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 In a Lucas-tree world (Lucas [1978]), the aggregate risk reflects the uncertainty in the 

process for GDP, which corresponds to the fruit that drops from the tree.  This process may 

include rare macroeconomic disasters, which correspond to sharp and possibly permanent drops 

in the productivity or number of the trees.  A safe asset in this world can be viewed as one whose 

real value is insulated from shocks, including the declines in GDP due to the rare disasters.  

However, if the GDP process is given, safe assets cannot mitigate overall risk but can only 

redistribute this risk across agents.  In a representative-agent setting, the redistribution of 

aggregate risk cannot occur, and the economy’s quantity of safe assets will effectively be nil. 

To put this observation another way, it is possible to construct safe assets by issuing risk-

free private bonds, by creating a financial structure with risk-free tranches, by entering into a 

variety of insurance contracts, and so on.  However, the creation of any of these safe assets 

always goes along with a corresponding expansion in the riskiness of (levered) claims on the 

underlying asset, which is the Lucas tree.  In equilibrium, the representative agent ends up 

holding the representative share of the overall risk, and this overall magnitude is unaffected by 

the various financial arrangements.  The bottom line is that a meaningful analysis of safe assets 

requires heterogeneity across agents. 

Differences in the degree of risk aversion are a natural form of heterogeneity for a study 

of safe assets.  The present analysis relies on the simplest possibility, where there are two types 

of agents; group 1 has comparatively low risk aversion and group 2 has comparatively high risk 

aversion.  Specifically, when each agent i has a constant coefficient of relative risk aversion, γi, 

we assume 0<γ1≤γ2, so that agent 1 is at least as willing as agent 2 to absorb risk. 

We focus on a model in which the desire to redistribute risk across agents is the source of 

safe private assets.  In equilibrium, the agent with relatively low risk aversion, agent 1, issues 
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safe bonds (or equivalent claims) that are held by the agent with relatively high risk aversion, 

agent 2.  Correspondingly, agent 1 owns a disproportionate share of risky assets, which are 

equity claims on the Lucas tree.  The quantity of safe assets in this economy equals the 

magnitude of the bonds issued by agent 1 and held by agent 2.  The equilibrium amount of these 

assets depends on differences in risk aversion across the agents, levels of risk-aversion 

coefficients, and the characteristics of the stochastic process (including rare disasters) that 

generates aggregate GDP. 

The equilibrium requires an enforcement mechanism for repayments of safe claims; that 

is, agent 1 has to make payments of principal and interest to agent 2 even in bad states of the 

world, such as realizations of macroeconomic disasters.  Repayment mechanisms may involve 

collateral, liquidity, and contractual features related to the legal system.  However, these 

mechanisms are not the subject of the present analysis, which focuses on the underlying supply 

of and demand for safe private assets.  Potentially complementary research that emphasizes 

liquidity, collateral, and asymmetric information includes Holmstrom and Tirole (1998) and 

Gorton and Ordoñez (2013).  These issues could be considered in an extension of the present 

model. 

 A pure claim on the Lucas tree corresponds to unlevered equity.  A match with the 

empirically observed high equity premium requires the expected rate of return on this equity to 

be substantially higher than the risk-free rate, which equals the rate of return on non-contingent, 

private bonds.  Previous analyses with rare-disaster models, summarized in Barro and Ursúa 

(2012), found that the replication of this high equity premium requires two conditions:  first, a 

coefficient of relative risk aversion, γ, in the range of 3-4 or more (for a representative agent) 
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and, second, the presence of fat-tailed uncertainty, such as a non-negligible potential for drops in 

GDP in the short run by more than 10%.  The present analysis incorporates these features. 

 With the familiar specification where utility is time-separable with a power form, a 

coefficient of relative risk aversion, γ, of 3-4 or more implies an intertemporal elasticity of 

substitution (IES) of 1/3-1/4 or less, which seems unrealistically low.  Specifically, the high γ 

needed to generate a realistic equity premium precludes the case of log utility in the sense of 

IES=1, which has advantages in terms of tractability.  More generally, in the standard utility 

formulation, it is impossible for all agents to have log utility (IES=1) when the γi differ across 

the agents. 

 As is well known, the Epstein-Zin/Weil form of recursive utility, based on Epstein and 

Zin (1989) and Weil (1990), allows for a separation between the coefficient of relative risk 

aversion and the IES.  Typically, this benefit from EZW comes at the cost of analytical 

complexity, when compared with time-separable power utility.  However, with heterogeneity in 

risk-aversion coefficients, the EZW specification allows for a simpler analysis.  The key property 

of EZW is that it allows for high values of the γi that can differ across agents i, while maintaining 

values of the IES that are of reasonable magnitude and the same for each agent.  More 

specifically, the EZW case admits the possibility of IES=1 for each agent, thereby gaining great 

simplifications from log utility.  (The rate of time preference, ρ, is also assumed to be the same 

for each agent.) 

 Previous models of asset pricing with two types of agents distinguished by their 

coefficients of relative risk aversion include Dumas (1989), Wang (1996), Chan and Kogan 

(2002), Garleanu and Pedersen (2011), Longstaff and Wang (2012), Gennaioli, Shleifer, and 

Vishny (2012), and Caballero and Farhi (2014).  These analyses assume time-separable power 
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utility, augmented in Chan and Kogan (2002) to include an external habit in household utility.  In 

Wang (1996), one agent has log utility and the other has square-root utility—coefficients of 

relative risk aversion of 1 and 0.5, respectively.  In Garleanu and Pedersen (2011), one agent has 

log utility and the other has a coefficient of relative risk aversion greater than one.  In the main 

analysis of Longstaff and Wang (2012), one agent has log utility and the other has squared 

utility—coefficients of relative risk aversion of one and two, respectively.  Gennaioli, Shleifer, 

and Vishny (2012) assume that one agent is risk neutral and the other has infinite risk aversion, 

and Caballero and Farhi (2014) use an analogous setup. 

Section I works out a baseline model that derives equilibrium holdings of equity claims 

and private bonds by the two types of agents, distinguished by their degrees of relative risk 

aversion.  The analysis uses a tractable case with Epstein-Zin/Weil utility, where coefficients of 

relative risk aversion are “high” but utility is logarithmic in the sense that the intertemporal 

elasticity of substitution is one.  The initial model with permanent differences in coefficients of 

relative risk aversion is non-stationary because, in the long run, the wealth share of the group 

with comparatively low risk aversion tends to approach one.  We achieve stationarity by having 

agents continually replaced by new agents (possibly children) who are randomly assigned one of 

the two possible coefficients of relative risk aversion.   

Section II carries out quantitative analyses based on specifications of the underlying 

parameters, including coefficients of relative risk aversion, the characteristics of the macro-

disaster process, and the replacement rate.  We focus on parameters that generate “reasonable” 

steady-state values of the risk-free interest rate (around 1.0% per year) and the unlevered equity 

premium (around 4.2%).  When the replacement rate is 2% per year, the steady-state ratio of safe 
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to total assets ranges up to 10%.  We carry out dynamic analyses for two cases:  the realization of 

a macroeconomic disaster and the experience of tranquility (no disasters) for 40 years.  

 Section III distinguishes further the gross quantity of private bonds from the net quantity 

corresponding to loans from group 2 to group 1.  With infinitesimal transaction costs for paying 

interest and principal payments on bonds, agents in our model will not be simultaneously holding 

and issuing bonds.  This condition pins down the equilibrium gross amount of safe assets. 

Section IV introduces public debt.  Added government bonds create more safe assets 

while simultaneously creating corresponding “safe liabilities” in the form of the present value of 

taxes.  In the baseline setting, where the government and private sector are equally good at 

creating safe assets, Ricardian Equivalence holds, in the sense that changes in the quantity of 

government bonds do not affect the net quantity of safe assets or the risk-free rate.  More 

specifically, the model predicts that an increase in government bonds by 1 unit crowds out 

private bonds by around 0.5 units.  This prediction accords with some existing empirical 

evidence. 

Section V discusses gold and other commodities that are often viewed as comparatively 

safe assets.  Section VI relates the model’s predictions on the quantity of safe assets to empirical 

estimates of this quantity.  Section VII concludes. 

I.  Baseline Model 

 A.  Structure and First-Order Conditions 

The model is set up for convenience in discrete time.  For some purposes, the period 

length can be viewed as a year.  However, in analyzing the equilibrium, we think of the period 

length as approaching zero. 

