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Abstract

The concept of a Nash equilibrium in Nash bargains, proposed in Horn and Wolin-
sky (1988), has become the workhorse bargaining model for predicting and estimating
the division of surplus in applied analysis of bilateral oligopoly. This paper proposes a
non-cooperative foundation for this concept—in which agreements between each pair
of firms maximizes their bilateral Nash product conditional on all other negotiated
agreements—by extending the Rubinstein (1982) alternating offers model to a setting
with multiple upstream and downstream firms. In our model, downstream firms make
simultaneous offers to upstream firms in odd periods, and upstream firms make simul-
taneous offers to downstream firms in even periods. Given restrictions on underlying
payoffs, we prove that there exists a perfect Bayesian equilibrium with passive be-
liefs that generates the “Nash-in-Nash” solution, and that this equilibrium outcome is
unique.

1 Introduction

Bilateral bargaining between pairs of agents is pervasive in many economic environments.

Manufacturers bargain with retailers over wholesale prices, and firms and unions negotiate

the wages paid to workers. In many of these cases, negotiations are interdependent: e.g., a
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ments. Gowrisankaran acknowledges funding from the National Science Foundation (Grant SES-1425063).
Contact details: Collard-Wexler, collardwexler@gmail.com; Gowrisankaran, gautamg2@gmail.com; and Lee,
robinlee@fas.harvard.edu. The usual disclaimer applies.
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firm’s profitability may depend on the prices negotiated by its competitors. Given the cen-

trality of these environments, it is surprising that there is no clear prediction from theory for

the right framework for modeling bilateral bargaining with externalities in applied analysis.

Ignoring these environments is difficult as the relevant policy questions have multiplied.

For example, in 2012, hospitals in the United States received $285 billion from private insurers

for their services.1 Typically, hospitals and insurers bilaterally negotiate the prices for these

services. Likewise, in the cable TV industry, the impact of consummated mergers (e.g.,

Comcast and NBC, approved in 2011), or proposed mergers (e.g., between Time Warner

and Comcast, and between AT&T and DirecTV) hinges on changes to fees negotiated with

content providers, such as ESPN or Netflix. In these sectors, prices and contracts terms are

determined neither by perfect competition, nor by take it or leave it offers (as is assumed

in Bertrand competition). Instead, because there are few firms on different sides of each

market (hospitals and insurers, distributors and content providers), prices are negotiated.

To understand the determinants of prices in markets characterized by bilateral oligopoly,

economists have recently focused on the “Nash-in-Nash” bargaining solution first proposed

in Horn and Wolinsky (1988). This solution has become the workhorse bargaining model for

predicting the division of surplus in many applied settings. Recent examples include Craw-

ford and Yurukoglu (2012), Grennan (2013), Gowrisankaran, Nevo, and Town (2014), and

Ho and Lee (2013), which consider sectors including cable television and inpatient hospital

services. Moreover, this concept has also begun to influence regulatory policy, such as the

FCC using a bargaining model similar to that proposed in this paper in its analysis of the

Comcast-NBC merger (Rogerson, 2013).

The Nash-in-Nash bargaining solution is a set of transfers between all pairs of agents,

such that each transfer is the solution to a bilateral Nash bargaining problem between each

pair, conditional on all other negotiated agreements.2 The latter emphasis is important, as

there are often economic interdependencies and contracting externalities across negotiations.

For instance, the value of adding an additional hospital to the network of a managed care

organization (henceforth, MCO) may be lower if the MCO already contracts with several

hospitals. In these cases, a bilateral Nash bargain between two firms cannot be conducted

in isolation, since each negotiation depends on the outcomes of other negotiations. Since

1See Exhibit 1 on p. 4 of “National Health Expenditure Accounts: Methodology Paper, 2010”
at http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/

NationalHealthExpendData/downloads/dsm-10.pdf accessed on September 25 2012.
2The solution to the Nash bargaining problem is the transfer that maximizes the Nash bargaining product,

which in turn is the product of the value of each firm from agreement net of its disagreement point. The
asymmetric Nash bargaining product, which we focus on, raises each firm’s value net disagreement point
to some power, where this exponent is often referred to as the Nash bargaining weight. The Nash bargain
satisfies certain intuitive axioms; see Nash (1950) for details.
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the outcome can be interpreted as a Nash equilibrium of a game where independent agents

seek to maximize the Nash product of each pairwise bargain holding fixed the agreements of

others, this solution has been referred to as “Nash-in-Nash.”3

Although the Nash-in-Nash bargaining solution has been increasingly employed in recent

work, it is not without limitations. In particular, Nash bargaining is a cooperative game

theory concept which is embedded in a non-cooperative Nash equilibrium. Recognizing the

need for an underlying non-cooperative model, Horn and Wolinsky state that, “although

this will not be part of the formal model, it will sometimes be useful to think of the static

model outlined above as the reduced form of an appropriate dynamic model,” (p. 411). Yet,

there has been little work on understanding whether the Nash-in-Nash solution could be

implemented as the equilibrium payoffs of a dynamic bargaining game.

For the case of negotiations between two agents, Rubinstein (1982) shows that the Nash

bargaining solution emerges as the unique subgame perfect equilibrium of an extensive form

game with alternating offers as the time period between offers goes to 0. However, with

multiple agents—in particular, more than one upstream or downstream firm—this model

cannot be directly applied. Previous non-cooperative rationalizations of the Nash-in-Nash

solution have typically been motivated by firms sending representatives to negotiate each

bilateral agreement in separate, closed rooms; once negotiations start, representatives in

different rooms (including those from the same firm) do not communicate with one another.4

This particular rationalization implies that firms are not able to explicitly coordinate efforts

across multiple bargains or utilize information learned in one bargain in another, and thus

might be criticized for requiring agents to be “schizophrenic.”

The purpose of this paper is to provide a credible non-cooperative extensive form that

rationalizes the Nash-in-Nash bargaining solution without requiring firms to behave inde-

pendently across bilateral bargains. By supplying a reasonable theoretical foundation for

the Nash-in-Nash bargaining solution, this paper provides justification for its use in recent

and ongoing applied work. Furthermore, although there exist alternative theoretical solu-

tion concepts for bargaining amongst multiple agents, the Nash-in-Nash solution has proven

particularly well suited for the empirical analysis of bilateral oligopoly given its ability to

nest Bertrand-Nash price setting models (hence providing a natural extension to previous

approaches) and its tractability (which is critical given the complexity of combining theory

3This solution can also be interpreted as a contract-equilibrium in the spirit of Cremer and Riordan (1987).
4See, for instance, Crawford and Yurukoglu (2012): “Each distributor and each conglomerate sends

separate representatives to each meeting. Once negotiations start, representatives of the same firm do
not coordinate with each other. We view this absence of informational asymmetries as a weakness of the
bargaining model,” (p. 659). We spell out this argument more formally in Appendix A. See also Björnerstedt
and Stennek (2007) and Inderst and Montez (2014) which provides a proof of existence in a similar setting
with separate representatives.
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with data in the settings analyzed).

We consider a framework that we believe is a natural extension of Rubinstein (1982) in

which multiple “upstream” and “downstream” players—from now on “firms”—make simul-

taneous alternating offers. Each period, upstream and downstream firms earn flow payoffs

which are a function of the set of agreements that have been reached; these payoffs are prim-

itives of the analysis. An agreement consists of a payment made by a downstream firm an

upstream firm for joining that downstream firm’s “network,” or set of contracting partners.5

In odd periods, each downstream firm makes simultaneous offers to each upstream firm with

which it has not yet reached an agreement. Each upstream firm then accepts or rejects

any subset of its offers. Even periods are identical, except with upstream firms making

the offers and downstream firms accepting or rejecting. Offers cannot be renegotiated after

being accepted, flow payoffs are realized at the end of each period as a function of reached

agreements, and agents have heterogeneous discount factors over future profits. We also do

not restrict attention to stationary or “Markov” strategies, and allow for firms to condition

their actions on the entire past history of offers, acceptances, and rejections.

Crucially, our model admits the possibility that firms can jointly deviate across multiple

negotiations and hence optimally respond to information acquired from one of its negotiations

in its other negotiations. This also implies that our game has imperfect information: within

a period, any given firm does not see offers made to other firms. To proceed, we place

restrictions on firm beliefs following the observation of an off-equilibrium offer and employ

Perfect Bayesian Equilibrium with passive beliefs (henceforth, passive-beliefs equilibrium) as

our solution concept. Passive beliefs implies that a firm i, upon receiving an off-equilibrium

offer from firm j, assumes that j and all other firms still make equilibrium offers to their

other contracting partners. This solution concept and refinement on beliefs has been widely

used and employed in the vertical contracting literature (Hart and Tirole (1990), McAfee

and Schwartz (1994); c.f. Whinston (2006)).

We make two principal restrictions on the payoff functions for our results: (i) given all

other agreements have been made, the joint surplus from any two agents coming to an agree-

ment is positive; and (ii) the marginal contribution of any bilateral agreement to a firm’s

payoff is weakly lower when all agreements among all firms has been reached than when

any subset of agreements has been reached. Both assumptions are central for the full set of

agreements to be “stable” at the proposed Nash-in-Nash bargaining solution prices. If the

first assumption is violated for any bilateral pair, there would be no payment such that both

5We restrict our analysis to the case where the prices are lump-sum payments. E.g., if downstream
firms engage in price competition for consumers, the negotiated prices with upstream firms would represent
fixed fees. Because of this, only the presence of agreements, but not their prices, affect the value of other
agreements.
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parties would with to maintain an agreement (given all other agreements are formed). In

this case, it is likely that these “unstable” agreements would not be reached (although our

bargaining protocol would then potentially be applicable to a smaller set of potential agree-

ments that may form).6 If the second assumption is violated, then some firm may wish to

drop multiple agreements: the gains to some set of agreements may be offset by the required

payments (which are a function of the marginal contribution of each individual agreement)

to maintain them. In settings where there may be complementarities across agreements, an-

other surplus division protocol (e.g., multilateral bargaining, cooperative solution concepts

such as the Shapley value) not predicated on bilateral bargaining may be more appropriate.

This paper has two main results. The first proves that, given the above two assumptions,

there exists a passive-belief equilibrium which involves immediate agreement among all agents

with negotiated prices that, as the time between periods goes to 0, converge to the Nash-

in-Nash solution with Nash bargaining weights being a function of each firm’s discount

factor. The second proves that, with an additional assumption on underlying payoffs (or, in

exchange for a weaker assumption, an equilibrium refinement on strategies), every passive-

belief equilibrium also satisfies these properties, and hence the outcome of any equilibrium

is unique.

We view the proof of our uniqueness result as our primary technical contribution. The

proof proceeds by induction on the number or set of agreements which have not yet been

reached at some point in time (which we call “open” agreements). We begin by noting that

Rubinstein proves that any subgame with only one open agreement will result in immediate

agreement at our candidate equilibrium prices (i.e., the Nash-in-Nash payments); this is our

base case. Now we consider a subgame where the set of multiple open agreements is C. The

key to our result is proving our inductive step: if all equilibria for any subgame with fewer

open agreements than contained in C yields immediate agreement at the Nash-in-Nash prices,

then any equilibria where the set of open agreements is C also yields immediate agreement

at the Nash-in-Nash prices. Once this is proven, the uniqueness result follows directly for

any arbitrary game with multiple firms on both sides of the market.

We prove our inductive step in a series of cases. First, we consider subgames with open

agreements involving only one downstream firm, and prove that if the first agreement happens

in either an odd or even period, all open agreements must occur in that period; furthermore,

we prove that there cannot be delay and any periods without an agreement being reached.

Using a similar structure and techniques, we then prove that this also holds for subgames

with open agreements involving only one upstream firm, and then for subgames where there

6We focus on bargaining and surplus division for a fixed network in this paper; endogenizing the network
that is formed is outside the scope of the current analysis (c.f. Lee and Fong (2013)).
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are open agreements involving multiple upstream and downstream firms.

Our paper is related to a literature on multilateral and coalitional bargaining with more

than two players, which includes papers by Chatterjee, Dutta, Ray, and Sengupta (1993);

Merlo and Wilson (1995); Krishna and Serrano (1996); Chae and Yang (1994) (c.f. Osborne

and Rubinstein (1994); Muthoo (1999)). Our setting and extensive form game departs from

this literature in at least three distinct ways. First, many previous papers allowed for only

one offer at a time (e.g., a random proposer model) while our paper allows for simultaneous

offers. Second, we focus on environments where agents can be divided in two distinct groups

(i.e., upstream and downstream firms). Third, we restrict attention to bilateral surplus

division, ruling out transfers between agents who do not have an agreement, such as side

payments among firms on the same side of the market, as these would generally violate

antitrust laws. We leverage these modeling choices, motivated by our focus on bilateral

oligopoly, in deriving our results.

The remainder of our paper is divided as follows. Section 2 describes our extensive form

bargaining protocol, equilibrium concept, and main assumptions. Section 3 and 4 are the

heart of the paper, and state the main results (existence and uniqueness) and provide an

overview of and intuition for our proofs. Section 5 discusses caveats and extensions of our

analysis, and Section 6 concludes.

2 Model

Consider the negotiations between N upstream firms, U1, U2, . . . , UN , and M downstream

firms, D1, D2, . . . , DM . Let G represent the set of agreements (also referred to as contracts

or links) among all firms, and A ⊆ G represent any subset of agreements. We only permit

agreements between downstream and upstream firms; i.e., we only consider bipartite bar-

gaining environments in which downstream firms contract with upstream firms, not with

each other.7 Denote an agreement between Ui and Dj as ij; the set of potential agreements

that Ui can form as GUi ; and the set of agreements that Dj can form as GDj .

Figure 1 provides a graphical representation of this market. In this example, A =

{11, 22, 23}, indicating that 3 of 9 possible agreements have been formed.

We take as primitives of the model profit functions {πUi (A)}∀i∈N,A⊆G and {πDj (A)}∀j∈M,A⊆G,

which represent the surplus realized by upstream and downstream firms for any realized set

7In many market settings, contractual agreements between two firms on the same side of the market
can be interpreted as collusion and hence constitute per se antitrust violations. Alternatively, agreements
between two firms on the same side of the market can be viewed as a horizontal merger, in which case our
analysis would treat those merged firms as one entity. We do not explicitly model the determination of such
mergers in this paper.
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Figure 1: M Downstream Firms, N Upstream Firms Market

of agreements A. Importantly, the payoffs from an agreement may depend on the set of

other agreements reached, which allows for the possibility of contracting externalities (i.e.,

Dj’s profits depend on Dk’s agreements, k 6= j). We assume each upstream firm Ui and

downstream firm Dj negotiate over price pij, which represents the lump-sum payment made

from Dj to Ui for forming an agreement (e.g., in the healthcare example, an agreement would

represent a hospital joining an insurer’s network and serving its patients). Because we are

assuming prices are lump-sum, surplus to other parties depends on the set of agreements

reached but not on the negotiated prices.8

We model a dynamic game with infinitely many discrete periods. Periods are indexed

t = 1, 2, 3, . . ., and the time between periods is Λ. Payoffs for each firm are discounted. The

discount factors for an upstream and a downstream firm are represented by δi,U and δi,D,

where δi,k ≡ exp(−ri,kΛ) for k ∈ {U,D}.9

The game begins in period t0 ≥ 1 with no agreements reached. In odd periods, each

downstream firm Dj simultaneously offers contracts {pij}ij∈GDj to each Ui with which it does

not yet have an agreement; each Ui then simultaneously accepts or rejects any offers it

received. In even periods, each upstream firm Ui simultaneously offers contracts {pij}ij∈GUi to

downstream firms with which it does not yet have an agreement; each Dj then simultaneously

accepts or rejects any contract offers it received. If Dj accepts an offer from Ui, or Ui accepts

an offer from Dj, then an agreement (or contract or link) is formed between two firms, and

those two firms remain contracted with one another for the rest of the game. Each Ui receives

its payment from Dj, pij, immediately in the period in which an agreement is reached.

