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1 Introduction

Reforms that broaden the scope for school choice are an increasingly common phenomenon in US public school

districts. One such reform is the creation of charter schools, which are publicly funded, non-selective schools that

typically have more freedom than traditional public schools to set curricula and make staffing decisions. While

evidence on the effects of non-urban charter schools is mixed,1 studies based on entrance lotteries show that

attendance at charter schools in Boston and New York’s Harlem Children’s Zone boosts academic achievement

sharply for poor, minority applicants (Abdulkadiroglu et al. 2011; Dobbie and Fryer 2011). Angrist et al. (2012,

2013a, 2013b), Dobbie and Fryer (2013), Gleason et al. (2010), Hoxby and Murarka (2009), and Hoxby and Rockoff

(2004) also report positive effects for urban charters. These findings suggest that urban charter schools may have

the potential to reduce achievement gaps between racial and socioeconomic groups. Reflecting this hope, the

Massachusetts legislature recently relaxed the state’s charter school cap with the explicit goal of reducing racial

and socioeconomic disparities in academic performance (Commonwealth of Massachusetts 2010).

Despite the large literature documenting the causal effects of charter schools and other school-choice programs,

little attention has been paid to the demand for these programs. Existing studies typically restrict attention to

samples of lottery applicants, among whom lottery offers are randomly assigned (see, e.g., Abdulkadiroglu et al.

2011 and Deming et al. 2014). Understanding the application decisions that generate these samples is important

both for interpreting existing evidence and for evaluating the potential effects of charter school expansion. Of

particular interest is whether students sort into the charter sector on the basis of comparative advantage. That is,

are students with more to gain from charter attendance more likely to apply to charter schools? If the students with

the most to gain are most likely to sign up for charter lotteries, then local average treatment effects (LATE) derived

from lottery-based instruments will overstate potential gains for non-applicants and provide a misleading picture

of the effects of charter expansion (Imbens and Angrist 1994; Rothstein 2004).2 On the other hand, the parents

of low-achieving students may be unlikely to investigate alternatives to traditional public school, despite evidence

that urban charter schools are especially effective for such students (Angrist et al. 2012). The case for school choice

is also stronger if increasing choice allows students to sort according to comparative advantage, boosting aggregate

achievement.

This paper studies the demand for charter middle schools in Boston, with a focus on absolute and comparative

advantage in school choice. I answer two related questions: (1) Do students sort into the charter sector on the

basis of potential achievement gains? and (2) What are the likely effects of charter attendance for students who

would be induced to attend by a marginal expansion of the charter sector? To answer these questions, I develop

and estimate a structural model that links charter application and enrollment decisions to potential achievement

gains in a parametric selection framework.

Students in Boston can apply to any combination of charter schools, and face uncertainty in the form of

an admissions lottery at each charter. I study this process using a dynamic, unordered discrete choice model

1Gleason et al. (2010) find that non-urban charters are no more effective than traditional public schools. Angrist et al. (2013b) find
negative effects for non-urban charter middle schools in Massachusetts. In an observational study of 27 states, CREDO (2013) finds
that charter schools are slightly more effective than traditional public schools on average.

2Rothstein (2004, p.82) writes of the Knowledge is Power Program (KIPP), a high-performing urban charter operator: “[T]hese
exemplary schools...select from the top of the ability distribution those lower-class children with innate intelligence, well-motivated
parents, or their own personal drives, and give these children educations they can use to succeed in life.”
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of application portfolio choices, lottery outcomes, and school attendance decisions. The model is similar to the

stochastic portfolio choice problems considered by Chade and Smith (2006) and Chade et al. (2009): students

submit charter application portfolios to maximize expected utility, taking account of admission probabilities and

non-monetary application costs. I estimate the model using admissions records for seven of the nine Boston charter

middle schools operating during my sample period, including in years when these schools were undersubscribed

and did not hold lotteries. This allows me to develop a complete model of the charter application portfolio choice

set for these seven schools. As far as I know, this is the first paper to estimate a dynamic discrete choice model

of application portfolio and school attendance choices. The model estimated here may be useful in other settings

in which students submit many applications and face uncertainty in admission decisions, including the college

admissions process.

I combine the portfolio-choice model of charter demand with a flexible model of academic achievement that

describes potential achievement in charter schools and traditional public schools. The link between choices and

achievement takes the form of a selection correction, which captures the relationship between potential outcomes

and the latent preferences that drive charter application and attendance decisions (Heckman 1979). This approach

is related to the models analyzed by Lee (1983), Dubin and McFadden (1984), and Dahl (2002), which extend

the canonical Heckman (1979) sample selection model to multinomial choice settings. The model estimated here is

dynamic, and the set of available portfolio choices is high-dimensional. To reduce the dimensionality of the problem,

I impose a “single-index” restriction, which requires that endogenous selection into the charter sector is driven by a

one-dimensional unobserved preference. I show that charters in Boston are highly homogenous, and that students

treat them as close substitutes conditional on applying; this suggests that a one-factor selection model is reasonable.

To identify the parameters of the model, I combine instruments from randomized entrance lotteries with a second

set of instruments based on proximity to charter schools. The use of a selection correction approach in a dynamic

discrete choice model with endogeneity is a second methodological contribution of the paper.

Estimates of the model reveal that students do not sort into charter schools on the basis of comparative advan-

tage. Richer students and those with higher previous achievement have absolute advantages in both charter schools

and traditional public schools, but charter schools boost scores more for poor students and low-achievers; disadvan-

taged students therefore have a comparative advantage in the charter sector. Richer students and high-achievers

have stronger tastes for charter schools, however, which implies that charter applicants are negatively selected on

potential achievement gains. The structural estimates show a similar pattern of selection on unobservables. This

pattern is consistent with the possibility that effective charter schools partially compensate for differences in human

capital investments across families, but motivated parents who invest more at home are also more likely to enroll

their children in charter schools. As a result, existing estimates understate the potential achievement effects of

charter schools for non-applicants: effects of treatment on the treated (TOT) for current applicants are roughly 25

percent smaller than the model’s implied population average treatment effects (ATE), which are smaller still than

the potential effects of treatment on the non-treated (TNT). This suggests that efforts to recruit students who are

currently unlikely to apply to charters could boost productivity in the charter sector.

I quantify these findings by simulating the effects of charter expansion in an equilibrium school choice model

assuming constant returns to scale (CRTS) on the supply side. While this assumption is unlikely to hold in reality,
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most departures from CRTS, such as inelastic supply of teachers and other inputs, are likely to reduce the efficacy

of new charter schools. The results therefore provide a plausible upper bound on the benefits of charter expansion

due to demand-side behavior. The simulations show that while effects for marginal applicants are substantial, the

effects of charter expansion may nevertheless be limited by weak demand: students act as if charter application

costs are high, and many of the highest-benefit students prefer to attend traditional public schools even when

charters offering guaranteed admission are located in close proximity. These results suggest that in the absence of

significant behavioral or institutional changes, the effects of charter expansion may be limited as much by demand

as by supply.

In additional to the methodological literatures on dynamic discrete choice and multinomial sample selection

models, this paper contributes to a nascent literature assessing the relationships between educational choices,

treatment effects, and socioeconomic status. Arcidiacono et al. (2013) study differences in selection into college

majors between minority and non-minority students. Hastings et al. (2009) show that higher-socioeconomic-status

parents are more likely to choose schools with high average test scores in a public school choice plan in Charlotte,

North Carolina. Kirkeboen et al. (2014) find evidence of comparative advantage in field choices in the Norwegian

higher-education system. Using a nationally representative sample from the Early Childhood Longitudinal Study,

Butler et al. (2013) show that richer children are more likely to enroll in charter schools. In the higher-education

sphere, Hoxby and Avery (2012) show that seemingly-qualifed poor students are unlikely to apply to selective

colleges. Similarly, Brand and Xie (2010) argue that students with larger potential returns are less likely to enroll

in college, while Dillon and Smith (2013) document the prevalence of “mismatch” between student ability and

college quality in the National Longitudinal Survey of Youth. Farther afield, Ajayi (2013) shows that students from

lower-performing elementary schools in Ghana are less likely to apply to selective secondary schools. Consistent

with the findings from this literature, I find that disadvantaged students are unlikely to apply to effective charter

schools, despite large potential achievement gains.

This paper also adds to a series of studies using structural models to analyze educational decisions and outcomes.

Epple and Romano (1998) study a theoretical model of competition between public and private schools. Epple et

al. (2003, 2006, 2013) analyze theoretical and empirical models of college quality, student sorting, and financial aid.

In more closely related work, Ferreyra and Kosenok (2011) and Mehta (2011) study models of charter school entry

and student sorting. Rather than modeling charter entry decisions, I focus on estimation of the joint distribution of

student preferences and achievement gains. The detailed student-level application, lottery offer, and achievement

data used here allow for a more flexible specification of student preferences than those used in previous studies. The

use of entrance lotteries also allows me to identify achievement effects using random assignment rather than the

selection-on-observables assumptions implicit in these studies. Finally, this is the first paper to model the charter

application decision as an optimal portfolio choice problem.3

The rest of the paper is organized as follows: The next section gives background on charter schools in Boston and

describes the data. Section 3 describes the reduced-form patterns in charter application decisions and lottery-based

estimates that motivate the structural analysis to follow. Section 4 outlines the structural model of charter demand

and academic achievement, and Section 5 discusses identification and estimation of the model. Section 6 reports

3Mehta (2011) and Ferreyra and Kosenok (2011) do not use admissions lottery data, so they cannot observe application portfolio
choices.
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the structural estimates. Section 7 discusses implications of the estimates and uses the model to simulate the effects

of counterfactual policies. Section 8 concludes.

2 Setting and Data

2.1 Context: Charter Schools in Boston

Non-profit organizations, teachers, or other groups wishing to operate charter schools in Massachusetts submit

applications to the state’s Board of Education. If authorized, charter schools are granted freedom to organize

instruction around a philosophy or curricular theme, as well as budgetary autonomy. Charter employees are also

typically exempt from local collective bargaining agreements, giving charters more discretion over staffing than

traditional public schools.4 Charters are funded primarily through per-pupil tuition payments from local districts.

Charter tuition is roughly equal to a district’s per-pupil expenditure, though the state Department of Elementary

and Secondary Education partially reimburses these payments (Massachusetts Department of Elementary and

Secondary Education 2011). The Board of Education reviews each charter school’s academic and organizational

performance at five year intervals, and decides whether charters should be renewed or revoked.

Enrollment at Massachusetts charter schools is open to all students who live in the local school district. If a

charter school receives more applications than it has seats, it must accept students by random lottery. Students

interested in multiple charter schools must submit separate applications to each charter, and may receive multiple

offers through independent school-specific lotteries. This system of independent enrollment processes is in contrast

to the centralized enrollment mechanism used for Boston’s traditional public schools, which collects lists of students’

preferences over schools and generates a single offer for each student (Pathak and Sonmez 2008).

The Boston Public Schools (BPS) district is the largest school district in Massachusetts, and it also enrolls an

unusually large share of charter students. In the 2010-2011 school year, 14 charter schools operated in Boston,

accounting for 9 percent of BPS enrollment. The analysis here focuses on middle schools, defined as schools that

accept students in fifth or sixth grade; 12 percent of Boston middle schoolers attended charter schools in 2010-2011.

Panel A of Appendix Table A1 lists names, grade structures and years of operation for the nine Boston charter

middle schools that operated through the 2010-2011 school year. I use admissions records from seven of these

schools to produce the estimates reported below.

Many of Boston’s charter schools adhere to a model known as “No Excuses,” a set of practices that includes

extended instruction time, strict behavior standards, a focus on traditional reading and math skills, selective

teacher hiring, and teacher monitoring (Wilson 2008). A growing body of evidence suggests that these practices

boost student achievement (Angrist et al., 2013b; Curto and Fryer, 2011; Dobbie and Fryer, 2013; Fryer, 2011).

Consistent with this evidence, Abdulkadiroglu et al. (2011) use entrance lotteries to show that Boston’s charter

schools substantially increase achievement among their applicants. Their estimates imply that a year of charter

middle school attendance raises test scores by 0.4 standard deviations (σ) in math and 0.2σ in reading. Similarly,

4Massachusetts has two types of charter schools: Commonwealth charters, and Horace Mann charters. Commonwealth charters are
usually new schools authorized directly by the Board of Education, while Horace Mann charters are often conversion schools and must
be approved by the local school board and teachers’ union prior to state authorization. Horace Mann employees typically remain part of
the collective bargaining unit. I focus on Commonwealth charter schools. No Horace Mann charter middle schools operated in Boston
during my data window.
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Angrist et al. (2013a) show that Boston’s charter high schools have substantial effects on longer-term outcomes

like SAT scores and four-year college enrollment.

