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1 Introduction

Consider the market for a used car (Akerlof, 1970). Some of the car’s attributes, such as its

make and mileage, are easy to verify, while the owner may have private information about

other attributes, such as the car’s reliability. When the owner sets an asking price in a

classified advertisement, she may perceive a tradeoff: if she asks for a higher price, it will

take her longer to sell the car, but of course she will get more money when she succeeds in

selling it. Given these perceptions, the price she sets will depend both on her preferences

and on the attributes of the car. If she has only a weak desire for a newer model and the

car is reliable, she will set a high sale price, while she will set a lower sale price and sell the

car faster in the opposite circumstance.

Turn now to a used car buyer who is reading the classified advertisements. When he sees

a car with a high asking price conditional on its observable attributes, he should conclude

that either the car is reliable or that the seller has a weak desire to sell it. If in expectation

he believes that higher prices are associated with higher quality cars, he may be willing to

pay a higher price. This means that observationally identical cars can sell at heterogeneous

prices, although sellers who ask for a low price will sell their car faster than those who set a

high price.

Our goal in this paper is to formalize this intuition and explore its implications in a model

of exchange with private information. The model economy is populated by continuum of

risk-neutral investors who live for two periods. Investors are heterogeneous in their discount

factor β between the periods. At the start of the first period, each investor is endowed with

one unit of a perishable consumption good and one asset that produces some amount of the

consumption good in the second period. Different assets produce different amounts of the

consumption good δ. At the beginning of the first period each investor privately observes

the quality of his asset (the amount of consumption good it will produce) and his discount

factor. Next, there is trade of the first period consumption good for assets. Investors may

use their consumption good to buy assets, sell their asset for the consumption good, engage

in both activities, or simply consume their endowment. We allow investors to buy or sell

at any price, forming beliefs about the probability that they will be able to trade at that

price and about the composition of assets offered for sale at that price. Trade is rationed by

the short side of the market at every price, with all traders on the long side of the market

equally likely to be trade.

We prove that, under a regularity condition, this model supports an equilibrium of the

sort described in the first two paragraphs. We summarize sellers’ behavior by their continu-

ation value v, the product of their discount factor β and their asset quality δ. Sellers with
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higher continuation values set higher prices and sell their asset with lower probability. As

long as sellers with higher continuation values have higher quality assets on average, buyers

rationally perceive that they will get more by paying more, and so are willing to buy at a

range of different prices. In such a semi-separating equilibrium, identical quality assets sell

at different prices, reflecting heterogeneity in the sellers’ preferences, while heterogeneous

assets sell at the same price if the two sellers have the same continuation value.

We also find that our model admits many other equilibria. In a one-price equilibrium,

all trade takes place at a single price. Any seller with a continuation value below this price

sells for sure at that price, while sellers with higher continuation values do not sell. We

stress that the existence of a one-price equilibrium does not come from any restriction on

the prices that buyers and sellers may set. There are also many other equilibria, for example

equilibria in which all trade takes place at n different prices for arbitrary n.

Our model exhibits multiple equilibria because it is a signalling game. A seller’s price is a

noisy signal of her asset’s quality. Despite this, standard equilibrium refinements in signaling

games (e.g. Cho and Kreps, 1987; Banks and Sobel, 1987) are not useful for reducing the set

of equilibria. This is because those refinements rely on restricting buyers’ beliefs at “off-the-

equilibrium-path” prices, i.e. prices that no seller sets. We show that the multiple equilibria

can be supported by some sellers who actually set every relevant price.

We instead propose a restriction both on sellers’ behavior and buyers’ beliefs. Formally,

we prove that the semi-separating equilibrium is the unique one in which (i) all investors

with the same continuation value use the same strategy when setting sale prices, so on-the-

equilibrium-path behavior is the same; and (ii) buyers believe that all investors with the

same continuation value are equally likely to select any sale price not chosen in equilibrium,

so off-the-equilibrium-path behavior is the same as well.

We then turn to the efficiency properties of equilibrium, with a particular focus on the

semi-separating equilibrium. We identify two potential sources of inefficiency. First, the

semi-separating equilibrium may have too much separation. In equilibrium, investors with

different continuation values always set different prices and sell with different probabilities.

It may be possible to raise all investors’ welfare by inducing sellers to pool across prices in

some intervals. Second, the semi-separating equilibrium may have too much or too little

trade. By changing the identity of the marginal buyer, we may be able to raise the welfare

of all investors.

We also find that either the one-price equilibrium Pareto dominates the semi-separating

equilibrium or the two equilibria are not Pareto comparable. We find this result surprising,

because our belief prior to writing this paper was that the one price equilibrium artificially

restricted trading opportunities, which would then reduce welfare. For example, in many
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formulations of the one-price equilibrium, exchange at alternative prices is prohibited (Eis-

feldt, 2004; Kurlat, 2013). Instead, we prove that the benefits of pooling may be substantial

in this environment. In particular, an investor with the lowest continuation value is always

better off in the one-price than in the semi-separating equilibrium.

Finally, we turn to comparative statics. In a numerical example, we demonstrate that an

increase in heterogeneity in asset quality reduces the amount of trade, while an increase in

heterogeneity in the discount factor raises the amount of trade. Thus private information per

se is not bad for trade, but rather private information along the dimension that is relevant

to buyers. While this is true in both the one-price and the semi-separating equilibrium,

we also find that the one-price equilibrium always has more trade than the semi-separating

equilibrium. Again, we find this result surprising in light of our prior beliefs. The one-price

equilibrium restrict trading opportunities, yet seems to typically expand the amount of trade.

The equilibrium of this model with multidimensional private information differs from

our previous work in which investors’ discount factors are observable (Guerrieri and Shimer,

2014). In that model, we found that there is a unique fully separating equilibrium and that

assets of higher quality trade at higher price in less liquid markets. The predictions of the

two models differ along at least four dimensions. First, with multidimensional private infor-

mation there is price dispersion for assets of the same quality and heterogeneous assets selling

for the same price. In our prior work, there was a one-to-one mapping from asset quality to

price. Second, the equilibrium payoffs in this paper are affected by the joint distribution of

discount factors and asset quality, while in our prior work, equilibrium payoffs only depended

on the support of the distribution and the relative supply of assets. Third, with multidi-

mensional private information some investors both buy and sell assets. In contrast, with

observable preferences, investors only participate on one side of the market. Finally, we find

that typically a continuum of equilibria exist in this environment and therefore introduce a

refinement to reduce the set of equilibria. Beyond that, in this paper we introduce a formal

analysis of welfare, while in our prior work we simply explored the gains from particular

interventions in financial markets.

Our notion of equilibrium builds on Guerrieri, Shimer and Wright (2010), which in turn

builds on prior research, most notably Wilson (1980), Gale (1996), and Ellingsen (1997).

All these papers share the idea that price dispersion can arise in the presence of adverse

selection, as privately informed sellers can use a high sale price to signal a high quality asset,

if this comes at the cost of a lower sale probability. To our knowledge, Chang (2014) is

the only other paper that has explored multidimensional private information in that sort of

environment. There are at least five important differences between the results in the two

papers. First, Chang looks at an environment in which the role of an investor as a buyer
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or seller is determined exogenously. We allow investors to choose whether to buy assets,

sell assets, do both, or do neither. Second, Chang assumes that sellers are heterogeneous

while buyers are homogeneous. Moreover, all buyers value any asset more than the average

seller does. This ensures that in equilibrium, all assets are sold with a positive probability.

In our model, investors are heterogeneous, the decision to buy and sell is endogenous, and

in equilibrium some assets are transferred from investors who value them more to investors

who value them less. As a result, we find that some investors may choose not to attempt

to sell their assets in equilibrium.1 Third, under an analogous parameter restriction to ours,

Chang only characterizes a semi-separating equilibrium, while we prove that in our economy

there can generically be a continuum of equilibria, including a one price equilibrium. We

stress the comparison between the one-price and semi-separating equilibrium throughout our

analysis. Fourth, Chang (2014) characterizes equilibria when the parameter restriction fails.

Our paper does not do this. Fifth, we analyze efficiency properties of the semi-separating

equilibrium and state necessary and sufficient conditions for local Pareto optimality, while

Chang (2014) focuses on the analysis of a number of specific policies.

There is a related line of research that studies how optimal mechanisms can allow for

separation when sellers are privately informed, in the spirit of Maskin and Tirole (1992). In

DeMarzo and Duffie (1999), sellers can commit to retain a portion of an asset in order to

signal its quality. In a similar spirit, in Chari, Shourideh and Zetlin-Jones (2013), buyers

offer sellers a menu of contracts, inducing sellers of high quality assets to sell a small amount

of their holdings at a high price. Both of these papers focus on environments in which

asset quality is private information but sellers’ preferences are common knowledge, while we

allow for multidimensional private information. More fundamentally, we show that markets

naturally achieve the same outcome through a shortage of buyers and rationing.

Daley and Green (2012) obtain a similar outcome using a different approach, again in a

model with homogeneous sellers who are privately informed about their asset quality. They

show that delay in a dynamic model plays a similar role to sale probabilities in our static

setting. In their equilibrium, a sequence of short-lived buyers offer an increasing sequence

of sale prices. Sellers with a low valuation sell quickly while those with a high valuation sell

later, again dissipating some of the gains from trade. We show that the same dissipation of

rents can occur in a static environment through an endogenous shortage of buyers at high

prices.

Still other papers have developed models of adverse selection in which all trade occurs at

a single price. In some of these papers, such as Eisfeldt (2004) and Kurlat (2013), investors

1Formally we model this as investors setting a high price at which they know they will be unable to sell
their assets.
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are not allowed to consider trading at a different price. In other papers, such as Tirole (2012)

and Chiu and Koeppl (2011), the equilibrium is characterized by a pooling price for traded

assets. In our preferred equilibrium, trade occurs at a range of different prices, but we also

compare our one-price and semi-separating equilibria.

The paper proceeds as follows. Section 2 lays out the basic model. We define our

notion of equilibrium in Section 3. In Section 4 we establish by construction that our model

exhibits a continuum of equilibria, including the semi-separating and one-price equilibria.

In Section 5 we refine our notion of equilibrium through the assumption that investors with

identical preferences behave identically. We also establish uniqueness of the semi-separating

equilibrium under this additional restriction. Section 6 finds conditions under which the semi-

separating equilibrium is Pareto efficient. We also show that the one-price equilibrium may

Pareto dominate the semi-separating equilibrium but the reverse is never possible. Section 7

performs comparative statics in a parametric case of the model. Again we show that the

one price equilibrium has more trade than the semi-separating equilibrium. Section 8 briefly

concludes with a discussion of additional reasons why the notion of equilibrium may be

important.

2 Model

The economy lasts for two periods, t = 1, 2. It is populated by a unit measure of risk-neutral

investors with heterogeneous discount factors β ∈ [β, β̄] ⊆ R+. Each investor is endowed with

one unit of the period 1 consumption good and one unit of an asset that produces the period

2 consumption good as a dividend in period 2.2 Assets are heterogeneous in their dividend

δ ∈ [δ, δ̄] ⊆ R+, measured in units of the period 2 consumption good. Both consumption

goods and assets are divisible. Consumption must be nonnegative in each period.

At the beginning of period 1, each investor privately observes his type, that is, his dis-

count factor β and the quality of his asset δ. Next, there is a market in which period 1

consumption goods and assets are exchanged. Each investor makes independent buying and

selling decisions and so may engage in trade on both sides of the market, one side, or none.

We assume that an investor can only buy assets using the period 1 consumption good that

he holds at the start of the period, and so must consume any period 1 consumption goods he

gets from selling his asset.3 After the market meets, investors consume any remaining period

1 consumption good, c1 ≥ 0. In period 2, each investor consumes the dividends generated

2We assume for notational convenience alone that each investor has one unit of both the consumption
good and the asset. We relax these assumptions in Section 6.

3Other assumptions are possible here. While they would change some of our calculations, we not believe
that changing this “consumption-good-in-advance” constraint would alter our main results.
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by the assets he holds in that period, c2 ≥ 0. An investor with discount factor β seeks to

maximize E(c1+βc2), where expectations recognize that the investor may be uncertain about

whether he will succeed in buying and selling assets and about the quality of the assets that

he buys.

