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1 Introduction

Reforms that expand the scope for school choice are an increasingly common phenomenon in US public

school districts. Examples include charter schools, vouchers, and district-wide choice plans allowing students to

choose from a variety of traditional public schools. A central motivation for such reforms is that school choice

may serve as an escape hatch for disadvantaged students with low-quality neighborhood schools, permitting

exit to higher-quality schools and pressuring ineffective schools to improve. School choice also creates scope for

improved allocative efficiency: students may sort into schools that are particularly good matches, increasing

aggregate productivity through comparative advantage (Hoxby, 1998; 2003). On the other hand, school

choice might widen educational inequality if richer families are more likely to choose high-quality schools, and

competitive incentives may be weak if most parents choose based on factors other than school quality (Ladd,

2002; Rothstein, 2006; Barseghyan et al., 2014). The aggregate and distributional effects of school choice

depend in large part on which students take advantage of opportunities to attend better schools.

The contemporary school choice debate centers on charter schools, a rapidly growing education reform.

Charters are publicly funded, non-selective schools that operate outside traditional districts, allowing them

freedom to set curricula and make staffing decisions. Previous studies of charter schools focus on the causal

effects of these schools on the students who attend them. While evidence on the effects of non-urban charter

schools is mixed,1 studies based on entrance lotteries show that attendance at charters in Boston and New

York’s Harlem Children’s Zone boosts academic achievement sharply (Abdulkadiroglu et al., 2011; Dobbie

and Fryer, 2011). Angrist et al. (2012; 2013a; 2013b; forthcoming), Dobbie and Fryer (2013; 2015), Gleason

et al. (2010), Hoxby and Murarka (2009), and Hoxby and Rockoff (2004) also report positive effects for urban

charter schools.

Despite the large literature documenting the causal effects of charter schools and other school choice pro-

grams, little attention has been paid to selection into these programs.2 Existing studies typically restrict

attention to samples of lottery applicants, among whom charter offers are randomly assigned (see, e.g., Ab-

dulkadiroglu et al., 2011 and Deming et al., 2014). Understanding the application decisions that generate

these samples is essential both for interpreting existing evidence and for evaluating the efficacy of charter

school expansions. Of particular interest is whether students sort into the charter sector on the basis of po-

tential achievement gains. If gains are atypically large for charter applicants, local average treatment effects

(LATE) derived from lottery-based instruments will overstate potential effects for non-applicants and provide

a misleading picture of the impacts of charter expansion (Heckman et al., 2001; Imbens and Angrist, 1994;

1Gleason et al. (2010) find that non-urban charters are no more effective than traditional public schools. Angrist et al.
(2013b) find negative effects for non-urban charter middle schools in Massachusetts. In an observational study of 27 states,
CREDO (2013) finds that charter schools are slightly more effective than traditional public schools on average. See Epple et al.
(2015) for a recent review of research on charter schools.

2Exceptions include Hastings et al. (2009), who study preferences submitted to a school choice mechanism in Charlotte NC,
and Ferreyra and Kosenok (2011) and Mehta (2011), who develop equilibrium models of charter school entry and student sorting.
None of these papers model the link between decisions to apply to school choice programs and causal effects; the latter two do
not use application or lottery data. Other related studies look at selection in higher education (Arcidiacono et al., 2013; Buter et
al., 2013; Dillon and Smith, 2013) and in educational programs outside the US (Ajayi, 2013; Kirkeboen et al., 2014).
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Rothstein, 2004).3 If students with large potential benefits are unlikely to apply, on the other hand, reforms

that draw non-applicants into the charter sector may generate substantial impacts.

This paper studies the demand for charter middle schools in Boston, with a focus on absolute and com-

parative advantage in school choice. Students in Boston can apply to any combination of charter schools

and face uncertainty in the form of an admissions lottery at each charter. I analyze this process using a

dynamic, unordered generalized Roy (1951) model that describes charter application portfolio choices, lottery

outcomes, and school attendance decisions.4 The model is similar to the stochastic portfolio choice problems

considered by Chade and Smith (2006) and Chade et al. (2009): students submit charter application portfolios

to maximize expected utility, taking account of admission probabilities and non-monetary application costs.

This portfolio-choice model is combined with a flexible model for potential academic achievement in charter

schools and traditional public schools. As in the canonical Heckman (1979) sample selection framework, the

model allows a link between potential outcomes and the latent preferences that drive charter application and

attendance decisions, thereby creating scope for selection according to absolute and comparative advantage.

This allows generalization from effects for lottery applicants to causal parameters relevant for policies that

expand charter schooling to new populations.

Identification of the model parameters is achieved by combining instruments derived from randomized

charter entrance lotteries with a second set of instruments based on distance to charter schools. Intuitively,

entrance lotteries identify causal effects for the selected sample of lottery applicants; distance generates vari-

ation in preferences that shifts the composition of the applicant sample, tracing out the relationship between

unobserved tastes and causal effects. To manage the dimensionality of endogeneity in a dynamic discrete

choice setting with many choices, I impose a one factor restriction that posits a one-dimensional unobserved

preference driving endogenous selection into the charter sector. I present evidence that Boston’s charters are

relatively homogeneous and that students treat them as close substitutes, suggesting that a one-factor selection

structure is reasonable.

Estimates of the model reveal that students do not sort into charter schools on the basis of comparative

advantage. Instead, the results indicate a “reverse Roy” selection pattern in which students with the largest

potential test score impacts have the weakest demand for charter schools.5 This pattern can be traced to

selection on both observed and unobserved student characteristics. Richer, higher-achieving students are

more likely to apply to charter schools, but charters boost scores more for poor students and low-achievers;

similarly, test score gains are largest for students with weaker unobserved tastes for charter schools. As a

result, existing estimates understate the potential achievement effects of charter schools for non-applicants.

The estimates imply that the average potential effect of charter schools on non-charter students (the effect of

3Rothstein (2004, p.82) offers a version of this view. He writes of the Knowledge is Power Program (KIPP), a high-performing
urban charter operator: “[T]hese exemplary schools...select from the top of the ability distribution those lower-class children with
innate intelligence, well-motivated parents, or their own personal drives, and give these children educations they can use to succeed
in life.”

4See Heckman et al. (2006), Heckman and Navarro (2006) and Heckman and Vytlacil (2007a) for discussion of static and
dynamic generalized Roy models.

5This terminology is a reference to the pure Roy (1951) selection model, which assumes pure positive selection on outcome
gains. The results here indicate that charter students are instead negatively selected on test score gains.
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treatment on the non-treated, TNT) is roughly 40 percent larger than the average effect for enrolled charter

students (the effect of treatment on the treated, TOT). These results are consistent with the possibility

that high-performing charter schools partially compensate for differences in human capital investments across

families, but motivated parents who invest more at home are also more likely to seek out seats at effective

schools.

I quantify the policy implications of these results by simulating charter expansion effects in an equilibrium

school choice model. The simulations show that while effects for marginal applicants are substantial, the

effects of charter expansion may nevertheless be limited by weak demand among the highest-benefit students:

students act as if charter application costs are high, and many prefer to attend traditional public schools even

when charters offering guaranteed admission are located in close proximity. This finding motivates simulations

of structural reforms that make charter attendance more attractive rather than merely adding more seats. The

results show larger impacts for reforms that draw in new populations than for reforms that expand the scale

of the charter system but do not alter its structure. This implies that policies targeting students who are

unlikely to apply have the potential to boost overall productivity in the charter sector. Importantly, reforms

that target students based on observables are shown to be less effective than policies that change patterns

of selection on unobservables, indicating the importance of attention to self-selection in the design of school

choice programs.

The rest of the paper is organized as follows. The next section gives background on charter schools in Boston

and describes the data. Section 3 outlines the structural model of charter demand and academic achievement,

and Section 4 discusses identification and estimation of the model. Section 5 reports the parameter estimates.

Section 6 summarizes patterns of selection and comparative advantage in charter school choice, and compares

these patterns to what might be learned from an atheoretical extrapolation based on lottery applicants. Section

7 uses the model to simulate the effects of counterfactual policies. Section 8 concludes.

2 Setting and Data

2.1 Context: Charter Schools in Boston

Non-profit organizations, teachers, or other groups wishing to operate charter schools in Massachusetts

submit applications to the state’s Board of Education. If authorized, charter schools are granted freedom

to organize instruction around a philosophy or curricular theme, as well as budgetary autonomy. Charter

employees are also typically exempt from local collective bargaining agreements, giving charters more discre-

tion over staffing than traditional public schools.6 Charters are funded primarily through per-pupil tuition

payments from local districts. Charter tuition is roughly equal to a district’s per-pupil expenditure, though
6Massachusetts has two types of charter schools: Commonwealth charters, and Horace Mann charters. Commonwealth

charters are usually new schools authorized directly by the Board of Education, while Horace Mann charters are often conversion
schools and must be approved by the local school board and teachers’ union prior to state authorization. Horace Mann employees
typically remain part of the collective bargaining unit. I focus on Commonwealth charter schools. No Horace Mann charter
middle schools operated in Boston during my data window. See Abdulkadiroglu et al. (2014) for a recent analysis of Horace
Mann charters.
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the state Department of Elementary and Secondary Education partially reimburses these payments (Mas-

sachusetts Department of Elementary and Secondary Education, 2011). The Board of Education reviews each

charter school’s academic and organizational performance at five year intervals, and decides whether charters

should be renewed or revoked.

Enrollment at Massachusetts charter schools is open to all students who live in the local school district.

If a charter school receives more applications than it has seats it must accept students by random lottery.

Students interested in multiple charter schools must submit separate applications to each charter, and may

receive multiple offers through independent school-specific lotteries. This system of independent enrollment

processes is in contrast to the centralized enrollment mechanism used for Boston’s traditional public schools,

which collects lists of students’ preferences over schools and generates a single offer for each student (Pathak

and Sonmez, 2008).

The Boston Public Schools (BPS) district is the largest school district in Massachusetts, and it also enrolls

an unusually large share of charter students. In the 2010-2011 school year, 14 charter schools operated in

Boston, accounting for 9 percent of BPS enrollment. The analysis here focuses on middle schools, defined as

schools that accept students in fifth or sixth grade; 12 percent of Boston middle schoolers attended charter

schools in 2010-2011. Panel A of Appendix Table A1 lists names, grade structures and years of operation for

the nine Boston charter middle schools that operated through the 2010-2011 school year. I use admissions

records from seven of these schools to produce the estimates reported below.

Many of Boston’s charter schools adhere to an educational model known as “No Excuses,” a set of practices

that includes extended instruction time, strict behavior standards, a focus on traditional reading and math

skills, selective teacher hiring, and teacher monitoring (Wilson, 2008). A growing body of evidence suggests

that these practices boost student achievement and other outcomes (Angrist et al., 2013b; Curto and Fryer,

2011; Dobbie and Fryer, 2013, 2015; Fryer, 2014). Consistent with this evidence, Abdulkadiroglu et al. (2011)

use entrance lotteries to show that Boston’s charter schools substantially increase achievement among their

applicants. Their estimates imply that a year of charter middle school attendance raises test scores by 0.4

standard deviations (σ) in math and 0.2σ in reading. Similarly, Angrist et al. (2013a) show that Boston’s

charter high schools have substantial effects on longer-term outcomes like SAT scores and four-year college

enrollment.

The demand for charters in Boston is relevant to an ongoing policy debate. In recent years, the growth of

charters in Massachusetts has been slowed by the state’s charter cap, a law that limits expenditures on charter

schools to 9 percent of the host district total.7 The Board of Education stopped accepting proposals for new

Boston charters in 2008 when charter expenditure hit the cap (Boston Municipal Research Bureau, 2008). In

2010, the Massachusetts legislature relaxed the charter cap for school districts in the state’s lowest test score

decile. For these districts, the limit on charter expenditures is to rise incrementally from 9 percent in 2010 to

18 percent in 2017 (Commonwealth of Massachusetts, 2010). Through 2011, the Board of Education received

7Legislation also limits the total number of Commonwealth charter schools to 72 and the number of Horace Mann charters
to 48, though these caps are not currently binding.
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51 charter applications under the new law and granted 20 charters, eleven to schools in Boston (Massachusetts

Department of Elementary and Secondary Education, 2012b). Panel B of Appendix Table A1 lists the six

charter middle schools opened through the 2012-2013 school year. Column (6) indicates existing charters

operated by the same organizations. Boston’s charter sector may continue to expand in the future; recently-

proposed legislation would eliminate the charter cap in Boston and other low-performing districts (Levitz,

2013).

2.2 Data Sources and Sample Construction

The data used here come from three sources. Demographics, school attendance, and test scores are derived

from an administrative database provided by the Massachusetts Department of Elementary and Secondary

Education (DESE). Spatial locations are coded from data on student addresses provided by the BPS dis-

trict. Finally, information on charter school applications and lottery offers comes from records gathered from

individual charter schools.

The DESE database covers all Massachusetts public school students from the 2001-2002 school year through

the 2012-2013 school year. Key variables include sex, race, subsidized lunch status, limited English proficiency

(LEP), special education status (SPED), town of residence, schools attended, and scores on Massachusetts

Comprehensive Assessment System (MCAS) math and English Language Arts (ELA) achievement tests. I

begin by selecting from the database the four cohorts of students who attended a traditional BPS school in 4th

grade between 2005-2006 and 2008-2009. Students must also have non-missing 4th grade demographics and

test scores, as well as school attendance information and test scores in 8th grade. I use only the earliest test

taken by a given student in a particular subject and grade. Test scores are standardized to have mean zero

and standard deviation one within each subject-year-grade in Massachusetts. Students are coded as charter

enrollees if they attend a charter school at any time prior to the relevant test.

