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1 Introduction

Bilateral bargaining between pairs of agents is pervasive in many economic environments.

Manufacturers bargain with retailers over wholesale prices, and firms negotiate with unions

over wages paid to workers. As an example, in 2013, private insurers in the United States

paid hospitals $348 billion and physicians and clinics $267 billion for their services.1 Private

prices for medical services are determined neither by perfect competition, nor by take-it-

or-leave-it offers (as is assumed in Bertrand competition). Instead, they are predominantly

determined by bilateral negotiations between medical providers and insurers. Furthermore,

these negotiations are typically interdependent: e.g., an insurer’s value from having one

hospital in its network depends on which other hospitals are already in its network.

Given the centrality of bilateral oligopoly market structures and the prevalence of policy

questions in such environments, a substantial theoretical literature has sought to understand

equilibrium outcomes of bilateral bargaining models. Papers in this literature have derived

conditions for when network environments can yield efficient outcomes (Kranton and Mine-

hart, 2001; Corominas-Bosch, 2004), evaluated how information affects pricing (Polanski,

2007), examined how network centrality affects pricing (Manea, 2011), and considered the

impact of investment specificity on efficiency (Elliott, 2015).2

Concurrently, an applied literature—both empirical and theoretical—has used bilateral

bargaining models to evaluate a range of questions including: the welfare impact of bundling

(Crawford and Yurukoglu, 2012), horizontal mergers (Chipty and Snyder, 1999), and vertical

integration (Crawford, Lee, Whinston, and Yurukoglu, 2015) in cable television; the effects

of price discrimination for medical devices (Grennan, 2013); and the price impact of hospital

mergers (Gowrisankaran, Nevo, and Town, 2015) and health insurance competition (Ho

and Lee, 2015).3 Increasingly, this applied literature is influencing antitrust and regulatory

policy.4

1See Exhibit 1 on p. 4 of “National Health Expenditure Accounts: Methodology Paper, 2013” at
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/

NationalHealthExpendData/Downloads/DSM-13.pdf accessed on August 2, 2015.
2A related literature considers the more general case of multilateral or coalitional bargaining with more

than two players. See, for instance, Chatterjee, Dutta, Ray, and Sengupta (1993); Merlo and Wilson (1995);
Krishna and Serrano (1996); Chae and Yang (1994) (c.f. Osborne and Rubinstein (1994); Muthoo (1999)).
We restrict attention to bilateral surplus division, as side payments among firms on the same side of the
market (or between firms without a contractual relationship) would generally violate antitrust laws.

3There is also a literature on bargaining over wages between many workers and a single firm, with profits
only accruing to the firm side (Stole and Zweibel, 1996; Westermark, 2003).

4The Federal Communication Commission used a bargaining model similar to that analyzed in this paper
in its analysis of the Comcast-NBC merger (Rogerson, 2013) and in recent hospital merger cases (Farrell,
Balan, Brand, and Wendling, 2011). Also, in a recent ruling in a restraint of trade case in sports broadcasting,
Judge Shira Scheindlin’s opinion heavily referenced the Crawford and Yurukoglu (2012) bargaining framework
as an appropriate way to consider competition in this sector (c.f. Thomas Laumann v National Hockey League
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The theoretical and applied literatures have proceeded in different directions. In order to

derive meaningful predictions, the theoretical literature has primarily focused on evaluating

the equilibrium properties of network games, and has often assumed a simple underlying

structure to payoffs: e.g., some papers assume that the value of an agreement between two

firms is independent of agreements formed by other parties; other papers allow for external-

ities but assume specific functional forms. These simplifications have allowed the theoretical

literature to develop analytically tractable models for complex network environments. In

contrast, the applied literature has emphasized the presence of general forms of interde-

pendencies and externalities across firms and agreements, as they are often fundamental to

applied questions in bilateral oligopoly environments. For instance, hospital mergers may

raise prices in a bargaining context because the loss to an insurance company from removing

multiple hospitals is worse than the sum of the losses from removing individual hospitals

(Capps, Dranove, and Satterthwaite, 2003); however, a bargaining model without interde-

pendencies would typically rule out a price increase following a merger. Moreover, the pattern

of interdependencies in many settings depends on the rich heterogeneity frequently observed

in firm and consumer characteristics, and often does not lend itself to being summarized by

simple functional forms.

To tractably and feasibly analyze the division of surplus in settings with interdependent

payoffs, the applied literature has leveraged the relatively simple solution concept proposed

by Horn and Wolinsky (1988) (used originally to study horizontal merger incentives for a

downstream duopoly with an upstream monopolist supplier). This bargaining solution is a

set of transfer prices between upstream and downstream firms where the price negotiated

between any pair of firms is the Nash bargaining solution for that pair given that all other

pairs reach agreement. Because this solution can be cast as nesting separate bilateral Nash

bargaining problems within a Nash equilibrium to a game played among all pairs of firms,

we refer to it as the “Nash-in-Nash” bargaining solution. The Nash-in-Nash solution has the

benefit of providing easily computable payments in complicated environments with external-

ities and interdependent payoffs. It also implies that negotiated prices are based on marginal

valuations of relationships, which fits well with classical price theory. Yet, the Nash-in-Nash

solution has been criticized by some as an ad hoc solution that nests a cooperative game

theory concept of Nash bargaining within a non-cooperative Nash equilibrium. Though non-

cooperative microfoundations for Nash-in-Nash have been previously developed, all to our

knowledge have required that firms not use all the information that may be at their disposal

at any point in time; i.e., they often assume that firms involved in multiple bargains use

(J. Scheindlin, S.D.N.Y. 2015 12-cv-1817 Doc. 431)).
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“separate representatives” who cannot communicate with one another for each bargain.5

The purpose of this paper is to provide support for the Nash-in-Nash solution as a

viable surplus division rule in the applied analysis of bilateral oligopoly by specifying a

non-cooperative microfoundation that does not require firms to behave independently (or

“schizophrenically”) across bargains. We develop a simple extensive form bargaining game

that extends the classic Rubinstein (1982) model to the bilateral oligopoly case. Focusing

on cases where there are gains from trade between every pair of firms, we prove two main

results. The first result provides a necessary and sufficient complementarity condition—given

that all other agreements form, the benefit of having any set of agreements exceeds the sum

of the gains from having each individual agreement—for there to exist an equilibrium of

our game with immediate agreement between all firms, and negotiated prices equivalent to

those in Rubinstein (1982) for each pair of firms (given that all other firms reach agreement);

furthermore, these prices converge to the Nash-in-Nash solution as the time between offers

goes to zero. The second result provides stronger conditions on the value of adding additional

agreements that are sufficient for these equilibrium prices to be unique. Importantly, our

uniqueness result does not rely on assuming stationary strategies (e.g., as with refinements

such as Markov Perfect equilibrium); instead, we leverage the simultaneity of actions within a

period among all upstream or downstream firms, and a restriction on firms’ beliefs following

off-equilibrium deviations.

We believe that our work has three general takeaways. First, our finding that it is possible

to extend the Rubinstein (1982) non-cooperative foundation for the Nash bargaining solution

to a setting with multiple upstream and downstream firms shows that the Nash-in-Nash so-

lution may be a reasonable solution concept with which to examine bilateral oligopoly, thus

providing a microfoundation for applied models that use Nash-in-Nash. Second, our equi-

librium existence result highlights when Nash-in-Nash is an appropriate solution concept.

Specifically, we believe that it is appropriate for economic problems with declining returns

from additional agreements, but perhaps not for other environments (e.g., with strong com-

plementarities across agreements).6 In other cases, one might consider models based on

average payoffs, such as Myerson-Shapley values.7 Finally, our uniqueness result, proven

5For instance, Crawford and Yurukoglu (2012) sketch a non-cooperative extensive form game generating
this solution, writing: “Each distributor and each conglomerate sends separate representatives to each meet-
ing. Once negotiations start, representatives of the same firm do not coordinate with each other. We view
this absence of informational asymmetries as a weakness of the bargaining model,” (p. 659). Appendix A
provides a formal analysis of this type of model. See also Chipty and Snyder (1999) (footnote 10) and Inderst
and Montez (2014) (Section 4.2).

6While we have not proved that other extensive form models cannot allow for a credible Nash-in-Nash
representation with complementarities, we view our representation as the most natural representation of
Nash-in-Nash, because it generalizes the Rubinstein (1982) model.

7De Fontenay and Gans (2013) provide an extensive-form representation for Myerson-Shapley values.
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without restricting attention to stationary strategies, suggests that Nash-in-Nash may be a

relatively robust solution within certain settings. We thus believe that our results may serve

as a launching point for further development of the theoretical bargaining literature with

more complex interdependencies.

Overview. We now briefly discuss additional details of our model, results and proofs. Our

extensive form game is a natural extension of Rubinstein (1982) with multiple “upstream”

and “downstream” players—from now on “firms.” In odd periods, each downstream firm

makes simultaneous private offers to each upstream firm with which it has not yet formed

an agreement; each upstream firm then accepts or rejects any subset of its offers. In even

periods, roles are reversed, with upstream firms making private offers and downstream firms

accepting or rejecting them. If an offer is accepted, a payment is made between the two

firms and an agreement forms between the two firms.8 At the end of each period, the set (or

“network”) of agreements that have been formed is observed by all firms, and upstream and

downstream firms earn flow profits. These profits, assumed to be a primitive of the analysis,

are a function of the entire set of agreements formed up to that point, and allow for flexible

interdependencies across agreements. Crucially, our model admits the possibility that a firm

can jointly deviate across multiple negotiations and hence optimally respond to information

acquired from one of its negotiations in others in which it is engaged.

Our game has imperfect information since offers are private within a period, and any

given firm does not see offers that involve solely other firms. We place restrictions on firm

beliefs following the observation of an off-equilibrium offer by employing Perfect Bayesian

Equilibrium with passive beliefs as our solution concept. Passive beliefs implies that a firm

i, upon receiving an off-equilibrium offer from firm j, assumes that j and all other firms have

still made equilibrium offers to their other contracting partners. This solution concept has

been widely used and employed in the vertical contracting literature to analyze similar types

of problems (Hart and Tirole (1990), McAfee and Schwartz (1994); c.f. Whinston (2006)).

For our analysis, we focus on settings where there are gains from trade from all bilateral

agreements between upstream and downstream firms given that all other agreements form.

The additional sufficient and necessary condition for the first of our two main results—that

there exists a passive-belief equilibrium to our game with negotiated prices that converge to

the Nash-in-Nash prices as the time between offers shrinks—is that the marginal contribution

to each firm from any set of agreements is no less than the sum of the marginal contributions

8We restrict our analysis to the case where the prices are lump-sum payments: e.g., if downstream
firms engage in price competition for consumers, we assume that the negotiated prices with upstream firms
represent fixed fees so that only the presence of agreements, but not the negotiated prices, affect the value
of other agreements.
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from each individual agreement within that set. We call this assumption weak conditional

declining marginal contribution (CDMC). If weak CDMC is violated, then there will be a

gain to a firm from dropping multiple agreements. The second of our two main results—

that equilibrium prices are unique—relies on stronger assumptions on the declining marginal

contributions of agreements and nature of externalities across agreements.9

While our proof of existence is relatively straightforward, we view our proof of uniqueness

as our primary technical contribution. We leverage induction on the set of agreements formed

at any point in time by relying on (i) the fact that what we refer to as “Rubinstein prices”

between firms makes a firm indifferent between accepting an offer and rejecting it (with

a counterproposal in the next period), and (ii) the feature that multiple agreements form

simultaneously.

Specifically, our uniqueness proof proceeds by induction on the set of agreements which

have not yet been formed at some point in time (which we call “open” agreements). The

key step is proving that, under the inductive hypothesis that any subgame with fewer open

agreements results in immediate agreement at Rubinstein prices, any given subgame also has

immediate agreement at Rubinstein prices. Relying on induction thus allows us to reduce

the problem in cases where other offers are accepted even if a firm rejects a given offer by

recursively applying known payoffs upon rejection. The base case, of one open agreement,

follows directly from Rubinstein (1982) as our model in this case is identical.

Proving the result for subgames involving multiple firms with open agreements requires

ruling out equilibria with agreements that are not at Rubinstein prices or that do not occur

simultaneously. Using passive beliefs and a CDMC assumption, we show that if a pair does

not reach an agreement when other agreements form, one of the firms has the incentive to

“pull up” that agreement to the current period since, by induction, the agreement will other-

wise form in the following period at Rubinstein prices. The CDMC assumption ensures that

such a deviation is surplus-increasing as it implies that the value of an agreement when all

other agreements have not yet been formed is weakly higher than the value of that agreement

when all other agreements have been formed (where the latter governs the determination of

Rubinstein prices). Having shown that all agreements form simultaneously, we then show

that every equilibrium must make each receiving firm marginal between accepting all offers

and rejecting exactly one—which is exactly the condition from Rubinstein, implying that

agreements form at Rubinstein prices (and converge to Nash-in-Nash prices). We then use

assumptions that ensure that the full set of agreements is profitable to prove the immediacy

of all agreements.

9Appendix E provides counterexamples where weak CDMC—though not the additional assumptions—
hold and where the equilibrium prices are not unique.
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Proving our result when the set of open agreements only involves one firm on one side

of the market and multiple firms on the other—e.g., a single downstream firm and many

upstream firms—is the most involved.The reason for this is that in a period when the single

firm is receiving offers, it may reject all offers that it receives; as the set of open agreements

remains the same, our induction argument thus does not apply in the following subgame.

Instead, by using a type of “exploding offers” argument as in Rubinstein (1982)—i.e., where

any rejection must be met with a future credible gain in order to occur in equilibrium—we

are able to find lower bounds on the prices that can be agreed upon in equilibrium. We

then leverage these bounds to show that agreement must be simultaneous and at Rubinstein

prices.

The remainder of our paper is organized as follows. Section 2 describes our extensive

form bargaining model and our equilibrium concept. Section 3 provides our assumptions

and results for existence of equilibrium. Section 4 provides our assumptions and results for

uniqueness of equilibrium. Section 5 concludes.

2 Model

Consider the negotiations between N upstream firms, U1, U2, . . . , UN , and M downstream

firms, D1, D2, . . . , DM . Let G represent the set of agreements between all firms that can

be formed.10 We only permit agreements to be formed between upstream and downstream

firms and not between firms on the same “side” of the market.11 This implies that the

set of agreements formed can be represented by a bipartite network between upstream and

downstream firms. Denote an agreement between Ui and Dj as ij; the set of potential

agreements that Ui can form as GUi ; and the set of agreements that Dj can form as GDj . For

any subset of agreements A ⊆ G, let AD
j ≡ A ∩ GDj denote the set of agreements in A that

involve firm Dj, and let AD
−j ≡ A \ AD

j denote the set of all agreements in A that do not

involve Dj. Define AU
i and AU

−i analogously.

We take as primitives profit functions {πU
i (A)}∀i=1,...,N,A⊆G and {πD

j (A)}∀j=1,...,M,A⊆G,

which represent the surpluses realized by upstream and downstream firms for a set or “net-

work” of agreements that have been formed at any point in time. Importantly, profits from

10A model that determines the set the agreements that will be formed is outside the scope of this paper.
In the vein of Lee and Fong (2013), there may be a prior network formation game that leads to a set of
agreements G being feasible. This paper only concerns itself with the transfers given G.

11In many market settings, contractual agreements between two firms on the same side of the market
can be interpreted as collusion and hence constitute per se antitrust violations. Alternatively, agreements
between two firms on the same side of the market can be viewed as a horizontal merger, in which case our
analysis would treat those merged firms as one entity. We do not explicitly model the determination of such
mergers in this paper.
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an agreement may depend on the set of other agreements formed; this allows for interde-

pendencies and externalities in profits across agreements. We assume that each upstream

firm Ui and downstream firm Dj negotiate over a price pij, which represents the lump-sum

payment made from Dj to Ui for forming an agreement. E.g., in the health care example, an

agreement would represent a hospital joining an insurer’s network and serving its patients.

Because we are assuming prices are lump-sum, surplus to other parties depends on the set

of agreements formed but not on the negotiated prices.12

We model a dynamic game with infinitely many discrete periods. Periods are indexed

t = 1, 2, 3, . . ., and the time between periods is Λ. Total payoffs (profits and prices) for each

firm are discounted. The discount factors between periods for an upstream and a downstream

firm are represented by δi,U ≡ exp(−ri,UΛ) and δi,D ≡ exp(−ri,DΛ) respectively.13

The game begins in period t0 ≥ 1 with no agreements formed: i.e., all agreements

are “open.” In odd periods, each downstream firm Dj simultaneously makes private offers

{pij}ij∈GDj to each Ui with which it does not yet have an agreement; each upstream firm

Ui then simultaneously accepts or rejects any offers it receives. In even periods, each Ui

simultaneously makes private offers {pij}ij∈GUi to downstream firms with which it does not

yet have an agreement; each Dj then simultaneously accepts or rejects any offers that it

receives. If Dj accepts an offer from Ui, or Ui accepts an offer from Dj, then an agreement

is formed between two firms, and those two firms remain “linked” with one another for the

rest of the game. Each Ui receives its payment from Dj, pij, immediately in the period in

which an agreement is formed.