Agent i, for i=1, 2, has an Epstein-Zin/Weil (EZW) utility function, given by: 
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(1) 									൫1 െ ൯݅ߛ ∙ ݐܷ݅ ൌ ቄݐ݅ܥ
1െߠ ൅ ቀ 1

1൅ߩ
ቁ ሾ൫1 െ ൅1ሿݐ,ܷ݅ݐܧ൯݅ߛ

ሺ1െߠሻ/ሺ1െ݅ߛሻቅ
ሺଵିఊ೔ሻ/ሺଵିఏሻ

 . 

The coefficients of relative risk aversion satisfy 0<γ1≤γ2; that is, agent 1 is the comparatively 

low-risk-aversion agent.  The IES, 1/θ>0, and the rate of time preference, ρ>0, are the same for 

the two agents.  We simplify by having θ=1 in the main analysis.  This condition corresponds to 

the usual case of log utility and makes the price of equity independent of parameters that 

describe expected growth and uncertainty.1  Another result with log utility is that the 

consumption of each agent, C1 and C2, equals ρ multiplied by a measure of each agent’s assets. 

 Parts of the structure parallel Longstaff and Wang (2012).  The single Lucas tree 

generates real GDP of Yt in year t.  This GDP is consumed by the two agents: 

(2)    C1t + C2t = Yt. 

Ownership of the tree is given by K1t and K2t, which add to full ownership, normalized to one: 

(3)    K1t + K2t  = 1. 

We use a convention whereby Kit applies at the end of period t, after the payment of the 

dividend, Ki,t-1·Yt , to agent i in period t.  However, this timing convention is unimportant when 

the length of the period becomes negligible.  The price of the tree in period t in units of 

consumables is Pt. 

 The stochastic process that generates Yt corresponds to previous rare-disaster models, 

except for the omission of a normally-distributed business-cycle shock, which is quantitatively 

unimportant.  The probability of disaster is the constant p per year.  With probability 1-p, real 
                                                            
1This result means that the expected rate of return on equity, re, is independent of uncertainty parameters.  
Therefore, with θ=1, all of the effects of uncertainty parameters on the equity premium work through the risk‐free 
rate, rf, rather than re.  We know from previous analyses of this i.i.d. setting with a representative agent, such as 
Barro (2009), that the equity premium is independent of the parameter θ.  Therefore, in this context, the setting of 
θ=1 would not affect the model’s implications for the equity premium. 
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GDP grows over one year by the factor 1+g, where g>0 is constant.  With probability p, a 

disaster occurs and real GDP grows over one year by the factor (1+g)·(1-b), where b>0 is the size 

of a disaster.  In the present simplified setting, disasters last for only one “period” and have a 

single size.  The expected growth rate of GDP, denoted g*, is given as the length of the period 

approaches zero by 

 (4)    g* ≈ g – pb. 

The analysis can be extended to allow for a time-invariant size distribution of disasters, 

as in Barro and Ursúa (2012).  With more complexity, the analysis can be modified to allow 

disasters to have stochastic duration and cumulative size and to be followed by a tendency for 

recovery in the sense of above-normal growth rates (Nakamura, Steinsson, Barro, and 

Ursúa [2013]).2  Other feasible extensions include time variation in the disaster probability, p (as 

in Gabaix [2012]), and the growth-rate parameter, g (as in Bansal and Yaron [2004]).   

The baseline calibration specifies p=0.04 per year.  This probability corresponds to the 

empirical frequency of disasters—defined as short-term declines in real per capita GDP by at 

least 10%—in a long-term panel of countries.  The effective disaster size—in the sense of the 

single value that generates an equity premium corresponding roughly to the full size distribution 

of disasters—is set at b=0.32.  The growth-rate parameter, intended to correspond to the non-

disaster growth rate of real per capita GDP or consumption, is set at g=0.025 per year. 

 We focus on two forms of assets.  Aside from unlevered equity claims, Kit, on the tree, 

we consider a non-contingent, one-period private bond, Bit.  The quantity Bit is negative for a 

borrower (issuer of a bond) and positive for a lender (holder of a bond).  Since the analysis 

                                                            
2The recovery tendency lowers the effective size, b, of a disaster.  Therefore, for some purposes, we could allow 
for recoveries within the present framework by adjusting b. 
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assumes a closed economy, the total quantity of these private bonds, when added up across the 

two types of agents, is always zero: 

(5)    B1t + B2t  = 0. 

The model assumes a perfect private credit market, in the sense of ignoring possibilities 

of default and neglecting any transaction costs associated with interest and principal payments; 

that is, with collecting on loans.3  In this case, bonds pay off at the risk-free interest rate for 

period t, denoted ݎ௧
௙.   The amount of principal and interest received or paid on bonds by agent i 

in period t is ሺ1 ൅ ௧ݎ
௙ሻ ∙  .௜,௧ିଵܤ

 The menu of assets and financial contracts could be extended to include levered equity, 

structured finance, stock options, macro-disaster insurance, etc., and to have risk-free bonds of 

varying maturities.  However, the setup with unlevered equity and one-period risk-free private 

bonds is sufficient to characterize the equilibrium in the present model.4 

Each agent’s budget constraint for period t is: 

௜௧ܥ  (6)  ൅ ௧ܲܭ௜௧ ൅ ௜௧ܤ ൌ ሺ ௧ܻ ൅ ௧ܲሻܭ௜,௧ିଵ ൅ ሺ1 ൅ ௧ݎ
௙ሻܤ௜,௧ିଵ . 

The choice for period t of Cit and the portfolio allocation, (Kit, Bit), occur when Yt, Pt, and ݎ௧ାଵ
௙  

are known but Yt+1 and Pt+1 are unknown. 

 Let Rt represent the gross return on any asset (equity, risk-free bonds) between periods t 

and t+1.  This return equals (Yt+1+Pt+1)/Pt for equity and (1+ݎ௧ାଵ
௙ ) for bonds.  Each agent seeks to 

maximize expected utility, given in equation (1), subject to the budget constraint in equation (6) 

                                                            
3In the cases considered, debtors always have sufficient total assets to make the prescribed principal and interest 
payments on bonds. 
4This result also holds in Wang (1996, p. 80) and Longstaff and Wang (2012, p. 3175). 
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and the levels of initial assets.  The first-order optimization conditions for each agent and each 

type of asset can be expressed by means of a perturbation argument for periods t and t+1 as: 

 (7)  ሺܧ௧ ௜ܷ,௧ାଵሻ
ሺ
ഇషം೔
భషം೔

ሻ
ൌ ሺ ଵ

ଵାఘ
ሻܧ௧ ቈ ௜ܷ,௧ାଵ

ሺ
ഇషം೔
భషം೔

ሻ
∙ ቀ

஼೔,೟శభ
஼೔೟

ቁ
ିఏ
∙ ܴ௧ାଵ቉ . 

This expression simplifies in straightforward ways under log utility, θ=1. 

 Previous analyses (Giovannini and Weil [1989], Obstfeld [1994]), Barro [2009]) found in 

a representative-agent model with i.i.d. shocks (as in the present setting) that the realized utility, 

Ut+1, can be expressed as a positive constant multiplying ሺܥ௧ାଵሻଵିఊ/(1-γ).  This result suggests 

looking for an approximate solution to the present two-agent model in which Ui,t+1 is a positive 

constant (possibly different for each agent) multiplying the analogous object for agent i,  

൫஼೔,೟శభ൯
భషം೔

ଵିఊ೔
	.  When this condition holds, equation (7) can be rewritten as: 

 (8)  ቂܧ௧ሺ
஼೔,೟శభ
஼೔೟

ሻଵିఊ೔ቃ
ሺ
ഇషം೔
భషം೔

ሻ
ൌ ሺ ଵ

ଵାఘ
ሻ ∙ ௧ܧ ቂሺ

஼೔,೟శభ
஼೔೟

ሻିఊ೔ ∙ ܴ௧ାଵቃ . 

When Rt+1 equals the risk-free return, 1+ݎ௧ାଵ
௙ , and θ=1, equation (8) implies 

 (9)   1 ൅ ௧ାଵݎ
௙ ൌ ሺ1 ൅ ሻߩ ∙

ா೟ሺ
಴೔,೟శభ
಴೔೟

ሻሺభషം೔ሻ

ா೟ሺ
಴೔,೟శభ
಴೔೟

ሻషം೔
 .                     

Thus, a key implication of the first-order conditions is that, in equilibrium, the right-hand side of 

equation (9) has to be the same for each agent; that is, for γ1 and γ2, respectively.  In other words, 

the prospective paths of uncertain consumption levels for the two agents have to accord with the 

differences in the coefficients of relative risk aversion. 

