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1 Introduction

An enormous quantity of over-the-counter (OTC) trades are negotiated by counterparties

who rely on the observation of benchmark prices. This paper explains how benchmarks

affect pricing and trading behavior by reducing market opaqueness, characterizes the welfare

impact of benchmarks, and shows how the incentives of regulators and dealers to support

benchmarks depend on market structure.

Trillions of dollars in loans are negotiated at a spread to LIBOR or EURIBOR, benchmark

interbank borrowing rates.1 The WM/Reuters daily fixings are the dominant benchmarks in

the foreign exchange market, which covers over $5 trillion per day in transactions.2 There are

popular benchmarks for a range of commodities including silver, gold, oil, and natural gas,

among others.3 Benchmarks are also used to provide price transparency for manufactured

products such as pharmaceuticals and automobiles.4

Among other roles, benchmarks mitigate search frictions by lowering the informational

asymmetry between dealers and their “buy-side” customers. We consider a market for an

asset in which dealers offer price quotes to customers who are relatively uninformed about

the typical cost to dealers of providing the asset. We provide conditions under which adding

a benchmark to an opaque OTC market can improve efficiency by encouraging entry by

customers, improving matching efficiency, and reducing total search costs.

Recent major scandals over the manipulation of benchmarks for interest rates, foreign

currencies, commodities, and other assets have made the robustness of benchmarks a major

concern of international investigators and policymakers. This paper offers a theoretical

foundation for public-policy support of transparent financial benchmarks. Section 6 discusses

the manipulation of benchmarks in more detail.

1LIBOR is the London Interbank Offered Rate. EURIBOR is the Euro Interbank Offered Rate. For
U.S. dollar Libor alone, the Market Participants Group on Reference Rate Reform (2014) (chaired by one of
the authors of this paper) reports that over 3 trillion dollars in syndicated loans and over 1 trillion dollars
in variable-rate bonds are negotiated relative to LIBOR. The MPG report lists many other fixed-income
products that are negotiated at a spread to the “interbank offered rates” known as LIBOR, EURIBOR, and
TIBOR, across five major currencies. As of the end of 2013, Bank for International Settlements (2014) report
a total notional outstanding of interest rate derivatives of 583 trillion U.S. dollars, the vast majority of which
reference LIBOR or EURIBOR. These swap contracts and many other derivatives reference benchmarks, but
are not themselves benchmark products. Other extremely popular benchmarks for overnight interest rates
include SONIA, the Sterling OverNight Index Average, and EONIA, the Euro OverNight Index Average.

2See Foreign Exchange Benchmark Group (2014), which reports that 160 currencies are covered by the
WM/Reuters benchmarks. These benchmarks are fixed at least daily, and by currency pair within the 21
major “trade” currencies.

3The London Bullion Market Association provides benchmarks for gold and silver. Platts provides
benchmarks for oil, refined fuels, and iron ore (IODEX). Another major oil price benchmark is ICE Brent.
ICIS Heren provides a widely used price benchmark for natural gas.

4For a discussion of the Average Wholesale Price (AWP) drug-price benchmarks, see Gencarelli (2005).
The Kelly Blue Book publishes the “Fair Purchase Price” of automobiles, based on the average transaction
price by model and location.
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Our model works roughly as follows. In an over-the-counter market with a finite number

of dealers and a continuum of investors that we call “traders,” the cost to a dealer of pro-

viding the asset to a trader is the sum of a dealer-specific (idiosyncratic) component and a

component that is common to all dealers. (In practice the clients of financial intermediaries

may be buying or selling the asset. We take the case in which traders wish to buy. The

opposite case is effectively the same, up to sign changes.) The existence of a benchmark is

taken to mean that the common cost component is publicly announced. Each trader ob-

serves, privately, whether her search cost is high or low. Traders are searching for a good

price, and dealers offer them price quotes that depend endogenously on the presence of a

benchmark. Each dealer posts an offer price, available for execution by any trader, anony-

mously. Traders, who have a commonly known value for acquiring the asset, contact the

dealers sequentially, expending a costly search effort, or costly delay, with each successive

dealer contacted. At each point in time the trader, given all of the information available

to her at that time (including past price offers and, if published, the benchmark) decides

whether to buy, keep searching, or exit the market. All market participants maximize their

conditional expected net payoffs, at all times, in a perfect Bayesian equilibrium.

Under natural parameter assumptions, which vary with the specific result, we show that

publishing the benchmark is socially efficient because of the following effects. First, publi-

cation of the benchmark encourages efficient entry by traders, thus increasing the realized

gains from trade. The benchmark improves the information available to traders about the

likely price terms they will face. This assists traders in deciding whether to participate in the

market, based on whether there is a sufficiently large conditional expected gain from trade.

The increased transparency of prices created by the benchmark causes dealers to compete

more aggressively in their quotes. In this sense, publication of the benchmark mitigates the

hold-up problem caused by dealers’ incentives to quote less attractive prices once the search

costs of traders have been sunk.

Second, benchmarks can improve matching efficiency, leading to a higher market share for

low-cost dealers. When the benchmark is not observed by traders, high-cost dealers exploit

the ignorance of traders about the cost of providing the asset and may conduct sales despite

the presence of more efficient competitors. The benchmark allows traders to decompose

a price offer into a common-cost component and a dealer-specific component for cost and

profit margin. As a result, if search costs are sufficiently small, customers trade with the

most efficient dealers. Third, benchmarks reduce wasteful search by (i) alerting traders that

gains from trade are too small to justify entry, and (ii) helping traders infer whether they

should stop searching because they have likely encountered a low-cost dealer.

Our result that benchmarks promote market efficiency through improved price trans-

parency is consistent with empirical evidence that post-trade transparency introduced in
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2003 by TRACE in the U.S. corporate bond market often lowered bid-ask spreads. Key

results include those of Bessembinder, Maxwell and Venkataraman (2006), Edwards, Harris

and Piwowar (2007), Goldstein, Hotchkiss and Sirri (2007), and Asquith, Covert and Pathak

(2013).

We also characterize cases in which the introduction of a benchmark lowers welfare. This

can happen when the market is already relatively efficient without the benchmark. This

finding is consistent with the insight of Asriyan, Fuchs, and Green (2015) (in a very different

model) that welfare can be non-monotone in the degree of transparency. Asquith, Covert

and Pathak (2013) show that the introduction of TRACE lowered transaction volumes in

some less liquid segments of the corporate bond market. They speculate that some dealers

may have reduced their commitment of capital to the market due to the adverse impact of

additional price transparency on their intermediation rents. Additional arguments for and

against greater price transparency are discussed by Bessembinder and Maxwell (2008) in the

context of corporate bond markets.

Although a published benchmark reduces the informational advantage of dealers over

buy-side traders, dealers may sometimes prefer to commit to a benchmark, assuming they

are able to coordinate among themselves to do so. Typically, by reducing market opaqueness,

a benchmark reduces the local monopoly power of a dealer when facing a customer, and hence

decreases each dealer’s average profit margin. Thus, dealers prefer to introduce a benchmark

only when the resulting reduction in profit margin is more than offset by the increased volume

of trade. We provide supporting conditions on model parameters.

In the simplest version of our model, in which dealers have homogeneous costs, we demon-

strate that dealers never want to introduce a benchmark when doing so would reduce social

surplus. On the other hand, there are cases in which benchmarks would enhance welfare,

but dealers lack the incentives to introduce them. Thus, there may be scope for regulators to

promote benchmarks in order to improve market efficiency. Recently, Japan and the United

Kingdom introduced legislation in support of financial benchmarks, and the European Union

has announced plans to do so.

Finally, we analyze how incentives to commit to a benchmark differ across different types

of dealers. Given the improvement in matching efficiency caused by benchmarks, we show

that the most efficient dealers can use a benchmark as a “price transparency weapon” that

drives inefficient competitors out of the market and draw trades to dealers in the “benchmark

club.” This may help explain why benchmarks such as LIBOR were first introduced into the

Eurodollar loan market by large London-based banks,well before the introduction of LIBOR

swaps, without support by regulators (see Hou and Skeie 2013).

Benchmarks serve important purposes beyond those modeled in this paper. As discussed

by Duffie and Stein (2014), the existence of a benchmark makes it possible to contract in
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advance for the exchange of an asset at a formulaic price that depends on the benchmark.

For example, with the benefit of a price benchmark, a forward contract for oil can be cash-

settled, rather than settled in a more costly way by physical delivery of oil. A benchmark

also permits investors to monitor the effectiveness of trade execution by agents acting as

their asset managers.

Our analysis draws upon techniques first used in search-based models of labor markets,

in a literature surveyed by Rogerson, Shimer and Wright (2005). The framework that we

consider features mixed strategies in pricing (as modeled by Varian (1980), Burdett and Judd

(1983), and Stahl (1989), among others) and uncertainty about the distribution of prices,

as in Rothschild (1974). Our model builds on that of Janssen, Pichler and Weidenholzer

(2011), with two important differences that allow us to study welfare implications. First, we

introduce endogenous entry to study efficient participation in the market.5 With endogenous

entry, we show that the result of Janssen, Pichler and Weidenholzer (2011), that sellers never

wish to disclose their costs to the market, may fail. Indeed, in our model setting, the fact

that dealers often wish to publish a benchmark is consistent with the historical emergence

of dealer-supported financial benchmarks. Second, we permit heterogeneity in dealers’ costs.

We show that benchmarks promote the direction of trade toward more efficient dealers.

Section 4 of our paper on matching efficiency is related to Benabou and Gertner (1993),

who analyze the influence of inflationary uncertainty (similar in spirit to the effect of cost

uncertainty in our model) on welfare and on the split of surplus between consumers and

firms. The relationship between their approach and ours with regard to uncertainty can

be described as “local” versus “global.” Benabou and Gertner (1993) analyze the marginal

effect on welfare when uncertainty is reduced slightly, while the introduction of a benchmark

in our setting reduces this source of uncertainty significantly. A limitation of their model is

its restriction to only two sellers.

The remainder of the paper is organized as follows. Section 2 states the model. In

Section 3 we analyze the role of benchmarks in markets with relatively high search costs,

focusing on how benchmarks encourage market participation by traders. Section 4 focuses

on the impact of a benchmark on matching efficiency. In Section 5 we show that dealers may

have a total-profit incentive to commit to a benchmark, and we analyze how benchmarks

may be endogenously introduced by dealers. Section 6 addresses benchmark manipulation.

Section 7 concludes. All proofs are relegated to appendices, which also contain supplementary

supporting results and examples.

5Janssen, Moraga-González and Wildenbeest (2005) model entry of buyers when sellers’ cost is common
knowledge but they do not focus on the effect of information disclosure about dealers’ costs.
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2 Model

This section describes a search-based model of an over-the-counter market, beginning with

primitive definitions that cover market participants, the trading protocol, and the definition

of market equilibrium.

Our market participants consist of a finite number N ≥ 2 of dealers and an infinite set

of traders, distributed uniformly on [0, 1]. For concreteness, we model encounters in which

a dealer sells and a trader buys. The model can be equivalently formulated with the buying

and selling roles reversed. The important distinction between the two types of agents is that

dealers make markets by offering executable price quotes, whereas traders contact dealers

sequentially and accept their quotes or not, in a manner to be described.

All trades are for a unit amount of a given asset. Dealer i can supply the asset at a

per-unit cost of ci = c + εi, where c is common to all dealers and εi is idiosyncratic. The

common cost component c has a cumulative distribution function G with support [c, c̄], for

some c ≥ 0, with c < c̄ < ∞. High-cost dealers are those whose outcome for εi is some

constant ∆ > 0. Low-cost dealers are those with εi = 0. The common probability of a low-

cost outcome is γ > 0. The cost components c, ε1, . . . , εN are independent. Dealer i observes

c and εi, but does not observe the cost type εj of any other dealer j.

All traders have a known constant value v > 0 for acquiring the asset. Traders have no

information concerning which dealers are low-cost. Trader j ∈ [0, 1] incurs a search cost of

sj for making each contact with a new dealer. For tractability, we suppose that sj = 0 with

some probability µ in (0, 1), and that sj = s with probability 1−µ, for some constant s > 0.

Search costs are independent across almost every pair of traders. By the exact law of large

numbers of Sun (2006), µ is also the fraction of traders with zero search cost, almost surely.6

The presence of some traders with zero search cost overcomes the usual Diamond paradox.7

Because search costs in practice often arise from delay costs, we refer for simplicity and

concreteness to traders with zero search cost as “fast traders,” and to those with non-zero

search cost as “slow traders.”

The presence of a benchmark is taken to mean the publication of the common component

c of the dealers’ costs. We will compare two market designs: the benchmark case and the

no-benchmark case.

The game proceeds as follows. If there is a benchmark, its value c is first revealed. Each

dealer i posts a price pi that constitutes a binding offer to sell one unit of the asset at this

price to any trader. This offer price is observed only by those traders who contact the dealer.

6We adopt throughout Sun’s construction of the agent space and probability space, and the measurable
subsets of the product of these two spaces, so as to allow without further comment various applications of
the exact law of large numbers for a continuum of essentially pairwise-independent random variables.

7The Diamond paradox (Diamond 1971) refers to cases in which all dealers charge the monopoly price
in a unique equilibrium with no search.
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In OTC financial markets, this trade protocol is sometimes called “click for trade.”

Traders (without yet having observed the quotes of any dealers) make entry decisions. A

failure to enter the market ends the game for the trader. With entry, a trader contacts one

of the dealers, with equal likelihood across the N dealers. Upon observing a dealer’s offer,

the trader can accept that offer or the offer of any previously contacted dealer, in which

case the corresponding transaction is made and the trader leaves the market. A trader may

alternatively continue searching by contacting another randomly selected dealer, again with

the uniform distribution over the yet-to-be-visited dealers. The order of dealer contacts is

independent across traders. A trader may exit the market at any point without trading,

even after having contacted all N dealers. Dealers observe neither the price offers posted by

other dealers nor the order in which traders contact dealers. Traders observe nothing about

the searches or transactions of other traders.