We assume that within a period, a firm only observes the set of contracts that it offers,

or that are offered to it. However, at the end of any period, we assume that all firms observe

8Suppose instead that profits to each firm depends on not only the set of agreements reached by all agents,
G, but also the set of prices agreed upon, p ≡ {pij}ij∈G : i.e., payoffs to each Dj are given by πj(G,p). This
would be the case if, for instance, negotiated prices represented wholesale prices or linear fee contracts, and
downstream firms engaged in price competition with one another. Dealing with bargaining in a context
without transferable utility is difficult. Indeed, to our knowledge, this issue has not been resolved in the
context of a two player, Rubinstein (1982) bargaining game, let alone the environment considered in this
paper with multiple upstream and downstream firms.

9The model can also be recast without discounting but with an exogenous probability of breakdown
occurring after the rejection of any offer as in Binmore, Rubinstein, and Wolinsky (1986).
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all contracts that have been offered in that period, and which (if any) contracts that have

been accepted.10

This implies that at the beginning of each period, every firm observes a common history

of play ht which contains the sequence of all actions (offers and acceptance/rejections) that

have been made by every firm in each preceding period.

As an example, let N = 2 and M = 1 so that there is only 1 downstream firm. If D1

reaches agreement with U1 and U2 at t = 1, D1 would pay would pay p11 and p21 immediately

to each upstream firm, and then earn (1− δ1,D)πD1 ({11, 21}) each period going forward; each

Ui would immediately receive pi, and earn profits (1− δi,U)πUi ({11, 21}) from t = 1 onwards.

If D1 reached agreement with U1 in period 1 and U2 in period 2, then it would pay p11 in

period 1 and p21 in period 2, and earn gross revenues of (1− δ1,D)πDj ({11}) in period 1 and

(1− δ1,D)πD1 ({11, 21}) from period 2 onwards.11

Two points about our model are worth noting. First, while the payoffs continue to accrue

to all firms forever, the actions in the game stop at the point of the last agreement. Thus,

the game can also be formulated to end in the period of last agreement, with a lump-sum

payment realized by all firms at this time. Second, if M = N = 1, our game is equivalent to

the Rubinstein (1982) alternating offers model.

2.1 Equilibrium Concept

Rubinstein (1982) considers subgame perfect equilibria of his model. Because our model

has imperfect information, our solution concept is perfect Bayesian equilibrium. However,

perfect Bayesian equilibrium does not place restrictions on beliefs for information sets that

are not reached in equilibrium; in particular, it does not restrict beliefs of an upstream

firm Ui over offers received by other firms upon receiving an out-of-equilibrium price offer

from D. Following the literature on vertical contracting (Hart and Tirole, 1990; McAfee and

Schwartz, 1994; Segal, 1999), we assume “passive beliefs”: i.e., each firm Ui assumes that

other firms receive equilibrium offers even when it observes off-equilibrium offers from Dj.

10Institutionally, the contracted price between Ui and Dj will generally not be observed by Uj , j 6= i, either
for competitive or antitrust concerns. Relaxing this assumption does not change this model, as contracted
prices here do not affect the surplus to be divided. All our results will hold as long as the identity of firms
reaching an agreement is publicly known at the end of each period.

11We express profits in terms of flows, since we believe this is a more accurate depiction of many markets.
In contrast, profits are paid as a lump sum in the Rubinstein model. However, our formulation is equivalent
to D1 receiving the incremental profits as a lump sum (e.g., if agreements A were reached in period 1 and
agreements B were reached in period 2, then D1 would receive πD1 (A) in period 1 and πD1 (A ∪ B)− πD1 (A)
in period 2. We avoid payments between downstream and upstream firms other than lump sum transfers, or
otherwise, since each party has a potentially different discount rate, loans could be made between upstream
and downstream agents that lead to unbounded increases in the utilities of both parties.
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Henceforth, when we refer to an “equilibrium” of this game, we are referring to a perfect

Bayesian equilibrium with passive beliefs.

2.2 Nash-in-Nash and Rubinstein Payoffs

For exposition, it will be useful to define ∆πDj (A,B) ≡ πDj (A)− πDj (A \B), for B ⊆ A ⊆ G.

This term is the increase in profits to Dj of adding agreements in B to the set of agreements

A \ B. One can think of ∆πDj (A,B) as the “marginal contribution” of agreements B given

agreements A have been reached. Correspondingly, let ∆πUi (A,B) ≡ πUi (A)− πUi (A \ B).

We first define the Nash-in-Nash payoffs for our game and the candidate set of prices

determined in our equilibrium.

For a given set of agreements G and set of bargaining weights {bj,D}∀j and {bi,U}∀i, the

Nash-in-Nash payoffs are a vector of prices {pNij}i∈{1,...,N},j∈{1,...,M} such that:

pNij = arg max
p

[πDj (G)− πDj (G \ ij)− p]bj,D × [πUi (G)− πUi (G \ ij) + p]bi,U

=
bi,U∆πDj (G, ij)− bj,D∆πUi (G, ij)

bi,U + bj,D
,∀i = 1, . . . , N, j = 1, . . . ,M.

In words, the Nash-in-Nash payoff pNij maximizes the Nash bargaining product between

Dj and Ui given all other agreements in G are reached. The terms bi,U and bj,D are the

bargaining weights of the Nash bargaining problem, which determine the portion of the

surplus accruing to each firm.

For our analysis, we also define:

pRij,U =
(1− δj,D)∆πDj (G, ij)− δj,D(1− δi,U)∆πUi (G, ij)

1− δi,Uδj,D

pRij,D =
δi,U(1− δj,D)∆πDj (G, ij)− (1− δi,U)∆πUi (G, ij)

1− δi,Uδj,D
.

They will be the candidate even and odd offers made in equilibrium by firms; when

M = N = 1, they correspond to the Rubinstein (1982) offers made in alternating periods.

As in Binmore, Rubinstein, and Wolinsky (1986), these candidate prices also converge to the

Nash-in-Nash prices as the time period between offers becomes arbitrarily small:

Lemma 2.1 limΛ→0 p
R
ij,U = limΛ→0 p

R
ij,D = pNij , where bi,U = rj,D/(ri,U + rj,D) and bj,D =

ri,U/(ri,U + rj,D).

(All proofs are contained in the Appendix.)
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Finally, note that Rubinstein payoffs make the agent that receives an offer indifferent

between accepting the offer or waiting until next period and having its counteroffer accepted.

In our case, in an even (upstream-proposing) period, this means that the downstream firm

is indifferent between accepting and waiting, or:

(1− δj,D)∆πDj (G, ij)︸ ︷︷ ︸
Loss in profit from waiting

= pRij,U − δj,DpRij,D︸ ︷︷ ︸
Decrease in transfer payment from waiting

. (1)

Correspondingly, for the upstream firm in odd periods,

(1− δi,U)∆πUi (G, ij) = δi,Up
R
ij,U − pRij,D. (2)

Also, note that:

pRij,U − pRij,D =
(1− δj,D)(1− δi,U)

(1− δi,Uδj,D)
(∆πDj (G, ij) + ∆πUi (G, ij)).

2.3 Assumptions

We now state the main assumptions that we leverage in our analysis.

Our first assumption states that the joint surplus created from Ui and Dj coming to an

agreement (given all other agreements have been formed) is positive:

Assumption 2.2 (A.GFT: Gains From Trade)

∆πDj (G, ij) + ∆πUi (G, ij) > 0 ∀i, j

The Gains from Trade (GFT) Assumption is necessary for all agreements to be formed and

maintained in equilibrium. Since:

(∆πDj (G, ij)− pRij,D) =
(1− δi,U)

(1− δi,Uδj,D)
(∆πDj (G, ij) + ∆πUi (G, ij))

(∆πUi (G, ij) + pRij,U) =
(1− δj,D)

(1− δi,Uδj,D)
(∆πDj (G, ij) + ∆πUi (G, ij))

A.GFT also implies that firms will not wish to unilaterally drop agreements at the candidate

“Rubinstein prices”; i.e.,:

∆πDj (G, ij) > pRij,U > pRij,D

∆πUi (G, ij) > −pRij,D > −pRij,U
(3)

10



Our next assumption states that the surplus created from an agreement between Dj and

Ui is decreasing in the set of agreements already reached by all players for both Dj and Ui:

Assumption 2.3 (A.CDMC: Conditional Decreasing Marginal Contribution)

∆πDj (E , ij) ≥ ∆πDj (G, ij) ∀ij ∈ E ,∀E ⊆ G

∆πUi (E , ij) ≥ ∆πUi (G, ij) ∀ij ∈ E ,∀E ⊆ G

Both of these assumptions are sufficient for the observed network to be “stable” at the

Nash-in-Nash prices: i.e., for any set of Nash Bargaining weights, no firm would wish deviate

and unilaterally drop any subset of its agreements. To see this, note that any downstream

firm Dj’s gain from a subset of K agreements at the Nash-in-Nash prices is strictly positive:

∆πDj (G,K)−
∑
ij∈K

pNij = ∆πDj (G,K)−
∑
ij∈K

bi,U∆πDj (G, ij)− bj,D∆πUi (G, ij)
bi,U + bj,D

(4)

>
∑
ij∈K

[∆πDj (G, ij)−
bi,U∆πDj (G, ij)− bj,D∆πUi (G, ij)

bi,U + bj,D
] > 0 ∀K ∈ GDj

where the second line follows from A.CDMC and A.GFT. Similarly it can be shown that the

same holds for any upstream firm Ui:

∆πUi (G,A) +
∑
ij∈A

pNij > 0 ∀A ⊆ GUi (5)

A.CDMC is satisfied by many of the applications of the Nash-in-Nash solution concept.

For instance, in Capps, Dranove, and Satterthwaite (2003) adding another hospital to the

choice set increases surplus, but this increase in surplus is decreasing in the size of the

network.12

A counterexample is useful to illustrate why A.CDMC is crucial for the full network of

agreements to be stable at the Nash-in-Nash prices. Consider the following example which

violates the assumption, which we call the “automobile supplier” example. Suppose that

there are three upstream firms (parts suppliers) which each supply a component that is

12 Capps, Dranove, and Satterthwaite (2003) show that the profit for an insurer is related to the ex ante
surplus received by enrollees from the insurer’s network of hospitals. For a logit model, the total surplus of

the insurer’s network H can be expressed as
∑
i log

(∑
j∈H uij

)
where uij is the exponentiated utility (net of

an i.i.d. Type I extreme value error) that patient i receives from visiting hospital j and the ‘i’ sum is over the
patients of the insurer. The marginal contribution of some hospital k /∈ H to the insurer’s network—denoted

willingness-to-pay—is thus WTP =
∑
i log

(
uik +

∑
j∈H uij

)
−
∑
i log

(∑
j∈H uij

)
, which can be shown to

be decreasing as we add elements to H. The diminishing returns property also holds more generally, e.g.
with random coefficients logit models (Berry, Levinsohn, and Pakes, 1995).
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indispensable for production to the downstream firm (automobile manufacturer). As the

marginal contribution to total surplus of each upstream firm is the total surplus, the Nash-

in-Nash payoffs with equal bargaining weights would give each upstream firm half of the total

surplus. But, this would then leave the downstream firm with a negative payoff since it pays

3/2 of the total surplus to the upstream suppliers, implying the downstream firm would not

wish to reach agreement at these prices with all firms. In this model, then, it is implausible

that transfers will be based on marginal contributions; either a subset of agreements will be

reached, or concepts based on average values, such as the Shapley Value, may be more appro-

priate for the determination of surplus division. As we will show, Nash-in-Nash prices make

accepting agents indifferent about adding any particular agreement when all other equilib-

rium agreements are formed. If marginal contributions are increasing, then the accepting

agents will strictly prefer to remove several agreements, implying the full network of agree-

ments will not be an equilibrium outcome. Notice as well that the previous rationalization

of the “Nash-in-Nash” solution concept using representatives negotiating each agreement in

separate rooms (Crawford and Yurukoglu, 2012) does not rule out the automobile supplier

example.13

3 Existence of Equilibrium

Our first result is that there exists an equilibrium of this game generating immediate agree-

ment at the Rubinstein prices, which converge to the “Nash-in-Nash” prices as the time

between periods goes to 0.

Theorem 3.1 (Existence.) Assume A.GFT and A.CDMC. Then there exists an equilib-

rium of the bargaining game beginning at period t0 with:

(a) immediate agreement between all agents at t0;

(b) equilibrium prices p∗ij = pRij,D ∀i, j if t0 is odd, and p∗ij = pRij,U ∀i, j if t0 is even; and

(c) p∗ij → pNij ∀i,j as Λ → 0 regardless of whether t0 is odd or even period, where bi,U =

rj,D/(ri,U + rj,D) and bj,D = ri,U/(ri,U + rj,D).

13Another, more formal example: consider a one upstream, two downstream firm example with equal
discount factors, and payoffs of πDj ({1, 2}) = 10, πDj ({1}) = πDj ({2}) = 4, and πUi (·) = 0 ∀i, with πUj = 0.

The Nash-in-Nash transfers are pRi = 1
2

(
πDj ({1, 2})− πDj ({1, 2 \ i})

)
= 1

2 (10− 4) = 3. In even periods, our
equilibrium makes Dj indifferent between dropping either U1 or U2 and keeping both. Since dropping one
lowers surplus by 6 but dropping both lowers surplus only by 4 more (but doubles payments), this means
that Dj will be strictly better off by dropping both firms and waiting to the following odd period to make
an offer, which then breaks our candidate equilibrium through an inframarginal deviation. These type of
inframarginal deviations are ruled out by Assumption 2.3.
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The proof, contained in the appendix, first proposes a candidate equilibrium where in

odd periods (downstream proposing), the downstream firms offer pRij,D to all upstream firms

with which they have not yet reached an agreement. Upstream firms choose to accept any

offer at or above pRij,D. Likewise, in even periods (upstream proposing), upstream firms

propose pRij,U to all downstream firms with which they have not yet reached an agreement,

and downstream firms choose to accept any offer at or above pRij,U . We then show that any

one-shot deviation from these strategies on the part of either sending or receiving parties

does not make them better off.