 Under log utility, θ=1, each agent’s consumption in period t is approximately the multiple 

ρ of that agent’s resources for period t: 5 

                                                            
5See Giovannini and Weil (1989, Appendix B). 
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௜௧ܥ  (10)  ൎ ߩ ∙ ሾሺ ௧ܻ ൅ ௧ܲሻ ∙ ௜,௧ିଵܭ ൅ ൫1 ൅ ௧ݎ
௙൯ܤ௜,௧ିଵሿ . 

Equations (10) and (9) jointly determine agent i’s choices of consumption, Cit, and portfolio 

allocation, (Kit, Bit). 

Adding up equation (10) for the two agents and using the conditions from equations (2), 

(3), and (5)—total consumption equals GDP, equity holdings add to 1, and bond holdings add to 

zero—leads to  

 (11)   Pt = Yt·(1-ρ)/ρ ≈ Yt/ρ, 

where the approximation assumes that the length of the period is negligible.  Thus, under log 

utility, the equity price and, hence, the value of total assets is independent of parameters related 

to expected growth and uncertainty and the degree of risk aversion.  This result implies that the 

expected rate of return on equity, re, is the dividend yield, ρ, plus the expected rate of capital 

gain, which equals g*, the expected growth rate of GDP and consumption: 

 (12)   re ൎ ρ + g* ൎ ρ + g – pb, 

where g* is given in equation (4). 

B.  Market Equilibrium 

To assess the market equilibrium, we think of agent 1’s share of total wealth as the single 

state variable for each period.  Agent i’s wealth at the end of period t-1 is 

    Wi,t-1 = Pt-1Ki,t-1 + Bi,t-1, 

so that agent 1’s wealth share at the end of period t-1 is 

 (13)   
ௐభ,೟షభ

ௐ೟షభ
ൌ ଵ,௧ିଵܭ ൅

ఘ஻భ,೟షభ
ሺଵିఘሻ௒೟షభ

 . 
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(Note that total wealth, Wt-1, equals the equity price, Pt-1.)   

The analysis requires an initial value for agent 1’s wealth share.  For example, we could 

assume that this share starts at 0.5 in period 0.  Heuristically, if γ1<γ2, there is an incentive in the 

initial position for agent 1 to issue risk-free bonds, so that B11<0 in period 1, and these bonds 

will be held by agent 2, so that B21>0.  That is, agent 1 borrows from agent 2 on a safe basis.  

Correspondingly, agent 1 uses its bond issue to increase its share of equity, so that K11>0.5 and 

K21<0.5.  In a richer model, this process of safe credit creation would affect the equilibrium 

amount and composition of investment. 

 The pattern of bond and equity positions shifts risk from the high-risk-aversion agent 2 to 

the low-risk-aversion agent 1.  However, the process does not entail complete risk shifting; 

rather, enough bond issue occurs so that the resulting stochastic paths of future consumption for 

each agent make the right-hand side of equation (9) the same for each agent i.  This equation also 

determines ݎଵ
௙. 

We can use equations (9) and (10), along with the agents’ budget constraints, to find 

numerically the equilibrium values for period 1 of ݎଵ
௙, each agent’s consumption, and each 

agent’s allocation of assets between equity and bonds.6  The realization for Y1 (disaster or no 

disaster in the present case) then determines each agent’s wealth at the end of period 1 and, 

hence, agent 1’s wealth share at the end of period 1.  This share is the state variable that 

determines the equilibrium values for period 2, and so on. 

Using the budget constraint from equation (6) and the condition for consumption in 

equation (10), we can show that agent 1’s wealth share at the end of period t relates to asset 

holdings from the end of period t-1 in accordance with 

                                                            
6We carried out this analysis numerically using periods of negligible length. 
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 (13)   
ௐభ೟

ௐ೟
ൌ ଵ,௧ିଵܭ ൅

ఘሺଵା௥೟
೑ሻ஻భ,೟షభ
௒೟

 . 

We can also show that the change in agent 1’s wealth share from t-1 to t is 

 (14)   
ௐభ೟

ௐ೟
െ

ௐభ,೟షభ

ௐ೟షభ
ൎ

ఘ஻భ,೟షభ
௒೟

ሺݎ௧
௙ െ ߩ െ ݃௧ሻ, 

where gt≡(Yt/Yt-1 – 1) is the stochastic growth rate of GDP.  Since the risk-free rate, ݎ௧
௙, will be 

less than ρ+g*, which equals the expected rate of return on equity, re, the expectation of the 

right-hand side of equation (14) is positive if B1,t-1<0.  In other words, the expected change in 

agent 1’s wealth share is positive whenever agent 1 (the low risk-aversion agent) is borrowing in 

a risk-free manner from agent 2.  The reason that agent 1’s wealth share tends to rise over time is 

that this agent’s wealth is relatively concentrated in risky equity, which has a higher expected 

rate of return than risk-free bonds.  (Note that this calculation factors in the occasional 

macroeconomic disasters, which tend to reduce agent 1’s wealth share.)  Consequently, we can 

show that agent 1’s wealth share asymptotically approaches one, and the ratio of risk-free bonds, 

B1t, to total assets or GDP asymptotically approaches zero.  In effect, there is a selection or 

survival effect, whereby wealth is concentrated asymptotically in the agent with relatively low 

risk aversion.  Hence, the model behaves in the long run like a representative-agent economy 

with coefficient of relative risk aversion equal to γ1.   

The non-stationarity of the initial form of the model makes it unsatisfactory for studying 

the determination of wealth shares and quantities of safe assets.7  To get a satisfactory analysis, 

the model has to be modified to achieve stationarity; in particular, to have the (expected) wealth 

share of agent 1 asymptotically approach a value less than one. 

                                                            
7This problem applies also to previous models with heterogeneous coefficients of relative risk aversion; see, for 
example, Longstaff and Wang (2012, p. 3208). 
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C.  Replacement and Stationarity 

 A natural way to achieve stationarity is to have agents die off randomly, with 

replacement by new agents who have a random (50-50) chance of being type 1 or type 2; that is, 

having a coefficient of relative risk aversion of γ1 or γ2.
8  Since type-1 agents tend to have above-

average wealth, this process tends to redistribute wealth back to type-2 agents. 

The replacement agents might inherit the assets of their altruistic predecessors, who 

might be parents.  Alternatively, as in Blanchard (1985), agents may leave no bequests and hold 

all of their bond-like assets as annuities, on which the returns factor in the probability of dying 

off.  In either case, a full analysis requires the optimizing choices of consumption and asset 

holdings to take account of the possibility of dying with replacement by children whom one may 

or may not care about. 

 When agents are linked to their descendants via operative intergenerational transfers, the 

main effect in the model from death and replacement is the random change in the coefficient of 

relative risk aversion.  Therefore, in this context, we can use a simpler metaphor in which no one 

literally dies off but where people randomly experience moments in which shifts occur in their 

coefficients of relative risk aversion to either γ1 or γ2.  Each destination could have a 50-50 

chance of being picked.  This structure avoids dealing with inheritance and altruism but implies 

that optimizing decisions on consumption and asset holdings depend on the potential for future 

shifts in one’s own attitude toward risk.  Our conjecture is that, if the replacement rate, which we 

denote by ν, is very high, this model would function like a representative-agent model in which 

the coefficient of relative risk aversion is an average of γ1 and γ2.  However, if ν is low, as we 

                                                            
8Chan and Kogan (2002) generate stationarity effectively by having each agent’s coefficient of relative risk 
aversion, γi, be an increasing function of that agent’s wealth share.  The assumed sign of this effect is not obvious; 
that is, it is unclear that richer agents would have higher coefficients of relative risk aversion.  In any event, this 
type of model functions in the steady state as a representative‐agent model with a single coefficient of relative risk 
aversion. 
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assume, the main element in each agent’s current optimization conditions would be the 

incumbent value of γi.  That is, the optimizing conditions would be close to those already 

derived.9 

 Let ν≥0 be the rate at which agents are replaced in the sense of possibly changing their 

values of γi between the two alternatives.  This process is stochastic at the individual level but 

roughly deterministic in the aggregate.   We retained the first-order conditions derived from the 

model without replacement but modified the equilibrium analysis to factor in the shifting of 

wealth composition across the two types of agents.  Specifically, the expression for the change in 

wealth share of agents of type 1 is modified from equation (14) to: 

 (15)  
ௐభ೟

ௐ೟
െ

ௐభ,೟షభ

ௐ೟షభ
ൎ

ఘ஻భ,೟షభ
௒೟

൫ݎ௧
௙ െ ߩ െ ݃௧ െ ൯ߥ െ ߥ ∙ ሺܭଵ,௧ିଵ െ 0.5ሻ. 

