govern a
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with different implications for the parameter estimates. In the first period, roughly ages 26-36,
and in the third period, roughly ages 62-65, higher consumption implies a higher discount factor
and a lower coefficient of relative risk aversion. In the second period, roughly ages 37-61, higher
consumption implies a lower discount factor and a higher coefficient of relative risk aversion.

A stylized intuition is as follows. The consumer saves for retirement and for precautionary
reasons. The strength of retirement saving motives is governed by the discount factor, and the
strength of precautionary motives by the coefficient of relative risk aversion. Both a higher discount
factor and a higher coefficient of relative risk aversion predict more delay of consumption, i.e.,
lower consumption early in life and greater consumption later in life. The two parameters are
separately identified because of their different quantitative implications.

In the first period of life, saving is primarily precautionary, so risk aversion matters compara-
tively more than discounting, and higher consumption is interpreted as evidence of low risk aver-
sion. In the second period, saving is primarily for retirement, so discounting matters comparatively
more, and higher consumption is interpreted as evidence of impatience. In the third period, retire-
ment looms and income uncertainty has essentially vanished, so high consumption is evidence that
the household has already accumulated substantial retirement wealth, i.e., that the household is
patient.

The fact that the two plots are essentially inverse to one another arises because both a higher
discount factor and a higher coefficient of relative risk aversion imply the same qualitative change
in the consumption profile. Therefore a change in consumption at a given age that implies a high
discount factor must be offset by a lower coefficient of relative risk aversion in order to hold
consumption at other ages constant.

6.2.2 De Nardi et al. (2010)

De Nardi et al. (2010) model consumption and saving by retired, nonworking households with
uninsurable mortality and medical expense risk. Households have a time-separable constant-
relative-risk aversion felicity function and a consumption floor guaranteed by the government.
The parameters of the mortality and medical expense processes are estimated in a first step and are
taken as given in a second step, in which the discount factor, coefficient of relative risk aversion,
and consumption floor are estimated using SMM from moments corresponding to median assets
for different cohorts, ages, and permanent income levels. We use the results in remark 3 to compute
the sensitivity of second-step parameters to the means of related groups of estimation moments.28

reduced-form retirement consumption function. We fix these at their estimated values for the purposes of our analysis.
The online appendix reports the numerical values of standardized sensitivity for the discount factor and the coefficient
of relative risk aversion.

28The online appendix reports the standardized sensitivity of second-step parameters to the full set of (untrans-
formed) estimation moments.
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The first two plots in figure 5 present the sensitivity of the consumption floor and the coefficient
of relative risk aversion to the mean of the asset holdings by income quintile. The consumption
floor is sensitive primarily to the savings of households in the lowest income quintile: the less
these households save, the greater is the inferred consumption floor. The coefficient of relative
risk aversion rises with the savings of the rich and falls with the savings of the poor. This pattern
matches closely the intuition in De Nardi et al. (2010):

The coefficient of relative risk aversion is identified by differences in saving rates
across the income distribution, in combination with the consumption floor. Low-
income households are relatively more protected by the consumption floor and will
thus have lower [variance of consumption growth] and hence weaker precautionary
motives. The parameter helps the model explain why individuals with high permanent
income typically display less asset decumulation (p. 59).

The third plot in figure 5 presents the sensitivity of the discount factor to the mean of the asset
holding moments by age. As expected, the estimator interprets large asset holdings at younger
ages as evidence of patience.

7 Other Applications

7.1 Sensitivity to Moments

In this subsection we apply our measure of the sensitivity to moments to several empirical pa-
pers that use MDEs. In each case we obtain plug-in estimators Ĝ, Ŵg, and Ω̂gg either directly
from the authors or from replication files posted by the authors. For papers that estimate multiple
specifications we use the baseline or main specification reported in the paper.

We present our findings as plots of standardized sensitivity for all moments for each of a set of
key parameters. In the online appendix we report the complete standardized sensitivity matrix Λ̃

for each paper. Each plot indicates the key moments that the authors highlight as important for the
identification of the given parameter. When we quote from a given paper, we replace mathematical
symbols with italicized phrases in order to avoid notational conflict or confusion.

Goettler and Gordon (2011)

Goettler and Gordon (2011) model innovation in the market for a durable good. In the model, each
of a set of firms maintains a position on a quality ladder. The chance of moving up the ladder
is greater the more the firm invests in R&D and the further the firm is from the technological
frontier. Marginal costs are increasing in product quality. Consumers value quality and treat the
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firms’ products as vertically and horizontally differentiated. Both firms and consumers are forward-
looking.