The restriction to strategies that satisfy passive beliefs puts structure on what happens

following a deviation from equilibrium strategies. In particular, if firm Dj makes an out-

of-equilibrium offer p̃ij < pRij,D to firm Ui, then Ui believes that Dj has offered pRkj,D (the

equilibrium offers) to all other upstream firms Uk. This means that when Ui considers what

will happen following a deviant offer, it expects all agreements to be signed, except for the

one between Dj and Ui. Since, at this point, there is a single outstanding agreement to be

negotiated over, this subgame is precisely the one studied by Rubinstein (1982), and it has

a unique equilibrium with payments of pRij,U in the following period.

It is clear that A.GFT is essential for this set of strategies to be an equilibrium. Whenever

A.GFT is violated, firms might find it profitable to drop this single agreement; i.e., engage

in a marginal deviation. The role of A.CDMC is more complex, with violations of this

assumption leading to cases where firms may want to drop groups of agreements.

4 Uniqueness of Equilibrium Outcome with Nash-in-

Nash Transfers

The second result of our paper is that, under stronger assumptions, every perfect Bayesian

equilibrium with passive beliefs satisfies the conditions of Theorem 3.1: i.e., agreement

between all firms is immediate at the Rubinstein prices, which converge to the “Nash-in-

Nash” prices as the time between periods goes to 0. If there are multiple equilibria of this

game, they will only vary in prescribed behavior off the equilibrium path; they will all result

in this same outcome on the equilibrium path.14

To prove that the equilibrium outcome is unique, we will use a strenghtening of our

A.CDMC assumption, and an equilibrium refinement:

14Appendix E provides an example where there are multiple equilibria that vary in off-equilibrium-path
actions, but coincide along the equilibrium path.
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Assumption 4.1 (A.CDMC′: Strong Conditional Decreasing Marginal Contribution)

πDj ({Ai ∪ ij,A−i})− πDj ({A′i,A−i}) ≥ ∆πDj (G, ij) ∀ij ∈ G;A−i ⊆ GU−i;Ai,A′i ⊆ GUi \ ij

πUi ({Aj ∪ ij,A−j})− πUi ({A′j,A−j}) ≥ ∆πUi (G, ij) ∀ij ∈ G;A−j ⊆ GD−j;Aj,A′j ⊆ GDj \ ij

A.CDMC′ implies A.CDMC, and states that at any subnetwork, the marginal contribution

realized by Dj for coming to an agreement with Ui is at least as much as the marginal

contribution of Dj coming to agreement with Ui in the full network, even if Ui (and only Ui)

were to change any of its other agreements. A similar condition holds for any upstream firm

Ui’s gain to an agreement with Dj.

Assumption 4.2 (A.ASR: Acceptance Strategies Refinement) We restrict attention

to equilibria in which: if any firm, given the strategies of all other firms, is weakly willing to

accept an offer (holding fixed its other prescribed actions), it accepts that offer.

A.ASR rules out equilibria in which strategies prescribe a firm (given the strategies of other

firms and its other actions) rejecting an offer that it is indifferent over accepting or rejecting.

Alternatively, we also can prove our uniqueness result by utilizing a stronger assumption

on underlying payoffs without imposing the additional equilibrium refinement:

Assumption 4.3 (A.LEXT: Limited Externalities)

πUi (Ai,A−i) = πUi (Ai,A′−i) ∀i; ∀Ai ⊆ GUi ; ∀A−i,A′−i ⊆ GU−i
πDj (Aj,A−j) = πDj (Aj,A′−j) ∀j; ∀Aj ⊆ GDj ; ∀A−j,A′−j ⊆ GD−j

A.LEXT states that each firm’s profits depend only on its own links formed, and not those

of others. It is straightforward to prove that A.LEXT and A.CDMC imply A.CDMC′, and

in this sense A.LEXT is stronger than A.CDMC′.

We now state our uniqueness result:

Theorem 4.4 Assume A.GFT, and either (i) A.CDMC′ and A.ASR; or (ii) A.CDMC and

A.LEXT. Then every equilibrium of the bargaining game satisfies the conditions in Theorem

3.1 with immediate agreement at t0, prices p∗ij = pRij,D (pRij,U) if t0 is odd (even), and prices

p∗ij → pNij as Λ→ 0, where bi,U = rj,D/(ri,U + rj,D) and bj,D = ri,U/(ri,U + rj,D).

In the following subsections, we will provide a discussion of the assumptions, an example

of the proof with two upstream firms and one downstream firm, and an outline of the proof in
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the general case with multiple upstream and downstream firms. Further details and formal

proofs are contained in the appendix.

4.1 Discussion of Assumptions

The first additional restriction on payoffs, A.CDMC′ (which is either assumed or implied

by A.CDMC and A.LEXT), is used to ensure that firms will not wish to strategically delay

agreement in an equilibrium: for example, if Dj benefits from an agreement that Ui has with

Dk, but Ui would accept Dj’s offer in a given period instead of Dk, then Dj might have a

strategic incentive to delay agreement with Ui. However, given A.CDMC′, Dj would not

wish to do so. The difference between A.CDMC′ and A.CDMC is that when evaluating one

firm’s gains from a given bilateral agreement with which it is involved, the agreements of the

other firm involved in the same bilateral agreement are allowed to change.

We use either A.ASR or A.LEXT to ensure that an offering firm is not paid less than

its Rubinstein price, due to an off-equilibrium threat by the recipient firm to add or drop

another offer it is indifferent over if a higher price is demanded. I.e., consider a candidate

equilibrium in which in the first period (even) t0, Ui offers Dj the price p̂ij = pRij,U − ε for

ε > 0. In this period, assume that Dj also comes to agreement with Uk, but Dj is indifferent

between accepting and rejecting this offer given agreement is also reached with Ui in this

period (and given strategies for continuation play if the offer is rejected). If Ui were to

engage in a deviation and demand a higher payment p̃ij = pRij,U , Dj could threaten to accept

the deviation p̃ij from Ui, but reject the offer from Uk (and come to agreement with Uk in

the next odd period t0 + 1). Since Dj was originally indifferent over accepting and rejecting

Uk’s offer at t0, such a threat is credible. Furthermore, if Ui’s profits positively depend on

whether or not Dj comes to agreement with Uk or not, then such a deviation may not be

worthwhile if the loss in profits to Ui from Dj rejecting Uk outweigh the increase in payment.

A.ASR rules out the possibility of this threat being made; on the other hand, A.LEXT rules

out the possibility that Ui would be deterred by this threat (since Ui’s’ profits would not

depend on Dj’s actions with regards to Uk).
15

Remarks. A particular setting where both A.CDMC′ and A.LEXT are satisfied is when

there are N ≥ 1 firms on one side of the market each with profits (net of transfers) that are

constant (e.g., zero), and only one firm on the other side of the market with profits (net of

15In Appendix E, we detail an equilibrium that results in immediate agreement with a firm receiving
greater than its Rubinstein price if both A.LEXT and A.ASR do not hold; however, in this equilibrium, it
still is the case that as Λ → 0, prices converge to the Nash-in-Nash prices. Whether all equilibria converge
to the Nash-in-Nash prices without assuming either A.LEXT or A.ASR is an open question.
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transfers) satisfying A.CDMC.

One example of A.LEXT holding is bargaining between a monopolist cable distributor

and many content providers using a model such as in Crawford and Yurukoglu (2012) with

lump-sum transfers instead of linear fees: since the content providers typically have zero

marginal costs of providing their channels to cable operators, their profits (net of transfers)

will typically not depend on the agreements of other channels.

Another example is a special case of negotiations between many hospitals and one man-

aged care organization (MCO), similar to the model used in Capps, Dranove, and Satterth-

waite (2003). Suppose that the hospital’s cost function has constant marginal costs c, and

can be given by C(q) = F + cq (where F is a fixed cost). Moreover, suppose that the MCO

reimburses hospitals for the marginal cost of treating each patient, in addition to offering

them lump-sum payments for joining their network. In this case, the hospital’s profits will

not depend on the contracts signed by other hospitals (thus satisfying A.LEXT), and the

MCO’s profits will generally satisfy A.CDMC (see footnote 12).

4.2 Example: Two Upstream Firms and One Downstream Firm

(2x1)

We first provide an outline of the argument in a simple example with two upstream firms

Ui, Uk, and one downstream firm Dj.

Consider a subgame where there is only one open agreement between Ui and Dj: this

corresponds to the Rubinstein (1982) bargaining game, and results in immediate agreement

at prices pRij,D if the period is odd (downstream proposing) or pRij,U if the period is even

(upstream proposing).

To show that any equilibrium of this game with two open agreements satisfies the theorem,

first consider an equilibrium in which the first agreement is reached in an odd period t

between Uk and Dj, and it is the only one to occur in that period. Then the subgame

beginning at t+1 will be a Rubinstein bargaining game resulting in prices pRij,U . In this case,

it is straightforward to show that Dj will find it profitable to “bring up” agreement with Ui

to period t as well by offering pRij,D in period t to Ui, as Ui will find it profitable to accept.

Hence, we have a contradiction, and if there is an equilibrium with an agreement in an odd

period, all agreements must occur in that period. Furthermore, given that this is the case, it

can be shown that any equilibrium with agreement in an odd period must have prices equal

to p̂ij = pRij,D and p̂kj = pRkj,D: if the price is too high for Ui (say), the downstream firm will

have an incentive to reduce the price to pRij,D; if the price is below pRij,D, the Ui will wish to

reject and—since the subgame beginning at the next period t + 1 is Rubinstein bargaining
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again—will obtain pRij,U next period.

Next, consider an equilibrium in which only one agreement (which is the first) is reached

in an even period t; again, assume that this is between Uk and Dj. We can show that if

Ui offers Dj at most pRij,U at t, this will induce Dj to accept. However, since Dj may reject

Uk upon accepting this offer (as nothing rules this out), we can leverage A.CDMC′ (again,

either assumed or implied by A.CDMC and A.LEXT) to insure that Ui will still wish to

engage in this deviation—i.e., Ui prefers to reach agreement with Dj in period t as opposed

to t + 1 regardless of whether or not Dj also comes to an agreement with Uk.
16 As before,

this implies that if one agreement is reached in an even period, both agreements must be

reached; this is a contradiction. To show that prices cannot be different than pRij,U in an even

period where both agreements occur, first note that Dj will reject anything higher (and can

obtain Rubinstein prices in the next t + 1 odd period subgame by accepting at least one

offer in the current period). Second, note that lower offers can be improved on by being

raised without inducing Dj to reject. To ensure that, say, Ui would actually wish to raise

an offer lower than pRij,U , we leverage either A.ASR or A.LEXT to rule out the possibility

(as discussed earlier) that Dj could threaten to reject Uk in response to such a deviation,

thereby potentially harming Ui’s profits.

Finally, an equilibrium without immediate agreement at t0 cannot exist: if t0 is odd, Dj

will find it profitable to make offers to both Ui and Uk that will be accepted; and if t0 is

even, either Ui or Uk will find it profitable to make an early offer.

4.3 Structure of Proof

We now provide the structure of our general proof where there are N ≥ 1 upstream firms

and M ≥ 1 downstream firms.

For any C ⊆ G, let ΓtC(h
t) represent the subgame beginning at period t ≥ t0 when there

are still C “open” agreements, or agreements that have not been reached (i.e., all agreements

ij ∈ G \ C have been formed prior to period t), and history of play ht. Recall the history

at time t contains the sequence of actions, which include offers and acceptances/rejections,

that have been made by all firms in all preceding periods. We will prove Theorem 4.4 by

induction on C for any arbitrary t and history of play ht.

The base case is provided by analyzing ΓtC(·) when |C| = 1: i.e., there is only one agree-

ment in G that has not yet been reached at time t.

16As will be made clearer in the next subsection, we also need to prove that Dj does not want to reject
both Ui and Uk in period t upon receiving an off equilibrium offer from Ui, which requires proving that Dj

cannot obtain higher profits in the future upon doing so. This is more involved, and the intuition for this is
provided in Section 4.4.
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Proposition 4.5 (Base Case) Let |C| = 1 with only one open agreement: C ≡ {ij}. Then

the subgame ΓtC(h
t) for any t ≥ t0 and any history of play ht (consistent with C being the set

of open agreements at t) has a unique equilibrium involving immediate agreement at t with

prices p̂ij = pRij,D if t is odd, and p̂ij = pRij,U if t is even.

Proof With only one open agreement ij ∈ C, Di and Uj engage in a 2-player Rubinstein

alternating offers bargaining game over joint surplus ∆πUi (G, ij)+∆πDj (G, ij), and the result

directly follows from Rubinstein (1982). �

We now state the inductive hypothesis and inductive step used to prove Theorem 4.4.

Inductive Hypothesis. Fix C ⊆ G, t, and ht. For any B ⊂ G such that |B| < |C|, any

equilibrium of Γt
′
B(ht

′
) , where t′ > t and ht

′
contains ht (and is consistent with B being the

set of open agreements at t′), results in immediate agreement between Ui and Dj ∀ij ∈ B at

prices p̂ij = pRij,D if t′ is odd, and p̂ij = pRij,U if t′ is even.

The inductive hypothesis states that any subgame involving fewer open agreements than

|C| results in immediate agreement at the Rubinstein prices. It implies that if any non-empty

set of agreements are reached at any point during the subgame ΓtC(h
t) at period t′ ≥ t so

that only a strict subset B ⊂ C of open agreements remain, then all remaining agreements

ij ∈ B are reached in the subsequent period t′ + 1 at pRij,D (pRij,U) if t′ + 1 is odd (even).

Proposition 4.6 (Inductive Step) Assume A.GFT, and either (i) A.CDMC′ and A.ASR;

or (ii) A.CDMC and A.LEXT. Consider any subgame ΓtC(h
t) where C ⊆ G, t ≥ t0. Given

the inductive hypothesis, any equilibrium of ΓtC(h
t) results in immediate between Ui and Dj

∀ij ∈ C at prices p̂ij = pRij,D if t is odd, and p̂ij = pRij,U if t is even.

The inductive step states that if the inductive hypothesis holds for any subgame with

C open agreements, then this subgame also results in immediate agreement for all open

agreements ij ∈ C at the Rubinstein prices.