In many over-the-counter financial markets, traders are not anonymous and dealers’

quotes are good only when offered. In Appendix A, we discuss the implications of this

alternative protocol.

A (mixed) strategy for dealer i is a measurable function mapping the dealer’s cost type

εi and the common cost component c to a probability distribution over price offers. In the

absence of a benchmark, a strategy for trader j maps the trader’s search cost sj and any

prior history of observed offers to a choice from: (i) accept one of the observed offers, (ii)

continue searching, or (iii) exit. (If the trader has not yet visited any dealer, the decision

to continue searching is equivalent to the decision to enter the market.) In the presence of

a benchmark, the strategy of a trader may also depend on the published benchmark c. The

payoff of dealer i is (pi− ci)Qi, where Qi is the total quantity of sales8 by dealer i. If trader

j successfully conducts a purchase, say from dealer i, then her payoff is v− pi− sjKj, where

Kj is the number of dealers that she contacted. If she does not purchase the asset, then her

payoff is −sjKj.

An equilibrium is a collection of strategies for the respective agents, possibly mixed

(allowing randomization), with the property that each agent’s strategy maximizes at each

time that agent’s expected payoff conditional on the information available to the agent at that

time, and given the strategies of the other agents. We focus on symmetric perfect Bayesian

equilibria. We also assume, essentially without loss of generality, that fast traders play their

weakly dominant strategy of always entering the market and contacting all dealers.9 As is

8That is, Qi =
´ 1
0

1(i,j) dj, where 1(i,j) has outcome 1 if trader j accepts the offer of dealer i, and
otherwise has outcome 0. This integral is always well defined and, under our equilibrium strategies, satisfies
the exact law of large numbers, using the Fubini property of Sun (2006).

9This assumption is without loss of generality in that for every equilibrium in which fast traders do not
play this strategy, there exists a payoff-equivalent equilibrium in which they do. The only exception is the
degenerate Diamond-paradox equilibrium, in which all dealers quote the price v, fast traders contact no more
than one dealer, and slow traders do not enter.
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conventional in the literature for search-based markets, we restrict attention to reservation-

price equilibria unless otherwise indicated. These are equilibria in which a trader’s decision

to continue searching can be based at any time on a cutoff for the best observed offer to that

point.

Concerning our definition of a benchmark as the common component c, a more realistic

but far less tractable formulation is one in which the benchmark is the dealers’ average

cost,
∑

i ci/N , or average quoted price,
∑

i pi/N . These alternatives provide less precise

information to the buy-side than c, although both converge to perfect revelation of c as N

gets large, in the sense of the law of large numbers. We expect the qualitative thrust of our

results would carry over to these alternative definitions of a benchmark.

3 With High Search Costs, Benchmarks Improve Entry Efficiency

This section considers how benchmarks affect the efficiency of entry by traders. We thus

focus on cases in which search costs are relatively high compared to gains from trade.10 In

particular, we maintain throughout this section that gains from trade may fail to exist for

sufficiently high cost realizations, in that c̄ ≥ v.

The results include conditions under which having the benchmark dominates the no-

benchmark case in terms of expected total social surplus, defined as the expected sum of the

payoffs of all agents, both dealers and traders, net of costs.

In order to simplify and isolate the effect of a benchmark on entry decisions, we also

assume throughout this section that γ = 1, that is, all dealers have the same supply cost c.

Online Appendix H proves a version of the main result of this section without that assump-

tion. The general case adds technical complications but does not offer any additional insights

when it comes to entry. Later, in Section 4, we consider the general case in which the dealers’

costs are heterogeneous and explain how the introduction of a benchmark can improve the

efficiency with which traders are matched to low-cost dealers.

3.1 The benchmark case

We first characterize equilibrium in the benchmark case. A considerable part of the analysis

here draws upon the work of Janssen, Moraga-González and Wildenbeest (2005) and Janssen,

Pichler and Weidenholzer (2011).

In the event that c > v, there are no gains from trade, and in light of the benchmark

10A note on terminology: When we say “gains from trade” we refer to the random variable (v − c)+ ≡
max(v− c, 0), representing the “potential” or “maximal” gains from trade. Unless the meaning is clear from
the context, we use the term “realized gains from trade” to refer to gains that are generated in the actual
equilibrium of the game.
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information, slow traders do not enter. Obviously, there can be no trade in equilibrium. If

v − s ≤ c ≤ v, because dealers never quote prices below their costs, slow traders still do

not enter. Fast traders enter and buy from the dealer that offers the lowest price. It is easy

to show that the only equilibrium is one in which all dealers quote a price of c, amounting

to Bertrand competition among dealers. From this point we therefore concentrate on the

interesting case, the event in which c < v − s.
We fix some candidate probability λc of entry by slow traders. This entry probability

will be determined in equilibrium. Conditional on entry, the optimal policy of a slow trader

is characterized by Weitzman (1979): Search until she contacts a dealer whose offer is no

higher than a certain cutoff rc, which depends neither on the history of received offers nor

on the number of dealers that have not yet been visited.

A standard search-theory argument—found, for example, in Varian (1980) and elaborated

in Appendix B—implies that the only possible equilibrium response of dealers is a mixed

strategy in which offers are drawn from a continuous distribution whose support has rc as

its maximum. Because, in equilibrium, a dealer’s price is never worse than a slow trader’s

reservation price, a slow trader buys from the first dealer that she contacts.

Let Fc( · ) be the equilibrium cumulative distribution function of a dealer’s price offer.

Given the traders’ strategies, a contacted dealer assigns the posterior probability

q(λc) =
µ

µ+ 1
N
λc(1− µ)

(3.1)

that the visiting trader is fast. Here, we used the property that a slow trader enters with

probability λc and visits this particular dealer with probability 1/N . Because, in equilibrium,

dealers must be indifferent between all price offers in the support [p
c
, rc] of the distribution,

we have (1− q(λc))︸ ︷︷ ︸
P (Sell to slow trader)

+ q(λc) (1− Fc(p))N−1︸ ︷︷ ︸
P (Sell to fast trader)

 (p− c) = (1− q(λc))︸ ︷︷ ︸
P (Sell to slow trader)

(rc − c). (3.2)

We used the fact that a slow trader accepts a price p ≤ rc for sure, but a fast trader

accepts p if and only if all other dealers offer worse prices. Thus, the equilibrium cumulative

distribution function Fc of price offers is given by

Fc(p) = 1−
[
λc(1− µ)

Nµ

rc − p
p− c

] 1
N−1

. (3.3)

The lowest price p
c

in the support is determined by the boundary condition Fc( pc) = 0.

We can now calculate the optimal reservation price r?c of slow traders. Because traders
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value the asset at v, we must have r?c ≤ v. The optimality condition of Weitzman (1979) im-

plies that after observing a quote of p = r?c , a trader must be indifferent between immediately

accepting the offer and continuing to search. We thus have the condition

v − r?c = −s+ v −
ˆ r?c

p
c

p dFc(p). (3.4)

Substituting the solution for Fc(p) and conducting a change of variables yields

r?c = c+
1

1− α(λc)
s, (3.5)

where

α(λc) =

ˆ 1

0

(
1 +

Nµ

λc(1− µ)
zN−1

)−1

dz < 1. (3.6)

By direct calculation, the expected offer conditional on c is

ˆ r?c

p
c

p dFc(p) = (1− α(λc))c+ α(λc)r
?
c .

Equation (3.5) states that the maximum price that a slow trader is willing to accept is the

cost of the asset plus a dealer profit margin equal to the trader’s search cost s multiplied by a

proportionality factor that reflects an entry externality, represented through the function α.

This “entry externality” arises as follows. If the slow-trader entry probability λc is low, the

market consists mainly of fast traders, and competition among dealers pushes the expected

profit margins of dealers to zero, in that limλ→0 α(λ) = 0. (That is, the trading protocol

converges to an auction run by fast traders.) On the other hand, if λc is close to 1, then slow

traders constitute a considerable part of the market, and the existence of search frictions

allows dealers to exert their local monopoly power and sell at prices bounded away from

their costs.

To complete the description of equilibrium, we must specify the optimal entry decisions

of slow traders. Holding the entry probability λc fixed, the expected payoff of a slow trader

conditional on c and on entry is

π(λc) = v − s−
ˆ r?c

p
c

p dFc(p) = v − 1

1− α(λc)
s− c.

It can be verified that π(λc) is strictly decreasing in λc through the role of α(λc).

If π(λc) is strictly positive at λc = 1, then the equilibrium slow-trader entry probability
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λ?c must be 1. Because α is maximized at λc = 1, this happens if and only if

c ≤ v − 1

1− ᾱ
s,

where

ᾱ = α(1) =

ˆ 1

0

(
1 +

Nµ

1− µ
zN−1

)−1

dz. (3.7)

If the profit π(λc) is negative at λc = 0, then there is no entry by slow traders, that is,

λ?c = 0. Since α(0) = 0, this happens whenever c > v − s.
Finally, if c ∈ (v − s, v − s/(1− ᾱ)), then we have “interior entry,” in that λ?c ∈ (0, 1) is

uniquely determined by the equation

s = (1− α(λ?c))(v − c). (3.8)

We summarize these results in the following proposition.

Proposition 1. In the benchmark case, the equilibrium payoffs are unique, and there exists

a reservation-price equilibrium in which the following properties hold.

1. Entry. In the event that c ≥ v − s, no slow traders enter. If

v − s

1− ᾱ
< c < v − s,

then slow traders enter with the conditional probability λ?c ∈ (0, 1) determined by equa-

tion (3.8). If c ≤ v − s/(1− ᾱ), then slow traders enter with conditional probability 1.

2. Prices. In the event that c > v, dealers quote arbitrary offers no lower than c. If

c ∈ [v−s, v], then dealers quote offers equal to c. If c < v−s, then every dealer quotes

offers drawn with the conditional probability distribution function Fc given by (3.3).

3. Traders’ reservation prices. In the event that c < v − s, conditional on entry, a slow

trader’s reservation price r?c is given by (3.5).

4. Social surplus. The conditional expected total social surplus given c is

λ?c(1− µ) (v − c− s) + µ(v − c)+,

where (v − c)+ ≡ max(v − c, 0). The conditional expected profit of each dealer is

λ?c(1− µ)

N

s

1− α(λ?c)
.
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An immediate implication of Proposition 1 is that entry is inefficient. In equilibrium, if

c ∈ (v− s/(1− ᾱ), v− s), the gain from trade for any slow traders is larger than the search

cost, but we do not observe full entry. This inefficiency can be understood as a hold-up

problem. Once traders enter, search costs are sunk and dealers make higher-than-efficient

price offers. Taking into account this hold-up problem, slow traders enter only if gains from

trade v − c are significantly higher.

3.2 The no-benchmark case

When the absence of a benchmark prevents traders from observing the common component c,

traders potentially make complicated Bayesian inferences based on the observed price offers

in order to assess the attractiveness of these offers. To keep the model tractable we restrict

attention to equilibria in which traders, when on the equilibrium path, follow a reservation-

price strategy.11 That is, in the k-th round of search a slow trader has a reservation price

of the form rk−1(p1, p2, . . . , pk−1), where (p1, p2, . . . , pk−1) is the history of prior price of-

fers. According to this reservation-price strategy, any offer pk > rk−1(p1, p2, . . . , pk−1) is

not immediately accepted and any offer pk < rk−1(p1, p2, . . . , pk−1) is immediately accepted.

An offer pk = rk−1(p1, p2, . . . , pk−1) is accepted with some (mixing) probability that is de-

termined in equilibrium. For simplicity, from this point we describe an offer that is not

immediately accepted as “rejected,” bearing in mind that the trader retains the option to

later accept the offer.

We first characterize reservation-price equilibria, assuming one exists. Then we provide

conditions under which a reservation-price equilibrium does exist. The following lemma is

an important step in characterizing a reservation-price equilibrium.

Lemma 1. In every reservation-price equilibrium in which slow traders enter with strictly

positive probability, (i) the first-round reservation price r?0 is equal to v and (ii) for each

outcome of c strictly below v, the upper limit of the support of the conditional distribution of

price offers is v.

Without the benchmark, a trader’s ignorance of the common component c of dealers’

costs makes it more difficult for her to evaluate the attractiveness of price offers. Lemma 1

states that this information asymmetry causes a slow trader to accept any price offer below

11Although this restriction is standard in the literature, Janssen, Parakhonyak and Parakhonyak (2014)
analyzed non-reservation-price equilibria in a consumer-search model with two firms. They assume that the
customer’s value is sufficiently high relative to the firms’ cost, so there is no issue of entry efficiency, a key
focus of our model. They also assume that the two firms have identical costs, drawn with the same outcome
from a binomial distribution. This shuts down the matching efficiency on which we focus in the next section.
Because of these assumptions and the technical difficulties in solving non-reservation-price equilibria in our
setting, we follow the more usual convention in the literature of focusing on reservation-price equilibrium.
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her value v for the asset, in a reservation-price equilibrium. Thus, only two things can

happen if a positive mass of slow traders enter. If c ≤ v, a slow trader buys from the first

dealer that she contacts. If c > v, then a slow trader will observe a price offer above her

value for the asset, conclude that there is no gain from trade, and exit the market. This

outcome—slow traders entering only to discover that there is no gain from trade—is a waste

of costly search that would be avoided if there were a benchmark. With a benchmark, as

seen in Proposition 1, slow traders do not enter unless the conditional expected gain from

trade exceeds the cost s of entering the market and making contact with a dealer.