Let G : [β, β̄]× [δ, δ̄] → [0, 1] denote the initial joint distribution of discount factors and

asset quality, so G(β, δ) is the measure of investors who have a discount factor less than β

and are endowed with an asset with dividend less than δ.4 We assume G is atomless and

let g denote the associated density, with g(β, δ) = 0 when (β, δ) /∈ [β, β̄] × [δ, δ̄]. Formally

we assume that for any (β, δ) with g(β, δ) > 0 there are many investors with this discount

factor and asset quality. Informally we identify investors by the pair (β, δ). We also let

GB(β) denote the marginal distribution of discount factors, GB(β) ≡ G(β, δ̄).

It will be convenient to define an investor (β, δ)’s continuation value as v ≡ βδ. The lowest

and highest continuation values are v = βδ and v̄ = β̄δ̄. The distribution of continuation

values is H : [v, v̄] → [0, 1] where for all v ≥ v,

H(v) =

∫ v/δ

β

∫ v/β

δ

g(β, δ)dδdβ.

Also let Γ : [v, v̄] → [δ, δ̄] denote the expected dividend conditional on an investor’s continu-

ation value v. It is straightforward to prove that

Γ(v) ≡

∫ δ̄

δ
g
(

v
δ
, δ
)

dδ
∫ δ̄

δ
1
δ
g
(

v
δ
, δ
)

dδ
,

a function of the joint density g, and so a model primitive. We focus our analysis on the

case where the following restriction holds:

Assumption 1 Γ is continuous and increasing.

It is easy to find distribution functions that satisfy this restriction. For example, suppose β

and δ have independent Pareto distributions, G(β, δ) = (1−β−αβ)(1− δ−αδ) with β = δ = 1

and β̄ = δ̄ = ∞ for some positive constants αβ and αδ. Then

Γ(v) =
(αβ − αδ)(v

αβ−αδ+1 − 1)

(αβ − αδ + 1)(vαβ−αδ − 1)
,

continuous and increasing on [1,∞). Alternatively, suppose G(β, δ) = βαβδαδ with β = δ = 0

4The assumption that the support of G is rectangular is again for notational convenience only and can
easily be relaxed.
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and β̄ = δ̄ = 1 for some positive constants αβ and αδ. Then

Γ(v) =
(αδ − αβ)

(

1− vαδ−αβ+1
)

(αδ − αβ + 1)
(

1− vαδ−αβ

) ,

essentially the same functional form, and now continuous and increasing on [0, 1]. These are

our leading examples in Sections 6 and 7.

3 Definition of Equilibrium

We now develop our notion of equilibrium. After each investor learns his discount factor

β and the quality of his asset δ, a continuum of markets characterized by a price p ∈ R+

opens up. Each investor makes independent buying and selling decisions. On the buying

side, he has to decide whether to consume his unit of the period 1 consumption good or to

use it to buy assets and, if he buys assets, he has to decide at which price, pb(β, δ). On the

selling side, he has to choose whether to sell his asset or not and, if he sells, he has to decide

at which price, ps(β, δ). We assume that each unit of asset and each unit of the period 1

consumption good can be brought to only one market, so an effort to sell (or buy) an asset

at a price p is also a commitment not to sell (or buy) the asset at any other price.5

In making their optimal trading decisions, investors must form beliefs about the trading

probability and the type of assets for sale at any potential price, even those not offered in

equilibrium. Let Θ(p) denote the market tightness associated with price p, that is, the ratio

of the amount of the consumption goods that buyers want to use to buy at price p, relative

to the cost of the assets that sellers want to sell at price p. If Θ(p) < 1, there are not enough

goods to buy all the assets for sale at price p and the sellers are randomly rationed. If instead

Θ(p) > 1, there are more goods than needed to buy all the assets for sale at price p and the

buyers are randomly rationed. Specifically, a seller who attempts to trade at price p expects

to sell with probability min{Θ(p), 1}. Similarly, a buyer who attempts to trade at price p

expects to buy with probability min{Θ(p)−1, 1}. A seller who is rationed keeps his asset and

in period 2 consumes the dividend produced by it. A buyer who is rationed consumes his

period 1 consumption good.

In addition, let ∆(p) denote buyers’ belief about the average dividend among the assets

offered for sale at a price p. If some assets are sold at a price p, these beliefs must be

consistent with the quality of assets offered for sale. Our definition of equilibrium also rules

5We again assume for notational convenience that each investor must choose a single buy price and a
single sell price. Allowing an investor to divide his assets or consumption good and attempt to trade at
different prices would not affect the set of equilibria.
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out equilibria sustained by unreasonable beliefs about the quality of assets for sale in markets

that are inactive.

We are now ready to define an equilibrium.

Definition 1 An equilibrium is four functions ps : [β, β̄] × [δ, δ̄] × R+ → R+, pb : [β, β̄] ×

[δ, δ̄]× R+ → R+, Θ : R+ → [0,∞], and ∆ : R+ → [δ, δ̄] satisfying the following conditions:

1. Optimal Selling Decision: given Θ, for all (β, δ)

ps(β, δ) ∈ argmax
p≥βδ

min{Θ(p), 1}(p− βδ);

2. Optimal Buying Decision: given Θ and ∆, for all (β, δ)

pb(β, δ) ∈ argmax
p≥0

min{Θ(p)−1, 1}

(

β∆(p)

p
− 1

)

;

3. Beliefs: For all p ∈ R+ with Θ(p) <∞,

(a) if there exists a (β, δ) with ps(β, δ) = p, ∆(p) = E(δ|ps(β
′, δ′) = p);

(b) otherwise there exists a (β1, δ1) with δ1 ≤ ∆(p), p ≥ β1δ1, and

min{Θ(ps(β1, δ1)), 1}
(

ps(β1, δ1)− β1δ1
)

= min{Θ(p), 1}
(

p− β1δ1
)

;

and similarly a (β2, δ2) with δ2 ≥ ∆(p), p ≥ β2δ2, and

min{Θ(ps(β2, δ2)), 1}
(

ps(β2, δ2)− β2δ2
)

= min{Θ(p), 1}
(

p− β2δ2
)

;

4. Market Clearing: for all p ≥ 0, dµb(p) = Θ(p) dµs(p), where

µs(p) ≡

∫∫

ps(β,δ)≤p

g(β, δ) dδ dβ and µb(p) ≡

∫∫

pb(β,δ)≤p

g(β, δ)

pb(β, δ)
dδ dβ

are the measure of assets for sale at prices below p and the purchasing power of goods at

prices below p. Moreover, if there exists a (β, δ) with ps(β, δ) = p and Θ(p) > 0, then

there exists a (β ′, δ′) with pb(β
′, δ′) = p; and if there exists a (β, δ) with pb(β, δ) = p

and Θ(p) <∞, then there exists a (β ′, δ′) with ps(β
′, δ′) = p.

The first condition requires that investors make optimal selling decisions. Each seller

(β, δ) must set an optimal price for his asset.6 A seller who sets a price p only succeeds

6There is no loss of generality in assuming that he attempts to sell the asset. Attempting to sell at any
price p ≥ βδ always weakly dominates not selling the asset.

8



in selling with probability Θ(p). In this event, he gets p units of the consumption good in

period 1 but gives up δ units of the consumption good in period 2, which he values at βδ.

If he fails to sell, he gains nothing. We impose for expositional convenience the restriction

that sellers never set a price below their continuation value βδ.7

The second condition requires that investors make optimal buying decisions. Each buyer

(β, δ) sets an optimal price for buying assets.8 A buyer who sets a price p only succeeds in

buying with probability min{Θ(p)−1, 1}. In this event, he gives up a unit of the consumption

good and gets 1/p assets, each of which he anticipates will produce dividend ∆(p) next period.

If he fails to buy, he gains nothing.

The first part of the third condition imposes that beliefs are consistent with the observed

trading patterns whenever possible. If at least one seller sets a price p, then the expected

dividend must be the average among the sellers who set that price. The second part of this

condition describes beliefs at prices that nobody sets. Intuitively, we require that buyers must

be able to rationalize the expected dividend as coming from some probability distribution

over sellers, each of whom has a continuation value βδ less than the price and finds setting

this price to be weakly optimal. This means that there must either be some investor with

dividend ∆(p) who finds it optimal to set the price p, or that there must be both an investor

with a higher quality asset and an investor with a lower quality asset, both of whom find

this price optimal. In the latter case, appropriate weights on those two investors justify the

expectation ∆(p).9

Finally, the last condition imposes market clearing. It requires that the buyer-seller ratio

Θ(p) at any price p is equal to the ratio of the measure of the purchasing power of buyers at

price p to the measure of sellers selling at that price. The last piece of this condition ensures

that this holds even if both measures are zero yet a finite number of buyers or sellers sets

price p. For notational convenience alone, we do not impose that the buyer-seller ratio is

exactly equal to Θ(p) in this case.

7It is never strictly optimal for a seller (β, δ) to set a price p < βδ, and is only weakly optimal if Θ(p) = 0
and Θ(p′) = 0 for all p′ ≥ βδ.

8We prove below that in any equilibrium with trade, Θ(p) = ∞ at sufficiently low prices p. Therefore
buyers can always be sure to consume in period 1 by setting a low price and so we do not give buyers the
explicit option not to buy.

9In our previous research (Guerrieri, Shimer and Wright, 2010; Guerrieri and Shimer, 2014), the analogous
condition defined a probability distribution over seller types at each price p. None of the results in this paper
would change if we used that definition, but the one we use here is slightly simpler.
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4 Examples of Equilibria

This section constructs two equilibria to illustrate the types of outcomes that are feasible in

this environment. Appendix B shows that the model exhibits many more equilibria, indeed

a continuum of equilibria within certain parameterized classes.

4.1 Semi-Separating Equilibrium

We start by looking for an equilibrium in which every investor sets a sale price that is a strictly

increasing function of his continuation value, ps(β, δ) = P (βδ). Higher prices are associated

with a lower buyer-seller ratio, Θ(p) decreasing, which ensures that every investor is willing

to set the appropriate price. On the other hand, higher expected quality compensates buyers

for higher prices, ∆(p) increasing, so investors are willing to purchase assets at a range of

different prices.

A semi-separating equilibrium of this form exists if and only if the expected quality of

an asset held by an investor with the lowest continuation value is positive, Γ(v) > 0. In that

case, the equilibrium is characterized by a discount factor for the marginal buyer, β̂ ∈ (β, β̄],

which is determined in equation (1) below.

To characterize the equilibrium, we first define two critical prices. The lowest price with

trade is p ≡ β̂Γ(v), the value that the marginal buyer places on an asset sold by the worst

seller. Since β̂ > β and Γ(v) ≥ δ, Γ(v) > 0 implies p > βδ = v, so a seller with the lowest

continuation value strictly prefers selling his asset for p rather than retaining it. The second

critical price is the highest one with trade. Let p̄ be the smallest price satisfying p̄ = β̂Γ(p̄),

or p̄ = ∞ if there is no such price. That is, β̂Γ(v) > v whenever v < p̄.

In the semi-separating equilibrium, the equilibrium buyer-seller ratio satisfies

Θ(p) =



















∞ p < p

exp
(

−
∫ p

p
1

p′−Γ−1(p′/β̂)
dp′
)

if p ∈ [p, p̄]

0 p > p̄.

Facing this market tightness, an investor (β, δ) with continuation value βδ < p̄ maximizes

his profit by setting sale price price ps(β, δ) = β̂Γ(βδ). This can be confirmed directly from

the first part of the definition of equilibrium, ps(β, δ) = argmaxp≥βδmin{Θ(p), 1}(p− βδ).

An investor (β, δ) with a higher continuation value, βδ ≥ p̄, cannot sell his asset at

any price satisfying p ≥ v and Θ(p) > 0. Although such an investor is indifferent between

all sale prices at which he cannot sell their asset, his behavior still matters in equilibrium

since it influences buyers’ beliefs. We assume that such an investor sets price ps(β, δ) =
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max{βδ, β̂Γ(βδ)}.

Turn next to the investor’s belief about the quality of asset offered at each price. At

prices p < p, buyers are unable to find sellers, Θ(p) = ∞, and so beliefs are undefined.

Intermediate prices, p ∈ [p, p̄], are offered only by investors (β, δ) with βδ = Γ−1(p/β̂). Since

the average quality asset held by these sellers is Γ(βδ) = p/β̂, part 3(a) of the definition of

equilibrium imposes ∆(p) = p/β̂ when p ∈ [p, p̄]. Finally, at still higher prices, ∆(p) ≤ p/β̂.

Such beliefs are rational, since by construction an investor with continuation value βδ > p̄

always sets a price ps(β, δ) ≥ β̂Γ(βδ).10

Given these beliefs, we now use part 2 of the definition of equilibrium. An investor with

discount factor β > β̂ maximizes his profit by buying at any price p ∈ [p, p̄], weakly prefers

buying at those prices rather than any higher price, and strictly prefers buying at these

prices rather than a lower price where there are no sellers. An investor with discount factor

β < β̂ prefers to offer a price p < p, which ensures that he fails to buy in equilibrium.

