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1 Introduction

The seminal work of Wilson (1980) shows that in a static model, adverse selection can generate

multiple equilibria because of asymmetric information about product quality. The aim of this

paper is to analyze how adverse selection can give rise to demand externalities to generate

multiple equilibria and indeterminacies in a dynamic general equilibrium model of business

cycles with otherwise standard features.

To make this point, we incorporate a simple type of adverse selection into the standard

textbook real business cycle model. The model features a continuum of households and a

continuum of anonymous producers. The quality of each producer’s product is assumed to be

her private information. In addition, the cost of production is assumed to be an increasing

function of product quality. As a consequence, producers with low-quality products enjoy

a competitive advantage in the goods market: low-quality products are more likely to be

produced for a given price. This give rise to adverse selection. In such an environment, an

increase in household demand would push up the price, encourage more high-quality producers

to produce, and boost total production as well as the average quality of goods in the market.

The rise in the average quality in turn stimulates the demand from households for goods. In

our baseline model in Section 2, we show that this demand externality not only generates

two steady state equilibria with low and high average product quality, but also gives rise to

a continuum of equilibria around one of the steady states. We calibrate our model and show

that indeterminacy is easily and plausibly obtained under reasonable parameters.

Our model has several implications supported by empirical evidence. First, the average

product quality is procyclical, which is consistent with the recent findings of Broda and We-

instein (2010). Second, our model delivers a countercyclical markup, an important empirical

regularity well documented in the literature. In our model, because of information asymmetry,

low-quality products enjoy an informational rent. But when the average quality increases due

to higher demand, this informational rent is diluted. So the measured markup declines, which

is critical to sustaining indeterminacy by bringing about higher real wages, a positive labor

supply response, and a higher output that dominates the income effect on leisure. Third, our

extended model in Section 4 can explain the well-known procyclical variation in productivity.

The procyclicality of average quality implies that resources are reallocated toward producers

with higher quality products when aggregate output increases. The improved resource allo-

cation then raises productivity endogenously. The procyclical endogenous TFP immediately
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implies that increases in inputs lead to a more than proportional increase in total aggregate

output, in other words, aggregate increasing returns. The increasing returns to scale arises only

at the aggregate level in our model helps solve the puzzle documented by Basu and Fernald

(1997), who find a slightly decreasing returns to scale for a typical two-digit industry in the

United States but strong increasing returns to scale at the aggregate level. Finally, anecdotal

evidence suggests that adverse selection is more prevalent in developing countries, possibly due

to poor law enforcement and low product reputation. This may explain extensive findings in

the marketing literature that products from developing countries are stereotypically perceived

as being inferior to those from industrialized countries (see Schooler (1971) for an influential

study). An important insight of our study is that indeterminacy arises only if adverse selection

is severe enough, which then implies that developing countries are more prone to indetermi-

nacy and self-fulfilling expectation-driven business cycles. This also helps to explain another

well-established stylized fact that developing countries typically exhibit larger output volatility

than developed countries (see e.g., Ramey and Ramey (1995) and Easterly, Islam, and Stiglitz

(2000)).

In a dynamic setting market forces and competition can mitigate adverse selection through

warranty contracts or reputation effects that are absent in our baseline model in Section 2.

We therefore examine whether indeterminacy is robust to the introduction of warranties and

reputational effects. In Section 3, following Priest (1981), and Cooper and Ross (1985), we

introduce partial warranty contracts, typically justified by the double moral hazard problem

when product performance depends on the buyer as well. We show that our indeterminacy

results remain robust. Then, following Klein and Leffl er (1981), we extend our model to allow

reputation effects: a seller producing and marketing a lemon may, with some probability, lose

reputation, and be excluded from the market forever. In this case we show that the steady

state equilibrium becomes unique and no lemons are produced in equilibrium. Nevertheless,

perhaps surprisingly, indeterminacy in the form of a continuum of equilibria may continue to

exist.

Our paper is closely related to two branches of literature in macroeconomics. First, our

paper builds on a large strand literature on the possibility of indeterminacy in RBC models.

Benhabib and Farmer (1994) point out that increasing returns to scale can generate indetermi-

nacy in an RBC model. The required degree of increasing returns to scale for indeterminacy,

however, is considered be implausibly large by empirical evidence (see Basu and Fernald (1995,

1997)). Subsequent work in the literature has introduced additional features to the Benhabib-
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Farmer model that reduce the degree of increasing returns required for indeterminacy. In an

important contribution, Wen (1998) adds variable capacity utilization and shows that indeter-

minacy can arise with a magnitude of increasing returns similar to that in the data. Gali (1994)

and Jaimovich (2007) explore the possibility of indeterminacy via countercyclical markup due

to output composition and firm entry respectively. The literature has also shown that models

with indeterminacy can replicate many of the standard business cycle moments as the standard

RBC model (see Farmer and Guo (1994)). Furthermore, indeterminacy models may outper-

form the standard RBC models in many other dimensions. For instance, Benhabib and Wen

(2004), Wen and Wang (2008), and Benhabib and Wang (2014) show that models with in-

determinacy can explain the hump-shaped output dynamics and relative volatility of labor

and output, which are challenges for the standard RBC models. Our paper complements this

strand of literature by adding adverse selection as a different source of indeterminacy. The ad-

verse selection approach also provides a micro-foundation to the aggregate increasing returns

to scale. Indeed, if we specify a Pareto distribution for firm productivity, our model in Section

4 is isomorphic to those that have a representative-firm economy with increasing returns, such

as the one studied by Benhabib and Farmer (1994) and Wen (1998). It therefore inherits the

ability of reproducing the business cycle features mentioned above without having to rely on

increasing returns.1

Second, our paper is closely related to a small but rapidly growing literature that study

the macroeconomic consequences of adverse selection. Kurlat (2013) builds a dynamic general

equilibrium with adverse selection in the second-hand market for capital assets. Kurlat (2013)

shows that the degree of adverse selection varies countercyclically. Since adverse selection

reduces the effi ciency of resource allocation, a negative shock that lowers aggregate output

will exacerbate adverse selection and worsen resource allocation effi ciency. So the impact of the

initial shocks on aggregate output is propagated through time. Like Kurlat (2013), Bigio (2014)

develops an RBC model with adverse selection in the capital market. As firms must sell the

existing capital to finance investment and employment, adverse selection distorts both capital

and labor markets. Bigio (2014) shows that the adverse selection shock widens a dispersion of

capital quality, exacerbates the distortion, and leads to a recession with a quantitative pattern

similar to that observed during the Great Recession of 2008. Our model generates similar

predictions as Kurlat (2013) and Bigio (2014). First, adverse selection is also countercyclical in

1Liu and Wang (2014) provides an alternative mechanism to generate increasing returns via financial con-
straints.
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our model, so the propagation of fundamental shocks via adverse selection effects highlighted

by Kurlat (2013) exist also in our model. Second, adverse selection in the goods market in our

model naturally creates the distortions to both capital and labor inputs. A dispersion shock to

the quality of products in our extended model in Section 4 aggravates adverse selection, and

makes the economy more vulnerable to self-fulfilling expectation-driven fluctuations. While

Kurlat (2013) and Bigio (2014) emphasize the role of adverse selection in propagating business

cycles shocks, our paper complements their work by showing that adverse selection can generate

indeterminacy and hence can be a source of business cycles.2 Our extended model in section

(3) with reputation effects is also related to that of Chari, Shourideh and Zeltin-Jones (2014),

who build a model of a secondary loan market with adverse selection and show how reputation

effects can generate persistent adverse selection. Multiple equilibria also arise in their model as

in the classic signaling model by Spence (1973). In contrast, multiple equilibria in our model

take the form of indeterminacy, and are generated by a different mechanism of endogenously

countercyclical markups that translate into aggregate increasing returns.

To make a closer connection to the recent macroeconomic literature that focuses on adverse

selection in credit markets, in Section 5 we also explore the existence of indeterminacy in an

alternative model with adverse selection in credit markets. In our alternative model of Section

5, a continuum of final good firms must borrow to finance their working capital (intermediate

goods input). The production involves uncertainty: with probability p a firm can produce a(p)

units of final goods from one unit of the intermediate good. We assume that a(p) is decreasing

in p but the expected return a(p)p is increasing in p. Under complete information, only firms

whose expected return is high enough would be financed. However with asymmetric information

and limited liability, firms with lower p, i.e., those with lower expected return a(p)p, get funded,

generating a well known adverse selection problem as in the seminal works of Stiglitz and Weiss

(1981) and many others. We prove that indeterminacy is indeed possible here. In the presence

of adverse selection in the credit markets, we show that there exists a lending externality similar

to the demand externality in our baseline model. When other creditors extend more credits,

they create a downward pressure on interest rate. This encourages more high-quality lenders

(firms with high p) to borrow, which in turn lowers the average default risk. The decline in

default risk, if strong enough, can then stimulate more lending from each creditor, making

self-fulfilling expectation-driven credit cycles possible. More specifically, we show that under
2Many other papers have also addressed adverse selection in a dynamic environment. Examples include

Eisfeldt (2004), House (2006), Guerrieri, Shimer, and Wright (2010), Chiu and Koeppl (2012), Daley and Green
(2012), Chang (2014), Camargo and Lester (2014), and Guerrieri and Shimer (2014).
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certain probabilty distributions parametrized by p, this alternative model is isomorphic to the

model in Section 4. The tight connection between these models indicates that adverse selection

may be a rich source of self-fulfilling booms and busts in dynamic models of credit markets,

and that it can be related to the literature on credit constraints and the financial accelerator

pioneered by Bernanke and Gertler (1989) and Kiyotaki and Moore (1997).

The rest of the paper is organized as follows. Section 2 describes the baseline model and

characterizes the conditions for indeterminacy. Section 3 incorporates warranties and repu-

tation effects into the baseline model and shows indeterminacy may still arise. In Section 4

we introduce a continuous distribution of product quality and show that adverse selection can

induce endogenous TFP, amplification, and aggregate increasing returns to scale. Section 5

present an alternative model with adverse selection in the credit market. Section 6 concludes.

The appendix collects some of the proofs.

2 The Baseline Model

Time is continuous and proceeds from zero to infinity. There is an infinitely-lived representative

household and a continuum of firms. Firms use capital and labor to produce a final good

which is then sold to the household. We make two assumptions to introduce adverse selection

into our model. First, the quality of a firm’s product is unobservable to the household prior

to purchase. Second, firms with lower-quality products enjoy a lower production cost. The

household purchases goods from firms for consumption and investment, and supplies labor and

capital to firms, taking the adverse selection problem into consideration. At this point we also

explicitly assume that all trade is anonymous and exclude the possibility of warranty contracts

between household and firms or of reputation effects. We relax these strong assumptions in

Section 3.

2.1 Households

The representative household has a lifetime utility function∫ ∞
0

e−ρt

[
log (Ct)− ψ

N1+γ
t

1 + γ

]
dt (1)

where ρ > 0 is the subjective discount factor, Ct is the consumption, Nt is the hours worked,

ψ > 0 is the utility weight for labor, and γ ≥ 0 is the inverse Frisch elasticity of labor supply.
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The household faces three constraints. First, the resource constraint for the household is

Ct + It ≤ QtXt ≡ Yt, (2)

where It denotes investment in physical capital, Qt the average quality of goods, and Xt the

total units of goods purchased by the household. Here QtXt represents the quality adjusted

final goods which can be consumed, invested, or lent to other households.