Using Lemma 1, we can describe the reservation-price equilibrium without the bench-

mark, analogously with Proposition 1. We define the expected gain from trade

X = G(v) [v − E (c | c ≤ v)] , (3.9)

that is, the probability of a positive gain from trade multiplied by the expected gain given

that it is positive. Let λ? denote the equilibrium probability of entry by slow traders.

Proposition 2. In the no-benchmark case, if a reservation-price equilibrium exists, it must

satisfy the following properties:

1. Entry. If s ≥ X, no slow traders enter, that is, λ? = 0. If s ∈ ((1 − ᾱ)X, X), the

fraction λ? of entering slow traders solves

s = (1− α(λ?))X. (3.10)

If s ≤ (1− ᾱ)X, all slow traders enter with probability λ? = 1.

2. Prices. In the event that c > v, dealers quote an arbitrary price offer no lower than c.

If c ≤ v, dealers quote prices drawn with the cumulative distribution:

Fc(p) = 1−
[
λ∗(1− µ)

Nµ

v − p
p− c

] 1
N−1

. (3.11)

3. Traders’ reservation prices. Conditional on entry, a slow trader has a reservation price

of v at her first dealer contact. If this first dealer’s price offer is no more than v, the

slow trader accepts it. Otherwise the slow trader rejects it and exits the market.

4. Surplus. The expected total social surplus is λ?(1− µ)(X − s) + µX, and the expected

profit of each dealer is λ?(1− µ)X/N .

The markets with and without benchmarks, characterized by Propositions 1 and 2, re-

spectively, share some common features. In both, dealers’ strategies depend on the realization
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of the benchmark c, and slow traders never contact more than one dealer on the equilib-

rium path. The distribution of quoted prices and the entry probability of slow traders are

characterized by functions whose forms, with and without a benchmark, are similar.

That said, there are two crucial differences. First, slow traders’ entry decisions in the

presence of the benchmark depend on the realization (through publication of the benchmark)

of the gains from trade. By contrast, without a benchmark, entry depends only on the

(unconditional) expected gain from trade. Second, with the benchmark, the reservation

price of slow traders generally depends on the realization of the benchmark c. Absent the

benchmark, however, a slow trader’s reservation price is always v, so that an offer of v is in

the support of price offers regardless of the outcome of c.

Existence of reservation-price equilibria in the no-benchmark case

Before comparing welfare with and without the benchmark, it remains to characterize condi-

tions under which a reservation-price equilibrium exists without the benchmark. Providing

general conditions for existence in this setting is challenging. While significant progress on

existence has been made by Janssen, Pichler and Weidenholzer (2011), their results do not

apply in our setting because they assume that the trader value v is so large that varying its

level has no effect on the equilibrium. We cannot make this assumption because the size of

gains from trade plays a key role in our analysis of entry. Benabou and Gertner (1993) also

provide partial existence results for the case of two dealers, but in a different setting.

Appendix B provides a necessary and sufficient condition for the existence of reservation-

price equilibrium in the case of two dealers, and an explicit sufficient condition for existence

with N > 2 dealers. The main conclusion is summarized as follows.

Proposition 3. There exists some s < X such that for any search cost s greater than s, a

reservation-price equilibrium in the no-benchmark case exists and is payoff-unique.

Proposition 3 states that the equilibrium described in Proposition 2 exists if the search

cost is sufficiently large. The condition s < X ensures that there exists an equilibrium

with strictly positive probability of entry by slow traders. If s ≥ X there exists a trivial

reservation-price equilibrium in which slow traders do not enter.

3.3 Welfare comparison

We now show that if search costs are high relative to the expected gain from trade, then

introducing the benchmark raises the social surplus by encouraging the entry of slow traders.

As noted above, entry may be inefficiently low under search frictions due to the hold-up

problem and the negative externality in the entry decisions of slow traders. Because a search
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cost is sunk once a slow trader has visited a dealer, a dealer can more heavily exploit its

local-monopoly pricing power. Expecting this outcome, slow traders may refrain from entry

despite the positive expected gain from trade. The hold-up problem is more severe when

more slow traders enter (because this raises the posterior belief of a dealer that he faces a

slow trader). These effects apply both with and without the benchmark. The question is

whether benchmarks alleviate or exacerbate this situation.

We now state the main result of this section, giving conditions under which adding the

benchmark improves welfare by encouraging entry.

Theorem 1. Suppose that (i) s ≥ (1− ᾱ)(v−c) or (ii) s ≥ (1−ψ)X holds, where ψ ∈ (0, ᾱ)

is a constant that depends12 only on µ and N . Then a reservation-price equilibrium in the

no-benchmark case (if it exists) yields a lower social surplus than that of the equilibrium

in the benchmark case. Condition (i) holds if there are sufficiently many dealers or if the

fraction µ of fast traders is small enough.

There are two key sources of intuition behind Theorem 1. First, the presence of a bench-

mark allows slow traders to make their entry decisions contingent on additional information

about magnitude of gains from trade. In equilibrium with the benchmark, entry is higher

precisely when gains from trade are larger. In other words, if the unconditional probabil-

ity of entry were the same across the two settings, then social surplus would be higher in

the benchmark case because, in the equilibrium with the benchmark, volume is positively

correlated with gains from trade. Second, adding the benchmark reduces the information

asymmetry between dealers and traders. Without the benchmark, a slow trader is not sure

whether an unexpectedly high price offer is due to a high outcome for the common cost c of

dealers, or is due to an unlucky draw from the dealer’s offer distribution. Dealers exploit this

informational advantage, which exacerbates the hold-up problem. By providing additional

information about dealers costs, benchmarks give more bargaining power to slow traders.

The proof of the theorem is illustrated in Figure 3.1, which depicts the dependence

of the benchmark-market social welfare function Wb(x) on the realized gain from trade

x = max{v−c, 0}. The proof first shows that the expected social surplus in the no-benchmark

case is actually equal toWb[E(x)]. We thus want to show that E[Wb(x)] ≥ Wb(E(x)). Because

slow traders increase their entry probability when the benchmark-implied gain from trade is

large, we can prove that Wb( · ) is convex over the set of x for which the entry probability

is interior. Condition (i) ensures the convexity of Wb( · ) on its entire domain, allowing

an application of Jensen’s Inequality. The alternative condition (ii) ensures that Wb( · ) is

subdifferentiable at X = E(x), yielding the same comparison. Both conditions require that

12We have ψ = 1
2

[√
(1− ᾱ+ ᾱβ)2 + 4ᾱ(1− ᾱ)− (1− ᾱ+ ᾱβ)

]
, where β = Nµ/(1− µ), and ᾱ is defined

by equation (3.7).
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Fig. 3.1: Conditional expected social surplus given the realized gain x from each trade.
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the search cost s is sufficiently high.

We emphasize that Theorem 1 is neither mechanical nor trivial. In fact, one can find

conditions under which the welfare ranking in Theorem 1 is reversed. That is, there are

cases in which adding a benchmark can harm welfare. The severity of the hold-up problem

decreases with the size of gains from trade. Without the benchmark, the expected size of

gains from trade determines entry. When the expected gains from trade are high relative

to search costs, all slow traders enter in the absence of benchmarks, overcoming the hold-

up problem. With the benchmark, however, the actual size of gains from trade determines

entry. Slow-trader entry is high when c is low, and entry is low when c is high. For some

parameters, it is more efficient to “pool” the entry decisions without the benchmark than to

let entry depend on the realized benchmark cost.

Proposition 4. Suppose that the equilibrium described by Proposition 2 exists. If (i) (1 −
ᾱ)(v − c̄) < s, (ii) s ≤ (1 − ᾱ)X, and (iii) G(v − s) is sufficiently close to one, then the

expected social surplus is strictly higher without the benchmark than with the benchmark.

The condition s ≤ (1− ᾱ)X ensures that there is full entry without the benchmark. (By

Theorem 1, this condition fails if µ is small enough or N is large enough.) The condition

that s > (1− ᾱ)(v− c̄) ensures that there are cost realizations for which we do not have full

entry with the benchmark. Finally, the condition that G(v − s) is close to one ensures that

the entry of slow traders is indeed socially desirable for nearly all cost realizations.

The conditions of Proposition 4 are easily interpreted in Figure 3.1. If X > s/(1 − ᾱ)

(condition (ii)) and if we can safely ignore the region [0, s] (condition (iii)), then we can
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place a hyperplane above the graph of Wb( · ), tangent to it at X. That is, we get super-

differentiability rather than sub-differentiability, reversing the welfare inequality. Condition

(i) guarantees that the inequality is strict.

The reverse welfare ranking of Proposition 4 relies on the fact that there is a bounded

mass of slow traders. In an alternative model in which the potential mass of slow traders

is unbounded, “full entry” is impossible, and the function Wb( · ) in Figure 3.1 is globally

convex. In this unbounded-entry model, a reservation-price equilibrium in the no-benchmark

case (if one exists) yields a lower social surplus than the equilibrium in the benchmark case.

A formal proof of this claim is omitted as it follows directly from the proof of Theorem 1.

3.4 Separating the entry-promoting roles of a benchmark

As argued in our discussion of Theorem 1, introducing a benchmark encourages entry through

two channels: (i) signaling when gains from trade are high and (ii) increasing the slow

traders’ share of gains from trade by reducing the informational advantage of dealers con-

cerning the cost of the asset. In order to distinguish between these two effects, we study

in this subsection (only) an intermediate “costly-benchmark-observation” setting in which

traders observe the benchmark only upon making their first contact with a dealer (after

making the entry decision but before accepting or rejecting an offer). Essentially, this means

that slow traders must pay the search cost s to learn the outcome of the benchmark. This

artificial costly-benchmark-observation setting allows us to characterize in the next propo-

sition the specific entry screening effect (ii) of benchmarks, while keeping the other entry

effect (i) “switched off.”

Proposition 5. A reservation-price equilibrium always exists (and is payoff-unique) in the

costly-benchmark-observation setting. Moreover, under the condition that (1−ᾱ)X < s < X,

the equilibrium in the costly-benchmark-observation setting has a strictly higher expected

social surplus than that of the reservation-price equilibrium without the benchmark.

The proposition states that channel (ii), reducing information asymmetry between deal-

ers and traders, always works in favor of introducing a benchmark. By providing slow

traders with information about the market-wide cost of the asset to dealers, the presence of

a benchmark increases traders’ expected payoffs off the equilibrium path, thus encouraging

their entry and raising total social surplus on the equilibrium path.

The next result states that role (i) of a benchmark, signaling when there are high gains

from trade, is also relevant.

Proposition 6. There exists s < X such that for any search cost s ∈ (s, v − c) the ex-

pected social surplus is strictly higher in the benchmark case than in the costly-benchmark-

observation case.
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4 When Do Benchmarks Improve Matching?

This section characterizes the matching-efficiency role of benchmarks in search-based mar-

kets. For this purpose, we must analyze the full-fledged model in which dealers’ costs are

heterogeneous. So, from this point, we assume that the probability γ that a dealer has a low

cost for providing the asset is in (0, 1). Throughout this section we maintain the following

two assumptions.13

Assumption A.1. Search is socially optimal, in that s < γ∆.

Assumption A.2. Gains from trade exist with probability 1. That is, c̄ < v −∆.

Together, these conditions imply full entry by slow traders in equilibrium, with the bench-

mark. This allows us to separately identify the welfare effect of matching efficiency. As-

sumption A.2 is adopted for expositional purposes only. We give generalized statements

(weakening Assumption A.2) of the results of this section in Appendix C. We will show that

if search costs are relatively low then adding a benchmark raises social surplus by making

it easier for traders to find efficient (that is, low-cost) dealers. Having a low search cost is

important because contacting a low-cost dealer is socially optimal only if the search cost is

lower than the potential improvement in matching efficiency, that is, under Assumption A.1.

The benchmark case. In the presence of a benchmark, the key intuition for the equilib-

rium construction from Section 3 carries over to this setting, but the supporting arguments

are more complicated, and several cases need to be considered. For that reason, we focus

here on parameter regions that are relevant for social-surplus comparisons, and relegate a

full characterization to Appendix C. Figure 4.1 summarizes pricing schemes that arise in

equilibrium as a function of search cost s. We begin with the following result.

Proposition 7. In the presence of a benchmark, the equilibrium is payoff-unique and slow

traders use a reservation-price strategy.

Proposition 7 is not surprising given the analysis of Section 3.1. There is, however, a

subtle but important difference. Under a reservation-price strategy, a trader is typically

indifferent between accepting an offer and continuing to search when the offer is equal to her

reservation price. In the setting of Section 3 it does not matter whether traders accept such

an offer or not because this event has zero probability. With idiosyncratic costs, however,

there are parameter regions in which the only equilibrium requires traders who face an offer

13Appendix C provides the supporting analysis when Assumption A.1 fails. In that case, there will be no
search in the equilibrium with the benchmark. While the absence of search is socially optimal in this case,
this is not the case in which we are most interested.
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at their reservation price to mix between accepting and continuing to search. The mixing

probabilities are important when there is an atom in the probability distribution of offers

located at a trader’s reservation price. In equilibrium, these atoms may arise if the reservation

price is equal to the high outcome of dealer costs (see panel C in Figure 4.1). This affects

the inference made by dealers when they calculate the probability of facing a fast trader.