Student addresses are merged with the DESE administrative file using a crosswalk between BPS and state

student identifiers. The address database includes a record for every year that a student attended a traditional

BPS school between 1998 and 2011. I drop students in the state database without 4th-grade BPS address

data. This restriction eliminates less than 1 percent of Boston 4th graders. The address information is used

to measure proximity to each Boston charter school, coded as great-circle distance in miles.8

The DESE and address data are matched to admissions records from seven charter middle schools in

Boston. These seven schools provided complete records for applicant cohorts attending 4th grade between

2006 and 2009, including in years when they were undersubscribed. Importantly, only nine charter middle

schools operated in Boston during this period, so the admissions data provides a nearly-complete picture

of charter application decisions. Column 4 of Appendix Table A1 summarizes the availability of admissions

records for the nine charter middle schools that operated between the 1997-1998 school year and the 2010-2011

8I also performed the analysis using travel times measured by Google Maps, obtained using the STATA traveltime command.
I chose to use great-circle distances instead because traveltime produced different results when queried at different times, making
the results difficult to replicate. Key estimates were very similar for this alternative distance measure.
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school year.9 Of the two schools without available records, one closed prior to the 2010-2011 school year; the

other declined to provide records. In the analysis below, I treat these schools as equivalent to traditional public

schools. Lottery records are matched to the administrative data by name, grade, year, and (where available)

date of birth. This process produced unique matches for 92 percent of applicants. Though admission records

for all seven schools were available for cohorts attending 4th grade between 2006 and 2009, not every school

was oversubscribed in every year, so schools did not always hold lotteries. Column (5) of Table A1 shows that

each of the seven schools held lotteries in at least two years. The analysis below uses applicant records for all

four years, setting admission probabilities to one for undersubscribed years.

2.3 Descriptive Statistics

The final analysis sample includes 9,156 students who attended BPS schools in 4th grade between 2006

and 2009. Descriptive statistics for this sample are reported in Table 1. As shown in column (1), eighteen

percent of Boston students applied to at least one charter lottery, thirteen percent were offered a charter

seat, and eleven percent attended a charter school. Five percent of students applied to more than one charter.

Charter applicants tend to have higher socioeconomic status and fewer academic problems than non-applicants.

Specifically, applicants are less likely to be eligible for subsidized lunch (a proxy for poverty), to have special

education status, or to be classified as limited English proficient. Charter applicants are less likely to be

Hispanic and slightly more likely to be white than non-applicants. Applicants also live slightly closer to

charter schools on average (1.9 miles from the closest charter, compared to 2.1 miles for the average student).

Table 1 also describes the quality of nearby traditional public school options. Students can choose between

many schools in Boston’s centralized traditional public school assignment mechanism, so the characteristics

of the relevant fallback traditional public school are unknown for students who attend charter schools. Most

students attend a school close to home, however, so the average quality of schools in a student’s zip code is

a reasonable proxy for the quality of available traditional public schools. I proxy for the quality of nearby

schools using estimates from a value-added regression of middle school test scores on school indicators, with

controls for demographics and lagged scores.10 Though value-added estimates of this type may be biased by

student sorting, they provide a rough guide to local public school quality. Columns (1) and (2) of Table 1

show that the average value-added of nearby traditional public schools is similar for charter applicants and

non-applicants.

The last two rows of Table 1 display information about 4th grade MCAS scores. Boston 4th graders

lag behind the state average by 0.52σ and 0.64σ in math and ELA. Students who apply to charter schools

have substantially higher scores than the general Boston population: applicants’ 4th grade scores exceed the
9I classify charter schools as middle schools if they accept applicants in 5th or 6th grade. Two Boston charter schools accept

students prior to 5th grade but serve grades 6 through 8. Since I restrict the analysis to students who attended traditional BPS
schools in 4th grade, no students in the sample attend these schools.

10The value-added sample stacks test scores in grades through eight and regresses these on 4th grade scores, the other
demographic variables from Table 1, and indicators for sixth grade school. The value-added for a given school is the coefficient
on the relevant school indicator in this regression. The value-added procedure is jackknifed so that a student’s own score does
not contribute to her own measure of mean local value-added. Value-added in a student’s zip code is the average of math and
ELA value-added measures for schools in this area.
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Boston average by more than 0.2σ in both subjects. Together, the statistics in Table 1 show that Boston’s

charter applicants are less disadvantaged and higher-achieving than the general Boston population on several

dimensions. I next outline a model of selection into the applicant sample that can be used to predict charter

effects for other groups of students.

3 Modeling Charter School Attendance

3.1 Setup

I model charter application choices as a random utility optimal portfolio choice problem. Figure 1 explains

the sequence of events described by the model. First, students decide whether to apply to each of K charter

schools, indexed by k ∈ {1 . . .K}. The dummy variable Aik ∈ {0, 1} indicates that student i applies to school

k. Second, charter schools randomize offers to applicants. The dummy variable Zik ∈ {0, 1} indicates an offer

for student i at school k, and πk denotes the admission probability for applicants to this school. In the third

stage, students choose schools denoted Si ∈ {0, 1...K}, where Si = 0 indicates public school attendance. Any

student can attend public school, but student i can attend charter school k only if she receives an offer at this

school. Finally, students take achievement tests, with scores denoted Yi.

3.2 Student Choice Problem

3.2.1 Preferences

Students’ preferences for schools depend on demographic characteristics, spatial proximity, application

costs, and unobserved heterogeneity. The utility of attending charter school k is

Uik = γ0
k +X ′iγ

x + γdDik + θi + υik − ci(Ai) for k > 0, (1)

where Xi is a vector of observed characteristics for student i and Dik measures distance to school k. The

utility of public school attendance is

Ui0 = υi0 − ci(Ai). (2)

The quantity ci(Ai) represents the utility cost of Ai, the application portfolio chosen by student i. Here and

elsewhere, variables without k subscripts refer to vectors, so that Ai ≡ (Ai1, . . . , AiK)′ and so on. Application

costs include the disutility of filling out application forms and the opportunity cost of time spent attending

information sessions and lotteries. These costs may also capture frictions associated with learning about

charter schools.11 The application cost function is parameterized as

ci(a) = γa|a| − ψia.
11Charter schools are not listed in informational resources provided to parents by the BPS district. For example, the “What

Are My Schools?” tool located at www.bostonpublicschools.org provides a list of the BPS schools to which children are eligible
to apply, but does not list charter schools (accessed September 13th, 2013).
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The parameter γa is the marginal cost associated with an additional charter school application. The error

term ψia is a shock to the utility associated with a particular application portfolio. Applicants pay these costs

whether or not they attend a charter.

The variables θi and υik represent unobserved heterogeneity in tastes. θi, which characterizes student i’s

preference for charter schools relative to traditional public school, is the key unobservable governing selection

into the charter sector. This variable captures any latent factors that influence students to opt out of traditional

public school in favor of charter schools, such as the perceived average achievement gain from attending charter

schools, proximity or quality of the relevant traditional public school, or parental motivation. In the language

of the random-coefficients logit model, θi is the random coefficient on a charter school indicator (see, e.g.,

Hausman and Wise, 1978; Berry et al., 1995; and Nevo, 2000). The presence of θi implies that charter schools

are closer substitutes for each other than for traditional public schools. θi is assumed to follow a normal

distribution with mean zero and variance σ2
θ .

The υik capture idiosyncratic preferences for particular schools, which are further decomposed as

υik = τik + ξik.

Students know ψia, τik, and θi before applying to charter schools, and learn ξik after applying. The post-

application preference shock ξik explains why some applicants decline charter offers. To generate multinomial

logit choice probabilities, ψia, τik, and ξik are assumed to follow independent extreme value type I distributions,

with scale parameters λψ, λτ , and 1.12

While equations (1) and (2) do not explicitly include academic achievement, they implicitly allow for the

possibility that school choices are partially or entirely determined by expected test scores. If a student knows

her potential test scores in all schools, for example, these may be included in vik. Similarly, if a student know

her average score gain from attending charters relative to her best available traditional public school option,

this information may be included in θi. Appendix A clarifies this point by showing that the model described

here is compatible with a classical Roy (1951)-style selection model in which students make choices based

on expected achievement. On the other hand, the model does not impose that students choose schools to

maximize test scores; it is also compatible with the possibility that school choices are determined by factors

unrelated to, or even negatively correlated with, potential achievement.

3.2.2 School Lotteries

In the second stage of the model, schools hold independent lotteries. School k admits applicants with

probability πk. The probability mass function for the offer vector Zi conditional on the application vector Ai

is

f(Zi|Ai;π) =
∏
k

[Aik · (πkZik + (1− πk)(1− Zik)) + (1−Aik) · (1− Zik)]. (3)

12In other words, ξik follows a standard Gumbel distribution, which provides the scale normalization for the model.
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The admission probabilities πk are allowed to vary by application cohort. If school k is undersubscribed and

hence does not hold a lottery for a particular cohort, πk equals one for that cohort.

3.2.3 Application and Attendance Decisions

I derive students’ optimal application and attendance rules by backward induction. A student is faced with

a unique attendance decision after each possible combination of charter school offers, because the set of offers

in hand determines the available school choices. Consider the decision facing a student at stage 3 in Figure

1. At this point the student knows her charter offers, application costs are sunk, and there is no uncertainty

about preferences. Student i can attend public school or any charter school that offers a seat. Her choice set

is

C(Zi) = {0} ∪ {k : Zik = 1}.

Write

Ũik(θi, τik) = γ0
k +X ′iγ

x + γdDik + θi + τik

for the component of utility at charter k known prior to application, excluding application costs. The corre-

sponding public school utility is Ũi0(θi, τi0) = τi0. Student i’s optimal school choice at stage 3 is

Si = arg max
k∈C(Zi)

Ũik(θi, τik) + ξik,

and the probability that student i chooses school k at this stage is given by

Pr[Si = k|Xi, Di, Zi,θi, τi] =
exp

(
Ũik(θi, τik)

)
∑
j∈C(Zi)

exp
(
Ũij(θi, τij)

)
≡ Pik(Zi, θi, τi).

The expected utility associated with this decision (before the realization of ξi) is

Wi(Zi, θi, τi) = E
[
max k∈C(Zi)Ũik(θi, τi0) + ξik|Xi, Di, Zi, θi, τi

]

= ν + log

 ∑
k∈C(Zi)

exp
(
Ũik(θi, τik)

) ,

where ν is Euler’s constant.

Students choose charter applications to maximize expected utility, anticipating offer probabilities and their

own subsequent attendance choices. Consider the application decision facing a student at stage 1 in Figure 1.

The student knows θi, τi, and ψi, but does not know ξi, and her choice of Ai induces a lottery over Zi at a

10



cost of ci(Ai). Let

Vi(a, θi, τi) =
∑

z∈{0,1}K
[f(z|a;π) ·Wi(z, θi, τi)]− γa · |a|.

The expected utility associated with the application portfolio Ai = a is Vi(a, θi, τi) + ψia, and the probability

of choosing this portfolio is

Pr[Ai = a|Xi, Di, Zi, θi, τi] =
exp

(
Vi(a,θi,τi)

λψ

)
∑

a′∈{0,1}K
exp

(
Vi(a′,θi,τi)

λψ

)

≡ Qia(θi, τi).

Previous lottery-based studies of charter school effectiveness condition on students’ application portfolios,

which are typically referred to as “risk sets” because they determine the probability of a charter school offer

(Abdulkadiroglu et al., 2011; Angrist et al., 2013; Dobbie and Fryer, 2013). The probabilities Qia(θi, τi)

provide a model-based description of how students choose lottery risk sets.

3.3 Academic Achievement

Students are tested after application and attendance decision have been made. Let Yi(k) denote student

i’s potential test score if she enrolls in school k. These potential outcomes are parameterized as

Yi(k) = α0
k +X ′iα

x
c + αθcθi + εik for k > 0, (4)

Yi(0) = α0
0 +X ′iα

x
0 + αθ0θi + εi0. (5)

The parameter α0
k is the academic quality of school k. This parameter captures factors that affect achievement

of all students at the school, such as the quality of teachers, facilities, or the peer environment. The residual

εik follows a normal distribution with mean zero and variance σ2
k. This variance is assumed to be the same

across charter schools but possibly different between charter and traditional public schools. The observed

score for student i is the potential score associated with her optimal school choice: Yi = Yi(Si).

The causal effect of attending charter k relative to traditional public school for student i is Yi(k)− Yi(0).

The coefficients αθc and αθ0 govern comparative and absolute advantage in charter school choice with respect to

unobservables. If αθc > 0, students with stronger unobserved tastes for charters have an absolute advantage in

the charter sector, while these students have an absolute advantage in the traditional public sector if αθ0 > 0.

The difference αθc−αθ0 determines whether sorting on unobservables is consistent with comparative advantage.

If this difference is positive, students with larger potential gains prefer charter schools, and students sort based

on comparative advantage as in a standard Roy (1951) selection model. Choices are inconsistent with such

sorting if the difference is negative.
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Together, equations (1) through (5) provide a complete description of charter demand and potential aca-

demic achievement. It is worth noting some of the key modeling assumptions implicit in these equations. The

model emphasizes differences between charter and traditional public schools, while placing some restrictions on

heterogeneity across charter schools. Variation in preferences and achievement across students with different

observed characteristics is governed by the vectors γx, αxc , and αx0 . This specification allows observed charac-

teristics to affect the choice of charter schools relative to traditional public schools, and to interact differently

with achievement in charter and public schools, but requires that these characteristics affect preferences and

achievement the same way at every charter.

Similarly, equation (4) implies that the relationship between the unobserved taste θi and student achieve-

ment is the same at every charter school. Heterogeneity in mean preferences and potential achievement across

charter schools is captured by the school-specific intercepts γ0
k and α0

k. These restrictions limit the number

of parameters to be estimated while also parsimoniously summarizing heterogeneity across both students and

schools. This emphasis on differences between charters and traditional public schools mirrors the approach

to identification described in the next section, which emphasizes selection into the charter sector rather than

across charter schools.

4 Identification and Estimation

4.1 Exclusion Restriction

Identification of the parameters of equations (4) and (5) is based on the following exclusion restriction:

E[εik|Xi, Zi, Di, θi, υi, ψi] = 0, (6)

where Di, vi, and ψi are vectors of the Dik, vik and ψia, respectively. Equation (6) embeds three assumptions.

First, the lottery offer vector Zi is excluded from the potential achievement equations. This requires that offers

have no direct affect on test scores, a standard assumption in the charter lottery literature. Second, distance to

charter schools Di is excluded from these equations. Finally, the school- and application-specific taste shocks

υik and ψia are excluded. I next discuss the latter two assumptions in detail and provide suggestive evidence

in support of them.