These encouraging findings make Boston an appealing setting for studying the demand for effective charter

schools. The demand for charters in Boston is also relevant to an ongoing policy debate. In recent years, the

growth of charters in Massachusetts has been slowed by the state’s charter cap, a law that limits expenditures on

charter schools to 9 percent of the host district total.5 The Board of Education stopped accepting proposals for new

Boston charters in 2008 when charter expenditure hit the cap (Boston Municipal Research Bureau 2008). In 2010,

the Massachusetts legislature relaxed the charter cap for school districts in the state’s lowest test score decile. For

these districts, the limit on charter expenditures is to rise incrementally from 9 percent in 2010 to 18 percent in 2017

(Commonwealth of Massachusetts 2010). Through 2011, the Board of Education received 51 charter applications

under the new law and granted 20 charters, eleven to schools in Boston (Massachusetts Department of Elementary

and Secondary Education 2012b). Panel B of Appendix Table A1 lists the six charter middle schools opened through

the 2012-2013 school year. Column (6) indicates existing charters operated by the same organizations. Boston’s

charter sector may continue to expand in the near future; recently-proposed legislation would eliminate the charter

cap in Boston and other low-performing districts (Levitz 2013).

2.2 Data Sources and Sample Construction

The data used in my analysis comes from three sources. First, I obtain demographics, school attendance,

and test scores from an administrative database provided by the Massachusetts Department of Elementary and

Secondary Education (DESE). Second, I draw spatial location data from student addresses provided by the BPS

district. Finally, I obtain information on charter school applications and offers from lottery records gathered from

individual charter schools.

The DESE database covers all Massachusetts public school students from the 2001-2002 school year through the

2012-2013 school year. Key variables include sex, race, subsidized lunch status, limited English proficiency (LEP),

special education status (SPED), town of residence, schools attended, and scores on Massachusetts Comprehensive

Assessment System (MCAS) math and English Language Arts (ELA) achievement tests. I begin by selecting from

the database the four cohorts of students who attended a traditional BPS school in 4th grade between 2005-2006

and 2008-2009. I also require students to have non-missing 4th grade demographics and test scores, as well as

school attendance information and test scores in 6th, 7th, or 8th grade. I use only the earliest test taken by a given

student in a particular subject and grade. Test scores are standardized to have mean zero and standard deviation

one within each subject-year-grade in Massachusetts.

Next, I merge the student address database to the DESE administrative file using a crosswalk between BPS and

state student identifiers. The address database includes a record for every year that a student attended a traditional

BPS school between 1998 and 2011. I drop students in the state database without 4th-grade BPS address data.

This restriction eliminates less than 1 percent of Boston 4th graders. The address information is used to measure

proximity to each Boston charter school. I measure proximity using great-circle distance in miles.6

5Legislation also limits the total number of Commonwealth charter schools to 72 and the number of Horace Mann charters to 48,
though these caps are not currently binding.

6I also performed the analysis using travel times measured by Google Maps, obtained using the STATA traveltime command. I
chose to use great-circle distances instead because traveltime produced different results when queried at different times, making the
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I then match the student data to admissions records from seven charter middle schools in Boston. These seven

schools provided complete records for applicant cohorts attending 4th grade between 2006 and 2009, including in

years when they were undersubscribed. Importantly, only nine charter middle schools operated in Boston during

my sample period, so the admissions data provides a nearly-complete picture of charter application decisions during

this period. Column 4 of Appendix Table A1 summarizes the availability of admissions records for the nine charter

middle schools that operated between the 1997-1998 school year and the 2010-2011 school year.7 Of the two schools

without available records, one closed prior to the 2010-2011 school year; the other declined to provide records. In

the analysis below, I treat these schools as equivalent to traditional public schools. I matched the available records

to the administrative data by name, grade, year, and (where available) date of birth. This process produced unique

matches for 92 percent of applicants. Though admission records for all seven schools were available for cohorts

attending 4th grade between 2006 and 2009, not every school was oversubscribed in every year, so schools did

not always hold lotteries. Column (5) of Table A1 shows that each of the seven schools held lotteries in at least

two years. The analysis below uses applicant records for all four years, setting admission probabilities to one for

undersubscribed years.

After matching the admission files to the student data, I constructed two subsamples for statistical analysis.

The first is used to estimate causal effects for lottery applicants, and thus excludes students who did not apply to

charter schools. The lottery sample includes 1,794 applicants to charter middle schools. A second sample, which

includes both applicants and non-applicants, is used to investigate charter application behavior and estimate the

structural model. The full sample includes 10,122 students who attended BPS schools in 4th grade between 2006

and 2009.

3 Patterns in Application Decisions and Test Score Effects

3.1 Charter Application Decisions

To motivate my investigation of comparative advantage in charter school choice, I begin with a reduced-form

analysis of patterns in charter application decisions and achievement effects. Table 1 compares mean characteristics

for the full Boston population (column (1)) to characteristics of charter applicants (column (2)). Eighteen percent

of Boston students applied to at least one charter lottery, thirteen percent were offered a charter seat, and eleven

percent attended a charter school. Five percent of students applied to more than one charter. Charter applicants

tend to have higher socioeconomic status and fewer academic problems than non-applicants. Specifically, applicants

are less likely to be eligible for subsidized lunch (a proxy for poverty), to have special education status, or to be

classified as limited English proficient. Charter applicants are less likely to be Hispanic and slightly more likely to

be white than non-applicants. Applicants also live slightly closer to charter schools on average (1.9 miles from the

closest charter, compared to 2.1 miles for the average student).

Table 1 also investigates the relationship between charter application decisions and the quality of nearby tradi-

tional public school options. Students can choose between many schools in Boston’s centralized traditional public

results difficult to replicate. Key estimates were very similar for this alternative distance measure.
7I classify charter schools as middle schools if they accept applicants in 5th or 6th grade. Two Boston charter schools accept students

prior to 5th grade but serve grades 6 through 8. Since I restrict the analysis to students who attended traditional BPS schools in 4th
grade, no students in the sample attend these schools.
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school assignment mechanism, so the characteristics of the relevant traditional public school are unknown for stu-

dents who attend charter schools. Most students attend a school close to home, however, so the average quality of

schools in a student’s zip code is a reasonable proxy for the quality of available traditional public options. I estimate

the quality of nearby schools using a value-added regression of test scores for traditional public school students in

grades 6 through 8 on 4th-grade test scores, the other demographic variables from Table 1, and school fixed effects.

The value-added for a given school is the coefficient on the relevant fixed effect in this regression. I then compute

the average value-added of the schools attended by students in each zip code, and assign each student the average of

the math and ELA value-added measures for her zip code. I jackknife the value-added procedure so that a student’s

own score does not contribute to her own measure of value-added. Columns (1) and (2) of Table 1 show that the

average value-added of nearby traditional public schools is similar for charter applicants and non-applicants.

The last two rows of Table 1 display information about 4th grade MCAS scores. Boston 4th graders lag behind

the state average by 0.55σ and 0.66σ in math and ELA. Students who apply to charter schools have substantially

higher scores than the general Boston population: applicants’ 4th grade scores exceed the Boston average by more

than 0.2σ in both subjects.

Column (3) summarizes these demographic patterns with a probit model of the form

Pr[Ai = 1|Xi, Di] = Φ
(
γ0 +X ′iγ

x + γdDi

)
, (1)

where Ai is an indicator for applying to at least one charter school, Xi is a vector of baseline characteristics,

Di is the distance to the closest charter, and Φ(·) is the normal CDF. The reported coefficients are marginal

effects on the charter application probability evaluated at the sample means of Xi and Di. The results show that

charter application decisions are strongly correlated with poverty status: students eligible for subsidized lunch are

9 percentage points less likely to apply to a charter school conditional on the other included covariates, a large

effect relative to the baseline application rate of 18 percent. The probit estimates also reveal that special education

students, students with limited English proficiency, and students with low baseline test scores are less likely to

apply, and these relationships are statistically significant. The effect for whites is negative and significant, which

implies that the higher unconditional application rate for whites is explained by the other covariates; the negative

coefficients for whites and Hispanics imply that black students are more likely to apply to charter schools conditional

on observed characteristics. The marginal effect for traditional public school value-added is also negative and

significant. This suggests that after accounting for other observed characteristics, students with weaker traditional

public school options are more likely to apply to charter schools. Taken together, the statistics in Table 1 suggest

that the charter applicant pool is skewed towards economically-advantaged, higher-performing students.
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3.2 Lottery Estimates of Test Score Effects

I next use instruments based on entrance lotteries to summarize the causal effects of charter schools in the

selected sample of lottery applicants.8 The estimating equations for the lottery analysis take the form

Yi = ψ` + βSi + εi, (2)

where Yi is a test score for charter applicant i, Si is a dummy variable indicating charter school attendance, and ψ`

is a set of lottery application portfolio fixed effects (dummies for all observed combinations of schools and applicant

cohorts). I code a student as attending a charter school if she attends a charter at any time after the lottery and

prior to the test. The first stage equation is

Si = κ` + πZi + ηi. (3)

The instrument Zi is one if student i received any charter offer before the start of the school year following the

lottery. The 2SLS estimate of β can be interpreted as a weighted average of within-lottery local average treatment

effects (LATE), defined as effects of charter schools on applicants induced to attend by lottery offers (Imbens and

Angrist 1994).9 To use all available test score information, the sample stacks scores in grades six through eight.

Standard errors are clustered at the student level.10

Consistent with the results reported by Abdulkadiroglu et al. (2011), the 2SLS estimates show that Boston’s

charter schools have dramatic effects on student achievement for lottery applicants. As shown in column (1) of Table

2, receipt of a lottery offer increases the probability of charter attendance by 0.68. The second-stage estimates,

reported in columns (2) and (3), imply that attending a charter school increases math scores by 0.59σ and boosts

ELA scores by 0.41σ. These effects are precisely estimated (p < 0.01).

These pooled results mask substantial heterogeneity in the benefits of charter school attendance across demo-

graphic groups. Columns (3) though (8) of Table 2 show estimates from three 2SLS models that interact charter

attendance with baseline characteristics, instrumenting with interactions of lottery offers and these characteristics.

Columns (3) and (4) show that the estimated effects of charter attendance are larger for students with subsidized

lunch status. The difference in effects between subsidized lunch and non-subsidized lunch students is significant

at the 10-percent level in math, through insignificant in ELA (p=0.060 and 0.161, respectively). The remain-

ing columns show that the effects of charter attendance are larger for non-white students and for students with

below-median previous test scores than for students that lack these characteristics. The estimated effects for white

students are small and statistically insignificant in both subjects. These results show that Boston’s charter schools

generate larger gains for disadvantaged, low-achieving, and non-white applicants.

8Appendix Table A2 shows that baseline covariates are balanced across lottery winners and losers, suggesting that randomization
was successful in the lotteries used here. Even with random assignment, lottery-based instruments can be compromised by non-random
attrition. Appendix Table A3 shows that follow-up rates are high: 89 percent of potential scores in grades 6 through 8 are observed in
the full sample, while 87 percent are observed in the lottery sample. Moreover, there is no difference in follow-up rates between lottery
winners and losers, so attrition is unlikely to bias my estimates.

9With a first stage saturated in offer-times-lottery interactions, 2SLS produces a weighted average of lottery-specific IV estimates,
with weights proportional to the variance of the first-stage fitted values (Angrist and Imbens 1995). Estimates from this fully saturated
model were similar to the more parsimonious model used here, which includes a single instrument and lottery fixed effects.

10To keep sample sizes consistent, I include all charter applicants in these models, including undersubscribed cohorts. Since all
students in undersubscribed cohorts are offered seats, the lottery fixed effects absorb the offer dummy for these cohorts, and their
inclusion has no effect on the estimates.
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Taken together, the results reported in tables 1 and 2 suggest that disadvantaged students and low-achievers

benefit more from charter school attendance, but are relatively unlikely to apply to charter schools. Figure 1

summarizes this pattern using the full set of demographic characteristics. To construct the figure, I use the probit

model in equation (1) to compute a predicted charter application probability for each student. I then divide the

sample of lottery applicants into quartiles of this predicted probability, and estimate a version of equation (2) that

includes interactions of charter attendance with quartile dummies, instrumenting with interactions of the lottery

offer and these dummies and controlling for quartile main effects. The results show that charter gains are smaller

for applicants with higher predicted application probabilities. Equality of effects across quartiles is rejected at the

10-percent level in both subjects.

The standard Roy (1951) selection model predicts that the probability of applying to a charter school will

be positively related to the achievement benefit generated by charter attendance. Figure 1 suggests the opposite

pattern: charter schools produce larger gains for applicants with smaller predicted application probabilities. This

suggests that students do not sort into the charter sector on the basis of comparative advantage. However, this

figure may provide a misleading picture of the pattern of selection into charter schools for at least two reasons.

First, the simple probit model in equation (1) is an inaccurate description of the charter school application decision.

Students can apply to any combination of charter schools in Boston, and face different admission probabilities and

distance costs at each charter. With heterogeneous schools and admission probabilities, predicted probabilities from

equation (1) may not reflect the relationship between observed characteristics and tastes for charter schools. More

importantly, there may be selection on unobserved dimensions of academic achievement. If students sort into the

charter sector on the basis of private information about expected gains, applicants may experience atypically large

benefits despite smaller predicted gains given their observed characteristics. The next section describes a structural

model that incorporates the key features of the Boston charter landscape and allows selection on both observed

and unobserved dimensions.