 Equation (15) takes account of how wealth is shifted between type-1 and type-2 agents 

when agents change their type.  However, this shifting also means that individuals within the two 

groups will have to be heterogeneous in wealth.  Typically, someone who just moved from 

type 1 to type 2 will have wealth above the mean of the existing type-2 agents, and vice versa for 

someone who just changed from type 2 to type 1.  As this process evolves, the agents within 

groups will have a range of wealth levels, depending on their history of past transitions (and on 

how these changes related to the aggregate experience with regard to realizations of disasters). 

The wealth distribution within groups might be interesting to analyze but is unimportant 

for the present analysis.  For our purpose, what matters is the total wealth held by agents of each 

type and not the distribution of wealth within types.  In particular, equations (9) and (10) imply 

that, for a given γi, higher wealth scales up proportionately the chosen values of consumption, 

                                                            
9Under log utility (θ=1), each agent’s consumption is the multiple ρ of that agent’s resources.  This condition does 
not involve γi and would not change when γi has the potential to shift in the future.  However, the first‐order 
conditions in equation (9) would be affected. 
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without changing the proportionate amounts held of risky and risk-free claims.  Thus, we can use 

equation (15) to gauge the changing wealth shares of groups 1 and 2, while neglecting effects 

from the differing levels of wealth within each group. 

If ν=0, as before, the expectation of the right-hand side of equation (15) is positive if 

B1,t-1<0.  As agent 1’s wealth share approaches one, B1,t-1/Yt asymptotically approaches zero and, 

therefore, equation (15) implies that the expectation of the change in agent 1’s wealth share 

asymptotically approaches zero.  Another property of the equilibrium with ν=0 is that K1,t-1 

asymptotically approaches 1. 

If ν>0, when K1,t-1 is close to 1 and B1,t-1/Yt is negligible, the term on the far right of 

equation (15) is negative and dominates in magnitude the first term on the right.  It follows that 

the expected change in agent 1’s wealth share will reach zero before K1,t-1 gets close to one and 

B1,t-1/Yt becomes negligible.  For given values of ν and the other parameters, we find numerically 

the (unique) wealth share that makes the expectation of the right-hand side of equation (15) equal 

to zero.  We think of this wealth share as the (stochastic) steady-state value, and we compute the 

associated steady-state values of ݎ௧
௙, K1,t-1, and B1,t-1/Yt.  This analysis should yield a satisfactory 

approximation to the steady-state equilibrium when the replacement rate, ν, is small. 

II.  Quantitative Analysis of Stationary Model 

 Aside from the coefficients of relative risk aversion, γ1 and γ2, the baseline parameter 

values, listed in the notes to Table 1, are ρ=0.04 per year (rate of time preference), g=0.025 per 

year (growth-rate parameter), p=0.04 per year (disaster probability), and b=0.32 (effective 

disaster size).  These values accord with the prior empirical analysis summarized in Barro and 

Ursúa (2012).  These parameter values imply from equation (4) that the expected growth rate is 

(16)   g* = g - p·b = 0.0122 per year.   
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We also assume log utility, θ=1, and begin with a replacement rate of ν=0.02 per year.  This 

value corresponds roughly to adult mortality rates. 

 A.  A Representative Agent 

 Table 1 considers a representative agent, where γ1=γ2=γ.  In these cases, if we start with 

agent 1’s wealth share at 0.5, Bit and Kit stay constant over time at 0 and 0.5, respectively, 

irrespective of the realizations of Yt.  Because of log utility, the expected rate of return on equity, 

re, is fixed at ρ+g*, where ρ=0.04 per year and g*=0.0122 (equation [16]), so that re=0.052 per 

year.  A higher γ lowers the risk-free rate, rf, and, thereby, raises the equity premium.  

Specifically, Table 1 shows that rf ranges from 0.046 at γ=1 to -0.023 at γ=5 and -0.064 at γ=6.10  

An unlevered equity premium between 0.03 and 0.06 (corresponding roughly to historical data) 

requires γ to be between 3 and 4.5.  For a given γ, rf is fixed over time, regardless of the 

realizations of Yt.  This risk-free rate is a shadow rate in the sense that no risk-free borrowing 

and lending occur in equilibrium.  That is, no safe assets are created in this representative-agent 

environment. 

 B.  Heterogeneity in Risk Aversion 

 Table 2 allows for differences between γ1 and γ2.  We show combinations of γ1 and γ2 

that generate a (stochastic) steady-state risk-free interest rate of rf=0.010 and, hence, a steady-

state unlevered equity premium of 0.042.  That is, these combinations of γ1 and γ2 accord 

roughly with empirically observed averages of risk-free returns and the equity premium.  The 

table shows the corresponding (stochastic) steady-state values of the amount of safe assets, 

│B1│, expressed relative to total assets or GDP, agent 1’s share of risky assets, K1, and agent 1’s 

                                                            
10In the present model (which lacks risk‐free and costless storage of final product), there is nothing special about a 
risk‐free rate of zero. 
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wealth share, W1/W (which equals agent 1’s share of total consumption).  Because economy-

wide assets equal annual GDP times 25 (1/ρ ) in this model, the amount of safe assets expressed 

relative to annual GDP is 25 times the ratio to total assets.  Note that total assets correspond to 

the capitalization of the entire flow of GDP, effectively including human capital as well as 

physical capital. 

The first row of Table 2 shows that, if γ1= γ2, the value of γ1 and γ2 needed to generate 

rf=0.01 is 3.78 (see Table 1).  Columns 1 and 2 of Table 2 show that values of γ1 below 3.78 

require values of γ2 above 3.78 to generate rf=0.010.  For example, γ1=3.5 matches up with 

γ2=4.2, γ1=3.25 with γ2=4.8, and γ1=3.0 with γ2=6.7.  For still lower values of γ1, the required 

value of γ2 explodes, and there is a lower bound on γ1 a little below 2.7 such that even an infinite 

γ2 would not generate rf=0.010.  For example, γ1=2.68 requires γ2 =647, which is essentially 

infinity.  Thus, given ν=0.02 per year, the model places a lower bound around 2.7 on the 

admissible γ1. 

 In column 5, the steady-state share of risky assets held by agent 1, K1, equals 0.50 when 

γ1=γ2, then rises toward 1.0 as γ1 falls and γ2 rises.  When γ1=2.68 and γ2=647, K1 is very close 

to 1.0. 

 Column 6 shows that the steady-state ratio of the magnitude of safe to total assets rises 

from 0 when γ1=γ2 to 2.5% when γ1=3.50 (γ2=4.2), 5.4% when γ1=3.25 (γ2=4.8), 9.5% when 

γ1=3.0 (γ2=6.7), and 15.4% when γ1=2.75 (γ2=24.4).  The upper bound for this ratio around 18% 

applies as γ1 approaches its lower bound a little below 2.7 and γ2 approaches infinity.  For 

subsequent purposes, we are particularly interested in the model’s predictions about the size of 

safe assets in relation to total assets or GDP.  From this perspective, an important result is that 
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the predicted quantity of safe assets is less than 10% of economy-wide assets if γ2 is less than 

6.7, which is a high degree of relative risk aversion.   

 In column 7, the steady-state wealth share, W1/W, starts at 0.50 when γ1=γ2, then rises 

toward an upper bound of 0.82 as γ1 falls and γ2 rises.  This wealth share equals the fraction of 

total consumption received by agent 1. 

 Table 3 redoes the analysis for alternative settings of three of the parameters:  the 

replacement rate, ν, is raised from 0.02 to 0.05 per year; the disaster probability, p, is lowered 

from 0.04 to 0.02 per year; and the rate of time preference, ρ, is decreased from 0.04 to 0.02 per 

year.  In each case, the table shows steady-state values of rf and the other variables for three of 

the combinations of (γ1, γ2) considered in Table 2. 

In the upper panel of Table 3, where ν=0.05, the risk-free rate, rf, is somewhat below the 

value 0.010 from Table 2 (because the higher risk-aversion coefficient, γ2, gets relatively more 

weight when ν is higher).  The share of group 1 in risky assets and wealth is correspondingly 

reduced by the higher ν.  For example, when γ1=3.00 and γ2=6.66, K1 is 0.70, rather than 0.77, 

and W1/W is 0.59, rather than 0.67.  If γ2 is constrained to be less than 6.7, the ratio of safe to 

total assets can be as high as 11.5% when ν=0.05, compared to 9.5% when ν=0.02.  Overall, the 

most important finding is that the results do not change greatly when ν is 0.05, rather than 0.02. 