4.2 Exclusion of Distance

Equation (6) implies that lottery offers and distance to charter schools are excluded instruments that may

be used to identify the effects of charter attendance. Lottery offers identify local average treatment effects for

selected samples of charter applicants (Imbens and Angrist, 1994; Angrist, Imbens and Rubin 1996). Going

from LATE to more general causal effects requires identification of the relationship between unobserved tastes

and causal effects, which in turn necessitates another instrument that shifts the composition of the applicant
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pool (Heckman and Vytlacil, 2005). Under the restriction in (6), distance serves this purpose. Application

rates are likely to be high in the immediate neighborhood of a charter school, which implies that the sample

of applicants in this neighborhood is relatively unselected. Observably similar students who are willing to

travel long distances to apply to a charter will on average have higher values of the unobserved taste θi. If

distance is as good as random conditional on Xi, comparisons of mean outcomes by distance therefore identify

relationships between θi and potential outcomes. Appendix B uses a simplified example to show analytically

how the combination of lottery and instruments identifies the selection parameters αθc and αθ0, permitting

extrapolation outside the lottery sample.13 This section discusses potential threats to the validity of the

distance instrument.

The use of distance as an instrument for charter application parallels the use of proximity-based instru-

ments in previous research on college and school choice (see, e.g., Card, 1993 and Booker et al., 2011). The

exclusion restriction requires that distance to charter schools is as good as random conditional on the observed

covariate vector Xi. A sufficient condition for exclusion is that charter school leaders make choices between

neighborhoods on the basis of averages of the variables in Xi. This is plausible since Xi includes a rich set of

student characteristics, including race, poverty, previous academic achievement, and a proxy for the academic

quality of the surrounding public schools. These variables seem likely to capture many of the factors that might

lead charter schools to locate in a particular area. It’s also worth noting that in contrast to traditional public

schools, students who live in the immediate vicinity of a charter school do not receive priority in admission

over other Boston students. This mitigates the incentive for students to relocate in order to attend charter

schools.

Columns (1) and (2) of Table 2 explore the validity of the distance instrument by examining the relationship

between distance and baseline achievement. These columns report coefficients from ordinary least squares

(OLS) regressions of 4th grade test scores on distance to the closest charter middle school, measured in

miles. The estimates in the first row show that students who live farther from charter middle schools have

significantly higher 4th grade test scores, suggesting that charter schools tend to systematically locate in lower-

achieving areas of Boston. The second row shows that adding controls for observed characteristics shrinks

these imbalances considerably and renders the math coefficient statistically insignificant. This indicates that

observed demographic characteristics capture much of the relationship between charter locations and academic

achievement, lending plausibility to the use of distance as an instrument in models that control for these

characteristics. The models estimated below also control directly for baseline test scores, which further limits

the types of spatial correlation that might violate the distance exclusion restriction.

To directly compare the two sets of instruments used to estimate the model, columns (3) through (5)

of Table 2 report separate estimates using lottery offers and distance as instruments for charter attendance

in equations for eighth-grade test scores. The lottery estimates come from two-stage least squares (2SLS)

13Appendix B looks at a model with one school. In the general seven-school model estimated here, additional information about
the selection parameters is derived from the composition of students’ application portfolios. For example, the model attributes a
stronger unobserved preference to a student who applies to more than one charter school than to an observably-similar student
who applies to only one.
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models using a lottery offer indicator as an instrument for a charter attendance indicator, controlling for

lottery risk sets.14 The distance models include the full sample and control for student characteristics and

baseline scores. Column (3) shows that the distance instrument has a strong, statistically significant first stage

effect on charter attendance: a one-mile increase in distance decreases the probability of charter attendance

by 2.6 percentage points. Columns (4) and (5) show that the two instruments produce similar estimates of

the effects of charter attendance, though the distance estimates are less precise. The distance instrument

generates estimates of 0.43σ and 0.28σ in math and ELA, compared to lottery estimates of 0.57σ and 0.48σ.

While it is encouraging that these estimates are broadly similar, note that they needn’t be; on average, the

students induced to attend charter schools by the lottery and distance instruments may differ with respect to

their observable characteristics Xi or their unobserved tastes θi.15

4.3 Exclusion of School-Specific Preferences

The model estimated here is dynamic, and the set of possible choice sequences is large. As a result, it

is not feasible to allow unrestricted dependence of potential outcomes on all the selection errors (θi, vi, ψi).

There are two common approaches to reducing the dimensionality of endogeneity in multinomial sample se-

lection models (see Bourguignon et al., 2007). First, as in Dubin and McFadden (1984), one can impose a

parametric assumption on the joint distribution of outcome and selection errors and use this assumption to

derive an expression for the conditional distribution of selected outcomes. The model can then be estimated by

either maximum likelihood or a semiparametric two-step procedure. Second, as in Dahl (2002), one can place

restrictions on the relationship between mean potential outcomes and selection probabilities while leaving the

marginal distribution of outcomes unspecified. This semiparametric approach does not require correct speci-

fication of potential outcome distributions, but typically involves ad hoc assumptions about the relationship

between outcomes and choice probabilities. The semiparametric approach also precludes maximum likelihood

estimation.

I use a version of the first approach, combining a parametric assumption with exclusion restrictions to

manage endogeneity in charter application and attendance decisions. Equations (4) through (6) imply that

the conditional mean of εik is linear in the charter preference θi. Since both of these variables are normally

distributed, this is equivalent to assuming that θi and Yi(k) follow a joint normal distribution as in the

canonical Heckman (1979) sample selection (Heckit) model. I estimate the model by maximum likelihood,

so the approach taken here is similar to full information maximum likelihood (FIML) estimation of a Heckit

model with a two-stage portfolio choice substituted for the usual static probit selection equation.

To further limit the dimensionality of the problem, I exclude vi and ψi from equations (4) and (5). This
14Appendix Table A2 verifies the construction of the lottery offer instrument by comparing baseline characteristics of lottery

winners and losers within risk sets. The results show that observed characteristics for these two groups are similar, suggesting
random assignment was successful. Appendix Table A3 investigates attrition for the full and sample and by lottery offer status.
Followup rates are high for the full sample and for lottery applicants (85 and 81 percent for 8th grade outcomes), and the difference
in followup rates between winners and losers is small and statistically insignificant.

15It is also not necessary for lottery and distance compliers to differ with respect to average Xi or θi. Appendix B makes clear
that identification of selection on unobservables is based on the interaction of the two instruments, not differences in average
tastes across the two sets of compliers when the instruments are used separately.
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restriction implies that selection on unobservables has a “one factor” form: endogenous selection into the charter

sector depends only on students’ overall tastes for charter schools relative to traditional public schools, not on

school- or portfolio-specific tastes. This assumption allows students to make choices based on heterogeneity

in the average effects of charter schools (captured by γk and α0
k) and their own average effects of charter

attendance (captured by θi), but it rules out the possibility that choices between charters are related to

idiosyncratic treatment gains across schools. Intuitively, a student may know which charter schools are better

overall, and she may also know whether she is well-suited to the charter treatment in general (because she

dislikes her neighborhood traditional public school, for example). I assume that she does not know whether a

particular charter is especially good for her.

Two pieces of evidence suggest this assumption is reasonable. First, inputs and practices are highly

homogeneous across Boston’s charter middle schools. This can be seen in Appendix Table A4, which reports

responses to a survey on school practices for the seven charter schools studied here along with other charter

schools in Massachusetts. With a few exceptions, Boston middle schools ask parents and students to sign

commitment contracts, require students to wear uniforms, utilize formal merit/demerit systems to reward and

punish student behavior, and use cold-calling and math and reading drills in the classroom; these practices

are less common elsewhere in the state. With homogeneous school practices, it seems less likely for parents to

know that the environment at a specific school will lead to a particularly large idiosyncratic benefit.

Second, Table 3 shows that application portfolio choices among charter applicants are determined mostly

by distance. In the model outlined above, the decision to choose one charter school over another is explained

by the combination of distance and school-specific tastes. If application portfolio choices are dominated by

distance, then there is no scope for selection on school-specific tastes conditional on distance. Forty-one

percent of applicants applied to the closest school, and these students traveled an average of 1.91 miles to

their chosen schools. An additional twenty-two percent applied to the second closest charter, traveling an

average of 1.12 miles beyond the closest school, and 16 percent choose the third closest, on average traveling

2.39 miles further than necessary. Less than ten percent of applicants chose the fourth-closest school, and

the fractions who chose more distant schools are even smaller. A negligible fraction of applicants chose the

most distant school. These facts show that although students are free to apply to distant schools, few do so;

conditional on choosing to apply to a charter, most students apply to one close by, leaving little potential for

matching on school-specific achievement gains conditional on distance.

4.4 Estimation

I estimate the parameters of the model by maximum simulated likelihood (MSL). Let Ω denote the pa-

rameters of equations (1) through (5). The likelihood contribution of a student with outcome variables

(Ai, Zi, Si, Yi) is

Li(Ω) =

ˆ
Qia(i)(θ, τ) · f(Zi|Ai;π) · Pis(i)(Zi, θ, τ)
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× 1

σs(i)
φ

(
Yi − α0

s(i) −X
′
iα
x
s(i) − α

θ
s(i)θ

σs(i)

)
dF (θ, τ |Xi, Di,Ω). (7)

Here the subscript a(i) denotes the application bundle chosen by student i, while s(i) denotes her school

choice.16 The integral in equation (7) is evaluated by simulation. Let θri and τ ri be draws of θ and τ for

student i in simulation r, and define the simulation-specific likelihood contribution

ˆ̀r
i (Ω) = Qia(i)(θ

r
i , τ

r
i ) · f(Zi|Ai;π) · Pis(i)(Zi, θri , τ ri ) · 1

σs(i)
φ

(
Yi − α0

s(i) −X
′
iα
x
s(i) − α

θ
s(i)θ

r
i

σs(i)

)
.

The simulated likelihood for observation i is

L̂i(Ω) =
1

R

R∑
r=1

ˆ̀r
i (Ω),

where R is the number of draws. The MSL estimator is defined by

Ω̂MSL = arg max
Ω

N∑
i=1

log L̂i(Ω).

If R rises faster than
√
N , the MSL estimator is

√
N -consistent and has the same asymptotic distribution as

the conventional maximum likelihood estimator (Train, 2003). I use 300 draws of θi and τi for each student.

The results were not sensitive to increasing the number of draws beyond around 100. Standard errors are

calculated from the average outer product of the score of the simulated likelihood.

5 Structural Estimates

Estimates of the model parameters are reported in tables 4, 5 and 6. These results use 8th grade test scores

as outcomes and assume a bivariate normal distribution for the εik across subjects. Estimates for earlier grades

are reported in Appendix tables A5 and A6; patterns of results for these grades are very similar to the 8th

grade estimates discussed in detail below.17 Appendix C provides further analysis showing that the model fits

key patterns of heterogeneity in choices and outcomes present in the data.

5.1 Preference Parameters

Table 4 shows MSL estimates of the parameters governing preferences for charter schools. Column (1)

reports estimates of the utility parameters, while column (2) reports standard errors. Column (3) shows

16s(i) is used to refer both to the specific school chosen by student i, as in the school-specific intercept α0
s(i)

, and to the type
of school chosen by student i (charter or public), as in the demographic coefficient vector αx

s(i)
.

17Models for 7th and 8th grade treat students as charter enrollees if they attend a charter at any time after the lottery and
prior to the test. Roughly 20 percent of students initially enrolled in charter schools are no longer enrolled by eighth grade. The
results should therefore be interpreted as effects of initial charter enrollment, inclusive of any downstream school switching that
results from this enrollment. The consistency of the estimates across grades suggests that post-lottery school switching is not an
important factor driving the results.
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average marginal effects of observed characteristics on the probability of applying to at least one charter

school.18 The covariate vector Xi is de-meaned in the estimation sample, so the intercept (reported as the

average of the γ0
k) is the average utility of charter attendance. The estimated intercept is negative and

statistically significant, implying that on average, students prefer traditional public schools to charter schools

even in the absence of application and distance costs.

Estimates of the vector γx are consistent with the demographic patterns reported in Table 1. Subsidized

lunch status, special education, and limited English proficiency are associated with weak demand for charter

schools, while black students and students with higher baseline math and ELA scores have stronger preferences

for charters. Preferences for charters are weaker among students with higher-quality local public school options

as measured by value-added, though this coefficient is imprecisely estimated. As in Table 1, the estimates

show that poverty status has a substantial effect on application behavior. Holding other variables constant,

subsidized lunch status reduces the probability of submitting a charter application by 7 percentage points, a

41 percent reduction relative to the mean application rate of 17.5 percentage points.

The bottom half of Table 5 reports estimates of the parameters governing preferences for distance, appli-

cation costs, and heterogeneity in unobserved tastes. Increased distance significantly reduces the utility of

charter school attendance. The marginal effect in column (3) shows that a one-mile increase in distance to a

particular charter reduces the probability of applying to that school by 0.6 percentage points, which is large

relative to mean application rates at individual schools (2 to 3 percent). The estimate of the application cost

γa is positive, large, and statistically significant. Its magnitude suggests that applying to a charter school

involves a utility cost equivalent to a 5.6-mile increase in distance.

The estimates also reveal important unobserved heterogeneity in preferences for charter schools. In utility

terms, a one-standard-deviation increase in θi is equivalent to a 13-mile increase in distance to charter schools.

The equivalent estimates for ξik, τik, and ψia are smaller (7.4 miles, 0.34 miles, and 1.5 miles).19 The preference

estimates therefore suggest that there is more unobserved heterogeneity in tastes for charter schools as a whole

than for individual charters or application bundles. This is a consequence of the pattern displayed in Table

3, which indicates little heterogeneity in school choices among applicants conditional on distance. The lack of

variation in school-specific tastes is further evidence that a one factor selection model is reasonable.

5.2 Achievement Parameters

Estimates of the parameters of 8th-grade math and ELA achievement distributions appear in panels A

and B of Table 5. In each panel, column (1) shows estimates for charter schools, column (3) shows estimates

for public schools, and column (5) shows the difference, which is the causal effect of charter attendance.