4 Modeling Charter School Attendance

4.1 Setup

I model charter application choices as a random utility optimal portfolio choice problem. Figure 2 explains the

sequence of events described by the model. First, students decide whether to apply to each of K charter schools,

indexed by k ∈ {1 . . .K}. The dummy variable Aik ∈ {0, 1} indicates that student i applies to school k. Second,

charter schools randomize offers to applicants. The dummy variable Zik ∈ {0, 1} indicates an offer for student i at

school k, and πk denotes the admission probability for applicants to school k. In the third stage, students choose

schools denoted Si, where Si = 0 indicates public school attendance. Any student can attend public school, but

student i can attend charter school k only if she receives an offer at this school. Finally, students take achievement

tests, with scores denoted Yi.
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4.2 Student Choice Problem

4.2.1 Preferences

Students’ preferences for schools depend on demographic characteristics, spatial proximity, expected academic

achievement, application costs, and unobserved heterogeneity. The utility of attending charter school k is

uik = δ0
k +X ′iδ

x + γdDik + δyỸi(k) + νi + υik − ci(Ai), (4)

where Xi is a vector of observed characteristics for student i, Dik measures distance to school k, and Ỹi(k) denotes

student i’s expected academic achievement if she attends school k. The utility of public school attendance is

ui0 = υi0 + δyỸi(0) + ci(Ai). (5)

Expected academic achievement in charter schools and public schools is assumed to take the form

Ỹi(k) = α0
k +X ′iα

x
c + ηic for k > 0, (6)

Ỹi(0) = α0
0 +X ′iα

x
0 + ηi0. (7)

The parameter α0
k is the academic quality of school k. This parameter captures factors that affect achievement

of all students at the school, such as the quality of teachers, facilities, or the peer environment.11 The subscript

c indicates parameters and variables that are constant across charter schools. The variables ηic and ηi0 represent

private information about potential scores in charter schools and public schools. As described in Section 4.3, realized

achievement is modeled as Yi(k) = Ỹi(k) + µik, where µik is unknown to the student at the time of the application

and attendance decisions. This implies that students may have private information about their own idiosyncratic

achievement benefits from charter schools compared to traditional public schools, but they do not make choices

between charter schools on the basis of such information. Section 5 provides further motivation and evidence in

support of this assumption.

Substituting equations (6) and (7) into equations (4) and (5) yields the following equivalent specification for

student preferences:

Uik = γ0
k +X ′iγ

x + γdDik + θi + υik − ci(Ai) for k > 0, (8)

Ui0 = υi0 − ci(Ai). (9)

Though they do not explicitly include academic achievement, equations (8) and (9) implicitly allow for the possibility

that tastes for schools are partially or entirely determined by expected achievement.12

The quantity ci(Ai) represents the utility cost of Ai, the application portfolio chosen by student i (Here and

elsewhere, variables without k subscripts refer to vectors, so that Ai ≡ (Ai1, . . . , AiK)′ and so on). Application costs

11To the extent that peer quality affect academic achievement, the parameter α0
k should change in counterfactuals that shift the

composition of enrollees. Section 7 provides further discussion of the role of peer effects.
12Note that we can write γ0k = δk + δy(α0

k − α
0
0), γ

x = δx + δy(αxc − αx0 ), and θi = νi + δy(ηic − ηi0).
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include the disutility of filling out application forms and the opportunity cost of time spend attending lotteries.

These costs may also capture frictions associated with learning about charter schools.13 The application cost

function is parameterized as

ci(a) = γa|a| − ψia.

The parameter γa is the marginal cost associated with an additional charter school application. The error term ψia

is a shock to the utility associated with a particular application portfolio. Applicants pay these costs whether or

not they attend a charter.

The variables θi and υik represent unobserved heterogeneity in tastes. θi, which characterizes student i’s

preference for charter schools relative to traditional public school, is the key unobservable governing selection into

the charter sector. This variable includes any latent factors that influence students to opt out of traditional public

school in favor of charter schools, such as the perceived achievement gain from attending charter schools, proximity

or quality of the relevant traditional public school, or parental motivation. In the language of the random-coefficients

logit model (see, e.g., Hausman and Wise 1978, Berry et. al. 1995, and Nevo 2000), θi is the random coefficient on

a charter school indicator. The presence of θi implies that charter schools are closer substitutes for each other than

for traditional public schools. I assume that θi follows a normal distribution with mean zero and variance σ2
θ .

The υik capture idiosyncratic preferences for particular schools, which are further decomposed as

υik = τik + ξik.

Students know ψia, τik, and θi before applying to charter schools, and learn ξik after applying. The post-application

preference shock ξik explains why some applicants decline charter school offers. To generate multinomial logit choice

probabilities, ψia, τik, and ξik are assumed to follow independent extreme value type I distributions, with scale

parameters λψ, λτ , and 1.14

4.2.2 School Lotteries

In the second stage of the model, schools hold independent lotteries. School k admits applicants with probability

πk. The probability mass function for the offer vector Zi conditional on Ai is

f(Zi|Ai;π) =
∏
k

[Aik · (πkZik + (1− πk)(1− Zik)) + (1−Aik) · (1− Zik)]. (10)

I allow the admission probabilities πk to vary by application cohort. If school k is undersubscribed and hence does

not hold a lottery for a particular cohort, I set πk = 1 for that cohort.

4.2.3 Application and Attendance Decisions

I derive students’ optimal application and attendance rules by backward induction. A student is faced with a

unique attendance decision after each possible combination of charter school offers, because the set of offers in hand

13Charter schools are not listed in informational resources provided to parents by the BPS district. For example, the “What Are My
Schools?” tool located at www.bostonpublicschools.org provides a list of the BPS schools to which children are eligible to apply, but
does not list charter schools (accessed September 13th, 2013).

14That is, ξik follows a standard Gumbel distribution, which provides the scale normalization for the model.
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determines the available school choices. Consider the decision facing a student at stage 3 in Figure 2. At this point,

the student knows her charter offers, application costs are sunk, and there is no uncertainty about preferences.

Student i can attend public school or any charter school that offers a seat. Her choice set is

C(Zi) = {0} ∪ {k : Zik = 1}.

Define

Ũik(θi, τik) ≡ γ0
k +X ′iγ

x + γdDik + θi + τik for k>0,

with Ũi0(θi, τi0) ≡ τi0. Student i’s optimal school choice is

Si = arg max
k∈C(Zi)

Ũik(θi, τik) + ξik,

and the probability that student i chooses school k at this stage is given by

Pr[Si = k|Xi, Di, Zi,θi, τi] =
exp

(
Ũik(θi, τik)

)
∑
j∈C(Zi)

exp
(
Ũij(θi, τij)

)
≡ Pik(Zi, θi, τi).

The expected utility associated with this decision (before the realization of ξi) is

Wi(Zi, θi, τi) ≡ E
[
max k∈C(Zi)Ũik(θi, τi0) + ξik|Xi, Di, Zi, θi, τi

]

= ν + log

 ∑
k∈C(Zi)

exp
(
Ũik(θi, τik)

) ,

where ν is Euler’s constant.

Students choose charter applications to maximize expected utility, anticipating offer probabilities and their own

attendance choices. Consider the application decision facing a student at stage 1 in Figure 2. The student knows

θi, τi, and ψi, but does not know ξi, and her choice of Ai induces a lottery over Zi at a cost of ci(Ai). Define

Vi(a, θi, τi) ≡
∑

z∈{0,1}K
[f(z|a;π) ·Wi(z, θi, τi)]− γa · |a|.

The expected utility associated with the choice Ai = a is Vi(a, θi, τi) + ψia, and the probability of choosing this

portfolio is

Pr[Ai = a|Xi, Di, Zi, θi, τi] =
exp

(
Vi(a,θi,τi)

λψ

)
∑

a′∈{0,1}K
exp

(
Vi(a′,θi,τi)

λψ

)
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≡ Qia(θi, τi).

Previous lottery-based studies of charter school effectiveness condition on students’ application portfolios, which

are typically referred to as “risk sets” because they determine the probability of a charter school offer (Abdulkadiroglu

et al. 2011, Angrist et al. 2013, Dobbie and Fryer 2013). The probabilities Qia(θi, τi) provide a model-based

description of how students choose lottery risk sets.

4.3 Academic Achievement

Students are tested after application and attendance decision have been made. Potential academic achievement

at school k is equal to expected achievement plus an idiosyncratic error: Yi(k) = Ỹi(k) + µik. To link the utility

and achievement equations, I assume that the vector (θi, ηic, ηi0)′ follows a multivariate normal distribution. This

implies that potential academic achievement can be written

Yi(k) = α0
k +X ′iα

x
c + αθcθi + εik for k > 0, (11)

Yi(0) = α0
0 +X ′iα

x
0 + αθ0θi + εi0, (12)

where E[εik|Xi, θi] = 0. The causal effect of attending charter k relative to traditional public school for student i

is Yi(k) − Yi(0). The observed score for student i is the potential score associated with her optimal school choice:

Yi = Yi(Si). I assume that εik follows a normal distribution with mean zero and variance σ2
k, with σ2

k the same

across charter schools but possibly different between charter and traditional public schools.

The coefficients αθc and αθ0 govern comparative and absolute advantage in charter school choice. If αθc > 0,

students with stronger tastes for charters have an absolute advantage in the charter sector, while these students

have an absolute advantage in the traditional public sector if αθ0 > 0. The difference αθc − αθ0 determines whether

sorting on unobservables is consistent with comparative advantage. If this difference is positive, students with larger

potential gains prefer charter schools, and students sort based on comparative advantage. Choices are inconsistent

with such sorting if the difference is negative.

4.4 Comments on Modeling Choices

Equations (8) through (12) provide a complete description of charter demand and potential academic achieve-

ment. This section provides intuition for some of the key modeling choices implicit in these equations.

First, the model emphasizes differences between charter and traditional public schools, while limiting differences

between charter schools. Heterogeneity in preferences and achievement across students with different observed

characteristics is governed by the vectors γx, αxc , and αx0 . This specification allows observed characteristics to affect

the choice of charter schools relative to traditional public schools, and to interact differently with achievement in

charter and public schools, but requires that these characteristics affect preferences and achievement the same way

at every charter. Similarly, equation (11) implies that the relationship between the unobserved taste θi and student

achievement is the same at every charter school. Heterogeneity in preferences and achievement across charter
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schools is captured by the school specific intercepts γ0
k and α0

k. These restrictions limit the number of parameters

to be estimated while also parsimoniously summarizing heterogeneity across both students and schools. Moreover,

this emphasis on differences between charters and traditional public schools mirrors the approach to identification

described in Section 5.2, which emphasizes selection into the charter sector rather than across charter schools.

A second notable feature of the model is that potential achievement does not enter directly in students’ utility

functions. Instead, achievement and preferences are linked through the charter taste θi, which appears in the utility

function (8) and the outcome equations (11) and (12). The inclusion of θi in the equations for academic achievement

is a version of a selection correction approach to dealing with endogeneity (Heckman 1979; Dahl 2002). Selection

into the charter sector is driven by θi, so comparisons of observed outcomes across schools yield causal effects after

conditioning on θi. The coefficients αθc and αθ0 capture the influence of unobserved factors that are related to both

tastes for charter schools and achievement.15 The standard approach to selection correction involves computing

the conditional expectation of the selection term and including it as a regressor in the outcome equation (Heckman

1979; Dubin and McFadden 1984). In the model estimated here, the expectation of θi conditional on a student’s

application and attendance choices does not have a closed form. Section 5.4 describes a simulation-based approach

that allows me to estimate the parameters of the model despite the absence of a closed form for the selection

correction.

5 Identification and Estimation

5.1 Exclusion Restriction

Identification of the parameters of equations (11) and (12) is based on the following exclusion restriction:

E[εik|Xi, Zi, Di, θi, υi, ψi] = 0. (13)

Equation (13) embeds three identifying assumptions. First, the lottery offer vector Zi is excluded from equations

(11) and (12). This requires that offers have no direct affect on student achievement, a standard assumption in the

charter lottery literature. Second, the school- and application-specific taste shocks υik and ψia are also excluded

from these equations. Finally, distance to charter schools is excluded. I next discuss the latter two assumptions in

detail and provide suggestive evidence in support of them.

5.2 Exclusion of School-Specific Preferences

In multinomial sample selection models, it is generally not feasible to allow potential outcomes to depend on

preferences in an unrestricted way. Lee (1983), Dubin and McFadden (1984), and Dahl (2002) derive selection

corrections under various restrictions on the selection process in static multinomial choice models. The model

estimated here is dynamic, and the set of available application portfolios in the first stage is very large. To limit the

dimensionality of the problem, I assume that the average charter taste θi is sufficient to capture the relationship

between unobserved preferences and potential outcomes.