The model is estimated on data from the market for computer microprocessors. The main
research question is whether the market leader, Intel, innovates more or less than it would in a
counterfactual world without its main competitor, AMD. Seven parameters are estimated from 15
empirical moments using SMD. The authors provide a discussion of identification that follows the
“inverse sensitivity” approach discussed in section 5: they suggest a parameter is identified by a
moment if the value of that moment responds strongly to changes in the parameter.

Figure 6 presents results for three key parameters. We follow Goettler and Gordon (2011) in
dividing moments into groups of “demand-side” and “supply-side” groups.

The first two parameters that we consider are demand parameters: the price coefficient, which
reflects the disutility of higher prices, and the quality coefficient, which reflects the utility from
higher quality. Regarding these parameters Goettler and Gordon (2011) write:

The demand-side parameters (price coefficient, quality coefficient, Intel fixed effect,
and AMD fixed effect) are primarily identified by the pricing moments, the Intel share
equation moments, and the mean ownership quality relative to the frontier quality.
The pricing moments respond sharply to changes in any of these four parameters. The
market share equation is primarily sensitive to quality coefficient and Intel fixed effect -
AMD fixed effect. The mean upgrading moment decreases if consumers upgrade more
quickly and is akin to an outside share equation that identifies the levels of the Intel

fixed effect and the AMD fixed effect (p. 1161).

In figure 6, we find that the price coefficient is primarily sensitive to the average prices of Intel
and AMD. This is intuitive because Goettler and Gordon (2011) have a direct measure of marginal
cost. Given the assumption of dynamically optimal pricing, the higher is the observed price, the
less price-sensitive consumers are estimated to be. The quality coefficient is primarily sensitive
to the potential upgrade gains, a measure of the difference between the average CPU quality of
the computer stock and the frontier quality available. Again, this is intuitive: the more sensitive
consumers are to quality, the more often consumers will upgrade their PCs and the smaller will be
the gap between average and frontier quality.

The third parameter that we consider is the innovation spillover, a measure of the extent to
which innovation is easier the further the firm lies inside the technological frontier. Goettler and
Gordon (2011) write:

The supply-side parameters (Intel innovation efficiency, AMD innovation efficiency,
and innovation spillover), which govern the investment process, are primarily iden-
tified by observed innovation rates, quality differences, and investment levels. The
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investment efficiencies are chosen such that the observed investment levels (per unit
revenue) yield innovation at the observed rates. The spillover parameter innova-

tion spillover is chosen to match the mean difference in quality across firms: a high
spillover keeps the qualities similar (p. 1161).

We find that the innovation spillover is very responsive to the mean quality difference as expected.
However, it responds slightly more to the average Intel price, and in general is very responsive to
demand moments.

DellaVigna et al. (2012)

DellaVigna et al. (2012) model a household’s charitable giving. In the model, a household may
give to charity either out of altruism or because of social pressure. DellaVigna et al. (2012) conduct
a field experiment in which they solicit charitable donations door-to-door. In some treatments they
alert the household in advance that they will be coming to solicit. Households’ response to this
warning provides evidence on the motivations for giving and allows DellaVigna et al. (2012) to
assess the welfare effects of charitable solicitations.

The model is estimated using 70 moments corresponding to the empirical frequencies of open-
ing the door and giving different amounts of money in different treatment conditions. The model
has 15 parameters estimated via CMD, using quadrature to approximate the expected value of the
empirical moments as a function of the parameters.

Figure 7 presents results for two parameters. For each parameter, we show the standardized
sensitivity to all moments, indicating key moments highlighted by the authors in red.

The first parameter, the baseline probability of being home, has a very simple relationship to
the empirical moments. DellaVigna et al. (2012) explain that:

The baseline probabilities of answering the door ... are identified by the observed
probabilities of opening the door in treatments without flyer (p. 37).

Our plot bears out this discussion, showing that the empirical probabilities of being home in no-
flier conditions are the most important drivers of this parameter.