Fig. 4.1: Price supports in different equilibrium regimes. Lines represent the non-atomic
(“continuous”) portions of distributions. Dots represents atoms. Low-cost dealers
are shown in blue. High-cost dealers are shown in red.

prices prices prices prices

c+Δ

c
s

κ(1-α(1,1))γΔ (1-α(1,1))γΔ (1-α(1,0))γΔ

r*
c

r*
c

r*
c

r*
c

A B C D

To account for heterogeneity in dealers’ costs, we need to adjust the probability that a

dealer’s counterparty is fast (as opposed to slow), from that given by equation (3.1). This

probability now depends on both the entry probability λc and the c-conditional probability,

denoted θc, that a slow trader rejects an offer from a high-cost dealer. As θc gets larger, slow

traders search more, and the posterior probability that a dealer is facing a fast trader falls.

We will denote by q(λc, θc) the probability that a contacting trader is fast. Accordingly,

the definition of the function α(λc) from equation (3.6) is generalized to a two-argument

function α(λc, θc) with values in (0, 1). Explicit formulas are provided by equations (C.5)

and (C.6) in Appendix C. The role of α(λc, θc) is analogous to that of α(λc) in Section 3.

Here, α(λc, θc) is strictly increasing in both arguments. As λc and θc increase, the probability

that a counterparty is slow rises, leading dealers to quote higher prices in equilibrium. The

constant α(1, 1) is an analogue of ᾱ in Section 3, and bounds α(λc, θc) from above. For the
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sake of simplifying upcoming expressions, we denote

α̂ = α(1, 1).

We can now state one of the main results of this section.

Proposition 8. If s ≤ (1 − α̂)γ∆, then the equilibrium in the benchmark case leads to

efficient matching: slow traders always enter, and all traders buy from a low-cost dealer

in the event that there is at least one such dealer present in the market. Additionally, if

s ≥ κ(1− α̂)γ∆, where κ < 1 is a constant14 depending only on γ, µ, and N , the equilibrium

with the benchmark achieves the second best, in the sense that each slow trader buys from the

first low-cost dealer that she contacts, minimizing search costs subject to matching efficiency.

In order to understand how benchmarks lead to efficient matching and second-best per-

formance in the above sense, consider first the case in which the search cost s is in the

interval

(κ(1− α̂)γ∆, (1− α̂)γ∆).

This case is illustrated in panel B of Figure 4.1. In equilibrium, slow traders follow a

reservation-price strategy with a reservation price r?c that is below c + ∆. Low-cost dealers

quote prices according to a continuous probability distribution whose support is below this

reservation price. Thus, if there are any low-cost dealers in the market, slow traders buy

from the first low-cost dealer that they contact. In the unlikely event that there are only

high-cost dealers in the market, which happens with probability (1−γ)N , slow traders search

the entire market and then trade with one of the high-cost dealers at the price c+ ∆. This

second-best equilibrium outcome is therefore fully efficient at matching.

The key role of the benchmark in this case is to introduce enough transparency to permit

traders to distinguish between efficient and inefficient dealers. The benchmark not only

ensures that traders ultimately transact with the “right” sort of counterparty, but also

ensures that no search cost is wasted while looking for this transaction. This last conclusion

is true under the weaker condition that s ≥ κ(1− α̂)γ∆.

If s < κ(1 − α̂)γ∆, however, slow traders may search excessively. As the search cost s

get smaller, the equilibrium reservation-price r?c also gets smaller (closer to c), and low-cost

dealers are forced to quote very low prices if they want to sell at the first contact of any slow

trader. Because of their cost advantage, low-cost dealers always have the “outside option”

of trying head-on competition by quoting a price above the reservation price (and just below

c+ ∆), hoping that all other dealers have high costs (in which case low-cost dealers win the

resulting effective auction, making positive profits). It turns out that low-cost dealers wish

14We have κ = (1− γ)N−1/
[
µ(1− γ)N−1 + (1− µ)[1− (1− γ)N ]/(Nγ)

]
.
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to deviate to this strategy when s < κ(1 − α̂)γ∆. In the resulting equilibrium, which we

illustrate in panel A of Figure 4.1 and describe formally in part C.1 of Appendix C, matching

remains efficient but we do not achieve the second best, because of the higher-than-efficient

amount of search.

The intuition described above indicates that a low-cost dealer’s incentive to quote a high

price should disappear as the number N of dealers gets large. Indeed, as N becomes large

the probability that all other dealers have high costs goes to zero quickly. We confirm in

Appendix C.3 that an upper bound on the potential surplus loss (compared to first best)

goes to zero exponentially fast with N when s < κ(1 − α̂)γ∆. In sharp contrast, surplus

losses are potentially unbounded in N when s is close to (1 − α̂)γ∆. Hence, for practical

purposes, it is natural to focus on the case s ≥ κ(1− α̂)γ∆.

The no-benchmark case. We now show that without the benchmark, it is impossible to

achieve the second best.

Proposition 9. In the absence of a benchmark, if c̄ > c+ ∆ there does not exist an equilib-

rium that achieves the second best.

The proof of the proposition explores the simple idea that when there is no benchmark

for traders to observe, they cannot recognize a low-cost dealer when they contact one. In the

absence of a benchmark, traders can rely only on Bayesian inference based on the observed

price quotes. This Bayesian inference, however, can be relatively ineffective. With low real-

izations of the common cost component c, high-cost dealers may make offers that “imitate”

the offers that low-cost dealers would make at higher realizations of c. As a result, slow

traders buy from inefficient dealers or engage in socially wasteful search. The benchmark

adds enough transparency to allow traders to distinguish between high offers from low-cost

dealers and low offers from high-cost dealers.

Welfare comparison. As a corollary of Propositions 8 and 9, we obtain the following

result, providing conditions under which adding a benchmark improves welfare.

Theorem 2. If (i) κ(1 − α̂)γ∆ ≤ s ≤ (1 − α̂)γ∆ and (ii) c̄ > c + ∆ both hold, then the

equilibrium in the benchmark case yields a strictly higher expected social surplus than that of

any equilibrium in the no-benchmark case.

The theorem does not cover the entire search-cost space. We discuss the remaining cases

in Online Appendix F.1, where we show in particular that the second best is not achieved

if s > (1 − α̂)γ∆, even if the benchmark is present. Nonetheless, with a benchmark, if

search costs are not too large, partial efficiency applies to the matching of traders to low-

cost dealers. The (unique) equilibrium supporting this outcome has an interesting structure.
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High-cost dealers post a price c+∆ equal to the reservation price r?c of slow traders (see panel

C of Figure 4.1) . Slow traders accept that price with some nontrivial (mixing) probability

that is determined in equilibrium.

When search costs are sufficiently high, as illustrated in panel D of Figure 4.1, both

types of dealers sell at a strictly positive profit margin, and slow traders buy from the first

encountered dealer. Thus, in this case, matching is inefficient. To make welfare comparisons

for this parameter region, it is necessary to explicitly characterize the no-benchmark equi-

librium. This is a difficult task because traders can potentially search multiple times and

their posterior beliefs about c become intractable.

That said, for the case of two dealers, we can provide a full characterization of reservation-

price equilibria in the no-benchmark case. Under the condition s ≥ κ(1 − α̂)γ∆, we show

that matching is more efficient with a benchmark than without, provided that traders use

a reservation-price strategy in equilibrium. Because the details are complicated, we relegate

them to Online Appendix F.2.

5 Incentives of Dealers to Introduce a Benchmark

To this point we have taken the presence or absence of a benchmark as given. In practice,

benchmarks are often introduced by market participants, such as dealers in OTC financial

markets. In this section we explore the incentives of dealers to introduce a benchmark.

5.1 Introducing benchmarks to encourage entry

As we have seen in previous sections, the introduction of a benchmark reduces the infor-

mational advantage of dealers relative to traders, and increases the expected payoffs of slow

traders. It might superficially seem that dealers have no incentive to introduce the bench-

mark. In this subsection we show that the contrary can be true. Under certain conditions

dealers want to introduce a benchmark in order to increase their volume of trade. We as-

sume that dealers are able to commit to a mechanism leading to truthful revelation of c, so

the question of whether they prefer to have the benchmark boils down to comparing deal-

ers’ profits with and without the benchmark. We address the implementability of adding a

benchmark in Section 6.

For simplicity of exposition we concentrate on the effects of entry on dealers’ profits in

the setting in which dealers have homogeneous costs for supplying the asset, that is, with

γ = 1. We discuss in Online Appendix G and show formally in Online Appendix H that

the same conclusions hold if dealers’ costs are heterogeneous. (Just as in Section 3, the

heterogeneity of dealers’ costs does not “interact” with the effects of entry.)
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Theorem 3. Suppose that (i) s ≥ (1− ᾱ)(v − c) or (ii) s ≥ (1− η)X, where η ∈ (0, ᾱ) is

a constant that depends only on N and µ. If all dealers have the same cost (that is, γ = 1),

then a reservation-price equilibrium in the no-benchmark case (whenever it exists) yields a

lower expected profit for dealers than in the setting with the benchmark. Condition (i) holds

if there are sufficiently many dealers or if the fraction µ of fast traders is small enough.

The benchmark raises the profits of dealers by encouraging the entry of slow traders.

If search costs are large relative to gains from trade (assumption (i) or (ii) of Theorem

3), dealers benefit from the increased volume of trade arising from the introduction of the

benchmark. In order for dealers’ total profits to rise with the introduction of a benchmark,

entry by slow traders must be sufficiently low without the benchmark, for otherwise the

benchmark-induced gain in trade volume does not compensate for the dealers’ drop in profit

margin on each trade.

A benchmark can be viewed as a commitment device, by which dealers promise higher

expected payoffs to traders in order to encourage entry. In particular, a benchmark par-

tially solves the hold-up problem by reducing market opaqueness and hence by giving more

bargaining power to traders.

It can be shown that the conclusion of Theorem 3 implies the conclusion of Theorem

1. That is, whenever dealers would opt for the benchmark, it must be the case that the

introduction of the benchmark raises social surplus. The opposite is not true. There generally

exists a range of search costs in which the benchmark raises social surplus but dealers would

have no incentive to commit to it. This is intuitive. Whenever the gain from trade v − c
exceeds the search cost s, any increase in entry probability is welfare-enhancing. If, however,

this increase is too small to compensate for the reduction in dealers’ profit margins, dealers

would not opt to introduce the benchmark. The above discussion is illustrated with a

numerical example found in Online Appendix I.2.

5.2 Low-cost dealers may compete by introducing a benchmark

This subsection analyzes the incentives of low-cost dealers to introduce a benchmark on

their own—despite opposition from high-cost dealers—as a powerful device to compete for

business. We show that under certain conditions the collective decision of low-cost dealers to

add a benchmark drives high-cost dealers’ profits to zero and forces them out of the market.

As a result, low-cost dealers make more profits, and the market becomes more efficient

overall. This may explain why emergent “benchmark clubs” are often able to quickly attract

the bulk of trades in some OTC markets, as was the case with LIBOR.

In order to explain how “benchmark clubs” may emerge, we augment our search-market

game of the previous sections with an earlier stage in which dealers decide whether to intro-
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duce a benchmark and, after calculating their expected profits, whether to enter the market

themselves. To simplify the modeling, we suppose that there are two types of environments,

with respect to the cross-sectional distribution of dealer cost efficiency. With some probabil-

ity Γ ∈ (0, 1), there is a relatively low-cost environment in which the number L of low-cost

dealers is at least 2. Otherwise, there are no low-cost dealers (L = 0). We rule out the case

in which there is exactly one low-cost dealer in the market because, for a high enough cost

difference ∆, the low-cost dealer would in that case be an effective monopolist, complicating

the analysis. A formal description of the game follows:

1. Pre-trade stage: the introduction of a benchmark and entry by dealers.

(a) Nature chooses the dealer-cost environment, whose outcome is not observed. With

probability 1−Γ, all dealers have high costs. With probability Γ, the number L of

low-cost dealers is drawn from a truncated binomial distribution with parameters

(N, γ), where the truncation restricts the support to the set {2, 3, . . . , N}. Con-

ditional on L, the identities of dealers with low costs are drawn independently of

L and symmetrically.15 The idiosyncratic component εi of dealer i is the private

information of dealer i.

(b) Dealers simultaneously vote, anonymously, whether to have a benchmark or not.

If there are at least two votes in favor, the benchmark is introduced. (We explain

in Section 6 how dealers could implement a benchmark, provided that there are

at least two of them.) In this case, c immediately becomes common knowledge.

If the number of votes in favor is zero or one, the benchmark is not introduced.

(c) Dealers make entry decisions. For simplicity, we adopt a tie-breaking rule that

dealers enter if and only if their expected trading profits are strictly positive.

(d) After dealers’ entry decisions, the number of dealers that enter, denoted M , be-

comes common knowledge among dealers and traders.

2. Trading stage. The game proceeds according to the baseline model described in Sec-

tion 2, but with N replaced by M .

We denote by

X∆ = G(v −∆)E (v − c−∆ | c ≤ v −∆)

15This implies that ε1, . . . , εN are no longer i.i.d. Our results would hold under more general distributions
of dealer types. The only properties required of the unconditional distribution of L are (i) symmetry with
respect to dealer identities, (ii) that the events L = 0 and L ≥ 2 both have positive probability, and (iii)
that the event L = 1 has zero probability.
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the expected gain from trade with high-cost dealers. The following theorem establishes con-

ditions that are sufficient to induce low-cost dealers to collectively introduce the benchmark

and drive their high-cost competitors out of the market.

Theorem 4. Suppose that s < (1 − ᾱ)(v − c̄). Then there is a constant ∆? such that, for

any dealer cost difference ∆ ≥ ∆?, the following are true.

• There exists an equilibrium of the extended game in which all low-cost dealers vote in

favor of the benchmark and all high-cost dealers vote against it. There are no profitable

group deviations in the voting stage.