We assume that within a period, a firm only observes the set of contracts that it offers,

or that are offered to it. However, at the end of any period, we assume that all firms observe

which firms (if any) have come to an agreement. This implies that at the beginning of each

period, every firm observes a common history of play ht which contains the sequence of all

actions (offers and acceptance/rejections) that have been made by every firm in each pre-

ceding period.14 At the end of each period (after lump sum payments from new agreements

12Suppose instead that profits to each firm depends on not only the set of agreements formed by all agents,
G, but also the set of prices agreed upon, p ≡ {pij}ij∈G : i.e., profits to each Dj are given by πj(G,p). This
would be the case if, for instance, negotiated prices represented wholesale prices or linear fee contracts, and
downstream firms engaged in price competition with one another. Dealing with bargaining in a context
without transferable utility is difficult. Indeed, to our knowledge, this issue has not been resolved in the
context of a two player, Rubinstein (1982) bargaining game, let alone the environment considered in this
paper with multiple upstream and downstream firms.

13The model can also be recast without discounting but with an exogenous probability of breakdown
occurring after the rejection of any offer as in Binmore, Rubinstein, and Wolinsky (1986).

14Institutionally, the contracted price between Ui and Dj will generally not be observed by Uk, k 6= i,
either for competitive or antitrust concerns. Relaxing this assumption and allowing for prices or offered
contracts to be observed does not change our results, as contracted prices here do not affect the surplus to
be divided. All our results will hold as long as the identity of firms reaching an agreement is publicly known
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Figure 1: Example: Market with Three Agreements Already Formed

U1OO
p11

U2OO
p22

aa

p23

U3

D1 D2 D3

have been made), each upstream firm Ui and downstream firm Dj receives a flow payment

equal to (1− δi,U)πU
i (A) or (1− δj,D)πD

j (A) (respectively), where A is the set of agreements

that have been formed up to that point in time.

Example. Figure 1 provides a graphical representation of a potential market with 3

upstream and 3 downstream firms. Assume that in period 1, the set of agreements A1 ≡
{11, 22, 23} form. This implies that in period 1, that U1 receives a payment p11 from D1,

and U2 receives p22 from D2 and p23 from D3; in the same period, each downstream firm

Dj receives flow profits (1 − δj,D)πD
j (A1); and each upstream firm Ui receives flow profits

(1 − δi,U)πU
i (A1). In period 2, if D1 forms an agreement with U2 (and that is the only

agreement that is formed), D1 would then pay U2 some payment p21, and all firms would

earn flow profits as a function of the new realized network of agreements, A2 ≡ A1 ∪{12}.15

Two points about our model are worth noting. First, while the flow profits continue to

accrue to all firms forever, the actions in the game stop at the point of the last agreement.

Thus, the game can also be formulated to end in the period of last agreement, with a lump-

sum payment to each upstream Ui in this period of (1− δi,U)πU
i (G)/(1− δi,U) = πU

i (G) (and

analogously for downstream firms). Second, if M = N = 1, our game is equivalent to the

Rubinstein (1982) alternating offers model.

2.1 Equilibrium Concept

Rubinstein (1982) considers subgame perfect equilibria of his model. Because our model has

imperfect information (a firm only observes offers within a period that it makes or receives),

at the end of each period.
15We express profits in terms of flows, since we believe this is a more accurate depiction of many markets.

In contrast, profits are paid as a lump sum in the Rubinstein model. However, our formulation is equivalent
to D1 receiving the incremental profits as a lump sum (e.g., if agreements A were formed in period 1 and
agreements B were formed in period 2, then D1 would receive πD1 (A) in period 1 and πD1 (A ∪ B) − πD1 (A)
in period 2. We avoid payments between downstream and upstream firms other than lump sum transfers.
Otherwise, since each party has a potentially different discount rate, loans could be made between upstream
and downstream agents that lead to unbounded increases in the utilities of both parties.
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our solution concept is perfect Bayesian equilibrium. However, perfect Bayesian equilibrium

does not place restrictions on beliefs for information sets that are not reached in equilibrium.

As an example, it does not restrict beliefs of an upstream firm Ui over offers received by other

firms upon receiving an out-of-equilibrium price offer from some Dj. Following the literature

on vertical contracting (Hart and Tirole, 1990; McAfee and Schwartz, 1994; Segal, 1999),

we assume “passive beliefs”: i.e., each firm Ui assumes that other firms receive equilibrium

offers even when it observes off-equilibrium offers from Dj. Henceforth, when we refer to an

“equilibrium” of this game, we are referring to a perfect Bayesian equilibrium with passive

beliefs.

2.2 Nash-in-Nash and Rubinstein Prices

For exposition, it will be useful to define ∆πU
i (A,B) ≡ πU

i (A)− πU
i (A \ B), for B ⊆ A ⊆ G.

This term is the increase in profits to Ui of adding agreements in B to the set of agreements

A \ B. We refer to ∆πU
i (A,B) as the “marginal contribution” of agreements B given that

agreements A have been formed. Correspondingly, let ∆πD
j (A,B) ≡ πD

j (A)− πD
j (A \ B).

We now define Nash-in-Nash and candidate equilibrium prices for our game. For a given

set of agreements G and set of bargaining weights {bi,U}∀i and {bj,D}∀j, Nash-in-Nash prices

are a vector of prices {pNash
ij }i∈1,...,N,j∈1,...,M such that:

pNash
ij = arg max

p
[πD

j (G)− πD
j (G \ {ij})− p]bj,D × [πU

i (G)− πU
i (G \ {ij}) + p]bi,U

=
bi,U∆πD

j (G, {ij})− bj,D∆πU
i (G, {ij})

bi,U + bj,D
,∀i = 1, . . . , N, j = 1, . . . ,M.

In words, the Nash-in-Nash payoff pNash
ij maximizes the Nash bargaining product between

Dj and Ui given all other agreements in G form. The terms bi,U and bj,D are the bargaining

weights of the Nash bargaining problem, which determine the portion of the surplus accruing

to each firm.

We define “Rubinstein prices” as follows:

pRij,U =
(1− δj,D)∆πD

j (G, {ij})− δj,D(1− δi,U)∆πU
i (G, {ij})

1− δi,Uδj,D

pRij,D =
δi,U(1− δj,D)∆πD

j (G, {ij})− (1− δi,U)∆πU
i (G, {ij})

1− δi,Uδj,D
.

These will be the candidate even and odd offers made in equilibrium by firms; when M =

N = 1, they correspond to the Rubinstein (1982) offers made in alternating periods. As

in Binmore, Rubinstein, and Wolinsky (1986), these candidate prices also converge to the

10



Nash-in-Nash prices as the time between offers becomes arbitrarily small:

Lemma 2.1 limΛ→0 p
R
ij,U = limΛ→0 p

R
ij,D = pNash

ij , where bi,U = rj,D/(ri,U + rj,D) and bj,D =

ri,U/(ri,U + rj,D).

(All proofs are contained in the appendices.)

There is one property of the Rubinstein prices that will prove crucial in our proofs:

Rubinstein prices make the receiving agent indifferent between accepting its offer or waiting

until the next period and having its counteroffer accepted given that all other agreements

form. In our case, in an even (upstream-proposing) period, this means that a downstream

firm is indifferent between accepting and waiting, or:

(1− δj,D)∆πD
j (G, {ij})︸ ︷︷ ︸

Loss in profit from waiting

= pRij,U − δj,DpRij,D︸ ︷︷ ︸
Decrease in transfer payment from waiting

. (1)

Correspondingly, for an upstream firm in odd periods,

(1− δi,U)∆πU
i (G, {ij}) = δi,Up

R
ij,U − pRij,D. (2)

2.3 Gains from Trade

For our analysis, we will assume that the joint surplus created from any Ui and Dj coming

to an agreement (given that all other agreements have been formed) is positive:

Assumption 2.2 (A.GFT: Gains From Trade)

∆πU
i (G, {ij}) + ∆πD

j (G, {ij}) > 0 ∀i, j.

Assumption A.GFT implies that each pair of firms has an incentive to keep an agreement

given that all other agreements form. We believe that it is natural in many settings of

interest as without A.GFT, firms may prefer to drop any agreements in which there are

losses from trade. Indeed, this assumption for two parties is fundamental for the Nash

bargaining solution to be defined.

Some manipulations of equations (1) and (2) together with A.GFT imply that prices in

even (upstream-proposing) periods are higher than in odd periods, and that the value from

agreement to each party is higher than prices paid or received:

∆πD
j (G, {ij}) > pRij,U > pRij,D,

∆πU
i (G, {ij}) > −pRij,D > −pRij,U .

(3)
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(Lemma D.1 in Appendix D provides a proof of this result.)

An Alternative Model with Separate Representatives. In Appendix A, we also

formally analyze an alternate extensive-form model in which firms appoint separate represen-

tatives for each bilateral bargain; this model is based on previous microfoundations discussed

in Section 1 (and in papers such as Crawford and Yurukoglu (2012)). We prove that A.GFT

is sufficient for there to exist an equilibrium with prices that converge to Nash-in-Nash prices

as the time between offers goes to 0. However, we view this alternative model as unsatisfy-

ing, as it requires that any firm does not leverage information and cannot coordinate across

different concurrent negotiations.

3 Existence of Equilibrium

Our first main result proves that there exists an equilibrium of the bargaining game with im-

mediate agreement between all firms at Rubinstein prices. The result relies on the following

necessary and sufficient condition:

Assumption 3.1 (A.WCDMC: Weak Conditional Decreasing Marginal Contribution)

For all i = 1, . . . , N and all A ⊆ GUi ,

∆πU
i (G,A) ≥

∑
ik∈A

∆πU
i (G, {ik}),

and, for all j = 1, . . . ,M and all A ⊆ GDj ,

∆πD
j (G,A) ≥

∑
hj∈A

∆πD
j (G, {hj}).

A.WCDMC states that the marginal contribution of any set of agreements to a firm is weakly

greater than the sum of the marginal contributions of each individual agreement within the

set. Although A.WCDMC rules out certain cases of agreements having lower inframarginal

values (when certain other agreements are not formed) than marginal values (when all other

agreements form), we label it “weak” as it does not rule out all of these cases. While we

will impose assumptions that are strictly stronger than A.WCDMC to prove uniqueness,

A.WCDMC is the minimum assumption needed for existence with our candidate strategies.

Note that A.WCDMC is satisfied by many of the applications of the Nash-in-Nash so-

lution concept. For instance, in Capps, Dranove, and Satterthwaite (2003), adding another

hospital to the choice set increases surplus, but this increase in surplus is decreasing in the
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size of the network.16 Similarly, a declining contribution assumption has also been used in

the applied theory literature (e.g., Westermark (2003) in a setting with one firm bargaining

with many workers).

We now state our existence result:

Theorem 3.2 (Existence) Assume A.GFT. Then there exists an equilibrium of the bar-

gaining game beginning at period t0 for which:

(a) there is immediate agreement between all agents at every node;

(b) for all i and j, equilibrium prices are p∗ij = pRij,D at each odd period node and p∗ij = pRij,U
at each even period node; and

(c) p∗ij → pNash
ij ∀i,j as Λ→ 0 regardless of whether t0 is odd or even, where bi,U = rj,D/(ri,U+

rj,D) and bj,D = ri,U/(ri,U + rj,D);

if and only if A.WCDMC holds.

The proof of Theorem 3.2, contained in Appendix C, checks that the equilibrium de-

scribed is robust to one-shot deviations by any firm, and that if A.WCDMC does not hold,

there exists a profitable deviation by a firm. In particular, when A.WCDMC does not hold

for a particular firm and subset of agreements, that firm—when deciding to accept or reject

that set of offers at Rubinstein prices—would find it profitable to reject those offers.

Discussion. The necessity of A.WCDMC for our equilibrium to exist is best illustrated

through counterexamples. Consider first a counterexample where there are strong comple-

mentarities across agreements so that A.WCDMC does not hold: assume that there are

three upstream “parts suppliers” that each supply a necessary component for production

by a downstream “automobile manufacturer.” As the marginal contribution to total surplus

of each upstream firm is the total surplus, the Nash-in-Nash prices with equal bargaining

weights would give each upstream firm 50% of some “total” surplus. But, this would then

leave the downstream firm with a negative payoff since it pays 150% of the total surplus to

16 Capps, Dranove, and Satterthwaite (2003) show that the profit for an insurer is related to the ex ante
surplus received by enrollees from the insurer’s network of hospitals. For a logit model, the total surplus of

the insurer’s network H can be expressed as
∑
i log

(∑
j∈H uij

)
where uij is the exponentiated utility (net of

an i.i.d. Type I extreme value error) that patient i receives from visiting hospital j and the ‘i’ sum is over the
patients of the insurer. The marginal contribution of some hospital k /∈ H to the insurer’s network—denoted

willingness-to-pay—is thus WTP =
∑
i log

(
uik +

∑
j∈H uij

)
−∑i log

(∑
j∈H uij

)
, which can be shown to

be decreasing as we add elements to H. The diminishing returns property also holds more generally, e.g.
with random coefficients logit models (Berry, Levinsohn, and Pakes, 1995).
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the upstream suppliers, implying that the downstream firm would not wish to reach agree-

ment at these prices with all firms. In this model then, it is implausible that transfers will

be based on marginal contributions. Either no agreement will be formed, or surplus division

may be based on some other concept, such as average valuation, as in Myerson-Shapley

Values.

Now consider a different counterexample with two upstream firms, and a single down-

stream firm that still earns 45% of some “total” surplus if an agreement if formed with either

upstream firm, and earns the full surplus if agreements form with both. As before, there

are complementarities across agreements (though weaker), and A.WCDMC does not hold.

As opposed to the first counterexample, the downstream firm would rather reach agreement

at Nash-in-Nash prices of 27.5% of the full surplus with each upstream firm then not reach

agreement at all (as it would obtain positive surplus as opposed to none). At our candidate

equilibrium from (2), in any even (upstream-proposing) period, the downstream firm will

be exactly indifferent between (a) accepting both offers at prices pRij,U with each Ui and (b)

accepting one offer at pRij,U in this period, and rejecting the other (which is formed in the

following period at pRij,D); however, the downstream firm will prefer instead to reject both

offers and wait until the following period and have agreements formed at pRij,D with both

upstream firms, which “breaks” our candidate equilibrium.17

In both of these examples, if A.WCDMC held, such deviations would not be prof-

itable. To see this, without loss of generality (WLOG), consider any upstream firm Ui

in an odd (downstream-proposing) period and any set of agreements A ⊆ GUi (that involve

Ui). A.WCDMC implies that the gain to Ui from accepting the agreements in A given that

all other agreements are accepted is weakly greater than rejecting these offers, and waiting

one period to form these agreements (following the candidate equilibrium strategies):

(1− δi,U)∆πU
i (G,A) +

∑
ik∈A

[
pRik,D − δi,UpRik,U

]
≥
∑
ik∈A

[
(1− δi,U)∆πU

i (G, {ik}) + pRik,D − δi,UpRik,U
]

= 0.
(4)

as the inequality follows from A.WCDMC and the equality follows from (2). A similar in-

equality can be derived to show that each downstream firm Dj in even (upstream-proposing)

periods would not wish to reject any subset of offers that it receives.

17In this case, although it still may be possible to exposit a reasonable extensive-form model where pay-
ments between firms are based on marginal contributions, we believe that surplus division rules based only on
marginal contributions (as opposed to perhaps average contributions) may be less realistic in environments
with complementarities.
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4 Uniqueness of Equilibrium Prices

Under stronger assumptions than A.WCDMC, we prove in this section our second main

result: every perfect Bayesian equilibrium with passive beliefs yields the same equilibrium

outcomes described in Theorem 3.2 with immediate agreement between all firms at Rubin-

stein prices. If there are multiple equilibria of this game, they will only vary in prescribed

behavior off the equilibrium path, and they will all result in the same outcome on the equi-

librium path.18

We provide two sets of sufficient conditions that we use to prove our uniqueness result.

We present both as the first set employs stronger conditions on payoffs (that are easier to

understand), while the second set delineates more tightly what we use to prove uniqueness.

Condition Set #1 (A.CDMC, A.LEXT): Our first set of conditions includes strength-

ening A.WCDMC and limiting externalities so that each agent is unaffected by agreements

that do not involve it:

Assumption 4.1 (A.CDMC: Conditional Decreasing Marginal Contribution)

∆πU
i (A, {ij}) ≥ ∆πU

i (G, {ij}) ∀ij ∈ A,∀A ⊆ G,
∆πD

j (A, {ij}) ≥ ∆πD
j (G, {ij}) ∀ij ∈ A, ∀A ⊆ G.

Assumption 4.2 (A.LEXT: Limited Externalities)

πU
i (A ∪ B) = πU

i (A ∪ B′) ∀i; ∀A ⊆ GUi ; ∀B,B′ ⊆ GU−i,
πD
j (A ∪ B) = πD

j (A ∪ B′) ∀j; ∀A ⊆ GDj ; ∀B,B′ ⊆ GD−j.

where GU−i ≡ G \ GUi and GD−j ≡ G \ GDj .

A.CDMC states that the marginal contribution of any agreement to a firm is weakly

lower when all agreements form than if any subset of agreements form. A.LEXT states that

a firm’s profits only depend on its own formed agreements.