The last piece of equilibrium is the determination of the marginal discount factor. In

order to ensure that the supply of assets is equal to the demand, we require

1−GB(β̂) =

∫ p̄

v

P (v)Θ(P (v))dH(v). (1)

The left hand side is the total supply of the period 1 consumption good brought to the

market by investors with discount factors greater than β̂. The right hand side is the total

cost of purchasing up the assets brought to the market by investors with continuation values

v < p̄. We prove in Section 5 that there is a unique solution to this equation. Finally, we

allocate buyers with β > β̂ to markets so as to equate supply and demand at each price, in

accordance with part 4 of the definition of equilibrium.

In summary, in a semi-separating equilibrium, investors face a tradeoff between the prob-

ability of selling their asset and the sale price. Investors with a higher continuation value

choose a higher sale price because they are less concerned about the consequences of failing

to sell their asset. Buyers understand this and rationally anticipate getting a higher quality

asset on average when they offer a higher buy price, leaving them indifferent across a range

of different prices. Thus heterogeneous assets sell at heterogeneous prices.

Figure 1 illustrates investors’ behavior in this equilibrium. Investors are divided into four

groups. Patient investors with a high quality asset buy other assets. Impatient investors with

a low quality asset try to sell their asset. There are also patient investors with a low quality

asset who try to sell their asset and buy other assets; and somewhat impatient investors with

10Part 3(a) of the definition of equilibrium, together with the assumption that ps(β, δ) = max{βδ, β̂Γ(βδ)}
imposes additional restrictions on ∆(p), but these are unimportant for our analysis.
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Figure 1: Behavior in a semi-separating equilibrium.

a high quality asset who neither buy nor sell asset but simply consume their endowment in

each period.

4.2 One-Price Equilibrium

We next construct equilibria in which all trade takes place at a single price. A one-price

equilibrium is characterized by two numbers, the trading price p∗ and the identity of the

marginal buyer β̂ ∈ (β, β̄). We find two equations that characterize these variables and

construct an associated equilibrium.

In a one-price equilibrium, an investor can purchase an asset at any price greater than

or equal to p∗ and can sell an asset at any price less than or equal to p∗:

Θ(p) =



















∞

1

0

⇔ p ⋚ p∗.

Part 1 of the definition of equilibrium implies that, taking Θ(p) as given, an investor (β, δ)

with a continuation value βδ ≤ p∗ will choose to sell for ps(β, δ) = p∗. Investors with a

higher continuation value, βδ > p∗, set a higher sale price. To support the equilibrium, we

12



choose one such price, ps(β, δ) = β̄δ if βδ > p∗. We stress that in this equilibrium, some

sellers’ prices depend only on the quality of their assets, not on their continuation values.

Turn next to buyers’ beliefs. Part 3(a) of the definition of equilibrium implies that buyers

expect

∆(p∗) =

∫ β̄

β

∫ p∗/β

δ
δg(β, δ) dδ dβ

∫ β̄

β

∫ p∗/β

δ
g(β, δ) dδ dβ

,

the average quality asset held by investors with a continuation value below p∗. At p > p∗,

the beliefs are also pinned down by condition 3(a): ∆(p) = p/β̄ whenever p ∈ (p∗, v̄]. Finally,

we assume ∆(p) = δ̄ when p > v̄, consistent with condition 3(b).

Now turn to part 2 of the definition of equilibrium. Let β̂ = p∗/∆(p∗). As long as β̂ ≤ β̄,

a buyer with discount factor β > β̂ finds it strictly optimal to buy at price p∗, while buyers

with lower discount factors find it better to offer a price p < p∗ at which they cannot buy.

Finally, we close the model using the market clearing condition, part 4 of the definition

of equilibrium:

1−GB(β̂) = p∗H(p∗), (2)

The left hand side is the amount of the period 1 consumption good held by investors with

discount factors greater than β̂ and the right hand side is the cost of buying the assets held

by investors with continuation value less than p∗. A one price equilibrium is a pair (β̂, p∗)

solving β̂∆(p∗) = p∗ and equation (2). Depending on functional forms, one or more one-price

equilibrium may exist.

Eisfeldt (2004) and Kurlat (2013) assume that all trade occurs at price p∗. They restrict

trading opportunities so a seller has no technology for selling his asset at a price different than

p∗. We allow sellers to set such prices, yet all trade occurs at p∗ in a one-price equilibrium.

Our approach clarifies that the existence of a one-price equilibrium is sensitive to buyers’

beliefs ∆(p) at prices p > p∗. It might be most natural to think that all sellers with

continuation value just above p∗ set a price just above p∗. If that were the case, buyers

would anticipate being able to purchase an asset with expected quality just above ∆(p∗) at

such prices. Since the expected quality of an asset for sale at p∗ is strictly less than this—it is

the average quality of an asset held by investors with continuation values less than or equal

to p∗—buyers would find it more profitable to pay this higher price, breaking the one-price

equilibrium.

Instead, we support the one-price equilibrium through buyers’ belief that sellers with a

continuation value just above p∗ will set a price just above p∗ only if they have the lowest

quality asset consistent with the continuation value. This pushes down buyers’ beliefs and

supports the equilibrium. Moreover, these beliefs are consistent with equilibrium behavior.
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In equilibrium, some sellers do set a price just above p∗, justifying the beliefs. Thus standard

signaling game refinements, which are based on ruling out unreasonable out-of-equilibrium

beliefs, have no bite in our environment.

4.3 Other Equilibria

Once one understands how to construct the one-price equilibrium, it is easy to construct

many other equilibria. For example, we show in Appendix B that our model admits a

continuum of one price equilibria, each characterized by a sale price p1, a marginal buyer β̂,

and a sale probability θ1 < 1. Buyers do not deviate to a higher price because they believe

that they will only encounter sellers with low quality assets relative to their continuation

value, as we have discussed above. At lower prices, the sale probability is higher than θ1,

eventually reaching 1 at some p0 < p1. The sale probability Θ(p) in this interval leaves the

seller with the lowest continuation value indifferent about charging any price p ∈ [p0, p1]

and keeps sellers with higher continuation values at the equilibrium price p1. Finally, buyers

prefer not to buy at a lower price because they again anticipate getting lower quality assets.

Building on this logic, we show that our model also admits a continuum of equilibrium

with n prices for any positive n. And our model admits equilibria that combine intervals

with semi-separation and mass points attracting a positive measure of buyers and sellers. In

short, many things can happen in our model, depending on how we model sellers’ behavior

on the equilibrium path and buyers’ beliefs off the equilibrium path.

5 Equilibrium Selection

5.1 Restrictions on Sellers’ Behavior

We now introduce a restriction on behavior that ensures a unique outcome. Investors with

the same continuation value have the same preferences. We impose that they behave the

same as well:

Assumption 2 All investors with (β, δ) such that βδ = v are restricted to set the same

selling price and buyers believe that they will do so on and off the equilibrium path.

This assumption has two important implications for the equilibrium definition. First,

since investors with the same continuation value set the same selling price, there exists a

function P : [v, v̄] → R+ such that ps(β, δ) = P (βδ) for all (β, δ). This restricts part 1 of

the equilibrium definition.
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Second, it imposes an additional constraint on how buyers rationalize the quality of assets

available at a price that is not charged in equilibrium. If they believe that some investor

(β, δ) would be inclined to offer that price, then they must believe that all investors with

the same continuation value would be equally inclined to offer that price. This implies that

part 3 of the equilibrium definition is modified as follows: for all p ∈ R+ with Θ(p) <∞,

(a) if there exists a v ∈ [v, v̄] with P (v) = p, ∆(p) = E(δ|P (v′) = p);

(b) otherwise there exists a v1 with Γ(v1) ≤ ∆(p), p ≥ v1, and

min{Θ(P (v1)), 1}(P (v1)− v1) = min{Θ(p), 1}(p− v1);

and similarly a v2 with Γ(v2) ≥ ∆(p), p ≥ v2, and

min{Θ(P (v2)), 1}(P (v2)− v2) = min{Θ(p), 1}(p− v2).

Once we modified part 1 of the equilibrium definition as specified above, part 3(a) is the same

and is included only for expositional convenience. Part 3(b) instead imposes an additional

and important restriction on beliefs at prices that are not posted in equilibrium.

One way to think about this restriction is to imagine what would happen if a single buyer

offered a price p that was not previously offered in the market. Some sellers would respond

by offering some assets at that price, driving down the buyer-seller ratio until it achieved

the value Θ(p) described in part 3(b) of the definition of equilibrium. At this buyer-seller

ratio, only a small number of investors would find it optimal to sell assets at that price. The

assumption states that if buyers believe that some seller with continuation value v offers

assets at that price with some probability, then he must believe that all sellers with the same

continuation value will offer assets at that price with the same probability. This means that

the average quality of assets offered by sellers with continuation value v at any price that

they find optimal is Γ(v), a tighter restriction than imposed in part 3(b) of the definition

of equilibrium in section 3. The restriction seems reasonable because sellers with the same

continuation value have the same cardinal preferences over prices and so should be expected

to behave in the same way.11

11Chang (2014) avoids this issue by defining a seller’s type to be his continuation value, rather than
the separate components (β, δ). This hard-wires the restriction in Assumptions 2 into the definition of
equilibrium. We choose not to do that, highlighting instead that many equilibria exist if we do not impose
this restriction.
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5.2 Unique Equilibrium

We prove that there is a unique equilibrium under Assumption 2. The equilibrium depends

on Γ(v), the expected quality asset held by an investor with the lowest continuation value. If

this is zero, the unique equilibrium has no trade (Proposition 1). Otherwise the equilibrium

has trade at a continuum of prices (Proposition 2).

We start by introducing a new object, the inverse of the function P , which is useful

throughout our proof. For all p, let V : R+ ⇉ [v, v̄] denote the set of sellers’ continuation

values v for which the price p ≥ v is weakly optimal:

v ∈ V(p) ⇔ p = argmax
p′≥v

min{Θ(p′), 1}(p′ − v).

If Θ(p) <∞, part 3 of the definition of equilibrium ensures that V(p) is nonempty, but this

is not true in general. For example, V(p) = ∅ whenever there exists a p′ > p with Θ(p′) ≥ 1.

We now proceed to establish our uniqueness result through a series of Lemmas.

Lemma 1 Take any p1 < p2, v1 ∈ V(p1), and v2 ∈ V(p2). If Θ(p1) ≥ 0 then v1 ≤ v2.

Moreover, V(p) is convex and closed for all p.

All proofs are in Appendix A. The proof of this result relies on a simple revealed preference

argument. Sellers with higher continuation values are more willing to accept the risk of not

selling their asset in return for a given increase in the price.

Lemma 2 Take any p1 < p2. If Θ(p1) <∞, Θ(p2) < 1. If Θ(p1) = 0, Θ(p2) = 0.

The proof of this result also uses revealed preference. If a seller could sell for sure at a

high price p2, he would never attempt to sell at a low price p1. And if he can sell with

positive probability at a high price, he would never attempt to sell at a lower price if the

sale probability is zero.

Lemma 3 Impose Assumptions 1 and 2. Take any p with 0 < Θ(p) <∞. Then p ≥ v and

there exists a V (p) ∈ [v,min{p, v̄}] such that V(p) = {V (p)} and hence ∆(p) = Γ(V (p)).

Moreover, V and ∆ are continuous.

This proof relies on buyer’s behavior. If an interval of sellers offered the same price p, then

a buyer would prefer to buy at a slightly higher price, knowing that only sellers with higher

continuation values and hence better quality assets on average would attempt to sell at that

price. In other words, a buyer would gain by offering a slightly higher price. Therefore each

price corresponds to at most one seller type.
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Lemma 4 Impose Assumptions 1 and 2. Take any p1 < p2 with Θ(p1) <∞ and Θ(p2) > 0.

Then ∆(p1) = Γ(V (p1)) < Γ(V (p2)) = ∆(p2).

This proof also relies on buyer’s behavior. If an interval of prices corresponded to a sin-

gle seller type, then a buyer would be unwilling to buy from a slightly better seller type.

Therefore each seller type has one optimal price.

Lemma 5 Impose Assumptions 1 and 2. Take any p1 < p2 with Θ(p1) <∞ and Θ(p2) > 0.