• If the environment is competitive (that is, L ≥ 2), the benchmark is introduced, all

high-cost dealers stay out of the market, all low-cost dealers enter the market, and all

traders enter the market.

• If the environment is uncompetitive (L = 0), the benchmark is not introduced, and

high-cost dealers enter the market if and only if X∆ > s.

A proof is provided in Appendix D. Here, we explain the intuition of the result.

To start, we note that the theorem makes economically significant predictions about the

role of the benchmark only in the case X∆ > s. This case arises if s is sufficiently small.

(The proof provides details.) In the opposite case of X∆ < s, high-cost dealers earn zero

profits regardless of whether the benchmark is introduced, so they are indifferent between

voting in favor of, or against, the benchmark, and they never enter. In the discussion below,

we focus on the interesting case of X∆ > s, in which high-cost dealers can make positive

profits and strictly prefer not to introduce the benchmark.

The benchmark serves as a signaling device for low-cost dealers to announce to traders

that the environment is competitive. The signal is credible because traders, expecting low

prices conditional on introducing the benchmark, set a low reservation price in equilibrium.

Therefore, high-cost dealers cannot imitate low-cost dealers by deviating and announcing

the benchmark. Instead, they prefer to trade in opaque markets without the benchmark and

with low participation by slow traders, which allows them to make positive profits.

Low-cost dealers have two distinct incentives to add the benchmark. First, adding the

benchmark encourages the entry of slow traders. In addition to the intuition conveyed in

Section 3, in the setting of this section the benchmark plays the additional role of signaling the

types of active dealers, because the benchmark is added endogenously. On the equilibrium

path, once a benchmark is introduced, slow traders believe with probability one that all

active dealers have low costs. If a benchmark is not introduced, slow traders believe that all

dealers have high costs. As a consequence, the (correctly) perceived gain from trade by slow
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traders goes up considerably if a benchmark is added. This channel encourages entry. The

condition s < (1− ᾱ)(v − c̄) ensures full entry by traders if the benchmark is introduced.

Second, low-cost dealers capture additional market share by adding the benchmark. With

a large enough dealer cost difference ∆, the expected gains from trade are small if the bench-

mark is not introduced. As a result, we show that slow traders who enter will set a reservation

price r? equal to v in the trading-stage subgame, and high-cost dealers inevitably capture

a large proportion of trades with slow traders. If, however, the benchmark is introduced,

a sufficiently large ∆ makes high-cost dealers’ quotes highly uncompetitive, which drives

trades to low-cost dealers. Thus, although low-cost dealers’ profit per trade may be lower

with the benchmark, they capture an additional amount of trade. In fact, in equilibrium, if

the environment is competitive, high-cost dealers drop out completely because they cannot

make any profit, and low-cost dealers handle all of the trades.

The first part of Theorem 4 asserts that in the equilibrium that we construct there are no

profitable group deviations in the voting stage. In the usual Nash equilibrium of the voting

game, if everyone is voting against or in favor, no dealer is pivotal, and each outcome may

be supported in equilibrium. This arbitrariness is eliminated by allowing group deviations.

6 Benchmark Manipulation and Implementation

Recent scandals involving the manipulation of interest-rate benchmarks such as LIBOR and

EURIBOR, as well as currency price fixings provided by WM/Reuters, have shaken investor

confidence in financial benchmarks. Serious manipulation problems or allegations have also

been reported for other major benchmarks, including those for term swap rates, gold, silver,

oil, and pharmaceuticals.16 Major banks are now more reluctant to support these bench-

marks in the face of potential regulatory penalties and private litigation. For example, of

the 44 banks contributing to EURIBOR before the initial reports of manipulation, 18 have

already dropped out of the participating panel.17 Regulators have responded not only with

sanctions,18 but also by taking action to support more robust benchmarks. The Financial

Stability Board has set up several international working groups charged with recommending

reforms to interest-rate and foreign-exchange benchmarks that would reduce their suscepti-

bility to manipulation while maintaining their usefulness in promoting market efficiency.19

16See, respectively, Patterson and Burne (2013), Vaughn (2014), Hurtado (2014), Scheck and Gross (2013),
and Gencarelli (2002).

17See Brundsen (2014).
18See Finch and Larkin (2014).
19See Official Sector Steering Group (2014), Market Participants Group on Reference Rate Reform (2014),

and Foreign Exchange Benchmark Group (2014).
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The United Kingdom is preparing a comprehensive regulatory framework for benchmarks.20

So far, we have assumed that dealers can credibly commit to the truthful revelation of c.

We show in Appendix E that in our simple setting there exists a mechanism that truthfully

implements a benchmark, provided that there are at least two dealers, and a benchmark

administrator who can impose transfers. In the mechanism, dealers report the common

component c to the administrator individually, and are punished if the reports disagree. The

challenge of that mechanism is that it does not preclude collusion by dealers, who may all

report a distorted benchmark in a coordinated fashion. That said, a benchmark adminis-

trator may use the tool of post-trade reporting to detect such manipulation with certain

confidence. For example, if the reported cost c implies a distribution of transaction prices

that differs substantially from the empirically observed distribution of transaction prices,

there could be scope for further investigation by the benchmark administrator. Explicit

models of benchmark manipulation in different settings are offered by Coulter and Shapiro

(2014) and Duffie and Dworczak (2014).

7 Concluding Remarks

Benchmarks underlie a significant fraction of transactions in financial and non-financial mar-

kets, particularly those with an over-the-counter structure that rules out a common trading

venue and a publicly announced market-clearing price. This paper provides a theory of the

effectiveness and endogenous introduction of benchmarks in search-based markets that are

opaque in the absence of a benchmark. Our focus is the role of benchmarks in improv-

ing market transparency, lowering the informational asymmetry between dealers and their

customers regarding the true cost to dealers of providing the underlying asset.

In the absence of a benchmark, traders have no information other than their own search

costs and what they learn individually by “shopping around” for an acceptable quote. Dealers

exploit this market opaqueness in their price quotes. Adding a benchmark alleviates infor-

mation asymmetry between dealers and their customers. We provide naturally motivated

conditions under which the publication of a benchmark raises expected total social surplus

by encouraging greater market participation by buy-side market participants, improving the

efficiency of matching, and reducing wasteful search costs.

20See Bank of England (2014). The report provides a list of over-the-counter-market benchmarks “that
should be brought into the regulatory framework originally implemented in the wake of the LIBOR mis-
conduct scandal.” (See page 3 of the report.) A table listing the benchmarks that are recommended for
regulatory treatment is found on page 15. In addition to LIBOR, which is already regulated in the United
Kingdom, these are the overnight interest rate benchmarks known as SONIA and RONIA, the ISDAFix
interest-rate-swap index, the WM/Reuters 4pm closing foreign exchange price indices (which cover many
currency pairs), the London Gold Fixing, the LBMA Silver Price, and ICE Brent (a major oil price bench-
mark).
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In some cases, dealers have an incentive to introduce benchmarks despite the associated

loss of local monopoly advantage, because of a more-than-offsetting increase in the trade

volume achieved through greater customer participation. When dealers have heterogeneous

costs for providing the asset, those who are more cost-effective may introduce benchmarks

themselves, in order to improve their market share by driving out higher-cost competitors.

Which markets have a benchmark is not an accident of chance, but rather is likely

to be an outcome of conscious decisions by dealers, case by case, when trading off the

costs and benefits of the additional market transparency afforded by a benchmark. Our

analysis also suggests that there may be a public-welfare role for regulators regarding which

markets should have a benchmark, and also in support of the robustness of benchmarks to

manipulation.
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Appendix

A Further Discussion of the Trading Protocol

Our model assumes that dealers’ price offers remain valid at any time, the “recall” assumption

often used in models of search markets. A more realistic alternative is the good-only-when-

offered protocol, in which dealers are allowed to quote a new price upon the second (and any

subsequent) visit by the same trader. As shown by Zhu (2012), revisiting a dealer constitutes

a negative signal about the trader’s outside option and tends to worsen the dealer’s quote.

Suppose that slow traders cannot recall earlier offers, but fast traders still can. This

change is inconsequential if slow traders search only once on the equilibrium path when

recall is available. When dealers’ costs are homogeneous, slow traders indeed search only

once, and thus our conclusions from Section 3 and Section 5.1 continue to hold without

adjustment. Janssen and Parakhonyak (2013) formally show that the recall assumption

has no effect on the equilibrium outcome. However, when dealers’ costs are heterogeneous

(and search costs are low enough), slow traders may search multiple times on the equilibrium

path when recall is available. For instance, if an unlucky slow trader keeps meeting high-cost

dealers, his optimal strategy is to keep searching for a low-cost dealer. In this case relaxing

the recall assumption can change the equilibrium outcome by changing the bargaining power

of dealers. In particular, because a dealer knows that with a positive probability he is the

last to be visited, he can quote a higher price, profiting from the slow trader’s inability to

recall an earlier offer. This dealer incentive does not apply to the homogenous-cost setting,

in which a slow trader only meets one dealer on equilibrium path.

Suppose, instead, that no trader, fast or slow, can recall earlier offers. In this case, fast

traders can no longer use the strategy of visiting all dealers and accepting the lowest offer.

http://www.bloomberg.com/news/2014-02-28/gold-fix-study-shows-signs-of-decade-of-bank-manipulation.html
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This alternative model would run into the Diamond paradox and is no longer suitable for

the analysis of benchmarks.

Overall, although relaxing the recall assumption may change search and pricing behaviors

in some cases, we have no reasons to expect this to change our main conclusions concerning

benchmarks, as the role of benchmarks and recall are related to distinct types of frictions.

Building a general and tractable framework that incorporates the good-only-when-offered

protocol is a desirable research direction that is outside the scope of this paper.

B Proofs for Section 3

B.1 Proof of Proposition 1

We fill in the gaps in the derivation of the equilibrium in the benchmark case. We focus on

the non-trivial case c ≤ c < v − s.
As argued in Section 3, regardless of the price distribution that dealers use in a symmetric

equilibrium, slow traders play a reservation-price strategy with some reservation price rc. Fast

traders play their weakly dominant strategy of searching the entire market. (Thus, if the

trader is a fast trader, the dealers are essentially participating in a first-price auction.)

Given this strategy of traders, the following Lemma establishes the properties of the

equilibrium response of dealers.

Lemma 2. If slow traders enter with a strictly positive probability, the equilibrium price

distribution cannot have atoms or gaps, and the upper limit of the distribution is equal to rc.

Proof. Suppose there is an atom at some price p in the distribution of prices Fc( · ) for some

cost level c ∈ (c, v − s). Suppose further that p > c. In this case a dealer quoting p

can profitably deviate to a price p − ε, for some small ε > 0 (because slow traders play

a reservation-price strategy, the probability of trade jumps up discontinuously). Because

dealers never post prices below their costs, we must have p = c. But that is also impossible,

because a dealer could then profitably deviate to rc (clearly, rc ≥ c+s in equilibrium). Thus,

there are no atoms in the distribution.

Second, suppose that p̄c > rc. In this case the dealer posting p̄c makes no profits, so she

could profitably deviate to rc. On the other hand, if p̄c < rc, a dealer can increase profits by

quoting rc instead of p̄c as this does not effect the probability of selling. Thus p̄c = rc.

Third, suppose that there is an open gap in the support of the distribution of prices

conditional on some cost level c, that is, an interval (p1, p2) ⊂ [p
c
, p̄c] \ supp (Fc( · )). Take

this interval to be maximal, that is, such that p1 is infimum and p2 is a supremum, both

subject to being in the support of Fc( · ). Then we get a contradiction because the probability

of selling is the same whether the dealer posts p1 or p2.
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The rest of the equilibrium characterization follows from the derivation in Section 3.1.

B.2 Proof of Lemma 1

Let r?0 be the equilibrium first-round reservation price for slow traders. Note that, unlike in

the benchmark case, r?0 is a number, not a function of c.

We take c < r?0. Such a c exists because r?0 ≥ c+ s. Suppose that the upper limit of the

support of the distribution Fc of offer prices, p̄c, is (strictly) larger than r?0. Since traders

follow a reservation-price strategy, and because fast traders visit all dealers, there can be no

atoms in the distribution of prices (otherwise a dealer could profitably deviate by quoting a

price just below the atom). Thus, a dealer setting the price p̄c never sells in equilibrium, and

hence makes zero profit. However, she could make positive profit by setting a price equal to

r?0. Thus, p̄c ≤ r?0. Because we took an arbitrary c < r?0, it follows that whenever c < r?0,

traders do not observe prices above r?0 on the equilibrium path.

Suppose that r?0 < v. Whenever the realization of c lies above r?0, the offer in the first

round must be rejected by a slow trader (dealers cannot offer prices below their costs). In

particular, a slow trader must reject the price p? ∈ supp (Fc( · )) with r?0 < p? ≤ inf{p ∈
supp(Fc( · ) : c > r?0}+δ < v, for a sufficiently small δ > 0.21 This is a contradiction. Indeed,

by the previous paragraph, conditional on observing a price p > r?0 in the first round, the

trader believes that c must lie above r?0 with probability 1. But in this case, the price p? is

within δ of the best possible price that the trader can ever be offered, so this offer should be

accepted by a slow trader (if δ < s), contrary to p? > r?0. This shows that r?0 = v.

Finally, suppose that p̄c < v for some c < v. Then a dealer quoting the price p̄c could

profitably deviate by posting a price v (the probability of trade is unaffected). This justifies

the second claim.