The second parameter, the social cost of giving less than $10 to the East Carolina Hazard Center
(ECU), has a richer economic structure. DellaVigna et al. (2012) write:

Finally, the social pressure ... is identified from two main sources of variation: home
presence in the flyer treatment ... and the distribution of small giving (the higher
the social pressure, the more likely is small giving and in particular bunching at the

threshold of $10) (p. 38).
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The authors define the social cost of giving $X as S×max{10−X ,0}, where S is a parameter.
We report sensitivity values for the cost of giving $0, which is 10S. The sensitivity values closely
match the authors’ discussion: Giving at the $10 threshold increases the inferred level of social
pressure, as does failing to open the door when warned in advance by a flier. (The only exception
is that giving less than $10 is found to decrease rather than increase the estimated level of social
pressure, perhaps because this level of giving does not allow the household to avoid feeling socially
pressured.)

Nikolov and Whited (2014)

Nikolov and Whited (2014) model an infinitely lived firm whose manager makes decisions in
discrete time about both the level of real investment and the extent of external financing. Capital is
subject to depreciation and a convex adjustment cost. External financing imposes a real cost on the
firm. The manager has an equity stake, a profit stake, and an ability to “tunnel” resources that are
held as cash. The profit stake and the ability to tunnel lead to a divergence between the manager’s
interests and those of the shareholders.

The model has 8 estimated parameters, corresponding to features of the production and invest-
ment technology, the external financial environment, and the manager’s incentives. These param-
eters are estimated via SMM based on empirical moments that contain information on investment,
financing, and compensation in a sample of firms.

Figure 8 presents standardized sensitivity for three select parameters. We follow Nikolov and
Whited (2014) in dividing the moments loosely into “real” moments related to the investment
decision, “financial” moments related to cash vs. external finance, and “incentives” moments
related to managerial compensation and incentives.

The first parameter we study is the rate of depreciation of capital. Nikolov and Whited (2014)
report that this parameter is identified by the mean rate of investment:

The first two non-financial or “real” moments are the first and second central moments
of the rate of investment ... The first moment identifies the capital depreciation rate (p.
1899).

The economic logic here is that in a deterministic steady-state, the rate of investment is equal to
the rate of depreciation of capital. The sensitivity values for the depreciation parameter bear out
this intuition: the mean rate of investment is by far the most important moment in determining the
estimated depreciation rate.

The second parameter that we study is the profit-sharing parameter, which corresponds to the
fraction of after-tax operating earnings that accrue to the manager. Nikolov and Whited (2014)
report that this parameter is identified principally by the average bonus paid to the firm’s CEO:
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Finally, we discuss the identification of the profit-sharing parameter. ... First, without
our data on ownership and compensation, we would have to infer the value of this
parameter solely from firm decisions. In this case, a high value of the profit-sharing

parameter implies low average profitability because the manager acts as if the firm is
more profitable than it actually is and makes distorted investment decisions. However,
many other parameters affect average profitability, so this moment alone cannot help
identify the profit-sharing parameter. Fortunately, this parameter corresponds directly
to one moment from our compensation data: the average bonus (p. 1900).

The authors also note that Tobin’s q is useful in identifying this parameter. The sensitivity measure
agrees with the authors’ discussion. By far the most important driver of the estimated profit-sharing
parameter is the average bonus. The average profit level is also relevant, and has the sign predicted
by the model.

The third and final parameter that we study is the tunneling parameter, which corresponds to
the fraction of the current stock and flow of cash that the manager consumes privately. Nikolov
and Whited (2014) write:

Not surprisingly, the moment that is most important for identifying resource diversion
is the mean of Tobin’s q: the more resource diversion, the lower q (p. 1900).

The sensitivity plot shows that greater Tobin’s q does correspond to a lower inferred tunneling.
Other moments also play an important role, however. Both lower investment and greater aver-
age profits imply greater tunneling. A possible explanation is that lower investment and greater
profits imply a greater flow of resources, so for a fixed distribution to shareholders, managerial
resource diversion must adjust to enforce the accounting identity that determines distributions to
shareholders.

7.2 Sensitivity to Descriptive Statistics

Our final set of applications are cases in which the economic model is estimated via MLE. For-
mally, an MLE is an MDE in which the moments are first-order conditions. In the applications
below these first-order conditions do not have a clear economic interpretation. We therefore de-
fine γ̂ to be a set of descriptive statistics, typically those presented by the authors to provide a
summary of key features of the data. We compute standardized sensitivity of key parameters or
counterfactuals using the empirical influence components as described in section 4. (Recall that
these calculations do not require re-estimation of the model.) In addition to Λ̃, we report an esti-
mate of sufficiency ∆. Unlike in the case of sensitivity to moments, ∆ need not be equal to one; its
magnitude summarizes how well the descriptive statistics γ̂ capture the information in the data that

30



drives the estimated parameters θ̂ . We present our findings in plots; the online appendix contains
the corresponding numerical estimates.