Then

−Θ(p2)

p1 − V (p1)
>

Θ(p2)−Θ(p1)

p2 − p1
and

Θ(p2)−min{Θ(p1), 1}

p2 − p1
>

−min{Θ(p1), 1}

p2 − V (p2)
. (3)

In particular, if 0 < Θ(p) < 1 and p > V (p), Θ′(p) = −Θ(p)/(p− V (p)).

This proof uses the fact that each price p has a unique seller type V (p) that finds that price

optimal, preferring it to slightly higher or lower prices. Manipulating the implied inequalities

gives the slope of the buyer-seller ratio Θ.

This then leads to our first main result.

Proposition 1 Impose Assumptions 1 and 2. If Γ(v) = 0, Θ(p) = 0 for all p > 0, so there

is no trade at any positive price.

If there were any trade at a positive price, an investor with the lowest continuation value

would attempt to sell at that price. The previous lemmas implied that he would be the only

seller at that price and so buyers would refuse to pay the price, a contradiction.

The second result handles the other case, when the expected asset held by a seller with

the lowest continuation value has a positive payoff.

Proposition 2 Impose Assumptions 1 and 2 and Γ(v) > 0. There is a critical buyer type

β̂ ∈ (β, β̄). Given this threshold, define p = β̂Γ(v) > v and let p̄ be the smallest price

satisfying p ≥ β̂Γ(p). Then for all v ∈ [v, p̄), P (v) = β̂Γ(v), ∆(P (v)) = Γ(v), and

Θ(P (v)) = exp

(

−

∫ v

v

β̂Γ′(ṽ)

β̂Γ(ṽ)− ṽ
dṽ

)

, (4)

with Θ(p) = ∞ if p < β̂Γ(v) and Θ(p) = 0 if p > p̄. Moreover, β̂ is uniquely determined by

the market clearing condition (1).

This case uses the previous Lemmas to show that a unique semi-separating equilibrium exists,

the one we described in Section 4.1. The seller with the lowest continuation value sells for
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sure at a low price, while sellers with higher continuation values, up to some threshold p̄,

sell with lower probabilities at higher prices. Sellers with still higher continuation values fail

to sell their assets.

6 Efficiency

This section examines whether the semi-separating equilibrium is Pareto efficient among an

appropriate set of incentive-compatible and feasible allocations. We break our analysis into

five pieces. In Section 6.1, we define the relevant set of allocations. In Section 6.2, we show

that there is no scope for a Pareto improvement by changing only investors’ buying behav-

ior. Section 6.3 characterizes necessary and sufficient conditions for a Pareto improvement

by changing only investors’ selling behavior. Section 6.4 develops necessary and sufficient

conditions for the semi-separating equilibrium to be locally Pareto efficient, so no small

change in behavior on both the buying and selling side of the market makes all investors

better off. We use examples throughout to illustrate that the semi-separating equilibrium

may or may not be efficient. Finally, Section 6.5 compares welfare in the semi-separating

and one-price equilibria. We prove that the one-price equilibrium may Pareto dominate the

semi-separating equilibrium or that the two are Pareto incomparable.

In our analysis in this section, we find it useful to relax one assumption. We no longer

assume that all investors are both buyers and sellers. We think of an investor endowed with

e ∈ {0, 1} units of the period 1 consumption good and with a ∈ {0, 1} units of the asset.

Some investors may only have the consumption good and some may only have the asset. We

call an investor with e = 1 a (potential) buyer and an investor with a = 1 a (potential) seller.

Let GB(β) and gB(β) denote the distribution and density of discount factors among buyers,

H(v) and h(v) denote the distribution and density of continuation values among sellers, Γ(v)

denote the average quality of assets held by sellers with continuation value v, and πB and πS

denote the measure of buyers and sellers. For notational convenience, we normalize πS = 1.

Our baseline model assumes e = a = 1 and links these objects through the cumulative

distribution function G(β, δ), while the generalization allows these to be separate objects.

This generalization of the model would only change the market clearing condition in our

positive analysis, but it has an important effect on our normative analysis. First, in con-

structing feasible allocations, we treat buyers and sellers as separate investors, not allowing

information attained from one side of the market to influence outcomes on the other side

of the market.12 Second, we define a Pareto improving allocation to be one that makes all

12We impose this restriction on the equilibrium as well. A buyer would prefer not to buy an asset from a
seller who is also buying assets, since this indicates that his discount factor is high and hence asset quality
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investors better off, including investors who are only buyers or only sellers. This rules out

some potential Pareto improvements in which investors are hurt on one side of the market

but the losses are offset by gains on the other side of the market. Thus our approach enlarges

the set of Pareto optimal allocations relative to the benchmark in which all investors are

either buyers or sellers.

6.1 Incentive-Compatible and Feasible Allocations

We use direct revelation mechanisms to describe the set of incentive-compatible and feasi-

ble allocations. Our approach restricts the set of mechanisms in a manner similar to the

decentralized equilibrium.

In the decentralized equilibrium, a buyer consumes less than her endowment in period 1 in

order to obtain higher expected consumption in period 2. In the mechanism design problem,

each buyer reports her discount factor β to the mechanism and receives consumption cB1 (β)

in period 1 and cB2 (β) in period 2. The mechanism must be incentive compatible, so a buyer

prefers to report her true type β rather than misreporting it as some other β̃:

uB(β) = cB1 (β)− 1 + βcB2 (β) ≥ cB1 (β̃)− 1 + βcB2 (β̃) (5)

for all β and β̃, where uB(β) is the buyer’s gain from trade. In addition, the mechanism

must satisfy the buyer’s participation constraint, uB(β) ≥ 0 for all β.

In the decentralized equilibrium, a seller receives consumption in period 1 in return for

giving up his asset. In the mechanism design problem, each seller reports his continuation

value v to the mechanism, getting expected consumption cS(v) in period 1 and giving up

his asset with probability ω(v).13 Again, the mechanism must be incentive compatible, so a

seller prefers to report his true type v rather than misreporting it as some other ṽ:

uS(v) = cS(v)− vω(v) ≥ cS(ṽ)− ω(ṽ)v

for all v and ṽ, where uS(v) is the seller’s gain from trade. In addition, the mechanism must

satisfy the seller’s participation constraint, uS(v) ≥ 0 for all v.

Standard arguments imply that the seller’s mechanism is incentive compatible if and only

is low. Our definition of equilibrium assumes that trades are hidden and so this information is unavailable.
13We assume that a seller only reports his continuation value, rather than both his discount factor and his

asset quality. This is consistent with the restrictions on equilibrium behavior embedded in Assumption 2. A
mechanism that could separately elicit a seller’s asset quality and discount factor might perform better still.
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if ω(v) ∈ [0, 1] is nonincreasing and

cS(v) =

∫ v̄

v

ω(x)dx+ vω(v) + k

for some constant k. Since the seller cannot consume a negative amount in the first period,

we require k ≥ 0 to ensure cS(v̄) ≥ 0. Given that ω(v) is nonincreasing, this guarantees

that cS(v) ≥ 0 for all v. Substituting this back into the expression for uS(v) in the previous

paragraph gives

uS(v) =

∫ v̄

v

ω(x)dx+ k, (6)

which is nonnegative for all v since ω and k are nonnegative.

We next turn to feasibility, which hinges on the costs of these mechanisms. We start

with the buyer’s mechanism. In period 1, each of the πB buyers is endowed with 1 unit of

the consumption good and consumes cB1 (β) units of the consumption good. Allowing for free

disposal, the cost is therefore

CB
1 ≥ πB

∫ β̄

β

(cB1 (β)− 1)dG1(β). (7)

In period 2, the buyers have no endowment and receive cB2 (β) units of the consumption good.

Thus the cost is simply

CB
2 ≥ πB

∫ β̄

β

cB2 (β)dG1(β). (8)

Now turn to the cost of the seller’s mechanism. In period 1, the sellers receive cS(v) units

of the consumption good, so the cost is

CS
1 ≥

∫ v̄

v

cS(v)h(v)dv

=

∫ v̄

v

(
∫ v̄

v

ω(x)dx

)

h(v)dv +

∫ v̄

v

vω(v)h(v)dv + k

=

∫ v̄

v

ω(v)(H(v) + vh(v))dv + k, (9)

where the second line uses incentive compatibility and the third line uses integration by

parts. The total cost of the mechanism in period 2 is negative, given by the amount of

dividends collected from the sellers:

CS
2 ≥ −

∫ v̄

v

ω(v)Γ(v)h(v)dv. (10)
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The buyers’ and sellers’ mechanisms are feasible if total costs are zero in each period, CB
1 +

CS
1 = CB

2 + CS
2 = 0.

6.2 Buyer Efficiency

We say an allocation is buyer efficient if it is incentive-compatible, feasible, and Pareto

optimal for buyers among all the incentive-compatible, feasible allocations with the same

buyer cost (CB
1 , C

B
2 ). We prove that any buyer efficient allocation is characterized by a

threshold β̂. Buyers with discount factor β < β̂ consume only in the first period, while

buyers with β > β̂ consume only in the second period. A buyer with discount factor β̂ is

indifferent between consuming in the two periods.

Proposition 3 Let b and β̂ solve

CB
1 = πB

(

bGB(β̂)− 1
)

and CB
2 =

πB(1−GB(β̂))b

β̂
. (11)

If this defines b ≥ 1, then any buyer efficient allocation has

cB1 (β) =







b if β < β̂

0 if β > β̂
and cB2 (β) =







0 if β < β̂

b/β̂ if β > β̂
.

Otherwise there is no incentive-compatible, feasible allocation with cost (CB
1 , C

B
2 ).

Our proof relies on the fact that private information is unimportant for the buyer’s

problem and so any buyer efficient allocation is equivalent to a competitive equilibrium of

an exchange economy among the buyers.

A corollary of this result is that any equilibrium of our model is buyer efficient. This is

not surprising, since there is no interesting information problem on the buyer’s side of the

market. A buyer is privately informed about her discount factor, but a seller does not care

about the buyer’s discount factor when they trade. This contrasts with the seller’s side of

the market, since a buyer cares about a seller’s expected valuation v when they trade. We

turn to the seller’s problem next.

6.3 Seller Efficiency

An allocation is seller efficient if it is incentive compatible, feasible, and Pareto optimal

for sellers among all the incentive-compatible, feasible allocations with the same seller cost

(CS
1 , C

S
2 ).
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A semi-separating equilibrium is not necessarily seller efficient. Suppose H(v) + vh(v) is

decreasing and Γ(v)h(v) is increasing on some interval [v1, v2] ⊂ [v, p̄).14 Consider an alter-

native allocation which coincides with the equilibrium trading probability Θ(P (v)) outside

of this interval but takes on its average value inside the interval:

ω(v) =







∫ v2
v1

Θ(P (v))dv/(v2 − v1) if v ∈ [v1, v2]

Θ(P (v)) if v 6∈ [v1, v2].

Also set the constant k = 0.

Since Θ(P (v)) is strictly decreasing on [v1, v2], equation (6) implies that sellers with

continuation value in the interior of this interval are strictly better off under the alternative

policy, while sellers with any other continuation value are indifferent between the two policies.

Moreover, sinceH(v)+vh(v) is also decreasing on [v1, v2], Chebyshev’s inequality for integrals

(Gradshteyn and Ryzhik, 2000, p. 1055), together with the construction of ω(v), implies

∫ v2

v1

Θ(P (v))(H(v) + vh(v))dv ≥

∫ v2

v1

ω(v)(H(v) + vh(v))dv.

Therefore, equation (9) implies the alternative policy is cost feasible in period 1. Similarly,

since Γ(v)h(v) is increasing on this interval, Chebyshev’s inequality for integrals implies

∫ v2

v1

Θ(P (v))Γ(v)h(v)dv ≤

∫ v2

v1

ω(v)Γ(v)h(v)dv.

Therefore equation (10) implies the alternative policy is cost feasible in period 2.

More generally, we look for necessary and sufficient conditions for the semi-separating

equilibrium to be Pareto efficient. Our approach involves finding conditions under which the

semi-separating equilibrium maximizes the Pareto-weighted sum of utilities for some Pareto

weights.