It is straightforward to prove that A.CDMC implies A.WCDMC (see Lemma D.2). Unlike

A.WCDMC, A.CDMC rules out every case where adding an agreement has a lower value at

an inframarginal point to at the point where all other agreements form. To see the difference,

consider an example with a single downstream firm and three upstream firms. Suppose

18Appendix E provides an example where there are multiple equilibria that vary in off-equilibrium-path
actions, but coincide along the equilibrium path.
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that the downstream firm earns 25% of maximum surplus with one agreement, 70% with

two agreements, and full surplus with all three agreements formed. The example violates

A.CDMC: the inframarginal benefit to the downstream firm from a single agreement when

no agreements have been formed (25%) is less than the marginal benefit when all agreements

have been formed (30%). However, the example does not violate A.WCDMC: the marginal

benefit of adding two (75%) or three (100%) agreements exceeds the sum of the individual

marginal benefits from these agreements (60% and 90%, respectively) at the full network.

Condition Set #2 (A.SCDMC, A.LNEXT, A.ASR): Our second set of conditions

uses a stronger assumption than A.CDMC on the marginal contribution of agreements, limits

the extent to which agreements involving other firms can harm a firm’s profits, and imposes

an equilibrium refinement.

Assumption 4.3 (A.SCDMC: Strong Conditional Decreasing Marginal Contribution)

πU
i (A ∪ B ∪ {ij})− πU

i (A′ ∪ B) ≥ ∆πU
i (G, {ij}) ∀ij ∈ G;B ⊆ GD−j;A,A′ ⊆ GDj \ {ij},

πD
j (A ∪ B ∪ {ij})− πD

j (A′ ∪ B) ≥ ∆πD
j (G, {ij}) ∀ij ∈ G;B ⊆ GU−i;A,A′ ⊆ GUi \ {ij}.

Assumption 4.4 (A.LNEXT: Limited Negative Externalities) ∀C ⊆ G, ∃ij ∈ C s.t.:

∆πU
i (G, C) ≥

∑
ik∈CUi

∆πU
i (G, {ik}),

∆πD
j (G, C) ≥

∑
hj∈CDj

∆πD
j (G, {hj}).

Assumption 4.5 (A.ASR: Acceptance Strategies Refinement) We restrict attention

to equilibria in which: if any firm, given the strategies of all other firms, is weakly willing to

accept an offer (holding fixed its other prescribed actions), it accepts that offer.

The first of these conditions, A.SCDMC, states that, at the full network, the marginal

contribution to any Ui from forming an agreement with any Dj is no greater than the

contribution to Ui from forming an agreement with Dj at any subnetwork, even if Dj (and

only Dj) were to change any of its other agreements. We state a similar condition for the

marginal contribution to any downstream firm from an agreement with any upstream firm.

It is straightforward to prove that A.SCDMC implies A.CDMC (and hence A.WCDMC; see

Lemma D.3).
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The second of these conditions, A.LNEXT, states that for any subset of agreements C,
there exists a pair Ui and Dj, ij ∈ C, such that for each of them, the gains from having all

agreements in C form (including those that do not involve either of them) is at least as great

as the sums of marginal contribution of each individual agreement that does involve them.

The statement of this assumption is similar to that of A.WCDMC, except that the subsets

considered may also include agreements that do not involve the firm in question.

We refer to A.LNEXT as limiting “negative externalities” since it is equivalent to stating

that for any subset C, there exists a Ui such that any harm to Ui from agreements in C that

do not involve Ui forming is not too large (a similar condition holds for some downstream

firm Dj). To see why A.LNEXT implies this, note first that ∆πU
i (G, C) = ∆πU

i (G, CU−i) +

∆πU
i (G \ CU−i, CUi ). Restating the condition from A.LNEXT yields:

∆πU
i (G, CU−i) ≥

∑
ik∈CUi

∆πU
i (G, {ik})

−∆πU
i (G \ CU−i, CUi ),

where the RHS of the inequality can be shown to be negative by an application of A.CDMC.

Thus, A.LNEXT (with A.CDMC) implies that the change to Ui’s profits from agreements

in C that do not involve Ui (∆πU
i (G, CU−i)) is bounded below by some negative amount.

Finally, A.ASR rules out equilibria in which strategies prescribe a firm (given the strate-

gies of other firms and its other actions) rejecting an offer that it is indifferent over accepting

or rejecting.

We now state our uniqueness result:

Theorem 4.6 (Uniqueness) Assume A.GFT and either (i) A.CDMC and A.LEXT; or

(ii) A.SCDMC, A.LNEXT and A.ASR. Then every equilibrium of the bargaining game be-

ginning at t0 satisfies the conditions in Theorem 3.2, with immediate agreement at t0 for

all ij ∈ G at prices p∗ij = pRij,D (pRij,U) if t0 is odd (even), where p∗ij → pNash
ij as Λ → 0 and

bi,U = rj,D/(ri,U + rj,D) and bj,D = ri,U/(ri,U + rj,D).

4.1 Role of Assumptions

We now discuss intuitively how the additional assumptions contained in Condition Set #1

and #2 are used in the proof of Theorem 4.6 (which is outlined in the next subsection and

contained fully in Appendix D). Our proof relies on showing that any equilibrium of our

game must have all agreements formed simultaneously and immediately at Rubinstein prices.

We leverage A.SCDMC, or A.CDMC and A.LEXT, in proving that all agreements must

be formed simultaneously. To illustrate, consider an example with two upstream firms and
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two downstream firms where the first period is odd. Assume, by contradiction, that there

exists an equilibrium where only agreements between U1 and D1 and between U2 and D1

form in the first period (i.e., only agreements {11, 21} form). We argue that this cannot be

an equilibrium as D2 will find it profitable to make an out-of-equilibrium offer at Rubinstein

prices to U1 in the first period. First, we use A.CDMC (either assumed directly or implied

by A.SCDMC) to argue that U1 will accept such a deviation: by passive beliefs, U1 believes

that 22 will still not form in the first period, and A.CDMC implies that the inframarginal

benefit to U1 from forming an agreement with D2 when 22 is not formed is at least as high

as the marginal benefit when all agreements form (where this latter amount determines

the Rubinstein price; note that A.WCDMC is not sufficient to ensure this). Second, we

use A.SCDMC or A.LEXT to ensure that D2 will wish to engage in such a deviation. In

the current example, it could be the case that U1, upon receiving D2’s deviant offer in the

first period, would no longer form an agreement with D1 in the first period. A.SCDMC

implies that such a response by U1 would not deter D2 from making a deviant offer as the

inframarginal value to D2 from forming 12 is at least as great as the marginal value of

forming that agreement at the full network even if U1 were to change its other agreements;

A.LEXT, by eliminating externalities across agreements that do not involve D2, achieves the

same goal.

Next, we use assumptions A.ASR or A.LEXT to rule out equilibria where a proposing

firm receives a “worse” price than its Rubinstein price, due to an off-equilibrium threat by

the recipient firm to add or drop another offer over which it is indifferent in the event that

the proposing firm demands a better agreement.

Finally, we use A.LNEXT (either assumed or implied using A.LEXT) to prove that all

agreements form immediately. Suppose we are faced with a candidate equilibrium where

all agreements are simultaneous and form at Rubinstein prices, but there is (either finite

or infinite) delay. A.LNEXT implies that—given any set of open agreements—there is a

pair of firms for which the marginal contribution of all open agreements forming to each

firm is weakly higher than the marginal values of the firm’s own open agreements forming.

Consequently, there is a profitable deviation among this pair of firms that benefits from

immediate agreement, yielding a contradiction.

In Appendix E, we provide several examples to further illustrate the role of these assump-

tions. In particular, we provide a counterexample with immediate and complete agreement

where A.SCDMC and A.LEXT do not hold, and a firm receives a price different than the

Rubinstein price; however, in this counterexample, all prices still converge to the Nash-in-

Nash prices as Λ→ 0.19 We also provide a counterexample where A.SCDMC and A.LNEXT

19Whether A.GFT and A.WCDMC are sufficient to ensure that all equilibria in which all agreements form
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do not hold and there exists an equilibrium without any agreement ever forming.

Additional Remarks. A particular setting where both A.SCDMC and A.LEXT are

satisfied is when there are N ≥ 1 firms on one side of the market each with profits (net of

transfers) that are constant (e.g., zero), and only one firm on the other side of the market

with profits (net of transfers) satisfying A.CDMC. Indeed this is the setting considered by

Westermark (2003).

One example of A.LEXT holding is bargaining between a monopolist cable distributor

and many content providers using a model such as in Crawford and Yurukoglu (2012) with

lump-sum transfers instead of linear fees: since the content providers typically have zero

marginal costs of providing their channels to cable operators, their profits (net of transfers)

will typically not depend on the agreements of other channels.

Another example is a special case of negotiations between many hospitals and one man-

aged care organization (MCO), similar to the model used in Capps, Dranove, and Satterth-

waite (2003) (which is embedded in the models used by Gowrisankaran, Nevo, and Town

(2015) and Ho and Lee (2015)). Suppose that the hospital’s cost function has constant

marginal costs c, and can be given by C(q) = F + cq (where F is a fixed cost). Moreover,

suppose that the MCO reimburses hospitals for the marginal cost of treating each patient,

in addition to offering them lump-sum payments for joining their network. In this case, the

hospital’s profits will not depend on the agreements signed by other hospitals (thus satisfying

A.LEXT), and the MCO’s profits will generally satisfy A.CDMC (see footnote 16).

4.2 Sketch of Uniqueness Proof

We now sketch our proof of Theorem 4.6, with the full formal proof given in Appendix D.

Our proof is based on induction on the set of open agreements at any node of our game.

Specifically, our inductive hypothesis is that if there are C open agreements at any period

t and history of play, then any subgame following this node that begins with a subset of

open agreements B ⊂ C results in all agreements in B immediately forming at Rubinstein

prices. The heart of our uniqueness result is proving our inductive step, formally provided in

Proposition D.7, which states that if the induction hypothesis holds for any subgame with

C open agreements, then all agreements in C also form immediately at Rubinstein prices.

We separate the possible nodes of our game with N upstream firms and M downstream

firms into three distinct cases, and prove that our inductive step holds in each case. Figure 2

provides a graphical representation of the different types of nodes and the basis for our

immediately have prices that converge to the Nash-in-Nash prices is an open question.
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argument in each case. It also details where our assumptions are leveraged in our proof.

We now go through these three cases in turn.

4.2.1 Base Case: One Open Agreement (Proposition D.6)

If there is only one open agreement between some Ui and Dj (ij ∈ G) at period t and

A.GFT holds, Rubinstein (1982) proves that the unique equilibrium of this subgame involves

immediate agreement at Rubinstein prices (pRij,D if t is odd and pRij,U otherwise).

4.2.2 Multiple Upstream and Downstream Firms with Open Agreements

(Lemmas D.11 – D.13)

Although given our inductive structure the case with one firm on one side of the market and

multiple firms on the other side is formally proven first, the logic for the argument when

there are multiple upstream firms and multiple downstream firms with open agreements is

easier to understand. Thus, for exposition, we present this case first in the main text.

Assume now that there are C open agreements involving multiple upstream and multiple

downstream firms at period t0. Assume also that our inductive hypothesis holds, so that

any subsequent subgame beginning with fewer open agreements than C results in all open

agreements immediately forming at Rubinstein prices. Given these assumptions, we prove

the following three claims: (a) if any agreements form at period t, then all agreements form

at period t; (b) all agreements ij ∈ C form at Rubinstein prices; and (c) all agreements form

immediately at period t0.

(a) All agreements form simultaneously (if any form). We prove this statement

by contradiction. Consider a candidate equilibrium in which the first agreement in C is

formed (assuming that one is ever formed) at period t. Assume WLOG that t is an odd

(downstream-proposing) period.20 Suppose by contradiction that not all agreements in C
form at period t. By the inductive hypothesis, all agreements ij that are not formed at

period t form at period t+ 1 at prices pRij,U . Fix some ij and ab such that the ij agreement

is formed at period t + 1; the ab agreement is formed at period t; and i 6= a (where j may

or may not be the same as b). Such a pair of agreements must exist by the contradictory

assumption and the fact that there are multiple upstream firms without an agreement prior

to period t.

We now show that Dj has an incentive to pull up its agreement with Ui to period t.

First, we show that if Dj makes a deviant offer p̃ij,D at period t that is higher than pRij,D

20A symmetric argument, which we omit, would apply if t were an even (upstream-proposing) period.
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Figure 2: Diagram of Proof of Theorem 4.6
Figure 1: Diagram of Proof

1 upstream × 1 downstream
Proof from Rubinstein (1982)
(Proposition D.6)

Requires A.GFT only.

N upstream × 1 downstream
First agreement at odd
period (Lemma D.8)

Claim A – simultaneity:
Uses “pulled up” agreements.
Requires A.CDMC.

Claim B – p̂ij = pRij,D:

Uses threat of
postponing agreement.
Requires A.CDMC.

First agreement at even
period (Lemma D.9)

Claim A: p̂ij ≥ pRij,D:

Uses “explosion” argument.
Requires A.LEXT or A.ASR.

.

Claim B – simultaneity:
Uses “pulled up” agreements.
Requires A.SCDMC.

Claim C – p̂ij = pRij,U :
Requires A.SCDMC and
A.ASR or A.LEXT.

Immediacy of agreement
(Lemma D.10)

Uses proof from Lemma D.13

1 upstream × M downstream Symmetric to N× 1 case

N upstream × M downstream
First agreement at odd
period (Lemma D.11)

Claim A – simultaneity:
Uses “pulled up” agreements.
Requires A.SCDMC.

Claim B – p̂ij = pRij,D:

Uses threat of
postponing agreement.
Requires A.SCDMC and
A.ASR or A.LEXT.

First agreement at even
period (Lemma D.12)

Symmetric to odd period.

Immediacy of agreement
(Lemma D.13)

Uses “pulled up” agreements.
Requires A.SCDMC and
A.LNEXT.

Note: Downstream firms propose in odd periods and upstream firms propose in even periods. All

parts use A.GFT.
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but lower than pRij,D, then Ui will accept the offer. By the nature of Rubinstein prices, if all

agreements but ij form, then Ui is indifferent between receiving pRij,D at period t and pRij,U
at period t + 1. Although at period t, there are no assurances that all other agreements

form, A.CDMC states that the surplus to Ui from accepting Dj’s offer is no worse with

some inframarginal set of acceptances than when all other agreements form. Furthermore,

by passive beliefs, Ui believes that the ab agreement will still be formed at period t even if it

receives off-equilibrium offer p̃ij,D, which then leads it to believe (by the inductive hypothesis)

that if it were to reject this offer, it will form the ij agreement at period t + 1 for a price

pRij,U . Combining these arguments, it follows that Ui strictly prefers accepting p̃ij,D at period

t to waiting until t+ 1, and will accept the deviant offer from Dj.

Next, we show that Dj prefers to have p̃ij,D accepted by Ui at period t instead of having

this agreement formed at pRij,U at period t+ 1. Here, by the nature of the Rubinstein prices,

since Dj is the proposing firm at period t, it is strictly better off by paying pRij,D at period t

then by paying pRij,U at period t+ 1 if all other agreements form at period t. But A.CDMC

is not sufficient to ensure that Dj is better off when all other agreements are not formed:

it is possible that, when Ui receives its offer for p̃ij,D, it changes its other acceptances, in

turn harming Dj’s payoffs. To rule out this possibility, we employ the stronger assumption

A.SCDMC (either assumed directly or implied by A.CDMC and A.LEXT), which implies

that the inframarginal surplus to Dj from the ij agreement is no worse than when all other

agreements form, even when Ui is allowed to vary its agreements that do not involve Dj.

Thus, Dj has an incentive to deviate from our candidate equilibrium by offering p̃ij,D to

Ui at period t, which will be accepted. This leads to a contradiction, implying that if there

is an equilibrium in which an agreement is formed in any period, all agreements must be

formed in that period as well.

(b) All agreements form at Rubinstein prices. Assume again WLOG that the first

period in which an agreement in C is formed in a candidate equilibrium is an odd period.

Given 4.2.2(a), all agreements in C must form at period t in any such equilibrium. Again,

we proceed by contradiction.

Suppose first that there is an agreement ij ∈ C formed at a price less than pRij,D at period

t. By passive beliefs, Ui believes that upon rejecting this agreement and accepting all others,

ij will be the only open agreement at t + 1. By the nature of Rubinstein prices, Ui would

prefer to reject this offer as, by the inductive hypothesis, it will receive pRij,U in the next

period, which makes it strictly better off. This yields a contradiction.

Suppose next that there is an agreement ij formed at a price greater than pRij,D at period

t. In this case, we show that Dj has a profitable deviation by offering a slightly lower offer
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(that is still greater than pRij,D) to Ui instead. By the nature of the Rubinstein offers, such

a deviant offer will be accepted by Ui. However, it is possible that, following this deviation

by Dj, Ui rejects an offer from some downstream firm(s) Dk, k 6= j, since Ui is indifferent

between accepting all offers at prices {pRik,D}ik∈C at period t and rejecting any one. To rule

out the possibility that such a rejection by Ui harms Dj’s profits, we use either A.LEXT

(which implies that Dj’s profits do not depend on Ui’s other agreements) or A.ASR (which

implies that Ui will not reject an offer with another firm when indifferent). This deviation

is thus profitable for Dj (as it results in Dj paying Ui a strictly lower price), leading to a

contradiction.