Mazzeo (2002)

Mazzeo (2002) models entry into motel markets along US interstates. In the variant of Mazzeo’s
model that we consider, a set of anonymous potential entrants to a local market make sequential
decisions either not to enter the market, to enter as low quality, or to enter as high quality. Follow-
ing the entry decision, firms realize payoffs that depend on observable market characteristics, the
number of firms of each type, and a normally distributed profit shock that is specific to each firm
type and local market and is unknown to the econometrician. Mazzeo (2002) estimates the model
by maximum likelihood using data on the number and quality of motels along rural interstates in
the United States.

Figure 9 reports the sensitivity of Mazzeo’s (2002) estimates of the effect of market character-
istics on firm profits. Here we let γ̂ be the coefficients from regressions of the number of low- and
high-quality firms on observable market characteristics. Intuitively, we would expect the structural
parameter governing the effect of a given characteristic on profitability to be tightly related to that
characteristic’s effect on the number of firms. We find that this is indeed the case, and that the
regression coefficients are almost sufficient for the structural parameters. In all cases, knowing
the regression coefficients would allow us to predict more than 80 percent of the variation in the
structural parameter under the asymptotic distribution.

Figure 10 reports the sensitivity of a counterfactual c
(
θ̂
)
. We define the n-firm differentia-

tion effect as the probability that the nth entrant’s choice of type is affected by the choices of the
prior entrants, in the sense that the choice would be different (fixing unobservables) if the prior
entrants’ choices were different. This counterfactual summarizes the importance of incentives to
differentiate, which is a key economic magnitude in the model.

We consider sensitivity to the share of markets with different configurations, which is a simple
descriptive summary of the competitive patterns in the data. As expected, we find that the 2-firm
differentiation effect is driven largely by the composition of 2-firm markets. The more markets
have one firm of each type, the greater is the implied differentiation effect. Likewise, the 3-firm
differentiation effect is mostly driven by the composition of 3-firm markets, though the composi-
tion of 2-firm markets also plays a role.29

29In some cases the sensitivity of the differentiation effect to the share of markets with only one type of firm has a
positive sign. This is counterintuitive because such markets will be more common when the incentive to differentiate
is weak. The main reason for these counterintuitive signs is that we are computing sensitivity to the unconditional
shares of different market configurations, whereas the model’s inference about competitive effects is ultimately driven
by the observed market configurations conditional on observable market characteristics. In the online appendix, we
support this interpretation by showing that most of the counterintuitive signs reverse (and the sufficiencies rise) when
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Gentzkow et al. (2014)

Gentzkow et al. (2014) model households’ demand for partisan newspapers. In their model, both
households and newspapers are either Republican or Democrat. Each household has a preference
for reading newspapers of its own type. Households may read multiple newspapers, and newspa-
pers are more substitutable if they are of the same party than if their parties differ. Gentzkow et al.
(2014) estimate this model using aggregate data on circulation in a set of small towns in 1924.

We focus our discussion on two parameters: the relative preference for own-type newspapers,
and the extent of substitutability of same-type newspapers. Gentzkow et al. (2014) argue that the
parameter governing the relative preference for same-type newspapers is identified by the correla-
tion between the relative circulation of Republican newspapers and the share of households who
vote Republican. They argue that the parameter governing the extent of substitutability of same-
type newspapers is identified by the extent to which adding more Republican newspapers to the
choice set disproportionately reduces demand for other Republican papers. Following Gentzkow
et al.’s (2014) discussion of identification we define γ̂ to be the coefficients from a regression of the
relative circulation of Republican newspapers on the Republican share of the vote and the number
of Republican and Democratic newspapers.

The first plot in figure 11 shows that the structural parameter governing the relative preference
for same-type newspapers is highly sensitive to the coefficient from a regression of the relative
circulation of Republican newspapers on the Republican share of the vote. This is in line with
the discussion in Gentzkow et al. (2014). The second plot shows that the structural parameter
governing the substitutability of same-type newspapers is sensitive to all regression coefficients
to a similar extent. Intuitively, as the coefficient on the number of Republican papers grows,
this parameter shrinks, and the opposite happens for the coefficient on the number of Democratic
papers.