18Marginal effects for discrete variables are computed by simulating the model first with the relevant characteristic set to
zero for each student and then with it set to one, and computing the average difference in application probabilities across these
simulations. Marginal effects for continuous variables are average simulated numerical derivatives of the application probability.
The marginal effect for distance is the average effect of a one-mile increase in distance to a particular school on the probability
of applying to that school.

19The standard deviation of τik is λτ ·
(
π/
√

6
)
, and similarly for the other extreme-value errors.
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Columns (2), (4), and (6) report standard errors. The reported charter intercept is the mean of the school-

specific intercepts α0
k. The intercept in column (5) can therefore be interpreted as an average of school-specific

population average treatment effects (ATE).

The estimates in Table 5 reveal that charters have larger effects on students with characteristics that pre-

dict weak public school performance. The constant term implies that charter attendance raises 8th-grade math

and ELA scores by 0.64σ and 0.56σ on average. Subsidized lunch students, non-white students, and students

with lower baseline scores receive further benefits. A comparison of columns (1) and (3) reveals that black

students, Hispanics, and poor students lag behind other students in public school, but these characteristics

are not predictive of potential scores in charter schools conditional on the other covariates. In this sense,

charter schools close achievement gaps between racial and socioeconomic groups. This finding is consistent

with previous lottery-based estimates showing larger charter impacts for poorer and lower-achieving applicants

(Abdulkadiroglu et al., 2011; Angrist et al., 2013b). Patterns of effect heterogeneity among applicants might

stem from differences in unobserved characteristics or differences in effectiveness across charter schools, possi-

bilities that were not investigated in previous work. The model estimated here shows that these patterns are

due to technological differences in effects across groups rather than differences in unobservables or application

portfolios.

Estimates of the selection parameters αθc and αθ0 reveal that stronger unobserved preferences for charters

are associated with slightly smaller achievement benefits from charter attendance. Column (3) shows that

students with stronger preferences for charters do better in traditional public schools. A one standard deviation

increase in θi is associated with a 0.1σ increase in public school math scores and a 0.027σ increase in ELA

scores. Similar to the pattern for observed characteristics, the relationship between θi and achievement is

weaker in charter schools. Students with stronger unobserved preferences therefore experience smaller benefits

from charter attendance: when θi increases by one standard deviation, the achievement benefits generated by

charter attendance fall by 0.09σ and 0.06σ in math and ELA.

5.3 School Effects

Table 6 reports estimates of the model’s school-specific parameters, including the average utilities γ0
k, the

admission probabilities πk (averaged across applicant cohorts), and the average test score effects (α0
k−α0

0). The

utility estimates show that some charters are more popular than others, but all of the estimates are negative,

indicating that on average students prefer traditional public schools to attending any charter. The admission

probabilities range from 0.39 to 0.88. The achievement estimates in columns (3) and (4) show that the large

effects of Boston’s charters are not driven by any particular school: all seven schools boost achievement in

both math and ELA. Interestingly, the most effective schools do not seem to be the most popular; schools

4, 6, and 7 have the largest test score effects, but also the three lowest average utilities. This suggests that

choices between charter schools are not primarily based on differences in test scores effects.
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6 Absolute and Comparative Advantage in Charter School Choice

6.1 Selection and Charter School Effects

Taken together, the structural preference and achievement estimates can be used to characterize selection

into the charter sector on both observed and unobserved dimensions. To summarize charter preferences define

the index

P i ≡ X ′iγx + θi.

Pi captures student i’s average preference for charter schools relative to public schools as a function of both

observed characteristics and unobserved tastes. The relationship between charter preferences and potential

public school outcomes is summarized by the function

α0(p) ≡ E [Yi(0)|Pi = p] .

α0(p) is the average potential traditional public school outcome for students with preference p. Similarly,

average potential charter achievement can be summarized as αc(p) ≡
∑K
k=1 wkE [Yi(k)|Pi = p]. I set the

weights wk proportional to charter enrollment shares, which implies that E [αc(Pi)|Si > 0] matches the average

outcome for charter students. The average achievement benefit generated by charter attendance is β(p) ≡

αc(p) − α0(p). This function captures the relationship between charter preferences and the causal effects of

charter attendance.20

Figure 2 characterizes patterns of absolute and comparate advantage in charter school choice. Panel A

plots the conditional expectation functions αc(p) and α0(p) (left axis) along with β(p) (right axis) for 8th

grade math, computed via local linear regressions fit to data simulated from the model. Since the charter

preference Pi has no natural scale it is standardized to have mean zero and standard deviation one in the

population. The dashed vertical line shows the mean preference for charter enrollees and the dotted line

displays the average preference for traditional public students. The intersections of these lines with the mean

potential outcome and charter effect curves can be read as average outcomes and causal effects for charter and

non-charter students.

The results in Figure 2 reveal that students with stronger demand for charter schools have absolute ad-

vantages in both the charter and traditional public sectors, but students with weaker preferences have a

comparative advantage in the charter sector. The mean potential outcomes αc(p) and α0(p) rise with charter

preferences, a pattern that is driven both by observed characteristics (since disadvantaged students and those

with low past scores have weaker tastes for charters and lower outcomes) and unobserved characteristics (since

20The β(p) function is closely related to the marginal treatment effect (MTE) concept of Heckman and Vytlacil (1999;
2005; 2007b). MTEs characterize treatment effect heterogeneity as a function of the unobserved cost of treatment participa-
tion expressed as a uniformly distributed random variable. In a static two-school model with charter participation equation
Si = 1 {h(Xi, Zi) + θi > 0} and θi ∼ N(0, σ2

θ), MTEs are defined as MTE(x, u) ≡ E [Yi(1)− Yi(0)|Xi = x,Φ(−θi/σθ) = u]. The
β(p) function is an adaptation of this idea to a dynamic setting with many choices, relating average preferences to average causal
effects as a function of both observed and unobserved characteristics.
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high-θi students have stronger tastes for charters and higher outcomes). The slope of αc(p) is less steep than

the slope of α0(p), however, so the effect of charter attendance β(p) falls sharply as charter preference rise.

In contrast to the standard Roy (1951) model of sorting on comparative advantage, this implies a “reverse

Roy” pattern in which students with larger treatment gains are less likely to select into charter schools. As

a result, potential charter impacts are larger for students who do not attend charter schools than for charter

enrollees. Specifically, the effect of treatment on the treated (TOT), given by E [β(Pi)|Si > 0], is roughly 0.5σ.

The effect of treatment on the non-treated (TNT), defined as E [β(Pi)|Si = 0], is over 0.7σ, which represents

a 40 percent increase over the TOT.

Panel B of Figure 2 decomposes this pattern into components due to observed and unobserved charac-

teristics. Specifically, this panel plots separate average treatment effects conditional on the observed part of

charter preferences (X ′iγ
x) and the unobserved part (θi). These two components are normalized separately

in standard deviation units. The results show that selection on unobservables is more extreme than selection

on observables, in the sense that the gap in unobserved preferences for charter vs. non-charter students is

larger than the gap in observed preferences. The “reverse Roy” pattern is evident for both observables and

unobservables, however, and the charter treatment effect slopes down more steeply as a function of observed

tastes. As a result, the gap between TOT and TNT is explained in roughly equal measure by observables and

unobservables: the difference in treatment effects for charter and non-charter students due to observables is

roughly 0.1σ, and the difference due to unobservables is also about 0.1σ.21 Note that differences in average

effects across observed subgroups are identified by differences in lottery estimates for these groups, while dif-

ferences in effects with respect to unobservables are identified by variation in effects by distance (as discussed

in Section 4.3). This shows that the model generates a consistent pattern of negative selection on treatment

gains using two different sources of variation.

One possible explanation for this pattern is that parents who invest more in human capital on other

margins may also be more motivated to enroll their children in charter schools. Charter schools weaken

the relationships between student characteristics and academic achievement, however, which suggests they

partially compensate for differences in human capital investments across families. In this scenario, children

with more motivated parents will have absolute advantages in both sectors and will be more likely to enroll

in charters, but will experience smaller gains from charter attendance. This description matches the patterns

of absolute and comparative advantage documented in Figure 2.

The selection patterns documented here may be due to “true” tastes or information. In other words, parents

may choose not to apply to charter schools either because they do not like the No Excuses charter model, or

because they do not know about charter schools. Students may also choose not to apply to charter schools

because of logistical barriers in the application process, which appear to be important in other educational

contexts (Bettinger et al., 2012). The utility parameters estimated here will capture differences in choice

probabilities resulting from any of these possibilities. There is not necessarily a clear distinction between se-

21Xi and θi are independent by definition, so the overall difference between TOT and TNT equals the sum of differences due
to these two components.
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lection driven by tastes vs. information; some parents may not know about available schooling options because

they are not interested in school quality and therefore have not invested in learning about it. Nonetheless,

these possibilities have different implications for charter school expansion, as selection patterns may change if

parents gain more information as the system expands. In the counterfactual simulations to follow I consider

some reforms that modify preferences to approximate the effects of learning about charter schools.

6.2 Alternative Approaches to Extrapolation

To highlight the value of the structural selection model estimated here, it is worth comparing the model’s

predicted causal parameters to atheoretical predictions derived from lottery estimates of the type typically

reported in the previous literature. Abdulkadiroglu et al. (2011) use lotteries to estimate the effects Boston

charter schools, which show large average charter effects and larger impacts for poorer and lower-achieving

students. This section compares the results of reduced-form extrapolation based on these and other key

covariates to the insights gleaned from the structural model.

A standard covariate-based approach to extrapolation reweights experimental or quasi-experimental treat-

ment effect estimates to match the distribution of observed characteristics in a new population (see, e.g.,

Angrist and Fernandez-Val, 2010). This approach can be operationalized through estimation of 2SLS models

with second stage

Yi = α+ βCi + ϕa(i) + εi, (8)

and first stage

Ci = δ + τCi + κa(i) + ηi,

where Ci = 1 {Si > 0} is a charter school indicator, Z̃i = 1 {Zi 6= 0} is an indicator for an offer at any charter,

and ϕa(i) and κa(i) are dummy variables for lottery portolios. Lottery-based studies of charter schools typically

report estimates from models of this type (Abdulkadiroglu et al., 2011; Dobbie and Fryer, 2013). Simple

covariate-based predictions of the TNT and TOT are
∑
g βgPr [Gi = g|Ci = 0] and

∑
g βgPr [Gi = g|Ci = 1],

where Gi indicates an exclusive and exhaustive set of covariate-based groups and βg is the coefficient from

estimation of (8) within group g. I estimate these parameters by plugging in 2SLS estimates of βg and empirical

group probabilities, then compare them to corresponding estimates derived from the structural model.

Covariate-based and model-based predictions of treatment parameters are compared in Table 7. Column (1)

replicates the basic 2SLS estimates from Table 2, which equal 0.573 in math and 0.484 in ELA. These estimates

are somewhat larger than model-based estimates of the TOT, reported in column (5). This discrepancy

reflects the fact that 2SLS estimation of (8) generates a particular weighted average of effects across lotteries

and schools that may not be interpretable as an effect for any specific subpopulation of economic interest.22

22Appendix D shows that the 2SLS estimand in equation (8) is given by β2SLS =
∑
a ωaβa, where βa is a portfolio-specific

IV estimate, the weights ωa sum to one and

ωa ∝ Pr [Ai = a]Pr
[
Z̃i = 1|Ai = a

] (
1− Pr

[
Z̃i = 1|Ai = a

])(
Pr
[
Ci = 1|Ai = a, Z̃i = 1

]
− Pr

[
Ci = 1|Ai = a, Z̃i = 0

])
.
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Columns (2), (3) and (4) show that reweighting 2SLS estimates based on subsidized lunch status, terciles of

baseline test score, or interactions of these covariates with race and special education status tends to raise the

implied estimate of TNT relative to TOT. This is a consequence of larger impacts for lower-achieving groups

combined with lower charter enrollment probabilities for these groups.

This qualitative pattern is similar to the structural results discussed above. The predicted magnitudes

generated by the reduced form and structural approaches are very different, however. Covariate-based ex-

trapolation suggests relatively small gaps between the TNT and TOT (0.035σ and 0.055σ in math and ELA),

while the structural approach generates large predicted gaps (0.22σ and 0.18σ). This is driven by the link

between unobserved preferences and treatment gains uncovered by the structural model. The model estimates

imply that the lottery applicant sample is selected on unobservables in addition to observables, so estimates

based on observables in this sample generate inaccurate predictions for the unselected population. In the

Boston charter context, extrapolating from lottery-based quasi-experiments to more general policy-relevant

causal parameters requires accounting for the selection process that generates the quasi-experimental sample.

7 Counterfactual Simulations

The selection model estimated here shows that students with larger potential achievement benefits are less

likely to apply to charter schools. The preference estimates in Table 4 also imply that demand for charters is

relatively weak in general: students act as if charter applications are costly, and the average utility of charter

attendance is below the utility associated with traditional public school. I next explore the policy implications

of these findings by simulating the impacts of changes to the Boston charter landscape.

The simulations predict the effects of drawing new populations into charter schools by expanding the set

of available schools and (in some cases) changing student preferences. I report on four sets of counterfactual

simulations. The first, a “baseline” charter school expansion, adds charters in locations already designated as

sites for new schools, then in areas with high predicted probabilities of charter entry based on historical location

patterns. The second, a “geographic targeting” counterfactual, adds schools in areas with high predicted test

score impacts given the observable characteristics of students nearby. The third “reduced cost” expansion

maintains the geographically targeted school locations but modifies preferences to eliminate application costs

and make charter and traditional schools equally desirable on average. This counterfactual approximates the

effects of expanding information and eliminating logistical barriers under the assumption that the demand-

side patterns reported here are largely driven by lack of information rather than true preferences. The final

“altered preference” simulation reduces the disutility of charter enrollment for students who are currently

unlikely to attend, which may be viewed as an outreach effort that specifically targets low-demand groups.