Denote by Pt the price of final goods. Then the household also faces the following budget

constraint:

PtXt ≤ R̃tutKt + W̃tNt + Π̃t, (3)

where Kt is capital, R̃t is the capital rental rate, W̃t is wage, and Π̃t is the total profits collected

from all firms. These two constraints can be simplified as

(Ct + It)
Pt
Qt

= R̃tutKt + W̃tNt + Π̃t. (4)

Note that PCt = Pt
Qt
is then the price of consumption goods for the representative household.

The budget constraint can then simply be rewritten as

Ct + It ≤ RtutKt +WtNt + Πt, (5)

where Rt = R̃t/PCt, Wt = W̃t/PCt and Πt/PCt denote respectively the rental price, wage

and total profit in consumption units. In an important contribution, Wen (1998) shows that

introducing an endogenous capacity utilization rate ut makes indeterminacy empirically more

plausible in models with production externalities. We will show that capacity utilization serves

a similar role in our model. As is standard in the literature, the depreciation rate of capital

increases with the capacity utilization rate according to

δ(ut) = δ0 u
1+θ
t

1 + θ
, (6)

where δ0 > 0 is a constant and θ > 0.3 Finally, the law of motion for capital is governed by

K̇t = −δ(ut)Kt + It. (7)

The households choose a path of consumption Xt, Ct, Nt, ut, and Kt to maximize the utility

function (1), taking Rt, Wt and Πt as given. The first-order conditions are

1

Ct
Wt = ψNγ

t , (8)

3Dong, Wang, and Wen (2014) develop a search-based theory to offer a micro-foundation for the convex
depreciation function.
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Ċt
Ct

= utRt − δ (ut)− ρ, (9)

and

Rt = δ0uθt . (10)

The left-hand side of Equation (8) is the marginal utility of consumption obtained from an

additional unit of work, and the right-hand side is the marginal disutility of a unit of work.

Equation (9) is the usual Euler equation. Finally, a one-percent increase in the utilization rate

raises the total rent by RtKt but also increases total depreciation by δ0u
θ
tKt, so Equation (10)

states that the marginal benefit is equal to the marginal cost of utilization.

2.2 Firms

There is unit measure of firms indexed by i. Firms differ in the quality of their products.

In the baseline model, we assume quality is exogenously given. More specifically, let qt(i) be

the quality of firm i′s product, assumed to i.i.d across firms and over time, with a cumulative

distribution function F (q). The production function for the ith firm is

Xt(i) =
A

qχt (i)
Kα
t (i)N1−α

t (i), (11)

where A is the aggregate productivity, 0 < χ < 1 is a parameter measuring the sensitivity of

the cost of product quality, and Kt(i) and Nt(i) are the capital and labor inputs for firm i.

Since the production function exhibits constant returns to scale, the average cost and marginal

cost are the same, and are both given by φ̃t(i) =
qχt (i)
At

(
W̃t

1−α

)1−α (
R̃t
α

)α
. Firm i′s profit is

Π̃t(i) = (Pt − φ̃t(i))Xt(i). Rewriting the firm’s profit in consumption units yields

Πt(i) =

(
Pt
PCt
− φ̃t(i)

PCt

)
Xt(i) = (Qt − φt(i))Xt(i) (12)

where φt(i) =
qχt (i)
At

(
Wt

1−α

)1−α (
Rt
α

)α
is the marginal cost of firm i in consumption units. Note

that lower quality goods are produced at lower cost. Since firm i produces goods of quality

qt(i), the quality-adjusted average cost is given by φt(i)/qt(i) =
qχ−1t (i)
At

(
Wt

1−α

)1−α (
Rt
α

)α
. Since

χ < 1, the marginal costs of producing quality-adjusted goods are decreasing with quality.

To simplify the analysis as much as possible, we assume for the moment that qt(i) = 0

with probability π ∈ (0, 1) and qt(i) = 1 with probability 1 − π. Hence firms with qt(i) = 0
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produce pure lemons. To prevent the production of an infinite amount of lemons, we impose a

restriction on the production capacity for lemons such that

Xt(i) ≤ Φ <∞. (13)

For firms with qt(i) = 1 the marginal cost is φt(i) = φt = 1
A

(
Wt

1−α

)1−α
(Rtα )α. Constant returns

to scale then imply Pt = φt. The marginal cost is zero for firms with qt(i) = 0 and thus their

supply is Φ. We summarize the decision rule for production by firms as follows:

Xt(i) =


Φ if qt(i) = 0
∞ if Qt > φt, qt(i) = 1

∈ [0,∞) if Qt = φt, qt(i) = 1
0 if Qt < φt, qt(i) = 1

. (14)

Given production Xt(i), we can use cost minimization to determine the factor demand for firms

with qt(i) = 1. The total cost φtXt(i) is determined by

φtXt(i) ≡ min
Kt(i),Nt(i)

{RtKt(i) +WtNt(i)}

s.t. AKα
t (i)N1−α

t (i) ≥ Xt(i) (15)

with first-order conditions

Rt = φtα
Xt(i)

Kt(i)
, (16)

Wt = φt(1− α)
Xt(i)

Kt(i)
. (17)

Finally the average quality is determined by

Qt =

∫∞
qt(i)=1Xt(i)di

πΦ +
∫∞
qt(i)=1Xt(i)di

. (18)

Notice that the absolute value of PCt does not affect any first order conditions, so it is irrelevant.

Therefore we can simply normalize PCt = 1, or equivalently, let Pt = Qt, for all t.

2.3 Equilibrium

Equilibrium includes prices {Rt,Wt, Pt}∞t=0 and allocations {Ct, Nt,Kt, Yt, ut, Qt, Xt(i),Kt(i), Nt(i)}∞t=0

such that for all t, given Rt, Wt, Pt and Qt, the first order conditions (8) to (10) hold for the

households, Equation (14), (16) and (17) hold for final goods producers, the average quality Qt

is given by Equation (18), and all markets clear, namely

Ct + K̇t = Yt − δ(ut)Kt, (19)

8



∫ ∞
qt(i)=1

Kt(i)di = utKt, (20)

and ∫ ∞
qt(i)=1

Nt(i)di = Nt. (21)

To characterize the equilibrium, we first re-write the aggregate final goods production as

Yt =

∫ ∞
qt(i)=1

Xt(i)di, (22)

which immediately implies

Pt = Qt =

∫∞
qt(i)=1Xt(i)di

πΦ +
∫∞
qt(i)=1Xt(i)di

=
Yt

πΦ + Yt
= φt. (23)

Using Equation (16) yields∫ ∞
qt(i)=1

Kt(i)di =
αφt
Rt

∫ ∞
qt(i)=1

Xt(i)di =
αφt
Rt

Yt,

which together with Equation (20) yields

Rt = φt ·
(
αYt
utKt

)
. (24)

Likewise, using Equations (17) and (21), we obtain

Wt = φt ·
(

(1− α)Yt
Nt

)
. (25)

Equation (8), (9) and (10) then become

ψNγ
t =

(
1

Ct

)
(1− α)φt

Yt
Nt
, (26)

Ċt
Ct

= αφt
Yt
Kt
− δ(ut)− ρ, (27)

αφt
Yt
utKt

= δ0uθt = (1 + θ) δ (ut) (28)

Using the expression for marginal cost, φt = 1
A

(
Wt

1−α

)1−α
(Rtα )α, the proceeding two equations

jointly suggest

Yt = A (utKt)
αN1−α

t . (29)

Finally, the total profit is Πt = PtΦπ = φtΦπ. Equation (23) then implies

RtutKt +WtNt + Πt = φtYt + φtΦρ = Yt, (30)
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that is, the household budget constraint yields the following resource constraint:

Ct + K̇t = Yt − δ(ut)Kt. (31)

In short, the equilibrium can be characterized by equations (26), (27), (28), (29), (31) and (23).

These six equations fully determine the dynamics of the six variables Ct,Kt, Yt, ut, Nt and φt.

Equation (23) implies that φt increases with aggregate output. Notice that
1
φt

= Yt
RtutKt+WtNt

is the aggregate markup in our model economy. Therefore the endogenous markup in our model

is countercyclical, which is consistent with the empirical regularity well documented in the lit-

erature.4

The countercyclical markup has important implications. For example, it can make hours

and the real wage move in the same direction. To see this, suppose Nt increases, so output

increases. Then according to Equation (23), marginal cost φt increases as well, which in turn

raises the real wage (25). If the markup is a constant, then the real wage would be proportional

to the marginal product of labor and would fall when hours increase. Note also that when

π = 0, i.e., there is no adverse selection, Equation (23) implies that φt = 1 and our model

simply collapses into a standard real business cycle model. The markup is 1/φt > 1 if and

only if lemon producers obtain an information rent arising from the information asymmetry on

product quality.

2.4 Steady State

We first study the steady state of the model. We use Z to denote the steady state of variable

Zt. To solve the steady state, we first express all other variables in terms of φ and then we

solve φ as a fixed point problem. Combining Equation (27) and (28) yields

δ0uθ+1 − δ0uθ+1

1 + θ
= ρ,

or u =
[

1
δ0
ρ
θ (1 + θ)

]1+θ
. Notice that u only depends on δ0, ρ and θ. Therefore, without loss of

generality, we can set δ0 = ρ
θ (1 + θ) so that u = 1 at the steady state. The depreciation rate

4See e.g., Bils (1987) and Rotemberg and Woodford (1999).
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at steady state is then δ(u) = ρ/θ. Given φ, we have

ky =
K

Y
=

αφ

ρ+ ρ/θ
=

αφθ

ρ(1 + θ)
,

cy = 1− δky = 1− αφ

1 + θ
,

N =

[
(1− α)φ

1− αφ
1+θ

1

ψ

] 1
1+γ

,

Y = A
1

1−α

[
αφθ

ρ(1 + θ)

] α
1−α

[
(1− α)φ

1− αφ
1+θ

1

ψ

] 1
1+γ

≡ Y (φ).

Then we can use Equation (23) to pin down φ from

Φ̄ ≡ πΦ =

(
1− φ
φ

)
· Y (φ) ≡ Ψ(φ), (32)

where the left-hand side is the total supply of lemon products and the right hand-side is the

maximum amount of lemon that the market can accommodate, given that the average product

quality is q = φ. When α/(1 − α) + 1
1+γ > 1, Ψ(φ) is a non-monotonic function of φ since

Ψ(0) = 0 and Ψ(1) = 0. On the one hand, if the average quality is 0, the household demand

would be zero, and hence no lemon will be needed. On the other hand, if the average quality

is one, i.e., φ = q = 1, then by definition no lemon will be sold. So given Φ̄, there may exist

two steady state values of φ.

Denote Ψ∗ ≡ max0≤φ≤1 Ψ(φ), and φ∗ ≡ arg max0≤φ≤1 Ψ(φ). Then we have the following

lemma regarding the possibility of multiple steady state equilibria.

Lemma 1 When 0 < Φ̄ < Ψ∗, there exist two steady state φ that solve Φ̄ = Ψ(φ).

Proof: The proof is straightforward. First, from the explicit form of Y (φ), we can easily prove

that Ψ(φ) ≡
(

1−φ
φ

)
· Y (φ) strictly increases with φ when φ ∈ (0, φ∗) but strictly decreases with

φ when φ ∈ (φ∗, 1). Second, since Ψ(0) < Φ̄ < Ψ∗ = Ψ(φ∗), there exists a unique solution

between zero and φ∗, denoted by φ̄L, that solves Ψ(φ) = Φ̄. Likewise, there also exists a unique

solution between φ∗ and 1, denoted by φ̄H that solves Ψ(φ) = Φ̄.

It is well known that adverse selection can generate multiple equilibria in a static model (see

e.g. Wilson (1980)). So it is not surprising that our model has multiple steady state equilibria.