B.3 Proof of Proposition 2

Fix a fraction λ of slow traders that enter. By Lemma 1 and the arguments used in the

derivation of equilibrium prices in the benchmark case, the cdf of offered prices must be

Fc(p) = 1−
[
λ(1− µ)

Nµ

v − p
p− c

] 1
N−1

(B.1)

21Such p? exists. As long as c < v, in equilibrium dealers must be posting prices below v with positive
probability.
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with support [p
c
, v], where p

c
= ϕ(λ)v + (1− ϕ(λ))c and

ϕ(λ) =
λ(1− µ)

Nµ+ λ(1− µ)
.

We note that the only difference with the equilibrium pricing under the benchmark is that

the reservation price and probability of entry are constants, not functions of c.

We can now calculate the expected profits of slow traders if they choose to enter:

π(λ) = −s+

ˆ v

c

[ˆ v

p
c

(v − p) dFc(p)

]
dG(c) = −s+ (1− α(λ))X,

where

X = G(v) [v − E [c| c ≤ v]]

is the expected gains from trade. By reasoning analogous to that in the benchmark case, we

determine that:

• If s ≤ (1− ᾱ)X, there must be full entry by slow traders (λ? = 1).

• If s ≥ X, there cannot be entry by slow traders (λ? = 0).

• If s ∈ ((1 − ᾱ)X, X), then the entry of slow traders is interior, with probability λ?

determined uniquely by the equation (3.10).

B.4 Proof of Proposition 3

Given Proposition 2, in order to prove existence in our setting we need only show that a

slow trader does not want to search after observing a price p ≤ v in the first round. After

observing a price p, the slow trader forms a posterior probability distribution of c, given by

the cdf

G(c | p) =

´ c
c
fy(p) dG(y)´ c̄p

c
fy(p) dG(y)

,

where fc(p) denotes the density of the distribution defined by the cdf (3.11), and

c̄p =
1

1− ϕ(λ?)
p− ϕ(λ?)

1− ϕ(λ?)
v

is the upper limit of the support of the posterior distribution.

With two dealers, it is easy to provide a sufficient and necessary condition for existence.
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A price p is accepted in the first round if and only if

v − p ≥ −s+

ˆ c̄p

c

[ˆ p

p
c

(v − ρ)fc(ρ) dρ+ (v − p)(1− Fc(p))

]
dG(c | p),

or

s ≥

´ c̄p
c

´ p
p
c

Fc(ρ)dρ(v − c)(p− c)−2 dG(c)´ c̄p
c

(v − c)(p− c)−2 dG(c)
. (B.2)

Thus, a reservation-price equilibrium with two dealers exists if and only if inequality (B.2)

holds for all p ∈ (p
c
, v).The condition can be easily verified, as the expression on the right

hand side of (B.2) is directly computable.

With more than two dealers, an additional difficulty arises because it is not easy to

calculate the continuation value when an offer p is rejected in the first round. We can

nevertheless provide a sufficient condition based on the following argument. Suppose that

after observing p and forming the posterior belief about c, the slow trader is promised to

find, in the next search, an offer equal to the lower limit of the price distribution. This

provides an upper bound on the continuation value; thus, if the trader decides not to search

in this case, she would also not search under the actual continuation value. Thus, a sufficient

condition for existence is that

s ≥ (p− v) + (1− ϕ(λ?))

´ c̄p
c

(v − c)2(p− c)−
N
N−1 dG(c)´ c̄p

c
(v − c)(p− c)−

N
N−1 dG(c)

, (B.3)

for all p ∈ (p
c
, v). Again, inequality (B.3) can be directly computed and verified.

The last step in the proof is to show that inequality (B.3) holds for s in some range below

X. To this end, we analyze the behavior of the posterior distribution of costs G(c | p) after a

price p is observed by a slow trader in the first round when probability of entry λ? is small.

As λ? ↘ 0, conditional on p, the upper limit of the support of the posterior cost distribution,

c̄p, converges to p. Thus G(c | p) converges pointwise to 0 for c < p and to 1 for c > p. By one

of the (equivalent) definitions of weak? convergence of probability measures, the posterior

distribution converges in distribution to an atom at p. Thus, in the limit, inequality (B.3)

becomes

s ≥ (p− v) + (1− ϕ(0))(v − p) = 0,

and is thus vacuously satisfied. By continuity of the right-hand side of inequality (B.3), the

inequality holds if λ? is smaller than some λ > 0. Recall that λ? is determined uniquely by

equation (3.10). Moreover, it is continuous and strictly decreasing in s for s ∈ ((1−ᾱ)X, X),

and equal to zero at s = X. Thus, there exists s < X such that for all s > s, λ? is smaller

than λ.
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B.5 Proof of Theorem 1

We first outline the main steps of the argument, and leave the technical details for the two

lemmas that follow. To make the proof concise, we make a change of variables by defining

x = (v − c)+ ≡ max(v − c, 0) as the realized gain from a trade given the common cost c.

Note first that conditions (i) and (ii) both imply that s > (1− ᾱ)X. The case s ≥ X is

trivial to analyze as there is no entry of slow traders without the benchmark (see Proposition

2). Thus, we focus on the range (1 − ᾱ)X < s < X, within which Proposition 2 implies

interior entry in the absence of the benchmark.

The total expected surplus in the no-benchmark case is

Wnb ≡ [λ?(1− µ) + µ]X − λ?(1− µ)s.

With the benchmark, we let λ(x) denote the probability of entry by slow traders conditional

on a realized gain from trade of x. By Proposition 1,

λ(x)


= 0, if x ≤ s,

solves s = (1− α(λ(x)))x, if s < x < s
1−ᾱ ,

= 1, if x ≥ s
1−ᾱ .

The conditional expected social surplus in the benchmark case conditional on x is

Wb(x) ≡ [λ(x)(1− µ) + µ]x− λ(x)(1− µ)s.

The crucial observation, demonstrated in Lemma 3 below, is that Wb is a convex function

on [0, s/(1− ᾱ)]. Figure 3.1 depicts a typical shape of that function.

Under condition (i), Wb is convex on its entire domain. (This corresponds to cutting off

the part of the domain that upsets convexity, as shown in Figure 3.1.) We can thus apply

Jensen’s Inequality to obtain

E [Wb(x)] ≥ Wb [E (x)] = Wb

(ˆ c̄

c

(v − c)+ dG(c)

)
= Wb(X) = Wnb.

To justify the last equality, one notes that λ? is precisely λ(X), by equations (3.8) and (3.10).

(This inequality is actually strict because G is a non-degenerate distribution and because

λ(x) > 0 with positive probability under G.)

Under condition (ii), Wb may fail to be convex on its entire domain. However, an in-

spection of the proof of Jensen’s Inequality shows that all that is required to achieve the
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inequality is that the function Wb is subdifferentiable22 at E(x). The slope of Wb is increas-

ing on [0, s/(1− ᾱ)] and equal to 1 on (s/(1− ᾱ), v − c]. Thus, a sufficient condition for

existence of a supporting hyperplane of Wb at X is that W ′
b(X) ≤ 1. We thus want to solve

the equation W ′
b(x0) = 1 for x0 ∈ (s, s/(1− ᾱ)) and impose X ≤ x0. (See Figure 3.1.) An

explicit solution is not available, so instead we show in Lemma 4 below (by approximating

the functions α and λ) that this condition is implied by s ≥ (1− ψ)X.

Finally, a simple application of the Lebesgue Dominated Convergence Theorem shows

that ᾱ converges (monotonically) to 1 when either N → ∞ or µ → 0. Thus, condition (i)

holds if N is large enough or if µ is small enough.

Lemma 3. Wb(x) and λ(x) are convex functions on [0, s/(1− ᾱ)].

Proof. First we prove that λ(x) and Wb(x) are convex on (s, s/(1− ᾱ)]. By the Implicit

Function Theorem λ is twice differentiable on this interval and we have

∂λ

∂x
=

(1− α(λ))

α′(λ)x
> 0,

and

∂2λ

∂x2
=
−α′(λ)(1− α(λ))− (1− α(λ))

[
α′(λ) + α′′(λ) (1−α(λ))

α′(λ)

]
[α′(λ)x]2

.

Hence, ∂2λ
∂x2 ≥ 0 for all x ∈ (s, s/(1− ᾱ)) if and only if, for all λ ∈ (0, 1),

2 [α′(λ)]
2

+ α′′(λ)(1− α(λ)) ≤ 0. (B.4)

Letting β = Nµ/(1− µ), and computing the derivatives of α(λ), we rewrite (B.4) as(ˆ 1

0

βzN−1

(λ+ βzN−1)2 dz

)2

≤
(ˆ 1

0

βzN−1

(λ+ βzN−1)3 dz

)(ˆ 1

0

βzN−1

λ+ βzN−1
dz

)
.

Hölder’s Inequality states that for all measurable and square-integrable functions f and g,

‖fg‖1 ≤ ‖f‖2 ‖g‖2. By letting

f(z) =

√
βzN−1

(λ+ βzN−1)3 and g(z) =

√
βzN−1

λ+ βzN−1
,

we have proven inequality (B.4) and thus the convexity of λ(x).

22A function f : [a, b]→ R is said to be subdifferentiable at x0 if there exists a real number ξ such that,
for all x in [a, b], we have f(x)−f(x0) ≥ ξ(x−x0). If Wb is convex, then it is subdifferentiable on the interior
of its domain, by the Separating Hyperplane Theorem.
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Now it becomes straightforward to check that Wb(x) is convex on [s, s/(1− ᾱ)]. Notice

that Wb(x) and λ(x) are trivially convex on [0, s] (because, on this interval, λ(x) is identically

zero and Wb(x) is affine). Therefore, to finish the proof it is enough to make sure that

λ(x) and Wb(x) are differentiable at s. We can verify this by computing the left and right

derivatives: ∂−Wb ([s]) = µ = ∂+Wb ([s]), and ∂−λ ([s]) = 0 = ∂+λ ([s]).

Lemma 4. If x ≤ s
1−ψ , where ψ = 1

2

[√
(1− ᾱ + ᾱβ)2 + 4ᾱ(1− ᾱ)− (1− ᾱ + ᾱβ)

]
and

β = Nµ
1−µ , then W ′

b(x) ≤ 1.

Proof. The claim is true for x ≤ s, and since ψ ≤ ᾱ, we can focus on the region where λ(x)

is defined as the solution to the equation (3.8) which can be written as

α(λ(x)) = 1− s

x
.

Since α( · ) is a strictly increasing function, if we replace α( · ) in the above equation by a lower

bound, any solution of the new equation will be an upper bound on λ(x). Because Wb(x) is

convex in the relevant part of the domain (by Lemma 3), to make sure that W ′
b(x) ≤ 1, it’s

enough to require that x ≤ x0, where x0 solves W ′
b(x0) = 1 (such x0 exists and is unique).

We have

W ′
b(x0) = µ+ λ′(x0)(1− µ)(x0 − s) + λ(x0)(1− µ) = 1. (B.5)

We cannot solve this equation explicitly, so we will provide a lower bound on the solution.

Because W ′
b(x) is increasing, we need to bound W ′

b(x) from above. Since α(λ) ≥ λᾱ, by the

above remark, the solution of the equation

ᾱλ̄(x) = 1− s

x

provides an upper bound on λ(x). That is,

λ(x) ≤ λ̄(x) =
1

ᾱ
− s

ᾱ

1

x
.

Moreover,

λ′(x) =
1

α′(λ(x)))

s

x2
,

and we have, for all λ ∈ [0, 1],

α′(λ) =

ˆ 1

0

βzN−1

(λ+ βzN−1)2 dz ≥
1

λ+ β

ˆ 1

0

(
λ+ βzN−1

λ+ βzN−1
− λ

λ+ βzN−1

)
dz



B Proofs for Section 3 38

=
1

λ+ β
(1− α(λ)) ≥ 1− ᾱ

λ+ β
.

Plugging these bounds into equation (B.5) and rearranging, we obtain

β + 1
ᾱ
− s

ᾱ
1
x0

1− ᾱ
s

x0

(1− s

x0

) +
1

ᾱ

[
1− s

x0

]
= 1.

Denoting y = 1 − s/x0, bounding the left hand side from above one more time, and rear-

ranging, we get

y2 + (1− ᾱ + ᾱβ)y − ᾱ(1− ᾱ) = 0.

The relevant solution is ψ.

B.6 Proof of Proposition 4

This result follows directly from Propositions 1 and 2.

B.7 Proof of Proposition 5

Using the same arguments used in the derivation of equilibrium from Proposition 1 we can

show that in the costly-benchmark case there exists a reservation-price equilibrium, and that

equilibrium payoffs are unique. Fixing the probability of entry at λ (and noting that it is

independent of c), we compute the reservation price

rcbc = min

{
v, c+

1

1− α(λ)
s

}
.

A slow trader buys from the first contacted dealer if c ≤ v. The profit of a slow trader who

enters, conditional on c, can be shown to be

πcbc (λ) = max

{
v − 1

1− α(λ)
s− c, −s+ (1− α(λ))(v − c)

}
if c ≤ v, and −s if c > v. When s ≥ X, there can be no entry in equilibrium. If the

equilibrium probability of entry λcb is interior, then it must be determined by the indifference

condition, analogous to (3.8) and (3.10), given by

Eπcbc (λcb) = 0. (B.6)
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The solution to that equation exists and is unique if X ≥ s ≥ (1− ᾱ)X + φ, where

φ =
ᾱ

1− ᾱ

ˆ v− s
1−ᾱ

c

[(1− ᾱ)(v − c)− s] dG(c) ≥ 0.

When s < (1− ᾱ)X + φ, we must have entry with probability one.

To show that surplus is higher in the costly-benchmark case than in the no-benchmark

case, it is enough to show that entry is higher. Because the function max is convex, we can

apply Jensen’s Inequality to conclude that, for all λ,

Eπcbc (λ) ≥ −s+ (1− α(λ))X = πnb(λ),

that is, the expected profit is always higher in the costly-benchmark setting (and is strictly

higher provided that (1 − ᾱ)X < s < X). It follows that equilibrium entry of slow traders

must also be higher (from equations (3.10) and (B.6)).