Thus, if any agreements form in equilibrium, they must be at Rubinstein prices.

(c) All agreements form immediately. By 4.2.2(a) and 4.2.2(b), if any agreements

form in a candidate equilibrium, they must all form in the same period at Rubinstein prices.

We now show that if agreements do not happen immediately (or at all), the side that is

proposing has an incentive to “pull up” agreements to the current period.

Assume again WLOG that the first period t in the subgame with C open agreements

is odd. By contradiction, suppose that a candidate equilibrium has no accepted offers at

period t. A.LNEXT (which is assumed directly or implied by A.LEXT) implies that there

is a pair of firms Dj and Ui, ij ∈ C, in which both benefit from having all agreements in C
form at Rubinstein prices. Now consider a strategy by Dj to deviate by offering Ui a price

p̃ij,D that is higher than pRij,D but lower than pRij,U .

We first show that Ui would accept this deviant offer. If Ui rejects all offers including the

deviant offer, there are three potential possibilities for the resulting subgame: agreements in

C never form, or all agreements in C form in either a future even period or odd period. In

each of these cases, we show that Ui’s payoffs from each of these outcomes is strictly worse

than accepting the deviant offer (and possibly other offers in CUi ). The reason for this is first,

that A.CDMC implies that receiving the deviant offer at period t is beneficial relative to a

Rubinstein offer at period t+1 (similar to the argument in 4.2.2(a)); second, that A.LNEXT

ensures that delay is costly; and third, that the results of 4.2.2(b) show that firms cannot

wait and receive a better price in some future subgame. Finally, if Ui rejects the deviant

offer while accepting some other offers, then A.CDMC is sufficient to show that it would be

better off from adding the deviant offer to its set of acceptances.

Next, we show that Dj has an incentive to make this deviant offer. If Dj makes the

deviant offer, we have shown that Ui will accept it (and perhaps other offers in CUi ); all

remaining agreements in C that are not formed at period t will then form at period t+ 1 by

the inductive hypothesis. If Dj does not make the deviant offer, then there are three potential
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outcomes of the resulting subgame: no agreements in C are ever formed, or all agreements

are formed in either a future even or odd period. Here, A.SCDMC and A.LNEXT ensure

that Dj’s payoffs are strictly worse from any of these outcomes than making the deviant

offer and having it accepted by Ui at period t; A.SCDMC (instead of A.CDMC) is necessary

here because Ui may change its other acceptances upon receiving Dj’s deviant offer.

Thus, given that there is a profitable deviation by Dj, any equilibrium must have all

open agreements formed immediately.

4.2.3 Multiple Open Agreements Involving a Single Upstream or Downstream

Firm (Lemmas D.8 – D.10)

Finally, we turn to the case where C contains multiple open agreements, but on one side of

the market, there is only one firm with open agreements. Again, assume that the inductive

hypothesis holds, and WLOG, consider the case where there is only a single downstream

firm Dj with open agreements. In this case, we show in order that (a) all agreements form

simultaneously and at (odd) Rubinstein prices when the first agreement is formed in an odd

period; (b) all agreements form simultaneously and at (even) Rubinstein prices when the

first agreement is formed in an even period; and (c) all agreements form immediately.

(a) All agreements form simultaneously at Rubinstein prices (if any form in an

odd period). We first show that if the first agreement in C forms in an odd (downstream-

proposing) period, then all agreements in C form in this period at Rubinstein prices. The

proof follows the same arguments as in 4.2.2(a) and 4.2.2(b), which is valid as those argu-

ments only conditioned on the presence of multiple upstream firms (as opposed to down-

stream firms) with open agreements.

(b) All agreements form simultaneously at Rubinstein prices (if any form in an

even period). We next show that if the first agreement in C forms in an even (upstream-

proposing) period, then (i) all agreements ij ∈ C form at prices p̃ij ≥ pRij,D; (ii) all agreements

in C form in the same period; and (iii) all agreements form at Rubinstein prices. This case

is the most challenging, because the fact that Dj is the only downstream firm with open

agreements implies that, in cases where there is a deviation from a candidate equilibrium at

period t, we cannot rely on the inductive hypothesis to argue that all agreements will still

form at period t+ 1: i.e., Dj can unilaterally choose to reject all offers at period t (even) so

that there will still be the same set C of open agreements at period t+1. This is why there is

an extra step, 4.2.3(b)(i), relative to the multiple upstream and multiple downstream case.

We now sketch our proof for each of these arguments.
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(i) All agreements form at prices greater than or equal to Rubinstein prices. As in earlier

cases, we show that it is not credible for Dj to reject any offer from some Ui at a price lower

than pRij,D. However, the reason here is different: we cannot apply induction since Dj can

reject all offers, keeping the set of open agreements the same. Instead, we make an argument

that a credible rejection at period t implies that Dj would be ready to reject an even lower

offer in a future period, and use this to generate a contradiction.

Suppose by contradiction that in a candidate equilibrium, some agreement ij ∈ C forms

at a price p̂ij < pRij,D in an even period t. Consider now a deviation by Ui where it offers

p̃ij instead at t, where p̃ij is higher than p̂ij but lower than pRij,D. We first ask the question

of whether Ui would prefer to engage in this deviation if this deviant offer were accepted

by Dj. Clearly, if the offer were accepted and nothing else changed, Ui would prefer it as

it obtains a higher price. However, it is possible that, in the case where Dj receives the p̃ij

offer, Dj changes the other offer(s) that it chooses to accept, and this change subsequently

lowers Ui’s payoffs. To avoid this possibility, we employ either A.LEXT or A.ASR. A.LEXT

limits externalities and hence implies that Ui’s profits do not depend on Dj’s agreements

with other upstream firms. The argument with A.ASR is a little more subtle. If Dj were to

accept the offer from Ui at either price p̂ij or p̃ij, then we have one fewer open agreement,

which means that we can apply the inductive hypothesis from period t+ 1 on, which means

that the future prices are the same across these two cases. A.ASR then forces Dj to accept

the same set of other offers in both cases, given that it accepts the offer from Ui.

Since Ui prefers to offer p̃ij instead of p̂ij if this offer were to be accepted, it must be the

case that Dj does not accept it, or we would have a profitable deviation from this candidate

equilibrium. For Dj to credibly reject such an offer in equilibrium, Dj must anticipate

receiving a higher payoff in some subgame following the rejection. Because of discounting,

this implies that Dj anticipates paying even lower prices relative to pRij,D to some set of firms

in some future subgame. By the odd period result in step 4.2.3(a), this cannot occur in odd

periods. Hence, this higher payoff must occur in a future even period. But then, the same

argument noted in the previous paragraph applies: i.e., there must be a future even period in

which Dj obtains agreement at even lower prices. Continuing to apply this argument implies

that eventually there must be some future even period in which Dj forms agreements with

upstream firms at prices that some Uk, ik ∈ C, would not find profitable to ever accept.

Thus, we have a contradiction.21

(ii) All agreements form at the same period. The idea of the proof here is quite similar

to the proof for 4.2.2(a), but we use the lower bound for prices from 4.2.3(b)(i) instead of

21This argument can be seen as a generalization of the subgame perfection argument in Rubinstein (1982)
to a setting with multiple agents.
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induction in the case of rejection. Specifically, by contradiction, consider the case where

the first agreement ij ∈ C forms at period t but not all agreements form at period t, with

the remaining agreements kj ∈ C being formed at period t + 1 for prices pRkj,D (using the

inductive hypothesis). Consider one such Uk. It can offer a price pRkj,U at period t to Dj.

Unlike in 4.2.2(a), we cannot apply induction to understand what would occur if Dj rejects

this offer as Dj may reject all offers in this case. However, if Dj rejects Uk’s offer, we know

that it cannot pay prices any lower than pRkj,D in any future subgame (from the results in

steps 4.2.3(a) and 4.2.3(b)(i)). The fact that 4.2.3(b)(i) only proves that prices are weakly

higher to pRkj,D, rather than exactly equal, suffices: A.CDMC again implies that accepting

this offer is profitable for Dj. Finally, as in 4.2.2(a), A.SCDMC implies that this acceptance

increases Uk’s surplus, and we have a profitable deviation; this yields a contradiction.

(iii) All agreements form at prices pRij,U . The proof follows the same steps as 4.2.2(b). If

an agreement ij forms at a price higher than pRij,U , then Dj will reject the agreement and

offer pRij,D at period t+ 1. If an agreement ij forms at lower than the candidate equilibrium

price, then A.ASR or A.LEXT implies that Ui can raise price slightly, that this offer will be

accepted by Dj, and that Ui will benefit from this acceptance.

(c) All agreements form immediately. Finally, we show that all agreements form

immediately. The proof follows the same steps as in 4.2.2(c), as nothing in that proof

leveraged the fact that there were multiple downstream firms with open agreements. Here,

A.SCDMC implies A.LNEXT and so we do not need to separately assume A.LNEXT.

We have thus proven that there is immediate agreement at Rubinstein prices in our base

case (4.2.1), and that our inductive step holds when there are multiple open agreements

on both sides (4.2.2) or just one side (4.2.3) of the market. Consequently, by induction,

Theorem 4.6 follows.

5 Conclusion

The existence of an equilibrium generating the Nash-in-Nash outcome (Theorem 3.2) relies

on two assumptions (gains from trade and weak conditional declining marginal contributions)

that we believe are natural for many bilateral bargaining environments. The assumption on

the declining marginal contributions from agreements rules out certain complementarities of

profits across firms. As discussed in Section 3, if there are strong complementarities across

contracting partners, bilateral negotiations over marginal contributions can generate prices

that exceed the total contribution of a set of agreements, and induce a firm to unilaterally

26



drop several of its agreements. In such settings, other surplus division protocols, such as

multilateral bargaining or cooperative solution concepts such as the Shapley value, may be

more appropriate.22

To prove the uniqueness of our equilibrium outcome, we leverage stronger assumptions

that guarantee that equilibrium prices coincide with “Rubinstein” prices between each bi-

lateral pair. As discussed in Section 4 and in Appendix E, although we have found coun-

terexamples where equilibria outcomes are not unique when our stronger assumptions dare

violated, all counterexamples that we have found with full and immediate agreement still

result in prices that converge to Nash-in-Nash prices as Λ → 0. Whether this convergence

property is true more generally under weaker assumptions is an open research question.

For tractability, we have considered only lump sum transfers between agents. In many

settings, however, negotiations may occur over linear prices that may affect total surplus:

e.g., negotiated prices between upstream and downstream firms may represent wholesale

linear fee contracts, and downstream firms engage in price competition with one another for

consumers given these contracts.23 In such settings, profits may depend on not only the set

of agreements formed by all agents but also upon the negotiated prices. Understanding the

properties of bargaining in these types of environments is another open research question.

In closing, we believe that our results provide justification for the use of the Nash-in-Nash

solution as a credible bargaining framework for use in applied work. Instead of requiring that

firms cannot coordinate across multiple negotiations, our extensive form allows for firms to

engage in deviations across multiple negotiations. We further believe that the mechanisms

that we highlight in our extensive form reasonably capture aspects of bargaining protocols

that occur in real-world industry settings.
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A An Alternative Non-Cooperative Foundation for the

Nash-in-Nash Bargaining Solution

In this section, we present an alternative extensive form which involves separate bilateral negotiations between
representatives for each firm, and show that this representation also admits the Nash-in-Nash bargaining
solution as an equilibrium outcome. For this equilibrium, only A.GFT is required.

Consider the setting introduced in Section 2, where N upstream firms negotiate with M downstream
firms. For every pair of firms Ui and Dj , i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}, Ui and Dj send individual
representatives who engage in the alternating-offers bargaining protocol of Rubinstein (1982). Although each
representative for each firm seeks to maximize her firm’s total expected profits across all bargains, she does
not know the outcome of any other bilateral bargain until her own bargain has concluded. One interpretation
is that each pair of representatives from different firms are sequestered in separate bargaining rooms, and
no one outside the room knows the status of the bargain until it is finished.

In this environment, there exists an equilibrium among representatives for each firm which yields the
Nash-in-Nash bargaining outcomes:

Theorem A.1 Assume A.GFT and every firm send representatives to all potential negotiating partners.
Then there exists an equilibrium with:

(a) immediate agreement between all representatives for each firm;
(b) equilibrium prices p̂ij = pRij,D ∀i, j if the game begins in an odd period, and p̂ij = pRij,U ∀i, j if the

game begins in an even period; and
(c) p̂ij → pRij ;∀i,j as Λ → 0 regardless of whether the game starts in an odd or even period, where

bi,U = rj,D/(ri,U + rj,D) and bj,D = ri,U/(ri,U + rj,D).

To prove the theorem, assume each pair of representatives Ui,j and Dj,i who negotiate between Ui and Dj

employ the following candidate set of strategies: Ui,j offers pRij,U in even periods and only accepts offers equal

to or above pRij,D in odd periods; Dj,i offers pRij,D in odd periods, and accepts offers equal to or above pRij,U in
even periods. Any off-equilibrium action made by other representatives (including other representatives of
their own firms or actions observed by other representative of their own firms) cannot affect or influence the
outcomes of other negotiations; as such, given that agreement is expected to occur in all other negotiations,
the unique equilibrium for Ui,j and Dj,i is the set of candidate strategies described (Rubinstein, 1982). As
no agent has a profitable deviation, the set of strategies comprise an equilibrium. Part (c) of the theorem
follows directly from Lemma 2.1. This proves the theorem.

B Proof of Lemma 2.1

Proof of Lemma 2.1 Using l’Hospital’s rule:

lim
Λ→0

δi,U (1− δj,D)

1− δi,Uδj,D
= lim

Λ→0

e−ri,UΛ(1− e−rj,DΛ)

1− e−(ri,U+rj,D)Λ
=

rj,D
ri,U + rj,D

,
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and

lim
Λ→0

1− δj,D
1− δi,Uδj,D

= lim
Λ→0

1− e−rj,DΛ

1− e−(ri,U+rj,D)Λ
=

rj,D
ri,U + rj,D

.

Similarly, it can be shown that:

lim
Λ→0

δj,D(1− δi,U )

1− δi,Uδj,D
= lim

Λ→0

(1− δi,U )

1− δi,Uδj,D
=

ri,U
ri,U + rj,D

.

which proves the lemma.

C Proof of Theorem 3.2 (Existence)

Claim A: Assume A.GFT and A.WCDMC hold. Then there exists an equilibrium of the model with
strategy profiles that follow the statement of the theorem. We first detail the strategies under our candidate
equilibrium:

• In every odd period node, each Dj makes offers pRij,D to all firms Ui with which it has not already

reached agreement. If all price offers that it receives are equal to pRij,D, Ui accepts all offers i. If Ui
receives exactly one non-equilibrium offer from some Dj , it accepts all other offers and rejects Dj ’s
offer if and only if the offer is lower than pRij,D. Finally, if Ui receives multiple non-equilibrium offers,
it plays an arbitrary best response in its acceptance decision, respecting passive beliefs (i.e., assuming
that all other offers not involving Ui form at Rubinstein prices).

• In every even period node, each Ui makes offers pRij,U to all firms Dj with which it has not already

reached agreement. If all price offers that it receives are equal to pRij,U , Di accepts all offers i. If Dj

receives exactly one non-equilibrium offer from some Ui, it accepts all other offers and rejects Ui’s
offer if and only if the offer is higher than pRij,U . Finally, if Dj receives multiple non-equilibrium offers,
it plays an arbitrary best response in its acceptance decision, respecting passive beliefs.

The prescribed strategy profile dictates that every firm makes proposals that are the Rubinstein offers:
i.e., downstream firms offer pRij,D in odd periods, and upstream firms offer pRij,U in even periods. On the
equilibrium path, all offers are accepted. For off-equilibrium offers, acceptance will depend on the exact set
of offers received.

We now prove that no unilateral deviation is profitable.
We start with the decision for an upstream firm Ui of which offers to accept in an odd period t. The

information set for Ui at period t contains two elements: (1) the set of agreements C which are still open at
the start of period t, and (2) the price p̃ij for every open agreement in ij ∈ CUi that is observed by Ui. Since
we examine only one-shot deviations, Ui expects that any non-accepted offers ik will follow the prescribed
equilibrium strategies from t + 1 onwards and hence will form in period t + 1 at prices pRik,D. We start by

defining the gain in one-shot surplus from rejecting a subset K ⊂ CUi of agreements relative to accepting all
of its open agreements CUi as:

F (K) ≡ −

(1− δi,U )∆πUi (G,K) +
∑
ij∈K

[
p̃ij − δi,UpRij,U

] , (5)

where we omit the fact that F is implicitly a function of the firm Ui and Ui’s information set at period t.
By passive beliefs, Ui assumes that all offers that do not include it (those in CU−i) will be accepted at period

t. Hence, it chooses the set of agreements to reject that satisfies K̂ = arg maxK⊆CUi F (K), as this set of
rejections maximizes its profits net of the payoff difference.
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Consider first the case where Ui receives candidate equilibrium offers pRij,U . Substituting these prices
into (5) and then employing (4) (which uses A.WCDMC), we obtain:

F (K) = −

(1− δi,U )∆πUi (G,K) +
∑
ij∈K

[
pRij,D − δi,UpRij,U

] ≤ 0.