The demand for goods depends on the households’expectation of the average quality of the

final goods. By Equation (23), however, the average quality of goods depends on the total

demand from households, so there is a demand externality. More specifically, if households
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increase their demand for goods, then the price rises. In turn, more-high quality goods will be

produced, and thus the average quality of goods will increase. If the average quality increases

faster than the price, each household will then increase their demand as well. We will show

that this type of demand externality generates a new type of multiplicity, which shares some

similarity with the indeterminacy literature following Benhabib and Farmer (1994).

2.5 Local Dynamics

A number of studies have explored the role of endogenous markup in generating local inde-

terminacy and endogenous fluctuations (see e.g., Jaimovich (2006) and Benhabib and Wang

(2013)). Following the standard practice, we study the local dynamics around the steady state.

Note that at the steady state φ and Φ̄ are linked by Φ̄ = Ψ(φ), so we can parametrize the

steady state either by Φ̄ or φ. We will use φ as it is more convenient for the study of local

dynamics. We denote x̂t = logXt− logX as the percent deviation from its steady state. First,

we log-linearize Equation (23) to obtain

φ̂t = (1− φ)ŷt ≡ τ ŷt, (33)

which states that the percent deviation of the marginal cost is proportional to output. Log-

linearizing Equations (29) and (28) yields

ŷt =
αθk̂t + (1 + θ)(1− α)n̂t

1 + θ − (1 + τ)α
≡ ak̂t + bn̂t, (34)

where a ≡ αθ
1+θ−(1+τ)α and b ≡

(1+θ)(1−α)
1+θ−(1+τ)α . We assume that 1+θ−(1+τ)α > 0, or equivalently

τ < 1+θ
α − 1, to make a > 0 and b > 0. In general these restrictions are easily satisfied.

It is worth mentioning that a+ b = 1+θ−α
1+θ−(1+τ)α = 1 if τ = 0. Recall that τ = 0 corresponds

to the case without adverse selection. Thus endogenous capacity utilization alone does not

generate increasing returns to scale at the aggregate level. However, a + b = 1+θ−α
1+θ−(1+τ)α > 1

if τ > 0; that is, adverse selection combined with endogenous capacity utilization generates

increasing returns to scale. Furthermore, if τ > θ , then b > 1. The model would then be

able to explain the procyclical movements in labor productivity ŷt − n̂t without resorting to
exogenous TFP shocks.

We can substitute out n̂t after log-linearizing equation (26) to express ŷt as

ŷt =
a(1 + γ)

1 + γ − b(1 + τ)
k̂t −

b

1 + γ − b(1 + τ)
ĉt ≡ λ1k̂t + λ2ĉt. (35)

12



According to Equation (34), a one-percent increase in capital directly increases output and

the marginal product of labor by a percent and, from Equation (33), reduces the markup by

aτ percent. Thanks to its higher marginal productivity, the labor supply also increases. A

one-percent increase in labor supply then increases output by b percent. The precise increase

in labor supply depends on the Frisch elasticity γ. This explains why the equilibrium output

elasticity with respect to capital, λ1, depends on parameters a, b and through them on γ and

τ . On the household side, since both leisure and consumption are normal goods, an increase

in consumption has a wealth effect on labor supply. The effect of a change in labor supply

on output induced by a change in consumption, as seen from Equation (35) obtained after

substituting for labor in (34), works through the same channels in marginal cost, and depends

also on τ . Again since both a and b increase with τ , output elasticities with respect to capital

and consumption are increasing functions of τ . In other words, the presence of adverse selection

makes equilibrium output more sensitive to changes in capital and to changes in autonomous

consumption, and creates an amplification mechanism for business fluctuations.

Using Equation (35) and the log-linearized Equations (27) and (31), we can then characterize

the local dynamics as follows:[
k̇t
ċt

]
= δ

[ (
1+θ
αφ

)
λ1 − (1 + τ)λ1

(
1+θ
αφ

)
(λ2 − 1) + 1− (1 + τ)λ2

θ [(1 + τ)λ1 − 1] θ(1 + τ)λ2

][
k̂t
ĉt

]
(36)

≡ J

[
k̂t
ĉt

]
,

where δ = ρ/θ is the steady state depreciation rate. The local dynamics around the steady

state is determined by the roots of J. The model exhibits local indeterminacy if both roots of

J are negative. Note that the sum of the roots equals the trace of J , and the product of the

roots equals the determinant of J . Thus the sign of the roots of J can be observed from the

signal of its trace and determinant of J . The following lemma specifies the sign for the trace

and determinant condition for local indeterminacy.

Lemma 2 Denote τmin ≡ (1+θ)(1+γ)
(1+θ)(1−α)+α(1+γ) − 1 and τmax ≡ 1− φ∗, then Trace(J) < 0 if and

only if τ > τmin, and det(J) > 0 if and only if τmin < τ < τmax.

According to Lemma 2, our baseline model will be indeterminate if and only if τmin < τ <

τmax. In this case, trace(J) < 0 and det(J) > 0 jointly imply that both roots of J are negative.

We summarize this result in the following proposition.
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Proposition 1 The model exhibits local indeterminacy around a particular steady state if and

only if

τmin < τ < τmax. (37)

Equivalently, indeterminacy emerges if and only if φ ∈ (φmin, φmax), where φmin ≡ 1− τmax =

φ∗, and φmax ≡ 1− τmin.

To understand this intuition, first notice that if τ > τmin, we have

1 + γ − b(1 + τ) < 1 + γ − (1 + θ)(1− α)

1 + θ − (1 + τmin)α
(1 + τmin) = 0.

Then the equilibrium elasticity of output with respect to consumption λ2 becomes positive,

namely, an autonomous change in consumption will lead to an increase in output. Since capital

is predetermined, labor must increase by Equation (34). To induce an increase in labor, the

real wage must increase enough to overcome the income effect, which is only possible if the

markup is large enough. In other words, τ has to be large enough according to Equation (33).

We can also understand Proposition 1 from the equilibrium conditions of the goods market.

On the one hand, since Pt = Qt = φt, Equation (33) can be rewritten as

p̂t = τ ŷt. (D-D)

We treat the above equation as the demand curve in the goods market. When prices increase,

the average quality also increases. If the increase in quality dominate the increase in price, the

effective prices declines, which then translates into a higher demand. This explains why the

demand curve has a positive slope. On the other hand, combining Equations (26), (29), and

(28) yields

p̂t = τmin · ŷt +

[
(1− α) (1 + θ)

α (1 + γ) + (1− α) (1 + θ)

]
· ĉt −

[
αθ (1 + γ)

α (1 + γ) + (1− α) (1 + θ)

]
· k̂t (S-S)

where τmin ≡ (1+θ)(1+γ)
(1+θ)(1−α)+α(1+γ) − 1. We interpret the above equation as the supply curve in

the goods market. When price increases, output increases. The position of the supply curve

depends on ĉt and k̂t. Everything else being equal, an increase in ĉt will reduce the willingness

to work. Hence it shifts the supply curve to the left. In contrast, an increase in capital will

increase production at any given price, leading to a rightward shift of the supply curve.

If τ > τmin, the demand curve is steeper than the supply curve, which makes indeterminacy

possible. Figure 1 gives a graphic explanation of this. The lines labeled with D and S represent
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Figure 1: Demand and Supply

the demand and supply curves respectively. An optimistic belief of higher income induces

households to increase their consumption. Since leisure is a normal good, the increased income

would shifts the supply curve to the left. If the demand curve is negatively sloped, a leftward

shift of the supply curve decreases the equilibrium output. The realized output and income

would then be lower, and contradict the initial optimistic belief. However, if the demand curve

is positively sloped and steeper than the supply curve, an upward shift of the supply curve leads

to an increase in the equilibrium output. Therefore the initial optimistic belief is consistent

with rational expectations.

The economic interpretation of τ > τmin therefore is analogous to that of Benhabib and

Farmer (1994), Wen (1998), Jaimovich (2006), and Benhabib and Wang (2013) who show that

indeterminacy is possible if the labor demand curve is steeper than the labor supply curve.5

However the source of indeterminacy is quite different. In Benhabib and Farmer(1994), and

Wen (1998), the existence of an upward sloping labor demand curve is due to a production

externality that generates increasing returns to scale. Jaimovich (2006) constructs a model in

which markups decline due to firm entry. Benhabib and Wang (2013) generate countercyclical

markups via borrowing constraints. In our model, the source of indeterminacy comes from

adverse selection. In a booming market, a higher demand for goods increases the price and

5The labor demand curve in our model is ŵt = (ak̂t+bn̂t)(1+τ)−n̂t. The labor supply curve is ŵt = ĉt+γn̂t.
The slope of the labor demand curve exceeds that of the labor supply curve if and only if τ > τmin.
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Figure 2: Multiple Steady States and the Indeterminacy Region

hence stimulates the production of higher quality goods. As a result, the information rent of

lemon producers declines, giving rise to a fall in the markup.

We have used the mapping between τ and steady state output to characterize the indeter-

minacy condition in terms of the model’s deep parameter values. Notice τmax = 1− φ∗, where
φ∗ ≡ arg max0≤φ≤1 Ψ(φ). Since 1− φ̄L > 1− φ∗ = τmax, the local dynamics around the steady

state associated with φ = φ̄L are determinate according to Proposition 1. Indeterminacy is

only possible in the neighborhood of the steady state associated with φ = φ̄H . The following

corollary formally characterizes the indeterminacy condition in terms of Φ̄.

Corollary 1 If Ψ(φmax) < Φ̄ < Ψmax, the local dynamics around the steady state φ = φ̄H

exhibits indeterminacy, while the local dynamics around the steady state φ = φ̄L is a saddle. If

0 < Φ̄ < Ψ(φmax), both steady states are saddles.

When Ψ(φmax) < Φ̄ < Ψmax , we have φmin = φ∗ < φ̄H < φmax, and φ̄L < φmin. As a result,

according to Proposition 1, the steady state φ̄H exhibits indeterminacy. And for the steady

state φ = φ̄L, by Lemma 2, we can conclude that the determinant of J is negative. So the two

roots of J must have opposite signs and this implies a saddle. But, if 0 < Φ̄ < Ψ(φmax), we

have φ̄H > φmax and φ̄L < φmin. In this case, the determinants of J at both steady states are

negative. So both steady states are a saddle.

The different scenarios are summarized in Figure 2. The inverted U curve illustrates the
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relationship between φ and Φ̄ specified in Equation (32). In Figure 2, φ is on the horizontal

axis and Φ̄ is on the vertical axis. For a given Φ̄, the two steady states φ̄L and φ̄H can be

located from the intersection between the inverted U curve and a horizontal line through point

(0, Φ̄). The two vertical lines passing points (φmin, 0) and (φmax, 0) divide the diagram into

three regions. In the left and right regions, the determinant of the Jacob matrix J is negative,

implying one of the roots is positive and the other is negative. So if a steady state φ falls into

either of these two regions, it is a saddle. In the middle region, det(J) > 0 and Trace(J) < 0,

and thus both roots are negative. So if the steady state φ falls into the middle region it is a

sink which supports self-fulfilling expectation-driven multiple equilibria, or indeterminacy.

Since Φ̄ = πΦ, we can revisit the above corollary in term of π, the proportion of lemon

producers. Without loss of generality, assume Φ is big enough such that Φ > Ψmax. Denote

πL = Ψ(φmax)/Φ and πH = Ψ(φmin)/Φ, and thus 0 < πL < πH < 1. Then we know that (i)

if π ∈ (0, πL], then there are two equilibria, both of which are stable; (ii) if π ∈ (πL, πH), the

steady state with φ = φ̄L is saddle stable while the steady state with φ = φ̄H is a sink, and (iii)

if π ∈ [πH , 1], then there exist no non-degenerate equilibria, and the model economy collapses.