B.8 Proof of Proposition 6

By Theorem 1 we know that when s is higher than (1− ψ)X, surplus under the benchmark

is higher than in the reservation-price equilibrium of the no-benchmark case.23 It is easy to

observe that the difference in surpluses is bounded away from zero as a function of s (under

the assumption that v − c > s > (1 − ψ)X). Given Proposition 5, it suffices to show that

the surplus of the costly-benchmark case converges to the surplus of the no-benchmark case

as s goes to X (when s ≥ X, they coincide). It is enough to prove that λcb, the solution

of equation (B.6), converges to λ?, the solution of equation (3.10), as s → X. Because the

solution of equation (B.6) is continuous in s and equal to 0 at s = X, λcb converges to 0,

and so does λ?.

C Proofs and Supporting Content for Section 4

C.1 Proof of Proposition 7 and equilibrium characterization in the

benchmark case

Because the distribution of costs is i.i.d. across dealers conditional on observing the bench-

mark, slow traders must follow a reservation-price strategy with some reservation price rc.

A stationary24 reservation-price strategy of slow traders will now be characterized by three

23Even if the latter equilibrium does not exist, the comparison between surpluses is valid, and that is all
we need for the proof.

24Requiring stationarity, that is, the same mixing probability at every search round, simplifies the expo-
sition and is without loss of generality. Without stationarity, there is an indeterminacy in specifying the
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numbers: λc, the probability of entry; rc, the reservation price; and θ̂c, the probability of

rejecting an offer equal to the reservation price rc. Fixing the strategy of the dealers and

the reservation price rc, the rejection probability θ̂c determines the probability θc that a slow

trader rejects an offer from a high-cost dealer, and vice versa. Given the one-to-one corre-

spondence between θc and θ̂c, for convenience we will abuse the notation for the strategy of

a slow trader, denoting it by the triple (rc, λc, θc). Again without loss of generality, we can

assume that fast traders play their weakly dominant strategy of always entering and visiting

all dealers. We ignore the issue of off-equilibrium beliefs, as it is fairly trivial to deal with.

Fixing c and a strategy (rc, λc, θc) we will characterize the equilibrium best-response of

dealers. We start with two technical lemmas.

Lemma 5. In equilibrium, conditional on c (for c < v), if dealers of a certain type (high-cost

or low-cost) make positive expected profits, then the probability distribution of price offers for

that type is atomless. If high-cost dealers make zero expected profits, then in equilibrium they

must quote a price equal to their cost, provided that c+ ∆ < v.

Proof. The first part of the Lemma can be proven using the argument from the proof of

Lemma 2. To prove the second part, suppose that, for some c < v−∆, a price above c+∆ is

in the support of the equilibrium strategy of high-cost dealers. The probability of selling at

that price (or some lower price above c+∆) must be positive since with probability (1−γ)N

only high-cost dealers are present in the market. Thus, we get a contradiction with the

assumption that high-cost dealers make zero expected profits.

Lemma 6. In equilibrium, conditional on c, if c < v, for any equilibrium price pl of a

low-cost dealer, and any equilibrium price ph of a high-cost dealer, we have pl ≤ ph.

Proof. The claim is true by a standard “revealed-preference” argument. Suppose that pl >

ph. Fix an equilibrium, and let %(p) (for some fixed c ≤ v) be the probability that a dealer

sells the asset when posting the price p. Since dealers are optimizing in equilibrium, we must

have

%(pl)(pl − c) ≥ %(ph)(ph − c), (C.1)

%(ph)(ph − c−∆) ≥ %(pl)(pl − c−∆). (C.2)

We have, if %(ph) 6= 0,

%(ph)(ph − c−∆) < %(ph)(pl − c−∆).

probability of rejecting the reservation price in equilibrium. Traders can use different mixing probabilities in
every search round, as long as they lead to the same posterior beliefs of dealers. This indeterminacy does not
change expected equilibrium payoffs, so without loss of generality we get rid of it by requiring stationarity.



C Proofs and Supporting Content for Section 4 41

If pl > c+ ∆, then %(ph) > %(pl). From inequality (C.1),

%(pl)(pl − c) + ∆(%(ph)− %(pl)) > %(ph)(ph − c)

which contradicts inequality (C.2).

We are left with two cases. First, suppose that pl ≤ c + ∆. Then ph < c + ∆ which is

impossible in equilibrium. Second, suppose that %(ph) = 0. Then it must be the case that

%(pl) = 0 as well, which is a contradiction if c < v.

Finally, we prove a lemma about the possibility of gaps in the distribution of prices. Let

pi
c

and p̄ic denote the lower and upper limit of the support of the distribution of prices for

dealer of type i ∈ {l, h}.

Lemma 7. In equilibrium, conditional on c (for c < v), there can be no gaps in the dis-

tribution of prices except for the case in which the support of the distribution of prices of

low-cost dealers consists of two intervals, [pl
c
, rc] and [p̂lc, min{c+∆, v}], and in which either

(i) high-cost dealers post c+ ∆, or (ii) c > v −∆.

Proof. Suppose that there is a gap in the distribution of prices conditional on some cost level

c for some type of dealers, that is, an interval (p1, p2) ⊂ [pi
c
, p̄ic] \ supp (F i

c( · )), i ∈ {l, h}.
We take this interval to be maximal, that is, such that p1 and p2 are in the support of F i

c( · ).
It must be the case that probability of selling is strictly larger at p1 than at p2, and thus, in

a reservation-price equilibrium, p1 ≤ rc ≤ p2 (we made use here of Lemma 6). It cannot be

that p1 < rc because then the dealer posting p1 could profitably deviate to rc. Thus p1 = rc.

By Lemma 6, p̄hc is the highest price that can be observed on equilibrium path, and it lies

above rc. It follows, using Lemma 5, that high-cost dealers make zero expected profits (if the

price distribution for high-cost dealers were atomless, the probability of selling at the price

p̄hc > rc would be zero). Moreover, either (i) high-cost dealers post c+ ∆, or (ii) c > v −∆.

In either case we can conclude that i = l, i.e. the gap occurs in the price distribution of

low-cost dealers.

By the above, if there is a gap, then the support of the distribution for low-cost dealers

consists of two intervals, the first of which must be [pl
c
, rc]. To prove that p̄lc = min{c+∆, v},

we use the fact that p̄lc > rc, and thus if p̄lc < min{c + ∆, v}, the dealer quoting p̄lc would

want to deviate to min{c+ ∆, v}.

Using the above observations, we can now show, case by case, that the equilibrium

pricing strategies are uniquely pinned down when there are gains from trade. (We assume

throughout that c < v; the opposite case is trivial.) We let F l
c(p) denote the cdf of prices

for low-cost dealers, and F h
c (p) the cdf of prices for high-cost dealers. In most cases it is

a routine exercise to rule out the possibility of a gap in the distribution, using Lemma 7.
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We will therefore only comment on this possibility explicitly in the two cases when a gap

actually occurs in equilibrium.

Case 1: λc = 0. When λc = 0, only fast traders enter. In this case, we have a standard

first-price auction between dealers. There are two subcases.

When c > v − ∆, high-cost dealers cannot sell in equilibrium, and the specification of

their strategy is irrelevant (they can choose any price above c + ∆). In this case low-cost

dealers randomize according to a distribution F l
c(p) that solves the equation[

N−1∑
k=0

(
N − 1

k

)
γk(1− γ)N−1−k (1− F l

c(p)
)k]

(p− c) = (1− γ)N−1(v − c).

Let us define the function

Φ(z) =
1

1− (1− γ)N−1

N−1∑
k=1

(
N − 1

k

)
zkγk(1− γ)N−1−k, (C.3)

which can be viewed as a generalization of the function zN−1 that appears in the definition

(3.6). It is easy to see that Φ(z) is a (strictly) increasing polynomial with Φ(0) = 0, Φ(1) = 1,

and Φ(z) = zN−1 when γ = 1. Moreover, using the binomial identity, we can write Φ(z)

alternatively as

Φ(z) =
(zγ + 1− γ)N−1 − (1− γ)N−1

1− (1− γ)N−1
. (C.4)

Using definition (C.3), we can write

F l
c(p) = 1− Φ−1

(
(1− γ)N−1

1− (1− γ)N−1

v − p
p− c

)
with upper limit p̄lc = v, and lower limit pl

c
= (1− γ)N−1v +

(
1− (1− γ)N−1

)
c.

When c ≤ v − ∆, high-cost dealers can sell in equilibrium, but a standard result from

auction theory (see for example Fudenberg and Tirole, 1991) says that in the unique equi-

librium they will make zero profit by bidding c + ∆. In this case, the distribution F l
c(p)

solves [
N−1∑
k=0

(
N − 1

k

)
(1− Fl(p| c))k γk(1− γ)N−1−k

]
(p− c) = (1− γ)N−1∆,

and thus we get

F l
c(p) = 1− Φ−1

(
(1− γ)N−1

1− (1− γ)N−1

(c+ ∆)− p
p− c

)
with upper limit p̄lc = c+ ∆, and lower limit pl

c
= c+ (1− γ)N−1∆.



C Proofs and Supporting Content for Section 4 43

Case 2: λc > 0. From now on, we assume λc > 0, that is, slow traders enter with positive

probability. There are again two subcases.

When c > v − ∆ (case 2.1), high-cost dealers cannot sell in equilibrium, and the spec-

ification of their strategy is irrelevant. Low-cost dealers mix according to a continuous

distribution F l
c(p) on an interval with upper limit p̄cl = rc, or on a union of two intervals as

in Lemma 7.

When c ≤ v −∆ (case 2.2), using Lemmas 5, 6, 7, and the argument from the proof of

Lemma 2, we can show that only two subcases are possible:

• If rc ≤ c+ ∆, (case 2.2.1), high-cost dealers make zero profit; they post a price c+ ∆

with probability 1, while low-cost dealers mix according to a continuous distribution

on an interval with upper limit p̄lc = rc, or on a union of two intervals as in Lemma 7.

• If rc > c + ∆ (case 2.2.2), high-cost dealers make positive profits, and in equilibrium

both low-cost and high-cost dealers mix according to continuous distributions with

adjacent supports (p̄lc = ph
c
), and with rc being the upper limit of the distribution of

prices of high-cost dealers (p̄hc = rc).

Below we analyze these cases in detail and characterize the optimal search behavior of slow

traders. We first define some key functions that generalize their equivalents from Section 3

to the case of idiosyncratic component in the costs. Let q(λc, θc) be the posterior probability

that a customer is a fast trader, conditional on a visit, given the strategy (rc, λc, θc). That

is,

q(λc, θc) =
Nµ

Nµ+ 1−θNc (1−γ)N

1−θc(1−γ)
λc(1− µ)

. (C.5)

This definition generalizes formula (3.1). We also generalize the definition of the function α

from equation (3.6), which now becomes a function of two arguments:

α(λc, θc) =

ˆ 1

0

(
1 +

q(λc, θc)
(
1− (1− γ)N−1

)
1− q(λc, θc) (1− (1− γ)N−1)

Φ(z)

)−1

dz, (C.6)

where Φ(z) is defined in formula (C.3). Finally, we let α̂ = α(1, 1), which corresponds to

formula (3.7).

To emphasize the point that we will now deal with equilibrium rather than just best

response of dealers to some generic strategy of traders, we add star superscripts to symbols

denoting the strategy of traders.
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Case 2.1: λ?c > 0, c > v−∆. In this case, we clearly have θ?c = 1. We first suppose that

the support of the distribution for low-cost dealers is an interval. Then F l
c(p) must satisfy[

1− q(λ?c , 1) + q(λ?c , 1)
N−1∑
k=0

(
N − 1

k

)(
1− F l

c(p)
)k
γk(1− γ)N−1−k

]
(p− c)

=
[
1− q(λ?c , 1) + q(λ?c , 1)(1− γ)N−1

]
(r?c − c).

Solving for F l
c(p), we obtain

F l
c(p) = 1− Φ−1

(
1− q(λ?c , 1)

(
1− (1− γ)N−1

)
q(λ?c , 1) (1− (1− γ)N−1)

r?c − p
p− c

)

with p̄lc = r?c , and lower limit

pl
c

=
[
1− q(λ?c , 1)

(
1− (1− γ)N−1

)]
r?c +

[
q(λ?c , 1)

(
1− (1− γ)N−1

)]
c.

We can determine r?c in this case from the fact that it must solve the following equation (spec-

ifying that the trader must be indifferent at r?c between buying and searching), analogous to

equation (3.4),

v − r?c = −s+ γ

[
v −
ˆ r?c

pl
c

pdF l
c(p)

]
+ (1− γ)(v − r?c ).

Using a change of variables, we can transform this equation into the form

s = γ

[
r?c −

ˆ r?c

pl
c

p dF l
c(p)

]
= (1− α(λ?c , 1))γ(r?c − c).

Thus we have

r?c = c+
s

(1− α(λ?c , 1))γ
.

The last thing to determine is the probability λ?c of entry by slow traders. The profit of a

slow trader conditional on entry is equal to

πc =
(
1− (1− γ)N

)
(v − α(λ?c , 1)r?c − (1− α(λ?c , 1))c)−

(
N∑
k=1

(1− γ)k−1γk + (1− γ)NN

)
s

=
(
1− (1− γ)N

) [
v − c− s

(1− α(λ?c , 1))γ

]
.
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When profit is strictly positive, we must have entry with probability one. That is, we have

λ?c = 1 if

c ≤ v − s

(1− α(1, 1))γ
.