Note that the Proposition 4.5 (Base Case) and Proposition 4.6 (Inductive Step) imply

Theorem 4.4 by induction: as we have established the theorem holds when |C| = 1, the

inductive step implies that the theorem will hold for any C ⊆ G when |C| ≥ 1.17

17The Theorem is also implied if the inductive hypothesis only held for strict subsets B ⊂ C (as opposed
to all subgames when there are fewer open agreements): starting with all subsets of open agreements with
only two firms, we can construct larger and larger subsets of open agreements which ultimately will imply
the main result holds for the initial bargaining game Γt0G . I.e., given Propositions 4.5 and 4.6, the Theorem
can be shown to hold for all 1 × 1 through 1 ×N and 1 × 1 through M × 1 settings (where MxN refers to
M downstream and N upstream firms). Once that is established, the Theorem can be shown to hold for all
2 × 2 through 2 ×N and 2 × 2 through M × 2 settings. This argument can be repeated by induction in a
similar fashion to obtain the result for M ×N .
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To prove Proposition 4.6 (and by consequence, Theorem 4.4), we proceed in three steps:

we first focus on subgames ΓtC(·) where C contains only agreements involving one downstream

firm (Section 4.4); we then focus on subgames where where C contains only agreements

involving one upstream firm (Section 4.5); and finally, we focus on subgames where C contains

more than one upstream and more than one downstream firm (Section 4.6). For expositional

convenience, we will drop the history of play argument from ΓtC for the remainder of the text

acknowledging that these subgames will be for any arbitrary history of play consistent with

there being C open agreements at t (though we will still allow for history-dependent strategies

to be played).

4.4 Proof of Proposition 4.6: One Downstream Firm, Many Up-

stream Firms

Consider any subgame Γt̃C where C ⊆ G contains only open agreements involving one down-

stream firm Dj, and |C| = m so that there are m > 1 remaining agreements between Dj

and m upstream firms that have not yet been reached at time t̃. WLOG, assume that thes

upstream firms are indexed {1, . . . ,m}. Assume that the inductive hypothesis holds.

We prove Proposition 4.6 holds in this case using 4 lemmas. For these lemmas, consider

a candidate equilibrium of the subgame with the first agreement ij ∈ C reached in period

t ≥ t̃, and accepted prices denoted {p̂1j, . . . , p̂mj}. Let A ⊆ C denote the set of agreements

reached at period t. By the inductive hypothesis, all agreements ij ∈ B ≡ C \A not reached

at period t will reached in period t+ 1 at prices pRij,D (pRij,U) if t+ 1 is odd (even).

The first two lemmas prove that all agreements ij ∈ C must occur simultaneously at

prices pRij,D or pRij,U depending on whether or not the first agreement ij ∈ C occurs in an odd

or an even period.

Lemma 4.7 (Odd, simultaneous.) In any equilibrium of Γt̃C with the first agreement oc-

curring in an odd period (i.e., the downstream firms propose), all agreements must occur at

the same time with p̂ij = pRij,D ∀ij ∈ C.

Lemma 4.8 (Even, simultaneous.) In any equilibrium of Γt̃C with the first agreement oc-

curring in an even period (i.e., the upstream firms propose), all agreements must occur at

the same time with p̂ij = pRij,U ∀ij ∈ C.

The proofs of these two lemmas both proceed by contradiction, assuming that the set of

agreements B which occur in period t+ 1 is non-empty. For Lemma 4.7 (t is odd), the sole

downstream firm Dj at time t can make a deviant offer p̃ij ≡ pRij,D to some firm Ui, ij ∈ B,
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that Ui will accept.18 Furthermore, by A.GFT and A.CDMC′, Dj will find it profitable

to make such a deviation and come to agreement with ij earlier. This is a contradiction,

and proves that B must be empty if the first agreement is reached in an odd period. Next,

proving payments must equal pRij,D is straightforward: any offer lower would be rejected by an

upstream firm, as in the resultant subgame only one agreement would be outstanding, and

the upstream firm would receive the (discounted) 2-player Rubinstein price in the following

period; any higher offer would not be offered by Dj, as the lower offer pRij,D would be accepted

by each Ui.

The proof of Lemma 4.8 (when the first agreement occurs in an even period), though

similar in structure to the proof of Lemma 4.7, is more involved. We first prove that Dj

cannot induce any firm Ui, ij ∈ C, to accept a price lower than pRij,D in any equilibrium.

To show this, we use a similar subgame perfection argument to that in Rubinstein (1982)

generalized to multiple players: suppose Dj first reaches an agreement with some set of

upstream firms {Ui : ij ∈ A}, at prices p̂ij such that
∑

ij∈A
(
pRij,D − p̂ij

)
> 0. As this must

have occurred in an even period (by Lemma 4.7), this implies Dj would have rejected any

higher offer p̃ij ≡ pRij,D−ε > p̂ij, ε > 0, for some ij ∈ A where p̂ij < pRij,D; if this were not the

case, Ui would have offered p̃ij at time t and obtain strictly higher payoffs.19 However, for Dj

to credibly reject such an offer in equilibrium, Dj must anticipate receiving a higher payoff in

some subgame following the rejection; we show this implies Dj must then anticipate paying

an even lower prices to some set of firms in some future subgame. Repeating the argument

implies even lower and lower prices paid by Dj, so that in order for the original rejection

to be supportable, in some subgame Dj must be able to pay a price to some upstream firm

that the upstream firm would rather reject than accept, a contradiction.

Once the lower bound on prices has been established, we can establish the simultaneity

of accepted offers. If B is non-empty, any firm Ui, ij ∈ B, would also be able to make a

deviant offer p̃ij ≡ pRij,D earlier at time t to Dj. Since we have established Dj cannot pay any

less than pRij,D to any upstream firm for agreement, it is straightforward to show that Dj will

not wish to reject the deviation. However, without stronger assumptions on the underlying

payoffs for Dj, it may be the case that Dj, upon accepting the deviant offer p̃ij from Ui,

rejects some other offers A′ that it had previously accepted. This may affect Ui’s payoffs,

and imply that Ui will not wish to engage in such a deviation.

To rule out this possibility, we leverage A.CDMC′. This assumption implies that even if

18Since each upstream firm only has one agreement not yet reached (as C only contains agreements involving
one downstream firm), and since Ui assumes that all other agreements A at time t will still be accepted
(given the passive beliefs assumption), showing Ui will accept this offer is straightforward.

19We leverage either A.LEXT or A.ASR here to ensure that Ui still wishes to offer p̃ij if it is accepted by
Dj , as Dj may have an incentive to change its actions with regards to other agreements it is indifferent over.
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Dj adjusted its other offers accepted at period t and accepts Ui’s deviant offer p̃ij, Ui will

still find it profitable to engage in such a deviation; i.e., Ui would rather contract one period

earlier with Dj at period t instead of t + 1 regardless of whether or not Dj adjusts whom

it contracts with at period t. Thus, this proves that any equilibrium with agreement in an

even period t must have all agreements occurring in that period (and B = ∅).
Finally, proving that equilibrium prices are pRij,U in an even period if all offers are accepted

at the same time follows as before, with the exception that we leverage either A.ASR or

A.LEXT to rule out the possibility (as discussed earlier) that Dj could keep prices below

pRij,U through an off-equilibrium threat: i.e., Dj rejecting another agreement (say, from Uk)

if a higher price were demanded by Ui.

The next Lemma states that agreement occurs immediately among all agents regardless

of whether t̃ is odd or even.

Lemma 4.9 (Immediate agreement.) Any equilibrium of Γt̃C results in immediate agree-

ment for all ij ∈ C at time t̃.

The proof proceeds by contradiction: if there is an odd period in which no offers are accepted,

Dj has an incentive to offer pRij,D to all upstream firms, who all accept; similarly, if there is

an even period in which no offers are accepted, any Ui has an incentive to offer pRij,U to Dj,

which is accepted.

Thus, given Proposition 4.5 and Lemmas 4.7-4.9, we have shown that any equilibrium

for a subgame beginning at period t with C open agreements involving only one downstream

firm has immediate agreement among all firms with prices given by either pRij,D (pRij,U) ∀ij ∈ C
for t odd (even).

4.5 Proof of Proposition 4.6: One Upstream Firm, Many Down-

stream Firms

Consider any subgame Γt̃C where C ⊆ G contains only open agreements involving one up-

stream firm Ui, and |C| = n so that there are n > 1 remaining agreements that have not yet

been reached at time t̃. WLOG, assume that thes downstream firms are indexed {1, . . . , n}.
This case is exactly symmetric to the one downstream, many upstream firm case proved

in Section 4.4, and thus the proof that Proposition 4.6 holds in any subgame with multiple

downstream firms and one upstream firm follows immediately.20

20The only difference is that the sign on prices, since payments are from downstream to upstream firms,
is reversed.
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4.6 Proof of Proposition 4.6: Many Upstream and Many Down-

stream Firms

Having proven Proposition 4.6 holds for all subgames with open agreements involving either

only one upstream firm or one downstream firm, we now focus on subgames ΓtC where C ⊆ G
involves more than one upstream and more than one downstream firm. As before, we will

prove Proposition 4.6 with 4 lemmas.

Consider a candidate equilibrium for ΓtC with prices {p̂ij}ij∈C. Recall the inductive hy-

pothesis assumes that any subgame Γt
′

C′ s.t. t′ > t and C ′ ⊂ C has a unique equilibrium

resulting in immediate agreement at prices pRij,D (pRij,U) if t′ is odd (even).

We first show that if the first agreement in C occurs in an odd period or even period, all

agreements in C must also occur in that period at prices pRij,D (pRij,U) if t is odd (even).

Lemma 4.10 (Odd, simultaneous.) If the first agreement occurs in an odd period t′ ≥ t,

then all agreements ij ∈ C must occur at t′ with p̂ij = pRij,D ∀ij ∈ C.

Lemma 4.11 (Even, simultaneous.) If the first agreement occurs in an even period t′ ≥
t, then all agreements ij ∈ C must occur at t′ with p̂ij = pRij,U ∀ij ∈ C.

The proof of the many upstream, many downstream firm case is more straightforward

than the proofs with just one firm on one side of the market. Here, there is no sharp

distinction between even and odd periods, as these cases are now symmetric. In addition,

what made the cases with a single upstream or downstream firm so difficult is that a single

firm could hold up the entire bargaining process, since all remaining agreements are signed

with a single firm. When there are many upstream and downstream firms, this is no longer

the case.

The proof proceeds in two steps, similar to the proofs of lemmas 4.7and 4.8.

First, we show, by contradiction, that all agreements will occur simultaneously. Assume

that agreement is not simultaneous, and that there is some non-empty set of agreements

A ⊂ C formed at period t which is odd (the proof with t being even follows similarly); by

the inductive lemma, all remaining agreements B ≡ C \ A will be formed in the following

period t + 1 at prices pRij,U . Since there are multiple upstream firms with open agreements

at t, there will then be a pair of agreements ij ∈ B and ab ∈ A so that Ui 6= Ua: i.e., we can

find an agreement formed at time t and another agreement at time t+ 1 involving different

upstream firms. For such an agreement ij ∈ B, suppose that Dj chooses to offer pRij,D at

time t in order to “pull up” this agreement by one period. Even if Ui rejects this offer, Ui

believes that the agreement between Ua and Db will still be formed in period t (by passive

beliefs), and the inductive lemma applies in the next period. By A.GFT and A.CDMC′, Ui
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will thus accept this deviant offer from Dj; and by A.CDMC′, Dj will find this making this

deviation profitable even if Ui decides to accept additional agreements. As a result, we have

a contradiction, and agreement must be immediate.

Second, once we have proved that all agreements occur simultaneously, it is straightfor-

ward to show that all prices p̂ij = pRij,D in the same fashion as in lemmas 4.7 and 4.8.

We next show that all agreements ij ∈ C must occur immediately at t in any equilibrium.

Lemma 4.12 (Immediate agreement.) Any equilibrium of Γt̃C results in immediate agree-

ment for all ij ∈ C at time t̃.

The proof of this lemma mirrors the proof of Lemma 4.9. Dj can engage in the deviation

of pulling up all of it’s offers with Ui’s up to the current period (if the current period is an

downstream proposing period). By A.CDMC′ and A.GFT, the upstream firms Ui will accept

these “early offers.” Again, by symmetry, we can show that the same logic also holds if the

current period is one in which upstream firms make offers.

5 Discussion

The existence of an equilibrium generating the Nash-in-Nash outcome (Theorem 3.1) relies

on two assumptions (A.GFT and A.CDMC) that we believe to be natural for many bilat-

eral bargaining environments that are often studied. As discussed in the introduction, a set

of agreements will not necessarily be stable under bilateral negotiations when A.GFT and

A.CDMC fail. In particular, without A.CDMC, there may be strong “complementarities”

across contracting partners—e.g., the gains to agreement are increasing as more firms con-

tract; bilateral negotiations over the marginal contributions of links can then generate prices

that exceed the total contribution of a set of links, and thus induce instability. In these

settings, other surplus division protocols (e.g., multilateral bargaining, cooperative solution

concepts such as the Shapley value) may be more appropriate.21

To prove the uniquness of our equilibrium outcome, we have leveraged stronger assump-

tions that guarantee that equilibrium prices coincide with “Rubinstein” prices between each

bilateral pair. As discussed in Section 4 and in Appendix E, although counterexample equi-

libria which do not satisfy this property have been found when both A.LEXT and A.ASR

do not hold, their outcomes still converge to immediate agreement and Nash-in-Nash prices

when Λ → 0. Whether all equilibria satisfy this property under weaker assumptions is an

open research question.

21See Stole and Zweibel (1996) for a non-cooperative game generating the Shapley value.
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For tractability, we have considered lump sum transfers between agents which did not

influence payoffs. In many setings, however, negotiations may occur over linear prices that

may affect total surplus. In this case, profits may depend on not only the set of agreements

reached by all agents, G, but also the set of prices agreed upon, p ≡ {pij}ij∈G: i.e., payoffs

to each Dj are given by πj(G,p). This corresponds to settings in which negotiated prices

represented wholesale prices or linear fee contracts, and downstream firms engaged in price

competition with one another. There are many open questions in these environments, in-

cluding properties on the underying profit functions which guarantee the existence and/or

uniqueness of an underlying “Nash-in-Nash” solution.

Finally, this paper has focused on the division of surplus within a fixed network.22 Fur-

thermore, the model does not allow for renegotiation, and assumes that once a link is formed,

it is permanent. We view this model, however, as an potential input into more general set-

tings: e.g., Lee and Fong (2013) nests the bargaining framework developed in this paper into

a larger dynamic game that endogenizes the network structure, and allows for links to be

formed and broken over time. Work along these lines remains an important topic for future

research.

6 Conclusion

The concept of a Nash equilibrium in Nash bargains, proposed by Horn and Wolinsky (1988),

has been widely used in applied settings. We develop an extensive form alternating offers

game to rationalize this cooperative outcome: downstream firms make simultaneous offers

in odd periods, while upstream firms make simultaneous offers in even periods, and firms

can accept or reject any subset of offers that are made to them. We consider the limiting

equilibrium of our game as the period length between the alternating offers goes to zero.

With the assumptions that each bilateral agreement creates surplus for the firms involved,

and that each firm’s own marginal contribution to the network is weakly decreasing, we show

that our alternating offers game has a passive beliefs equilibrium whose payoffs converge to

the Nash-in-Nash payoffs. In addition, under stronger conditions on payoffs (or weaker

conditions with an equilibrium refinement), we show that any equilibrium will possess these

properties, and hence the equilibrium outcome is unique.