Since F (∅) = 0, F (K) is maximized for K = ∅. This implies that at equilibrium prices, Ui maximizes surplus
by rejecting no offer, or equivalently, accepting all offers. Thus, in this case, Ui cannot gain by deviating
from its candidate equilibrium strategy.

Consider next the case where Ui receives exactly one non-equilibrium offer, p̃ij 6= pDij,R. In this case,
from (4),

F (K) = −

(1− δi,U )∆πUi (G,K) +
∑
ij∈K

[
pRij,D − δi,UpRij,U

]+ pRij,D − p̃ij ≤ pRij,D − p̃ij .

Note further that, from (2), F (ij) = pRij.D−p̃ij . Hence, with one deviant offer, if p̃ij < pRij,D, Ui does not have

a profitable deviation from the prescribed strategy of rejecting only the deviant offer, while if p̃ij > pRij,D, Ui
does not have a profitable deviation from the prescribed strategy of accepting all offers.

Finally, in cases where Ui receives multiple out-of-equilibrium offers, the strategy profile specified above
states that Ui picks an arbitrary K̂ that maximizes F (K). Note that such a node of the game is not reachable
on the equilibrium path by a unilateral deviation by any single downstream firm, and prescribed play here
does not affect the incentives for any firm to unilaterally deviate.

Thus, no unilateral deviation by any upstream firm in an odd period is profitable.

Next, we consider the decision for a downstream firm Dj of what offers to propose in an odd period t
when there are C open agreements. Consider the possibility that Dj deviates from the candidate equilibrium
strategies and offers prices different from p̃ij 6= pRij,D for all ij in some K ⊆ CDj . By passive beliefs, each
firm Ui receiving p̃ij perceives that it is the only one to have received an out-of-equilibrium offer. Given the
candidate equilibrium strategies, if p̃ij > pRij,D, then it will be accepted, while if p̃ij < pRij,D, then it will be
rejected, with no impact on the acceptance of offers from other downstream firms. Clearly, Dj will never
choose to offer p̃ij > pRij,D, since it can always offer pRij,D instead, without affecting the set of acceptances.

The only possible profitable deviation left is for Dj to offer p̃ij < pRij,D for all ij ∈ K. Again, given the
candidate equilibrium strategies, these offers will be rejected at period t, and then accepted at t+ 1 at prices
pRij,U .

Thus, Dj can effectively choose which agreements K to postpone from forming in period t at prices pRij,D
to forming in period t+ 1 at prices pRij,U . The decrease in surplus doing so for some set of offers K ⊆ CDj is:

(1− δj,D)∆πDj (G,K)−
∑
ij∈K

[
pRij,D − δj,DpRij,U

]
> (1− δj,D)∆πDj (G,K)−

∑
ij∈K

[
pRij,U − δj,DpRij,D

]
≥
∑
ij∈K

[
(1− δj,D)∆πDj (G, {ij})− pRij,U + δj,Dp

R
ij,D

]
= 0,

(6)

where the first inequality follows from Lemma D.1 (which uses A.GFT to show that pRij,U > pRij,D), the
second inequality follows from the analog of (4) for the downstream side (which uses A.WCDMC), and the
equality follows from (1) (which uses A.GFT). Thus, Dj is strictly worse off from any deviation from our
candidate equilibrium strategies in an odd period.

We omit the claim for even periods, as it is symmetric. Since there are no profitable one-shot deviations
for any agent in both odd and even periods, the candidate set of strategies is indeed an equilibrium.

32



Claim B: If A.WCDMC does not hold, then there is no equilibrium of the model with prices p∗ij = pRij,D
at all odd period nodes and p∗ij = pRij,U at all even period nodes.

Assume that A.WCDMC does not hold. In this case, there exists a firm (WLOG, an upstream firm Ui)
and a set of agreements K ⊆ GUi such that ∆πUij(G,K) <

∑
ij∈K∆πUi (G, {ij}). Consider again the gain in

one-shot surplus from Ui rejecting all ij ∈ K, denoted F (K), evaluated at period t0 = 1. From the candidate
equilibrium, we know that Ui has obtained offers pRij,D for all ij ∈ GUi . F (K) is given by:

F (K) ≡ −

(1− δi,U )∆πUi (G,K) +
∑
ij∈K

[
pRij,D − δi,UpRij,U

]
> −

∑
ij∈K

(1− δi,U )∆πUi (G, {ij}) +
∑
ij∈K

[
pRij,D − δi,UpRij,U

] = 0,

where the inequality follows from the assumption that A.WCDMC does not hold and the equality from (2).
Hence, it is a profitable deviation for Ui to reject the offers in K at period 1 when A.WCDMC does not hold.

Finally, part (c) of the theorem follows directly from Lemma 2.1.
�

D Proofs of Theorem 4.6 (Uniqueness)

D.1 Supporting Lemmas

Lemma D.1

∆πDj (G, {ij}) > pRij,U > pRij,D,

∆πUi (G, {ij}) > −pRij,D > −pRij,U .

Proof Since (∆πDj (G, {ij})−pRij,D) =
(1−δi,U )

(1−δi,Uδj,D) (∆πDj (G, {ij})+∆πUi (G, {ij})), (∆πDj (G, {ij})+∆πUi (G, {ij})) >
0 by A.GFT, and

(1−δi,U )
(1−δi,Uδj,D) > 0, it follows that ∆πDj (G, {ij}) > pRij,D.

Also, since (∆πUi (G, {ij})+pRij,U ) =
(1−δj,D)

(1−δi,Uδj,D) (∆πDj (G, {ij})+∆πUi (G, {ij})), (∆πDj (G, {ij})+∆πUi (G, {ij})) >
0 by A.GFT, and

(1−δj,D)
(1−δi,Uδj,D) > 0, it follows that pRij,U > ∆πUi (G, {ij}).

As well, if we combine the terms of the previous two equations, we obtain:

pRij,U − pRij,D =
(
∆πDj (G, {ij}) + ∆πUi (G, {ij})

) [ (1− δi,U )

(1− δi,Uδj,D)
+

(1− δj,D)

(1− δi,Uδj,D)
− 1

]
=

1

1− δi,Uδj,D
(
∆πDj (G, {ij}) + ∆πUi (G, {ij})

)
(1− δi,U − δj,D + δj,Dδi,U ).

The fact that 0 < δi,U < 1 and 0 < δj,D < 1 implies that 1
1−δi,Uδj,D > 0 and 1 − δi,U − δj,D + δj,Dδi,U > 0.

Since ∆πDj (G, {ij}) + ∆πUi (G, {ij}) > 0 by A.GFT, it follows that pRij,U > pRij,D.

Lemma D.2 A.CDMC implies A.WCDMC.

Proof For a downstream firm, A.WCDMC states that ∆πDj (G,A) ≥∑kj∈A∆πDj (G, {kj}) for all A ⊆ GDj .
First, index agreements in A from k = 1, · · · , |A|, and let ak represent the kth agreement in A. This allows
us to create a sequence of sets of agreements, starting at B ≡ G \A, in which we add in each agreement one
at a time, given by D0 ≡ B, and Dk = Dk−1 ∪ {ak} for k = 1, · · · , |A|. We can then decompose:
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∆πDj (G,A) = ∆πDj (A ∪ B,A) =

|A|∑
k=1

∆πDj (Dk, {ak}).

By A.CDMC, ∆πDj (Dk, {ak}) ≥ ∆πDj (G, {ak}) for all ak since Dk ⊆ G. This implies that ∆πDj (G,A) =

∆πDj (A ∪ B,A) ≥∑ij∈A∆πDj (G, {ij}). A symmetric argument can be used for upstream firms.

Lemma D.3 A.SCDMC implies A.CDMC.

Proof For a downstream firm, A.SCDMC states that:

πDj (A ∪ B ∪ {ij})− πDj (A′ ∪ B) ≥ ∆πDj (G, {ij}) ∀ij ∈ G;B ⊆ GU−i;A,A′ ⊆ GUi \ {ij}.

Consider the case where A = A′. Then A.SCDMC states that:

πDj (A ∪ B ∪ {ij})− πDj (A ∪ B) ≥ ∆πDj (G, {ij})
⇒ ∆πDj (A ∪ B, {ij}) ≥ ∆πDj (G, {ij}),

which is the statement of A.CDMC. A symmetric argument can be used for upstream firms.

Lemma D.4 A.CDMC and A.LEXT imply A.SCDMC and A.LNEXT.

Proof A.CDMC states that ∆πDj (A ∪ B, {ij}) ≥ ∆πDj (G, {ij}) for all A ⊆ GDj ,B ⊆ GD−j . A.LEXT, by

assuming that profits πDj are invariant to the set of agreements that firms other than Dj form, implies that

πDj (A∪B) = πDj (A∪B′) for all A ⊆ GDj and B,B′ ⊆ GD−j . A.SCDMC directly follows. A symmetric argument
can be used for upstream firms.

A.LEXT implies that ∆πDj (G, C) = ∆πDj (G, CDj ) and ∆πUi (G, C) = ∆πUi (G, CUi ) for any C ⊆ G and any
Dj , Ui. The statement of A.LNEXT then follows directly from A.CDMC (which, by Lemma D.2, implies
A.WCDMC).

Lemma D.5 Assume A.GFT and A.LNEXT. Then ∀C ⊆ G, ∃ij ∈ C such that:

∆πDj (G, C) >
∑
hj∈CDj

pRhj,U , and

∆πUi (G, C) > −
∑
ik∈CUi

pRik,D.

Proof By A.LNEXT, ∀C ⊆ G, ∃ij ∈ C such that:

∆πDj (G, C) ≥
∑
hj∈CDj

∆πDj (G, {hj}), and

∆πUi (G, C) ≥
∑
ik∈CUi

∆πki (G, {ik}).

By A.GFT, ∆πDj (G, {hj}) > pRhj,U and ∆πUi (G, {ik}) > −pRik,D for all agreements hj, ik ∈ G (see (3)). The
lemma immediately follows.

D.2 Inductive Structure and Base Case

In the following proofs, we will use both A.CDMC and A.SCDMC (with the understanding that A.SCDMC
implies A.CDMC; see Lemma D.3) to emphasize the circumstances in which the stronger assumption
(A.SCDMC) is required. We will also use A.SCDMC when only A.CDMC and A.LEXT are assumed to
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hold (since A.CDMC and A.LEXT imply A.SCDMC; see Lemma D.4) as it serves to emphasize how these
assumptions are leveraged.

We first provide the structure of the general proof where there are N ≥ 1 upstream firms and M ≥ 1
downstream firms.

For any C ⊆ G, let ΓtC(h
t) represent the subgame beginning at period t ≥ t0 when there are still C “open”

agreements, or agreements that have not been reached (i.e., all agreements ij ∈ G \C have been formed prior
to period t), and history of play ht. Recall the history at period t contains the sequence of actions, which
include offers and acceptances/rejections, that have been made by all firms in all preceding periods. We will
prove Theorem 4.6 by induction on C for any arbitrary t and history of play ht.

The base case is provided by analyzing ΓtC(·) when |C| = 1: i.e., there is only one agreement in G that
has not yet been reached at period t.

Proposition D.6 (Base Case) Let |C| = 1 with only one open agreement: C ≡ {ij}. Then the subgame
ΓtC(h

t) for any t ≥ t0 and any history of play ht (consistent with C being the set of open agreements at t) has
a unique equilibrium involving immediate agreement at t with prices p̂ij = pRij,D if t is odd, and p̂ij = pRij,U
if t is even.

Proof With only one open agreement ij ∈ C, Ui and Dj engage in a 2-player Rubinstein alternating
offers bargaining game over joint surplus ∆πUi (G, {ij}) + ∆πDj (G, {ij}), and the result directly follows from
Rubinstein (1982). �

We now state the inductive hypothesis and inductive step used to prove Theorem 4.6.

Inductive Hypothesis. Fix C ⊆ G, t, and ht. For any B ⊂ G such that |B| < |C|, any equilibrium of
Γt

′

B(ht
′
) , where t′ > t and ht

′
contains ht (and is consistent with B being the set of open agreements at t′),

results in immediate agreement between Ui and Dj ∀ij ∈ B at prices p̂ij = pRij,D if t′ is odd, and p̂ij = pRij,U
if t′ is even.

The inductive hypothesis states that any subgame involving fewer open agreements than |C| results
in immediate agreement at the Rubinstein prices. It implies that if any non-empty set of agreements are
reached at any point during the subgame ΓtC(h

t) at period t′ ≥ t so that only a strict subset B ⊂ C of open
agreements remain, then all remaining agreements ij ∈ B are reached in the subsequent period t′+1 at pRij,D
(pRij,U ) if t′ + 1 is odd (even).

Proposition D.7 (Inductive Step) Assume A.GFT and either (i) A.CDMC and A.LEXT; or (ii) A.SCDMC,
A.LNEXT and A.ASR. Consider any subgame ΓtC(h

t) where C ⊆ G, t ≥ t0. Given the inductive hypothesis,
every equilibrium of ΓtC(h

t) results in immediate agreement between Ui and Dj ∀ij ∈ C at prices p̂ij = pRij,D
if t is odd, and p̂ij = pRij,U if t is even.

The inductive step states that if the inductive hypothesis holds for any subgame with C open agreements,
then this subgame also results in immediate agreement for all open agreements ij ∈ C at the Rubinstein
prices. Note that Propositions D.6 (Base Case) and D.7 (Inductive Step) imply Theorem 4.6 by induction:
as we have established that the theorem holds when |C| = 1, the inductive step implies that the theorem will
hold for any C ⊆ G when |C| ≥ 1.

To prove Proposition D.7 (and by consequence, Theorem 4.6), we proceed in three steps: we first focus
on subgames ΓtC(·) where C contains only agreements involving one downstream firm; we then focus on
subgames where where C contains only agreements involving one upstream firm; and finally, we focus on
subgames where C contains more than one upstream and more than one downstream firm. For expositional
convenience, we will drop the history of play argument from ΓtC for the remainder of the text, acknowledging
that these subgames will be for any arbitrary history of play consistent with there being C open agreements
at t (though we will still allow for history-dependent strategies to be played).
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D.3 One Downstream Firm, Many Upstream Firms

We prove Proposition D.7 in this case using three lemmas. For these lemmas, consider a candidate equilibrium
of a subgame beginning at period t̃ ≥ t0 with the first agreement ij ∈ C reached in period t ≥ t̃, and accepted
prices denoted {p̂1j , . . . , p̂mj}. Let A ⊆ C denote the set of agreements reached at period t. By the inductive
hypothesis, all agreements ij ∈ B ≡ C \A not reached at period t will reached in period t+ 1 at prices pRij,D
(pRij,U ) if t+ 1 is odd (even).

Lemma D.8 (Odd, simultaneous.) In any equilibrium of Γt̃C with the first agreement occurring in an
odd period (i.e., the downstream firms propose), all agreements must occur at the same period with p̂ij =
pRij,D ∀ij ∈ C.

Proof. Suppose the first agreement occurs in some odd period t ≥ t̃. We prove all agreements occur
simultaneously by contradiction.

Assume B 6= ∅, implying that not all agreements in C are reached in period t. By the inductive hypothesis,
all Ui such that ij ∈ B will reach agreement with Dj at t+ 1 at prices pRij,U .

Consider the following deviation by Dj in period t: Dj offers p̃ij ≡ pRij,D + ε to some Ui, ij ∈ B. Ui will
accept this deviation at period t if it obtains higher profits, or:

(1− δi,U )πUi ((G \ B) ∪ {ij}) + δi,Uπ
U
i (G) + p̃ij > (1− δi,U )πUi (G \ B) + δi,Uπ

U
i (G) + δi,Up

R
ij,U

⇔ p̃ij > δi,Up
R
ij,U − (1− δi,U )∆πUi ((G \ B) ∪ {ij}, {ij})

which holds since p̃ij ≡ pRij,D + ε = δi,Up
R
ij,U − (1 − δi,U )∆πUi (G, {ij}) + ε (see (2)) and ∆πUi ((G \ B) ∪

{ij}, {ij}) ≥ ∆πUi (G, {ij}) by A.CDMC, for sufficiently small ε.
This deviation will be profitable for Dj if Dj ’s profit gains from reaching agreement with Ui one period

earlier is greater than Dj ’s difference in payments:

(1− δj,D)∆πDj ((G \ B) ∪ {ij}, {ij}) > p̃ij − δj,DpRij,U = pRij,D − δj,DpRij,U + ε

⇔ (1− δj,D)∆πDj ((G \ B) ∪ {ij}, {ij}) >
[
(δi,U − δj,D)pRij,U − (1− δi,U )∆πUi (G, {ij})

]
+ ε

⇔ (1− δj,D)∆πDj ((G \ B) ∪ {ij}, {ij}) + (1− δi,U )∆πUi (G, {ij}) > (δi,U − δj,D)pRij,U + ε

(where the second line follows from (2)). Since ∆πDj ((G \ B) ∪ {ij}, {ij}) ≥ ∆πDj (G, {ij}) > pRij,U and,

∆πUi (G, {ij}) > −pRij,U by equation (3), this inequality holds for sufficiently small ε and the deviation is
profitable for Dj ; a contradiction. Thus, if the first agreement occurs in odd period t, all agreements must
occur at period t.