Proposition 4 Impose Assumptions 1 and 2 and Γ(v) > 0, so there exists a unique semi-

separating equilibrium in which all investors with v < p̄ trade with positive probability. The

semi-separating equilibrium is seller efficient if and only if there exist non-negative numbers

ψ1 and ψ2 satisfying the following conditions:

• ψ1 ≥ 1,

14Indeed, we can construct examples in which this is true globally. Set v = a2 and v̄ = ā2. Assume that
h(v) = Av−α, where A is such that

∫

h = 1, and Γ(v) = B + C/[1 + D exp{−ξ(v − aā)}], where p̄ > aā,
and the constants B,C,D are such that Γ(v) = a, Γ(aā) = 2aā/(a+ ā), and Γ(v̄) = ā. One can verify that
H(v) + vh(v) is strictly decreasing and Γ(v)h(v) is strictly increasing for all v ∈ [v, v̄].
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• J(v) = 0,

• J(v) nondecreasing for v ∈ [v, p̄],

• J(p̄) = 1, and

•
∫ v

p̄
J(x)dx/(v − p̄) ≥ 1 for v > p̄,

where J(v) ≡ ψ1(H(v) + vh(v))− ψ2Γ(v)h(v).

When H(v) + vh(v) is decreasing and Γ(v)h(v) is increasing for all v ∈ [v1, v2] ⊂ [v, p̄],

J(v) is decreasing on this interval for any ψ1 ≥ 1 and ψ2 ≥ 0. The Proposition thus confirms

that the semi-separating equilibrium is inefficient in this case.

An example illustrates how the conditions in this Proposition work more generally. As-

sume β and δ have independent Pareto distributions, G(β, δ) = (1 − β−αβ)(1 − δ−αδ) with

β = δ = 1 and β̄ = δ̄ = ∞ for some positive constants αβ and αδ. To keep the functional

forms simple, also assume αβ = αδ + 1. Then

Γ(v) =
1 + v

2
, B(v) =

v log v

v − 1
, and H(v) = 1− (αδ + 1)v−αδ + αδv

−αδ−1.

Proposition 2 applies since Γ is increasing and continuous. Moreover, for all v, either H(v)+

vh(v) is increasing or Γ(v)h(v) is decreasing, or both. Therefore the logic used in our first

example in this section is inapplicable.

The semi-separating equilibrium allocation depends on the number of buyers πB since

that affects the identity of the marginal buyer β̂. Moreover, Proposition 2 states that the

supremum of successful sale prices is the smallest solution to p̄ = β̂Γ(p̄), so p̄ = β̂/(2 − β̂)

if 1 ≤ β̂ < 2 and p̄ = ∞ if β̂ ≥ 2. We take advantage of these dependencies by treating β̂

(or p̄) as a parameter in this section. In the semi-separating equilibrium, sellers trade with

probability

Θ(P (v)) =























(

β̂+v(β̂−2)

2(β̂−1)

)
β̂

2−β̂
β̂ > 2 or

(

β̂ < 2 and v < β̂/(2− β̂)
)

0 if β̂ < 2 and v ≥ β̂/(2− β̂)

e1−v β̂ = 2,

independent of αδ.

First assume 0 < αδ ≤ 2.15 If β̂ < 2, set ψ1 = ψ2 =
(

H(p̄) + p̄h(p̄) − Γ(p̄)h(p̄)
)−1

> 1;

15With αδ ≤ 1, total dividends held by sellers are infinite,
∫

∞

1
Γ(v)H ′(v) dv = ∞, which might seem

worrisome for constructing an equilibrium. Nevertheless, total dividends sold are bounded above by the
dividends of the worst asset:

∫

∞

1
Θ(P (v))Γ(v)H ′(v) dv < 1 for any value of β̂, so the market clearing

condition can hold.
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otherwise set ψ1 = ψ2 = 1. It is easy to verify that J(v) is increasing with J(1) = 0 and

J(p̄) = 1, so that the semi-separating equilibrium is seller efficient.

If instead αδ > 2 and β̂ ≥ 2 (so p̄ = ∞), then the semi-separating equilibrium is not

seller efficient. If ψ1 < ψ2, J
′(1) < J(1) = 0, which implies J(v) is negative at values of v

slightly above 1, inconsistent with a seller-efficient allocation. If ψ1 ≥ ψ2, J(v) is decreasing

at sufficiently large values of v, again inconsistent with a seller efficient allocation when

p̄ = ∞. To construct a Pareto improvement in this example, it is not enough to pool a single

group of sellers. That will always either reduce some sellers’ utility or raise costs in one of

the periods. Instead, we must pool investors within two separate intervals.16

6.4 Local Pareto Efficiency

In the previous two sections, we asked whether it is possible to improve the welfare first

of buyers and then of sellers without affecting the other group of investors, i.e. taking the

costs CB
1 , C

B
2 , C

S
1 , and CS

2 as given. This section examines the possibility of achieving a

Pareto improvement by moving costs across periods in a manner consistent with the resource

constraint.

To understand the scope for this, we need to understand how buyers’ and sellers’ utility

is affected by changes in the costs. We focus here on marginal changes in the costs, starting

from a semi-separating equilibrium. We say an allocation is locally Pareto efficient if it is

buyer- and seller-efficient and if no small resource-feasible change in the costs generates a

Pareto improvement.

Proposition 5 Impose Assumptions 1 and 2 and Γ(v) > 0, so there exists a unique semi-

separating equilibrium. Assume the semi-separating equilibrium allocation is seller efficient.

If there exists a (ψ1, ψ2) satisfying the conditions in Proposition 4 and

GB(β̂) + β̂gB(β̂)

g(β̂)
>
ψ2

ψ1
>

β̂2gB(β̂)

1−GB(β̂) + β̂gB(β̂)
,

then the semi-separating equilibrium is locally Pareto efficient. Otherwise it is not locally

efficient.

16Consider the parametric example with αδ = 3 and β̂ = 2, so that Θ(P (v)) = e1−v. Set ω(v) =
100(1 − e−0.01) = 0.995017 for v ∈ [1, 1.01], ω(v) = (e−7.3 − e−10.3)/3 = 2.13969× 10−4 for v ∈ [8.3, 11.3],
and ω(v) = e1−v otherwise. This flattens Θ(P (v)) at its average value within these two intervals. By
construction

∫

∞

v
ω(x)dx increases when v ∈ (1, 1.01) ∪ (8.3, 11.3) and is otherwise unchanged, hence the

perturbations result in a Pareto improvement. Moreover, while either perturbation alone would raise costs
in one of the periods, the two perturbations together reduce costs in both periods.

24



The Lagrange multipliers ψ1 and ψ2 give the marginal value of funds to the sellers in each

period, thus their ratio is the marginal rate of substitution of funds across the two periods.

The first ratio involving GB(β̂) is the marginal rate of substitution for active buyers, those

with β > β̂. The last ratio is the marginal rate of substitution for inactive buyers, those

with β < β̂. If the marginal rate of substitution for sellers lies in between these two marginal

rates of substitution, there is no way to make all investors better off by reallocating resources

across periods.

To see how to apply this Proposition, we build on our previous example with independent

Pareto distributions. Assume 0 ≤ αδ ≤ 1. For any ψ2 > ψ1, J
′(1) < 0, so there is no

associated seller-efficient allocation, while any ratio ψ2/ψ1 ≥ 0 gives us valid Pareto weights

for the semi-separating equilibrium. Therefore the semi-separating equilibrium is locally

Pareto efficient if and only if β̂2gB(β̂)

1−GB(β̂)+β̂gB(β̂)
< 1.17 Since these conditions hinge on the value

of GB(β̂) and gB(β̂), they may or may not hold in any particular economy.

6.5 Comparison with One-Price Equilibrium

We have demonstrated that the semi-separating equilibrium may be Pareto inefficient. This

section briefly considers related properties of the one-price equilibrium and compares the

welfare properties of the two equilibria. First, we argue that the one-price equilibrium

may also be Pareto inefficient and second, that it may Pareto-dominate the semi-separating

equilibrium, but the reverse is never possible.

The basic approach in Proposition 4 can be applied to judging the efficiency of an

incentive-compatible, feasible allocation, not just the semi-separating equilibrium. The one-

price equilibrium, where all trade occurs at price p∗, is seller efficient if and only if there

exist numbers ψ1 ≥ 1 and ψ2 ≥ 0 and a nondecreasing function Λ : [v, v̄] → [0, 1] such

that Φ(v) =
∫ v

v

(

Λ(x) − ψ1(H(x) + xh(x)) + ψ2Γ(x)h(x)
)

dx is maximized at v = p∗. A

necessary condition for this is that H(v) + vh(v) is increasing or Γ(v)h(v) is decreasing in a

neighborhood of v = p∗; otherwise Φ(v) is increasing in a neighborhood of p∗. Since we can

construct examples in which H(v) + vh(v) is decreasing and Γ(v)h(v) is increasing globally

(see footnote 14), we know that the one-price equilibrium may not be seller efficient.

Turn next to the comparison between the one-price (O) and semi-separating (S) equi-

librium. We first prove that the semi-separating equilibrium never Pareto dominates the

one-price equilibrium. Observe first that buyer’s utility, uB(β) = max{0, β/β̂ − 1}, is de-

creasing in β̂. Therefore if buyers are weakly better off in the semi-separating equilibrium,

17If 1 < αδ ≤ 2, there is also a lower bound on the ratio ψ2/ψ1 for generating valid Pareto weights, say

ψ2/ψ1 ≥ ψ̄, where ψ̄ ∈ (0, 1]. We therefore also require GB(β̂)+β̂gB(β̂)

g(β̂)
> ψ̄ in order for the semi-separating

equilibrium to be locally Pareto efficient.
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the marginal buyers must be ordered via β̂S ≤ β̂O. Now turn to the utility of the seller

with the lowest continuation value. In the semi-separating equilibrium, she sells for sure

at a price p = β̂SΓ(v), and so this is her utility. In the one-price equilibrium, she sells for

sure at a price p∗ = β̂O∆O(p
∗), where ∆O(p

∗) is the average quality of assets held by sellers

with continuation value below p∗. Since sellers with higher continuation values have higher

quality assets on average (Assumption 1), Γ(v) < ∆O(p
∗). It follows that whenever buyers

are weakly better off in the semi-separating equilibrium, p < p∗ and so the seller with the

lowest continuation value is better off in the one-price equilibrium.

On the other hand, we can construct examples in which the one-price equilibrium Pareto

dominates the semi-separating equilibrium. A particularly easy case is one in which Γ(v) = 0,

so there is no trade in the semi-separating equilibrium. Since autarky is always feasible, any

equilibrium with trade Pareto dominates this autarkic equilibrium. It is easy to construct

examples of this sort. Assume β and δ are uniformly distributed on the unit square. Then

Γ(v) = −(1 − v)/ log v, while ∆(p∗) = (1 − p∗/2)/(1 − log p∗) in any one-price equilibrium.

While the unique semi-separating equilibrium has no trade, there is a Pareto-superior one-

price equilibrium with β̂ = 0.763 and p∗ = 0.308.

This result is perhaps surprising. Our intuition for constructing the semi-separating

equilibrium was that it would allow for additional trades that could not happen in a one-

price equilibrium. Holding everything else equal, creating more trading opportunities should

make all investors better off. But everything else is not held equal. The additional trading

opportunities erode trading probabilities for all but the lowest type of seller, leading in this

extreme case to all trades breaking down.

7 Comparative Statics

This section uses a parameterized example to compare the amount of trade in the semi-

separating and one-price equilibria, as well as to examine how the two equilibria respond to

changes in the distribution of fundamentals, i.e. preferences and asset quality. Throughout we

assume that the distribution of discount factors is Pareto with median 1 and tail parameter

αβ, while the distribution of asset quality is an independent Pareto with mean 1 and tail

parameter αδ,

G(β, δ) =
(

1− (kβ/β)
αβ
)(

1− (kδ/δ)
αδ
)

for β ≥ kβ and δ ≥ kδ, where αβ > 0, kβ = 2−1/αβ , αδ > 1, and kδ = 1− 1/αδ.

We choose these values of the constants kβ and kδ to obtain a convenient symmetric

information benchmark. If δ were observable, half of the investors would sell all their assets
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Figure 2: This figure shows the volume of trade as we vary the tail index in the asset quality
distribution, αδ. Both β and δ have independent Pareto distributions. The tail index in the
preference distribution, αβ, is fixed at 2, while the median value of β and the mean value of
δ are fixed at 1.

to the other half of investors in a competitive equilibrium, regardless of the value of αβ and

αδ. To show this, suppose the marginal investor has the median discount factor, β̂ = 1.

The price of any asset in period 1 is then equal to the asset’s period 2 dividend. Since the

mean dividend is 1, sellers hold assets bearing 1 unit of dividends on average, so the cost

of buying up all the assets held by sellers is 1
2
. Buyers hold 1 unit of period 1 consumption

good, so they in fact have just enough of the consumption good to buy all the assets held

by the sellers.