The third case is the least interesting, and thus we focus on the scenarios in which π < πH .

Then the model is indeterminate if the adverse selection problem is severe enough, i.e., π > πL.

We summarize the above argument in the following corollary.

Corollary 2 The likelihood of indeterminacy increases with π, the proportion of firms produc-

ing lemons.

Arguably, adverse selection is more severe in developing countries, which may help explain

the findings in a large volume of the marketing literature that suggests a relationship between

country-of-orgin effects and level of economic development. That is, products from developing

countries are stereotypically perceived as being inferior to those from industrialized countries

(see Schooler (1971) for example). Our study then suggests that developing countries are more

likely to be subject to self-fulfilling expectation-driven fluctuations and hence exhibit higher

economic volatility, which is in line with the empirical regularity emphasized by Ramey and

Ramey (1995) and Easterly, Islam, and Stiglitz (2000).

2.6 Empirical Possibility of Indeterminacy

We have proved that our model with adverse selection can generate self-fulfilling equilibria in

theory. We now examine the empirical plausibility of self-fulfilling equilibria under calibrated
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parameter values. The frequency is quarterly. We set ρ = 0.01, implying an annual risk-free

interest rate of 4%. We set θ = 0.3 so the depreciation rate at steady state is 0.033 and the

annualized investment-to-capital ratio is 12% (see Cooper and Haltiwanger (2006)). We set

α = 0.33 as in standard RBC models. We assume labor supply is elastic, and thus set γ = 0.

We normalize the aggregate productivity A = 1. We set ψ = 1.75 so that N = 1
3 in the

"good" steady state. We set Φ = πΦ = 0.13 so that φ = φ̄H = 0.9, which is consistent with

average profit rate in the data. The associated φ̄L = 0.011. If we further set π = 0.1, i.e., the

lemon proportion is around 10%, then Φ = 1.3. Consequently, based on our calibration and the

indeterminacy condition (37), we conclude that our baseline model does generate self-fulfilling

equilibria.

Parameter value Description
ρ 0.01 Discount factor
θ 0.3 Utilization elasticity of depreciation
δ 0.033 Depreciation rate
α 0.33 Capital income share
γ 0 Inverse Frisch elasticity of labor supply
ψ 1.75 Coeffi cient of labor disutility
π 0.1 Proportion of firms that produce lemons
Φ 1.3 Maximum firm capacity

Table 1: Calibration

3 Warranties and Reputation

We now study the sensitivity of the propagation mechanism to adverse selection as well as

of the indeterminacy results by considering warranty contracts and reputation effects. We

first examine the implications of warranties, which are prevalent in goods markets, especially

for consumption durables. If firms are not anonymous in the market, they may refrain from

selling low-quality products, but instead build a brand name, or reputation. Buyers may also

refrain from buying from firms that knowingly market inferior quality products. Arguably,

these market forces can alleviate the asymmetric information problem. So it is natural for us

to examine whether the indeterminacy results obtained in the baseline would survive if such

market forces are taken into account.
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3.1 Warranty

Intuitively, if warranties can perfectly ensure product quality, then there is no adverse selection

and thus no indeterminacy in our model economy. However, real-life warranties are typically

imperfect. They often provide partial insurance with limited duration against unsatisfactory

performance. Priest (1981) observes that the extent of warranty protection appears to bear no

relation to the quality of the product. In other words a warranty itself is not a good signal

of product quality. Sellers who provide more warranty protection are not necessarily more

reliable than those who provide less. Cooper and Ross (1985) show that these observations

can be explained by double moral hazard. That is, the performance of the product can be

affected by the unobserved actions of both the buyer and the seller. If a perfect warranty is

provided, a moral hazard problem will arise if the actions of the buyer may damage the product

and are not detectable by the seller. Instead of giving a full micro-structure that generates the

limited warranty in our model, we take a shortcut by simply assuming a reduced-form of limited

warranties. More specifically, if a proportion m of the purchased goods turn out to be lemons,

the households could be reimbursed a fraction mµ < m of lemons by incurring some cost. That

is, the households endogenize µ by balancing its benefit and cost.

Suppose the household initially purchase Xt at price Pt, and among them mt < Xt are

lemons. We assume that the household can pay a legal cost µ1+χt
ξ(1+χ)mtPt to the government for

reimbursing a fraction µt < 1 of lemons. We assume that the legal cost is proportional to the

initial payment mtPt. The optimal µt is then obtained by solving

max
µ∈[0,1]

{
mtµtPt −

µ1+χ
t

ξχ (1 + χ)
mtPt

}
, (38)

First-order conditions yield

µt = ξ.

We have assumed that ξ is small enough such that µt = ξ < 1 so we havemtµtPt−
µ1+χt

ξχ(1+χ)mtPt =

χξ
1+χmtPt. Since mt = πΦ in equilibrium, the households pay

(
1− χξ

1+χ

)
πΦPt for lemons after

taking the reimbursement and legal fee into account. The price for consumption is again by

PCt = Pt/Qt, where the average quality Qt is obtained from Qt = Yt(
1− χξ

1+χ

)
πΦ+Yt

. Again, since

the absolute price PCt does not matter, without loss of generality we can normalize PCt = 1.

So Equation (23) becomes

Pt =
Yt(

1− χξ
1+χ

)
πΦ + Yt

= φt. (39)
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We assume that the government rebates all the legal fees to the households in equilibrium.

Thus the resource constraint (31) does not change. The equilibrium system of equations is

then the same as in the baseline model, except that Equation (23) is replaced by Equation

(39).

3.2 Reputation

Unlike in our baseline model, in this section a firm can choose to produce lemons at low cost so

that the quality of its product becomes endogenous. We maintain the assumption that product

quality is a firm’s private information, and it cannot be observed before the household make a

purchase. It thus generates an incentive for firms to sell low-quality goods at high-quality prices.

A large literature has developed theories of reputation that can alleviate such a moral hazard

problem (see e.g., Klein and Leffl er (1981), Shapiro (1982) and Allen (1984)). We follow Klein

and Leffl er (1981) closely in modeling reputation. Firms are infinitely-lived, and can choose

to produce high quality products or lemons. Firms that produce lemons acquire, with some

probability, a bad reputation and are excluded from production forever. In equilibrium, the

fear of loosing all future profits from production discourages firms from producing lemons. We

will show that self-fulfilling equilibria still exist even if no lemons are produced in equilibrium.

To keep the model analytically tractable, we assume that all firms are owned by a repre-

sentative entrepreneur. The entrepreneur’s utility function is given by

U(Cet) =

∫ ∞
0

e−ρet log(Cet)dt, (40)

where Cet is the entrepreneur’s consumption and ρe her discount factor. For tractability, we

follow Liu and Wang (2014) by assuming that ρe << ρ such that the entrepreneur does not

accumulate capital. The entrepreneur’s consumption equals the firm’s profits.

Cet =

∫ 1

0
Πt(i)di ≡ Πt, (41)

where Πt(i) denotes the profit of firm i.

Since profit from selling lemons tends to be higher, the price must exceed the marginal

cost (also the average cost) for high-quality products to be profitable. Unlike Klein and Leffl er

(1981), firms’production in our model exhibits constant returns to scale. If the price exceeds the

marginal cost, each firm will then have an incentive to produce an infinite amount. To overcome

this problem, we assume firms produce according to orders received from households. At each

moment, firms receive orders randomly from the households. Suppose that now households
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place an order of size Φ to a proportion ηt of firms at moment t at unit price Pt. The households

then face the following constraint:6

Ct + It ≤ (1− Pt)ηtΦ +RtutKt +WtNt. (42)

To illustrate the reputation problem, let us consider a short time interval from t to t+ dt. We

use V1t (V0t) to denote the value of a firm that receives an order (no orders). We can then

formulate V1t recursively as

V1t = (Pt − φt)Φdt+ e−ρedt
(

Ce,t
Ce,t+dt

)
[ηt+dtV1t+dt + (1− ηt+dt)V0t+dt]. (43)

where φt is the unit production cost. If Pt > φt, then the firm receives a positive profit from

producing high-quality products. The second term on the right-hand side is the continuation

value of the firms. Since firms are owned by the entrepreneur, the future value is discounted

by the marginal utility of the entrepreneur.

The firm can also choose to produce Φ units of lemons upon receiving the order and sell

them at price Pt. By doing so, the firm receives revenue PtΦdt, which is also the profit as

lemon production does not require any input. However, producing lemons comes with the

risk of acquiring a bad reputation. When lemons are produced, we assume the probability of

acquiring a bad reputation during the short time interval is λdt. In that case, the firm will be

excluded from production forever. The payoff for producing lemons is then given by

V d
t = PtΦdt+ e−ρedt(1− λdt)Et

(
Ce,t
Ce,t+dt

)
[ηt+dtV1t+dt + (1− ηt+dt)V0t+dt]. (44)

The value of a firm that does not receive any order is given by

V0t = e−ρedtEt

(
Ce,t
Ce,t+dt

)
[ηt+dtV1t+dt + (1− ηt+dt)V0t+dt]. (45)

Define Vt = ηtV1t + (1− ηt)V0t as the expected value of the firm. The firm has no incentive to

produce lemons if and only if V1t ≥ V d
t , or

PtΦdt ≤ (Pt − φt)Φdt+ λdte−ρedt
(

Ce,t
Ce,t+dt

)
Vt+dt. (46)

6First the households face Ct + It ≤ ηtΦ, and ηtΦPt ≤ RtutKt +WtNt. We can write these two as a single
constraint Ct + It ≤ (1 − Pt)ηtΦ + RtutKt + WtNt.Alternatively, we can assume that the households do not
purchase the goods from the firms directly. But instead, they purchase them from competitive retailers. The
retailers place an order of size Φ to ηt firms at price Pt. They then sell the goods to the households at price 1.
So (1− Pt)ηtΦ is the total profit of the retailers.
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In the limit dt → 0, the incentive compatibility condition becomes φtΦ ≤ λVt.
7 Then the

expected value of the firm is given by the present discounted value of all future profits as

Vt =

∫ ∞
0

e−ρes
Cet
Ces

Πsds. (47)

In equilibrium, the households purchase Yt units of goods. Hence ηt = Yt
Φ . For simplicity, we

assume Φ is big enough such that ηt < 1 always holds. The average profit is then obtained as

Πt = (Pt − φt)Yt. In turn, we have

Vt =
(Pt − φt)Yt

ρe
. (48)

Then the incentive constraint (46) becomes

φtΦ ≤ λ
(Pt − φt)Yt

ρe
. (49)

From the household budget constraint (42), we know that household utility decreases with Pt

and thus the incentive constraint (49) must be binding. The household’s first-order condition

with respect to ηt for an interior solution also requires Pt = 1. Then Equation (49) can be

simplified as

φt =
Yt

πΦ + Yt
< 1, (50)

where now π ≡ ρe
λ . Similar to the baseline model, here firms also receive an information rent.

However, the rent in the baseline is derived from hidden information while the rent here arises

from hidden action. As indicated in Equation (50), φt is procyclical and hence the markup is

countercyclical. When output is high, the total profit from production is high. Therefore the

value of a good reputation is high and the opportunity cost of producing a lemon also increases.

This then alleviates the moral hazard problem since high output dilutes informational rent.