Now suppose all agreements occur at period t (odd), but p̂ij 6= pRij,D for some ij. We will show this leads
to a contradiction:

1. If p̂ij < pRij,D for some ij, Ui can reject this offer and, as all other upstream firms will agree in

equilibrium at period t, obtain a price of pRij,U at t+1 by the inductive hypothesis. This is a profitable
deviation if Ui’s gains in prices exceed its profit gains from coming to agreement one period early:

δi,Up
R
ij,U − p̂ij > (1− δi,U )∆πUi (G, {ij})

Since the RHS is equal to δi,Up
R
ij,U − pRij,D by (2), this inequality holds leading to a contradiction.

2. If p̂ij > pRij,D for some ij, Dj can profitably reduce its offer to pRij,D + ε for ε ∈ (0, p̂ij − pRij,D); Ui will
still accept if:

pRij,D + ε− δi,UpRij,U > −(1− δi,U )∆πUi (G, {ij})
Since the RHS is equal to pRij,D − δi,UpRij,U by (2), this inequality holds and leads to a contradiction.

Thus, p̂ij = pRij,D ∀i if the first agreement occurs in an odd period. �
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Lemma D.9 (Even, simultaneous.) In any equilibrium of Γt̃C with the first agreement occurring in an
even (upstream proposing) period, all agreements must occur at the same period with p̂ij = pRij,U ∀ij ∈ C.

Proof. This Lemma will be proven with 3 claims. First, we prove that p̂ij ≥ pRij,D for all ij ∈ C. Second, we

prove all agreements ij ∈ C occur at period t. Finally, we prove all agreements occur at prices p̂ij = pRij,U .

Claim A: Equilibrium prices p̂ij ≥ pRij,D for all ij ∈ C.
Given a candidate equilibrium, for any subgame Γt of Γt̃C beginning at t ≥ t̃, let φ represent the total

discount from prices pRkj,D that Dj can obtain in this equilibrium: i.e., φΓ ≡
∑
kj∈C(p

R
kj,D − p̂kj). Let φ be

the maximum total discount that Dj could achieve under any equilibrium in any subgame of Γt̃C ; φ is finite,
as no upstream firm would offer more than its own total achievable profits in any equilibrium strategy.

Assume that φ > 0 and consider the equilibrium and subgame in which this maximum discount is
reached.24 We will show that the assumption that φ > 0 leads to a contradiction, which implies that in any
equilibrium in which the first agreement is reached in an even period, prices cannot be lower than pRij,D for
any agreement ij ∈ C.

Without loss of generality, let this subgame be denoted Γt (t ≥ t̃), and assume that the period in which
the first agreement occurs in this subgame is t. By Lemma D.8, t cannot be odd since this would imply that
φ = 0 as all agreements would occur at Rubinstein prices. Thus, t is even.

Let A ⊆ C denote the set of agreements reached in period t at prices p̂ij . By the inductive hypothesis,
all other agreements kj ∈ B ≡ C \ A occur at period t + 1 at prices pRkj,D. Thus, by our definition of φ,∑
ij∈A p̂ij = (

∑
ij∈A p

R
ij,D) − φ. For these prices {p̂ij}ij∈A to have been equilibrium offers, it must be the

case that Dj would have rejected any alternative offer p̃ij > p̂ij from any Ui, ij ∈ A, at period t. If not, Ui
would have a profitable deviation by offering p̃ij ≡ p̂ij + ε.

• We first show that if Dj accepts p̃ij as defined above, then Ui would wish to engage in this deviation,
leading to a contradiction.

Under A.LEXT, this is straightforward to show: Ui obtains strictly higher payments under this
deviation from Dj without changing the timing of its own agreements, and Ui’s profits do not depend
on whether or not Dj makes changes to its other agreements.

Under A.ASR, note that it cannot be the case that some other set of agreements A′ 6= A would be
reached at period t if Dj accepted p̃ij . By the inductive hypothesis, any agreements B′ ≡ C \ A′ not
reached at t would occur in period t + 1; as a result, if Dj would reach a different set of agreements
A′ 6= A subsequent to accepting the higher deviant offer p̃ij at t, then it would have obtained strictly
higher payoffs by reaching agreements A′ as opposed to A at period t in the original candidate
equilibrium; this is a contradiction.25 Consequently, if p̃ij were accepted at period t, Ui would obtain
the same flow profits as in the candidate equilibrium (since the same set of agreements would be
reached at period t and t+ 1), but it would obtain a strictly higher price as p̃ij > p̂ij .

Thus, if Dj accepted p̃ij , Ui would prefer to make such a deviant offer.

Thus, Dj needs to credibly reject p̃ij if such an offer is made.
Consider now ij ∈ A such that pRij,D − p̂ij > 0; such an ij exists since we have assumed φ > 0, and

means we can construct p̃ij ≡ p̂ij + ε < pRij,D for some ε > 0. Since Dj must reject p̃ij at period t if it were
offered by Ui, this implies Dj also must either subsequently (i) reach agreements A′ ⊆ C \ {ij} at period t,
or (ii) reject all offers upon rejecting p̃ij . We show now that either action by Dj leads to a contradiction.

1. Suppose Dj rejects p̃ij , but reaches agreements A′ ⊆ C \ {ij}. By the inductive hypothesis, Dj would
reach all other agreements kj ∈ B′ ≡ C \A′ at t+ 1 at prices pRkj,D. However, Dj would rather accept
p̃ij and reach agreements A′ ∪ {ij} instead of rejecting Ui’s deviation if the gains to coming to an
agreement earlier exceeded the additional payment required:

(1− δj,D)∆πDj ((G \ B′) ∪ {ij}, {ij}) > p̃ij − δj,DpRij,D
24Notice that this proof assumes that the maximum payoff φ is achieved by some equilibrium (i.e., φ is a

maximum rather than a supremum). If this is not the case, we can consider any subgame in which the total
discount from Rubinstein prices is greater than or equal to δj,Dφ and substitute this value for φ in the proof.

25A.ASR rules out the possibility that Dj is indifferent between A and A′.
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By assumption, the RHS is strictly less than (1 − δj,D)pRij,D; since ∆πDj ((G \ B′) ∪ {ij}, {ij}) >

∆πDj (G, {ij}) by A.CDMC and since ∆πDj (G, {ij}) > pRij,D by A.GFT, this inequality holds, leading
to a contradiction.

2. Suppose Dj rejects all offers at period t upon receiving the deviant offer p̃ij from Ui.

Let Γt+1
RA denote the subgame following Dj ’s rejection of all offers at period t, and let ΠRA denote

Dj ’s payoffs in this subgame (discounted to period t). Note if Dj rejects all offers in C at period t
upon receiving out-of-equilibrium deviation p̃ij , Dj must expect to obtain in the subsequent subgame
at least as much as it would have obtained had it accepted p̃ij and all other offers p̂kj , kj ∈ A \ {ij},
at t, but rejected all other offers. This lower bound is:

ΠD ≡ (1− δj,D)πDj ((G \ C) ∪ A)− p̃ij −
∑

kj∈A\{ij}

p̂kj + δj,D

πDj (G)−
∑

kj∈C\A

pRkj,D


= (1− δj,D)πDj ((G \ C) ∪ A)−

∑
kj∈A

pRkj,D + δj,D

πDj (G)−
∑

kj∈C\A

pRkj,D

+ φ− ε (7)

where ΠD represents Dj ’s expected payoffs if Dj only accepted Ui’s deviant offer at period t, and
accepted all other offers kj ∈ C \ {ij} at t + 1 at prices pRkj,D (by the inductive hypothesis). For Dj

to prefer rejecting all offers at t, it must be the case that ΠRA ≥ ΠD.

In the subgame Γt+1
RA , the first accepted offer in C can occur at an odd (downstream proposing) period,

or an even (upstream proposing) period. We go through each case in turn.

(a) Dj cannot reject all offers and earn a payoff greater than ΠD by having the first agreement
kj ∈ C reached in any subsequent odd period t + τ (τ ≥ 1, odd), as Lemma D.8 implies all
agreements in C would also be realized in the same period at prices pRkj,D; this would yield
(discounted to period t) payoffs to Dj of:

ΠRA ≡
τ−1∑
p=0

δρj,D(1− δj,D)πDj (G \ C) + δτj,D

πDj (G)−
∑
kj∈C

pRkj,D


≤ (1− δj,D)πDj (G \ C) + δj,D

πDj (G)−
∑
kj∈C

pRkj,D

 (8)

where the last inequality is implied from A.GFT (i.e., ∆πDj (G, C)−∑ij∈C p
R
kj,D > 0). Using (7)

and (8) implies ΠD −ΠRA > 0 if:

(1− δj,D)∆πDj ((G \ C) ∪ A,A) + φ− ε >
∑
kj∈A

(1− δj,D)pRkj,D

Since ∆πDj ((G \ C) ∪ A,A) ≥ ∆πDj (G,A) ≥ ∑kj∈A p
R
kj,D by A.GFT and A.CDMC, this last

inequality holds, and Dj cannot earn higher profits by rejecting all offers at t and reaching
agreement in some subsequent odd period.

(b) Thus, in order for Dj to credibly reject p̃ij and all other offers in C at period t, Dj must expect
the first agreement kj ∈ C to occur in some subsequent even period t+τ (τ ≥ 2, even) and obtain
some payoff ΠRA > ΠD. Since the set of open agreements at t+ τ is the same as at t, the same
logic of rejecting all offers still holds. Thus this strategy must be supported by ever increasing
future payoffs and ever decreasing payments, which ultimately leads to a contradiction.

Suppose all agreements kj ∈ A′ ⊆ C, A′ 6= ∅ are reached at even period t+ τ at prices p′kj , and
(by the inductive hypothesis) the remaining agreements lj ∈ B′ ≡ C \A′ are reached in the next

38



period t+ τ + 1 at prices pRlj,D. Then Dj ’s payoffs (discounted to period t) are

ΠRA ≡
τ−1∑
p=0

δρj,D(1− δj,D)πDj (G \ C) (9)

+ δτj,D

(1− δj,D)πDj (G \ B′)−
∑
kj∈A′

p′kj + δj,D

πDj (G)−
∑
kj∈B′

pRkj,D


Combining (7) and (9) yields:26

(ΠD −ΠRA) = (1− δj,D)

∆πD((G \ C) ∪ A,A)−
∑
kj∈A

pRkj,D


+ (1− δj,D)

τ−1∑
ρ=1

δρj,D

∆πDj (G, C)−
∑
kj∈C

pRkj,D


+ (1− δj,D)δτj,D

∆πDj (G,B′)−
∑
kj∈C

pRkj,D +
∑
kj∈A′

p′kj


+ δτ+1

j,D

 ∑
kj∈A′

p′kj − pRkj,D

+ φ− ε (10)

We show that this expression is positive, leading to a contradiction. We go through this expres-
sion line by line. The first term is:

T1 ≡ (1− δj,D)

∆πD((G \ C) ∪ A,A)−
∑
kj∈A

pRkj,D︸ ︷︷ ︸
Ξ1


Since ∆πDj ((G \ C) ∪ A,A) ≥ ∑kj∈A∆πDj (G, {kj}) > ∑kj∈A p

R
kj,D by A.GFT and A.CDMC,

Ξ1 is strictly positive, and thus T1 is as well.

The second term of equation (10) is:

T2 ≡ (1− δj,D)
τ−1∑
ρ=1

δρj,D

∆πDj (G, C)−
∑
kj∈C

pRkj,D︸ ︷︷ ︸
Ξ2


which, again by A.GFT (see (3)) and A.CDMC, Ξ2 > 0, and thus T2 is strictly positive.

26Here, and in other expressions, we will leverage the identity: δ = (1− δ)∑τ−1
ρ=1 δ

ρ + δτ .
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The third term of equation (10) is:

T3 ≡ (1− δj,D)δτj,D

∆πDj (G,B′)−
∑
kj∈C

pRkj,D +
∑
kj∈A′

p′kj



= (1− δj,D)δτj,D

∆πDj (G,B′)−
∑
kj∈B′

pRkj,D︸ ︷︷ ︸
Ξ3

+
∑
kj∈A′

[p′kj − pRkj,D]


and the fourth term of equation (10) is:

T4 ≡ δτ+1
j,D

 ∑
kj∈A′

p′kj − pRkj,D

+ φ− ε

Note that Ξ3 > 0 by A.GFT and A.CDMC. Thus, it is straightforward to show that a sufficient
condition for T3 + T4 > 0 is:

ε < φ− δτj,D

 ∑
kj∈A′

[pRkj,D − p′kj ]


Since φ is the maximum discount from Rubinstein prices obtainable in any subgame and δj,D <
1, the RHS will be strictly greater than 0: thus, there is some ε > 0 such that T1+T2+T3+T4 > 0
and ΠD ≤ ΠRA, thus implying that Dj will not wish to reject all offers at period t upon receiving
the deviant offer p̃ij = p̂ij + ε from Ui.

Consequently, Dj cannot credibly reject p̃ij ≡ pRij,D + ε if Ui offered it at period t. Since offering p̃ij

at period t is a profitable deviation for Ui, the original assumption that φ > 0 and that there exists some
p̂ij < pRij,D leads to a contradiction. Hence, p̂ij ≥ pRij,D for all ij ∈ C.

Claim B: All agreements will occur simultaneously.
Let A ⊆ C denote the set of agreements reached at period t in a candidate equilibrium. By the inductive

hypothesis, all agreements in B ≡ C \ A are reached at period t+ 1 with prices pRij,D.
We will show by contradiction that A = C and B = ∅: i.e., if one agreement occurs at period t (even), all

agreements ij ∈ C must occur at period t. Suppose not and A ⊂ C and B 6= ∅. By the inductive assumption,
all Ui such that ij ∈ B will reach agreement at t+ 1 at prices pRij,D.

Consider the deviation where some Ui, ij ∈ B, offers p̃ij = pRij,D at period t.

1. Such a deviation will be accepted by Dj .

Suppose not, and Dj rejects p̃ij .

(a) Suppose that Dj rejects p̃ij but accepts some non-empty set of offers A′ ⊆ C \ {ij} at period
t. However, Dj would find it more profitable to accept p̃ij while still accepting all agreements
kj ∈ A′ if Dj ’s profit gains from reaching agreement with Ui one period earlier is greater than
Dj ’s difference in payments:

(1− δj,D)∆πDj ((G \ C) ∪ A′ ∪ {ij}, {ij}) > p̃ij − δj,DpRij,D
⇔ (1− δj,D)∆πDj ((G \ C) ∪ A′ ∪ {ij}, {ij}) > (1− δj,D)pRij,D

By A.GFT and A.CDMC, this inequality holds. Thus, Dj cannot reject p̃ij while still accepting
A′ at period t.
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(b) Thus, the only way Dj can reject p̃ij is for Dj to reject all offers at period t.

If Dj were to reject all offers at period t, the inductive hypothesis does not apply in the subgame
beginning at t+ 1, and the first agreement can occur either in a subsequent odd or even period.
We examine both cases.

First, note that Dj can always accept only p̃ij at period t, and receive all other offers kj ∈ C\{ij}
at period t+ 1 at prices pRij,D (by the inductive hypothesis), yielding profits:

Π̃D
j = (1− δij,D)πDj ((G \ C) ∪ {ij})− p̃ij + δj,D

πDj (G)−
∑

kj∈C\{ij}

pRkj,D


= (1− δj,D)

(πDj ((G \ C) ∪ {ij})− p̃ij
)

+

τ−1∑
ρ=1

δρj,D

πDj (G)− p̃ij −
∑

kj∈C\{ij}

pRkj,D


+ δτj,D

πDj (G)− p̃ij −
∑

kj∈C\{ij}

pRkj,D

 ,

for τ = 1, 2, 3 . . ..

i. First agreement occurs in an odd period. If the first accepted offer in C is at an odd period
t + τ (τ ≥ 1), then Lemma D.8 implies all agreements in C would also be realized in the
same period at prices pRkj,D, yielding profits (discounted to period t):

Π̄D,o
j = (1− δτj,D)πDj (G \ C) + δτj,D

πDj (G)−
∑
kj∈C

pRkj,D

 (11)

= (1− δj,D)

[
πDj (G \ C) +

(
τ−1∑
ρ=1

δρj,Dπ
D
j (G \ C)

)]
+ δτj,D

πDj (G)−
∑
kj∈C

pRkj,D


Dj would prefer to accept only p̃ij at period t instead if Π̃D

j − Π̄D
j > 0, or:

[
∆πDj ((G \ C) ∪ {ij}, {ij})− p̃ij

]
+

τ−1∑
ρ=1

δρj,D

∆πDj (G, C)− p̃ij −
∑

kj∈C\{ij}

pRkj,D

 > 0

Each term of this expression is positive by A.CDMC and A.GFT since ∆π((G \ C) ∪
{ij}, {ij}) ≥ ∆π(G, {ij}) > pRij,D, and since ∆π(G, C)−∑kj∈C p

R
kj,D > 0.