15Appendix A uses a simplified example to show that this model nests a standard Roy (1951) model in which preferences depend
only on expected achievement.
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The exclusion of vi and ψi from equations (11) and (12) implies that selection on unobservables has a “single-

index” form: endogenous selection into the charter sector depends only on students’ overall tastes for charter schools

relative to traditional public schools. This assumption is closely related to the assumptions underlying the marginal

treatment effects (MTE) framework analyzed by Heckman et al. (2001), which characterizes average treatment

effects conditional on the latent cost of seeking treatment. The analogue of this cost in the present context is the

uniform random variable νi ≡ Φ−1(−θi). The additional error terms vik and ψia are necessary to capture the

dynamic, multinomial nature of the charter choice process, but I assume that these errors are not systematically

related to treatment effects. The difference αθc − αθ0 governs the structure of marginal treatment effects.

The single-index restriction allows students to know about cross-site heterogeneity in the average effects of charter

schools (captured by γk and α0
k) and about their own suitability for the charter treatment in general (captured by

θi), but it rules out the possibility that choices between charters are correlated with idiosyncratic treatment gains

across schools. I present two pieces of evidence in favor of this assumption. First, I show that inputs and practices

are highly homogeneous across Boston’s charter middle schools. With homogeneous school practices, it seems less

likely for a student to know that the environment at a specific school will lead to a particularly large benefit for

him or her. Second, I show that application portfolio choices among charter applicants are determined mostly by

distance. This suggests that there is not much heterogeneity in tastes for individual schools, which leaves little

scope for matching on idiosyncratic achievement benefits.

Appendix Table A4 shows that practices are similar across Boston’s charter middle schools. Columns (1) through

(7) report responses to a survey on school practices for the seven charter middle schools included in the sample.

For comparison, column (8) reports average responses for other charter middle schools in Massachusetts. Boston

middle schools have more instructional time than other charter schools; five of seven have longer school years than

the non-Boston average, and six of seven have longer school days. The seven Boston middle schools all strongly

identify with the No Excuses educational approach, and emphasize the typical components of No Excuses, including

traditional reading and math skills, discipline and comportment, and measurable results. With a few exceptions,

Boston middle schools ask parents and students to sign commitment contracts, require students to wear uniforms,

utilize formal merit/demerit systems to reward and punish student behavior, and use cold-calling and math and

reading drills in the classroom. All of these practices are less common elsewhere in the state. Since educational

practices are very similar across Boston’s charter schools, it seems unlikely for a student to know that a specific

school’s practices will lead to an especially large idiosyncratic benefit.

To further motivate the exclusion of school-specific preferences, Appendix Table A5 shows that the choice of

school conditional on applying is determined mostly by distance. In the model outlined above, the decision to

choose one charter school over another is determined by the combination of distance and school-specific tastes. If

application portfolio choices are dominated by distance, then there is no scope for selection on school-specific tastes,

and the exclusion restriction requires only the exogeneity of distance. Fourty-one percent of applicants applied to

the closest school, and these students traveled an average of 1.91 miles to their chosen schools. An additional

twenty-two percent applied to the second closest charter, traveling an average of 1.12 miles beyond the closest

school, and 16 percent choose the third closest, on average traveling 2.39 miles further than necessary. Less than

ten percent of applicants chose the fourth-closest school, and the fractions who chose more distant schools are even
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smaller. A negligible fraction of applicants chose the most distant school. These facts show that although students

are free to apply to distant schools, few do so; conditional on choosing to apply to a charter, most students apply

to one close by, leaving little potential for matching on school-specific achievement gains.

5.3 Exclusion of Distance

In sample selection models, excluded instruments are necessary to identify potential outcome distributions

without relying on functional form restrictions (Heckman 1990). Several sets of moments help to identify outcome

distributions in the model used here. First, students who apply to more charter schools have stronger preferences

for charters, so comparisons of outcomes between students who apply to different numbers of charters help to

identify the selection correction parameters αθc and αθ0. Second, I use distance and lottery instruments as exogenous

shifters of charter tastes in the model’s two choice stages (applications and attendance). Appendix B uses a

simplified example to show how the combination of these instruments identifies the selection correction parameters.

Intuitively, students who apply to charter schools from farther away are likely to have stronger unobserved tastes

for charters, so a comparison of lottery-based estimates across students from different distances identifies the

relationship between unobserved tastes and achievement gains. The maximum likelihood procedure implemented

below efficiently combines information from all sources of identification. This section discusses potential threats to

the validity of the distance instrument.

Distance is a valid instrument if it affects charter attendance and is uncorrelated with unobserved determinants

of achievement. The use of this instrument parallels the use of proximity-based instruments in previous research

on college and school choice (see, e.g., Card 1993 and Booker et al. 2011). The exclusion restriction requires

that distance to charter schools is as good as random conditional on Xi. A sufficient condition for exclusion is

that charter school leaders make choices between neighborhoods on the basis of averages of the characteristics in

Xi. This seems plausible since Xi includes a rich set of student characteristics, including race, poverty, previous

academic achievement, and a proxy for the academic quality of the surrounding public schools. These variables

seem likely to capture many of the factors that might lead charter schools to locate in a particular area.

Columns (1) and (2) of Table 3 explore the validity of the distance instrument by examining the relationship

between distance and baseline achievement. These columns report coefficients from ordinary least squares (OLS)

regressions of 4th grade test scores on distance to the closest charter middle school, measured in miles. The

estimates in the first row show that students who live farther from charter middle schools have significantly higher

4th grade test scores, suggesting that charter schools tend to systematically locate in lower-achieving areas of Boston.

The second row shows that adding controls for observed characteristics shrinks these imbalances considerably and

renders the math coefficient statistically insignificant. This suggests that observed demographic characteristics

capture much of the relationship between charter locations and academic achievement. This lends plausibility to

the use of distance as an instrument in models that control for these characteristics. The models estimated below

also control directly for baseline test scores, which further limits the types of spatial correlation that might violate

the distance exclusion restriction.

To directly compare the two sets of instruments used to estimate the model, columns (3) through (5) of Table 3

report 2SLS estimates using lottery offers and distance as instruments for charter attendance. The lottery estimates
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are replicated from Table 2. The distance models control for student characteristics and include the full sample.

Column (3) shows that the distance instrument has a strong, statistically significant first stage effect on charter

attendance: a one-mile increase in distance decreases the probability of charter attendance by 2.5 percentage points.

Columns (4) and (5) show that the two instruments produce similar estimates of the effects of charter attendance,

though the distance estimates are less precise. The distance instrument generates estimates of 0.60σ and 0.20σ in

math and ELA, compared to the lottery estimates of 0.59σ and 0.41σ. While it is encouraging that these estimates

are broadly similar, note that they needn’t be; on average, the students induced to attend charter schools by the

lottery and distance instruments may differ with respect to their observable characteristics Xi or their unobserved

tastes θi.16

5.4 Estimation

I estimate the parameters of the model by maximum simulated likelihood (MSL). Let Ω denote the parameters

of equations (8) through (12). The likelihood contribution of a student with outcome variables (Ai, Zi, Si, Yi) can

be written

Li(Ω) =

ˆ
Qia(i)(θ, τ) · f(Zi|Ai;π) · Pis(i)(Zi, θ, τ)

× 1

σs(i)
φ

(
Yi − α0

s(i) −X
′
iα
x
s(i) − α

θ
s(i)θ

σs(i)

)
dF (θ, τ |Xi, Di,Ω). (14)

Here the subscript a(i) denotes the application bundle chosen by student i, while s(i) denotes her school choice.17

I evaluate the integral in equation (14) by simulation. Let θri and τ ri be draws of θ and τ for student i in

simulation r. Define

ˆ̀r
i (Ω) ≡ Qia(i)(θ

r
i , τ

r
i ) · f(Zi|Ai;π) · Pis(i)(Zi, θri , τ ri ) · 1

σs(i)
φ

(
Yi − α0

s(i) −X
′
iα
x
s(i) − α

θ
s(i)θ

r
i

σs(i)

)
.

The simulated likelihood for observation i is

L̂i(Ω) =
1

R

R∑
r=1

ˆ̀r
i (Ω),

where R is the number of draws. The MSL estimator is defined by

Ω̂MSL = arg max
Ω

N∑
i=1

log L̂i(Ω).

If R rises faster than
√
N , the MSL estimator is

√
N -consistent and has the same asymptotic distribution as the

conventional maximum likelihood estimator (Train 2003). I use 300 draws of θi and τi for each student, and

16It is also not necessary for lottery and distance compliers to differ with respect to average Xi or θi. Appendix B makes clear that
identification of selection on unobservables is based on the interaction of the two instruments, not differences in average tastes across
the two sets of compliers when the instruments are used separately.

17s(i) is used to refer both to the specific school chosen by student i, as in the school-specific intercept α0
s(i)

, and to the type of
school chosen by student i (charter or public), as in the demographic coefficient vector αx

s(i)
.
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maximize the simulated likelihood using the Newton-Rhapson method, with the gradient of the objective function

calculated analytically. The results were not sensitive to increasing the number of draws beyond around 100. I

calculated standard errors using the average outer product of the score of the simulated likelihood.

6 Structural Estimates

I next discuss estimates of the key parameters of the structural model, which are reported in table 4, 5 and 6.

These results were generated using 8th grade test scores as outcomes and assuming a bivariate normal distribution

for the εik across subjects. Estimates for 6th and 7th grade were very similar and are available upon request.18

6.1 Preference Parameters

Table 4 shows MSL estimates of the parameters governing preferences for charter schools. Column (1) reports

estimates of the utility parameters, while column (2) reports standard errors. Column (3) shows average marginal

effects of observed characteristics on the probability of applying to at least one charter school.19 The covariate vector

Xi is de-meaned in the estimation sample, so the intercept (computed as the average of γ0
k across schools) is the

average utility of charter attendance. The estimated intercept is negative and statistically significant, which implies

that on average, students prefer traditional public schools to charter schools even in the absence of application and

distance costs.

Estimates of the vector γx are consistent with the demographic patterns reported in Table 1. Subsidized lunch

status, special education, and limited English proficiency are associated with weak demand for charter schools, while

black students and students with higher baseline math and ELA scores have stronger preferences for charters than

other students. Preferences for charters are weaker among students with higher-quality local public school options

as measured by value-added, though this coefficient is imprecisely estimated. This lack of precision is likely driven

by the relatively small variance of the value-added measure: local public school value-added ranges from −0.12σ to

0.18σ in the estimation sample, with a standard deviation of only 0.05σ. As in Table 1, the estimates show that

poverty status has a substantial effect on application behavior. Holding other variables constant, subsidized lunch

status reduces the probability of submitting a charter application by 7 percentage points.

The bottom half of Table 4 reports estimates of the parameters governing preferences for distance, application

costs, and heterogeneity in unobserved tastes. Increased distance significantly reduces the utility of charter school

attendance. The marginal effect in column (3) shows that a one-mile increase in distance to a particular charter

reduces the probability of applying to that school by 0.6 percentage points, which is large relative to mean application

rates at individual schools (2 to 3 percent). The estimate of the application cost γa is positive, large, and statistically

significant. Its magnitude suggests that applying to a charter school involves a utility cost equivalent to a 5.6-mile

increase in distance.

The estimates also reveal important unobserved heterogeneity in preferences for charter schools. In utility

18The estimates for other grades were also reported in an earlier draft of this article (Walters 2013).
19Marginal effects for discrete variables are computed by simulating the model first with the relevant characteristic set to zero for

each student and then with it set to one, and computing the average difference in application probabilities across these simulations.
Marginal effects for continuous variables are average simulated numerical derivatives of the application probability. The marginal effect
for distance is the average effect of a one-mile increase in distance to a particular school on the probability of applying to that school.
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terms, a one-standard-deviation increase in θi is equivalent to a 13-mile increase in distance to all charter schools.

The equivalent estimates for ξik, τik, and ψia are smaller (7.4 miles, 0.34 miles, and 1.5 miles).20The preference

estimates therefore suggest that there is more unobserved heterogeneity in tastes for charter schools as a whole

than for individual charters or application bundles. This is further evidence that a single-index selection model is

reasonable.

6.2 Achievement Parameters

Table 5 reports estimates of the parameters of 8th-grade potential achievement distributions. In each panel,

column (1) shows estimates for charter schools, column (3) shows estimates for public schools, and column (5)

shows the difference, which is the causal effect of charter attendance. Columns (2), (4), and (6) report standard

errors. The reported charter intercept is the mean of the school-specific intercepts α0
k, weighted by the enrollment

shares of each school. The intercept in column (5) can therefore be interpreted as the population average treatment

effect (ATE) of charter attendance.

The estimates in Table 5 reveal that charters have larger effects on test scores for more disadvantaged students.

The constant term implies that charter attendance raises 8th-grade math and ELA scores by 0.64σ and 0.56σ on

average. Subsidized lunch students, non-white students, and students with lower baseline scores receive further

benefits. A comparison of columns (1) and (3) reveals that black students, Hispanics, and poor students lag

behind other students in public school, but these characteristics are not predictive of potential scores in charter

schools conditional on the other covariates. In this sense, charter schools close achievement gaps between racial and

socioeconomic groups.