The cost minimization problem again yields the factor prices given by Equation (24) and

(25). Since households do not own firms, their budget constraint is modified as

Ct + K̇t = φtYt − δ (ut)Kt. (51)

The equilibrium system of equations is the same as in the baseline model except that Equation

(31) is replaced by Equation (51). The steady state can be computed similarly. The steady

state output is given by

Y = A
1

1−α

[
αφθ

ρ (1 + θ)

] α
1−α

[(
1− α

1− α
1+θ

)
· 1

ψ

] 1
1+γ

≡ Y (φ), (52)

7Under the incentive compatibility condition we can consider one step deviations since V1t, V0t are then
optimal value functions.
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and φ can be solved from

Φ̄ ≡ πΦ ≡ Ψ(φ) =

(
1− φ
φ

)
· Y (φ). (53)

Unlike the baseline model, the steady state equilibrium is unique. We summarize the result in

the following lemma.

Lemma 3 If α < 1
2 , a consistently standard calibrated value of α, then the steady state equi-

librium is unique for any Φ̄ > 0.

We can now study the possibility of self-fulfilling equilibria around the steady state. Since

φ and Φ̄ form a one-to-one mapping, we will treat φ as a free parameter in characterizing the

indeterminacy condition. We can then use Equation (53) to back out the corresponding value of

Φ̄. The following proposition specifies the condition under which self-fulfilling equilibria arises.

Proposition 2 Let τ = 1− φ. Then indeterminacy emerges if and only if

τmin < τ < min

{
1 + θ

α
− 1, τH

}
≡ τmax,

where τmin ≡ (1+θ)(1+γ)
(1+θ)(1−α)+α(1+γ) − 1, and τH is the positive solution to A1τ

2 − A2τ − A3 = 0,

where

A1 ≡ s (1 + θ) (2 + α+ αγ)

A2 ≡ (1 + θ) (1 + αγ)− s [(1 + θ) (1− α) (1− γ) + (1 + γ)α]

A3 ≡ (1 + θ) (1− α) [s+ (1− s) γ] .

The necessary condition for indeterminacy turns out to be the same as in our baseline

model. It is easy to verify that under τ > τmin, the labor demand curve slopes upward and is

steeper than the labor supply curve. So the intuition for indeterminacy is similar to that in the

baseline. Indeterminacy implies that the model exhibits multiple expectation-driven equilibria

around the steady state. The steady state equilibrium is now unique however, which suggests

that the continuum of equilibria implied by indeterminacy cannot be obtained in a static model

as in the previous literature. So far, the condition to sustain indeterminacy is given in terms

of φ and τ . The following lemma specifies the underlying condition in terms of ρe, λ and Φ.

Lemma 4 Indeterminacy emerges if and only if Ψ(1−τmin)
Φ < ρe

λ < Ψ(1−τmax)
Φ .
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Given the other parameters, a decrease in ρe or an increase in λ increases the steady

state φ. According to the above lemma, it makes indeterminacy less likely. The intuition is

straightforward. A large λ means the opportunity cost of producing lemon increases, as the

firm becomes more likely to be excluded from future production. This alleviates the moral

hazard problem, which is the source of indeterminacy. Similarly, a decrease of ρe means that

the entrepreneurs become more patient. So the future profit flow from production is more

valuable to them, which again increases the opportunity cost of producing lemons and thus

alleviates the moral hazard problem.

4 Endogenous TFP and Indeterminacy

To keep the baseline model as simple as possible, so far we have assumed that product quality

can take only two values. To study whether the indeterminacy results are robust, we now extend

the baseline model with a continuous distribution of quality. We will show that the extended

model generates a new source of indeterminacy. More specifically, we will show that adverse

selection generates endogenous and procyclical TFP with a strong amplification mechanism.

The model becomes indeterminate if this mechanism is suffi ciently strong.

The household problem is unchanged, and thus the first order conditions are still Equations

(8), (9) and (10). The production function of each firm is still given by Equation (11). However,

we now assume that qt(i) is a random variable drawn from an i.i.d. cumulative distribution

function F . As in the baseline model, we assume a capacity limitation such that

Xt(i) ≤ Φ <∞, (54)

We solve the firm’s profit maximization problem. The unit cost of firm i with qt(i) is given by

φt(i) =
qχt (i)
At

(
Rt
α

)α ( Wt
1−α

)1−α
. Cost minimization yields

Rt = φt(i)
At
qχt (i)

αKα−1
t (i)N1−α

t (i). (55)

Wt = φt(i)
At
qχt (i)

(1− α)Kα
t (i)N−αt (i). (56)

The profit maximization problem for firm i is then given by

max
0≤Xt(i)≤Φ

PtXt(i)− φt(i)Xt(i). (57)
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The decision rule for production is immediately obtained as

Xt(i) =

 0 if qt(i) >

[
Pt

A
(
Rt
α

)α( Wt
1−α

)1−α
] 1
χ

≡ q∗t

Φ otherwise

(58)

Adverse selection is evident from the decision rule: for a given price Pt only firms with quality

below a certain threshold will produce. Firms with high-quality products are driven out of

the market. Given the production decision, we can use Equations (55) and (56) to obtain the

demand for capital and labor respectively as follows:

Nt(i) =
qχt (i)Xt(i)

A
(

αWt
(1−α)Rt

)α , (59)

Kt(i) =
qχt (i)Xt(i)

A
(

(1−α)Rt
αWt

)1−α . (60)

Finally, the average quality is given by

Qt =

∫ 1

0
qt(i)Xt(i)di∫ 1

0
Xt(i)di

. (61)

To characterize the equilibrium in this extended model, we need to aggregate the decisions of

all firms.

4.1 Aggregation

The market clearing condition is
∫ 1

0
Nt(i)di = Nt for the labor market and

∫ 1

0
Kt(i)di =

utKt ≡ K∗t for the capital market. Equations (59) and (60) implies that Nt(i) ∝ qχt (i) and

Kt(i) ∝ qχt (i) for qt(i) ≤ q∗t . This in turn implies that

Nt(i) =
qχt (i)∫ q∗t

0
qχdF (q)

Nt, (62)

Kt(i) =
qχt (i)∫ q∗t

0
qχdF (q)

K∗t . (63)

for qt(i) ≤ q∗t and Nt(i) = Kt(i) = 0 for qt(i) > q∗t . It then follows that Nt(i)/Kt(i) = Nt/K
∗
t

for qt(i) ≤ q∗t . We now use this relationship to aggregate production. Recall that aggregate

25



output is Yt =

∫ 1

0
qt(i)Xt(i)di and qt(i)Xt(i) = Aq1−χ

t (i)Kα
t (i)N1−α

t = Aq1−χ
t (i)

(
K∗t
Nt

)α
Nt(i).

Using Equation (62) we obtain

qt(i)Xt(i) =
qt(i)∫ q∗t

0
qχdF (q)

AK∗αt N1−α
t if qt(i) ≤ q∗t , (64)

and qt(i)Xt(i) = 0 otherwise. Then we have

Yt = Γ (q∗t , χ)AK∗αt N1−α
t = Γ (q∗t , χ)A(utKt)

αN1−α
t , (65)

where Γ (q∗, χ) ≡ E(q|q≤q∗)
E(qχ|q≤q∗) depends on the threshold q∗t and the distribution. Based on

Equation (65), measured TFP is obtained as

TFPt =
Yt

(utKt)αN
1−α
t

= Γ (q∗t , χ)A, (66)

where the cutoff level of quality q∗t varies endogenously. Firms producing high-quality output

are more effi cient if χ < 1 . However, these firms are inactive in equilibrium due to adverse

selection. In this sense, adverse selection creates a misallocation of resources, the magnitude

of which is captured by the cutoff level of quality q∗t . It is easy to prove that
∂Γ(q∗,χ)
∂q∗ > 0.8

The intuition is as follows. When q∗t increases, more high-quality products are produced. Some

of the resources must shift from firms with low productivity to more effi cient firms with high

productivity. This resource reallocation therefore improves aggregate effi ciency, leading to a

higher total production for any fixed amount inputs. In other words, measured TFP increases.

To determine q∗t , recall that Xt(i) = Φ if qt(i) ≤ q∗t and aggregate output can be written as

Yt =

∫ 1

0
qt(i)Xt(i)di = Φ ·

∫ q∗t

qmin

qdF (q) . (67)

This implies that q∗t increases with aggregate production.

8Here is a formal proof:

∂Γ (q∗, χ)

∂q∗
=

∂

∂q∗

( ∫ qmax
qmin

q1{q≤q∗}dF (q)∫ qmax
qmin

qχ1{q≤q∗}dF (q)

)

=

[∫ qmax
qmin

qχ1{q≤q∗}dF (q)
](

d
∫ qmax
qmin

q1{q≤q∗}dF (q)

dq∗

)
−
[∫ qmax
qmin

q1{q≤q∗}dF (q)
](

d
∫ qmax
qmin

qχ1{q≤q∗}dF (q)

dq∗

)
[∫ qmax
qmin

qχ1{q≤q∗}dF (q)
]2

=
(q∗)χ f (q∗)

∫ qmax
qmin

[
(q∗)1−χ − q1−χ

]
qχ1{q≤q∗}dF (q)[∫ qmax

qmin
qχ1{q≤q∗}dF (q)

]2 > 0.
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Lemma 5 TFP is endogenous and increasing in Y , namely ∂Γ(q∗,χ)
∂Y > 0.

We have therefore established that the endogenous TFP, Γ (q∗, χ), is procyclical. Notice

that the procyclicality of endogenous TFP holds generally for continuous distributions. So

without loss of generality, we now assume F (q) = (q/qmax)η for tractability. Notice that firm-

level measured productivity, 1
q , then follows a Pareto distribution with the shape parameter

of η, which is consistent with the findings of a large literature (see, e.g., Melitz (2003) and

references therein).

4.2 Aggregate Increasing Returns and Indeterminacy

Thanks to the power distribution, we have Γ (q∗t , χ) = χ+η
1+η q

∗1−χ
t and q∗t =

(
1+η
η

Yt
Φ

) 1
η+1

q
η
η+1
max.

Then the aggregate production (65) can be simplified as

Yt =
(
∆A1+σ

)
·
[
(utKt)

αN1−α
t

]1+σ
, (68)

where σ = 1−χ
χ+η > 0 and ∆ ≡

[(
η

1+η

)(
χ+η
η

) 1+η
χ+η

(qmax)
η(1−χ)
χ+η Φ

− 1−χ
χ+η

]
is a constant. Equation

(68) reveals that the aggregate technology in our model exhibits increasing returns. Note that

σ = 0 if either η = ∞ or χ = 1. When η = ∞, the firms’product quality is homogeneous.
Hence there is no asymmetric information and adverse selection. Firms are equally productive

if χ = 1. It therefore does not matter how the resources are allocated among firms. We formally

state this result in the following proposition.

Proposition 3 The reduced-form aggregate production in our model exhibits increasing returns

to scale if and only if there exists adverse selection, i.e., χ < 1 and η <∞.

Proof: The proof is obvious since σ = 1−χ
χ+η > 0 if and only if χ < 1 and η <∞ .

To understand how increasing returns to scale in aggregate production can arise, consider

a proportional increase in both utilized capital and labor. The increased resources create

pressure to dampen the wage and interest rates. So some of the initially inactive firms with

high marginal costs, the ones producing high-quality products, will now find it profitable to

produce. This diverts some resources from the incumbent firms. Since these newly active firms

are more productive, their total production from diverted resources can more than compensate

for the loss of the incumbent firms. As a consequence, total output will rise proportionately

more than total inputs.
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In an important contribution, Basu and Fernald (1997) document that increasing returns

to scale exist in aggregate production but not at the micro level. In a recent paper, Liu and

Wang (2014) show how financial frictions can generate endogenous variation in TFP, and hence

aggregate increasing returns. Our focus here is adverse selection. Arguably, the ineffi ciency

generated by both of these frictions are important in developing countries. Therefore we view

our contribution as an addition to the understanding of low TFP in these countries. We will

show in the following that adverse selection and variable capacity utilization together raise the

magnitude of the impact of TFP on output.