Figure 2 examines how a change in the tail index on dividends αδ affects the equilibrium

amount of trade, holding fixed αβ = 2. Note that when αδ > 2, the variance of the dividend

is 1/αδ(αδ − 2), decreasing in αδ, while at smaller values of αδ the variance is infinite. Thus

higher values of αδ correspond to situations in which dividends vary less across individuals

and so private information is less important.

The figure shows that as the variance of the dividend increases, the volume of trade,

measured as the amount of period 1 consumption good exchanged for assets, declines in

both equilibria. In the extreme when αδ = 1, kδ = v = Γ(v) = 0, and all trade breaks down

in both the semi-separating and one-price equilibria.
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Figure 3: This figure shows the volume of trade as we vary the tail index in the preference
distribution, αβ. Both β and δ have independent Pareto distributions. The tail index in the
asset quality distribution, αδ, is fixed at 2, while the median value of β and the mean value
of δ are fixed at 1.

There are both partial and general equilibrium effects driving these comparative statics.

In partial equilibrium, holding the identity of the marginal buyer fixed, an increase in the

variance of the dividend worsens the private information problem. In both equilibria, buyers

believe that sellers with low continuation values are increasingly likely to hold low quality

assets, reducing equilibrium prices and hence the set of sellers willing to trade. In general

equilibrium, this raises the identity of the marginal buyer β̂, which raises prices. This makes

sellers more willing to part with their asset. Nevertheless, the general equilibrium effect

on volume can never be strong enough to fully offset the partial equilibrium; if it were,

prices would fall and the general equilibrium effect would reinforce the partial equilibrium,

a contradiction.

Figure 3 examines how a change in the tail index on discount factors αβ affects the

equilibrium amount of trade, holding fixed αδ = 2. Again, higher values of αβ are associated

with a more compressed distribution. Thus the figure shows that when the gains from trade

are larger, there is more trade.

When αβ is smaller than 1, the mean value of β is infinite, but there are still limits on

the amount of trade. Intuitively, while a small number of individuals have an arbitrarily
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large preference for second period consumption, those individuals have bounded wealth and

so a limited influence on prices. Only when αβ converges to 0 does trade approach the

frictionless benchmark. In this limit, the density of GB(β) near the marginal investor is

vanishingly small. This means that if private information reduced trade, the identity of

the marginal investor would have to increase substantially, pushing up prices and hence the

enlarging the set of willing sellers.

Both figures show that trading volume is lower in the semi-separating equilibrium than

in the one-price equilibrium. In some cases, the gap in trading volumes is large. As with

the welfare comparison between the two equilibria, this might appear surprising. We were

motivated to construct the semi-separating equilibrium through an intuition that the one-

price equilibrium limited trade opportunities by not allowing sellers to commit to trade

probabilistically. In equilibrium, however, the possibility of committing to probabilistic

trade allows for complete separation, which reduces the amount of trade below that in the

one-price equilibrium.

8 Conclusion

This paper develops and analyzes a semi-separating equilibrium in an environment in which

sellers have multidimensional private information and buyers only care about one dimension

of the private information. While previous research has focused on how buyers and sellers can

design institutions so as to allow sellers to signal the quality of their asset, we have argued

that market economies can achieve the same outcome through an endogenous shortage of

buyers. Sellers who are eager to sell set a low price and sell with a high probability, while

less motivated sellers set a high price and sell with a low or zero probability. Buyers are

willing to pay a range of prices, knowing that they will be rewarded with high quality on

average when they pay a high price. In particular, the marginal buyer is indifferent about

buying any of the assets offered for sale.

We have argued already that the notion of equilibrium affects both the efficiency of the

resulting allocation and the amount of trade in the allocation. To our surprise, we found that

there is less trade in the semi-separating equilibrium than in the one-price equilibrium and

that the semi-separating equilibrium can never Pareto dominate the one-price equilibrium.

We believe that the notion of equilibrium matters for two reasons that we have not yet

discussed. First, it would be interesting to understand how private information persists

in a dynamic setting. Suppose, for example, that only the initial owner of an asset can

observe its quality, but future owners know the price they paid for the asset. In a one-

price equilibrium, most information about asset quality is lost in the secondary market
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since prices are a coarse aggregator of information. In a semi-separating equilibrium, buyers

receive more nuanced information since different buyers pay different prices. Therefore, in

a semi-separating equilibrium in which past transactions prices are not observed by other

market participants, private information can get transmitted to secondary asset markets.

Second, the response to policy interventions is likely to depend on the nature of the

equilibrium. For example, a small amount of bad assets can have a big effect on a semi-

separating equilibrium, in an extreme case leading to a breakdown in trade if v = Γ(0) = 0.

An asset purchase program that removes these assets from the market can then have a big

impact on asset prices and trading volumes. In contrast, a small intervention is unlikely to

substantially alter a one-price equilibrium, since the equilibrium by its nature depends on

all the inframarginal traders. While our model is too stylized to be calibrated, we believe

these lessons are likely to carry over to quantitatively serious models of private information.
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A Omitted Proofs

Proof of Lemma 1. By the definition of V, a seller with continuation value v1 weakly

prefers p1 to p2:

min{Θ(p1), 1}(p1 − v1) ≥ min{Θ(p2), 1}(p2 − v1), (12)

Similarly, a seller with continuation value v2 either finds the price p1 suboptimal because

p1 < v2 or prefers p2 to p1:

min{Θ(p2), 1}(p2 − v2) ≥ min{Θ(p1), 1}(p1 − v2). (13)
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First suppose p1 < v2. Since v1 ∈ V(p1), v1 ≤ p1, proving v1 < v2. Second suppose p1 ≥ v2

so inequality (13) holds. If Θ(p2) = 0, Θ(p1) > 0 implies p1 = v2 so again v1 ≤ v2. If instead

Θ(p2) > 0, multiply inequalities (12) and (13) and simplify to get (p2 − p1)(v2 − v1) ≥ 0,

which proves that v2 ≥ v1.

To prove V(p) is convex, take any p and v1 < v2 with v1, v2 ∈ V(p). Fix any ṽ ∈ (v1, v2)

and p̃ such that ṽ ∈ V(p̃). Note that such a p̃ must exist; set p̃ = ps(β, δ) for any βδ = ṽ. If

p < p̃, v2 ∈ V(p) and ṽ ∈ V(p̃) contradicts the first part of the lemma. If p̃ < p, v1 ∈ V(p) and

ṽ ∈ V(p̃) contradicts the first part of the lemma. Therefore ps(β, δ) = p for all βδ ∈ (v1, v2).

To prove V(p) is closed, suppose there exists a sequence {vn} → v with vn ∈ V(p) for all

n but v 6∈ V(p). Since p ≥ vn for all n, p ≥ v as well. The definition of V then implies that

there exists a p̃ ≥ v with

min{Θ(p̃), 1}(p̃− v)−min{Θ(p), 1}(p− v) ≡ ε > 0

But since {vn} → v, there exists an N such that for all n > N ,

(

min{Θ(p̃), 1} −min{Θ(p), 1}
)

(vn − v) < ε.

Using the definition of ε, this implies min{Θ(p̃), 1}(p̃− vn) > min{Θ(p), 1}(p− vn), and in

particular p̃ > vn, which contradicts vn ∈ V(p).

Proof of Lemma 2. Suppose there is a p1 < p2 with Θ(p1) <∞. Part 3 of the definition

of equilibrium implies that there is a (β, δ) who finds p1 an optimal sale price. In particular,

p1 ≥ βδ and p1 gives weakly higher profits than p2:

min{Θ(p1), 1}(p1 − βδ) ≥ min{Θ(p2), 1}(p2 − βδ).

First, suppose Θ(p1) = 0. Since the left hand side is zero, the right hand side must be as

well. Given that p2 > p1 ≥ βδ, it must be that Θ(p2) = 0. Second, suppose Θ(p2) ≥ 1. Then

min{Θ(p2), 1}(p2 − βδ) = p2 − βδ.

Also, since p1 ≥ βδ,

p1 − βδ ≥ min{Θ(p1), 1}(p1 − βδ).
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Now combining the inequalities implies p1 ≥ p2, a contradiction.

Proof of Lemma 3. Since Θ(p) <∞, part 3 of the definition of equilibrium implies that

there is a (β, δ) who finds p an optimal sale price and in particular p ≥ βδ ≥ v. If p = 0,

these inequalities imply βδ = v = 0 as well, so V(0) = {V (0)}, where V (0) = 0.

Otherwise, p > 0 and in order to find a contradiction, suppose V(p) 6= {βδ}. Then

Lemma 1 implies it must be an interval, V(p) = [v1, v2]. Lemma 1 also implies that p is

the only optimal sale price for v ∈ (v1, v2): ps(β, δ) = p if βδ ∈ (v1, v2), while any investor

who finds a lower (higher) sale price optimal must have a lower (higher) continuation value.

Then part 3(a) of the definition of equilibrium implies

∆(p) =

∫ v2
v1

Γ(v)h(v)dv
∫ v2
v1
h(v)dv

,

where h(v) again is the density of continuation values. Monotonicity of Γ (Assumption 1)

and the restrictions on sellers’ behavior (Assumption 2) imply

Γ(v1) < ∆(p) < Γ(v2) ≤ ∆(p′)

for any price p′ > p.

We can use this to prove that no buyer finds setting the price p optimal. If there were

such a buyer, he must have β∆(p) ≥ p by part 2 of the definition of equilibrium. So take

any

p′ ∈

(

p,
p∆(p′)

∆(p)

)

,

a nonempty interval since ∆(p′) > ∆(p) and p > 0. Since Θ(p) < ∞, Lemma 2 implies

Θ(p′) < 1. Then

min{Θ(p)−1, 1}

(

β∆(p)

p
− 1

)

≤
β∆(p)

p
− 1

<
β∆(p′)

p′
− 1 = min{Θ(p′)−1, 1}

(

β∆(p′)

p′
− 1

)

.

The first inequality uses min{Θ(p)−1, 1} ≤ 1 and β∆(p) ≥ p. The second uses p′ <

p∆(p′)/∆(p). The equality uses Θ(p′) < 1.

We now have a contradiction. The measure of buyers setting price p is zero, dµb(p) =

0, while the measure of sellers setting price p is positive, dµs(p) =
∫ v2
v1
h(v)dv. This is

inconsistent with part 4 of the definition of equilibrium, dµb(p) = Θ(p)dµs(p).
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Now suppose V has a discontinuity at p. Using the arguments in Lemma 1, all v ∈
(

lim infp′→p V (p′), lim supp′→p V (p′)
)

must find price p optimal, which contradicts the first

part of this result. Finally, ∆(p) = Γ(V (p)) by Assumption 2 and continuity of ∆ follows

from Assumption 1.

Proof of Lemma 4. Since Θ(p1) < ∞, Lemma 2 implies Θ(p) < 1 for all p > p1. And

since Θ(p2) > 0, the same Lemma implies Θ(p) > 0 for all p < p2. Then Lemma 3 implies

V(p) = {V (p)}, a singleton, and Lemma 1 implies V (p) is weakly increasing on this interval,

V (p1) ≤ V (p2).

Now to find a contradiction, suppose v = V (p1) = V (p2) and let p3 = max p such that

v = V (p). By definition, v ≤ p1 < p2 ≤ p3. Moreover, for any price p ∈ (p1, p3), the fact

that sellers with continuation value v find p an optimal price implies

Θ(p) = min{Θ(p1), 1}
p1 − v

p− v
. (14)

If v = p1, Θ(p2) = 0, a contradiction. Therefore v < p1 and Θ(p) > 0.

Next note that if v = v̄, βΓ(v) ≤ v for all β. Since v < p1, βΓ(v) < p, and so part 2 of

the definition of equilibrium implies that no buyer is willing to pay any price that a seller

with continuation value v sets, contradicting the market clearing condition in part 4 of the

definition of equilibrium. Therefore v < v̄.

Now fix a continuation value ṽ > v that satisfies the following two restrictions: (1)

Γ(ṽ) < Γ(v)p3/p and (2) ṽ < p3. The first restriction is feasible since Γ is continuous by

Assumption 1 and p < p3 by assumption. The second restriction is feasible because v < p3.

Finally, let p̃ denote an optimal price for a seller with continuation value ṽ, say p̃ = ps(β̃, δ̃)

for some β̃δ̃ = ṽ. By Lemma 3, ṽ > v implies p̃ > p3.

The fact that a seller with continuation value ṽ sets price p̃ implies in particular that

Θ(p̃)(p̃− ṽ) ≥ Θ(p3)(p3 − ṽ).