We believe that our results provide justification for the use of the Nash-in-Nash solution

as a credible bargaining framework for use in applied work. Rather than requiring an as-

sumption on the inability of firms to coordinate across its multiple negotiations, we allow in

22We have assumed that this fixed network is the complete network, but the model can be generalized to
a case where G represents an arbitrary set of links that can form.
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our extensive form the possibility that firms may wish to engage in deviations across multiple

negotiations. We further believe that the mechanisms that we highlight in our extensive form

reasonably captures aspects of bargaining games that occur in real-world industry settings.
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A An Alternative Non-cooperative Foundation for the

Nash-in-Nash Bargaining Solution

In this section, we present an alternative extensive form which involves separate bilateral nego-
tiations between representatives for each firm, and show that this representation also admits the
Nash-in-Nash bargaining division as an equilibrium outcome. For this equilibrium, only A.GFT is
required.

Consider the setting introduced in Section 4.6, where N upstream firms negotiate with M
downstream firms. For every pair of firms Ui and Dj , i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}, Ui
and Dj send individual representatives who engage in the alternating-offers bargaining protocol of
Rubinstein (1982). Although each representative for each firm seeks to maximize his firm’s total
expected profits across all bargains, each representative does not know the state or outcome of any
other bilateral bargain until his own bargain has concluded. One interpretation is that each pair
of representatives from different firms are sequestered in separate bargaining rooms, and no one
outside the room knows the status of the bargain until it is finished.

In this environment, there exists an equilibrium among representatives for each firm which
yields the Nash-in-Nash bargaining outcomes:

Theorem A.1 Assume A.GFT and every firm send representatives to all potential negotiating
partners. Then there exists an equilibrium with:

(a) immediate agreement between all representatives for each firm;
(b) equilibrium prices p̂ij = pRij,D ∀i, j if the game begins in an odd period, and p̂ij = pRij,U ∀i, j

if the game begins in an even period; and
(c) p̂ij → pRij ;∀i,j as Λ → 0 regardless of whether the game starts in an odd or even period,

where bi,U = rj,D/(ri,U + rj,D) and bj,D = ri,U/(ri,U + rj,D).

To prove the theorem, assume each pair of representatives Ui,j and Dj,i who negotiate between
Ui and Dj employ the following candidate set of strategies: Ui,j offers pRij,U in even periods and

only accepts offers equal to or above pRij,D in odd periods; Dj,i offers pRij,D in odd periods, and

accepts offers equal to or above pRij,U in even periods. Given the equilibrium strategies of all other
representatives (including those from the same firm), Ui,j and Dj,i believe that any off-equilibrium
action made by other in their bargain does not affect or influence the outcomes of other negotiations;
as such, given that agreement is expected to occur in all other negotiations, the unique equilibrium
for Ui,j and Dj,i is the set of candidate strategies described (Rubinstein, 1982). As no agent has a
profitable deviation, the set of strategies comprise an equilibrium, and the theorem is proved.

B Proof of Lemma 2.1

Proof of Lemma 2.1 Using l’Hospital’s rule:

lim
Λ→0

δi,U (1− δj,D)

1− δi,Uδj,D
= lim

Λ→0

exp−ri,UΛ(1− exp−rj,DΛ)

1− exp−(ri,U+rj,D)Λ
=

rj,D
ri,U + rj,D

,

and

lim
Λ→0

1− δj,D
1− δi,Uδj,D

= lim
Λ→0

1− exp−rj,DΛ

1− exp−(ri,U+rj,D)Λ
=

rj,D
ri,U + rj,D

.
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Similarly, it can be shown that:

lim
Λ→0

δj,D(1− δi,U )

1− δi,Uδj,D
= lim

Λ→0

(1− δi,U )

1− δi,Uδj,D
=

ri,U
ri,U + rj,D

.

which proves the Lemma. �

C Proof of Theorem 3.1 (Existence.)

To prove the theorem, we first provide a candidate equilibrium profile that satisfies conditions
(a)-(c) of the Theorem. We then check that any one-shot deviation from these strategies is not
profitable for any firm.

Consider the following strategy profile:

• In any odd period, each Dj makes offers pRij,D to all firms Ui that have not already reached

agreement. Ui accepts any offer greater than or equal to pRij,D. If only one offer is less than

pRij,D for some Ui, then Ui rejects this offer; otherwise, Ui plays an arbitrary best response
(respecting passive beliefs).

• In even periods, each Ui which has not already reached an agreement makes offers of pRij,U .

Dj accepts any offer less than or equal to pRij,U . If only one offer is greater than pRij,U for some
Dj , then Dj rejects this offer; otherwise, Dj plays an arbitrary best response (respecting
passive beliefs).

The strategy profile dictates that every firm makes proposals that are the Rubinstein offers:
i.e., downstream firms offer pRij,D in odd periods, and upstream firms offer pRij,U in even periods.
On the equilibrium path, all offers are accepted. For off-equilibrium offers, the strategy profile
will depend on the number of off-equilibrium offer a firm receives. Consider an odd period, and
assume an upstream firm receives offer(s) that do not correspond to the Rubinstein price. If only
one off-equilibrium offer is received that is below the Rubinstein price by an upstream firm Ui, then
Ui will reject this offer and accept all others. If multiple off-equilibrium offers are received that are
below the Rubinstein price, the optimal strategy for Ui may involve accepting some of these offers
and rejecting others. In the proof below, the intuition for this particular construction will be made
clear.

First, it is easy to check that this strategy profile satisfies conditions (a)-(b) of the Theorem:
agreement is immediate at t0 at the Rubinstein prices. Part (c) of the theorem then follows directly
from Lemma 2.1.

To prove that the proposed strategy profile is an equilibrium, we first examine one-shot devia-
tions on the part of downstream and upstream agents during odd periods. In an odd period, we ex-
amine two types of deviations: (i) a downstream firm Dj makes deviant offers {p̃ij : p̃ij 6= pRij,D}ij∈A
for some subset of agreements A; and (ii) an upstream firm Ui rejects {pij : pij ≥ pRij,D}ij∈B′ , or

accepts {pik : pik < pRik,D}ik∈B′′ for some subsets of agreements B′,B′′ ⊆ Gi.

1. Consider deviations by a downstream firm Dj . Consider a deviation in which Dj offers
{p̃ij : p̃ij > pRij,D}∀ij∈A′⊆Gj , and {p̃ij : p̃kj < pRkj,D}∀kj∈A′′⊆Gj for some subsets A′,A′′ ⊆ Gj .

(a) Assume Dj offers payments {p̃ij : p̃ij > pRij,D} for some subset of agreements ij ∈ A′ ⊆
Gj . All agreements ij ∈ A′ will be accepted (given candidate equilibrium strategies).
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However, Dj could do strictly better by offering only pRij,D instead for all agreements
ij ∈ A′, as these upstream firms will still accept this lower offer; thus, any deviation
where A′ 6= ∅ is dominated by one in which Dj offers pRij,D instead for ij ∈ A′. Hence,

we restrict attention to deviations where Dj does not offer more than pRij,D to any set
of upstream firms: i.e., A′ = ∅.

(b) Now assume Dj offers payments {p̃kj : p̃kj < pRkj,D}kj∈A′′ where A′′ 6= ∅, and offers pRij,D
for all other ij /∈ A′′. Given candidate equilibrium strategies, each Ukj , kj ∈ A′′, will
reject the deviant offer p̃kj In the subsequent subgame beginning in an even period, there
will only be |A′′| upstream firms without agreement with Dj . Under the equilibrium
strategies, such a subgame will result in immediate agreement in the next (even) period
for all kj ∈ A′′ at prices pRij,U . Such a deviation by Dj will be profitable if:

(1− δj,D)πDj (G \ A′′)− δj,D
∑
kj∈A′′

pRkj,U > (1− δj,D)πDj (G)−
∑

kj,∈A′′

pRkj,D

where the LHS and RHS represents the relevant differences in flow profits and payments
from the deviation as opposed to the equilibrium strategies. This expression can be
rearranged as:

(1− δj,D)

∆πDj (G,A)−
∑
kj∈A′′

pRkj,D

+ δj,D
∑
kj∈A′′

(pRkj,U − pRkj,D) < 0

Both terms on the LHS are positive: ∆πDj (G,A) −
∑

kj∈A′′ pRkj,D > 0 by (4), and

pRij,U > pRij,D for all ij ∈ G. This implies the inequality does not hold, and any deviation
in which A′′ 6= ∅ is not profitable.

Thus, any deviation by Dj in an odd period is not profitable.

2. Consider deviations by an upstream firm Ui.

(a) First, consider deviations by Ui on the (candidate) equilibrium path: i.e., deviations
at nodes of the game in which Ui receives equilibrium offers pRij,D from all Dj , ij ∈
Gi. Such deviations will comprise Ui rejecting some subset B ⊆ Gj of agreements. If
Ui rejects B 6= ∅ offers, the subsequent (odd) period will only have |B| downstream
firms without agreement with Ui (as all other agreements will have been made under
the candidate equilibrium strategies). Under the candidate equilibrium strategies, the
subgame starting in the subsequent even period will result in immediate agreement at
prices pRij,U . Such a deviation for Ui will be profitable if:

(1− δi,U )πUi (G \ B) + δi,U
∑
ij∈B

pRkj,U > (1− δi,U )πUi (G) +
∑
ij,∈B

pRij,D

which can be re-expressed as:∑
ij∈B

(δi,Up
R
kj,U − pRij,D) > (1− δi,U )∆πUi (G,B)

Note the LHS is equal to (1− δj,D)
∑

ij∈B∆π(G, ij) by (1). By A.CDMC, however, the
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RHS is weakly greater than the LHS, and this inequality will not hold. Thus, Ui will
not wish to reject any offers pRij,D on the candidate equilibrium path.

(b) Next, consider deviations by Ui off the candidate equilibrium path. Assume Ui receives
offers {p̃ij : p̃ij ≥ pRij,D}ij∈B′ and offers {p̃ik : p̃ik < pRik,D}ik∈B′′ , where there is at least

one offer p̃il 6= pRil,D, il ∈ Gi.
First, note that given passive beliefs, Ui does not update its beliefs on the offers made
by any downstream firm to other upstream firms U−i. Thus, if Ui rejects any offers
C ⊆ Gi, Ui believes that the subsequent subgame beginning in an even period will only
involve |C| downstream firms without agreement with Ui. Given candidate equilibrium
strategies, those agreements ij ∈ C will be reached at prices pRij,U .

i. Consider any deviation in which Ui rejects all offers ij ∈ B, where for some ij ∈ B,
p̃ij ≥ pRij,D. Such a deviation is (weakly) dominated by a deviation in which Ui
accepts p̃ij instead, and rejects B \ ij, if:

(1− δi,U )πUi (G \ {B \ ij}) + δi,Up
R
ij,U < (1− δi,U )πUi (G \ B) + p̃ij

(⇔) δi,Up
R
ij,U − p̃ij < (1− δi,U )∆πUi (G \ B, ij)

By (2) and since p̃ij ≥ pRij,D, the LHS is less than or equal to (1− δi,U )∆πUi (G, ij).
By A.CDMC, the RHS is greater than or equal to this same amount, and the
inequality holds. Thus, any deviation involving Ui rejecting an offer p̃ij ≥ pRij,D
will be weakly dominated by a deviation in which Ui does not reject the offer;
hence, we will focus only on deviations in which Ui accepts all offers p̃ij ≥ pRij,D.

ii. Consider now a deviation where Ui accepts all offers {p̃ij : p̃ij ≥ pRij,D}ij∈B′ , and

also accepts some offers {p̃ik : p̃ik < pRik,D}ik∈C⊆B′′ , C 6= ∅. There are two cases to
consider:

A. |B′′| ≤ 1 and there is only one offer p̃ik < pRik,D that Ui receives. Ui will be
strictly better off rejecting this offer if:

(1− δi,U )πUi (G \ ik) + δi,Up
R
ik,U ≥ (1− δi,U )πUi (G) + p̃ik

(⇔) (δi,Up
R
ik,U − p̃ik) ≥ (1− δi,U )∆πUi (G, ik)

Since p̃ik < pRik,D, the LHS is greater than (1 − δi,U ) ∆πUi (G, ik) (by equation
(1)), and this inequality is thus satisfied. Thus, Ui will not wish to deviate.

B. |B′′| > 1 and there are multiple offers that Ui receives which are less than
pRik,D. Note that this subgame is not reachable via a unilateral deviation from
the candidate equilibrium stratey profile, since it requires off-equilibrium offers
from multiple downstream firms. As a result, the strategy profile played by Ui
in this subgame does not affect the optimality of any strategy profile played
by Dj on the equilibrium path.23

The proof for even periods is symmetric, and omitted. Since there are no profitable one-
shot deviations for any agent in both odd and even periods, the candidate set of strategies is an
equilibrium.

�
23In this subgame, it may be the case that Ui wishes to accept some subset of agreements C ⊆ B′′, where

p̃ik < pRik,D for ik ∈ B′′. To see why, such a strategy is profitable as opposed to rejecting all offers in B′′ as
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D Proofs for Lemmas used to Prove Theorem 4.4 (Unique-

ness.)

In the following proofs, we will use both A.CDMC and A.CDMC′ (with the understanding that
A.CDMC′ implies A.CDMC) to emphasize the circumstances in which the stronger assumption
(A.CDMC′) is required. We will also use A.CDMC′ when only A.CDMC and A.LEXT are as-
sumed to hold (since A.CDMC and A.LEXT imply A.CDMC′) as it serves to emphasize how these
assumptions are leveraged.

D.1 Supporting Lemma

A corollary of A.CDMC is the following lemma, which is used in some of the subsequent proofs.

Lemma D.1 ∆πDj (A ∪ B,A) ≥
∑

ij∈A∆πDj (G, ij) and ∆πUi (A ∪ B,A) ≥
∑

ij∈A∆πUi (G, ij) for
all A,B ⊆ G, A ∩ B = ∅.

Proof First, index agreements in A from k = 1, · · · , |A|, where ak is the kth agreements in A.
This allows us to create a sequence of sets of agreements in which we add in each agreement one
at a time, give by D0 ≡ B, and Dk = Dk−1 ∪ ak for k = 1, · · · , |A|.

This allows us to decompose ∆πLj (A ∪ B,A), L ∈ {U,D}, into:

∆πLj (A ∪ B,A) =

|A|∑
k=1

∆πLj (Dk, ak)

Then, by A.CDMC, ∆πLj (Dk, ak) ≥ ∆πLj (G, ak) for all ak since Dk ⊆ G. This implies that ∆πLj (A∪
B,A) ≥

∑
ij∈A∆πLj (G, ij).