We now proceed to solve for the prices Pt, Rt andWt. Once Pt, Rt andWt are determined, we

can then fully characterize the equilibrium. First, notice that the average Qt (61) is determined

by

Qt =
1

F (q∗t )

∫ q∗t

0
qdF (q) = E (qt|qt ≤ q∗t ) = Pt. (69)

Recall that φt(i)Xt(i) = WtNt(i) +RtKt(i). Denote by φ∗t =
q∗χt
At

(
Rt
α

)α ( Wt
1−α

)1−α
the unit cost

for firms exactly at the cutoff. Then φt(i) n can be written as φt(i) = φ∗t

(
qt
q∗t

)χ
= Pt

(
qt
q∗t

)χ
.

By definition of the cutoff, φ∗t = Pt = Qt. We hence know that

WtNt +RtK
∗
t =

∫
φt(i)Xt(i)di = Φφ∗t

∫ q∗t

0

(
q

q∗t

)χ
dF (q). (70)

The fact φ∗t = Qt and Equation (67) together then yields

WtNt +RtK
∗
t = Yt

1

F (q∗t )

∫ q∗t

0

(
q

q∗t

)χ
dF (q) < Yt, (71)

which means that the total profit is non-zero. Again, this is due to the informational rents

arising from the existence of firms with low productivity.

It is easy to verify that WtNt
RtK∗t

= 1−α
α from Equations (59) and (60). The aggregate marginal

cost is given by

φt =
WtNt +RtK

∗
t

Yt
=

1

F (q∗t )

∫ q∗t

0

(
q

q∗t

)χ
dF (q), (72)

which can be either increasing, decreasing, or unchanging in q∗t . In the case with power distri-

bution, φt is a constant such that φt = η
χ+η = φ. Thus Wt and Rt are given by Wt = φ (1−α)Yt

Nt

and Rt = φ αYt
utKt

respectively. Together with Equations (8), (9), (10), (68), and (31), we can

determine the seven variables, Ct, Yt, Nt, ut, Kt, Wt and Rt.

The steady state can be obtained as in the baseline model. As in the baseline model, we

can express the other variables in terms of the steady state φ. Since φ = η
χ+η , unlike in the
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baseline, the steady state here is unique. We assume that Φ is large enough so that an interior

solution to q∗ is always guaranteed. We state this result formally in the following corollary.

Corollary 3 The steady state is unique in the extended model with F (q) = (q/qmax)η .

A large literature following Benhabib and Farmer (1994) have shown that increasing returns

can give rise to self-fulfilling expectations (see e.g., Wen (1998), Liu and Wang (2014)). The

following proposition summarizes the conditions for indeterminacy in this extended model.

Proposition 4 The model is indeterminate if and only if

σmin < σ < σmax (73)

where σ ≡ 1−χ
χ+η , σmin ≡

(
1

1−α
1+γ

+ α
1+θ

)
− 1 and σmax ≡ 1

α − 1.

To better understand the proposition, we first consider how output responds to a funda-

mental shock, such as a change in A, the true TFP. Holding factor inputs constant, we have

1 + σ̃ ≡ d log Yt
d logA

= (1 + σ)

[
1 + θ

1 + θ − α (1 + σ)

]
> 1, (74)

The above equations shows that adverse selection and variable capacity utilization can signifi-

cantly amplify the impact of a TFP shock on output. Let us define 1 + σ̃ as the multiplier of

adverse selection. Note that the necessary condition σ > σmin can be written as

(1 + σ̃)(1− α)− 1 > γ. (75)

Here the left-hand side turns out to be the slope of the labor demand curve while the right-

hand side is the slope of the labor supply curve. The economic interpretation is then similar to

that in our baseline model. In other words, the model will be indeterminate if the multiplier

effect of adverse selection is suffi cient large. The restriction σ < σmax is typically automatically

satisfied. The restriction σ < 1
α − 1 simply requires that α(1 + σ) < 1, which is the condition

to rule out explosive growth in the model.

It is worth pointing out that a decrease in η will increase σ. No matter the model is

indeterminate or not, Equation (74) then implies that the response of output to TFP shocks will

be amplified. In addition, by Proposition 4, the economy will more likely be indeterminate. A

smaller η means that there is more dispersion in quality, making it more diffi cult to distinguish

between high and low quality products. In other words, adverse selection problems become
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more severe. Our results are in similar spirit to Kurlat (2013) and Bigio (2014), who both that

show a dispersion in the quality will strengthen the amplification effect of adverse selection.

Empirical Possibility of Indeterminacy To empirically evaluate the possibility of inde-

terminacy, we set the same value to ρ, θ, δ, α and γ as in Table 1.9 We have new parameters in

this extended model (χ, η). We use two moments to pin them down. We set χ and η to match

the steady state markup τ = 1− φ = χ
χ+η = 0.9. Basu and Fernald (1997) estimate aggregate

increasing returns to scale for manufacturing to be around 1.1. So we set σ = 0.1. This leads

to χ = 1−φ
1−φ+σ = 1

2 and η = φ
1−φ+σ = 4.5. We have σmin = 0.083 and σmax ≡ 2, which meet

the indeterminacy conditions. Hence, with these parameters the model exhibits self-fulfilling

equilibria. Again, since the steady state equilibrium is unique, such multiple equilibria must

come from the dynamic nature of the model.

4.3 Endogenous Production Limit

We now further extend the continuous-distribution model to allow the firm to choose capacity

Φ. We assume that if a firm pays ξΦ1+ζt
1+ζ dt unit of capital at time t before the realization of its

shock qt(i), it can produce a maximum flow quantity Φt from t to t + dt . The shock qt(i) is

assumed to follow a power distribution, namely F (q) =
(

q
qmax

)η
. Φt is then determined by

solving

max
Φt

{
−ξΦ1+ζ

t

1 + ζ
+ ΦtPt

∫ q∗t

qmin

[
1−

(
q

q∗t

)χ]
dF (q)

}

= max

{
−ξΦ1+ζ

t

1 + ζ
+ ΦtPt

(
q∗t
qmax

)η χ

χ+ η

}

where the second equality follows the distribution F (q) =
(

q
qmax

)η
. The first-order condition

yields ξΦζ
t = Pt

(
q∗t
qmax

)η
χ

χ+η . Note that ΦtPt

(
q∗t
qmax

)η
= PtXt = QtXt = Yt. Hence the above

first order condition can be written as

ξ
Φ1+ζ
t

1 + ζ
=

χ

χ+ η

Yt
1 + ζ

(76)

Since Φt is time varying, the aggregate production (68) now becomes

Yt = ΥΦ
− 1−χ
χ+η

t · (utKt)
α(1+σ)N

(1−α)(1+σ)
t , (77)

where Υ is a constant. The resource constraints is accordingly adjusted to

Ct + K̇t = Yt − δ (ut)Kt − ζ
Φ1+τ
t

1 + τ
(78)

9qmax and Φ do not affect the indeterminacy condition, so we do not need to specify their value.
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Equations (76), (77), and (78) together with Equations (8), (9), (10) jointly determine Ct, Yt,

Nt, ut, Kt and Φt. The following proposition shows that the indeterminacy results are robust

to this extension.

Proposition 5 Indeterminacy arises if and only if ς (σ) ≡ ζσ
1+ζ+σ >

1
1−α
1+γ

+ α
1+θ

−1 and 1+ς (σ) <

1
α .

The proof is similar to that of Proposition 4, and thus we omit it. When Φt is endogenous,

by substituting out Φt from production by Equation (76), overall increasing returns to scale

become ς (σ) = 1+σ
1+σ/(1+ζ) − 1 = ζσ

1+ζ+σ . As we have shown, σmin = 1
1−α
1+γ

+ α
1+θ

− 1 is the

minimum increasing returns required for indeterminacy. Note that ζσ
1+ζ+σ < σ. In other words,

endogenous capacity reduces the degree of increasing returns to scale. To see this, consider

a proportional increase in total inputs. When firms anticipate a rise in aggregate output,

they will opt to build up capacity. If capacity increases quickly enough, the newly increased

inputs can largely be absorbed by the incumbent. So there is little resource reallocation toward

more effi cient firms. As a consequence, the resulting increase in output becomes smaller. In

other words, the magnitude of aggregate increasing returns to scale is dampened and as a

consequence, indeterminacy is less likely.

5 Adverse Selection in Credit Markets and Indeterminacy

To further explore the possibility of indeterminacy or expectations driven business cycles due

to information asymmetries in credit markets, we now modify our model in Section 4 as follows.

The households’problems are the same as in Section 4. The production side now has two types

of firms: the final goods firms and intermediate goods firms. The intermediate goods firms use

labor and capital to produce an intermediate goods, which is then sold to the final goods firms

as production input. Final goods firms do not have resources to make upfront payments to the

intermediate goods firms until production takes place and revenues from sales are realized. They

therefore must borrow from the competitive financial intermediates to finance their working

capital.10 We index the final good firms with j ∈ [0, 1]. The loan is risky as the final goods

firms’production may not be successful. More specifically, we assume that final good firm j’s

10Altenatively we can assume that the intermediate goods firms provide working capital loans as credit to the
final goods firms and finance their production. The results will be the same.
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output is governed by

yjt =

{
ajtxjt, with probability qjt

0, with probability 1− qjt
, (79)

where xjt is the intermediate input for firm j and ajt the firm’s productivity. We assume qjt

conforms to a power distribution, namely F (q) = qη and ajt = aminq
−τ
jt . Notice that expected

productivity is given by qjtajt = aminq
1−τ
jt . We assume that τ < 1, i.e., a firm with a higher

success probability enjoys a higher expected productivity. As in the model of Section 4, we

assume that each final good firm can manage Φ units of intermediate goods at most.11 Denote

Pt as the price of intermediate goods. Then the total borrowing is given by Ptxjt. Denote Rft

be the market interest rate. Then the final good firm j′s profit maximization problem becomes

max
0≤xjt≤Φ

qjt[ajtxjt −RftPtxjt], (80)

Note that, due to limited liability, the final goods firm pays back the working capital loan only

if the project is successful. This implies that, given Rft and Pt, the demand for xjt is simply

given by

xjt =

{
Φ if ajt > RftPt ≡ a∗t
0 otherwise

, (81)

or equivalently,

aminq
−τ
jt > a∗t , qjt <

[
a∗t
amin

]− 1
τ

= q∗t =

[
RftPt
amin

]− 1
τ

. (82)

This establishes that only firms with risky production opportunities will enter the credit mar-

kets. Since financial intermediaries are assumed to be fully competitive, we have

RftPtΦ

∫ q∗t

0
qdF (q) = PtΦ

∫ q∗t

0
dF (q), (83)

where the left-hand side is the actual repayment from the final goods firms, and the right-hand

side the actual lending. We obtain

Rft =
1∫ q∗t

0 qdF (q)/
∫ q∗t

0 dF (q)
=

1

E (q|q ≤ q∗t )
> 1, (84)

where the denominator is average success rate. The total production of intermediate goods

is Xt = Φ
∫ q∗t

0 dF (q) and total production of final goods is Yt = Φamin

∫ q∗t
0 q1−τdF (q). Finally

the intermediate goods are produced according to Xt = At (utKt)
αN1−α

t , where utKt is the

11 In our model the final good firms exhibit constant returns to scale, so the firms’problem will not be well
defined without a maximum input limit. Alternatively we can put a borrowing constraint such that Ptxjt ≤ Φ,
where Pt is the price for intermediate goods.
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capital rented from the households. Using the power distribution, we substitute out q∗t in the

expression for Yt to obtain

Yt = amin
η

η − τ + 1
Φ
− 1−τ

η
[
Atu

α
t K

α
t N

1−α
t

]1+ 1−τ
η . (85)

Notice that the aggregate output again exhibits increasing returns to scale. The intuition is

analogous to that in the model in Section 4. Here a lending externality kicks in because of

adverse selection in the credit markets. Suppose that the total lending from financial interme-

diaries increases. This creates a downward pressure on interest rate Rft, which increases the

cutoff q∗t according to the definition at Equation (82). Firms with higher q have smaller risk

of default. A rise in the cutoff q∗t therefore reduces the average default rate. If it is strong

enough, it can in turn stimulate more lending from the financial intermediaries. Since firms

with higher q are also more productive on average, the increased effi ciency in re-allocating

credit implies that resources are better allocated across firms. We already showed in Section 4

that this generates aggregate increasing returns to scale. Both the credit spread, measured by

Rft−1, and the expected default risk, 1−E (q|q ≤ q∗t ), are countercyclical in our model. These
predictions are consistent with the empirical regularities by Gilchrist and Zakrajšek (2012) and

many others.