Since Θ(p3) > 0 and p3 > ṽ, the right hand side is positive. The left hand side must therefore

be as well, so in particular Θ(p̃) > 0, so some buyers offer price p̃.

Now consider the value to a buyer of offering p rather than p̃:

min{Θ(p)−1, 1}

(

βΓ(v)

p
− 1

)

=
βΓ(v)

p
− 1 >

βΓ(ṽ)

p̃
− 1 = min{Θ(p̃)−1, 1}

(

βΓ(ṽ)

p̃
− 1

)

The first equality holds because Θ(p) < 1. The inequality holds because Γ(v)/p > Γ(ṽ)/p3 >

34



Γ(ṽ)/p̃, first by construction of ṽ, second by p̃ > p3. The second equality holds because

Θ(p̃) < 1 as well. But then p̃ is not an optimal price for any buyer, inconsistent with part 4

of the definition of equilibrium.

This contradiction implies V (p1) < V (p2). Finally, Assumption 1 implies ∆(p) = Γ(V (p))

is therefore also strictly increasing.

Proof of Lemma 5. Lemma 4 implies

min{Θ(p1), 1}(p1 − V (p1)) > min{Θ(p2), 1}(p2 − V (p1)),

since an investor with continuation value V (p1) only finds the price p1 optimal. Note that this

implies p1 > V (p1) as well. Since Θ(p1) <∞, Lemma 2 implies Θ(p2) < 1, while p1 > V (p1)

implies Θ(p1)(p1 − V (p1)) ≥ min{Θ(p1), 1}(p1 − V (p1)). Combining these inequalities yields

the first inequality in condition (3).

Similarly, Lemma 4 implies

min{Θ(p2), 1}(p2 − V (p2)) > min{Θ(p1), 1}(p1 − V (p2)).

Again note that Θ(p2) < 1 but now Θ(p1) > 1 is possible. This then leads to the second

inequality in condition (3).

Now suppose 0 < Θ(p) < 1 and consider an arbitrary sequence of prices {p̃} with

0 < Θ(p̃) < 1 and converging to p. Since V is continuous by Lemma 3, V (p̃) → V (p) as well.

At every point in the sequence, condition (3) implies

Θ(p)
p− V (p)

p̃− V (p)
≥ Θ(p̃) ≥ Θ(p)

p− V (p̃)

p̃− V (p̃)
.

The two bounds converge to Θ(p), proving that Θ(p̃) → Θ(p). Finally, condition (3) also

implies
−Θ(p̃)

p− V (p)
≥

Θ(p̃)−Θ(p)

p̃− p
≥

−Θ(p)

p̃− V (p̃)
.

Again both bounds converge to −Θ(p)/(p− V (p)), establishing the result.

Proof of Proposition 1. We first construct an equilibrium with Θ(p) = 0 for all p > 0.

In this equilibrium, P (v) = β̂Γ(v) for all v and some β̂ ≥ β̄, so ∆(p) = p/β̂ for all p ≤ β̂Γ(v̄)

and ∆(p) = Γ(v̄) otherwise. These sale prices are optimal given Θ(p). This seller behavior

implies that β∆(p)/p ≤ β/β̂ ≤ 1 for all p > 0 and so pb(β, δ) = 0 for all (β, δ) ∈ [β, β̄]× [δ, δ̄].
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Finally, market clearing implies that Θ(0) = ∞. This is an equilibrium consistent with the

restriction in Assumption 2.

Now to find a contradiction, suppose there is an equilibrium with Θ(p) > 0 for some

p > 0. Note that Γ(v) = 0 implies δ = 0 and hence v = 0. Sellers’ optimality implies

P (v) > 0 for all v < p and in particular P (v) > 0. Moreover, Θ(p) < 1 for all p > P (v), or

a seller with the lowest continuation value would set a higher price. Now fix a v > v such

that Γ(v) < P (v)/β̄; this must exist because Γ is continuous by Assumption 1. There is an

optimal price for a seller with continuation value v, P (v), and V(P (v)) = {v} by Lemma 3.

Therefore ∆(P (v)) = Γ(v). Moreover, that a seller with continuation value v prefers P (v)

to P (v) implies Θ(P (v)) > 0. But then the payoff of a buyer purchasing at price P (v) is

min{Θ(P (v))−1, 1}(β∆(P (v))/P (v) − 1) < 0, since Θ(P (v)) < 1 and ∆(P (V )) = Γ(v) <

P (v)/β̄ < P (v)/β̄ ≤ P (v)/β. Since no buyer finds it optimal to buy at a price p, Θ(p) = 0

for all p > 0 whenever Γ(v) = 0.

Proof of Proposition 2. We first rule out the possibility of an equilibrium in which

Θ(p) = ∞ for p < p̄ and Θ(p) = 0 for p > p̄ for some p̄ ≥ 0. If p̄ > v and Θ(p̄) < 1,

P (v) is undefined for v ∈ [v, p̄), so this cannot be an equilibrium. If p̄ > v and Θ(p̄) ≥ 1,

P (v) = p̄ for v ∈ [v, p̄), which contradicts Lemma 3. Therefore v ≥ p̄. Then since v = βδ

and Γ(v) ≥ δ, βΓ(v) ≥ p̄. Now consider the buyer’s problem. At any price p > p̄, the

buyer can buy for sure. At prices p < βΓ(v), the buyer makes profit conditional on buying.

If β > β, this defines a nonempty interval where buyers would make profit buying, and so

cannot be an equilibrium.

Now using Lemma 2, there are thresholds p < p̄ where Θ(p) = ∞ if p < p, Θ(p) = 0

if p > p̄, and Θ(p) ∈ (0, 1) if p ∈ (p, p̄). The differential equation for Θ in Lemma 5 then

applies in this range, giving

Θ(p) = λ exp

(

−

∫ p

p

1

p̃− V (p̃)
dp

)

(15)

for all p ∈ (p, p̄) and some constant of integration λ > 0. In addition, Lemma 2 ensures

that λ ≤ 1 so that Θ(p) < 1 for all p > p. And if λ < 1, an investor with continuation

value v = V (p) where p < p < (p−Θ(p)p)/(1−Θ(p)) would earn higher profits selling with

probability 1 at price p − ε for some sufficiently small ε, rather than selling at price p, a

contradiction. Therefore λ = 1.

Turn now to the buyers’ problem. Buyers know that only a seller with continuation

value V (p) sells at price p, so ∆(p) = Γ(V (p)). For buyers to be willing to purchase at all
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prices p ∈ [p, p̄], it must be the case that p/∆(p) = β̂ for some constant β̂, or equivalently

Γ(V (p)) = p/β̂. Substituting this into equation (15) and changing the variable of integration

gives (4) for v ∈ (v, p̄). Moreover, we can extend this to v = v since buyers must be willing

to purchase assets from the sellers with the lowest continuation value as well, which requires

that Θ(p) ≤ 1.

Given equation (4), sellers with continuation value v < p̄ set price P (v) = β̂Γ(v), while all

sellers with higher continuation values are indifferent about all prices p > p̄ and in particular

are willing to set prices such that P (v) ≥ β̂Γ(v). This ensures that buyers with β > β̂

are indifferent about buying at any price p ∈ [p, p̄] and prefer those prices to higher prices.

Buyers with lower continuation values set lower prices and do not succeed in buying. To find

an equilibrium, we simply allocate the buyers to the different prices in a way that ensures

the appropriate buyer-seller ratio at each price. This is feasible if the total wealth of buyers

with β > β̂ is exactly enough to purchase the assets sold by sellers with v ∈ [v, p̄]:

∫ δ̄

δ

∫ β̄

β̂

g(β, δ) dβ dδ =

∫ δ̄

δ

∫ p̄/δ

β

P (βδ)Θ(P (βδ))g(β, δ) dβ dδ (16)

The left hand side is obviously decreasing in β̂, equal to 0 when β̂ = β̄ and 1 when β̂ = β.

The right hand side is increasing in β̂. To prove this, note first that p̄, defined as the smallest

solution to p̄ ≥ β̂Γ(p̄) is nondecreasing in β̂. So are P (v) = β̂Γ(v) and Θ(P (v)) defined in

equation (4). Finally, when β̂ = β, p̄ = v. If β = 0, v = 0 and we can immediately verify

0 = βΓ(0) for any value of Γ(0). If β > 0, Γ(v) = δ, since only an investor with the worst

quality asset has the lowest continuation value. Therefore v = βΓ(v). This argument ensures

that the right hand side of equation (16) is smaller than the left hand side at β̂ = β and

larger at β̂ = β̄, giving a unique interior solution.

Proof of Proposition 3. The proposed allocation is incentive compatible, has cB1 (β) and

cB2 (β) nonnegative, and satisfies the feasibility constraints (7) and (8). Now consider a com-

petitive equilibrium of an economy in which each individual with β < β̂ has an endowment

of b in period 1 and 0 in period 2, while each individual with β ≥ β̂ has an endowment of 0 in

period 1 and b/β̂ in period 2. It is easy to verify the equilibrium involves no trade. The first

welfare theorem implies this allocation is Pareto optimal among all allocations satisfying the

two feasibility constraints. It is therefore Pareto optimal among the smaller set of allocations

that also satisfy the incentive constraint (5).

Proof of Proposition 4. To start, assume that the semi-separating equilibrium is seller
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efficient. This means that there are nondecreasing integrated Pareto weights Λ(v) with

Λ(v) ≥ 0 and Λ(v̄) = 1,18 such that the allocation maximizes the Pareto-weighted sum of

seller utilities,
∫ v̄

v

uS(v)dΛ(v),

among all incentive compatible and feasible allocations. Eliminate uS(v) using equation (6)

and perform integration-by-parts to rewrite the Pareto-weighted sum of utilities as

∫ v̄

v

ω(v)(Λ(v)− Λ(v))dv + k. (17)

Any seller-efficient allocation maximizes (17) subject to ω(v) ∈ [0, 1] nonincreasing, k ≥ 0,

and the two resource constraints (9) and (10) for some nondecreasing integrated Pareto

weights Λ(v).

Write the Lagrangian of the Pareto-weighted maximization problem, placing nonnegative

multipliers ψ1 and ψ2 on the two constraints (9) and (10):

L =

∫ v̄

v

ω(v)φ(v)dv + (1− ψ1)k + ψ1C
S
1 + ψ2C

S
2 (18)

subject to k ≥ 0, and ω(v) ∈ [0, 1] nonincreasing, where φ(v) ≡ Λ(v)− Λ(v)− J(v) with

J(v) ≡ ψ1(H(v) + vh(v))− ψ2Γ(v)h(v).

The Lagrangian is linear in k, which implies that ψ1 ≥ 1; otherwise raising k would increase

the Lagrangian without bound. In addition, integration by parts implies

∫ v̄

v

ω(v)φ(v)dv = ω(v̄)Φ(v̄)−

∫ v̄

v

Φ(v)dω(v),

where Φ(v) ≡
∫ v

v
φ(x)dx. Therefore the Lagrangian is also linear in dω(v), which implies that

ω(v) is constant at any v that does not maximize Φ(v). In the semi-separating equilibrium,

Θ(P (v)) is strictly decreasing for all v ∈ [v, p̄]. Therefore if the equilibrium is Pareto efficient,

all values of v in this interval must maximize Φ(v). We use this to characterize the conditions

for Pareto efficiency.

Now assume there is a pair (ψ1, ψ2) such that the five conditions in the statement of

the proposition hold. Set Λ(v) = J(v) for v ∈ [v, p̄] and Λ(v) = 1 for v > p̄. The first

18The integrated Pareto weight Λ(v) is the sum of the Pareto weights on sellers with continuation value
less than or equal to v, so the Pareto weight on v is dΛ(v).

38



condition ensure that k = 0 is optimal with these Pareto weights and Lagrange multipliers.

The next three conditions ensure that Λ(v) = 0, Λ(v) is nondecreasing, and Λ(p̄) = 1, so

dΛ(v) are valid Pareto weights. By construction φ(v) = Φ(v) = 0 for all v ∈ [v, p̄] and

Φ(v) =
∫ v

p̄
(1 − J(x))dx ≤ 0 for all v > p̄ using the final condition. Therefore any function

ω(v) that is strictly decreasing on [v, p̄] and 0 at higher values of v maximizes the Lagrangian.

In particular, the semi-separating equilibrium is Pareto optimal.