Thus, Dj will not find it profitable to reject all offers and reach agreement in a subsequent
odd period.

ii. First agreement occurs in an even period. If the first accepted offer in C is at an even
period t + τ (τ ≥ 2), then the lowest possible payments it can make in equilibrium to all

ij ∈ C are p̂ij ≥ pRij,D (by Claim A). Let Π̄D,e
j denote the most that Dj can achieve in

any subgame in which the first agreement in C is reached in some future even period t+ τ
(discounted to period t).27 However, it is straightforward to show that the expression for

Π̄D,e
j is identical to that of Π̄D,o

j in (11) (for τ even instead of odd); hence, using the same

analysis as before, it must be that Π̃D
j − Π̄D,e

j > 0. Thus, Dj will not find it profitable to
reject all offers and reach agreement in a subsequent even period.

Thus Dj will accept the deviation p̃ij from Ui.

27By the inductive hypothesis, if Dj reaches any agreements at period t + τ , all other agreements would
occur in the following period t+ τ + 1 at prices pRij,D. However, Dj would strictly prefer reaching agreement

at period t+ τ instead of t+ τ + 1 at prices pRij,D as ∆πDj (G, {ij}) ≥ pRij,D by A.GFT and A.CDMC.
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2. Such a deviation is profitable for Ui if Dj accepts.

Assume if Dj accepts the deviation from Ui at period t, Dj also accepts agreements A′ ⊆ C \ {ij} at
period t as well as ij; by the inductive hypothesis, Dj then reaches agreements B′ ≡ C \ [A′ ∪ {ij}] in
the following period t+ 1.

Ui will find the deviation profitable in this case if and only if:

p̃ij + (1− δi,U )πUi (G \ B′) > δi,Up
R
ij,D + (1− δi,U )πUi (G \ B)

⇔ p̃ij − δi,UpRij,D > (1− δi,U )(πUi (G \ B)− πUi (G \ B′))
⇔ (1− δi,U )pRij,D > (1− δi,U )(πUi ((G \ C) ∪ A)− πUi ((G \ C) ∪ A′ ∪ {ij}))

By A.SCDMC:
πUi ((G \ C′) ∪ A′ ∪ {ij}))− (πUi ((G \ C) ∪ A) ≥ ∆πUi (G, {ij})

and so the desired inequality will hold since pRij > −∆πDi (G, {ij}) by A.GFT. Hence, Ui will find it
profitable to make the deviation.

Since Dj must accept the deviant offer in any equilibrium, and Ui finds it profitable to make the deviation
if it is accepted, then the original candidate equilibrium is not an equilibrium; contradiction. Consequently,
if the first agreement occurs in an even period, all agreements must occur simultaneously.

Claim C: If all agreements ij ∈ C occur simultaneously in an even period t, then p̂ij = pRij,U∀ij ∈ C.

1. Assume that p̂ij > pRij,U for some ij. Consider the following deviation for Dj : Dj rejects ij and

accepts all other offers at t; Dj will then come to agreement with Ui in t+ 1 for payment pRij,D by the

inductive hypothesis. This is profitable for Dj if (1− δj,D)∆πDj (G, {ij}) < p̂ij − δj,DpRij,D. Since the

LHS of this inequality is equal to pRij,U − δj,DpRij,D (see (1)), this inequality will hold if p̂ij > pRij,U .
This yields a contradiction.

2. Assume p̂ij < pRij,U for some ij. Consider a deviant offer by Ui, p̃ij = pRij,U − ε > p̂ij . We now show
that this deviation is profitable to Ui, leading to a contradiction.

If Ui offers p̃ij instead of p̂ij at period t, we show that Dj accepting all offers (including p̃ij) at period
t is more profitable than:

(a) Dj rejecting all offers at period t. By Lemma D.8 and Claim B of this lemma, if Dj rejects all
offers at t, then all agreements ij ∈ C will form in the same future period (if at all). Moreover,
if they occur at a future odd period, they will be for the prices {pRkj,D}kj∈C (Lemma D.8), and

if they occur at an even period, they will be for prices of {pRkj,D}kj∈C or higher (Claim A of this
lemma). Thus, the most profitable case for Dj by rejecting all offers at t is to have agreement
immediately in the following period t + 1 and pay no more than pRkj,D to all kj ∈ C. In this
case, the loss in profits from delay is:

(1− δj,D)∆πDj (G, C) ≥ (1− δj,D)
∑
kj∈C

∆πDj (G, {kj}) =
∑
kj∈C

(pRkj,U − δj,DpRkj,D), (12)

from A.CDMC and (1) respectively. But the change in payments is less than
∑
kj∈C p

R
kj,U −

δj,Dp
R
kj,D − ε, implying that Dj would be better off accepting all offers at period t. This yields

a contradiction.

(b) Dj rejecting offers B ⊂ C at period t where ij ∈ B. By the inductive hypothesis, all remaining
offers kj ∈ B occur in period t + 1 at prices {pRkj,D}kj∈B. Dj would rather accept all offers at
period t (including the deviant offer p̃ij) if:

(1− δj,D)∆πDj (G,B) > p̃ij − δj,DpRij,D +
∑

kj∈B\{ij}

(p̂kj − δj,DpRkj,D).
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Similar to (12), the LHS can be shown to be greater than
∑
kj∈B p

R
kj,U − δj,Dp

R
kj,D. Since

p̃ij < pRij,U and p̂kj ≤ pRkj,U∀kj ∈ B \ {ij}, it follows that this inequality holds.

The only case not ruled out yet is if Dj accepts the deviation from Ui at period t, but rejects some
other subset of offers B, ij /∈ B. Under A.LEXT, Ui would be indifferent between this case and having
Dj accept all its offers, since Ui’s payoff is unaffected by these agreements, and so this deviation
remains profitable for Ui. Under A.ASR, if Dj chooses this set of acceptances with the deviant ij
offer, then it would have strictly preferred rejecting B ⊂ C in the original candidate equilibrium (as
again, A.ASR rules out indifference on the part of Dj), which contradicts the fact that the original
strategies formed an equilibrium.

Consequently, we have shown that Dj will accept the deviant offer from Ui, and Ui would prefer this
deviation. This yields a contradiction.

Thus, p̂ij = pRij,U∀ij ∈ C for agreements reached in an even period.

Claims A-C prove the lemma. �

Lemma D.10 (Immediate agreement.) Any equilibrium of Γt̃C results in immediate agreement for all
ij ∈ C at period t̃.

Proof. The proof here is a special case of the proof of immediacy for Lemma D.13 when there are multiple
downstream and upstream firms, given below. As that proof does not leverage the presence of multiple
downstream firms with open agreements in C, it is applicable here and not replicated.

D.4 One Upstream Firm, Many Downstream Firms

Consider any subgame Γt̃C where C ⊆ G contains only open agreements involving one upstream firm Ui, and
|C| = n so that there are n > 1 remaining agreements that have not yet been reached at period t̃.

This case is exactly symmetric to the one downstream, many upstream firm case proved in Section D.3,
and thus the proof that Proposition D.7 holds in any subgame with multiple downstream firms and one
upstream firm follows immediately.28

D.5 Many Upstream and Many Downstream Firms

Having proven Proposition D.7 holds for all subgames with open agreements involving either only one
upstream firm or one downstream firm, we now focus on subgames Γt̃C where C ⊆ G involves more than one
upstream and more than one downstream firm. As before, we will prove Proposition D.7 with three lemmas.

Lemma D.11 (Odd, simultaneous.) If the first agreement occurs at an odd period t ≥ t̃, then all agree-
ments ij ∈ C must occur at t with p̂ij = pRij,D ∀ij ∈ C.

Proof. In the candidate equilibrium, let A indicate the set of agreements reached first in period t (odd),
and B ≡ C \A the set of agreements reached at some later date. By the inductive hypothesis, all agreements
ij ∈ B will occur at t+ 1 at prices pRij,U .

We first prove that all agreements ij ∈ C occur at the same period (i.e., A = C and B = ∅), and then
prove all agreements occur at the Rubinstein prices.

Claim A: All agreements occur at the same time. We prove the claim by contradiction.
Suppose all agreements are not simultaneous so that A ⊂ C and B 6= ∅. Since there are multiple upstream

firms with open agreements at period t (by assumption), we can find agreements ab ∈ A and ij ∈ B s.t.
Ua 6= Ui: i.e., we can find an agreement formed at period t and another agreement formed at t+ 1 involving

28The only difference is that the sign on prices, since payments are from downstream to upstream firms,
is reversed.
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different upstream firms.29 Consider the following deviation by Dj at period t: Dj offers p̃ij ≡ pRij,D + ε to
Ui.

1. Such a deviant offer will be accepted by Ui.

To show this, assume not, and assume that Ui rejects p̃ij but accepts some set of agreements A′ ⊆
CUi \ {ij}. Even if A′ is empty, by passive beliefs Ui still anticipates ab will come to agreement at t;
thus, by induction, all remaining agreements will be formed in the next period at prices pRij,U .

Instead of rejecting p̃ij , Ui can do better by accepting A′ ∪ {ij} at period t than accepting only A′ if
the change in payoffs exceeds the change in prices, if:

(1− δi,U )∆πUi ((G \ C) ∪ A′ ∪ {ij}, {ij}) > δi,Up
R
ij,U − p̃ij .

Since ∆πUi ((G\C)∪A′∪{ij}, {ij}) ≥ ∆πUi (G, {ij}) by A.CDMC, (1−δi,U )∆πUi (G, {ij}) = δi,Up
R
ij,U−

pRij,D by (2), and p̃ij = pRij,D+ε, this inequality holds. This implies a contradiction, and thus Ui cannot
reject the deviant offer.

2. Such a deviation is profitable for Dj if accepted by Ui.

Assume that upon receipt of the deviant offer from Dj , Ui accepts some set of offers A′Ui ⊆ CUi ,

ij ∈ A′Ui . Let A′ ≡ A′Ui ∪ AU−i denote the full set of offers accepted at period t. By the inductive
hypothesis, all remaining agreements C \A′ will be formed at period t+ 1 at prices pRkj,U . Dj will find

the deviation of offering p̃ij = pRij,D + ε at period t profitable if (1− δj,D)(πDj ((G \ C) ∪A′)− πDj (G \
C) ∪ A)− p̃ij + δj,Dp

R
ij,U > 0.

But,

(1− δj,D)(πDj ((G \ C) ∪ A′)− πDj (G \ C) ∪ A)− p̃ij + δj,Dp
R
ij,U

> (1− δj,D)(πDj ((G \ C) ∪ A′)− πDj (G \ C) ∪ A)− pRij,U + δj,Dp
R
ij,D

≥ (1− δj,D)∆πDj (G, {ij})− pRij,U + δj,Dp
R
ij,D = 0,

where the first inequality follows from the definition of p̃ and Lemma D.1, the second inequality follows
from A.SCDMC, and the equality follows from equation (1). Note that that application of A.SCDMC
follows since A′ and A differ only in agreements involving Ui, and ij ∈ A′ while ij /∈ A.

Since there is a profitable deviation for Dj , there is a contradiction. Thus all agreements happen at the
same time.

Claim B: p̂ij = pRij,D.

1. Assume that p̂ij < pRij,D for some ij. Consider the following deviation for Ui: Ui rejects ij and accepts

all other offers at t; Ui will then come to agreement with Dj in t+1 for payment pRij,U by the inductive

hypothesis. This is profitable for Ui if (1 − δi,U )∆πUi (G, {ij}) > −p̂ij + δi,Up
R
ij,U . Since the LHS of

this inequality is equal to −pRij,D + δi,Up
R
ij,U (see (2)), this inequality will hold if p̂ij < pRij,D. This

yields a contradiction.

2. Assume p̂ij > pRij,D for some ij. Consider a deviant offer by Dj , p̃ij = pRij,D + ε < p̂ij . We now show
that this deviation is profitable to Dj , leading to a contradiction.

If Dj offers p̃ij instead of p̂ij at period t, we show that Ui accepting all offers (including p̃ij) at period
t is more profitable than Ui rejecting offers B ⊆ CUi at period t where ij ∈ B. By passive beliefs, Ui
believes that all offers in CU−i—and hence at least one offer in C—will conclude at period t. Thus, by

29If we cannot find two agreements ab ∈ A, ij ∈ B involving two different upstream parties, it must have
been that there was only one upstream firm in C (which is ruled out by assumption).
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the inductive hypothesis, in case of this rejection, all agreements in B form in period t+ 1 for prices
{pRik,U}ik∈B. Ui would rather accept all offers at period t (including the deviant offer p̃ij) if:

(1− δi,U )∆πUi (G,B) > −p̃ij + δi,Up
R
ij,U +

∑
ik∈B\{ij}

(−p̂ik + δi,Up
R
ik,U ).

From (2), the LHS is greater than
∑
kj∈B p

R
kj,U − δj,DpRkj,D. Since p̃ij < pRij,U and p̂kj ≤ pRkj,U∀kj ∈

B \ {ij}, it follows that this inequality holds.

We have not yet ruled out the possibility that Ui accepts the deviation from Dj at period t, but
rejects some other subset of offers B, ij /∈ B. Under A.LEXT, Dj would be indifferent between this
case and having Ui accept all its offers, since Dj ’s payoff is unaffected by these agreements, and so
this deviation remains profitable for Dj . Under A.ASR, if Ui chooses this set of acceptances with
the deviant ij offer, then it would have strictly preferred rejecting B ⊂ C in the original candidate
equilibrium (as again, A.ASR rules out indifference on the part of Ui), which contradicts the fact that
the original strategies formed an equilibrium.

Consequently, we have shown that Ui will accept the deviant offer from Dj , and Dj would prefer this
deviation. This yields a contradiction.

Hence, for all ij ∈ C, p̂ij = pRij,D. �

Lemma D.12 (Even, simultaneous.) If the first agreement occurs at an even period t ≥ t̃, then all
agreements ij ∈ C must occur at t with p̂ij = pRij,U ∀ij ∈ C.

Proof. The proof here is symmetric to the case considered in Lemma D.11.

Lemma D.13 (Immediate agreement.) Any equilibrium of Γt̃C results in immediate agreement for all
ij ∈ C at period t̃.

Proof. We prove this lemma by contradiction. Consider first the case where t̃ is odd. Let agreement ij ∈ C
satisfy the conditions of A.LNEXT (either directly or through A.LEXT).

Consider a candidate equilibrium where no agreements are formed at period t̃ (as, by the previous results,
if any agreement is formed in period t̃, all agreements are formed in that period). We propose a deviant
strategy by Dj from this candidate equilibrium and then verify that it will increase Dj ’s payoff. Suppose
Dj offers p̃ij satisfying pDij,R < p̃ij < pUij,R to some Ui where ij ∈ C. We first show that Ui will accept this
offer and then show that it will increase Dj ’s surplus relative to the candidate equilibrium.

Suppose that Ui accepts the offer p̃ij . Then, by passive beliefs, it believes that this is the only offer to
be accepted at period t̃ and, by the inductive hypothesis, that the remaining agreements will form at period
t̃+ 1. Hence, its payoffs—in period t̃ units—from accepting the offer are:

p̃ij + (1− δi,U )πUi ((G \ C) ∪ {ij})︸ ︷︷ ︸
Payoff at t̃

+ δi,U

πUi (G) +
∑

ik∈CUi \{ij}

pRik,U


︸ ︷︷ ︸

Payoff from t̃+1 on

= p̃ij + (1− δi,U )∆πUi ((G \ C) ∪ {ij}, {ij}) + δi,U

 ∑
ik∈CUi \{ij}

pRik,U + πUi (G)

+ (1− δi,U )πUi (G \ C)

> pRij,D + (1− δi,U )∆πUi (G, {ij}) + δi,U

πUi (G) +
∑

ik∈CUi \{ij}

pRik,U

+ (1− δi,U )πUi (G \ C)

= δi,U

πUi (G) +
∑
ik∈CUi

pRik,U

+ (1− δi,U )πUi (G \ C),
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where the second line simply adds and subtracts the (1 − δi,U )πUi (G \ C) term, the third line follows from
A.CDMC and the definition of p̃ij , and the final line uses equation (2) and then combines the pRij,U terms in
the sum.

We next show that this payoff from acceptance is higher than the payoff from rejecting Dj ’s deviant
offer. In case Ui rejects the deviant offer, there are the following four potential outcomes given equilibrium
play in the resulting subgame:

1. Ui rejects all offers in CUi at period t̃ and no offers in C are ever accepted.

In this case, the payoffs to Ui are:

πUi (G \ C) = δi,Uπ
U
i (G \ C) + (1− δi,U )πUi (G \ C)

< δi,U

πUi (G) +
∑
ik∈CUi

pRik,D

+ (1− δi,U )πUi (G \ C)

< δi,U

πUi (G) +
∑
ik∈CUi

pRik,U

+ (1− δi,U )πUi (G \ C),

where the first inequality follows from Lemma D.5 (which uses A.LNEXT) and the second inequality
follows from Lemma D.1. Thus, the payoffs to Ui from rejection are less than from accepting Dj ’s
deviant offer in this case.

2. Ui rejects all offers in CUi at period t and all offers C are formed in some even period t̃ + τ , for
τ = 1, 3, 5, . . ..