In the middle part of Table 3, where p=0.02, the risk-free rate, rf, is sharply higher than 

the value 0.010, which applies to p=0.04 in Table 2.  Correspondingly, the equity premium 

becomes much too low in Table 3, compared with empirically observed averages.  Thus, as in 

previous research, the model does not accord with regularities on mean rates of return unless the 

disaster risk is sufficiently high.  A similar conclusion arises if the disaster size, b, is lowered 

substantially below its initial value of 0.32. 
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In the model, the ratio of the equity price, Pt, to GDP, Yt (that is the price-dividend ratio), 

equals 1/ρ and is, therefore, independent of parameters related to expected growth, uncertainty, 

and risk aversion.  This result depends on log utility (θ=1)—more generally, Pt/Yt would depend 

on parameters other than ρ, though the signs would be determined by whether θ was less than or 

greater than one.  In the context of θ=1, the effect from a shift in ρ is of interest because it 

changes Pt/Yt, which equals the ratio of wealth to GDP.  In particular, we can assess whether this 

change affects mostly the ratio of safe to total assets (wealth) or the ratio of safe assets to GDP. 

The bottom part of Table 3 sets ρ=0.02 and thereby raises the wealth-GDP ratio to 50, 

compared to 25 in Table 2, where ρ=0.04.  The decrease in ρ sharply lowers rf—for example, 

when γ1=3.00 and γ2=6.66, rf  is -0.009, compared to 0.010 in Table 2.  Although the equity 

premium implied by the lower ρ in Table 3 is similar to that found in Table 2, the overall level of 

rates implied by ρ=0.02 is counter-factual.  Agent 1’s shares of equity and wealth when ρ=0.02 

(Table 3) are similar to those found when ρ=0.04 (Table 2). 

The most interesting results from the change in ρ concern the amount of safe assets 

expressed relative to total assets or GDP.  Table 3 shows that the ratio of safe to total assets when 

ρ=0.02 is slightly higher compared to that when ρ=0.04 (Table 2).  For example, when γ1=3.00 

and γ2=6.66, the ratio of safe to total assets is 10.5% when ρ=0.02 compared to 9.5% when 

ρ=0.04.  In contrast, the ratio of safe assets to GDP more than doubles—it equals 5.2 when 

ρ=0.02 compared to 2.4 when ρ=0.04.  In more general contexts, such as when θ≠1, the wealth-

GDP ratio would be sensitive to changes in various parameters, such as the expected growth rate, 

the probability and size distribution of disasters, and the levels of risk-aversion coefficients.  Our 

results from the log-utility case suggest that the ratio of safe to total assets may not change 

greatly when the wealth-GDP ratio changes.  That is, the ratio of safe assets to GDP may roughly 
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move along with the ratio of total assets (wealth) to GDP.  We use these results later when 

attempting to relate our theoretical findings to empirical measures of the quantity of safe assets. 

 C.  Dynamics 

 The dynamics of the economy reflects the evolution of the single state variable, which is 

the share of agent 1 in total wealth, W1/W.  Disaster shocks and long periods free of disasters 

affect this state variable and, thereby, have persisting influences on the risk-free interest rate, rf, 

the ratio of safe to total assets, and other variables.  We consider first the dynamic effects from a 

disaster and then examine the consequences from a long period free of disasters. 

 1.  Aftermath of a Disaster.  Figure 1 shows the dynamics of the economy starting from 

a steady state and assuming the realization of a disaster of size b=0.32 in period 0.  (Periods in 

this exercise are extremely short.)  The results correspond to the parameter combination 

(γ1=3.00, γ2=6.66) in Table 2.  The paths of variables in Figure 1 assume no further disasters and 

are, therefore, deterministic.  The variables considered over ten years are agent 1’s wealth share, 

W1/W (which equals agent 1’s consumption share), the risk-free interest rate, rf, agent 1’s share 

of total equity, K1, and the ratio of the magnitude of safe assets, B1, to total assets. 

 Because of agent 1’s relatively high concentration in risky assets, this agent’s wealth 

share falls with the disaster from 0.672 to 0.627.  The share rises thereafter (in the absence of 

further disasters) but remains below the steady-state value even after 10 years, when the share 

reaches 0.656.  Another way to look at this pattern is that relatively low inequality of wealth and 

consumption persist for a long time after a disaster shock.  However, the recovery toward the 

steady state is accompanied by rising inequality.  These patterns also appear in agent 1’s share of 

equity, K1.  This share falls on impact from its steady-state value of 0.767 to 0.732, then rises to 

0.755 after 10 years. 
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For the risk-free rate, rf, we can view the disaster shock and consequent shift in relative 

wealth toward agent 2 as raising the demand for bonds (from agent 2) compared to the supply 

(from agent 1).  In response to the shift in excess demand, rf falls on impact from its steady-state 

value of 0.0100 to 0.0073.  That is, the disaster leads to a low risk-free interest rate.  In the 

recovery period, rf rises but remains below its steady-state value.  After 10 years, rf 

reaches 0.0091. 

The enhanced wealth share of agent 2 is accompanied on impact by a rise in the ratio of 

the magnitude of safe assets, B1, to total assets.  This ratio increases initially from its steady-

state value of 0.095 to 0.104.  Thus, safe assets are comparatively large immediately after a 

disaster.  The ratio then falls gradually and reaches 0.098 after 10 years. 

To summarize, disasters generate low but rising wealth and consumption inequality, low 

but rising risk-free real interest rates, and high but declining ratios of safe to total assets.  In 

particular, low inequality and risk-free interest rates and high safe-asset ratios are all symptoms 

of a gradual recovery from a serious adverse shock to the economy. 

An important aspect of the disaster shock that we examined is that it disproportionately 

affects the low-risk-aversion agent, group 1, and, therefore, shifts the wealth share initially 

toward the high-risk-aversion agent, group 2.  This pattern arises because the shock affects the 

value of equity, which is disproportionately held by group 1.  Hart and Zingales (2014) argue 

that this kind of pattern characterizes some macro-financial shocks, such as the bursting of the 

Internet boom in 2000.  They argue, however, that other shocks—notably the Great Recession of 

2007-2009—feature the erosion in value of assets that were previously viewed as nearly safe.  In 

the 2007-2009 case, this pattern applied particularly to claims associated with real estate, whose 

safety had been greatly exaggerated. 
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In our model, we could analyze the Hart-Zingales case by allowing for an unexpected 

decline in the value of the existing “safe” assets, which are the private bonds.  That is, the zero-

probability event of large losses on safe assets could be viewed as a one-time happening.  In this 

case, agent 1’s wealth share would initially shift discretely above its steady-state value.11  The 

subsequent dynamics relates to that described in our next example. 

2.  Forty years of tranquility.  Figure 2 deals with a scenario in which, starting from the 

steady state, the economy has a long period with no disasters (“40 years of tranquility”).  This 

situation accords broadly with the U.S. experience from the 1950s up to the Great Recession of 

2007-2009.  The parametric assumptions for Figure 2 are the same as those for Figure 1. 

In Figure 2, agent 1’s wealth share rises gradually above its steady state value of 0.67.  

Conditional on no disasters, this ratio rises after 40 years to 0.71—and would asymptotically 

approach a higher value, which turns out to be 0.72, if no disaster ever occurred.  The value 0.72 

is a kind of steady-state wealth share (shown in quotes in the figure) in that it applies 

asymptotically conditional on the realization of no disasters.  In contrast, the lower steady-state 

wealth share of 0.67 is defined inclusive of the occasional incidence of disasters. 

The dynamic path of the wealth share in Figure 2 shows that sustained tranquility is 

accompanied by rising inequality, in the sense of growing wealth and consumption shares of 

group 1.  The dynamics also features a rising risk-free rate, which increases above its steady-

state value of 0.010 and eventually approaches 0.0125.  The ratio of safe to total assets falls from 

its steady-state value of 0.095 and gradually approaches 0.084. 

                                                            
11A counter‐vailing force in the real estate bust is that large financial institutions, including Lehman, experienced 
sharp losses in asset values.  This aspect of the shock tends to lower group 1’s wealth share and, thereby, works 
more like the disaster realization that was already analyzed. 
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In the paths shown in Figure 2, agent 1’s wealth share would never rise above the “steady 

state” value of 0.72.  However, a shock mentioned before—where the value of safe assets 

declines sharply because this safety had been exaggerated—could put agent 1’s wealth share 

above its “steady-state” value of 0.72.  In that case, the post-shock dynamic paths (conditional on 

no further disasters) would feature a gradually declining wealth share of agent 1, with this share 

asymptotically approaching from above the value 0.72.  Correspondingly, the risk-free rate 

would rise initially above its “steady-state” value and then fall gradually, whereas the ratio of 

safe to total assets would fall initially below its “steady-state” value and then rise gradually. 