Estimates of the selection correction parameters αθc and αθ0 reveal that stronger unobserved preferences for

charters are associated with slightly smaller achievement benefits from charter attendance. Column (3) shows that

students with stronger preferences for charters do better in traditional public schools. A one-standard-deviation

increase in θi is associated with a 0.1σ increase in public school math scores and a 0.027σ increase in ELA scores.

Similar to the pattern for observed characteristics, the relationship between θi and achievement is weaker in charter

schools. Students with stronger unobserved preferences therefore experience smaller benefits from charter atten-

dance: when θi increases by one-standard deviation, the achievement benefits generated by charter attendance fall

by 0.09σ and 0.06σ in math and ELA.

6.3 Absolute and Comparative Advantage in Charter School Choice

Taken together, the structural preference and achievement estimates can be used to characterize selection into

the charter sector on both observed and unobserved dimensions. To summarize patterns of absolute and comparative

advantage, define the preference index

P i ≡ X ′iγx + θi.

20The standard deviation of τik is λτ ·
(
π/
√
6
)
, and similarly for the other extreme-value errors.
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Pi indexes student i’s preference for charter schools relative to public schools as a function of both observed char-

acteristics and unobserved tastes. The relationship between charter preferences and potential charter achievement

is summarized by the function

αc(p) ≡
K∑
k=1

wk · E[Yi(k)|Pi = p].

αc(p) is the average potential charter school outcome for students with preference p. I set the weights wk proportional

to charter enrollment shares. Similarly, α0(p) ≡ E[Yi(0)|Pi = p] is the average potential public school outcome for

students with preference p. The average achievement benefit generated by charter attendance is β(p) ≡ αc(p)−α0(p).

The key finding in the paper is shown in Figure 3. This figure reveals that students with stronger demand for

charter schools have absolute advantages in both the charter sector and the traditional public sector, but students

with weaker preferences have a comparative advantage in the charter sector. Panels A and B plot the conditional

expectation functions αc(p) and α0(p) for math and ELA. In both subjects, mean potential outcomes rise with

charter preferences. This is driven both by observed characteristics (since disadvantaged students have weaker

tastes for charters and lower scores) and unobserved characteristics (since high-θi students have stronger tastes

for charters and higher scores). The slope of αc(p) is less steep than the slope of α0(p), however, so the benefit

associated with charter attendance falls as charter preference rise. This can be seen clearly in panel C, which plots

β(p). Consistent with the reduced form evidence in Figure 1, the structural estimates reveal that achievement

benefits are smaller for students with stronger demand for charter schools.

Sorting on the basis of comparative advantage requires that β(p) rises with p; instead, the results reported here

show that the students with the largest potential benefits are precisely those who are least likely to enter the charter

sector. This inverse relationship between preferences and achievement gains is striking in view of the standard Roy

model, which predicts a positive relationship between the propensity to seek treatment and the benefit from doing

so. While it is not possible to conclusively determine the cause of the “reverse Roy” pattern documented in Figure 3,

one plausible explanation is worth noting. Parents who invest more in human capital on other margins may also be

more motivated to enroll their children in charter schools. Charter schools weaken the relationships between student

characteristics and academic achievement, however, which suggests that they partially compensate for differences

in human capital investments across families. In this scenario, children with more motivated parents will have

absolute advantages in both sectors and will be more likely to enroll in charters, but will experience smaller gains

from charter attendance. This description matches the patterns of absolute and comparative advantage documented

in Figure 3.

6.4 School Effects

Table 6 reports estimates of the model’s school-specific parameters, including the average utilities γ0
k, the

admission probabilities πk (averaged across applicant cohorts), and the average test score effects (α0
k − α0

0). The

utility estimates show that some charters are more popular than others, but all of the estimates are negative,

indicating that on average students prefer traditional public schools to attending any charter. The admission

probabilities range from 0.39 to 0.88. The achievement estimates in columns (3) and (4) show that the large effects
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of Boston’s charters are not driven by any particular school: all seven schools boost achievement in both math and

ELA. Interestingly, the most effective schools do not seem to be the most popular; schools 4, 6, and 7 have the

largest test score effects, but also the three lowest average utilities. This is further evidence that school choices are

not driven by achievement gains in the Boston charter setting.

7 Policy Implications

The structural estimates reported in Section 6 reveal that students with larger potential achievement benefits

are less likely to apply to charter schools. The preference estimates in Table 4 also imply that demand for charters

is relatively weak: students act as if charter applications are costly, and the average utility of charter attendance is

below the utility associated with traditional public school. I next explore the policy implications of these findings.

First, to quantify how much the pattern of selection matters for productivity in the charter secotr, I use the

structural model to compare treatment effects for current charter students to potential treatment effects for other

groups of students, holding the size of the charter sector fixed. I then combine the model of charter demand with

assumptions about supply to quantify the potential effects of charter expansion at the margin.

7.1 Charter School Treatment Effects

Table 7 reports three key treatment effects computed using the structural estimates. Column (1) shows the effect

of treatment on the treated (TOT), the effect of charter attendance for students who attend charter schools in the

current system. This effect can be written TOT ≡ E[β(Pi)|Si 6= 0]. Column (2) shows the population average

treatment effect (ATE), given by ATE ≡ E[β(Pi)]. Column (3) shows the effect of treatment on the non-treated

(TNT), defined as TNT ≡ E[β(Pi)|Si = 0]. Estimates of these effects are generated by simulating observations

from the structural model and computing average treatment effects for students who make each treatment choice.

The results in Table 7 show that the pattern of selection into charter schools produces meaningful differences

in treatment effects between charter and non-charter students. The ATE for 8th-grade math scores is 0.64σ, while

the TOT is 0.48σ, roughly 25 percent smaller. The TNT is 0.68σ. This implies that replacing a randomly selected

charter student with a randomly selected non-charter student would increase average math achievement in the pair

by 0.1σ ((0.68σ − 0.48σ)/2). Similarly, the TOT for ELA is 25 percent smaller than the ATE (0.42σ compared

to 0.56σ). These results suggest that outreach programs targeting students who are currently unlikely to apply to

charter schools could substantially boost overall productivity in the charter sector.

One potential caveat to the interpretation of the results is worth noting. The treatment effects in Table 7

capture average causal effects of charter attendance for randomly selected students in the charter sector (TOT),

non-charter sector (TNT), or in the population (ATE), holding all inputs in the charter and non-charter sectors

fixed. If part of the effect of charter attendance operates through peer quality, these treatment effects do not reflect

the impact of changing the overall composition of the charter student body. Specifically, any peer effects are built

into the parameters α0
k, so these parameters will change as peer quality changes if peer effects are important.

For two reasons, however, peer effects seem unlikely to an important part of the achievement effects generated by

charter schools. First, Table 1 shows that charter applicants’ baseline test scores are about 0.2σ above the Boston
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average. For this difference in peer quality to explain the causal effects reported in Table 2, peer effects would have

to be roughly 2σ to 3σ per standard deviation of peer quality. In a summary of the peer effects literature, Sacerdote

(2011) reports a wide range of estimates, almost all of which are substantially less than these magnitudes. This

suggests that charter schools produce achievement gains mostly through channels other than peer effects. Second,

students who experience larger increases in peer quality as a result of charter attendance do not experience larger

achievement gains. Appendix Figure A1 plots lottery-specific reduced form effects on peer quality against effects

on test scores. Peer quality is defined as the average 4th-grade test score of the peers with whom a student attends

6th grade. The figure shows that there is essentially no relationship between the effect of winning a charter lottery

on peer quality and the effect on academic achievement. This suggests that peer effects are not a primary driver of

charter effectiveness, so the α0
k likely reflect factors other than peer quality.21

7.2 Charter Expansion Effects

7.2.1 Additional Assumptions

The treatment effects discussed above describe the effects of modifying the student population served by Boston’s

charter system in various ways (such as replacing charter students with current non-charter students, for example).

An alternative approach to quantifying the policy importance of demand-side behavior is to use estimates of charter

demand to predict the efficacy of charter school expansion. Predicting charter expansion effects requires assumptions

about the supply side of the charter market. A full model of charter supply is outside the scope of this paper; I

instead make simplifying assumptions that allow me to interpret out-of-sample predictions as plausible upper bounds

on the effects of charter expansion due to demand-side behavior.

The supply side of the charter market is defined by a set of charter schools, with each school characterized by

a location, an admission probability πk, an average utility γ0
k, and a mean achievement parameter α0

k. To choose

locations for the first six expansion schools, I use the addresses of new campuses that opened through 2013 (see

Appendix Table A1). For further expansions, I choose locations using predictions from a probit model of the

probability that a charter is located within a zip code as a function of average share non-white, share subsidized

lunch, and average baseline MCAS scores in the zip code.22 Each expansion school is placed sequentially in the

center of the zip code with the highest predicted probability among those that do not already contain a charter.23

Charter admission probabilities are assumed to adjust endogenously to equate the demand for charter enrollment

among admitted students with the supply of charter seats. I take charter school seating capacities as exogenously

given, and solve for a Subgame Perfect Nash Equilibrium in which charters optimally set admission probabilities to

maximize enrollment subject to their capacity constraints. Capacities for new schools are chosen randomly from the

distribution of capacities for existing schools. Appendix C describes the details of the equilibrium and the methods

used to compute counterfactual admission probabilities.

To choose the average utility and test score parameters, I assume that the charter school sector exhibits constant

21Angrist et al. (2013a) present additional evidence that the effects of Boston’s charter high schools do not seem to be driven by
peer quality.

22Marginal effects from the probit model are reported in Appendix Table A6.
23Anecdotally, location decisions for Boston charter schools are often determined by the availability of vacant buildings, such as

empty churches (Roy 2010). In an alternative set of simulations, I chose charter locations randomly from a grid of half-mile by half-mile
blocks covering Boston. The results were qualitatively similar to those reported below.
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returns to scale (CRTS). Specifically, I treat the vectors (γ0
k, α

0
k)′ as independent and identically distributed draws

from a fixed distribution F (γ0, α0). Each new school is assigned a draw from the estimated joint distribution of

parameters listed in Table 6. There are several reasons that this assumption may fail to hold in practice. If teachers,

principals, or other inputs are supplied inelastically, it may be difficult for new charters to replicate the production

technology used by existing campuses (Wilson 2008). Public schools may also respond to charter competition,

though existing evidence suggests that the effects of charter entry on traditional public school students are small

(Imberman 2011). If peer effects do play a role in charter effectiveness, these effects will be diluted in expansions

that draw in less positively selected students. Together, these factors seem likely to reduce the efficacy of charter

schools at larger scales. The simulation results should therefore be viewed as upper bounds on the effects of charter

expansion. The CRTS assumption allows me to describe demand-driven limits on the effects of expansion in a

best-case scenario for charter supply.

7.2.2 Simulation Results

Figure 4 summarizes the counterfactual simulations. The outcomes of interest are school choices, charter over-

subscription, average 8th-grade test scores, and charter school treatment effects. In each panel, a vertical black

line indicates the existing number of charter schools, and a red line indicates the size of Boston’s planned charter

expansion. Panel A of Figure 4 shows how charter application and attendance rates change as the charter sector

expands. Panel B shows effects on admission probabilities and seating capacity utilization. Panel C shows effects

on average math and ELA scores. Panel D shows the effect of treatment on the treated in each simulation. Table

8 shows numerical results for choice behavior and test scores in a subset of the simulations.

The simulations imply that charter schools have had a significant impact on the distribution of test scores in

Boston. This can be seen in the second row of Table 8, which shows the simulated effects of closing all charter

schools. Without charter schools, the gap in average test scores between Boston and the rest of Massachusetts

would widen by 0.043σ in math and 0.033σ in ELA. This implies that the existence of charter schools has reduced

average test score gaps between Boston and the rest of the state by 12 percent in math and 6 percent in ELA.

The next row of Table 8 shows that the recently authorized charter expansion is predicted to further raise average

math and ELA scores by 8 percent and 6 percent, respectively. As shown in Figure 4, opening additional charters

is predicted to continue to boost average test scores. Furthermore, panel D of Figure 4 shows that with constant

returns to scale on the supply side, the efficacy of charter schools will increase as the charter sector expands. The

TOTs associated with Boston’s planned expansion are 4 percent and 7 percent larger than the TOT for current

charter students in math and ELA. TOTs for an expansion that raises the number of charter schools to 20 are

7 percent and 12 percent larger than the current TOT. This reflects the pattern of selection discussed in Section

6: at the margin, charter expansion draws in students with weaker tastes for charter schools, who receive larger

achievement gains. As a result, charter school expansion has the potential to produce large gains for marginal

applicants.