Sufficiency calculations show that variation in these four regression parameters is sufficient
to explain the majority of the asymptotic variation in the structural parameters. This is striking
in light of the fact that the underlying structural model has many additional parameters, and that
the maximum likelihood estimator is in principle exploiting much more information than can be
captured in a simple regression.

Gentzkow (2007)

Gentzkow (2007) uses survey data from a cross-section of individuals to estimate demand for print
and online newspapers in Washington DC. A central goal of Gentzkow’s (2007) paper is to estimate
the extent to which online editions of papers crowd out readership of the associated print editions,

we constrain the model so that observable market characteristics do not affect profits.
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which in turn depends on a key parameter governing the extent of print-online substitutability. We
focus here on the substitutability of the print and online editions of the Washington Post.

A naive approach would estimate this parameter from the correlation between print and online
consumption: if those who read the Post in print are less likely to read online, the two are sub-
stitutes; if they are more likely to read online, the two are complements. This approach will be
invalid, however, if there are unobserved consumer characteristics correlated with the taste for both
products.

Gentzkow (2007) exploits two features of the data to distinguish correlated tastes from true
substitutability: (i) a set of variables—such as a measure of Internet access at work—that plausibly
shift the utility of online papers but do not affect the utility of print papers; and (ii) a coarse form of
panel data—separate measures of consumption in the last day and last seven days—that identifies
stable individual preferences in a manner analogous to fixed or random effects in a linear model.

To capture these two features of the data, we define γ̂ to consist of two components: (i) the co-
efficient from a 2SLS regression of last-five-weekday print readership on last-five-weekday online
readership, instrumenting for the latter with the set of excluded variables such as Internet access at
work; and (ii) the coefficient from an OLS regression of last-one-day print readership on last-one-
day online readership controlling flexibly for readership of both editions in the last five weekdays.
Each of these auxiliary models includes the standard set of demographic controls from Gentzkow
(2007).

We define the counterfactual c
(
θ̂
)

to be the change in readership of the Post print edition that
would occur if the Post online edition were removed from the choice set (Gentzkow 2007, table
10).

The results are presented in figure 12. Sufficiency is 0.64, suggesting that these two features
of the data capture much but not all of the variation that drives the counterfactual. Sensitivity is
negative for both elements of γ̂ as expected, reflecting the fact that a more positive relationship
between print and online consumption implies less substitutability and thus a smaller gain of print
readership. Finally, the results show that sensitivity to the panel variation is much larger than
sensitivity to the IV variation, implying that the former is the more important driver of the estimated
counterfactual.

8 Conclusions

We develop a measure Λ of the extent to which a given parameter is sensitive to a given feature
of the data. The measure is trivial to compute in common applications and is interpretable as a
measure of sensitivity to model misspecification.

An important limitation of our approach is that Λ is a local measure. It captures the way θ̂
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varies with small perturbations of γ̂ around its limiting value. Conceptually, relaxing this constraint
is straightforward. Consider the following exercise: (i) simulate or otherwise obtain data with
dispersed values of γ̂; (ii) estimate θ̂ on each dataset; and (iii) regress θ̂ on γ̂ across these datasets.
Such a procedure delivers a “global Λ” as compared to the “local Λ” we work with in this paper.

We focus on the local Λ precisely because repeated simulation and estimation is often costly.
We can, however, suggest approaches to minimizing this computational burden. First, for esti-
mators whose cost of execution scales well with the size of the dataset, a researcher might use
small-scale simulations to obtain the global Λ and to compare it to the local Λ. If the two are
similar, this adds confidence to the use of the local Λ for sensitivity analysis.

Second, for cases where simulation from the data-generating process is cheaper than estima-
tion, a researcher might simulate data from several possible values of θ and compute γ̂ on the
simulated data. Then, by regressing θ on γ̂ , one obtains a version of the global Λ that does not
require repeated model estimation.
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Figure 1: Share of top journal articles containing the phrase “identified by”
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Notes: The plot shows an annual index of the share of articles published in the American Economic Review,
the Journal of Political Economy, the Quarterly Journal of Economics, the Review of Economic Studies,
and Econometrica containing the phrase “is identified by” or “are identified by” along with the word “data,”
among all articles containing the word “data.” Cases where the word “identified” is not used in the econo-
metric sense are manually excluded.
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Figure 2: Standardized sensitivity for average markup in Berry et al. (1995)
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the instrument matrix, we drop three instruments (two demand-side and one supply-side) prior to estimation:
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Figure 3: Standardized sensitivity for elasticities of demand in Berry et al. (1995)
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Notes: The plot shows a heat map of the absolute value of standardized sensitivity of the average own-
price or own-characteristic elasticity of demand from the BLP model (in rows) with respect to the vector of
analogous elasticities from a logit model with the same excluded instruments as the BLP model (in columns).
The number in parentheses in each row is the sufficiency of the vector of logit model elasticities for the BLP
model elasticity.
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Figure 4: Standardized sensitivity for select parameters in Gourinchas and Parker (2002)
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Figure 5: Standardized sensitivity for select parameters in De Nardi et al. (2010)
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Figure 9: Standardized sensitivity for market characteristics parameters in Mazzeo (2002)