III.  Gross versus Net Lending 

The bond holdings, B1, shown in Table 2 correspond to net safe lending from the high-

risk-aversion agent, group 2, to the low-risk-aversion agent, group 1.  There is a sense, however, 

in which gross bond issuance is not pinned down, because the model would admit unlimited 

borrowing and lending within groups.  That is, agent 1 could effectively issue an arbitrary 

amount of bonds to himself, and analogously for agent 2. 

If the model were augmented to include an infinitesimal amount of transaction costs for 

bond issuance or collection of interest and principal, then borrowing and lending within groups 

would not occur in equilibrium in the present model.  In this case, the quantity of bonds, B1, 

shown in Table 2 would be the unique equilibrium for the gross amount outstanding. 

If transaction costs associated with bonds are substantial, the quantity of net bond 

issuance and the risk-free rate might differ significantly from the values shown in Table 2.  

Moreover, the risk-free rate received by lenders (group 2) would deviate from that paid by 

borrowers (group 1).  For example, if transaction costs were prohibitive, the results would 

correspond to autonomy for groups 1 and 2 and, therefore, to the results shown in Table 1.  The 



24 
 

quantity of net bond issuance would be 0, and the share of capital held by each group would 

be 0.5.  As an example, if γ1=3.0, the shadow risk-free rate for group 1 would be 0.024 (from 

Table 1) and if γ2=5.0, the shadow risk-free rate for group 2 would be -0.023 (again from 

Table 1).  That is, members of group 1 would be willing to pay a rate of 0.024 per year at the 

margin on risk-free borrowing, whereas members of group 2 would be willing to accept a rate of 

-0.023 per year at the margin on risk-free lending.  However, no issue of safe debt occurs 

because of the prohibitive transaction costs. 

IV.  Government Bonds and Ricardian Equivalence 

Suppose that the government issues one-period bonds with characteristics corresponding 

to those of private bonds.  The interest rate on government bonds held from year t to year t+1 

must then be ݎ௧ାଵ
௙ , the same as that on private bonds.  The simplest approach is for the 

government to make a distribution in the form of lump-sum transfers of bonds in year t in the 

aggregate quantity ܤ௧
௚.  This distribution is assumed to go 50-50 to members of groups 1 and 2.  

The aggregate principal and interest, ሺ1 ൅ ௧ାଵݎ
௙ ሻܤ௧

௚, is paid out to government bondholders in 

period t+1.  This payout is financed by lump-sum taxes, levied equally in period t+1 on members 

of groups 1 and 2. 

What is the impact of this government bond issue on private bond issue, the risk-free 

interest rate, and so on?  The government bond issue does not affect the households’ first-order 

conditions involving the risk-free rate, ݎ௧ାଵ
௙ , which appear in equation (9).  There is also no effect 

on households’ budget constraints in equation (6) (updated to apply to periods t and t+1), once 

one factors in the transfer payments in year t and the taxes levied in year t+1.  Therefore, it is 

immediate that the equilibrium involves the same net borrowing and lending as before between 

groups 1 and 2, the same risk-free interest rate, ݎ௧ାଵ
௙ , the same equity price, Pt=Yt/ρ, and the same 
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expected rate of return on equity, re=ρ+g* .  That is, the equilibrium features Ricardian 

Equivalence with respect to (net) quantities of safe assets and the various rates of return. 

There are multiple possibilities with respect to holdings of government bonds that support 

the equilibrium.  One possibility is that groups 1 and 2 each hold 50% of the government bonds 

issued in year t.  These quantities correspond to the present value of the (certain) tax liabilities 

imposed on each group.  That is, government bonds and tax liabilities cancel with respect to 

creating safe assets; no safe assets are created on net.  The quantity of net private borrowing and 

lending, corresponding to B1t, is then the same as before, and the same risk-free interest rate 

supports this equilibrium.  This outcome corresponds to the upper part of Table 4. 

Alternatively, all of the government bonds could be held, in equilibrium, by group 2.  

Members of group 2 then have additional safe assets (in the form of government bonds) that 

exceed the present value of their added tax liabilities (which equal 50% of the government 

bonds).  Correspondingly, members of group 1 hold no government bonds but have a present 

value of tax liabilities also equal to 50% of the bonds.  Therefore, group 1 has additional tax 

liabilities (50% of the government bonds) that exceed their added safe assets in the form of 

government bonds (which are nil in this case). This result works if the net private borrowing by 

group 1 from group 2 falls by 50% of the government bonds that were issued.  In this case, the 

net position of group 1 with respect to group 2 is the same as before.  The only difference is that 

some of the borrowing and lending between the groups is purely private, while some works 

through the government as intermediary (collecting taxes from group 1 and using the proceeds to 

pay principal and interest on half of the government bonds held by group 2).  This result 

corresponds to the lower part of Table 4. 
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As in the previous section, the indeterminacies with respect to gross debt are resolved if 

there is an infinitesimal amount of transaction costs for bond issuance or collection of interest 

and principal.  These transaction costs are assumed at this point to be the same for private and 

public bonds.  In this case, the unique equilibrium will be the one described in the lower part of 

Table 4, where group 2 holds all of the added government bonds, and the issue of government 

bonds crowds out private bonds with a multiplier of 0.5.  (This result assumes that the gross 

quantity of private bonds outstanding was initially greater than 50% of the added government 

bonds.) 

The finding of Ricardian Equivalence may not be surprising, but what is surprising is that 

this equivalence associates with a crowding-out coefficient for private bonds with respect to 

public bonds of -0.5, not -1.0.  This result came from a model with a number of simplifying 

assumptions; notably, there were just two groups characterized by their coefficients of relative 

risk aversion, γi, and the incidence of the present value of taxes net of transfers associated with 

the government bond issue was the same for each group.  However, the crowding-out coefficient 

around -0.5 does not depend on these assumptions holding precisely.  For example, the 

restriction to two groups is unimportant.12  The main assumption that seems to matter is that 

there is little correlation across groups between γi and the share of taxes net of transfers applying 

to group i. 

                                                            
12Suppose, for example, that there are four groups of agents, where γ1<γ2<γ3<γ4.  Suppose further that the initial 
equilibrium involves private bond holdings of B1=‐100, B2=‐50, B3=50, and B4=100.  Assume that the government 
issues 4 units of bonds, with the present value of taxes rising by 1 unit for each group.  In this case, the two private 
borrowers go, in equilibrium, to B1=‐99 and B2=‐49, thereby preserving their positions for bond holdings net of tax 
liabilities (of 1 each) at ‐100 and ‐50, respectively.  The two private lenders go, in equilibrium, to overall bond 
positions (inclusive of government bonds) of B3=51 and B4=101, thereby preserving their positions for bond 
holdings net of tax liabilities at 50 and 100, respectively.  Note that the additional 4 units of government bonds 
crowd out the total of private bonds by 2 units. 
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The model’s predicted crowding-out coefficient relates to the study by Krishnamurthy 

and Vissing-Jorgensen (2013, p. 1), who argued “that government debt … should crowd out the 

net supply of privately issued short-term debt.”  They tested this hypothesis on U.S. data for 

1914-2011 and found (Table 4, Panel A) that an increase in the quantity of net U.S. government 

debt had a significantly negative effect on the net short-term debt created by the private financial 

sector.  Remarkably, their estimated coefficient was close to -0.5, the value predicted by our 

model.13  Similarly, Gorton, Lewellen and Metrick (2012, Table 1) estimated a crowding-out 

coefficient close to -0.5 for a broad concept of private financial-sector liabilities (their “high 

estimate”) in the United States for 1952-2011.14 

Ricardian Equivalence may not hold exactly in our model if the government is superior to 

the private sector in the technology of creating safe assets.15  In particular, the government might 

be able to commit better than private agents to honoring payments of principal and interest on its 

bonds and can also use the coercive power of the tax system to ensure the financing of these 

payments.  On the other hand, a private lending arrangement requires only that group 1 make 

principal and interest payments in period t+1 to group 2, whereas the public setup entails the 

government collecting taxes in period t+1 from group 1 and then using the proceeds to pay off 

                                                            
13Krishnamurthy and Vissing‐Jorgensen (2013, p. 23) say:  “These results suggest that a one‐dollar increase in 
Treasury supply reduces the net short‐term debt issued by the financial sector by 50 cents.”  In their theory 
(Section 3), they derive a crowding‐out hypothesis from a model in which Ricardian Equivalence fails.  However, 
they do not mention that their empirical results are consistent with a model in which Ricardian Equivalence holds. 
14Gorton, Lewellen and Metrick (2012, p. 103) say:  “These results suggest that financial liabilities and government 
liabilities may be substitutes.” 
15Caballero and Farhi (2014, p.3) make this assumption, although they do not clarify the elements that underlie the 
government’s superior technology:  “Public debt … plays a central role … as typically the government owns a 
disproportionate share of the capacity to create safe assets while the private sector owns too many risky assets. … 
The key concept then is that of fiscal capacity:  How much public debt can the government credibly pledge to 
honor should a major macroeconomic shock take place in the future?”  They also do not consider that public debt 
issue creates additional “safe liabilities” in the form of taxes that match the added safe assets in a present‐value 
sense. 
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group 2.  Once the distorting influences from taxation are considered, it is not obvious that the 

public process entails lower “transaction costs” overall.16 

An additional consideration is that the expansion of public debt and the associated 

taxation are poorly targeted:  50% of the added government bonds—held by group 2—match the 

added present value of tax liabilities for this group and, therefore, do not serve to shift risk 

toward group 1.  Only the remaining 50% of government bonds corresponds to this shifting of 

risk.  In contrast, all private bonds issued by group 1 and held by group 2 associate with risk 

shifting. 