This simulation gives a sense of the potential effects of policies that change the pattern of self-selection into

The parameter βa is a lottery-specific local average treatment effect, approximately equal to the within-lottery TOT because few
students attend charters without offers (there are essentially no “always takers”). This argument shows that 2SLS generates a
weighted average of lottery-specific effects with weights that depend on lottery offer probabilities and first-stage shifts in charter
attendance, which in general does not correspond to the overall TOT or any other standard parameter.
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charter schools.

7.1 Additional Assumptions

To focus attention on demand and student selection I make a set of simplifying assumptions about the supply

side of the charter school market that allow simulation of counterfactuals. The supply side is defined by a

set of charter schools, with each school characterized by a location, an admission probability πk, an average

utility γ0
k, and a mean achievement parameter α0

k. To choose locations for the first six expansion schools in the

baseline simulation, I use the addresses of new campuses that opened through 2013, after the application data

used here were corrected (see Appendix Table A1). Locations for further expansions are based on predictions

from a probit model of the probability that a charter is located within a zip code as a function of average

share non-white, share subsidized lunch, and average baseline MCAS scores in the zip code; estimates of this

model appear in Appendix Table A8. Each expansion school is placed sequentially in the center of the zip

code with the highest predicted probability among those that do not already contain a charter. Locations in

the other three simulations are chosen based on zip code averages of X ′i(αxc − αx0), the component of charter

school effects explained by observables.

Charter admission probabilities are assumed to adjust endogenously to equate the demand for charter

enrollment among admitted students with the supply of charter seats. I take charter school seating capacities

as exogenously given, and solve for a Subgame Perfect Nash Equilibrium in which charters optimally set

admission probabilities to maximize enrollment subject to their capacity constraints. Capacities for new

schools are set equal to the mean capacity for existing schools. Appendix E describes the details of the

equilibrium and the methods used to compute counterfactual admission probabilities.

The average test score and utility parameters for new schools are set equal to the estimated means of γ0
k and

α0
k from Table 6. This is effectively a constant returns to scale assumption implying that charter schools will

remain equally productive as the system expands. There are several reasons this assumption may fail to hold in

practice. If teachers, principals, or other inputs are supplied inelastically, it may be difficult for new charters to

replicate the production technology used by existing campuses (Wilson, 2008). Public schools may also respond

to charter competition, though existing evidence suggests that the effects of charter entry on traditional public

school students are small (Imberman, 2011). If peer effects play a role in charter effectiveness, these effects

may be diluted in expansions that draw in less positively selected students.23 Together, these factors seem

likely to reduce the efficacy of charter schools at larger scales. The simulation results may therefore be viewed

as upper bounds on the effects of charter expansion determined by demand-side behavior.

23Existing evidence suggests that peer effects are not an important part of the achievement effects generated by charter schools.
Angrist et al. (2013a) show that charter lottery impacts are unrelated to the mean change in peer quality resulting from lottery
admission. This finding is replicated in Appendix Figure A2 for the data used here.
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7.2 Charter Expansion Effects

Figure 3 summarizes the counterfactual simulations. The outcomes of interest are school choices, charter

oversubscription, average 8th-grade math scores, and charter school treatment effects. In each panel, a vertical

black line indicates the existing number of charter schools, and a red line indicates the size of Boston’s planned

charter expansion. Panel A shows how charter application and attendance rates change as the charter sector

expands in the baseline simulation, while Panel B displays effects on admission probabilities and school capacity

utilization. Panel C reports the effect of treatment on the treated in each simulation.

To focus on marginal students drawn into the charter sector by expansion, Panel D also plots a variant of

the Marginal Treatment Effect (MTE) parameter of Heckman and Vytlacil (1999, 2005, 2007b) for students

approximately indifferent between charter and traditional public schools. For students receiving at least one

charter offer, let

k∗(i) = arg max
k∈C(Zi),k 6=0

Uik

denote student i’s preferred charter school among those from which she received offers. Define

MTE(∆) = E
[
Yi(k

∗(i))− Yi(0)| |Uik∗(i) − Ui0| ≤ ∆, C(Zi) 6= {0}
]
. (9)

For small ∆, MTE(∆) gives the average effect of charter attendance for students approximately indifferent

between charter and traditional public schools (see Heckman et al. (forthcoming) for discussion of related

treatment effect concepts in dynamic discrete choice models). Since receiving an offer requires applying to a

charter school, MTE captures causal effects for students who are willing to apply to charters and are on the

margin of deciding to attend. Figure 3 reports MTEs setting ∆ equal to a tenth of a standard deviation of

the difference |Uik∗(i) − Ui0| among applicants in the current charter system.

The results for the baseline simulation imply that demand for charter schools in Boston may be quickly

exhausted as the system expands. Panel B shows that charter expansion is predicted to reduce oversubscription:

admission probabilities rise quickly with the number of schools, and the share of seats left empty also increases

when the number of schools moves beyond 15. In a setting with 20 charter schools, almost all charter applicants

are admitted, so a student who wishes to attend a charter is almost guaranteed the opportunity to do so.

Nevertheless, less than half of students apply to a charter, 21 percent attend one, and 13 percent of charter

seats are empty. This pattern is driven by the large application cost and negative average utilities reported in

tables 4 through 6. Panels C and D shows that average and marginal treatment effects increase with the size

of the charter sector, a consequence of the “reverse Roy” pattern documented in Section 6: expansion draws

in students with weaker tastes for charter schools, who experience larger achievement gains. This implies that

charter expansion produces large effects for marginal students, but the combination of a rising MTE and weak

demand indicates that many high-benefit students choose to remain in traditional public schools even when

charter seats are widely available.
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Results from the geographic targeting counterfactual show that choosing new charter locations based

on observed characteristics of nearby students is unlikely to meaningfully alter the effectiveness of charter

expansion. Attendance rates in the baseline and geographically targeted counterfactuals are indistinguishable,

and treatment effects are also very similar. This is a consequence of the fact that targeting locations based

on observables does not change the pattern of self-selection. Opening a new charter school in a location near

students with high predicted benefits draws in a few of these students, but does not induce attendance from

students with weak unobserved tastes. As a result, most high-benefit students continue to remain in traditional

public schools.

Counterfactuals that alter the pattern of self-selection into charter schools generate more profound changes.

The reduced cost simulation eliminates application costs and average attendance disutilities, increasing overall

charter demand by construction. Treatement effects are substantially larger in this counterfactual than the

baseline counterfactual for all sizes of the charter sector. More students are willing to attend charter schools

when the mean utility of doing so is higher, leading to less severe self-selection and therefore higher average

test score gains. This finding suggests that policies that boost overall demand, such as providing information

about charter schools more widely, are likely to boost average charter achievement effects as well.

Finally, Panel D shows that expansions targeting students with weak preferences would further increase

charter productivity. In addition to eliminating application and mean utility costs, the altered preference

counterfactual truncates the distribution of the charter preference Pi from above at the median, inducing

students who currently dislike charter schools to behave like the median student. The results here may be

viewed as the effects of outreach efforts attracting students who are especially unlikely to attend; for example, if

the unobserved taste θi partly captures differences in knowledge across households, this policy may approximate

the effects of targeting information specifically to families that lack it. TOTs in this counterfactual are larger

than corresponding effect for the reduced cost counterfactual. MTEs are even larger, a a consequence of weaker

average tastes among marginal students than among inframarginal charter enrollees. Marginal students in the

20-school expansion gain nearly 0.7σ, an effect only slightly smaller than the effect of treatment on non-treated

students in the current system. Together, the findings in Figure 3 suggest that reforms aimed at changing

self-selection into charter schools have the potential to boost achievement impacts substantially more than

reforms that merely add more seats or target students based on observables.

8 Conclusion

This paper develops a generalized Roy model of charter school applications, attendance decisions, and

academic achievement to analyze patterns of absolute and comparative advantage in school choice. Estimates

of the model reveal that tastes for charter schools among Boston students are inversely related to achievement

gains: low-achievers, poor students, and those with weak unobserved tastes for charters gain the most from

charter attendance, but are unlikely to apply. Charter school choices are therefore inconsistent with sorting

based on comparative advantage. As a consequence, counterfactual simulations show that charter effectiveness
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is increasing in the size of the charter sector, as expansions draw in students with weaker preferences who

receive larger gains. At the same time, demand for charters among the highest-benefit students is weak, so

the effects of charter expansion may be limited by weak demand even in best-case scenarios for charter supply.

This pattern is surprising – the canonical Roy (1951) selection model predicts that students with more to

gain from charter attendance will be more likely to apply. However, the “reverse Roy” pattern described here

is consistent with the possibility that effective charter schools compensate for differences in human capital

investments across families, but parents who invest more on other dimensions are more likely to enroll their

children in charter schools, perhaps because such parents face lower costs of seeking out seats at high-quality

schools. This pattern is also consistent with a growing body of evidence suggesting that lower-income students

are less likely to choose high-quality schools in a variety of settings (Buter et al., 2013; Brand and Xie, 2010;

Dillon and Smith, 2013; Hastings et al., 2009).

This constellation of findings has broad implications for the design of school-choice programs. The in-

troduction of a high-quality educational program without commensurate outreach efforts may not induce

disadvantaged students to participate, even if the benefits from doing so are especially large for such students.

In Boston, New York and many other cities, decentralized charter school application systems require parents

to take steps outside of the usual school choice process, a possible source of logistical barriers for some families.

Integrating charter schools into centralized school choice plans (as is done in Denver and New Orleans, for

example) may reduce these barriers. More generally, my results suggest that efforts to target students who

are otherwise unlikely to participate in school choice programs may yield high returns.

These findings raise the further question of whether parents who forgo large potential achievement gains

are truly uninterested in achievement, or simply unaware of differences in effectiveness across schools. The

model estimated here does not distinguish between these two possibilities. If the lack of demand for charter

schools among disadvantaged students reflects a lack of information, the demand for charters may shift as

parents become more informed. In related work, Hastings and Weinstein (2008) show that providing test score

information leads parents to choose schools with higher test scores, suggesting that informational frictions may

play a role. The mechanisms through which parents form preferences over schools are an important topic for

future work.
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A. Selection on levels and gains B. Selection on observables and unobservables

Figure 2: Absolute and Comparative Advantage in Charter School Choice

Notes: This figure displays relationships between preferences for charter school attendance and outcome levels and gains. Panel A plots conditional expectations of potential 
outcome levels in charter and traditional public schools (left axis) and causal effects of charter attendance (right axis) as functions of a charter preference index that combines 
observable and unobservable student characteristics. Panel B plots conditional expectations of charter effects as functions of two separate preference indices based on 
observable and unobservable characteristics. Preference indices are standardized to have mean zero and standard deviation one in the population. All conditional expectations 
are estimated via local linear regressions in a data set of 10,000 individuals simulated from the structural model, using a Gaussian kernel and rule-of-thumb bandwidth. 
Covariates and spatial locations are obtained by sampling with replacement from the observed data. Dashed lines indicate mean preference indices for students attending 
charter schools, and dotted lines show mean indices for traditional public students. Blue and red lines in Panel B correspond to mean observable and unobservable preference 
indices by charter attendance.
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Notes: This figure displays simulated effects of charter school expansion. The black dashed line in each panel corresponds to the 
existing number of charter schools, while the red dashed line corresponds to Boston's planned expansion. The baseline simulation adds 
charter schools at planned locations, then in zip codes with high predicted charter entry probabilities. The geographic targeting 
simulation adds new charter schools in zip codes with the highest predicted average treatment effects as a function of observables. The 
reduced cost simulation sets application costs and the charter mean utility to zero. The altered preference counterfactual truncates 
charter preferences from above at the median. Effects of treatment on the treated are average effects of charter attendance for students 
who attend charter schools in each counterfactual. Marginal treatment effects are average effects of charter attendance for students 
indifferent between attending and not attending charter schools in each counterfactual. Results are based on 5,000 simulations of the 
structural model.

Figure 3: Simulated Effects of Charter School Expansion

A. Applications and attendance, baseline simulation B. Oversubscription, baseline simulation

C. Effects of treatment on the treated D. Marginal treatment effects
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All students Charter applicants
(1) (2)

Applied to charter school 0.175 -

Applied to more than one charter school 0.046 0.265

Received charter offer 0.125 0.718

Attended charter school 0.112 0.600

Female 0.492 0.490

White 0.142 0.165

Hispanic 0.398 0.317

Subsidized lunch 0.821 0.723

Special education 0.226 0.170

Limited English proficiency 0.212 0.136

Miles to closest charter school 2.105 1.859

Value-added of public schools in zip code -0.051 -0.049

4th grade math score -0.520 -0.314

4th grade ELA score -0.636 -0.413

N 9156 1601

Table 1: Descriptive Statistics

Notes: This table shows descriptive statistics for students attending 4th grade at traditional 
public schools in Boston between 2006 and 2009. The sample excludes students without 8th 
grade test scores. Column (1) shows means for the full sample, while column (2) shows 
means for charter applicants.



Math ELA First stage Math 2SLS ELA 2SLS
Controls (1) (2) Instrument (3) (4) (5)

None 0.038*** 0.048*** Lottery 0.674*** 0.573*** 0.484***
(0.010) (0.010) (0.022) (0.078) (0.083)

N 1601

Baseline 0.012 0.020** Distance -0.026*** 0.427* 0.282
characteristics (0.008) (0.008) (0.003) (0.237) (0.239)

N 9156

*significant at 10; **significant at 5%; ***significant at 1%

Balance check: 4th-grade scores 2SLS comparison
Table 2: Instruments for Charter School Applications and Attendance

Notes: Columns (1) and (2) show regressions of 4th-grade test scores on miles to the closest charter middle school. The first row includes no 
controls, while the second controls for student characteristics, including sex, race, free lunch status, special education status, limited English 
proficiency, and value-added of public schools in the zip code. Columns (3) through (5) show 2SLS results for middle school test scores 
using lottery offers and distance to the closest charter as instruments for charter attendance in equations for 8th-grade test scores. The lottery 
models are restricted to applicants and control for application portfolio indicators. The distance models include all students and control for 
student characteristics and 4th grade test scores. Outcomes are 8th grade test scores. Robust standard errors in parentheses.