Conversely, suppose there is no pair (ψ1, ψ2) satisfying these five conditions. If the first

condition failed, the Lagrangian would not have a maximum and so the semi-separating

equilibrium allocation would not maximize it. If any of the next three conditions failed,

any nondecreasing Pareto weight Λ(v) would have φ(v) = Λ(v)− Λ(v)− J(v) 6= 0 for some

v ∈ [v, p̄]; therefore not all v ∈ [v, p̄] would maximize Φ(v) and any solution to the Lagrangian

must have dω(v) constant at such v, inconsistent with the semi-separating equilibrium al-

location. And if the fifth condition failed, Φ(v) > 0 at some v > v̄, so again any solution

to the Lagrangian must have dω(v) = 0 at all v ≤ v̄, inconsistent with the semi-separating

equilibrium allocation.

Proof of Proposition 5. Proposition 3 describes the buyer efficient allocation. Buyers’

utility is

uB(β) =







b− 1 if β < β̂

βb/β̂ − 1 if β ≥ β̂,

where b and β̂ depend on CB
1 and CB

2 through equation (11). Implicitly differentiating this

expression, we get that a change in (CB
1 , C

B
2 ) of magnitude (dCB

1 , dC
B
2 ) raises the utility of

buyers with β < β̂ if and only if

dCB
1 +

β̂2gB(β̂)

1−GB(β̂) + β̂gB(β̂)
dCB

2 > 0

The same change raises the utility of buyers with β > β̂ if and only if

gB(β̂)

GB(β̂) + β̂gB(β̂)
dCB

1 + dCB
2 > 0.

Note that
GB(β̂) + β̂gB(β̂)

gB(β̂)
≥

β̂2gB(β̂)

1−GB(β̂) + β̂gB(β̂)
,

as can be confirmed algebraically. This means that if buyers β < β̂ like the perturbation
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(dCB
1 , dC

B
2 ) with dCB

2 ≥ 0, all buyers like the perturbation. And if buyers β > β̂ like the

perturbation (dCB
1 , dC

B
2 ) with dC

B
2 ≤ 0, all buyers like the perturbation.

Next, a feasible change in the costs satisfies dCS
1 = −dCB

1 and dCS
2 = −dCB

2 and so

in particular ψ1dC
S
1 + ψ2dC

S
2 = −ψ1dC

B
1 − ψ2dC

B
2 . Proposition 4 then implies that if

ψ1dC
B
1 + ψ2dC

B
2 < 0 for any (ψ1, ψ2) consistent with the conditions in the Proposition, the

equilibrium is not locally Pareto efficient.

Putting these results together, the equilibrium is locally Pareto efficient if there exists a

(ψ1, ψ2) consistent with the conditions in Proposition 4 such that

1. for any dCB
2 > 0, dCB

1 + β̂2gB(β̂)

1−GB(β̂)+β̂gB(β̂)
dCB

2 < 0 or ψ1dC
B
1 + ψ2dC

B
2 ≥ 0, and

2. for any dCB
2 < 0, gB(β̂)

GB(β̂)+β̂gB(β̂)
dCB

1 + dCB
2 < 0 or ψ1dC

B
1 + ψ2dC

B
2 ≥ 0.

Part (1) holds if and only if ψ2

ψ1

> β̂2gB(β̂)

1−GB(β̂)+β̂gB(β̂)
, while part (2) holds if and only if

GB(β̂)+β̂gB(β̂)

g(β̂)
> ψ2

ψ1

.

B Other Equilibria

We illustrate the full multiplicity of equilibria through a parametric example. Assume

G(β, δ) = βδ2 on [0, 1]2, so v = 0, v̄ = 1, Γ(v) = 1+v
2
, and H(v) = v(2− v).

B.1 Other Semi-Separating Equilibria

In section 4.1, we identified an equilibrium in which the sale price (probability) is a contin-

uous, strictly increasing (decreasing) function of an investor’s continuation value. We start

by showing that there is a continuum of such equilibria.

These equilibria are indexed by the identity of the seller with the highest continuation

value, p̄ ∈ [0.456, 1]. Given p̄, let p = p̄/(1 + p̄), β̂ = 2p, and

θ̂ =
(1− p̄)(2 + p̄)(3 + p̄)

4p̄2(6− p̄)
. (19)

The restriction on the range of p̄ ensures that θ̂ ∈ [0, 1]. In such an equilibrium, the buyer-
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seller ratio is

Θ(p) =































∞ if p < θ̂p

θ̂p/p if p ∈ [θ̂p, p)

θ̂
(

p̄−p
pp̄

)p̄
if p ∈ [p, p̄]

0 if p > p̄,

while the expected quality of assets offered for sale at prices above θ̂p is ∆(p) ≤ p/β̂, with

equality if p ∈ [p, p̄].

To prove this is an equilibrium, we need to discuss buying and selling behavior. Start

with selling. For any investor (β, δ) with continuation value with βδ ∈ (0, p̄), the unique

optimal selling price is ps(β, δ) = β̂Γ(βδ). For investors with the lowest continuation value,

βδ = 0, any ps(β, δ) ∈ [θ̂p, p] is optimal; we assume ps(β, δ) = p. For investors with higher

continuation values, βδ ≥ p̄, any ps ≥ βδ is optimal; we assume ps(βδ) = βδ.

Given these beliefs,

∆(p) =



















0 if p ∈ [θ̂p, p)

p/β̂ if p ∈ [p, p̄]

(1 + p)/2 if p > p̄.

Note that we are free to assign any beliefs at prices p ∈ [θ̂p, p), since all investors with β = 0

find such prices optimal. We choose to assign beliefs that only those investors who have δ = 0

set these prices. Given these beliefs, optimal buying behavior sets any price pb(β, δ) ∈ [p, p̄]

if β ≥ β̂ and any prices pb(β, δ) < θ̂p if β < β̂.

Finally, we can verify that equation (19) ensures that the goods market clears.

Building on this logic, we can construct a continuum of semi-separating equilibria when-

ever the lowest asset quality held by investors with the lowest continuation value is smaller

than the average asset quality held by investors with the lowest continuation value. If the

support of (β, δ) is a rectangle, this requires that the lowest continuation value is zero, but

otherwise it may hold more generally.

B.2 Other One-Price Equilibria

The same logic supports a continuum of one-price equilibria with rationing at the equilibrium

trading price. Equilibria are now characterized by three numbers, the equilibrium trading

price p1, the probability of trade at that price θ1 ∈ [0, 1], and the discount factor of the

marginal buyer β̂, but only two equations. First, the marginal buyer must be indifferent
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about buying all the assets offered for sale at p1:

p1 = β̂
3− p21

3(2− p1)
,

where (3− p21)/3(2− p1) is the average quality of assets held by investors with continuation

value v < p1. Second, the goods market must clear:

1− β̂ = θ1p
2
1(2− p1),

where p1(2−p1) is the fraction of sellers at the price p1. There is a solution to these equations

with θ1 ∈ [0, 1] if p1 ∈ [0.426, 0.634], giving

θ1 =
3− 6p1 + 2p21

p21(2− p1)(3− p21)

and

β̂ =
3p1(2− p1)

3− p21
.

In such an equilibrium, the buyer-seller ratio satisfies

Θ(p) =



















∞ if p < θ1p1

θ1p1/p if p ∈ [θ1p1, p1]

0 if p > p1,

while the expected quality of assets for sale relative to the price is maximized at p1.

To construct an equilibrium of this sort, we again discuss buying and selling behavior. All

investors (β, δ) with continuation value βδ < p1 set price p1 in equilibrium, while those with

higher continuation values set price ps(β, δ) = δ. This pins down buyers’ beliefs at prices

above p1. At prices between θ1p1 and p1, rational beliefs requires that investors anticipate

meeting sellers with zero continuation value. To support the equilibrium, we assume that

they anticipate meeting sellers with zero-quality assets:

∆(p) =



















0 if p < p1
3−p2

1

3(2−p1)
if p = p1

p if p > p1

One can verify that ∆(p)/p is maximized at p1 for all p1 ≤ 0.634, so buyers with β ≥ β̂ in

fact prefer to pay this single price: pb(β, δ) = p1 if β ≥ β̂ and pb(β, δ) = 0 otherwise. Finally,
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one can verify that the goods market clears.

Again, this logic shows how to construct a continuum of one-price equilibria whenever

the lowest asset quality held by investors with the lowest continuation value is smaller than

the average asset quality held by investors with the lowest continuation value.

B.3 n-Price Equilibria

Our model also admits an n-dimensional set of n-price equilibria. Denote the prices by

p1 < · · · < pn; in equilibrium all trade occurs at these prices. Also let θ1 > · · · > θn

denote the buyer-seller ratios at these prices, with θ1 ∈ (0, 1]. Let v1 < · · · < vn denote

the n critical continuation values who are indifferent between neighboring prices (so vi is

indifferent between setting prices pi and pi+1 and vn is indifferent between setting price pn

and setting a higher price at which she cannot sell). Finally, let β̂ denote the discount factor

of the marginal buyer. This gives us a total of 3n + 1 variables. These must satisfy 2n + 1

equations. The first n equations come from the indifference conditions of the marginal sellers:

θi(pi − vi) = θi+1(pi+1 − vi) for i ∈ {1, . . . , n− 1}

and pn = vn. The next n equations come from the marginal buyer’s indifference about

buying at any price. With our functional forms, this gives

pi = β̂
3− v2i−1 − vi−1vi − v2i

3(2− vi−1 − vi)
,

where v0 = 0. The fraction is the average value of the assets held by investors with continu-

ation value v ∈ [vi−1, vi]. Finally, the goods market must clear:

1− β̂ =

n
∑

i=1

θipi(vi(2− vi)− vi−1(2− vi−1),

where vi(2 − vi) − vi−1(2 − vi−1) is the measure of investors who set price pi, those with

continuation values v ∈ [vi−1, vi].

In equilibrium, the buyer-seller ratio satisfies

Θ(p) =



















∞ p < p0
θi(pi−vi)
p−vi

if p ∈ [pi, pi+1], i ∈ {0, . . . , n− 1}

0 p > pn,
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where p0 = θ1p1 and θ0 = 1. Given this structure, only sellers with continuation value vi find

prices p ∈ (pi, pi+1) optimal for i ∈ {0, . . . , n − 1}. To support the equilibrium, we assume

buyers anticipate that investors (β, δ) with β = 1 and δ = vi set these prices. Finally,

investors with βδ > pn and δ = p set price p > pn. This pins down buyers’ beliefs. The

remainder of the construction of equilibrium is now standard.

In our parametric example, first suppose θ1 = 1. We find that for any value of θ2 ∈

[0, 0.832], it is possible to construct an equilibrium with trade at two prices. Higher values

of θ2 are associated with lower values of p1 (falling from 0.426 to 0.371), lower values of

p2 = v2 (falling from 0.527 to 0.446), lower values of v1 (falling from 0.426 to 0), and higher

values of β̂ (rising from 0.714 to 0.743). It does not seem possible to construct equilibria

with θ2 > 0.832, because the system of equations would imply v1 < 0. For lower values of

θ1, there is a smaller interval of θ2 corresponding to an equilibrium, but the interval always

exists.

The possibility that θ1 < 1 again hinges on the assumption that the lowest asset quality

held by investors with the lowest continuation value is smaller than the average asset quality

held by these investors. However, the remaining construction does not rely on this restriction

and so appears to be completely general. For example, there are many n-price equilibria in

the independent Pareto example that we use throughout the text.

Qualitatively an n-price equilibrium looks very similar to the semi-separating equilibrium.

Investors with higher continuation values set weakly higher sale prices and sell with a weakly

lower probability. Indeed, we conjecture that in the limit as n converges to infinity, the

functions Θ(p) and ∆(p) in any n price equilibrium will be close to their values in some

semi-separating equilibrium in the sense of the sup-norm.

B.4 Mixed Equilibria

Equilibria may also feature a mix of mass points and continuous distributions. For example,

investors with continuation values in the interval [0, v1) may set a common price p1, while

investors with continuation values in a higher interval [v1, v2] may set prices P (v) that are

strictly increasing in the continuation value. To ensure buyers are willing to pay all these

prices, we require that β̂Γ(v) = P (v) and β̂∆(p1) = p1. Since ∆(p1) < Γ(v1), this implies

p1 < P (v1), so there is also a gap in the distribution.

The same logic implies that investors with continuation value in the next interval (v2, v3)

may set a common price p3 satisfying β̂Γ∆(p3) = p3; and since ∆(p3) > Γ(v2), p3 > P (v2).

Thus again there is a gap in the distribution followed by another mass point. Mass points

are followed by a gap, which in turn may be followed by another mass point or by a con-
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tinuous distribution. Continuous distributions are followed by a gap and then a mass point.

Numerous configurations are possible.
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