To highlight a case where the issue of public debt is important, suppose that the private 

sector’s technology for creating safe assets is so poorly developed that no issue of private bonds 

occurs in the initial equilibrium (where no government bonds exist).  In this case, analyzed at the 

end of Section III, groups 1 and 2 are effectively autonomous, and the equilibrium for each group 

is the one that would apply in the corresponding representative-agent economy.  The risk-free 

interest rate for group 1 can then diverge substantially from that for group 2. 

 In this environment, the government’s issue of bonds can substitute for the private 

lending that would have occurred if the private sector had possessed the technology to create safe 

assets.  (The assumption here is that the government can use the tax system to generate these safe 

assets.)  In this setting, Ricardian Equivalence fails, and the government’s debt issue moves the 

economy toward a more efficient outcome, where risk is shifted from type-2 to type-1 agents and 

the risk-free interest rates of the two groups converge.   

                                                            
16Even if the interest rate on government bonds is lower than that on private bonds, the overall transaction costs—
including the distorting effects from taxation—associated with the public process might exceed that for the private 
process. 



29 
 

We can assess how much public debt is required to get the economy into the equilibrium 

where private debt was available (with negligible transaction costs).  The answer—related to the 

-0.5 crowding-out coefficient discussed before—is that the required quantity of public debt is 

twice the level of private bonds that arose in the initial setting.  Moreover, if public debt expands 

beyond this quantity, it has no further effect on the equilibrium.  That is, Ricardian Equivalence 

holds in this range at the margin even though private bonds are assumed to be absent. 

V.  Gold and other Commodities as Safe Assets 

 Gold and other precious durable commodities, such as silver and platinum, are often 

viewed as forms of comparatively safe assets.  However, as noted in Barro and Misra (2013), 

real returns on gold are as volatile as stocks in the period since 1975, although real gold returns 

have covariances with growth rates of GDP and consumption that may be negative and are surely 

much smaller than those for stock returns. 

 In the model, the underlying economy-wide risk corresponds to the uncertainty in the 

process for GDP, Yt, which corresponds to the fruit from the Lucas tree.  Any application of this 

model to macroeconomic data would require Yt to be identified with a composite of a variety of 

goods and services.  In this sense, the services from gold or other commodities would constitute 

forms of goods and services that are already factored into the aggregate variable Yt.  Then, 

depending on how the values of these commodities covary with the rest of GDP, the variable Yt 

inclusive of the commodity service flows might be more or less volatile than the variable gauged 

exclusively of these flows.  In any event, the analysis would be the same as that already carried 

out.  In particular, the determinants of the risk-free rate and the net quantity of safe assets would 

still follow the form of the analysis in Table 2. 
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VI.  The Quantity of Safe Assets 

 In the model, the net quantity of safe assets is well defined and corresponds to the 

shifting of risk from the high-risk-averse agent, group 2, to the low-risk-averse agent, group 1.  

Table 2 shows that, for reasonable parameter values, the steady-state quantity of safe assets 

ranges up to 10% of total assets. 

 Using data to match the model’s predictions for the quantity of safe assets is challenging 

because it is unclear how to measure the amounts of these assets.  Gorton, Lewellen, and Metrick 

(2012) (henceforth, GLM) define safe assets to comprise mostly liabilities of the government and 

the private financial sector.  After making a number of adjustments—for example, to eliminate 

U.S. government securities held by federal trust funds and to deduct 15% of long-term debt 

issued by the financial sector—they focus on a “high estimate” of the amount of safe assets.  

Using U.S. data from 1952 to 2010, GLM report two major findings.  First, the ratio of their 

measure of safe assets to a concept of total assets remained relatively stable over time, ranging 

between 30% and 35%.  Second, the ratio of total assets to annual GDP rose sharply from around 

4.0 in 1952 to about 10.3 in 2010.  By implication, the ratio of safe assets to GDP rose from 

about 1.4 in 1952 to around 3.3 in 2010. 

When comparing with our theoretical predictions, the first observation is that the average 

ratio of safe to total assets computed by GLM—30-35%--exceeds the steady-state values 

predicted by our model—on the order of 10%.  However, the stability of the ratio found by GLM 

accords with our model.  Notably, we found in Table 3 that a change—a reduction in the rate of 

time preference, ρ—that sharply raised the ratio of total assets to GDP was consistent with rough 

stability in the ratio of safe to total assets.  In the log-utility version of the model, the observed 

sharp increase in the ratio of total assets to GDP from 1952 to 2010 could be explained only by a 
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reduction in the rate of time preference, ρ.  However, in extended versions of the theory, the 

change could also derive from shocks to expected growth, uncertainty, and the extent of risk 

aversion. 

One reason that GLM’s measured ratio of safe to total assets would diverge from our 

theoretical concept concerns the denominator, total assets.  In our theory, total assets comprise 

the discounted value of GDP, which equals consumption.  In effect, the theoretical measure of 

total assets includes human capital as well as physical capital.  In contrast, GLM’s concept of 

total assets corresponds more closely to the value of physical capital, though also including the 

value of government bonds.  These considerations help to explain why GLM’s average ratio of 

safe to total assets is above the range predicted by our model.  For example, if income from 

capital constitutes about one-third of GDP, then total assets based on the value of capital would 

be around one-third of the capitalized value of GDP.  In this case, the model’s predicted ratio of 

safe to total assets would be about 30%, close to the numbers calculated by GLM. 

There are also reasons why GLM’s measure of safe assets would diverge from our 

theoretical concept, which relates to net lending from group 2 (high risk aversion) to group 1 

(low risk aversion).  One issue is that the GLM measure does not compute a net figure for 

liabilities of financial institutions; that is, there is no deduction for safe assets held by these 

institutions.  For example, in 2007-2008, Lehman Brothers issued bonds and commercial paper 

and also held U.S. government securities and liabilities of other financial firms.17  On this 

ground, GLM’s measured liabilities of government and financial institutions would overstate the 

net quantity of safe assets. 

                                                            
17Our model could be extended to account for this kind of borrowing and lending within groups.  These patterns 
might arise because of idiosyncratic shocks that affect individual agents within groups, still defined by coefficients 
of relative risk aversion. 
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Another consideration is that an array of financial arrangements—including structured 

finance, stock options, and insurance contracts—can be used to convert risky assets into 

relatively safe assets.  On this ground, the measured liabilities of governments and financial 

institutions might understate the quantity of safe assets. 

GLM also include government liabilities as safe assets but do not include any portion of 

capitalized future taxes as “safe liabilities,” even at the margin.  Although it is true that tax 

liabilities cannot be directly traded, it is also true that these liabilities—and how they vary along 

with changes in the quantity of government bonds—affect economic analyses of public debt.  To 

the extent that future taxes are factored in by agents, the gross public debt would overstate a 

meaningful measure of safe assets. 

Despite various caveats that affect interpretations of GLM’s computed average ratio of 

safe to total assets, it is possible that their findings on the rough stability of the safe-asset ratio 

would be valid.  That is, the proportionate errors that generate deviations between the measured 

and “true” ratios of safe to total assets might stay roughly constant over time. 