However, the simulation results also imply that demand for charter schools in Boston is limited, especially

among the students with the largest potential achievement gains. Panel B of Figure 4 shows that charter expansion

is predicted to reduce oversubscription: admission probabilities rise quickly with the number of schools, and the
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share of seats left empty also increases. In a setting with 20 charter schools, 87 percent of charter applicants are

admitted, so a student who wishes to attend a charter is almost guaranteed the opportunity to do so. Nevertheless,

less than half of students apply to a charter, 21 percent attend one, and 17 percent of charter seats are empty.

Moreover, the ATEs in Table 7 are well above the TOTs in all simulations, suggesting that many of the students for

whom charters are most effective choose to remain in public schools. This finding is driven by the large application

cost and negative average utilities reported in tables 4 through 6, together with comparatively weak preferences

for charters among disadvantaged and low-achieving students. The simulation results suggest that without efforts

to induce charter applications from the highest-benefit students, the effects of realistic charter expansions may be

limited by weak demand.

8 Conclusion

This paper develops a structural model of charter school applications, attendance decisions, and academic

achievement to analyze patterns of absolute and comparative advantage in school choice. Estimates of the model

reveal that tastes for charter schools are inversely related to achievement gains: low-achievers, poor students, and

those with weak unobserved tastes for charters gain the most from charter attendance, but are unlikely to apply.

Charter school choices are therefore inconsistent with sorting based on comparative advantage. As a consequence,

counterfactual simulations show that charter effectiveness is increasing in the size of the charter sector, as expansions

draw in students with weaker preferences who receive larger gains. At the same time, demand for charters among

the highest-benefit students is weak, so the effects of charter expansion may be limited by weak demand even in

the best-case scenario for charter supply.

This pattern is surprising – the canonical Roy (1951) selection model predicts that students with more to gain

from charter attendance will be more likely to apply. However, the “reverse Roy” pattern described here is consistent

with the possibility that effective charter schools compensate for differences in human capital investments across

families, but parents who invest more on other dimensions are more likely to enroll their children in charter schools.

This pattern is also consistent with a growing body of evidence suggesting that lower-income students are less likely

to choose high-quality schools in a variety of settings (Buter et al., 2013; Brand and Xie, 2010; Dillon and Smith,

2013; Hastings et al., 2009; Hoxby and Avery, 2012). This constellation of findings has broader implications for

the design of school-choice programs. An increase in the availability of high-quality schools without commensurate

outreach efforts may not induce disadvantaged students to attend these schools, even if the benefits from doing so

are especially large for such students.

These findings raise the further question of whether parents who forgo large potential achievement gains are truly

uninterested in achievement, or simply unaware of differences in effectiveness across schools. The model estimated

in this paper does not distinguish between these two possibilities. If the lack of demand for charter schools among

disadvantaged students reflects a lack of information, the demand for charters may shift as parents become more

informed. In related work, Hastings and Weinstein (2008) show that providing test score information leads parents

to choose schools with higher test scores, suggesting that informational frictions may play a role. Changes in

recruitment practices may also change the pattern of selection into charter schools; recent legislation authorizing

charter expansion in Massachusetts requires schools to take efforts to recruit applicants who are demographically
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similar to students in the local district. In future work, I plan to use data from Boston’s expansion to validate

the model estimated here, and to study changes in the demand for charter schools as the city’s charter sector

expands.
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Figure 1: Relationship Between Charter Effects and Predicted Application Probabilities

P-values for equal effects across quartiles: Math = 0.038, ELA = 0.089
Notes: This figure plots coefficients from 2SLS regressions of test scores on 
interactions of charter attendance and dummies for quartiles of the predicted probability 
of applying to a charter school, instrumenting with interactions of the lottery offer and 
quartile dummies. Predicted application probabilities are computed in the full sample 
using the probit model in column (3) of Table 1. The sample is restricted to lottery 
applicants before quartiles are defined. Models also control for quartile main effects, 
lottery fixed effects, and grade effects. The sample stacks scores in grades six through 
eight.
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A. Math potential outcomes B. ELA potential outcomes

Figure 3: Absolute and Comparative Advantage in Charter School Choice

C. Charter effects
Notes: This figure plots relationships between preferences for charter schools and potential 8th-grade test scores in charter and traditional public schools. The figure is 
produced by simulating 100,000 observations from the structural model using the empirical distribution of observed student characteristics. A charter preference, an average 
charter potential outcome, and a public potential outcome are then computed for each observation. Charter outcomes are weighted averages of school-specific outcomes, with 
weights proportional to school capacity. Panels A and B plot coefficients from local linear regressions of potential outcomes on charter preferences in this simulated data. Panel 
C is a corresponding plot for the causal effect of charter attendance, which is the difference between charter and public potential outcomes. Local linear regressions use triangle 
kernels with bandwidths of 0.1. Charter preferences are in standard deviation units. Dashed lines show the average preference for current applicants.

-1
-.5

0
.5

8t
h-

gr
ad

e 
m

at
h 

sc
or

e 
(s

td
. d

ev
.)

-2 -1 0 1 2
Charter preference (std. dev.)

Average charter outcome Average public outcome

-.8
-.6

-.4
-.2

0
.2

8t
h-

gr
ad

e 
EL

A 
sc

or
e 

(s
td

. d
ev

.)

-2 -1 0 1 2
Charter preference (std. dev.)

Average charter outcome Average public outcome

.4
.5

.6
.7

.8
.9

8t
h-

gr
ad

e 
ch

ar
te

r e
ffe

ct
 (s

td
. d

ev
.)

-2 -1 0 1 2
Charter preference (std. dev.)

Math effect ELA effect



Figure 4: Simulated Effects of Charter School Expansion

A. Applications and attendance B. Oversubscription

C. Average test scores in Boston D. Effects of treatment on the treated
Notes: This figure displays simulated effects of charter school expansion. The black dashed line in each panel corresponds to the 
existing number of charter schools, while the red dashed line corresponds to Boston's planned expansion. Simulated statistics are 
produced using 100 simulations per observation in the data set.

0
.1

.2
.3

.4
Fr

ac
tio

n

0 5 10 15 20
Number of charter schools

Application rate Attendance rate

0
.2

.4
.6

.8
1

Fr
ac

tio
n

0 5 10 15 20
Number of charter schools

Admission rate Fraction of seats filled

-.5
-.4

5
-.4

-.3
5

-.3
Te

st
 s

co
re

 (s
td

. d
ev

.)

0 5 10 15 20
Number of charter schools

Average math score Average ELA score

.3
.3

5
.4

.4
5

.5
Te

st
 s

co
re

 e
ffe

ct
 (s

td
. d

ev
.)

0 5 10 15 20
Number of charter schools

Math Effect ELA Effect



All students Charter applicants Probit marginal effect
(1) (2) (3)

Applied to charter school 0.177 - -

Applied to more than one charter school 0.048 0.272 -

Received charter offer 0.126 0.709 -

Attended charter school 0.112 0.593 -

Female 0.483 0.480 -0.008
(0.008)

White 0.147 0.166 -0.037***
(0.011)

Hispanic 0.394 0.310 -0.046***
(0.009)

Subsidized lunch 0.818 0.721 -0.094***
(0.012)

Special education 0.231 0.178 -0.026***
(0.010)

Limited English proficiency 0.210 0.132 -0.048***
(0.010)

Miles to closest charter school 2.110 1.889 -0.033***
(0.003)

Value-added of public schools in zip code -0.051 -0.050 -0.120
(0.087)

4th grade math score -0.545 -0.347 0.014***
(0.005)

4th grade ELA score -0.660 -0.433 0.010*
(0.005)

N 10122 1794 10122

*significant at 10; **significant at 5%; ***significant at 1%

Means
Table 1: Descriptive Statistics

Notes: This table shows descriptive statistics for students attending 4th grade at traditional public schools in
Boston between 2006 and 2009. The sample excludes students with missing middle school test scores. Column (1)
shows means for the full sample, while column (2) shows means for charter applicants. Column (3) shows
marginal effects from a probit model where the dependent variable is an indicator for applying to any charter.
Marginal effects are evaluated at the sample mean of all variables. Robust standard errors are in parentheses.



First stage 2SLS Yes No Yes No Yes No
Subject (1) (2) (3) (4) (5) (6) (7) (8)
Math 0.677*** 0.587*** 0.673*** 0.390*** 0.847*** 0.468*** 0.681*** 0.223

(0.021) (0.072) (0.085) (0.125) (0.088) (0.070) (0.081) (0.141)
p-value

ELA 0.677*** 0.407*** 0.471*** 0.264** 0.652*** 0.217*** 0.507*** 0.021
(0.021) (0.074) (0.087) (0.122) (0.095) (0.065) (0.084) (0.143)

p-value

N (scores) 3699 1409 2537 2571 4268 840
N (students) 1294 500 894 900 1497 297

*significant at 10; **significant at 5%; ***significant at 1%

Table 2: Lottery-based Estimates of Charter School Effects

Pooled sample Subsidized lunch Below-median baseline score Non-white
2SLS estimates for subgroups

Notes: This table reports 2SLS estimates of the effects of attendance at Boston charter schools on test scores for lottery applicants. The sample stacks test scores 
in grades 6 through 8. The endogenous variable is a dummy for attending any charter school after the lottery and prior to the test. The instrument is a dummy 
for receiving a lottery offer from any charter school. Column (1) reports coefficients from regressions of charter attendance on the offer variable in the sample 
of all applicants. Column (2) reports corresponding 2SLS estimates for math and ELA scores. Columns (3)-(8) show 2SLS coefficients from models that 
interact the endogenous variable with the characteristic in the column heading, adding an interaction of this characteristic and the lottery offer as an instrument. 
P-values are from tests of the hypothesis that the coefficients for both groups are the same. Sample sizes in columns (7) and (8) are for math. All models control 
for lottery fixed effects and grade effects. Standard errors are robust to heteroskedasticity and are clustered at the student level.

0.060 0.001 0.006

0.161 0.000 0.004

5108
1794



Math ELA First stage Math 2SLS ELA 2SLS
Controls (1) (2) Instrument (3) (4) (5)

None 0.041*** 0.053*** Lottery 0.677*** 0.587*** 0.407***
(0.009) (0.010) (0.021) (0.072) (0.074)

N (scores) 5108
N (students) 1794

Baseline characteristics 0.012 0.021*** Distance -0.025*** 0.600*** 0.203
(0.008) (0.008) (0.003) (0.204) (0.198)

N (scores) 29009
N (students) 10122

*significant at 10; **significant at 5%; ***significant at 1%

Balance check: 4th grade scores 2SLS comparison
Table 3: The Distance Instrument

Notes: Columns (1) and (2) show regressions of 4th-grade test scores on miles to the closest charter middle school. The first row includes no controls, while 
the second controls for student characteristics, including sex, race, free lunch status, special education status, limited English proficiency, and value-added of 
public schools in the zip code. Columns (3) through (5) show 2SLS results for middle school test scores using the lottery and distance instruments. The lottery 
estimates are reproduced from Table 2. The distance models control for student characteristics and 4th grade test scores. Standard errors are clustered at the 
student level.

10122

10122



Estimate Standard error Marginal effect
Parameter Description (1) (2) (3)

γ0 Mean charter utility -1.306*** 0.132 -

γx Female -0.027 0.080 -0.001
Black 0.307*** 0.137 0.027
Hispanic 0.045 0.139 0.005
Subsidized lunch -0.740*** 0.111 -0.071
Special education -0.329*** 0.115 -0.027
Limited English proficiency -0.390*** 0.113 -0.032
Baseline math score 0.168*** 0.060 0.014
Baseline ELA score 0.111* 0.060 0.008
Value-added of public schools in zip code -0.839 0.909 -0.076

γd Distance -0.174*** 0.009 -0.006

γa Application cost 0.978*** 0.040 -

σ0 Standard deviation of charter school tastes 2.235*** 0.129 -

λτ Scale of school-specific tastes 0.046 0.039 -

λψ Scale of application-specific tastes 0.205*** 0.010 -

N Sample Size 9156

*significant at 10; **significant at 5%; ***significant at 1%

Notes: This table reports maximum simulated likelihood estimates of the parameters of the structural school choice
model. The sample includes all students with observed 8th-grade test scores. The likelihood is evaluated using 300
simulations per observation. Column (1) reports parameter estimates, while column (2) reports standard errors. The
constant is the average of school-specific mean utilities, evaluated at the sample mean of the covariate vector X.
Column (3) reports average marginal effects of observed characteristics on the probability of applying to at least one
charter school. Marginal effects for discrete variables are differences between average simulated application
probabilities with the relevant characteristic set to 1 and 0 for all observations. Marginal effects for continuous variables
are average simulated numerical derivatives of the application probability. Marginal effects are evaluated using 100
simulations per observation. The marginal effect for distance is the effect of a one-mile increase in distance to a school
on the probability of applying to that school, averaged across schools.