9156

9156



Fraction Mean distance Extra distance
Applicants choosing: (1) (2) (3)

Closest charter 0.405 1.91 0.00
2nd closest 0.22 2.94 1.12
3rd closest 0.16 4.17 2.39
4th closest 0.09 5.09 3.11
5th closest 0.081 6.70 4.70
6th closest 0.037 8.50 6.48
7th closest 0.006 11.73 9.84

Notes: This table shows the fractions of applicants who applied to each possible choice 
by distance. Column (1) shows fractions of applicants whose closest chosen school had a 
given rank in the set of school-specific distances. Column (2) shows mean distance 
among students who made each choice. Column (3) shows extra distance relative to the 
closest charter school.

Table 3: Distance to Charter Schools Among Applicants



Estimate Standard error Marginal effect
Parameter Description (1) (2) (3)

γ0 Mean charter utility -1.306*** 0.132 -

γx Female -0.027 0.080 -0.001
Black 0.307*** 0.137 0.027
Hispanic 0.045 0.139 0.005
Subsidized lunch -0.740*** 0.111 -0.071
Special education -0.329*** 0.115 -0.027
Limited English proficiency -0.390*** 0.113 -0.032
Baseline math score 0.168*** 0.060 0.014
Baseline ELA score 0.111* 0.060 0.008
Value-added of public schools in zip code -0.839 0.909 -0.076

γd Distance -0.174*** 0.009 -0.006

γa Application cost 0.978*** 0.040 -

σ0 Standard deviation of charter school tastes 2.235*** 0.129 -

λτ Scale of school-specific tastes 0.046 0.039 -

λψ Scale of application-specific tastes 0.205*** 0.010 -

N Sample size 9156

*significant at 10; **significant at 5%; ***significant at 1%

Table 4: Utility Parameter Estimates

Notes: This table reports maximum simulated likelihood estimates of the parameters of the structural school 
choice model. The sample includes students with 8th-grade test scores. The likelihood is evaluated using 300 
simulations per observation. Column (1) reports parameter estimates, while column (2) reports standard errors. 
The constant is the average of school specific mean utilities, evaluated at the sample mean of the covariates. 
Column (3) reports average marginal effects of observed characteristics on the probability of applying to at least 
one charter school. Marginal effects for discrete variables are differences between average simulated application 
probabilities with the relevant characteristic set to 1 and 0 for all observations. Marginal effects for continuous 
variables are average simulated numerical derivatives of the application probability. Marginal effects are 
evaluated using 100 simulations per observation. The marginal effect for distance is the effect of a one-mile 
increase in distance to a school on the probability of applying to that school, averaged across schools.



Estimate Standard error Estimate Standard error Estimate Standard error
Parameter Description (1) (2) (3) (4) (5) (6)

α0
m Mean potential outcome 0.272*** 0.080 -0.367*** 0.009 0.639*** 0.081

αx
m Female 0.032 0.040 0.025 0.016 0.057 0.043

Black 0.048 0.066 -0.166*** 0.026 0.214*** 0.071
Hispanic 0.135*** 0.068 -0.093*** 0.026 0.228*** 0.073
Subsidized lunch 0.046 0.049 -0.120*** 0.023 0.165*** 0.054
Special education -0.288*** 0.052 -0.374*** 0.019 0.086 0.055
Limited English proficiency -0.025 0.065 0.076*** 0.020 -0.101 0.068
Baseline math score 0.358*** 0.030 0.476*** 0.011 -0.118*** 0.032
Baseline ELA score 0.046 0.029 0.065*** 0.01 -0.019 0.030
Value-added of public schools in zip code 0.479 0.430 0.943*** 0.171 -0.464 0.462

αθm×σθ Taste for charter schools (std. dv. units) 0.010 0.023 0.100*** 0.012 -0.090*** 0.026

α0
e Mean potential outcome 0.138 0.088 -0.424*** 0.010 0.562*** 0.089

αx
e Female 0.164*** 0.043 0.183*** 0.016 -0.019 0.046

Black 0.101 0.068 0.058** 0.028 0.159*** 0.074
Hispanic 0.177** 0.070 -0.031 0.028 0.209*** 0.076
Subsidized lunch 0.029 0.051 -0.116*** 0.025 0.146*** 0.056
Special education -0.265*** 0.051 -0.398*** 0.018 0.133** 0.055
Limited English proficiency -0.023 0.063 0.044** 0.020 -0.067 0.066
Baseline math score 0.119*** 0.030 0.164*** 0.011 -0.044 0.032
Baseline ELA score 0.284*** 0.031 0.366*** 0.010 -0.083** 0.033
Value-added of public schools in zip code 0.634 0.466 0.893*** 0.185 -0.259 0.501

αθe×σθ Taste for charter schools (std. dv. units) -0.037 0.026 0.027** 0.013 -0.064** 0.029

N Sample size

*significant at 10; **significant at 5%; ***significant at 1%

9156
Notes: This table reports maximum simulated likelihood estimates of the parameters of the 8th-grade achievement distribution. Panel A shows estimates for math, 
while Panel B shows estimates for ELA. The likelihood is evaluated using 300 simulations per observation. Mean potential outcomes are evaluated at the sample 
mean of the covariates. The mean potential outcome for charter schools is a weighted average of school-specific means. The sample includes all students with 
observed 8th-grade test scores. The likelihood is evaluated using 300 simulations per observation.

Table 5: Achievement Parameter Estimates
Charter school Traditional public school Charter effect

Panel A. Math

Panel B. ELA



Admission
Average utility probability Math ELA

School (1) (2) (3) (4)
Charter school 1 -0.695*** 0.516*** 0.492*** 0.577***

(0.139) (0.064) (0.116) (0.125)

Charter school 2 -0.615*** 0.390*** 0.471*** 0.540***
(0.136) (0.057) (0.101) (0.118)

Charter school 3 -1.308*** 0.653*** 0.543*** 0.510***
(0.140) (0.039) (0.123) (0.137)

Charter school 4 -1.638*** 0.706*** 0.771*** 0.618***
(0.135) (0.051) (0.119) (0.139)

Charter school 5 -0.801*** 0.394*** 0.551*** 0.344***
(0.132) (0.074) (0.115) (0.126)

Charter school 6 -2.203*** 0.824*** 0.682*** 0.834***
(0.145) (0.055) (0.123) (0.149)

Charter school 7 -1.883*** 0.875*** 0.968*** 1.007***
(0.158) (0.039) (0.171) (0.174)

*significant at 10; **significant at 5%; ***significant at 1%

Test score effects
Table 6: School-specific Parameter Estimates

Notes: This table reports maximum simulated likelihood estimates of the school-specific 
parameters from the structural model. The likelihood is evaluated using 300 simulations per 
observation. The admission probabilities in column (2) are averages for 2006-2009. Average 
utilities and test score effects are computed at the population mean of the covariate vector X.



2SLS Model-based
estimate Subsidized lunch Baseline score Interacted covs. extrapolation

Subject Parameter (1) (2) (3) (4) (5)
Math TOT 0.573 0.584 0.600 0.606 0.505

TNT 0.573 0.622 0.632 0.641 0.723

ELA TOT 0.484 0.493 0.465 0.486 0.421

TNT 0.484 0.520 0.528 0.541 0.608

Notes: This table compares charter school treatment effects obtained by covariate-based reweighting of lottery estimates vs. 
prediction from the structural model. Columns (1) through (4) are based on 2SLS models estimated in the lottery sample. 
These models interact charter school attendance with observed covariates, instrumenting with interactions of the lottery 
offer and covariates and controlling for main effects and application portfolio indicators. The TOT rows use the resulting 
coefficients to predict effects for charter students, and the TNT rows predict effects for non-charter students. Column (1) 
reports results with no interactions, while column (2) uses subsidized lunch status and column (3) uses terciles of baseline 
test score. Column (4) interacts charter attendance with all combinations of income, race, baseline score tercile and special 
education status. Column (5) reports predicted effects based on 5,000 simulations of the structural model.

Table 7: Comparison of Reduced Form and Structural Approaches to Extrapolation
Covariate-based extrapolation
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Appendix A: Relationship to Roy Model

This appendix shows that equations (1) through (5) nest a Roy model of selection in which students seek

to maximize achievement and have private information about their test scores in charter and public schools.

For simplicity, I omit application costs and preferences for distance. Achievement for student i at charter

school k is given by

Yi(k) = α0
k +X ′iα

x
c + ηic + νik,

while public school achievement is

Yi(0) = α0
0 +X ′iα

x
0 + ηi0 + νi0

where E[νik|Xi, ηic, ηi0] = 0. Assume that students know the parameters of these equations, their own

characteristics Xi, and private signals of their achievement in charter and public schools ηic and ηi0. Also

assume that (ηic, ηi0)′ follows a bivariate normal distribution with E[ηi`|Xi] = 0 and V ar(ηi`) = σ2
` for

` ∈ {c, 0}, and Cov(ηic, ηi0) = σc0. The νik represent random fluctuations in test scores unknown to the

student.

Suppose that students choose schools to maximize expected achievement. Then student utility can be

written

uik = α0
k +X ′iα

x
c + ηic,

ui0 = α0
0 +X ′iα

x
0 + ηi0.

Subtracting ui0 from uik, student preferences can be equivalently represented by the utility functions

Uik = γ0
k +X ′iγ

x + θi,

where

γ0
k = αk − α0,

γx = αxc − αx0 ,

θi = ηic − ηi0,

and Ui0 ≡ 0. These preferences are a special case of equation (1) with γd = γa = 0 and V ar(υik) = V ar(ψia) =

0.

Returning to the test score equation, we have
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E(Yi(k)|Xi, θi] = α0
k +X ′iα

x
c + αθc · θi,

E(Yi(0)|Xi, θi] = α0
0 +X ′iα

x
0 + αθ0 · θi,

where

αθc =
σ2
c − σc0

σ2
c + σ2

0 − 2σc0
,

αθ0 =
σc0 − σ2

0

σ2
c + σ2

0 − 2σc0
.

This implies that potential test scores are given by

Yi(k) = α0
k +X ′iα

x
c + αθc · θi + εik,

Yi(0) = α0
0 +X ′iα

x
0 + αθ0 · θi + εi0,

where E[εik|Xi, θi] = 0, which is the specification for achievement in equations (4) and (5).

Finally, note that the Roy framework implies that αθc > 0, αθ0 < 0, and αθc − αθ0 = 1. If students choose

schools to maximize academic achievement, then charter preferences will be positively related to scores in

charter schools, negatively related to scores in public schools, and the causal effect of charter attendance will

increase with charter preferences.
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Appendix B: Identification of Preference Coefficients

This appendix uses a simplified version of the structural model to demonstrate identification of the coeffi-

cients on the charter preferences θi in equations (4) and (5). Suppose there is a single charter school, and the

utilities of charter and public school attendance are given by

Ui1 = γ0 + γd ·Di + θi + υi − γa ·Ai,

Ui0 = −γa ·Ai,

where Di is the distance to the charter school, Ai indicates a charter application, θi ∼ N(0, σ2
θ) is observed

prior to the application decision, and υi ∼ N(0, 1) is observed after the application decision.24 The charter

school holds a lottery for applicants with acceptance probability π.

The expected utility of applying to the charter school is

π · E[max{γ0 + γd ·Di + θi + υi, 0}|θi]− γa,

while not applying yields utility of zero with certainty. It is optimal to apply if

ψ(γ0 + γd ·Di + θi) >
γa

π
,

where ψ(t) ≡ Φ(t) · (t+ φ(t)). It is straightforward to show that ψ(·) is strictly increasing, so the application

rule can be written

Ai = 1{θi > θ∗(Di)},

where

θ∗(D) = ψ−1

(
γa

π

)
− γ0 − γd ·D.

Note that with γd < 0, we have dθ∗

dD > 0: students who live further from the charter school must have stronger

tastes for charter attendance to justify incurring the application cost.

Let Si(z) indicate charter attendance as a function of Zi. Rejected applicants cannot attend, so Si(0) = 0∀i.

Attendance for admitted applicants is given by

Si(1) = 1{γ0 + γd ·Di + θi + υi > 0}.

Lottery applicant compliers choose to apply and have Si(1) = 1. Compliers are therefore characterized by

(Ai = 1) ∩ (Si(1) > Si(0))⇐⇒ θi > max{θ∗(Di),−γ0 − γd ·Di − υi}.
24I use a normal distribution rather than an extreme value distribution for υi because it allows me to obtain analytic formulas

in the calculations to follow.
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The model for potential outcomes in charter and public school is

Yi(1) = α0
1 + αθ1 · θi + εi1,

Yi(0) = α0
0 + αθ0 · θi + εi0,

with E[εik|θi, Di] = 0 for k ∈ {0, 1}. Average potential outcomes for compliers who live a distance D from

charter schools are given by

E[Yi(`)|Ai = 1, Si(1) > Si(0), Di = d] = α0
` + αθ` · µcθ(d),

where

µcθ(d) = σθ · Φ
(
ψ−1

(
γa

π

))
· λ
(
θ∗(d)

σθ

)

+σθ · (1− Φ

(
ψ−1

(
γa

π

))
) ·
ˆ
λ

(
−γ0 − γd · d− υi

σθ

)
dF

(
υi|υi < −ψ−1

(
γa

π

))
Here λ(t) ≡ φ(t)

1−Φ(t) is the inverse Mills ratio.

The inverse Mills ratio is an increasing function, so µcθ(d) is increasing in d. Applicant compliers who

apply to charters from further away therefore have stronger preferences for charters, and comparisons of po-

tential outcomes for lottery compliers who live different distances from charter schools identify the relationship

between preferences and achievement. Specifically, for d1 6= d0, we have

E[Yi(k)|Ai = 1, Si(1) > Si(0), Di = d1]− E[Yi(k)|Ai = 1, Si(1) > Si(0), Di = d0]

µcθ(d1)− µcθ(d0)
= αθk

for k ∈ {0, 1}. The numerator of the left-hand side of this equation can be computed using the methods

described in Abadie (2002) for estimating marginal mean counterfactuals for compliers. The denominator

is non-zero because complier preferences vary with distance; it can be calculated with knowledge of the

parameters of the student utility function, which are identified from conditional application and attendance

probabilities. The selection parameters αθk are therefore identified.
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Appendix C: Model Fit

The model estimated here fits the data well. This can be seen in Table A7 and Figure A1, which compare

observed and model-predicted patterns of heterogeneity across choices, outcomes, and schools. Panel A of

Figure 3 splits the sample into vingtiles based on the model-predicted probability of applying to at least one

charter school as a function of observed characteristics and distance. The horizontal axis plots mean predicted

application probabilities in these cells, while the vertical axis displays empirical application probabilities.