VII.  Conclusions 

 We constructed a model with heterogeneity in risk aversion to study the determination of 

the equilibrium quantity of safe assets.  The model achieves tractability and transparency by 

assuming two types of agents with Epstein-Zin/Weil utility.  The agents differ by coefficients of 

relative risk aversion but have the same intertemporal elasticity of substitution (IES) and rate of 

time preference.  In the main analysis, each agent has log utility, in the sense of IES=1.  We 

focused on a stationary version of the model in which agents are periodically replaced by new 

agents (possibly children) who receive a random assignment of coefficient of relative risk 

aversion.  In the baseline setting, Ricardian Equivalence holds in that the quantity of government 
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bonds does not affect the risk-free interest rate or the net quantity of safe assets.  The predicted 

crowding-out coefficient for private bonds with respect to government bonds is -0.5, in line with 

some existing empirical estimates. 

 We generated quantitative implications for the quantity of safe assets by calibrating the 

model with sufficient disaster risk to get the model’s predictions into the right ballpark for the 

average equity premium and risk-free rate.  In a benchmark case, the magnitude of safe assets 

would be around 10% of total assets.  We noted that this value could be reconciled with an 

existing estimate that found the ratio of safe to total assets in the United States to be nearly stable 

over time at a value between 30% and 35%. 

 The basic structure of the model with heterogeneity in coefficients of relative risk 

aversion can be applied to other economic problems.  For example, the framework can 

incorporate issues related to credit-market imperfections, including the necessity for enforcement 

mechanisms to ensure repayment of private debts.  This extension relates to issues concerning 

collateral, liquidity, and asymmetric information.  This type of extension would be important for 

assessing implications for the magnitude and composition of investment.  
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Table 1 

Representative-Agent Economy  

(Single Coefficient of Relative Risk Aversion) 

 

γ1=γ2=γ re rf

 1 0.052 0.046 
1.5 0.052 0.042 
2 0.052 0.037 

2.5 0.052 0.031 
3 0.052 0.024 

3.5 0.052 0.016 
4 0.052 0.005 

4.5 0.052 -0.008 
5 0.052 -0.023 

5.5 0.052 -0.042 
6 0.052 -0.064 

 

When the coefficients of relative risk aversion are the same for the two agents, γ1=γ2=γ, 
the equilibrium quantities of bonds, B1 and B2, are zero and the ownership of equity is 
evenly distributed, K1=K2=0.5.  The table shows the equilibrium risk-free rate, rf, for 
each value of γ.  The calculations assume that the growth-rate parameter is g=0.025 per 
year, the rate of time preference is ρ=0.04 per year, the disaster probability is p=0.04 per 
year (corresponding in the historical data to contractions of per capita GDP by at least 
10%), and the effective disaster size is b=0.32.  The expected growth rate is g*=g–p·b= 
0.0122 per year.  The reciprocal of the IES is θ=1.  The expected rate of return on equity, 
given θ=1, is re=ρ+g*=0.052 per year, which is independent of γ.  The price of equity is 
P=Y/ρ=25·Y. 

In this representative-agent case, the risk-free rate can be written in closed form, if γ≠1, 
as: 

௙ݎ  ൌ ߩ ൅ ݃ߠ ൅ ݌ ቀఏିଵ
ఊିଵ

ቁ െ ሺ1݌ െ ܾሻିఊ ൅ ݌ ቀఊିఏ
ఊିଵ

ቁ ሺ1 െ ܾሻଵିఊ .  

If θ=1, as γ approaches 1, rf approaches ρ+g-pb/(1-b). 
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Table 2 

Steady-State Equity Ownership, Safe Assets, and Wealth Share 

Alternative Values of γ1 and γ2 that Generate rf=0.010 when ν=0.02 per Year 

 

(1) (2) (3) (4) (5) (6) (7) 
γ1 γ2 re rf K1 │B1│/assets [GDP] W1/W 

3.78 3.78 0.052 0.010 0.50 0.00 [0.00] 0.50 
3.50 4.16 0.052 0.010 0.57 0.025 [0.62] 0.54
3.25 4.84 0.052 0.010 0.65 0.054 [1.36] 0.60
3.00 6.66 0.052 0.010 0.77 0.095 [2.38] 0.67
2.75 24.4 0.052 0.010 0.93 0.154 [3.86] 0.78
2.68 647 0.052 0.010 0.996 0.176 [4.41] 0.82

 

 

 
This analysis assumes that the “replacement rate” for agents is ν=0.02 per year.  The coefficients 
of relative risk aversion for the two agents, γ1 and γ2, are the values that generate a steady-state 
risk-free interest rate, rf, of 0.010, given the other parameter values used in Table 1.  Table 2 
shows the corresponding steady-state values of agent 1’s share of equity ownership, K1, the ratio 
of the magnitude of safe assets, B1, to total assets and GDP, and agent 1’s share of total assets, 
W1/W (which equals agent 1’s share of total consumption).  Given ρ=0.04 per year, the ratio of 
safe assets to GDP equals 25 times the ratio to total assets. 
  



38 
 

Table 3 
 

Steady-State Equity Ownership, Safe Assets, and Wealth Share 
 

Alternative Parameter Values 
 
 

(1) (2) (3) (4) (5) (6) (7) 
γ1 γ2 re rf K1 │B1│/assets [GDP] W1/W 

ν=0.05 per year 
3.50 4.16 0.052 0.0096 0.54 0.025 [0.63] 0.52 
3.25 4.84 0.052 0.0083 0.60 0.057 [1.44] 0.54
3.00 6.66 0.052 0.0050 0.70 0.111 [2.77] 0.59

p=0.02 per year 
3.50 4.16 0.052 0.0373 0.54 0.020 [0.49] 0.52 
3.25 4.84 0.052 0.0364 0.59 0.046 [1.14] 0.54
3.00 6.66 0.052 0.0342 0.69 0.091 [2.28] 0.60

ρ=0.02 per year 
3.50 4.16 0.032 -0.0099 0.58 0.029 [1.45] 0.55 
3.25 4.84 0.032 -0.0094 0.67 0.062 [3.11] 0.61
3.00 6.66 0.032 -0.0087 0.79 0.105 [5.25] 0.68

 
 
 
 
These results are the same as those shown in Table 2 for the indicated values of γ1 and γ2, except 
for changes in the indicated parameter value.  The first three lines use the replacement rate 
ν=0.05 per year, the next three use the disaster probability p=0.02 per year, and the last three use 
the rate of time preference ρ=0.02 per year. 
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Table 4 

 
Changes in Safe Assets when the Government Issues Bonds 

 
 Agent 1 Agent 2 Total 

Case 1:  Government bonds up by 100, held 50-50 
Private bond holdings, B 0 0 0 
Government bond holdings, Bg +50 +50 +100 
Taxes (present value) +50 +50 +100 
Net safe assets in model 0 0 0 
Net safe assets as measured by Gorton, et al. (2012) +50 +50 +100 

Case 2:  Government bonds up by 100, all held by agent 2 
Private bond holdings, B +50* -50 0 
Government bond holdings, Bg 0 +100 +100 
Taxes (present value) +50 +50 +100 
Net safe assets in model 0 0 0 
Net safe assets as measured by Gorton, et al. (2012) 0 +50 +50 

 
 
Note:  In all cases, the government issues 100 of bonds, Bg, and transfers these bonds 50-50 to 
agents 1 and 2.  The present value of taxes rises by 100, divided 50-50 between agents 1 and 2.  
In case 1, the added government bonds are held 50-50 by agents 1 and 2.  In case 2, all of the 
added government bonds are held by agent 2. 
 
*Borrowing by agent 1 goes down by 50. 
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Figure 1 
 

Dynamic Paths Following a Disaster 
 

 
 
 
This analysis corresponds to the case where γ1=3.00 and γ2=6.66 in Table 2.  The simulated paths 
start from the steady state value of W1/W, 0.672, then assume that a disaster of proportionate 
size 0.32 materializes in period 1.  Subsequently, no further disasters occur.  The panels show the 
dynamic paths after period 1 for agent 1’s wealth share, W1/W, the risk-free interest rate, rf, 
agent 1’s share of total equity, K1, and the ratio of the magnitude of safe assets, B1, to total 
assets. 
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Figure 2 
 

Dynamic Paths for 40 Years of Tranquility 
 

 

This analysis corresponds to the case where γ1=3.00 and γ2=6.66 in Table 2.  The simulated paths 
start from the steady state value of W1/W, 0.672, then assume that no disasters occur over the 
next 40 years.  The panels show the dynamic paths after period 1 for agent 1’s wealth share, 
W1/W, the risk-free interest rate, rf, agent 1’s share of total equity, K1, and the ratio of the 
magnitude of safe assets, B1, to total assets.  The lines marked as “steady states” are values that 
would be approached asymptotically conditional on disasters never happening. 
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