D.2 One Downstream Firm, Many Upstream Firms

For these lemmas, consider a candidate equilibrium of the subgame ΓtC with the first agreement
ij ∈ C reached in period t ≥ t̃, and accepted prices denoted {p̂1j , . . . , p̂mj}. Let A ⊆ C denote the
set of agreements reached at period t. By the inductive hypothesis, all agreements ij ∈ B ≡ C \ A
not reached at period t will reached in period t+ 1 at prices pRij,D (pRij,U ) if t+ 1 is odd (even).

long as:

(1− δi,U )πUi (G \ B′′) + δi,U
∑
ik∈C

pRik,U < (1− δi,U )πUi (G \ B′′ ∪ C}) +
∑
ik∈C

p̃ik

(⇔)
∑
ik∈C

(δi,Up
R
ik,U − p̃ik) < (1− δi,U )∆πUi (G \ B′′ ∪ C, C)

Since p̃ik < pRik,D, the LHS is greater than (1 − δi,U )
∑
ik∈C ∆πUi (G, ik). As shown previously, if |B′′| = 1,

then this inequality can never hold for C 6= ∅; however, by A.CDMC, the RHS may be greater than the LHS
for some subset C if |B′′| > 1, and thus the optimal strategy for Ui is to accept the subset of agreements
C ⊆ B′′ which maximizes:

(1− δi,U )∆πUi (G \ B′′ ∪ C, C)−
∑
ik∈C

(δi,Up
R
ik,U − p̃ik)

(where C can be empty). By construction, this strategy is optimal for Ui when receiving multiple offers
{p̃ik : p̃ik < pRik,D}.
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Proof of Lemma 4.7 (Odd, simultaneous). Suppose the first agreement occurs in some odd
period t ≥ t̃. We prove all agreements occur simultaneously by contradiction.

Assume B 6= ∅, implying that not all agreements in C are reached in period t. By the inductive
hypothesis, all Ui such that ij ∈ B will reach agreement with Dj at t+ 1 at prices pRij,U .

Consider the following deviation by Dj in period t: Dj offers p̃ij ≡ pRij,D + ε to some Ui, ij ∈ B.
Ui will accept this deviation at time t if it obtains higher profits, or:

(1− δi,U )πUi ((G \ B) ∪ ij) + δi,Uπ
U
i (G) + p̃ij > (1− δi,U )πUi (G \ B) + δi,Uπ

U
i (G) + δi,Up

R
ij,U

⇔ p̃ij > δi,Up
R
ij,U − (1− δi,U )∆πUi ((G \ B) ∪ ij, ij)

which holds since p̃ij ≡ pRij,D + ε = δi,Up
R
ij,U − (1− δi,U )∆πUi (G, ij) + ε (see (2)) and ∆πUi ((G \ B)∪

ij, ij) ≥ ∆πUi (G, ij) by A.CDMC, for for sufficiently small ε.
This deviation will be profitable for Dj if Dj ’s profit gains from reaching agreement with Ui

one period earlier is greater than Dj ’s difference in payments:

(1− δj,D)∆πDj ((G \ B) ∪ ij, ij) > p̃ij − δj,DpRij,U = pRij,D − δj,DpRij,U + ε

⇔ (1− δj,D)∆πDj ((G \ B) ∪ ij, ij) >
[
(δi,U − δj,D)pRij,U − (1− δi,U )∆πUi (G, ij)

]
+ ε

⇔ (1− δj,D)∆πDj ((G \ B) ∪ ij, ij) + (1− δi,U )∆πUi (G, ij) > (δi,U − δj,D)pRij,U + ε

(where the second line follows from (2)). Since ∆πDj ((G \ B) ∪ ij, ij) ≥ ∆πDj (G, ij) > pRij,U and,

∆πUi (G, ij) > −pRij,U by equation (3), this inequality holds for sufficiently small ε and the deviation
is profitable for Dj ; a contradiction. Thus, if the first agreement occurs in odd time t, all agreements
must occur at time t.

Now suppose all agreements occur at time t (odd), but p̂ij 6= pRij,D for some ij. We will show
this leads to a contradiction:

1. If p̂ij < pRij,D for some ij, Ui can reject this offer and, as all other upstream firms will agree

in equilibrium at time t, obtain a price of pRij,U at t+ 1 by the inductive hypothesis. This is
a profitable deviation if Ui’s gains in prices exceed its profit gains from coming to agreement
one period early:

δi,Up
R
ij,U − p̂ij > (1− δi,U )∆πUi (G, ij)

Since the RHS is equal to δi,Up
R
ij,U − pRij,D by (2), this inequality holds leading to a contra-

diction.

2. If p̂ij > pRij,D for some ij, Dj can profitably reduce its offer to pRij,D + ε for ε ∈ (0, p̂ij − pRij,D);
Ui will still accept if:

pRij,D + ε− δi,UpRij,U > −(1− δi,U )∆πUi (G, ij)

Since the RHS is equal to pRij,D − δi,UpRij,U by (2), this inequality holds and leads to a contra-
diction.

Thus, p̂ij = pRij,D ∀i if the first agreement occurs in an odd period. �

Proof of Lemma 4.8 (Even, simultaneous). This Lemma will be proven with 3 claims. First,
we prove that p̂ij ≥ pRij,D for all ij ∈ C. Second, we prove all agreements ij ∈ C occur at time t.

Finally, we prove all agreements occur at prices p̂ij = pRij,U .

Claim A: Equilibrium prices p̂ij ≥ pRij,D for all ij ∈ C.
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Given a candidate equilibrium, for any subgame Γt of Γt̃C beginning at t ≥ t̃, let φ represent the
total discount from prices pRkj,D that Dj can obtain in this equilibrium: i.e., φΓ ≡

∑
kj∈C(p

R
kj,D−p̂kj).

Let φ be the maximum total discount that Dj could achieve under any equilibrium in any subgame

of Γt̃C ; φ is finite, as no upstream firm would offer more than its own total achievable profits in any
equilibrium strategy.

Assume that φ > 0 and consider the equilibrium and subgame in which this maximum discount
is reached.24 We will show that the assumption that φ > 0 leads to a contradiction, which implies
that in any equilibrium in which the first agreement is reached in an even period, prices cannot be
lower than pRij,D for any agreement ij ∈ C.

Without loss of generality, let this subgame be denoted Γt (t ≥ t̃), and assume that the period
in which the first agreement occurs in this subgame is t. By Lemma 4.7, t cannot be odd since this
would imply that φ = 0 as all agreements would occur at Rubinstein prices. Thus, t is even.

Let A ⊆ C denote the set of agreements reached in period t at prices p̂ij . By the inductive
hypothesis, all other agreements kj ∈ B ≡ C \ A occur at time t+ 1 at prices pRkj,D. Thus, by our

definition of φ,
∑

ij∈A p̂ij = (
∑

ij∈A p
R
ij,D)− φ. For these prices {p̂ij}ij∈A to have been equilibrium

offers, it must be the case that Dj would have rejected any alternative offer p̃ij > p̂ij from any Ui,
ij ∈ A, at time t. If not, Ui would have a profitable deviation by offering p̃ij ≡ p̂ij + ε.

• We first show that if Dj accepts p̃ij as defined above, then Ui would wish to engage in this
deviation, leading to a contradiction.

Under A.LEXT, this is straightforward to show: Ui obtains strictly higher payments under
this deviation from Dj without changing the timing of its own agreements, and Ui’s profits
do not depend on whether or not Dj makes changes to its other agreements.

Under A.ASR, note that it cannot be the case that some other set of agreements A′ 6= A
would be reached at period t if Dj accepted p̃ij . By the inductive hypothesis, any agreements
B′ ≡ C \ A′ not reached at t would occur in period t + 1; as a result, if Dj would reach a
different set of agreements A′ 6= A subsequent to accepting the higher deviant offer p̃ij at
t, then it would have obtained strictly higher payoffs by reaching agreements A′ as opposed
to A at time t in the original candidate equilibrium; this is a contradiction.25 Consequently,
if p̃ij were accepted at time t, Ui would obtain the same flow profits as in the candidate
equilibrium (since the same set of agreements would be reached at time t and t + 1), but it
would obtain a strictly higher price as p̃ij > p̂ij .

Thus, if Dj accepted p̃ij , Ui would prefer to make such a deviant offer.

Thus, Dj needs to credibly reject p̃ij if such an offer is made.
Consider now ij ∈ A such that pRij,D − p̂ij > 0; such an ij exists since we have assumed φ > 0,

and means we can construct p̃ij ≡ p̂ij + ε < pRij,D for some ε > 0. Since Dj must reject p̃ij at
time t if it were offered by Ui, this implies Dj also must either subsequently (i) reach agreements
A′ ⊆ C \ {ij} at time t, or (ii) reject all offers upon rejecting p̃ij . We show now that either action
by Dj leads to a contradiction.

1. Suppose Dj rejects p̃ij , but reaches agreements A′ ⊆ C \ {ij}. By the inductive hypothesis,
Dj would reach all other agreements kj ∈ B′ ≡ C \ A′ at t+ 1 at prices pRkj,D. However, Dj

24Notice that this proof assumes that the maximum payoff φ is achieved by some equilibrium (i.e., φ is a
maximum rather than a supremum). If this is not the case, we can consider any subgame in which the total
discount from Rubinstein prices is greater than or equal to δj,Dφ and substitute this value for φ in the proof.

25A.ASR rules out the possibility that Dj is indifferent between A and A′.
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would rather accept p̃ij and reach agreements A′ ∪ {ij} instead of rejecting Ui’s deviation if
the gains to coming to an agreement earlier exceeded the additional payment required:

(1− δj,D)∆πDj (G \ B′ ∪ {ij}, ij) > p̃ij − δj,DpRij,D

By assumption, the RHS is strictly less than (1 − δj,D)pRij,D; since ∆πDj (G \ B′ ∪ {ij}, ij) >
∆πDj (G, ij) by A.CDMC and since ∆πDj (G, {ij}) > pRij,D by A.GFT, this inequality holds,
leading to a contradiction.

2. Suppose Dj rejects all offers at period t upon receiving the deviant offer p̃ij from Ui.

Let Γt+1
RA denote the subgame following Dj ’s rejection of all offers at period t, and let ΠRA

denote Dj ’s payoffs in this subgame (discounted to period t). Note if Dj rejects all offers in
C at time t upon receiving out-of-equilibrium deviation p̃ij , Dj must expect to obtain in the
subsequent subgame at least as much as it would have obtained had it accepted p̃ij and all
other offers p̂kj , kj ∈ A \ ij, at t, but rejected all other offers. This lower bound is:

ΠD ≡ (1− δj,D)πDj ((G \ C) ∪ A)− p̃ij −
∑

kj∈A\ij

p̂kj + δj,D

πDj (G)−
∑

kj∈C\A

pRkj,D


= (1− δj,D)πDj ((G \ C) ∪ A)−

∑
kj∈A

pRkj,D + δj,D

πDj (G)−
∑

kj∈C\A

pRkj,D

+ φ− ε (6)

where ΠD represents Dj ’s expected payoffs if Dj only accepted Ui’s deviant offer at time t,
and accepted all other offers kj ∈ C \ ij at t+ 1 at prices pRkj,D (by the inductive hypothesis).

For Dj to prefer rejecting all offers at t, it must be the case that ΠRA ≥ ΠD.

In the subgame Γt+1
RA , the first accepted offer in C can occur at an odd (downstream proposing)

period, or an even (upstream proposing) period. We go through each case in turn.

(a) Dj cannot reject all offers and earn a payoff greater than ΠD by having the first agree-
ment kj ∈ C reached in any subsequent odd period t + τ (τ ≥ 1, odd), as Lemma 4.7
implies all agreements in C would also be realized in the same period at prices pRkj,D;
this would yield (discounted to period t) payoffs to Dj of:

ΠRA ≡
τ−1∑
p=0

δρj,D(1− δj,D)πDj (G \ C) + δτj,D

πDj (G)−
∑
kj∈C

pRkj,D


≤ (1− δj,D)πDj (G \ C) + δj,D

πDj (G)−
∑
kj∈C

pRkj,D

 (7)

where the last inequality is implied from A.GFT (i.e., ∆πDj (G, C) −
∑

ij∈C p
R
kj,D > 0).

Using (6) and (7) implies ΠD −ΠRA > 0 if:

(1− δj,D)∆πDj ((G \ C) ∪ A,A) + φ− ε >
∑
kj∈A

(1− δj,D)pRkj,D

Since ∆πDj ((G \ C)∪A,A) ≥ ∆πDj (G,A) ≥
∑

kj∈A p
R
kj,D by A.GFT and A.CDMC, this
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last inequality holds, and Dj cannot earn higher profits by rejecting all offers at t and
reaching agreement in some subsequent odd period.

(b) Thus, in order for Dj to credibly reject p̃ij and all other offers in C at time t, Dj must
expect the first agreement kj ∈ C to occur in some subsequent even period t+ τ (τ ≥ 2,
even) and obtain some payoff ΠRA > ΠD. Since the set of open agreements at t+τ is the
same as at t, the same logic of rejecting all offers still holds. Thus this strategy must
be supported by ever increasing future payoffs and ever decreasing payments, which
ultimately leads to a contradiction.

Suppose all agreements kj ∈ A′ ⊆ C, A′ 6= ∅ are reached at even period t+ τ at prices
p′kj , and (by the inductive hypothesis) the remaining agreements lj ∈ B′ ≡ C \ A′ are

reached in the next period t + τ + 1 at prices pRlj,D. Then Dj ’s payoffs (discounted to
period t) are

ΠRA ≡
τ−1∑
p=0

δρj,D(1− δj,D)πDj (G \ C) (8)

+ δτj,D

(1− δj,D)πDj (G \ B′)−
∑
kj∈A′

p′kj + δj,D

πDj (G)−
∑
kj∈B′

pRkj,D


Combining (6) and (8) yields:26

(ΠD −ΠRA) = (1− δj,D)

∆πD(G \ C ∪ A,A)−
∑
kj∈A

pRkj,D


+ (1− δj,D)

τ−1∑
ρ=1

δρj,D

∆πDj (G, C)−
∑
kj∈C

pRkj,D


+ (1− δj,D)δτj,D

∆πDj (G,B′)−
∑
kj∈C

pRkj,D +
∑
kj∈A′

p′kj


+ δτ+1

j,D

 ∑
kj∈A′

p′kj − pRkj,D

+ φ− ε

(9)

We show that this expression is positive, leading to a contradiction. We go through this
expression line by line. The first term is:

T1 ≡ (1− δj,D)

∆πD((G \ C) ∪ A,A)−
∑
kj∈A

pRkj,D︸ ︷︷ ︸
Ξ1


Since ∆πDj ((G\C)∪A,A) ≥

∑
kj∈A∆πDj (G, kj) >

∑
kj∈A p

R
kj,D by A.GFT and A.CDMC,

Ξ1 is strictly positive, and thus T1 is as well.