If Ui accepts no other offers at period t̃ (and by passive beliefs, Ui believes that no offers in are formed
at t̃), the payoffs to Ui are:

(1− δτi,U )πUi (G \ C) + δτi,U

πUi (G) +
∑
ik∈CUi

pRik,U


= (1− δi,U )πUi (G \ C) + (δi,U − δτi,U )πUi (G \ C) + δτi,U

πUi (G) +
∑
ik∈CUi

pRik,U


< (1− δi,U )πUi (G \ C) + (δi,U − δτi,U )

πUi (G) +
∑
ik∈CUi

pRik,U


+ δτi,U

πUi (G) +
∑
ik∈CUi

pRik,U


= (1− δi,U )πUi (G \ C) + δi,U

πUi (G) +
∑
ik∈CUi

pRik,U

 ,

where lines two and four follow by rearranging terms and line three follows again from Lemma D.5.
Thus, the payoffs to Ui from rejection are less than from accepting Dj ’s deviant offer in this case as
well.

3. Ui rejects all offers in CUi at period t̃ and all offers C are formed in some odd period t̃ + τ , for
τ = 2, 4, 6, . . ..
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In this case, the payoffs to Ui are:

(1− δτi,U )πUi (G \ C) + δτi,U

πUi (G) +
∑
ik∈CUi

pRik,D


< (1− δτi,U )πUi (G \ C) + δτi,U

πUi (G) +
∑
ik∈CUi

pRik,U


= (1− δi,U )πUi (G \ C) + (δi,U − δτi,U )πUi (G \ C) + δτi,U

πUi (G) +
∑
ik∈CUi

pRik,U


< (1− δi,U )πUi (G \ C) + (δi,U − δτi,U )

πUi (G) +
∑
ik∈CUi

pRik,U


+ δτi,U

πUi (G) +
∑
ik∈CUi

pRik,U


= (1− δi,U )πUi (G \ C) + δi,U

πUi (G) +
∑
ik∈CUi

pRik,U

 ,

where the first inequality follows from Lemma D.1 and the remaining logic is identical to case 2. Thus,
the payoffs to Ui from rejection are less than from accepting Dj ’s deviant offer in this case too.

4. Ui accepts some non-empty set of offers B ⊆ CUi \ {ij} at period t̃.

In this case, by the inductive hypothesis, all remaining agreements A ≡ C \ B form in the following
(even) period t̃+ 1 at Rubinstein prices. Thus, we can express the payoff to Ui from this strategy as

(1− δi,U )πUi ((G \C)∪B) +
∑
ik∈B p̂ik + δi,U

[
πUi (G) +

∑
ik∈AU

i
pRik,U

]
, where p̂ik∀ik ∈ B are the period

t̃ candidate equilibrium prices offered to Ui. But,

(1− δi,U )πUi ((G \ C) ∪ B) +
∑
ik∈B

p̂ik + δi,U

πUi (G) +
∑
ik∈AU

i

pRik,U


= (1− δi,U )πUi ((G \ C) ∪ B) +

∑
ik∈B

p̂ik + δi,U

πUi (G) + pRij,U +
∑

ik∈AU
i \{ij}

pRik,U


= (1− δi,U )πUi ((G \ C) ∪ B) +

∑
ik∈B

p̂ik

+ pDij,R + (1− δi,U )∆πUi (G, {ij}) + δi,U

πUi (G) +
∑

ik∈AU
i \{ij}

pRik,U


< (1− δi,U )πUi ((G \ C) ∪ B) +

∑
ik∈B

p̂ik + p̃ij + (1− δi,U )∆πUi (G, {ij}) + δi,U

πUi (G) +
∑

ik∈AU
i \{ij}

pRik,U


≤ (1− δi,U )πUi ((G \ C) ∪ B) +

∑
ik∈B

p̂ik + p̃ij + (1− δi,U )∆πUi ((G \ C) ∪ B ∪ {ij}, {ij})

+ δi,U

πUi (G) +
∑

ik∈AU
i \{ij}

pRik,U


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= (1− δi,U )πUi ((G \ C) ∪ B ∪ {ij}) +
∑
ik∈B

p̂ik + p̃ij + δi,U

πUi (G) +
∑

ik∈AU
i \{ij}

pRik,U

 ,
where lines two and six follow by rearranging terms, line three follows from equation (2), line four
follows from the the definition of the deviant offer, and line five follows from A.CDMC.

Since the final line is the value of accepting Dj ’s deviant offer and all offers in B, the payoff to Ui
from accepting Dj ’s deviant offer and all offers in B is higher than the payoff from accepting just the
offers in B. This implies that Ui is better off from accepting Dj ’s deviant offer even if it also wanted
to accept some other offers.

Since, in each of the cases, Ui is strictly better off from accepting the deviant offer than from rejecting it,
Ui will accept this offer. Note that we have not ruled out the possibility that Ui may also choose to accept
additional offers in CUi at period t̃ upon accepting deviant offer p̃ij ; we return to this below.

Having verified that the p̃ij offer will be accepted by Ui, we now check that the acceptance of this deviant
offer will be profitable for Dj . Dj knows that Ui is the only firm that will accept offer(s) at period t̃ and, by
the inductive hypothesis, that the remaining agreements will form at period t̃ + 1. However, it is possible
that upon receiving the deviant offer, Ui will also accept some other offers B ⊂ CUi \ {ij}. Hence, Dj ’s
payoff—in period t̃ units—from making the deviant offer satisfies:

−p̃ij + (1− δj,D)πDj ((G \ C) ∪ B ∪ {ij})︸ ︷︷ ︸
Payoff at t̃

+ δj,D

πDj (G)−
∑

kj∈CDj \{ij}

pRkj,U


︸ ︷︷ ︸

Payoff from t̃+1 on

≥ −p̃ij + (1− δj,D)∆πDj ((G, {ij}) + δj,D

πDj (G)−
∑

kj∈CDj \{ij}

pRkj,U

+ (1− δj,D)πDj (G \ C)

> −pRij,U + (1− δj,D)∆πDj (G, {ij}) + δj,D

πDj (G)−
∑

kj∈CDj \{ij}

pRkj,U

+ (1− δj,D)πDj (G \ C)

= −δj,DpRij,D + δj,D

πDj (G)−
∑

kj∈CDj \{ij}

pRkj,U

+ (1− δj,D)πDj (G \ C)

> (1− δj,D)πDj (G \ C) + δj,D

πDj (G)−
∑
kj∈CDj

pRkj,U

 ,

where the second line applies A.SCDMC, the third line follows from the definition of p̃ij , the fourth line uses
equation (1) on the construction of Rubinstein prices, and the final line uses Lemma D.1 and then combines
the pRkj,U terms in the sum.

Next, we show that the lower bound on payoffs from this deviant offer being accepted (given by the last
line of the previous set of equations) is higher than the payoff from the candidate equilibrium. In case Dj

does not deviate from the equilibrium with an offer p̃ij , there are again three possibilities for the equilibrium
payoffs at this node:

1. No further offers are accepted.

In this case, the payoffs to Dj from the candidate equilibrium are:

πDj (G \ C) = δj,Dπ
D
j (G \ C) + (1− δj,D)πDj (G \ C)

< (1− δj,D)πDj (G \ C) + δj,D

πDj (G)−
∑
kj∈CDj

pRkj,U

 ,
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where the inequality follows from Lemma D.5. Thus, the payoffs to Dj from the candidate equilibrium
are less than from accepting Ui’s deviant offer in this case.

2. All remaining offers are accepted in some even period t̃+ τ , for τ = 1, 3, 5, . . ..

In this case, the payoffs to Dj from the candidate equilibrium are:

(1− δτj,D)πDj (G \ C) + δτj,D

πDj (G)−
∑
kj∈CDj

pRkj,U


= (1− δj,D)πDj (G \ C) + (δj,D − δτj,D)πDj (G \ C) + δτj,D

πDj (G)−
∑
kj∈CDj

pRkj,U


< (1− δj,D)πDj (G \ C) + (δj,D − δτj,D)

πDj (G)−
∑
kj∈CDj

pRkj,U


+ δτj,D

πDj (G)−
∑
kj∈CUi

pRik,U


= (1− δj,D)πDj (G \ C) + δj,D

πDj (G)−
∑
kj∈CDj

pRkj,U

 ,

where lines two and four follow by rearranging terms and line three follows again from Lemma D.5.
Thus, the payoffs to Dj from the candidate equilibrium are less than from making the deviant offer
in this case also.

3. All remaining offers are accepted in some odd period t̃+ τ , for τ = 2, 4, 6, . . ..

In this case, the payoffs to Dj from the candidate equilibrium are:

(1− δτj,D)πDj (G \ C) + δτj,D

πDj (G)−
∑
kj∈CDj

pRkj,D


= (1− δτ−1

j,D )πDj (G \ C) + δτ−1
j,D

(1− δj,D)πDj (G \ C) + δj,Dπ
D
j (G)− δj,D

∑
kj∈CDj

pRkj,D


= (1− δτ−1

j,D )πDj (G \ C) + δτ−1
j,D

πDj (G)− (1− δj,D)∆πDj (G, C)− δj,D
∑
kj∈CDj

pRkj,D


< (1− δτ−1

j,D )πDj (G \ C) + δτ−1
j,D

πDj (G)−
∑
kj∈CDj

[
(1− δj,D)∆πDj (G, {kj}) + δj,Dp

R
kj,D

]
= (1− δτ−1

j,D )πDj (G \ C) + δτ−1
j,D

πDj (G)−
∑
kj∈CDj

pRkj,U


= (1− δj,D)πDj (G \ C) + (δj,D − δτ−1

j,D )πDj (G \ C) + δτ−1
j,D

πDj (G)−
∑
kj∈CDj

pRkj,U


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< (1− δj,D)πDj (G \ C) + (δj,D − δτ−1
j,D )

πDj (G)−
∑
kj∈CDj

pRkj,U


+ δτ−1

j,D

πDj (G)−
∑
kj∈CDj

pRkj,U


= (1− δj,D)πDj (G \ C) + δj,D

πDj (G)−
∑
kj∈CDj

pRkj,U

 ,

where the second, third, and sixth lines follow by rearranging terms, the fourth line follows from
A.WCDMC, the fifth line from equation (1), the seventh line from Lemma D.5, and the final line also
by rearranging terms. Thus, the payoffs to Dj from the deviant offer are greater than its equilibrium
payoffs in this case too.

So Dj has a profitable deviation, leading to a contradiction in the case where t̃ is odd.
We next consider the case where t̃ is even. An exactly symmetric argument applies here, and hence we

do not repeat it.
Thus, any equilibrium involves immediate agreement for all ij ∈ C. �

E Counterexamples

E.1 Counterexample to Unique Equilibrium

This subsection provides an example of a game with multiple equilibria and immediate and complete agree-
ment even when the assumptions from Theorem 4.6—A.GFT and either (i) A.CDMC and A.LEXT or (ii)
A.SCDMC, A.LNEXT and A.ASR—hold. As discussed in the text, the equilibria will differ only in their
prescribed off-equilibrium play and hence realized outcomes are the same across equilibria.

Let M = 1 and N = 2 so that there is one downstream firm D1 and two upstream firms U1, U2. In
this case, if there are multiple and simultaneous deviations by both upstream firms in an even (upstream-
proposing) period—which will reach a node off the equilibrium path—then D1’s best response may be to
accept only one and not both of these deviations, and the choice of which offer to accept may be arbitrary.

Numerical Example. Let G = {11, 21}. Let πUi (K) = 0, ∀K ⊆ G and for U1 and U2, so profits
accrue only to D1. Let πD1 (∅) = 0, πD1 ({11}) = πD1 ({21}) = 6, and πD1 ({11, 21}) = 8. Note that this example
satisfies A.ASR, A.CDMC and A.LEXT.

Suppose that δ1,U = δ1,D = δ2,D = 0.9. Note that pR1,U = pR2,U ≈ 1.0526. Now consider the even-period
node where U1 and U2 have both deviated from their equilibrium strategies and offered p∗1 = p∗2 = 1, and
D1 is deciding which offer(s) to accept. It is easy to verify that, at this node, D1 should accept either offer
but not both offers. Thus, one equilibrium involves D1 accepting U1’s offer at this node, while another
equilibrium involves D1 accepting U2’s offer at this node.

The underlying logic is that the difference in D1’s payoffs between one and two agreements, which is 2,
is smaller than the difference in D1’s payoffs between zero and one agreements, which is 6. The pRU payoffs
are designed to make D1 indifferent between accepting both offers and only one—but D1 strictly prefers one
agreement to none at these prices.

E.2 Counterexample to Unique Equilibrium Payoffs With Imme-
diate and Complete Agreement

This subsection provides an example of a game with an equilibrium where a firm can be paid more than the
Rubinstein price with immediate agreement when the assumptions of Theorem 3.2 hold but the assumptions
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of Theorem 4.6 do not.
Let N = 1 and M = 2 so that there is one upstream firm U1 and two downstream firms D1, D2. Assume

that the first period, t0, is odd so that downstream firms make initial proposals, and that ∆πD1 (G, {12}) > 0,
so that there is a positive externality to D1 from D2 contracting.

Consider the strategy profile prescribed in the proof of Theorem 3.2 in Appendix C, and alter it so that:

• In odd periods, D1 offers U1 p̂
R
11,D ≡ pR11,D + ε, where:

ε ∈ (0,min{(1− δ1,D)∆πD1 (G, {12}), (1− δ1,D)∆πD1 (G, {11})− (pR11,D − δ1,DpR11,U )}]

• In odd periods, U1 accepts any offer p11 ≥ pR11,D from D1, and rejects otherwise; however, if U1 accepts

p11 and p11 6= p̂11, then U1 rejects p12 if p12 = pR12,D.

This change to the strategies implies that D1 offers more than its Rubinstein price in an odd period,
and that U1 threatens to reject D2’s offer of pR12,D if D1 makes an deviant offer that is greater than or equal

to the Rubinstein price, but different than p̂11. Since U1 is indifferent over accepting and rejecting pR12,D

from D2 given it accepts D1 under the strategy profiles given, U1’s off-equilibrium threat is credible. The
premiums over the Rubinstein price pR11,D made in the first period can be no higher than either D1’s gain
from U1 reaching agreement with D2 immediately, or D1’s option of offering such a high price in period 1
so that U1 rejects it, and then reaching agreement with U1 in the following period at pR11,U .

As long as A.GFT and A.CDMC hold for the remainder of the underlying payoffs, it is straightforward
to show that this strategy profile will comprise an equilibrium. Essentially, it is sustained by the positive
externality on D1 that is generated by U1 coming to agreement with D2; U1 can leverage this to extract a
higher price from D1 when negotiating in an odd period.

Note that as Λ→ 0, the outcome of this equilibrium also converges to the one detailed in the uniqueness
proof: i.e., Nash-in-Nash prices for all firms, and immediate agreement.

Numerical Example. Let G = {11, 12}. Let πU1 (∅) = πD1 (∅) = πD1 ({12}) = 0, πU1 ({11}) =
πU1 ({12}) = 5, πU1 ({11, 12}) = 8, πD1 ({11}) = 1, and πD1 ({11, 12}) = 2, and let D2 have symmetric payoffs
to D1.

This example satisfies both A.ASR and A.CDMC but not A.SCDMC or A.LEXT. Suppose again that
δ1,U = δ1,D = δ2,D = .9. Then the strategies prescribed above with ε ≤ 0.1 comprise an equilibrium.

E.3 Counterexample to Complete and Immediate Agreement

This subsection provides an example of a game where there is an equilibrium without complete and immediate
agreement when the assumptions of Theorem 3.2 hold but the assumptions of Theorem 4.6 do not.

Let N = 1 and M = 2 so that there is one upstream firm U1 and two downstream firms D1, D2. Consider
the case where D1 is harmed by an offer between U1 and D2, and vice versa. In such a setting, it may be
the case that neither downstream firm has an incentive to form an agreement if the other agreement has not
yet been formed, and there may exist an equilibrium without any agreement ever forming.

Numerical Example. Let G = {11, 12}. Let πU1 (K) = 0,∀K ⊆ G, so profits accrue only to D1 and
D2. Let πD1 (∅) = 0, πD1 ({11}) = 1, πD1 ({12}) = −100, and πD1 ({11, 12}) = −99, and let D2 have symmetric
payoffs to D1.

Note that this example satisfies A.GFT and A.CDMC, but not A.SCDMC, A.LNEXT, or A.LEXT.
Suppose again that δ1,U = δ1,D = δ2,D = .9. Since the model satisfies A.GFT and A.CDMC there will be
an equilibrium with immediate agreement at Rubinstein prices—e.g., if D2 believes that D1 will form an
agreement with U1 at Rubinstein prices, D2 will wish to form an agreement as well. However, there will
also be an equilibrium with no agreements ever formed. To see this, note that no downstream firm has an
incentive to form an agreement at Rubinstein prices (or at any prices that U1 would agree to) given the other
has not formed an agreement (given discount factors are sufficiently close to 1): even though an agreement
may yield positive surplus for one period, any resulting subgame results in the other agreement forming at
Rubinstein prices immediately thereby resulting in negative profits for the rest of the game.
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