# L−type firm
s: PLACEPOP

# L−type firm
s: TRAFFIC

# L−type firm
s: SPACING

# L−type firm
s: W

EST

# H−type firm
s: PLACEPOP

# H−type firm
s: TRAFFIC

# H−type firm
s: SPACING

# H−type firm
s: W

EST

Local town population (L)
(sufficiency = 0.840)

Daily interstate traffic at market (L)
(sufficiency = 0.982)

Distance to adjacent market (L)
(sufficiency = 0.961)

Dummy for West region (L)
(sufficiency = 0.982)

Local town population (H)
(sufficiency = 0.844)

Daily interstate traffic at market (H)
(sufficiency = 0.957)

Distance to adjacent market (H)
(sufficiency = 0.951)

Dummy for West region (H)
(sufficiency = 0.961)

 

 

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Notes: The plot shows a heat map of the absolute value of the standardized sensitivity of a model parameters
(in rows) with respect to a vector of descriptive statistics (in columns). Each row also shows the sufficiency
of the vector of statistics for the given parameter. Parameter names ending in “(L)” refer to effects on low-
type payoffs, and parameter names ending in “(H)” refer to effects on high-type payoffs. The descriptive
statistics are the coefficients from regressions of the number of low- and high-type firms on observable
market characteristics. The model is the two-type Stackelberg model defined and estimated in Mazzeo
(2002).
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Figure 10: Standardized sensitivity for differentiation effect in Mazzeo (2002)
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Notes: Each plot shows the absolute value of standardized sensitivity of the counterfactual named in the
plot title with respect to the vector of descriptive statistics listed on the x-axis, with the sign of sensitivity in
parentheses and the sufficiency of the vector of descriptive statistics for the given counterfactual listed above
the plot. The n−firm differentiation effect is the probability that the nth entrant would choose type L in a
market in which the (n−1) prior entrants are type H and would choose type H if the (n−1) prior entrants
are type L. The descriptive statistics are the empirical shares of 2-6 firm markets with each configuration
(number of low and high type firms). The model is the two-type Stackelberg model defined and estimated
in Mazzeo (2002).
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Figure 11: Standardized sensitivity for select parameters in Gentzkow et al. (2014)
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Notes: Each plot shows the absolute value of the standardized sensitivity of the parameter named in the
plot title with respect to the vector of descriptive statistics listed on the x-axis, with the sign of sensitivity
in parentheses and the sufficiency of the vector of descriptive statistics for the given parameter listed above
the plot. The descriptive statistics are the estimated parameters from a regression of the log of the ratio of
Republican to Democratic circulation in a given town on a constant, the number of Republican newspapers
available in the town, the number of Democratic newspapers available in the town, and the Republican share
of the two-party vote.
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Figure 12: Standardized sensitivity for counterfactual estimate in Gentzkow (2007)
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Notes: The plot shows the absolute value of standardized sensitivity for the readership counterfactual with
respect to the two descriptive statistics listed on the x-axis, with the sign of sensitivity in parentheses and the
sufficiency of the vector of descriptive statistics for the given parameter listed above the plot. The readership
counterfactual is the change in readership of the print edition of the Washington Post when the post.com is
removed from the choice set (Gentzkow 2007, table 10). The IV coefficient is the estimated coefficient
from a two-stage least squares regression of last-five-weekday Washington Post print readership on last-
five-weekday post.com readership, with a set of excluded instruments including Internet access at work
(reported in Gentzkow 2007, table 4, IV specification (1)). The panel coefficient is the coefficient from
an OLS regression of last-one-day print readership on last-one-day online readership controlling flexibly
for readership of both editions in the last five weekdays. Each of these auxiliary regressions includes the
standard set of demographic controls from Gentzkow (2007).
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