Table 4: Estimates of Utility Parameters



Estimate Standard error Estimate Standard error Estimate Standard error
Parameter Description (1) (2) (3) (4) (5) (6)

α0
m Mean potential outcome 0.272*** 0.080 -0.367*** 0.009 0.639*** 0.081

αx
m Female 0.032 0.040 0.025 0.016 0.057 0.043

Black 0.048 0.066 -0.166*** 0.026 0.214*** 0.071
Hispanic 0.135*** 0.068 -0.093*** 0.026 0.228*** 0.073
Subsidized lunch 0.046 0.049 -0.120*** 0.023 0.165*** 0.054
Special education -0.288*** 0.052 -0.374*** 0.019 0.086 0.055
Limited English proficiency -0.025 0.065 0.076*** 0.020 -0.101 0.068
Baseline math score 0.358*** 0.030 0.476*** 0.011 -0.118*** 0.032
Baseline ELA score 0.046 0.029 0.065*** 0.01 -0.019 0.030
Value-added of public schools in zip code 0.479 0.430 0.943*** 0.171 -0.464 0.462

αθm×σθ Taste for charter schools (std. dv. units) 0.010 0.023 0.100*** 0.012 -0.090*** 0.026

α0
e Mean potential outcome 0.138 0.088 -0.424*** 0.010 0.562*** 0.089

αx
e Female 0.164*** 0.043 0.183*** 0.016 -0.019 0.046

Black 0.101 0.068 0.058** 0.028 0.159*** 0.074
Hispanic 0.177** 0.070 -0.031 0.028 0.209*** 0.076
Subsidized lunch 0.029 0.051 -0.116*** 0.025 0.146*** 0.056
Special education -0.265*** 0.051 -0.398*** 0.018 0.133** 0.055
Limited English proficiency -0.023 0.063 0.044** 0.020 -0.067 0.066
Baseline math score 0.119*** 0.030 0.164*** 0.011 -0.044 0.032
Baseline ELA score 0.284*** 0.031 0.366*** 0.010 -0.083** 0.033
Value-added of public schools in zip code 0.634 0.466 0.893*** 0.185 -0.259 0.501

αθe×σθ Taste for charter schools (std. dv. units) -0.037 0.026 0.027** 0.013 -0.064** 0.029

N Sample size

*significant at 10; **significant at 5%; ***significant at 1%

Table 5: Estimates of Achievement Parameters

Panel A. Math

Panel B. ELA

Notes: This table reports maximum simulated likelihood estimates of the parameters of the 8th-grade achievement distribution. Panel A shows estimates for math, 
while Panel B shows estimates for ELA. The likelihood is evaluated using 300 simulations per observation. Mean potential outcomes are evaluated at the sample 
mean of the covariate vector X. The mean potential outcome for charter schools is a weighted average of school-specific means, with weights proportional to school 
capacity. The sample includes all students with observed 8th-grade test scores. The likelihood is evaluated using 300 simulations per observation.
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Admission
Average utility probability Math ELA

School (1) (2) (3) (4)
Charter school 1 -0.695*** 0.516*** 0.492*** 0.577***

(0.139) (0.064) (0.116) (0.125)

Charter school 2 -0.615*** 0.390*** 0.471*** 0.540***
(0.136) (0.057) (0.101) (0.118)

Charter school 3 -1.308*** 0.653*** 0.543*** 0.510***
(0.140) (0.039) (0.123) (0.137)

Charter school 4 -1.638*** 0.706*** 0.771*** 0.618***
(0.135) (0.051) (0.119) (0.139)

Charter school 5 -0.801*** 0.394*** 0.551*** 0.344***
(0.132) (0.074) (0.115) (0.126)

Charter school 6 -2.203*** 0.824*** 0.682*** 0.834***
(0.145) (0.055) (0.123) (0.149)

Charter school 7 -1.883*** 0.875*** 0.968*** 1.007***
(0.158) (0.039) (0.171) (0.174)

*significant at 10; **significant at 5%; ***significant at 1%

Test score effects
Table 6: Estimates of School-specific Parameters

Notes: This table reports maximum simulated likelihood estimates of the school-specific 
parameters from the structural model. The likelihood is evaluated using 300 simulations per 
observation. The admission probabilities in column (2) are averages for 2006-2009. Average 
utilities and test score effects are computed at the population mean of the covariate vector X.



TOT ATE TNT
Subject (1) (2) (3)
Math 0.480 0.639 0.680

ELA 0.419 0.562 0.578

Table 7: Charter School Treatment Effects

Notes: This table reports model-predicted effects of 
treatment on the treated (TOT), average treatment effects 
(ATE), and effects of treatment on the non-treated (TNT) 
for Boston's charter schools in 8th grade. The TOT is the 
effect of charter attendance on students who attend charter 
schools. The ATE is the average potential effect of charter 
schools on all students. The TNT is the average potential 
effect of charter attendance on students who do not attend 
charter schools. Treatment effects are weighted averages 
of school-specific effects, with weights proportional to 
school capacity.



Application Attendance Admission Fraction of Avg. math Avg. ELA
rate rate probability seats filled score Math TOT score ELA TOT

Policy change (1) (2) (3) (4) (5) (6) (7) (8)
None (7 charter schools) 0.189 0.094 0.670 1.000 -0.359 0.493 -0.460 0.419

- - - - -0.402 - -0.493 -
All charter schools close (-11.6%) (-6.1%)

Boston's planned expansion 0.326 0.175 0.874 1.000 -0.329 0.513 -0.431 0.452
(expand to 13 schools) (72.43%) (86.47%) (30.52%) (0.00%) (-8.47%) (4.10%) (-6.29%) (7.76%)

Expand to 20 schools 0.398 0.214 0.870 0.838 -0.308 0.527 -0.409 0.470
(110.37%) (128.22%) (29.92%) (-16.24%) (-14.18%) (6.88%) (-11.05%) (12.08%)

Charter demand Test scores
Table 8: Simulated Effects of Charter School Expansion

Notes: This table reports simulated effects of changing Boston's charter school network on charter demand and test scores. Numbers in 
parentheses are percentage changes relative to the existing charter system. Simulated statistics are produced using 100 simulations per 
observation in the data set.
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For Online Publication

Appendix A: Relationship to Roy Model

This appendix shows that equations (8) through (12) nest a Roy model of selection in which students seek

to maximize achievement and have private information about their test scores in charter and public schools. For

simplicity, I omit application costs and preferences for distance. Achievement for student i at charter school k is

given by

Yi(k) = α0
k +X ′iα

x
c + ηic + νik,

while public school achievement is

Yi(0) = α0
0 +X ′iα

x
0 + ηi0 + νi0

where E[νik|Xi, ηic, ηi0] = 0. Assume that students know the parameters of these equations, their own characteristics

Xi, and private signals of their achievement in charter and public schools ηic and ηi0. Also assume that (ηic, ηi0)′

follows a bivariate normal distribution with E[ηi`|Xi] = 0 and V ar(ηi`) = σ2
` for ` ∈ {c, 0}, and Cov(ηic, ηi0) = σc0.

The νik represent random fluctuations in test scores unknown to the student.

Suppose that students choose schools to maximize expected achievement. Then student utility can be written

uik = α0
k +X ′iα

x
c + ηic,

ui0 = α0
0 +X ′iα

x
0 + ηi0.

Subtracting ui0 from uik, student preferences can be equivalently represented by the utility functions

Uik = γ0
k +X ′iγ

x + θi,

where

γ0
k = αk − α0,

γx = αxc − αx0 ,

θi = ηic − ηi0,

and Ui0 ≡ 0. These preferences are a special case of equation (8) with γd = γa = 0 and V ar(υik) = V ar(ψia) = 0.

Returning to the test score equation, we have

E(Yi(k)|Xi, θi] = α0
k +X ′iα

x
c + αθc · θi,

E(Yi(0)|Xi, θi] = α0
0 +X ′iα

x
0 + αθ0 · θi,

where
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αθc =
σ2
c − σc0

σ2
c + σ2

0 − 2σc0
,

αθ0 =
σc0 − σ2

0

σ2
c + σ2

0 − 2σc0
.

This implies that potential test scores are given by

Yi(k) = α0
k +X ′iα

x
c + αθc · θi + εik,

Yi(0) = α0
0 +X ′iα

x
0 + αθ0 · θi + εi0,

where E[εik|Xi, θi] = 0, which is the specification for achievement in equations (11) and (12).

Finally, note that the Roy framework implies that αθc > 0, αθ0 < 0, and αθc − αθ0 = 1. If students choose schools

to maximize academic achievement, then charter preferences will be positively related to scores in charter schools,

negatively related to scores in public schools, and the causal effect of charter attendance will increase with charter

preferences.
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Appendix B: Identification of Preference Coefficients

This appendix uses a simplified version of the structural model to demonstrate identification of the coefficients

on the charter preferences θi in equations (11) and (12). Suppose there is a single charter school, and the utilities

of charter and public school attendance are given by

Ui1 = γ0 + γd ·Di + θi + υi − γa ·Ai,

Ui0 = −γa ·Ai,

where Di is the distance to the charter school, Ai indicates a charter application, θi ∼ N(0, σ2
θ) is observed prior

to the application decision, and υi ∼ N(0, 1) is observed after the application decision.24 The charter school holds

a lottery for applicants with acceptance probability π.

The expected utility of applying to the charter school is

π · E[max{γ0 + γd ·Di + θi + υi, 0}|θi]− γa,

while not applying yields utility of zero with certainty. It is optimal to apply if

ψ(γ0 + γd ·Di + θi) >
γa

π
,

where ψ(t) ≡ Φ(t) · (t+ φ(t)). It is straightforward to show that ψ(·) is strictly increasing, so the application rule

can be written

Ai = 1{θi > θ∗(Di)},

where

θ∗(D) = ψ−1

(
γa

π

)
− γ0 − γd ·D.

Note that with γd < 0, we have dθ∗

dD > 0: students who live further from the charter school must have stronger

tastes for charter attendance to justify incurring the application cost.

Let Si(z) indicate charter attendance as a function of Zi. Rejected applicants cannot attend, so Si(0) = 0∀i.

Attendance for admitted applicants is given by

Si(1) = 1{γ0 + γd ·Di + θi + υi > 0}.

Lottery applicant compliers choose to apply and have Si(1) = 1. Compliers are therefore characterized by

(Ai = 1) ∩ (Si(1) > Si(0))⇐⇒ θi > max{θ∗(Di),−γ0 − γd ·Di − υi}.

The model for potential outcomes in charter and public school is

24I use a normal distribution rather than an extreme value distribution for υi because it allows me to obtain analytic formulas in
the calculations to follow.
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Yi(1) = α0
1 + αθ1 · θi + εi1,

Yi(0) = α0
0 + αθ0 · θi + εi0,

with E[εi`|θi, Di] = 0 for ` ∈ {0, 1}. It is straightforward to show that average potential outcomes for compliers

who live a distance D from charter schools are given by

E[Yi(`)|Ai = 1, Si(1) > Si(0), Di = D] = α0
` + αθ` · µcθ(D),

where

µcθ(D) = σθ · Φ
(
ψ−1

(
γa

π

))
· λ
(
θ∗(D)

σθ

)

+σθ · (1− Φ

(
ψ−1

(
γa

π

))
) ·
ˆ
λ

(
−γ0 − γd ·D − υi

σθ

)
dF

(
υi|υi < −ψ−1

(
γa

π

))
Here λ(t) ≡ φ(t)

1−Φ(t) is the inverse Mills ratio.

The inverse Mills ratio is an increasing function, so µcθ(D) is increasing in D. Applicant compliers who apply to

charters from further away therefore have stronger preferences for charters, and comparisons of potential outcomes

for lottery compliers who live different distances from charter schools identify the relationship between preferences

and achievement. Specifically, for D1 6= D0, we have

E[Yi(`)|Ai = 1, Si(1) > Si(0), Di = D1]− E[Yi(`)|Ai = 1, Si(1) > Si(0), Di = D0]

µcθ(D1)− µcθ(D0)
= αθ`

for ` ∈ {0, 1}. The numerator of the left-hand side of this equation can be computed using the methods described

in Abadie (2002) for estimating marginal mean counterfactuals for compliers. The denominator is non-zero because

complier preferences vary with distance; it can be calculated with knowledge of the parameters of the student utility

function, which are identified from charter application and attendance behavior. The selection parameters αθ` are

therefore identified.

45



Appendix C: Equilibrium Admission Probabilities

Description of the Game

This appendix describes the determination of equilibrium admission probabilities for use in counterfactual simu-

lations. These probabilities are determined in a Subgame Perfect Nash Equilibrium (SPE) in which students make

utility-maximizing choices as described in Section 4, and schools set admission probabilities to fill their capacities,

or come as close as possible to doing so.

The time of the game follows Figure 2. Strategies in each stage of the game are as follows:

1. Students choose applications.

2. Schools observe students’ application choices, and choose their admission probabilities.

3. Offers are randomly assigned among applicants.

4. Students observe their offers and make school choices.

To simplify the game, I assume that the distribution of students is atomless, so schools do not change their

admission probabilities in the second stage in response to the application decisions of individual students in the

first stage. Students therefore act as “price takers” in the first stage, in the sense that they do not expect schools

to react to their application choices. This implies that the game can be analyzed as if applications and admission

probabilities are chosen simultaneously. I analyze the static Nash equilibria of this simultaneous-move game, which

are equivalent to Subgame Perfect equilibria of the dynamic game described above.