These points lie mostly along the 45 degree line, indicating that the model accurately reproduces differences

in application probabilities across groups; the predicted probabilities range from 0.12 to 0.35, implying that

the model captures a substantial amount of heterogeneity in preferences explained by observables. There is

slight visual evidence of nonlinearity and an F -test marginally rejects the null hypothesis that all points lie

exactly on the line (p = 0.07), but in general the model appears to provide a relatively good fit.

To assess whether the model captures heterogeneity in outcomes, Panel B of Figure A1 compares model-

predicted and observed mean test scores in vingtiles of model predictions, separately for charter and non-charter

students. Model-predicted outcomes are expected eighth-grade math scores conditional on a student’s observed

characteristics and choices, which implicitly incorporates heterogeneity on both observed and unobserved

dimensions. The fit here is very good: most points lie close to the 45-degree line and an F -test does not

reject the hypothesis that the model fits perfectly. Predicted scores exhibit substantial dispersion and there

is significant overlap between predictions for charter and non-charter students, suggesting that the model

captures a lot of variation in outcomes.

Finally, Table A7 explores the model’s capacity to match cross-school heterogeneity in choices and treat-

ment effects. Panel A reports model-based and observed application probabilities for each school while Panel

B displays differences in outcomes for lottery winners and losers by school. The model slightly over-predicts

the overall application rate and under-predicts scores for lottery winners, but these differences are small and

the predicted patterns of heterogeneity across schools appear to accurately reflect the observed differences. As

in Panel A of Figure A1 the hypothesis that the model fits all moments perfectly is rejected, but overall the

model appears to generate a parsimonious yet accurate description of heterogeneity along many dimensions.
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Appendix D: 2SLS Weights

This appendix derives the estimand in 2SLS models of the type estimated by Abdulkadiroglu et al. (2011)

and other lottery-based studies of school choice programs. Consider the system

Yi = α+ βCi + ϕa(i) + εi,

Ci = δ + τZ̃i + κa(i) + ηi,

where Yi is a test score, Ci is a charter attendance dummy, Z̃i is a lottery offer dummy, and ϕa(i) and κa(i)

are application portfolio (risk set) fixed effects. The reduced form corresponding to this system is

Yi = ζ + ρZ̃i + ιa(i) + ui.

The reduced form and first stage are OLS regressions of test scores and charter attendance on the lottery

offer with saturated portfolio controls. These equations therefore generate inverse-variance weighted averages of

within-portfolio mean differences (Angrist, 1998). Specifically, let ρa and τa denote coefficients from regressions

of Yi and Ci on Z̃i within lottery portfolio a. Then

ρ =
∑
a

(
wa∑
a′ wa′

)
ρa,

τ =
∑
a

(
wa∑
a′ wa′

)
τa,

where

wa = Pr [Ai = a]Pr
[
Z̃i = 1|Ai = a

] (
1− Pr

[
Z̃i = 1|Ai = a

])
.

Since the 2SLS model is just-identified, the 2SLS estimand β is equal to the ratio of reduced form and first

stage coefficients. This implies:

β =
ρ

τ

=

∑
a waρa∑
a waτa

=

∑
a(waτa)(ρa/τa)∑

a waτa

=
∑
a

(
ωa∑
a′ ωa′

)
βa,

where βa = (ρa/τa) is a portfolio-specific IV coefficient and

ωa = waτa

= Pr [Ai = a]Pr
[
Z̃i = 1|Ai = a

] (
1− Pr

[
Z̃i = 1|Ai = a

])
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×
(
E
[
Ci|Z̃i = 1, Ai = a

]
− E

[
Ci|Z̃i = 0, Ai = a

])
.

This argument shows that 2SLS estimation with application portfolio fixed effects generates a weighted

average of portfolio-specific IV coefficients with weights proportional to sample size, the variance of the lottery

offer, and the first stage shift in charter attendance resulting from the offer. These weights are similar to the

weights derived in Angrist and Imbens (1995) for 2SLS models with saturated instrument-covariate interactions

in the first stage. A saturated weighting scheme generates weights proportional to waτ2
a rather than waτa.
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Appendix E: Equilibrium Admission Probabilities

Description of the Game

This appendix describes the determination of equilibrium admission probabilities for use in counterfactual

simulations. These probabilities are determined in a Subgame Perfect Nash Equilibrium (SPE) in which

students make utility-maximizing choices as described in Section 4, and schools set admission probabilities to

fill their capacities, or come as close as possible to doing so.

The time of the game follows Figure 2. Strategies in each stage of the game are as follows:

1. Students choose applications.

2. Schools observe students’ application choices, and choose their admission probabilities.

3. Offers are randomly assigned among applicants.

4. Students observe their offers and make school choices.

To simplify the game, I assume that the distribution of students is atomless, so schools do not change their

admission probabilities in the second stage in response to the application decisions of individual students in

the first stage. Students therefore act as “price takers” in the first stage, in the sense that they do not expect

schools to react to their application choices. This implies that the game can be analyzed as if applications and

admission probabilities are chosen simultaneously. I analyze the static Nash equilibria of this simultaneous-

move game, which are equivalent to Subgame Perfect equilibria of the dynamic game described above.

Definition of Equilibrium

An equilibrium of the game requires an application rule for each student, a vector of admission probabilities

π∗, and a rule for assigning school choices that satisfy the following conditions:

1. The probability that student i chooses application bundle a is given by Qia(θi, τi;π
∗), where Qia is

defined as in Section 4 and now explicitly depends on the vector of admission probabilities students

expect to face in each lottery

2. For each k, π∗k is chosen to maximize enrollment subject to school k’s capacity constraint, taking student

application rules as given and assuming that other school choose π∗−k, which denotes the elements of π∗

excluding the k-th.

3. After receiving the offer vector z, student i chooses school k with probability Pik(z, θi, τi) as in Section

4.
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School Problem

I begin by deriving a school’s optimal admission probability as a function of students’ expected admission

probabilities and the actions of other schools. Let Λk denote the capacity of school k, which is the maximum

share of students that can attend school k. Suppose that students anticipate the admission probability vector

πe when making application decisions in the first stage of the model. Their application decisions are described

by Qia(θi, τi;π
e). In addition, suppose that schools other than k admit students with probability π−k. If

school k admits students with probability πk in the second stage, its enrollment is given by

ek(πk, π−k, π
e) = E

 ∑
a∈{0,1}K

∑
z∈{0,1}K

Qia(θi, τi;π
e)f(z|a;πk, π−k)Pik(z, θi, τi)

 .
School k choose πk to solve

max
πk∈[0,1]

ek(πk, π−k, π
e) s.t. ek(πk, π−k, π

e) ≤ Λk. (10)

The best response function πBRk (π−k, π
e) is the solution to problem (10). The optimal admission probability

sets school k’s enrollment equal to its capacity if possible. The following equation implicitly defines πBRk at

interior solutions:

E

[∑
a

∑
z

Qia(θi, τi;π
e)f(z|a;πBRk , π−k)Pik(z, θi, τi)

]
= Λk.

Noting that Pik(z) = 0 when zk = 0 (since school k is not in student i’s choice set if she does not receive an

offer) and setting fk(1|ak;πk) = akπk, this equation can be rewritten as

E

[ ∑
a:ak=1

∑
z:zk=1

Qia(θi, τi;π
e)f−k(z−k|a−k;π−k) · πBRk · Pik(z, θi, τi)

]
= Λk,

where z−k, a−k, and f−k are z, a and f excluding the k-th elements. An interior solution for πBRk therefore

satisfies

πBRk =
Λk

E
[∑

a:ak=1

∑
z:zk=1Qia(θi, τi;πe)f−k(z−k|a−k;π−k)Pik(z, θi, τi)

]
≡ Γk(π−k, π

e).

If the denominator of Γk is sufficiently small, it may exceed one, in which case school k cannot fill its

capacity. In this case, the optimal action is to set πk = 1 and fill as many seats as possible. This implies that

the best response function is given by

πBRk (π−k, π
e) = min{Γk(π−k, π

e), 1}.
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Existence of Equilibrium

Let πBR : [0, 1]K → [0, 1]K be the vector-valued function defined by

πBR(π) ≡
(
πBR1 (π−1, π), . . . , πBRK (π−K , π)

)′
.

A vector of admission probabilities supports a Nash equilibrium if and only if it is a fixed point of πBR(π).

The following theorem shows that an equilibrium of the game always exists.

Theorem: There exists a π∗ ∈ [0, 1]K such that πBR(π∗) = π∗.

Proof: Note that Qia(θi, τi;π) is continuous in π and strictly positive, Pik(z, θi, τi) is strictly positive when

zk = 1, and f−k(z−k|a−k;π−k) is continuous in π−k and sums to one for each a−k, so the denominator of

Γk is always non-zero and continuous in π. πBRk is therefore a composition of continuous functions, and is

continuous. Then πBR is a continuous function that maps the compact, convex set [0, 1]K to itself. Brouwer’s

Fixed Point Theorem immediately applies and πBR has at least one fixed point in [0, 1]K .

Uniqueness of Equilibrium

I next give conditions under which the equilibrium is unique. Define the functions

∆k(π) ≡ πk −min{Γk(π−k, π), 1}

and let ∆(π) ≡ (∆1(π), . . . ,∆K(π))′. A vector supporting an equilibrium satisfies ∆(π∗) = 0. A sufficient

condition for a unique equilibrium is that the Jacobean of ∆(π) is a positive dominant diagonal matrix. This

requires the following two conditions to hold at every value of π ∈ [0, 1]K :

1a.
∂∆k

∂πk
> 0 ∀k

2a.
∣∣∣∣∂∆k

∂πk

∣∣∣∣ ≥∑
j 6=k

∣∣∣∣∂∆k

∂πj

∣∣∣∣ ∀k

To gain intuition for when a unique equilibrium is more likely, note that in any equilibrium, admission

probabilities must be strictly positive for all schools; an admission rate of zero guarantees zero enrollment,

while expected enrollment is positive and less than Λk for a sufficiently small positive πk. When πk > 0, we

can write Γk as

Γk(π−k, π) =
Λkπk

ek(πk, π−k, π)

.It follows that conditions 1a and 2a are equivalent to the following conditions on the model’s enrollment

elasticities:
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1b.
∂ log ek
∂ log πk

>

(
Λk − ek

Λk

)
∀k

2b.
∂ log ek
∂ log πk

≥
∑
j 6=k

πk
πj
·
∣∣∣∣∂ log ek
∂ log πj

∣∣∣∣+

(
Λk − ek

Λk

)
∀k

Condition 1b necessarily holds in the neighborhood of an equilibrium since the elasticity of school k’s

enrollment with respect to its own admission probability is positive and Λk ≈ ek. This condition is more likely

to hold throughout the parameter space when demand for charter schools is strong, so that ek(πk, π−k, π) > Λk

at most values of π. Condition 2b is also more likely to hold in these circumstances, and when the cross

elasticities of enrollment at school k with respect to other schools’ admission probabilities are small. This

occurs when charter demand is more segmented. If preferences for distance are strong enough, for example,

each student will consider only the closest charter school, and the cross elasticities are zero, leading to a

unique equilibrium. To compute equilibria in the counterfactual simulations, I numerically solved for fixed

points of the best response vector πBR(π) ≡
(
πBR1 (π, π−1), . . . , πBRK (π, π−K)

)′. I never found more than one

equilibrium in any counterfactual.
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Figure A1: Model Fit

A. Application probability B. Test scores
Notes: This table compares charter application rates and mean test scores to predictions from the model. Panel A splits the sample into vingtiles of the model-predicted 
probability of applying to at least one charter school. Points on the vertical axis are mean observed application rates in these bins, while points on the horizontal axis are 
means of model-predicted rates. Panel B computes mean model-predicted 8th-grade math scores conditional on each student's observed school choice. The sample is split into 
vingtiles of this predicted score separately for charter and traditional public schools. Blue points plot mean observed scores against mean model predictions for charter 
schools, while red points plot corresponding observed and predicted means for traditional public schools. Predictions are averages over 5,000 simulations of the structural 
model, with covariates and spatial locations drawn with replacement from the joint distribution in the sample. Dashed lines show the 45-degree line. F-statistics and p-values 
are from tests of the hypothesis that this lines fit all points perfectly up to sampling error, treating the model predictions as fixed. 
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A. Math B. ELA

Figure A2: Relationship Between Effects on Peer Quality and Effects on Test Scores

Notes: This figure plots coefficients from regressions of 6th-grade test scores on lottery offers against coefficients from regressions of peer quality on offers, lottery by lottery. 
Lotteries are defined as combinations of application cohorts and schools applied. Peer quality for a given student is defined as the average 4th-grade test score of the students 
with whom he or she attends 6th grade. The red lines are from OLS regressions of test score effects on peer quality effects, weighting by sample size. The slope are 0.18 (s.e. 
= 0.43) for math and 0.19 (s.e. = 0.34) for ELA.
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School name Grade coverage Years open Records available Oversubscribed cohorts Linked schools
(1) (2) (3) (4) (5) (6)

Academy of the Pacific Rim 5-12 1997- Yes 2006-2009 -

Boston Collegiate 5-12 1998- Yes 2006-2009 -

Boston Preparatory 6-12 2004- Yes 2006-2009 -

Edward Brooke K-8 (with 5th entry) 2002- Yes 2007-2009 -

Excel Academy 5-8 2003- Yes 2008-2009 -

MATCH Middle School 6-8 2008- Yes 2007-2009 -

Smith Leadership Academy 6-8 2003- No - -

Roxbury Preparatory 6-8 1999- Yes 2006-2009 -

Uphams Corner 5-8 2002-2009 No - -

Dorchester Preparatory 5-12 2012- - - Roxbury Preparatory

Edward Brooke II K-8 (with 5th entry) 2011- - - Edward Brooke

Edward Brooke III K-8 (with 5th entry) 2012- - - Edward Brooke

Excel Academy II 5-12 2012- - - Excel Academy

Grove Hall Preparatory 5-12 2011- - - Roxbury Preparatory

KIPP Academy Boston 5-8 2012- - - KIPP Academy Lynn

Panel A. Schools open before 2011

Panel B. Expansion schools

Notes: This table lists charter middle schools serving traditional student populations in Boston, Massachusetts. Schools are included if they accept 
students in 5th or 6th grade. Panel A lists schools open between the 2007-2008 and 2011-2012 school years, while Panel B lists expansion school opened 
for 2011-2012 and 2012-2013. Column (3) lists the opening and (where relevant) closing year for each school. Column (4) indicates whether applicant 
records were available for cohorts attending 4th grade between 2006 and 2009, and column (5) lists the cohorts for which lotteries were held during this 
period. For expansion schools, column (6) lists existing Massachusetts charter schools operated by the same organization.