Finally perfect competition implies that real wage is Wt = Pt
(1−α)Xt

Nt
and rental rate is

Rt = Pt
αYt
utKt

. Under the power distribution, it is easy to see that PtXt = η−τ+1
η+1 Yt. Therefore

we have established the observational equivalence of this model to the model in Section 4. If

we define σ = 1−τ
η , we can directly evoke Proposition 4 for the indeterminacy conditions.

6 Conclusion

We have argued that in a dynamic general equilibrium model, adverse selection in the goods

market can generate a new type of multiplicity of equilibria in the form of indeterminacy, either

through endogenous markups or endogenous TFP. Adverse selection can therefore potentially

explain some of the apparently excessive output volatility in the absence of fundamental shocks.

For example, an RBC model with a negative TFP shock cannot fully explain the increase in

labor productivity during the Great Recession (see Ohanian (2010)). However this feature of

the Great Recession is consistent with the prediction of our baseline model in Section 2, and is

driven by pessimistic beliefs about aggregate output. The pessimistic beliefs reduce aggregate

demand and increase the markups, leading to a lower real wage and a lower labor supply. Labor

productivity however rises due to decreasing returns to labor.
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Appendix

A Proofs

Proof of Lemma 2: Since ϕ1 + ϕ2 =Trace(J) and ϕ1ϕ2 = det(J). The model is indetermi-

nate if the trace of J is negative and the determinate is positive. The trace and the determinant

of J are

Trace (J)

δ
=

(
1 + θ

αφ

)
λ1 − (1 + τ)λ1 + θ (1 + τ)λ2, (A.1)

Det (J)

δ2θ
= [(1 + τ)λ1 − 1 + λ2]

(
1 + θ

αφ
− 1

)
− τλ2, (A.2)

respectively. Substituting out λ1 and λ2 we obtain

Trace (J)

δ
=

[
1

γ + 1− (1 + τ)b

]
·
[(

1 + θ

αφ
− 1− τ

)
a(1 + γ)− θ(1 + τ)b

]
(A.3)

=

[(
θ

φ

)(
α (1 + γ) + (1 + θ) (1− α)

1 + θ − (1 + τ)α

)]
·

 (1+γ)(1+θ)
α(1+γ)+(1+θ)(1−α) − φ (1 + τ)

γ + 1− (1 + τ)b


=

[(
θ

φ

)(
α (1 + γ) + (1 + θ) (1− α)

1 + θ − (1 + τ)α

)]
·

 (1+γ)(1+θ)
α(1+γ)+(1+θ)(1−α) − 1 + τ2

γ + 1− (1 + τ)b


Notice that γ + 1− (1 + τ)b < 0 is equivalent to

τ > τmin ≡
(1 + γ) (1 + θ)

α(1 + γ) + (1 + θ)(1− α)
− 1.

Since τmin > 0, we know that

(1 + γ) (1 + θ)

α(1 + γ) + (1 + θ)(1− α)
− 1 + τ2 > 0.

Therefore Trace(J) < 0 if and only if τ > τmin. It remains for us to pin down the condition

under which det(J) > 0. Note that det(J) can be rewritten as

det (J)

δ2θ
=

[
1

γ + 1− (1 + τ)b

]
·
[(

1 + θ

αφ
− 1

)
((1 + γ) [a(1 + τ)− 1] + τb) + τb

]
(A.4)

=
1 + θ

(1 + τ)b− (γ + 1)

{
(1 + γ)(1− α)−

[
(1− α)(1 + θ)

(1 + θ − αφ)
+ (1 + γ)α

]
τ

}
If τ < τmin, then we immediately have det(J) < 0. Thus to guarantee that det(J) > 0, we

must have τ > τmin, which then implies that (1 + τ)b − (γ + 1) > 0. As a result, given that

τ > τmin, det(J) > 0 if and only if

(1 + γ)(1− α)−
[

(1− α)(1 + θ)

1 + θ − αφ + (1 + γ)α

]
τ > 0,
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which can be further simplified as

τ <
(1 + γ)(1− α)

(1−α)(1+θ)
1+θ−αφ + (1 + γ)α

.

Since φ = 1− τ , the above inequality can be reformulated as

∆ (τ) ≡ α2τ2 +

[
αθ +

(1− α) (1 + θ)

(1 + γ)

]
τ − (1− α) (1 + θ − α) < 0.

Denote ξ ≡ αθ + (1−α)(1+θ)
(1+γ) . Then det(J) > 0 if and only if τ > τmin and

τ < τmax ≡
−ξ +

√
ξ2 + 4α2 (1− α) (1 + θ − α)

2α2
.

It remains for us to prove τH = 1 − φ∗, where φ∗ = arg max0≤φ≤1 Ψ(φ). FOC of log Ψ(φ)

suggests (
1

1 + γ
+

2α− 1

1− α

)(
1

φ

)
+

(
1

1 + γ

)(
α

1 + θ

)(
1

1− αφ
1+θ

)
− 1

1− φ = 0,

which is equivalent to

Γ (φ) ≡ α2φ2 −
[

(1− α) (1 + θ)

1 + γ
+ αθ + 2α2

]
φ+

[
(1− α) (1 + θ)

1 + γ
+ (2α− 1) (1 + θ)

]
= 0.

Besides, we can easily verify that, for φ ∈ (0, 1), it always holds that

d2

dφ2 (log Ψ(φ)) < 0.

Since τ ≡ 1 − φ, we know that ∆ (1− φ) = Γ (φ). Denote φ1 and φ2 as the solutions to

Γ (φ) = 0. Note that φ1 + φ2 > 0, φ1 · φ2 > 0, and Γ (0) > 0, Γ (1) > 0. Therefore we know

that 0 < φ1 < 1 < φ2. Consequently we conclude that

φ∗ = φ1 = 1− τmax ∈ (0, 1) .

Proof of Proposition 1: First, notice that, by definition, τmax = 1 − φmin. Therefore we

have φmin = φ∗. Then by Lemma 2 immediately we reach the conclusion.

Proof of Corollary 1: First, when adverse selection is severe enough, i.e., Φ̄ = πΦ ≥
Ψmax, the economy collapses. The only equilibrium is the trivial case with φ = 0. Given that

Φ̄ < Ψmax, Lemma 1 implies that there are two solutions, which are denoted as
(
φ̄H , φ̄L

)
. It

always holds that φ̄L < φ∗ < φ̄H . Then Lemma 2 immediately suggests that the steady state

φ̄L is always a saddle. Since Ψ(φ) decreases with φ when φ > φ∗, as shown by Proposition 1,

indeterminacy emerges if and only if φ ∈ (φ∗, φmax). Therefore the local dynamics around the

steady state φ = φ̄H exhibits indeterminacy if and only if Ψ(φmax) < Φ̄ < Ψmax.
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Proof of Corollary 2: Holding Φ constant, Φ̄ increases with π, the proportion of firms

producing lemon products. As is proved in Corollary 1, given Φ̄ < Ψmax, indeterminacy

emerges if and only if Φ̄ > Ψ(φmax). Therefore the likelihood of indeterminacy increases with

π.

Proof of Lemma 3: Notice that Ψ(φ) =
(

1−φ
φ

)
· Y (φ) ∝ (1 − φ)φ

2α−1
1−α . When α < 1

2 , we

know that (1 − φ)φ
2α−1
1−α is decreasing in φ. It is easy to check that limφ→0 Ψ(φ) = ∞ and

limφ→1 Ψ(φ) = 0. Hence equation (53) uniquely pins down the steady state φ for any Φ̄ > 0.

Proof of Proposition 2: The dynamic system of equations is follows:

ψNγ
t =

1

Ct
(1− α)φt

Yt
Nt
,

Ċt
Ct

= αφt
Yt
Kt
− δ(ut)− ρ,

αφt
Yt
utKt

= δ0uθt ,

Ct + K̇t + Cet = Yt − δ (ut)Kt,

Yt = A (utKt)
αN1−α

t ,

φt =
Yt

πΦ + Yt
,

Cet = (1− φt)Yt,

where π ≡ ρe
λ . Denote s ≡ 1 − α

1+θ . Then some of the key ratios in the steady state can be

obtained as

ky =
K

Y
=

αφθ

ρ (1 + θ)
,

cy =
C

Y
= sφ =

(
1− α

1 + θ

)
φ,

N =

[
(1− α)φ

cy
· 1

ψ

] 1
1+γ

=

[(
1− α

1− α
1+θ

)
· 1

ψ

] 1
1+γ

,

Y = A
1

1−α (ky)
α

1−α N = A
1

1−α

[
αφθ

ρ (1 + θ)

] α
1−α

[(
1− α

1− α
1+θ

)
· 1

ψ

] 1
1+γ

. (A.5)

We can use Equation (53) to solve for the steady state φ and use Equation (A.5) to obtain the

steady state Y . Consumption and capital can then be computed by C = cyY and K = kyY ,

respectively. The log-linearization of the system of equilibrium equations is given by:
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0 = φ̂t + ŷt − (1 + γ) n̂t − ĉt,

ċt = ρ
(
φ̂t + ŷt − k̂t

)
,

ŷt = α
(
ût + k̂t

)
+ (1− α)n̂t,

ût =
1

1 + θ
(φ̂t + ŷt − k̂t),

k̇t =

(
sφ

ky

)(
φ̂t + ŷt − k̂t

)
−
(
cy
ky

)(
ĉt − k̂t

)
,

φ̂t = (1− φ) ŷt ≡ τ ŷt.