Definition of Equilibrium

An equilibrium of the game requires an application rule for each student, a vector of admission probabilities π∗,

and a rule for assigning school choices that satisfy the following conditions:

1. The probability that student i chooses application bundle a is given by Qia(θi, τi;π
∗), where Qia is defined

as in Section 4 and now explicitly depends on the vector of admission probabilities students expect to face in

each lottery

2. For each k, π∗k is chosen to maximize enrollment subject to school k’s capacity constraint, taking student

application rules as given and assuming that other school choose π∗−k, which denotes the elements of π∗

excluding the k-th.

3. After receiving the offer vector z, student i chooses school k with probability Pik(z, θi, τi) as in Section 4.

School Problem

I begin by deriving a school’s optimal admission probability as a function of students’ expected admission

probabilities and the actions of other schools. Let Λk denote the capacity of school k, which is the maximum

share of students that can attend school k. Suppose that students anticipate the admission probability vector πe

when making application decisions in the first stage of the model. Their application decisions are described by
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Qia(θi, τi;π
e). In addition, suppose that schools other than k admit students with probability π−k. If school k

admits students with probability πk in the second stage, its enrollment is given by

ek(πk, π−k, π
e) = E

 ∑
a∈{0,1}K

∑
z∈{0,1}K

Qia(θi, τi;π
e)f(z|a;πk, π−k)Pik(z, θi, τi)

 .
School k choose πk to solve

max
πk∈[0,1]

ek(πk, π−k, π
e) s.t. ek(πk, π−k, π

e) ≤ Λk. (15)

The best response function πBRk (π−k, π
e) is the solution to problem (15). The optimal admission probability

sets school k’s enrollment equal to its capacity if possible. The following equation implicitly defines πBRk at interior

solutions:

E

[∑
a

∑
z

Qia(θi, τi;π
e)f(z|a;πBRk , π−k)Pik(z, θi, τi)

]
= Λk.

Noting that Pik(z) = 0 when zk = 0 (since school k is not in student i’s choice set if she does not receive an offer)

and setting fk(1|ak;πk) = akπk, this equation can be rewritten as

E

[ ∑
a:ak=1

∑
z:zk=1

Qia(θi, τi;π
e)f−k(z−k|a−k;π−k) · πBRk · Pik(z, θi, τi)

]
= Λk,

where z−k, a−k, and f−k are z, a and f excluding the k-th elements. An interior solution for πBRk therefore satisfies

πBRk =
Λk

E
[∑

a:ak=1

∑
z:zk=1Qia(θi, τi;πe)f−k(z−k|a−k;π−k)Pik(z, θi, τi)

]
≡ Γk(π−k, π

e).

If the denominator of Γk is sufficiently small, it may exceed one, in which case school k cannot fill its capacity.

In this case, the optimal action is to set πk = 1 and fill as many seats as possible. This implies that the best

response function is given by

πBRk (π−k, π
e) = min{Γk(π−k, π

e), 1}.

Existence of Equilibrium

Let πBR : [0, 1]K → [0, 1]K be the vector-valued function defined by

πBR(π) ≡
(
πBR1 (π−1, π), . . . , πBRK (π−K , π)

)′
.

A vector of admission probabilities supports a Nash equilibrium if and only if it is a fixed point of πBR(π). The

following theorem shows that an equilibrium of the game always exists.

Theorem: There exists a π∗ ∈ [0, 1]K such that πBR(π∗) = π∗.
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Proof: Note that Qia(θi, τi;π) is continuous in π and strictly positive, Pik(z, θi, τi) is strictly positive when zk = 1,

and f−k(z−k|a−k;π−k) is continuous in π−k and sums to one for each a−k, so the denominator of Γk is always

non-zero and continuous in π. πBRk is therefore a composition of continuous functions, and is continuous. Then

πBR is a continuous function that maps the compact, convex set [0, 1]K to itself. Brouwer’s Fixed Point Theorem

immediately applies and πBR has at least one fixed point in [0, 1]K .

Uniqueness of Equilibrium

I next give conditions under which the equilibrium is unique. Define the functions

∆k(π) ≡ πk −min{Γk(π−k, π), 1}

and let ∆(π) ≡ (∆1(π), . . . ,∆K(π))′. A vector supporting an equilibrium satisfies ∆(π∗) = 0. A sufficient condition

for a unique equilibrium is that the Jacobean of ∆(π) is a positive dominant diagonal matrix. This requires the

following two conditions to hold at every value of π ∈ [0, 1]K :

1a.
∂∆k

∂πk
> 0 ∀k

2a.
∣∣∣∣∂∆k

∂πk

∣∣∣∣ ≥∑
j 6=k

∣∣∣∣∂∆k

∂πj

∣∣∣∣ ∀k

To gain intuition for when a unique equilibrium is more likely, note that in any equilibrium, admission probabil-

ities must be strictly positive for all schools; an admission rate of zero guarantees zero enrollment, while expected

enrollment is positive and less than Λk for a sufficiently small positive πk. When πk > 0, we can write Γk as

Γk(π−k, π) =
Λkπk

ek(πk, π−k, π)

.It follows that conditions 1a and 2a are equivalent to the following conditions on the model’s enrollment elasticities:

1b.
∂ log ek
∂ log πk

>

(
Λk − ek

Λk

)
∀k

2b.
∂ log ek
∂ log πk

≥
∑
j 6=k

πk
πj
·
∣∣∣∣∂ log ek
∂ log πj

∣∣∣∣+

(
Λk − ek

Λk

)
∀k

Condition 1b necessarily holds in the neighborhood of an equilibrium since the elasticity of school k’s enrollment

with respect to its own admission probability is positive and Λk ≈ ek. This condition is more likely to hold

throughout the parameter space when demand for charter schools is strong, so that ek(πk, π−k, π) > Λk at most

values of π. Condition 2b is also more likely to hold in these circumstances, and when the cross elasticities

of enrollment at school k with respect to other schools’ admission probabilities are small. This occurs when

charter demand is more segmented. If preferences for distance are strong enough, for example, each student will

consider only the closest charter school, and the cross elasticities are zero, leading to a unique equilibrium. To

compute equilibria in the counterfactual simulations, I numerically solved for fixed points of the best response
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vector πBR(π) ≡
(
πBR1 (π, π−1), . . . , πBRK (π, π−K)

)′. I never found more than one equilibrium in any counterfactual.
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A. Math B. ELA

Figure A1: Relationship Between Effects on Peer Quality and Effects on Test Scores

Notes: This figure plots coefficients from regressions of 6th-grade test scores on lottery offers against coefficients from regressions of peer quality on offers, lottery by lottery. 
Lotteries are defined as combinations of application cohorts and schools applied. Peer quality for a given student is defined as the average 4th-grade test score of the students 
with whom he or she attends 6th grade. The red lines are from OLS regressions of test score effects on peer quality effects, weighting by sample size. The slope are 0.18 (s.e. 
= 0.43) for math and 0.19 (s.e. = 0.34) for ELA.
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School name Grade coverage Years open Records available Oversubscribed cohorts Linked schools
(1) (2) (3) (4) (5) (6)

Academy of the Pacific Rim 5-12 1997- Yes 2006-2009 -

Boston Collegiate 5-12 1998- Yes 2006-2009 -

Boston Preparatory 6-12 2004- Yes 2006-2009 -

Edward Brooke K-8 (with 5th entry) 2002- Yes 2007-2009 -

Excel Academy 5-8 2003- Yes 2008-2009 -

MATCH Middle School 6-8 2008- Yes 2007-2009 -

Smith Leadership Academy 6-8 2003- No - -

Roxbury Preparatory 6-8 1999- Yes 2006-2009 -

Uphams Corner 5-8 2002-2009 No - -

Dorchester Preparatory 5-12 2012- - - Roxbury Preparatory

Edward Brooke II K-8 (with 5th entry) 2011- - - Edward Brooke

Edward Brooke III K-8 (with 5th entry) 2012- - - Edward Brooke

Excel Academy II 5-12 2012- - - Excel Academy

Grove Hall Preparatory 5-12 2011- - - Roxbury Preparatory

KIPP Academy Boston 5-8 2012- - - KIPP Academy Lynn

Panel A. Schools open before 2011

Panel B. Expansion schools

Notes: This table lists charter middle schools serving traditional student populations in Boston, Massachusetts. Schools are included if they accept 
students in 5th or 6th grade. Panel A lists schools open between the 2007-2008 and 2011-2012 school years, while Panel B lists expansion school opened 
for 2011-2012 and 2012-2013. Column (3) lists the opening and (where relevant) closing year for each school. Column (4) indicates whether applicant 
records were available for cohorts attending 4th grade between 2006 and 2009, and column (5) lists the cohorts for which lotteries were held during this 
period. For expansion schools, column (6) lists existing Massachusetts charter schools operated by the same organization.

Table A1: Boston Charter Middle Schools



Differential
Variable (1)

Female -0.023
(0.031)

White -0.013
(0.020)

Hispanic -0.003
(0.026)

Subsidized lunch 0.009
(0.027)

Special education -0.010
(0.024)

Limited English proficiency -0.005
(0.019)

Miles to closest charter school -0.036
(0.066)

Value-added of public schools in zip code 0.002
(0.003)

4th grade math score -0.044
(0.060)

4th grade ELA score 0.034
(0.062)

Joint p-value 0.846
N 1794

Table A2: Covariate Balance

Notes: This table reports coefficients from regressions of 
baseline characteristics on a lottery offer dummy, controlling 
for lottery fixed effects. The p-value is from a test that the 
coefficients in all regressions are zero.



Follow-up rate Differential
(1) (2)

All students 0.889 -

Lottery applicants 0.869 -0.001
(0.015)

N (scores) 35849 6417

*significant at 10; **significant at 5%; ***significant at 1%

Table A3: Attrition

Notes: This table reports the fraction of follow-up test scores in grades 6 
through 8 observed for students attending 4th grade in Boston between 2006 
and 2009. A student is coded as observed in a grade if both her math and ELA 
scores are recorded. The sample stacks grades, and includes observations for all 
scores that should be observed assuming normal academic progress after 4th 
grade. Column (1) shows the follow-up rate, while column (2) shows the 
difference in follow-up rates for charter lottery winners and losers. This 
differential is computed from a regression that controls for lottery fixed effects. 
The standard error is robust to heteroskedasticity and is clustered at the student 
level.



School 1 School 2 School 3 School 4 School 5 School 6 School 7 Other MA
Practice (1) (2) (3) (4) (5) (6) (7) (8)

Instruction time
Days per year 190 190 190 180 185 193 190 185
Length of school day (hours:minutes) 8:25 7:00 8:30 7:56 9:00 7:33 7:14 7:17

School philosophy (5 pt. scale)
No Excuses 4 4 4 5 5 5 5 2.76
Emphasize traditional reading and math 5 5 5 5 5 5 4 3.86
Emphasize discipline/comportment 5 5 5 5 5 5 5 3.33
Emphasize measurable results 5 5 5 5 5 5 5 3.62

School practices (1 or 0 for yes/no)
Parent and student contracts 1 1 1 0 1 1 1 0.67
Uniforms 1 1 1 1 1 1 1 0.74
Merit/demerit system 1 1 1 1 0 1 1 0.30

Classroom techniques (5 pt. scale)
Cold calling 3 5 5 5 5 3 5 2.48
Math drills 2 4 5 5 5 5 5 3.33
Reading aloud 4 5 5 4 4 5 4 3.14
Notes: This table shows school practices at Boston charter middle schools, measured from a survey of school administrators. Columns (1)-(7) show practices for the 
7 schools used to estimate the structural model, while column (8) shows an average for other charter middle schools in Massachusetts.

Table A4: School Practices



Fraction Mean distance Extra distance
Applicants choosing: (1) (2) (3)

Closest charter 0.405 1.91 0.00
2nd closest 0.22 2.94 1.12
3rd closest 0.16 4.17 2.39
4th closest 0.09 5.09 3.11
5th closest 0.081 6.70 4.70
6th closest 0.037 8.50 6.48
7th closest 0.006 11.73 9.84

Notes: This table shows the fractions of applicants who applied to each possible choice 
by distance. Column (1) shows fractions of applicants whose closest chosen school had a 
given rank in the set of school-specific distances. Column (2) shows mean distance 
among students who made each choice. Column (3) shows extra distance relative to the 
closest charter school.

Table A5: Distance to Charter Schools Among Applicants



Probit marginal effect
Variable (1)

Share non-white 1.12
(1.02)

Share subsidized lunch 2.54
(1.65)

Average MCAS score 1.55*
(0.83)

N (zip codes) 22

*significant at 10; **significant at 5%; ***significant at 1%

Notes: This table reports marginal effects from a probit 
model for charter school location decisions. Each 
observation is a zip code. The dependent variable is an 
indicator equal to one if a charter school is located in the zip 
code. Marginal effects are evaluated at the sample mean.

Table A6: Determinants of Charter School Locations
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