26Here, and in other expressions, we will leverage the identity: δ = (1− δ)
∑τ−1
ρ=1 δ

ρ + δτ .
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The second term of equation 9 is:

T2 ≡ (1− δj,D)
τ−1∑
ρ=1

δρj,D

∆πDj (G, C)−
∑
kj∈C

pRkj,D︸ ︷︷ ︸
Ξ2


which, again by A.GFT (see (3)) and A.CDMC, Ξ2 > 0, and thus T2 is strictly positive.

The third term of equation 9 is:

T3 ≡ (1− δj,D)δτj,D

∆πDj (G,B′)−
∑
kj∈C

pRkj,D +
∑
kj∈A′

p′kj



= (1− δj,D)δτj,D

∆πDj (G,B′)−
∑
kj∈B′

pRkj,D︸ ︷︷ ︸
Ξ3

+
∑
kj∈A′

[p′kj − pRkj,D]


and the fourth term of equation 9 is:

T4 ≡ δτ+1
j,D

 ∑
kj∈A′

p′kj − pRkj,D

+ φ− ε

Note that Ξ3 > 0 by A.GFT and A.CDMC. Thus, it is straightforward to show that a
sufficient condition for T3 + T4 > 0 is:

ε < φ− δτj,D

 ∑
kj∈A′

[pRkj,D − p′kj ]


Since φ is the maximum discount from Rubinstein prices obtainable in any subgame
and δj,D < 1, the RHS will be strictly greater than 0: thus, there is some ε > 0 such
that T1 + T2 + T3 + T4 > 0 and ΠD ≤ ΠRA, thus implying that Dj will not wish to
reject all offers at time t upon receiving the deviant offer p̃ij = p̂ij + ε from Ui.

Consequently, Dj cannot credibly reject p̃ij ≡ pRij,D + ε if Ui offered it at time t. Since offering

p̃ij at time t is a profitable deviation for Ui, the original assumption that φ > 0 and that there
exists some p̂ij < pRij,D leads to a contradiction. Hence, p̂ij ≥ pRij,D for all ij ∈ C.

Claim B: All agreements will occur simultaneously.
Let A ⊆ C denote the set of agreements reached at period t in a candidate equilibrium. By the

inductive hypothesis, all agreements in B ≡ C \ A are reached at period t+ 1 with prices pRij,D.
We will show by contradiction that A = C and B = ∅: i.e., if one agreement occurs at time t

(even), all agreements ij ∈ C must occur at time t. Suppose not and A ⊂ C and B 6= ∅. By the
inductive assumption, all Ui such that ij ∈ B will reach agreement at t+ 1 at prices pRij,D.

Consider the deviation where some Ui, ij ∈ B, offers p̃ij = pRij,D at time t.
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1. Such a deviation will be accepted by Dj .

Suppose not, and Dj rejects p̃ij .

(a) Suppose that Dj rejects p̃ij but accepts some non-empty set of offers A′ ⊆ C \ ij at
time t. However, Dj would find it more profitable to accept p̃ij while still accepting
all agreements kj ∈ A′ if Dj ’s profit gains from reaching agreement with Ui one period
earlier is greater than Dj ’s difference in payments:

(1− δj,D)∆πDj ((G \ C) ∪ A′ ∪ ij, ij) > p̃ij − δj,DpRij,D
⇔ (1− δj,D)∆πDj ((G \ C) ∪ A′ ∪ ij, ij) > (1− δj,D)pRij,D

By A.GFT and A.CDMC, this inequality holds. Thus, Dj cannot reject p̃ij while still
accepting A′ at time t.

(b) Thus, the only way Dj can reject p̃ij is for Dj to reject all offers at time t.

If Dj were to reject all offers at time t, the inductive hypothesis does not apply in the
subgame beginning at t + 1, and the first agreement can occur either in a subsequent
odd or even period. We examine both cases.

First, note that Dj can always accept only p̃ij at period t, and receive all other offers
kj ∈ C \ ij at period t+ 1 at prices pRij,D (by the inductive hypothesis), yielding profits:

Π̃D
j = (1− δij,D)πDj ((G \ C) ∪ ij)− p̃ij + δj,D

πDj (G)−
∑

kj∈C\ij

pRkj,D


= (1− δj,D)

(πDj ((G \ C) ∪ ij)− p̃ij
)

+

τ−1∑
ρ=1

δρj,D

πDj (G)− p̃ij −
∑

kj∈C\ij

pRkj,D


+ δτj,D

πDj (G)− p̃ij −
∑

kj∈C\ij

pRkj,D


i. First agreement occurs in an odd period. If the first accepted offer in C is at an odd

period t + τ (τ ≥ 1), then Lemma 4.7 implies all agreements in C would also be
realized in the same period at prices pRkj,D, yielding profits (discounted to period
t):

Π̄D,o
j = (1− δτj,D)πDj (G \ C) + δτj,D

πDj (G)−
∑
kj∈C

pRkj,D

 (10)

= (1− δj,D)

πDj (G \ C) +

τ−1∑
ρ=1

δρj,Dπ
D
j (G \ C)

+ δτj,D

πDj (G)−
∑
kj∈C

pRkj,D


Dj would prefer to accept only p̃ij at period t instead if Π̃D

j − Π̄D
j > 0, or:

[
∆πDj (G \ C ∪ ij, ij)− p̃ij

]
+

τ−1∑
ρ=1

δρj,D

∆πDj (G, C)− p̃ij −
∑

kj∈C\ij

pRkj,D

 > 0
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Each term of this expression is positive by A.CDMC and A.GFT since ∆π((G \
C) ∪ ij, ij) ≥ ∆π(G, ij) > pRij,D, and since ∆π(G, C)−

∑
kj∈C p

R
kj,D > 0.

Thus, Dj will not find it profitable to reject all offers and reach agreement in a
subsequent odd period.

ii. First agreement occurs in an even period. If the first accepted offer in C is at an even
period t+ τ (τ ≥ 2), then the lowest possible payments it can make in equilibrium
to all ij ∈ C are p̂ij ≥ pRij,D (by Claim A). Let Π̄D,e

j denote the most that Dj can
achieve in any subgame in which the first agreement in C is reached in some future
even period t+τ (discounted to period t).27 However, it is straightforward to show
that the expression for Π̄D,e

j is identical to that of Π̄D,o
j in (10) (for τ even instead

of odd); hence, using the same analysis as before, it must be that Π̃D
j − Π̄D,e

j > 0.
Thus, Dj will not find it profitable to reject all offers and reach agreement in a
subsequent even period.

Thus Dj will accept the deviation p̃ij from Ui.

2. Such a deviation is profitable for Ui if Dj accepts.

Assume if Dj accepts the deviation from Ui at period t, Dj also accepts agreements A′ ⊆
C \ ij at period t as well as ij; by the inductive hypothesis, Dj then reaches agreements
B′ ≡ C \ [A′ ∪ ij] in the following period t+ 1.

Ui will find the deviation profitable in this case iff:

p̃ij + (1− δi,U )πUi (G \ B′) > δi,Up
R
ij,D + (1− δi,U )πUi (G \ B)

⇔ p̃ij − δi,UpRij,D > (1− δi,U )(πUi (G \ B)− πUi (G \ B′))
⇔ (1− δi,U )pRij,D > (1− δi,U )(πUi (G \ C ∪ A)− πUi (G \ C ∪ A′ ∪ ij))

By A.CDMC’:
πUi ((G \ C′) ∪ A′ ∪ ij))− (πUi (G \ C ∪ A) ≥ ∆πUi (G, ij)

and so the desired inequality will hold since pRij > −∆πDi (G, ij) by A.GFT.

Hence, Ui will find it profitable to make the deviation.

Since Dj must accept the deviant offer in any equilibrium, and Ui finds it profitable to make
the deviation if it is accepted, then the original candidate equilibrium is not an equilibrium; contra-
diction. Consequently, if the first agreement occurs in an even period, all agreements must occur
simultaneously.

Claim C: If all agreements ij ∈ C occur simultaneously in an even period t, then p̂ij = pRij,U∀ij ∈ C.

1. Assume that p̂ij > pRij,U for some ij. Consider the following deviation for Dj : Dj rejects
Ui and accepts all other offers at t; Dj will then come to agreement with Ui in t + 1 for
payment pRij,D by the inductive hypothesis. This is profitable for Dj if (1−δj,D)∆πDj (G, ij) <
p̂ij − δj,DpRij,D. Since the LHS of this inequality is equal to pRij,U − δj,DpRij,D (see (1)), this

inequality will hold if p̂ij > pRij,U . Contradiction.

27By the inductive hypothesis, if Dj reaches any agreements at time t + τ , all other agreements would
occur in the following period t+ τ + 1 at prices pRij,D. However, Dj would strictly prefer reaching agreement

at period t+ τ instead of t+ τ + 1 at prices pRij,D as ∆πDj (G, ij) ≥ pRij,D by A.GFT and A.CDMC.
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2. Assume p̂ij < pRij,U . Suppose that some Ui for which p̂ij < pRij,U makes a deviant offer

p̃ij = pRij,U − ε > p̂ij . We now show that this deviation is profitable to Ui, leading to a
contradiction.

If Ui offers p̃ij instead of p̂ij at time t, we show that Dj accepting all offers (including p̃ij) at
period t is more profitable than:

(a) Dj rejecting all offers at period t. By Lemma 4.7 and Claim B of this lemma, if Dj

rejects all offers at t, then all agreements ij ∈ C will form in the same future period
(if at all). Moreover, if they occur at a future odd period, they will be for the prices
{pRkj,D}kj∈C (Lemma 4.7), and if they occur at an even period, they will be for prices of

{pRkj,D}kj∈C or higher (Claim A of this lemma). Thus, the most profitable case for Dj

by rejecting all offers at t is to have agreement immediately in the following period t+1
and pay no more than pRkj,D to all kj ∈ C. In this case, the loss in profits from delay is:

(1− δj,D)∆πDj (G, C) ≥ (1− δj,D)
∑
kj∈C

∆πDj (G, kj) =
∑
kj∈C

(pRkj,U − δj,DpRkj,D), (11)

from A.CDMC and (1) respectively. But the change in payments is less than
∑

kj∈C p
R
kj,U−

δj,Dp
R
kj,D − ε, implying that Dj would be better off accepting all offers at time t. Con-

tradiction.

(b) Dj rejecting offers B ⊂ C at time t where ij ∈ B. By the inductive hypothesis, all
remaining offers kj ∈ B occur in period t + 1 at prices {pRkj,D}kj∈B. Dj would rather
accept all offers in at time t (including deviant offer p̃ij) if:

(1− δj,D)∆π(G,B) > p̃ij − δj,DpRij,D +
∑

kj∈B\ij

(p̂kj − δj,DpRkj,D)

Similar to (11), the LHS can be shown to be greater than
∑

kj∈B p
R
kj,U−δj,DpRkj,D. Since

p̃ij < pRij,U and p̂kj ≤ pRkj,U∀kj ∈ B \ ij, it follows that this inequality holds.

The only case not ruled out yet is if Dj accepts the deviation from Ui at time t, but rejects
some other subset of offers B, ij /∈ B. Under A.LEXT, even if Dj prefered this over accepting
all offers, Ui would still prefer to engage in such a deviation since it receives a higher payment
and doesn’t affect the timing of its own agreements. Under A.ASR, this case implies that Dj

would have strictly preferred rejecting B ⊂ C in the original candidate equilibrium absent a
deviant offer from Ui, which yields a contradiction (as again, A.ASR rules out indifference
on the part of Dj).

Consequently, we have shown that Dj will accept the deviant offer from Ui, and Ui would
prefer this deviation: under A.LEXT, the deviation doesn’t affect the timing of its own
agreements, and under A.ASR, Dj will still accept all offers. Thus this strictly increases Ui’s
profits, yielding a contradiction.

Thus, p̂ij = pRij,U∀ij ∈ C for agreements reached in an even period.

Claims A-C prove the lemma. �

Proof of Lemma 4.9 (Immediate agreement.) We prove this lemma by contradiction.
Consider a candidate equilibrium where Dj does not reach agreement with any firm at t̃ (else,

by Lemma 4.7 and Lemma 4.8, agreement with all firms would have occurred).
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1. Assume t̃ is odd.

If all agreements are rejected at t̃, by Lemmas 4.7 and 4.8: (a) Dj can earn at most (1 −
δj,D)πDj (G\C)+δj,D(πDj (G)−

∑
ij∈C p

R
ij,U ) in any subsequent subgame by coming to agreement

with all remaining firms in the following even period; and (b) each Ui, ij ∈ C, can earn at
most (1 − δi,U )πUi (G \ C) + δi,Uπ

U
i (G) + δi,Up

R
ij,U by coming to agreement in the following

period.

Suppose Dj offered p̃ij = pRij,D to all Ui, ij ∈ C, at time t̃. Accepting p̃ij at time t for each
Ui will be profitable if the gains in profits exceed the difference in prices:

(1− δi,U )∆πUi ((G \ C) ∪ ij, ij) > δi,Up
R
ij,U − pRij,D

where the LHS is Ui’s expected gains in profits to agreeing early versus what it could obtain
in the optimal subgame (given passive beliefs, Ui only expects {(G \ C) ∪ ij} agreements to
be reached at time t upon accepting the deviation). This holds, since ∆πUi ((G \ C)∪ ij, ij) ≥
∆πUi (G, ij) by A.CDMC, and by (2).

We now show that this deviation will be profitable for Dj . Deviating and offering p̃ij to all
ij ∈ C at period t (which all Ui, ij ∈ C will accept) is profitable for Dj if:

(1− δj,D)∆πDj (G, C) >
∑
ij∈C

(p̃ij − δj,DpRij,D)

⇒∆πDj (G, C) >
∑
ij∈C

pRij,D

where again the LHS is Dj ’s expected gains in profits to agreeing early versus what it could
obtain in the optimal subgame. This is implied by A.GFT and A.CDMC. So Dj has a
profitable deviation, leading to a contradiction.

2. Assume t̃ is even.

If all agreements are rejected at t̃, by Lemmas 4.7 and 4.8: (a) Dj can earn at most Π̄Dj =
(1− δj,D)πDj (G \ C) + δj,Dπ

D
j (G)− δj,D

∑
ij∈C p

R
ij,D in any subsequent subgame by coming to

agreement in the following period; and (b) each Ui, ij ∈ C, can earn at most (1− δi,U )πUi (G \
C) + δi,Uπ

U
i (G) + δi,Up

R
ij,U by coming to agreement in the following period.

Suppose Ui for some ij ∈ C offers p̃ij = pRij,U in the first period.