As in the baseline model, we can substitute ût and φ̂t to obtain a reduced form of output in

terms of capital and labor as

ŷt =
αθk̂t + (1 + θ)(1− α)n̂t

1 + θ − (1 + τ)α
≡ ak̂t + bn̂t,

where a ≡ αθ
1+θ−(1+τ)α and b ≡

(1+θ)(1−α)
1+θ−(1+τ)α . We assume τ < 1+θ

α − 1, which is a reasonable

restriction under standard calibration, so that a > 0 and b > 0. Finally n̂t can be expressed as

a function of ŷt and ĉt, and thus we have

ŷt =
a(1 + γ)

1 + γ − b(1 + τ)
k̂t −

b

1 + γ − b(1 + τ)
ĉt ≡ λ1k̂t + λ2ĉt,

where λ1 ≡ a(1+γ)
1+γ−b(1+τ) and λ2 ≡ − b

1+γ−b(1+τ) . Consequently the local dynamics is character-

ized by following differential equations:[
k̇t
ċt

]
= δ

[ (
1+θ
αφ

)
sφ (1 + τ)λ1

(
1+θ
αφ

)
[sφ (1 + τ)λ2 − (1− sφ)]

θ [(1 + τ)λ1 − 1] θ(1 + τ)λ2

] [
k̂t
ĉt

]
,

≡ J

[
k̂t
ĉt

]
. (A.6)

where s ≡ 1− α
1+θ , cy = sφ, δ = ρ/θ. The local dynamics around the steady state is determined

by the roots of J. Notice that the trace and the determinant of J are

Trace (J)

δ
=

(
1 + θ

α

)
s (1 + τ)λ1 + θ(1 + τ)λ2 < 0,

det (J)

δ2θ
(

1+θ
αφ

) = sφ (1 + τ)λ2 + (1− sφ) (1 + τ)λ1 − (1− sφ) > 0.
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Similar to the analysis for the indeterminacy of our baseline model, here Trace(J) < 0 if and

only if τ > τmin ≡ (1+θ)(1+γ)
(1+θ)(1−α)+α(1+γ) − 1. Given that τ > τmin, some algebraic manipulation

suggests that det(J) > 0 if and only if τ < 1+θ
α − 1, and

A1τ
2 −A2τ −A3 < 0,

where

A1 ≡ s (1 + θ) (2 + α+ αγ) > 0

A2 ≡ (1 + θ) (1 + αγ)− s [(1 + θ) (1− α) (1− γ) + (1 + γ)α]

A3 ≡ (1 + θ) (1− α) [s+ + (1− s) γ] > 0.

Therefore A1τ
2 − A2τ − A3 < 0 if and only if τ < τH , where τH is the positive solution to

A1τ
2 −A2τ −A3 = 0.

Proof of Lemma 4: Combining Lemma 3 and Proposition 2 immediately yields the desired

result.

Proof of Lemma 5: First, using Implicit Function Theorem, Equation (67) suggests that
∂q∗

∂Y > 0. Second, footnote 7 proves that ∂TFP
∂q∗ > 0. In turn, the chain rule implies that

∂TFP
∂Y =

(
∂TFP
∂q∗

)(
∂q∗

∂Y

)
> 0.

Proof of Proposition 3: To establish the conditions for indeterminacy, we first log-linearize

the equilibrium equations. Substituting ût from the log-linearized Equation (28), we obtain

ŷt = ak̂t + bn̂t,

where a = θα(1+σ)
1+θ−α(1+σ) and b = (1+θ)(1−α)(1+σ)

1+θ−α(1+σ) . Finally, expressing n̂t from the log-linearized

Equation (26), we obtain

ŷt = λ1k̂t + λ2ĉt,

where λ1 ≡ a(1+γ)
1+γ−b and λ2 ≡ − a

1+γ−b . We hence obtain a two-dimensional system of difference

equations [
k̇t
ċt

]
= δ

[ (
1+θ
αφ − 1

)
λ1

(
1+θ
αφ

)
(λ2 − 1) + 1− λ2

θ (λ1 − 1) θλ2

] [
k̂t
ĉt

]
≡ J

[
k̂t
ĉt

]

38



where δ = ρ/θ. The local dynamics around the steady state is determined by the roots of J.

The trace and the determinant of J are

Trace (J)

δ
=

(
1 + θ

αφ
− 1

)
λ1 + θλ2 =

(
1+θ
αφ − 1

)
(1 + γ) a− θb

1 + γ − b ,

det (J)

δ2θ
=

(
1 + θ

αφ
− 1

)
(λ1 − 1 + λ2) =

(
1 + θ

αφ
− 1

)[
(1 + γ) (a− 1)

1 + γ − b

]
.

Indeterminacy arises if Trace(J) < 0 and det(J) > 0. Under the assumption a < 1, or

α(1 + σ) < 1. det(J) > 0 is equivalent to 1 + γ − b, or σ > σmin ≡
(

1
1−α
1+γ

+ α
1+θ

)
− 1. Then

Trace(J) < 0 requires
(

1+θ
αφ − 1

)
(1 + γ) a > θb. Rearranging terms yields the requirement,

(1+σ)η
1+η <

(
1

1−α
1+γ

+ α
1+θ

)
. Recall σ = 1−χ

χ+η , or
(1+σ)η

1+η = η
χ+η , so that such a requirement is

automatically satisfied.

Proof of Corollary 4: In steady state we have

K

Y
=

αφ∗

ρ+ δ

C

Y
= 1− δ

(
K

Y

)
= 1− αφ∗δ

ρ+ δ

N =

[
φ∗ (1− α)

ψ
·
(

1

C/Y

)] 1
1+γ

=

[
φ∗ (1− α)

ψ
·
(

1

1− αφ∗δ
ρ+δ

)] 1
1+γ

Furthermore,

uR = δ + ρ

R = δ0uθ = φ∗ · α
(
Y

uK

)
.

Then we have

u =

[
ρ (1 + θ)

δ0θ

] 1
1+θ

.

We normalize the steady-state utilization rate such that u = 1. Then δ0 = ρ(1+θ)
θ , and in turn

we have δ = ρ
θ . Now we characterize the aggregate output in the steady state:

Y =
(
∆A1+σ

)
KaN b =

(
∆A1+σ

)(K
Y

)a
Y aN b,

and therefore

Y =

(∆A1+σ
)( αφ∗

ρ+ δ

)a [φ∗ (1− α)

ψ
·
(

1

1− αφ∗δ
ρ+δ

)] b
1+γ


1

1−a

= Λ2 · Φ−
σ
1−a
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where

∆ ≡ Λ1 · Φ−
1−χ
χ+η = Λ1 · Φ−σ

Λ1 ≡
(

η

1 + η

)(
χ+ η

η

) 1+η
χ+η

(qmax)
η(1−χ)
χ+η

φ∗ ≡ η

χ+ η

a ≡ α (1 + σ)

b ≡ (1− α) (1 + σ)

σ ≡ 1− χ
χ+ η

=

(
1 + η

η

)
φ∗ − 1

Λ2 ≡

A1+σ

(
αφ∗

ρ+ δ

)a [φ∗ (1− α)

ψ
·
(

1

1− αφ∗δ
ρ+δ

)] b
1+γ


1

1−a

.

Since we have proved that in each period,

Y = Φ ·
(

η

1 + η

)[
(q∗)1+η

(qmax)η

]

then in steady state, the cut-off value q∗ is

q∗ =

[(
(qmax)η Y

Φ

)(
1 + η

η

)] 1
1+η

In turn, the equilibrium price of the intermediate good, the normalized marginal cost, and

the marginal cost of firm i at steady state are

P = E (q|q ≤ q∗) =

(
η

1 + η

)
· q∗

φ̃ =
P

(q∗)χ
=

(
η

1 + η

)
· (q∗)1−χ

φ (i) = φ̃ · (q (i))χ =

(
η

1 + η

)
· (q∗)1−χ · (q (i))χ

Furthermore, the factor prices are

R = δ + ρ =
ρ (1 + θ)

θ

W = φ∗ · α
(
Y

N

)
where (Y,N) have been obtained above.
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Finally, to obtain an interior solution for q∗ in the steady state, we need to have

Φ >
A
(
K
Y

)α
Y αN1−α

E (qχ)

=

A
(
αφ∗

ρ+δ

)α (
Λ2 · Φ−

σ
1−a
)α [

φ∗(1−α)
ψ ·

(
1

1−αφ∗δ
ρ+δ

)] 1−α
1+γ

(
η

χ+η

)
(qmax)χ

= Λ3 · Φ−
ασ
1−a

where

Λ3 ≡
A
(
αφ∗

ρ+δ

)α
(Λ2)α

[
φ∗(1−α)

ψ ·
(

1

1−αφ∗δ
ρ+δ

)] 1−α
1+γ

(
η

χ+η

)
(qmax)χ

a ≡ α (1 + σ)

Therefore, in order to guarantee an interior solution to q∗ in steady state, we need to assume

Φ > Φ̂ ≡ Λ
1−α(1+σ)

1−α
3 .

Proof of Proposition 4: From the indeterminacy analysis for the baseline model, we know

that

ŷt = m1k̂t +m2n̂t,

where

m1 ≡ θa

1 + θ − a =
θα (1 + σ)

1 + θ − α (1 + σ)

m2 ≡ (1 + θ) b

1 + θ − a =
(1 + θ) (1− α) (1 + σ)

1 + θ − α (1 + σ)

σ ≡ 1− χ
χ+ η

=

(
1 + η

η

)
φ∗ − 1

To make (m1,m2) well defined, we must set 1 + θ − a = 1 + θ − α (1 + σ) > 0, i.e.,

σ < σ1 ≡
1 + θ

α
− 1.

Then we have

ŷt = λ1k̂t + λ2ĉt,
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where

λ1 ≡ m1(1 + γ)

1 + γ −m2

λ2 ≡ − m2

1 + γ −m2

As a result, [
k̇t
ċt

]
= δ

[ (
1+θ
αφ∗ − 1

)
λ1

(
1+θ
αφ∗

)
(λ2 − 1) + 1− λ2

θ (λ1 − 1) θλ2

] [
k̂t
ĉt

]
≡ J

[
k̂t
ĉt

]
.

where δ = ρ/θ. The local dynamics around the steady state is determined by the roots of J.

The trace and the determinant of J are

Trace (J)

δ
=

(
1 + θ

αφ∗
− 1

)
λ1 + θλ2

det (J)

δ2θ
=

(
1 + θ

αφ∗
− 1

)
(λ1 − 1 + λ2)

where

φ∗ =
η

χ+ η
=

(
η

1 + η

)
(1 + σ)

λ1 ≡ m1(1 + γ)

1 + γ −m2

λ2 ≡ − m2

1 + γ −m2

m1 ≡ θα (1 + σ)

1 + θ − α (1 + σ)

m2 ≡ (1 + θ) (1− α) (1 + σ)

1 + θ − α (1 + σ)

σ ≡ 1− χ
χ+ η

=

(
1 + η

η

)
φ∗ − 1

The roots of J , x1 and x2 satisfy the following constraints

x1 + x2 = Trace (J)

x1x2 = det(J).

If Trace(J) < 0 and det(J) > 0, then both x1 and x2 are negative, and the model will admit

local indeterminacy around the steady state. First, some algebraic manipulation on Trace(J)
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and det(J) suggests that

Trace (J)

δ
=

(
1+θ
αφ∗ − 1

)
(1 + γ)m1 − θm2

1 + γ −m2

det (J)

δ2θ
=

(
1 + θ

αφ∗
− 1

)[
(1 + γ) (m1 − 1)

1 + γ −m2

]
Consequently, Trace(J) < 0 and det(J) > 0, if and only if

1 + θ

αφ∗
− 1 > 0

1 + γ −m2 < 0(
1 + θ

αφ∗
− 1

)
(1 + γ)m1 − θm2 > 0

m1 − 1 < 0

Since φ∗ =
(

η
1+η

)
(1 + σ), the first inequality suggests

1 + σ <

(
1 + θ

α

)(
1 + η

η

)
The second inequality implies that

1 + σ >
(1 + γ) (1 + θ)

(1 + θ) (1− α) + (1 + γ)α
=

1
1−α
1+γ + α

1+θ

The third inequality requires

1 + σ <

(
1

1−α
1+γ + α

1+θ

)(
1 + η

η

)
,

which is always true since

(1 + σ)

(
η

1 + η

)
= φ∗ < 1 <

1
1−α
1+γ + α

1+θ

.

The last inequality indicates

1 + σ <
1

α

Consequently, Trace(J) < 0 and Det(J) > 0 if and only if

σmin < σ < σmax (A.7)

where σmin ≡
(

1
1−α
1+γ

+ α
1+θ

)
− 1 and σmax ≡ 1

α − 1.
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