Table A1: Boston Charter Middle Schools



Differential
Variable (1)

Female -0.019
(0.033)

White -0.007
(0.022)

Hispanic 0.008
(0.028)

Subsidized lunch -0.004
(0.029)

Special education -0.001
(0.025)

Limited English proficiency -0.006
(0.020)

Miles to closest charter school -0.033
(0.070)

Value-added of public schools in zip code 0.002
(0.003)

4th grade math score -0.041
(0.064)

4th grade ELA score 0.038
(0.067)

Joint p-value 0.933
N 1601

Table A2: Covariate Balance

Notes: This table reports coefficients from regressions of 
baseline characteristics on a lottery offer dummy, controlling 
for lottery fixed effects. The p-value is from a test that the 
coefficients in all regressions are zero.



Full sample Lottery applicants
(1) (2)

Followup rate 0.848 0.806

Difference by 0.055*** 0.062
predicted score (0.021) (0.047)

Difference by - -0.016
lottery win/loss (0.046)

Interaction between - 0.015
win/loss  and predicted score (0.053)

N 10797 1986

*significant at 10; **significant at 5%; ***significant at 1%

Table A3: Attrition

Notes: This table reports the fraction of follow-up test scores in 8th grade for 
students attending 4th grade in Boston between 2006 and 2009. A student is 
coded as observed in a grade if both her math and ELA scores are recorded. 
Column (1) shows the follow-up rate for the ful sample as well as the 
difference in followup rates between students with above-median and below-
median predicted 8th-grade math scores. Predicted scores are fitted values 
from regressions of 8th grade math scores on the baseline variables from 
Table 1. Column (2) shows the followup rate for lottery applicants along with 
coefficients from a regression of a followup indicator on the lottery offer, an 
indicator for an above-median predicted score, and the interaction of the two, 
controlling for risk set indicators. Robust standard errors in parentheses.



School 1 School 2 School 3 School 4 School 5 School 6 School 7 Other MA
Practice (1) (2) (3) (4) (5) (6) (7) (8)

Instruction time
Days per year 190 190 190 180 185 193 190 185
Length of school day (hours:minutes) 8:25 7:00 8:30 7:56 9:00 7:33 7:14 7:17

School philosophy (5 pt. scale)
No Excuses 4 4 4 5 5 5 5 2.76
Emphasize traditional reading and math 5 5 5 5 5 5 4 3.86
Emphasize discipline/comportment 5 5 5 5 5 5 5 3.33
Emphasize measurable results 5 5 5 5 5 5 5 3.62

School practices (1 or 0 for yes/no)
Parent and student contracts 1 1 1 0 1 1 1 0.67
Uniforms 1 1 1 1 1 1 1 0.74
Merit/demerit system 1 1 1 1 0 1 1 0.30

Classroom techniques (5 pt. scale)
Cold calling 3 5 5 5 5 3 5 2.48
Math drills 2 4 5 5 5 5 5 3.33
Reading aloud 4 5 5 4 4 5 4 3.14
Notes: This table shows school practices at Boston charter middle schools, measured from a survey of school administrators. Columns (1)-(7) show 
practices for the 7 schools used to estimate the structural model, while column (8) shows an average for other charter middle schools in Massachusetts.

Table A4: School Practices



Charter Traditional Charter effect Charter Traditional Charter effect Charter Traditional Charter effect
Parameter Description (1) (2) (3) (4) (5) (6) (7) (8) (9)

α0 Mean potential outcome 0.028 -0.478*** 0.506*** 0.219*** -0.456*** 0.676*** 0.272*** -0.367*** 0.639***
(0.069) (0.007) (0.069) (0.075) (0.008) (0.075) (0.080) (0.009) (0.081)

αx Female -0.006 -0.005 -0.001 0.116*** 0.010 0.105*** 0.032 0.025 0.057
(0.034) (0.013) (0.036) (0.038) (0.015) (0.040) (0.040) (0.016) (0.043)

Black -0.104 -0.194*** 0.090 -0.036 -0.181*** 0.150** 0.048 -0.166*** 0.214***
(0.059) (0.021) (0.062) (0.068) (0.023) (0.071) (0.066) (0.026) (0.071)

Hispanic 0.036 -0.100*** 0.136*** 0.033 -0.083*** 0.116 0.135*** -0.093*** 0.228***
(0.062) (0.022) (0.066) (0.070) (0.025) (0.074) (0.068) (0.026) (0.073)

Subsidized lunch -0.022 -0.147*** 0.125*** 0.036 -0.150*** 0.186*** 0.046 -0.120*** 0.165***
(0.041) (0.019) (0.044) (0.044) (0.021) (0.049) (0.049) (0.023) (0.054)

Special education -0.362*** -0.354*** -0.008 -0.374*** -0.350*** -0.024 -0.288*** -0.374*** 0.086
(0.040) (0.015) (0.042) (0.048) (0.017) (0.051) (0.052) (0.019) (0.055)

Limited English proficiency -0.014 -0.049*** -0.066 0.005 0.083*** -0.078 -0.025 0.076** -0.101
(0.045) (0.016) (0.048) (0.058) (0.019) (0.061) (0.065) (0.020) (0.068)

Baseline math score 0.402*** 0.566*** -0.164*** 0.367*** 0.494*** -0.127*** 0.358*** 0.476*** -0.118***
(0.024) (0.009) (0.026) (0.028) (0.010) (0.029) (0.030) (0.011) (0.032)

Baseline ELA score 0.144*** 0.101*** 0.043** 0.076*** 0.091*** -0.019 0.046 0.065*** -0.019
(0.022) (0.008) (0.024) (0.027) (0.009) (0.028) (0.029) (0.010) (0.030)

Value-added of public schools in zip code 0.359 0.953*** -0.594 0.422 0.928*** -0.506 0.479 0.943*** -0.464
(0.412) (0.162) (0.449) (0.421) (0.168) (0.457) (0.430) (0.171) (0.462)

αθ×σθ Taste for charter schools (std. dv. units) 0.039 0.133*** -0.094*** 0.029 0.061*** -0.032 0.010 0.100*** -0.090***
(0.019) (0.009) (0.021) (0.022) (0.011) (0.025) (0.023) (0.012) (0.026)

N Sample size 10122 9731 9156

*significant at 10; **significant at 5%; ***significant at 1%

Table A5: Estimates of Math Achievement Parameters by Grade

Notes: This table reports maximum simulated likelihood estimates of the parameters of the math achievement distribution. The likelihood is evaluated using 300 simulations per observation. Covariates are de-
meaned in the estimation sample. The mean potential outcome for charter schools is a weighted average of school-specific means. The model is reestimated for each grade. The likelihood is evaluated using 300 
simulations per observation.

6th grade 7th grade 8th grade



Charter Traditional Charter effect Charter Traditional Charter effect Charter Traditional Charter effect
Parameter Description (1) (2) (3) (4) (5) (6) (7) (8) (9)

α0 Mean potential outcome -0.085 -0.557*** 0.472*** 0.042 -0.517*** 0.559*** 0.138 -0.490*** 0.627***
(0.076) (0.008) (0.077) (0.091) (0.009) (0.092) (0.088) (0.010) (0.089)

αx Female 0.095** 0.158*** -0.063 0.170*** 0.221*** -0.051 0.164*** 0.183*** -0.019
(0.038) (0.013) (0.040) (0.041) (0.015) (0.044) (0.043) (0.016) (0.046)

Black -0.078 -0.164*** 0.084 0.003 -0.084*** 0.087 0.101 -0.058** 0.159**
(0.060) (0.021) (0.063) (0.068) (0.024) (0.072) (0.068) (0.028) (0.074)

Hispanic -0.052 -0.098*** 0.047 0.088 -0.023 0.111 0.177** -0.031 0.209***
(0.062) (0.022) (0.066) (0.073) (0.025) (0.077) (0.070) (0.028) (0.076)

Subsidized lunch -0.063 -0.150*** 0.087 0.029 -0.130*** 0.159*** 0.029 -0.116*** 0.146***
(0.045) (0.020) (0.049) (0.051) (0.022) (0.055) (0.051) (0.025) (0.056)

Special education -0.331*** -0.332*** 0.001 -0.412*** -0.404*** -0.008 -0.265*** -0.398*** 0.133***
(0.042) (0.015) (0.045) (0.052) (0.016) (0.054) (0.051) (0.018) (0.055)

Limited English proficiency -0.009 -0.069*** 0.060 -0.034 -0.014 -0.020 -0.023 0.044** -0.067
(0.048) (0.016) (0.051) (0.061) (0.019) (0.064) (0.063) (0.020) (0.066)

Baseline math score 0.076*** 0.183*** -0.107*** 0.101*** 0.180*** -0.078*** 0.119*** 0.366*** -0.083**
(0.026) (0.009) (0.027) (0.030) (0.009) (0.031) (0.030) (0.010) (0.033)

Baseline ELA score 0.488*** 0.452*** 0.036 0.331*** 0.370*** -0.039 0.284*** 0.164*** -0.044
(0.025) (0.008) (0.026) (0.029) (0.009) (0.030) (0.031) (0.011) (0.032)

Value-added of public schools in zip code 0.712 0.862*** -0.150 0.661 0.914*** -0.253 0.634 0.893*** -0.259
(0.452) (0.171) (0.439) (0.473) (0.179) (0.444) (0.466) (0.185) (0.501)

αθ×σθ Taste for charter schools (std. dv. units) -0.032 0.009 -0.041** -0.025 -0.002 -0.024 -0.037 0.027** -0.064**
(0.021) (0.009) (0.023) (0.027) (0.012) (0.030) (0.026) (0.013) (0.029)

N Sample size 10122 9731 9156

*significant at 10; **significant at 5%; ***significant at 1%

Table A6: Estimates of ELA Achievement Parameters by Grade
6th grade 7th grade 8th grade

Notes: This table reports maximum simulated likelihood estimates of the parameters of the ELA achievement distribution. The likelihood is evaluated using 300 simulations per observation. Covariates are de-
meaned in the estimation sample. The mean potential outcome for charter schools is a weighted average of school-specific means. The model is reestimated for each grade. The likelihood is evaluated using 300 
simulations per observation.



Model Data Model Data Model Data
(1) (2) (3) (4) (5) (6)

Apply to charter 0.202 0.175 Charter applicants 0.169 0.236 -0.172 -0.151
Apply to more than one 0.034 0.046 Non-applicants - - -0.450 -0.453
Offer takeup rate 0.781 0.836 Applicants to:
Apply to: Charter 1 0.264 0.331 -0.064 0.050

Charter 1 0.033 0.031 Charter 2 0.329 0.405 -0.121 0.110
Charter 2 0.039 0.036 Charter 3 0.091 0.131 -0.084 0.013
Charter 3 0.048 0.048 Charter 4 0.271 0.401 -0.281 -0.207
Charter 4 0.043 0.039 Charter 5 0.084 0.017 -0.103 -0.145
Charter 5 0.049 0.051 Charter 6 0.217 0.241 -0.101 -0.073
Charter 6 0.023 0.017 Charter 7 0.319 0.443 -0.088 0.088
Charter 7 0.022 0.016

F-statistic: 1.68
p-value: 0.04

Table A7: Model Fit

Notes: This table compares behavior and outcomes to predictions from the model. Panel A shows charter application and offer takeup 
rates. Panel B shows average test scores by application and offer status. Model predictions are averages over 5,000 simulations of the 
structural model, with covariates and spatial locations drawn with replacement from the joint distribution in the sample. The F-statistic 
and p-value come from a Wald test of the hypothesis that the model fits all observed moments up to sampling error.

Lottery winners Lottery losers
B. 8th grade math scoresA. Applications and attendance



Probit marginal effect
Variable (1)

Share non-white 1.12
(1.02)

Share subsidized lunch 2.54
(1.65)

Average MCAS score 1.55*
(0.83)

N (zip codes) 22

*significant at 10; **significant at 5%; ***significant at 1%

Notes: This table reports marginal effects from a probit 
model for charter school location decisions. Each 
observation is a zip code. The dependent variable is an 
indicator equal to one if a charter school is located in the zip 
code. Marginal effects are evaluated at the sample mean.

Table A8: Determinants of Charter School Locations


	1 Introduction
	2 Setting and Data
	2.1 Context: Charter Schools in Boston
	2.2 Data Sources and Sample Construction
	2.3 Descriptive Statistics

	3 Modeling Charter School Attendance
	3.1 Setup
	3.2 Student Choice Problem
	3.2.1 Preferences
	3.2.2 School Lotteries
	3.2.3 Application and Attendance Decisions

	3.3 Academic Achievement

	4 Identification and Estimation
	4.1 Exclusion Restriction
	4.2 Exclusion of Distance
	4.3 Exclusion of School-Specific Preferences
	4.4 Estimation

	5 Structural Estimates
	5.1 Preference Parameters
	5.2 Achievement Parameters
	5.3 School Effects

	6 Absolute and Comparative Advantage in Charter School Choice
	6.1 Selection and Charter School Effects
	6.2 Alternative Approaches to Extrapolation

	7 Counterfactual Simulations
	7.1 Additional Assumptions
	7.2 Charter Expansion Effects

	8 Conclusion