(a) If Dj accepts only this deviation at time t (and rejects all other offers), it earns:

Π̃D = (1− δj,D)(πDj (G \ C ∪ ij)− pRij,U ) + δj,D

πDj (G)− pRij,U −
∑

kj∈C\ij

pRkj,D


Dj change in payoffs from accepting this deviation p̃ij as opposed to rejecting all offers
is:

(1− δj,D)(∆πDj (G \ C ∪ ij, ij)− pRij,U ) + δj,D(pRij,D − pRij,U )

=(1− δj,D)∆πDj (G \ C ∪ ij, ij)− pRij,U + δj,Dp
R
ij,D

which is positive since by A.CDMC ∆πDj ((G\C)∪ij, ij) ≥ ∆πDj (G, ij), and ∆πDj (G, ij) =

δi,Up
R
ij,U − pRij,D by (1).
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Furthermore, Dj will not wish to accept additional agreements A′ ⊆ C \ ij at time t.
To see why, if Dj accepted agreements kj ∈ A′ in addition to ij, it would gain:

∆πDj (G \ C ∪ A′ ∪ ij,A′)−
∑
kj∈A′

(p̂kj,t − δj,DpRij,D)

where p̂kj,t are the offers that were rejected by Dj at time t in the candidate equilibrium.
However, since ∆πDj (G\C∪A′∪ij,A′) > ∆πDj (G\C∪A′,A′) by A.CDMC, if accepting
additional agreements A′ is profitable for Dj upon accepting deviation p̃ij , then it
would have been profitable to accept A′ in the original candidate equilibrium, which is
a contradiction. Consequently, Dj would only accept p̃ij at time t, and reach agreement
with all other firms kj ∈ C \ ij in the subsequent period.

(b) Ui’s payoffs from having its offer accepted at time t is:

(1− δi,U )(πUi (G \ C ∪ ij) + pRij,U ) + δi,U (πUi (G) + pRij,U )

since we have shown Dj would accept Ui’s deviation at time t, but reject all other offers.

So Ui’s change in payoffs from having it’s offer p̃ij accepted at time t is:

(1− δi,U )(∆πUi ((G \ C) ∪ ij, ij) + pRij,D)

which is positive since ∆πUi (G\C, ij) ≥ ∆πUi (G, ij) by A.CDMC and pRij,U > ∆πUi (G, ij)
by equation (3).

So Ui has a profitable deviation, leading to a contradiction.

Thus, any equilibrium involves immediate agreement for all ij ∈ C. �

D.3 Many Upstream and Many Downstream Firms

Proof of Lemma 4.10 (Odd, simultaneous.) In the candidate equilibrium, let A indicate the
set of agreements reached first, say in period t (odd), and B ≡ C \A the set of agreements reached
at some later date. By the inductive hypothesis, all agreements ij ∈ B will occur at t+ 1 at prices
pRij,U .

We first prove that all agreements ij ∈ C occur at the same time (i.e., A = C and B = ∅), and
then prove all agreements occur at the Rubinstein prices.

Claim A: All agreements occur at the same time. We prove the claim by contradiction.
Suppose all agreements are not simultaneous so that A ⊂ C and B 6= ∅. Since there are multiple

upstream firms with open agreements at time t (by assumption), we can find agreements ab ∈ A
and ij ∈ B s.t. Ua 6= Ui: i.e., we can find an agreement formed at time t and another agreement
formed at t + 1 involving different upstream firms.28 Consider the following deviation by Dj at
time t: Dj offers p̃ij ≡ pRij,D + ε to Ui.

1. Such a deviant offer will be accepted by Ui.

28If we cannot find two agreements ab ∈ A, ij ∈ B involving two different upstream parties, it must have
been that there was only one upstream firm in C (which is ruled out by assumption); the case with one
upstream firm in C has been covered in in Section 4.4.
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To show this, assume not, and assume that Ui rejects p̃ij but accepts some set of agreements
A′i ⊆ C \ ij. Even if A′i is empty, by passive beliefs Ui still anticipates ab will come to
agreement at t; thus, by induction, all agreements C \ A′ will be formed in the next period
at prices pRij,U .

Instead of rejecting p̃ij , Ui can do better by accepting A′i ∪ ij at time t than accepting only
A′i if the change in payoffs exceed the change in prices:

(1− δi,U )∆πUi (G \ B′ ∪ ij, ij) > δi,Up
R
ij,U − p̃ij

(where B′i ≡ Ci \ {A′i ∪ ij}). Since ∆πUi (G \ B ∪ ij, ij) ≥ ∆πUi (G, ij) by A.CDMC, since
(1− δi,U )∆πUi (G, ij) = δi,Up

R
ij,U − pRij,D by (2), and since p̃ij = pRij,D + ε, this inequality holds.

Contradiction, and thus Ui cannot reject the deviant offer.

2. Such a deviation is profitable for Dj if accepted by Ui.

Assume if Ui accepts the deviation from Dj at time t, Ui also accepts agreements A′i ⊆ Ci \ ij
at time t as well as ij; let B′i ≡ Ci\{A′i∪ij}. By the inductive hypothesis, all other agreements
in kj ∈ B′ ≡ B−i ∪ B′i will be reached at time t+ 1 at prices pRkj,U .

Dj will find the deviation of offering p̃ij = pRij,D + ε at time t profitable if:

(1− δj,D)(πDj (G \ B′)− πDj (G \ B)) > p̃ij − δj,DpRij,U
for which (1− δj,D)(πDj (G \ B′)− πDj (G \ B)) > (1− δj,D)pRij,U is sufficient.

By A.CDMC’:

(πDj (G \ B′)− πDj (G \ B)) ≥ ∆πDj (G, ij), then equation (3) applies.

Since there is a profitable deviation for Dj , there is a contradiction. Thus all agreements happen
at the same time.

Claim B: p̂ij = pRij,D.

Now, suppose the candidate equilibrium price p̂ij > pRij,D for some ij ∈ C. Then, Dj can deviate

and offer p̃ij ≡ pRij,D + ε < p̂ij . If Ui rejects some subset of its agreements B′ ⊆ Ci, ij ∈ B′, Ui
anticipates receiving pRil,U in the subsequent subgame from all il ∈ B′ in the next period by the
inductive hypothesis and passive beliefs (or Claim A if Ui rejects all agreements). Thus, at time t,
Ui will accept Dj ’s deviation (and all other offers it receives) as opposed to rejecting some subset
of offers that includes p̃ij if:

(1− δi,U )πUi (G) + p̃ij +
∑

il∈C\ij

p̂il,t + δi,Uπ
U
i (G) > (1− δi,U )πUi (G \ B′) +

∑
il∈A′

p̂il,t + δi,U (πUi (G) +
∑
il∈B′

pRil,D)

⇒ (1− δi,U )∆πUi (G,B′) >
∑

il∈B′\ij

(δi,Up
R
il,D − p̂il,t) + (δi,Up

R
ij,D − p̃ij)

where p̂il,t are the candidate equilibrium prices offered and agreed upon at time t between Ui and
Dj . Note:

1. (1 − δi,U )∆πUi (G, il) ≥ δi,Up
R
il,D − p̂il for all il ∈ C, else Ui would have rejected p̂il,t in the

candidate equilibrium and obtained a strictly higher payoff by coming to an agreement with
Dl in the subsequent period (see (2)).
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2. ∆πUi (G,B′) ≥
∑

il∈B′ ∆πUi (G, il) by A.CDMC and Lemma D.1.

Thus, since p̃ij = pRij,D + ε, this inequality holds for ε > 0, and Ui would accept Dj ’s deviation;
contradiction.

Next, suppose p̂ij < pRij,D for some ij ∈ C. Ui can reject this offer (but accept all others) and

receive pRij,U at time t+ 1 by the inductive hypothesis. This deviation is profitable for Ui if the loss
in payoffs is less than the increase in obtained prices:

(1− δi,U )∆πUi (G, ij) < δi,Up
R
ij,U − p̂ij

By (2), this inequality holds if p̂ij < pRij,D. Contradiction.

Hence, for all ij ∈ C, p̂ij = pRij,D. �

Proof of Lemma 4.11 (Even, simultaneous.) The proof here is symmetric to the case consid-
ered in lemma 4.10.

Proof of Lemma 4.12 (Immediate agreement.) Suppose not, and all agreements happen at
time t̂ = t+ τ , and τ > 0.

• t̂ is odd

Consider the deviation whereDj offers all Ui with ij ∈ C an offer of p̃ij = pRij,D+ε at time t. By

the inductive lemma all other agreements occur at time t+ 1 with prices pRij,U . Given passive
beliefs, Ui best responds to only p̃ij being offered. So the highest payoff for Ui, if he rejects,

is agreement in the next period given by (1 − δi,U )πUi (G \ C) + δi,U

(
πUi (G) +

∑
il∈Ci p

R
ij,U

)
.

Thus the change in profit for Ui from accepting this deviation are:

(1− δi,U )
[
∆πUi (G \ C ∪ ij, ij) + pRij,D

]
+ δi,U

[
pRij,D − pRij,U

]
+ ε

=(1− δi,U )∆πUi (G, ij) + pRij,D − δi,UpRij,U
+ (1− δi,U )

[
∆πUi (G \ C ∪ ij, ij)−∆πUi (G, ij)

]
+ ε

=(1− δi,U )
[
∆πUi (G \ C ∪ ij, ij)−∆πUi (G, ij)

]
+ ε

Since by equation (1) (1− δi,U )∆πUi (G, ij) + pRij,D− δi,UpRij,U = 0. Next, ∆πUi (G \C ∪ ij, ij) ≥
∆πUi (G, ij) by A.CDMC, so Ui will accept this deviation.

Meanwhile, Dj ’s highest possible payoffs are from coming to an agreement in the next period

(1− δj,D)πDj (G \ C) + δj,D

[
πDj (G)−

∑
kj∈Cj p

R
ij,D

]
(where Cj indicates the set of open agree-

ments to which Dj is a party, and C−j indicates the set of open agreements to which Dj is
not a party). Thus Dj ’s profits from offering this deviation are:

(1− δj,D)

∆πDj (G \ C−j , Cj)−
∑
kj∈Cj

(pRkj,D − ε)


Notice that ∆πDj (G \ C−j , Cj) ≥ ∆πDj (G, Cj) by A.CDMC, and ∆πDj (G, Cj) >

∑
kj∈Cj p

R
kj,D

by equation (4) since Dj will not want to drop agreements at the Rubinstein prices.
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• t̂ is even

Consider the deviation where Ui offers Dj an offer of p̃ij = pRij,U at time t. The proof of this
case is symmetric to the odd case.

�

E Counterexamples

E.1 Counterexample to Unique Equilibrium

This subsection provides an example of a game with multiple equilibria even when the assumptions
from Theorem 3.1 – A.GFT and either (i) A.CDMC′ and A.ASR or (ii) A.CDMC and A.LEXT –
hold. As discussed in the text, the equilibria will differ only in their prescribed off-equilibrium play
and hence realized outcomes are the same across equilibria.

Let M = 1 and N = 2 so that there is one downstream firm D1 and two upstream firms U1,
U2. In this case, if there are multiple and simultaneous deviations by both upstream firms in an
even (upstream-proposing) period—which will reach a node off the equilibrium path—then D1’s
best response may be to accept only one and not both of these deviations, and the choice of which
offer to accept may be arbitrary.

Numerical Example. For notation, let Ak denote the network that is empty for k = 0; only
D1 and Uk contract for k = 1, 2; and is full (i.e., D1 contracts with both upstream firms) for k = 3.
Let πUi (Ak) = 0, ∀i, k, so profits accrue only to D1. Let πD1 (A0) = 0, πD1 (A1) = πD1 (A2) = 6, and
πD1 (A3) = 8. Note that this example satisfies both A.CDMC and A.LEXT.

Suppose that δ1,U = δ1,D = δ2,D = 0.9. Note that pR1,U = pR2,U ≈ 1.0526. Now consider the
even-period node where U1 and U2 have both deviated from their equilibrium strategies and offered
p∗1 = p∗2 = 1, and D1 is deciding which offer(s) to accept. It is easy to verify that, at this node, D1

should accept either offer but not both offers. Thus, one equilibrium involves D1 accepting U1’s
offer at this node, while another equilibrium involves D1 accepting U2’s offer at this node.

The underlying logic is that the difference in D1’s payoffs between one and two contracts, which
is 2, is smaller than the difference in D1’s payoffs between zero and one contracts, which is 6. The
pRU payoffs are designed to make D1 indifferent between accepting both offers and only one—but
D1 strictly prefers one contract to none at these prices.

E.2 Counterexample to Unique Equilibrium Payoffs

This subsection provides an example of a game with an equilibrium where a firm can be paid more
than the Rubinstein price when A.LEXT and A.ASR do not hold.

Now, let N = 1 and M = 2 so that there is one upstream firm U1 and two downstream firms
D1, D2. Assume that the first period, t0, is odd so that downstream firms make initial proposals,
and that (1 − δ1,D)∆πD1 (G, {12}) > 0 (which represents the one period value of the externality
imposed on D1 by U1 coming to an agreement with D2).

Consider the strategy profile prescribed in the proof of Theorem 3.1 in Section C, and alter it
so that:
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• In odd periods, D1 offers to U1 the payment p̂R11,D ≡ pR11,D + ε, where:

ε ∈ (0,min{(1− δ1,D)∆πD1 (G, {12}), (1− δ1,D)∆πD1 (G, {11})− (pR11,D − δ1,Dp
R
11,U )}]

• In odd periods, U1 accepts any offer p11 ≥ pR11,D from D1, and rejects otherwise; however, if

U1 accepts p11 and p11 6= p̂11, then U1 rejects p12 if p12 = pR12,D.

Essentially, this change to the strategies implies that D1 offers more than its Rubinstein price in
an odd period, and that U1 threatens to reject D2’s offer of pR12,D if D1 makes an deviant offer that
is greater than or equal to the Rubinstein price, but different than p̂11. Since U1 is indifferent over
accepting and rejecting pR12,D from D2 given it accepts D1 under the strategy profiles given, U1’s

off-equilibrium threat is credible. The premiums over the Rubinstein price pR11,D made in the first
period can be no higher than either D1’s gain from U1 contracting with D2 immediately, or D1’s
option of offering such a high price in period 1 so that U1 rejects it, and then contracting with U1

in the following period at pR11,U .
As long as A.GFT and A.CDMC hold for the remainder of the underlying payoffs, it is straight-

forward to show that this strategy profile will comprise an equilibrium. Essentially, it is sustained
by the positive externality on D1 that is generated by U1 coming to agreement with D2; U1 can
leverage this to extract a higher price from D1 when negotiating in an odd period.

Nonetheless, as Λ → 0, the outcome of this equilibrium also converges to the one detailed in
the uniqueness proof: i.e., Nash-in-Nash prices for all firms, and immediate agreement.

Numerical Example. For notation, now let Ak denote the network that is empty for k = 0;
only Di and U1 contract for k = 1, 2; and is full (i.e., U1 contracts with both downstream firms)
for k = 3. Let πU1 (A0) = πD1 (A0) = πD2 (A0) = πD1 (A2) = πD2 (A1) = 0, πU1 (A1) = πU1 (A2) = 5,
πU1 (A3) = 8, πD1 (A1) = πD2 (A2) = 1, and πD1 (A3) = πD2 (A3) = 2.

Suppose again that δ1,U = δ1,D = δ2,D = .9. Then the strategies prescribed above with ε ≤ 0.1
comprise an equilibrium.
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