When profit is strictly negative, we must have entry with probability zero, meaning that

λ?c = 0 if

c ≥ v − s

(1− α(0, 1))γ
.

This takes us back to case 1 analyzed before. Finally, if

v − s

(1− α(1, 1))γ
< c < v − s

(1− α(0, 1))γ
,

then we must have interior entry λ?c ∈ (0, 1), where λ?c is the unique solution of the equation

s = (1− α(λ?c , 1))γ(v − c).

In this case, slow traders have zero profits and we have r?c = v.

To check whether the above strategies constitute an equilibrium, we need to verify that

the support of price offers by low-cost dealers is indeed an interval, that is, these dealers

cannot profitably deviate from posting prices in the range [pl
c
, r?c ]. The only deviation that

we need to check is bidding v in the case r?c < v.25 This leads to the condition[
µ(1− γ)N−1 + (1− µ)

1− (1− γ)N

Nγ

]
s

(1− α(1, 1))γ
≥ (1− γ)N−1(v − c),

where the left hand side is the expected profit from bidding r?c , and the right hand side is

the expected profit from bidding v (a dealer quoting v can only sell if all other dealers have

high costs). We define

κ =
(1− γ)N−1

µ(1− γ)N−1 + (1− µ)1−(1−γ)N

Nγ

. (C.7)

Thus, we have an equilibrium when

c ≥ v − s

κ(1− α(1, 1))γ
.

Note that κ < 1, and thus

v − s

κ(1− α(1, 1))γ
< v − s

(1− α(1, 1))γ
.

25If there is a profitable deviation, this one is the most profitable.
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When c < v − s/(κ(1− α(1, 1))γ), by Lemma 7, we must have an equilibrium in which

the support for low-cost dealers consists of two intervals: [pl
c
, r?c ] and [p̂lc, v]. Let ζc be the

conditional probability that a low-cost dealer posts a price in the lower interval. Then, in

particular, the dealer must be indifferent between r?c and v which pins down ζc, in that[
µ(1− γζc)N−1 + (1− µ)

1− (1− γζc)N

Nγζc

]
(r?c − c) = (1− γ)N−1(v − c). (C.8)

We define

ϑ(ζc) =
(1− γ)N−1

µ(1− γζc)N−1 + (1− µ)1−(1−γζc)N
Nγζc

. (C.9)

Note that ϑ(1) = κ. Then, equation (C.8) becomes

r?c = (1− ϑ(ζc))c+ ϑ(ζc)v. (C.10)

We can now determine the exact distribution of prices. In the upper interval we must have[
N−1∑
k=0

(
N − 1

k

)
γk(1− γ)N−1−k (1− F l

c(p)
)k]

(p− c) = (1− γ)N−1(v − c),

so we get

F l
c(p) = 1− Φ−1

(
(1− γ)N−1

1− (1− γ)N−1

v − p
p− c

)
.

In the lower interval, the distribution must satisfy[
µ
N−1∑
k=0

(
N − 1

k

)
(γζc)

k(1− γζc)N−1−k
(

1− F l
c(p)

ζc

)k
+

1− µ
N

1− (1− γζc)N

γζc

]
(p− c)

=

[
µ(1− γζc)N−1 +

1− µ
N

1− (1− γζc)N

γζc

]
(r?c − c),

which gives

F l
c(p) = ζc − ζcΦ−1

(
(1− γ)N−1

1− (1− γζc)N−1

1

µϑ(ζc)

r?c − p
p− c

; ζc

)
,

where

Φ(z; ζc) =
1

1− (1− γζc)N−1

N−1∑
k=1

(
N − 1

k

)
zk(γζc)

k(1− γζc)N−1−k.

That is, Φ(z; ζc) is the analogue to Φ(z) when replacing γ with γζc.
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Finally, the reservation price is determined by

v − r?c = −s+ γζc

[
v −
ˆ r?c

pl
c

p d

(
F l
c(p)

ζc

)]
+ (1− γζc)(v − r?c ). (C.11)

Using a change of variable z = (ζc − F l
c(p))/ζc, we obtain

ˆ r?c

pl
c

p d

(
F l
c(p)

ζc

)
= c+ (r?c − c)α̃(ζc),

where

α̃(ζc) =

ˆ 1

0

(
1 +

1− (1− γζc)N−1

(1− γ)N−1
µϑ(ζc)Φ(z; ζc)

)−1

dz.

Note that α̃(1) = α(1, 1). From this we can calculate the optimal reservation price, deter-

mined by equation (C.11), as

r?c = c+
s

(1− α̃(ζc))γζc
. (C.12)

Equations (C.10) and (C.12) together pin down r?c and ζc. Combining them, we get a single

equation that pins down ζc, in the form

s = ϑ(ζc)(1− α̃(ζc))γζc(v − c).

A unique solution ζ?c ∈ (0, 1) exists if and only if 0 < s < κ(1 − α(1, 1))γ(v − c) which is

precisely our assumption for that case.

Note that in this range the equilibrium level ζ?c will be close to 1 when s is close to

κ(1− α(1, 1))γ(v − c) and will converge to 0 as s goes to 0.

Case 2.2.1: c ≤ v −∆, r?c ≤ c+ ∆. In this case, high-cost dealers offer the price c+ ∆.

We have two cases to consider, and call them (a) and (b).

Case (a). When r?c < c+ ∆, we must have θ?c = 1. Suppose that low-cost dealers mix on an

interval. Then the distribution of prices is

F l
c(p) = 1− Φ−1

(
1− q(λ?c , 1)

(
1− (1− γ)N−1

)
q(λ?c , 1) (1− (1− γ)N−1)

r?c − p
p− c

)
,

just as in the previous case. What differs from the previous case is the profit of a slow trader

conditional on entry. In the event that there are no low-cost dealers in the market, a trader
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buys from a high-cost dealer instead of exiting. Accordingly, the profit now becomes

πc = v − c− (1− γ)N∆−
(
1− (1− γ)N

) s

(1− α(λ?c , 1))γ
.

We can have strictly positive entry by slow traders only if

v ≥ c+ (1− γ)N
[
∆− s

(1− α(λ?c , 1))γ

]
+

s

(1− α(λ?c , 1))γ
. (C.13)

Recall that we have

r?c = c+
s

(1− α(λ?c , 1))γ
.

Thus, given that we assumed r?c < c + ∆, we have an equilibrium with positive entry if

inequality (C.13) holds and

∆ >
s

(1− α(λ?c , 1))γ
.

Notice that we have

v − c− (1− γ)N∆−
(
1− (1− γ)N

) s

(1− α(λ?c , 1))γ

> v − c− (1− γ)N∆−
(
1− (1− γ)N

)
∆ = v − c−∆ ≥ 0,

which means that profits are always strictly positive in this case. Thus we must have full

entry, meaning λ?c = 1, and this can be an equilibrium only if s < (1− α(1, 1))γ∆.

Finally, we verify the supposition that low-cost dealers mix on an interval. We need to

check the deviation to (just below) c+ ∆, analogous to deviation to v in the previous case.

We require[
µ(1− γ)N−1 + (1− µ)

1− (1− γ)N

Nγ

]
s

(1− α(1, 1))γ
≥ (1− γ)N−1∆.

Thus, the above strategies are an equilibrium if s ≥ κ(1− α(1, 1))γ∆.

In the case s < κ(1 − α(1, 1))γ∆, we will have an equilibrium with low-cost dealers

mixing on two intervals [pl
c
, r?c ] and [p̂lc, c + ∆]. The analysis is analogous to the one in the

previous case 2.1 so we skip some details. First, the indifference condition between r?c and

c+ ∆26 is

(r?c − c) = ϑ(ζc)∆. (C.14)

26Note that c+ ∆ is the upper limit of the support but prices posted by a low-cost dealer are below c+ ∆
with probability one. Thus, when we say that the dealer must be indifferent between posting r?c and c+ ∆,
we really mean c+ ∆− ε for arbitrarily small ε→ 0 which leads to the formula below.
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The upper part of the distribution is given by

F l
c(p) = 1− Φ−1

(
(1− γ)N−1

1− (1− γ)N−1

c+ ∆− p
p− c

)
,

while the lower part is

F l
c(p) = ζc − ζcΦ−1

(
(1− γ)N−1

1− (1− γζc)N−1

1

µϑ(ζc)

r?c − p
p− c

; ζc

)
.

The reservation price is determined by equation (C.11). Simplifying as before, we obtain

r?c = c+
s

(1− α̃(ζc))γζc
.

Combining with equation (C.14) ζc is pinned down by the equation

s = ϑ(ζc)(1− α̃(ζc))γζc∆.

The equation does not depend on c, so neither does the solution. That is, ζ?c is independent

of c and solves

s = ϑ(ζ)(1− α̃(ζ))γζ∆.

This equation has a unique solution in (0, 1) precisely when 0 < s < κ(1−α(1, 1))γ∆, which

was our assumption for this case.

Case (b). We now look at the second possibility: r?c = c+ ∆. We can now have θ?c ∈ (0, 1),

and this will matter for equilibrium pricing through the impact on the posterior beliefs of

dealers. The probability F l
c(p) of an offer of p or less by a low-cost dealer solves[

1− q(λ?c , θ?c ) + q(λ?c , θ
?
c )

N−1∑
k=0

(
N − 1

k

)(
1− F l

c(p)
)k
γk(1− γ)N−1−k

]
(p− c)

=
[
1− q(λ?c , θ?c ) + q(λ?c , θ

?
c )(1− γ)N−1

]
(r?c − c).

The profit of a slow trader is the same as in the previous case. The condition r?c = c + ∆

means that we must have
s

(1− α(λ?c , θ
?
c ))γ

= ∆.

This implies that we must again have entry with probability one. Thus, we have an equilib-

rium with full entry and the probability of rejecting an offer of r?c given by θ?c that solves

s = (1− α(1, θ?c ))γ∆.
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Note that θ?c = θ? (the equation, and hence the solution, is independent of c). An interior

solution exists if and only if (1− α(1, 1))γ∆ < s < (1− α(1, 0))γ∆. Notice that θ? is close

to 1 when s is close to (1− α(1, 1))γ∆, and close to 0 when s is close to (1− α(1, 0))γ∆.

Case 2.2.2: c ≤ v−∆, r?c > c+∆. This is the case when high-cost dealers make positive

profits and mix according to a continuous distribution F h
c (p) with upper limit r?c . We must

have θ?c = 0. The cdf F h
c (p) solves[

1− q(λ?c , 0) + q(λ?c , 0)(1− γ)N−1(1− F h
c (p))N−1

]
(p− c−∆) = [1− q(λ?c , 0)] (r?c − c−∆).

Simplifying, we obtain

F h
c (p) = 1−

(
1− q(λ?c , 0)

q(λ?c , 0)(1− γ)N−1

r?c − p
p− c−∆

) 1
N−1

with upper limit p̄hc = r?c , and lower limit

ph
c

=
1− q(λ?c , 0)

1− q(λ?c , 0) (1− (1− γ)N−1)
r?c +

q(λ?c , 0)(1− γ)N−1

1− q(λ?c , 0) (1− (1− γ)N−1)
(c+ ∆).

To simplify notation, let us denote

φ(λ?c) =
1− q(λ?c , 0)

1− (1− (1− γ)N−1) q(λ?c , 0)
. (C.15)

Next, F l
c(p) must solve[

1− q(λ?c , 0) + q(λ?c , 0)
N−1∑
k=0

(
N − 1

k

)(
1− F l

c(p)
)k
γk(1− γ)N−1−k

]
(p− c)

=
[
1− q(λ?c , 0) + q(λ?c , 0)(1− γ)N−1

]
(ph
c
− c).

Solving for F l
c(p) we get

F l
c(p) = 1− Φ−1

(
1− q(λ?c , 0)

(
1− (1− γ)N−1

)
q(λ?c , 0) (1− (1− γ)N−1)

ph
c
− p

p− c

)
,

with p̄lc = ph
c

and lower limit

pl
c

=
[
1− q(λ?c , 0)

(
1− (1− γ)N−1

)]
ph
c

+
[
q(λ?c , 0)

(
1− (1− γ)N−1

)]
c.
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We need to define one more function, analogous to α(λ, θ), and corresponding to the distri-

bution of prices used by high-cost dealers. Let

αh(λ) =

ˆ 1

0

(
1 +

q(λ, 0)(1− γ)N−1

1− q(λ, 0)
zN−1

)−1

dz.

Then, using a change of variables, we get

ˆ
p dF h

c (p) = (1− αh(λ?c))(c+ ∆) + αh(λ
?
c)r

?
c ,

and ˆ
p dF l

c(p) = (1− α(λ?c , 0))c+ α(λ?c , 0)ph
c
.

As always, r?c is determined by the indifference condition

v − r?c = −s+ γ

[
v −
ˆ p̄lc

pl
c

p dF l
c(p)

]
+ (1− γ)

[
v −
ˆ p̄hc

ph
c

p dF h
c (p)

]
.

From this we can obtain

r?c = c+ ∆ +
s− (1− α(λ?c , 0))γ∆

γ(1− φ(λ?c)α(λ?c , 0)) + (1− γ)(1− αh(λ?c))
.

Next, we consider entry decision of slow traders. The profit conditional on entry is simply

v − r?c . Thus, we have entry with probability one if and only if

c < v −∆− s− (1− α(1, 0))γ∆

γ(1− φ(1)α(1, 0)) + (1− γ)(1− αh(1))
.

Since we have assumed that r?c > c+ ∆, we additionally require s > (1− α(1, 0))γ∆.

Interior entry requires λ?c to solve

v = c+ ∆ +
s− (1− α(λ?c , 0))γ∆

γ(1− φ(λ?c)α(λ?c , 0)) + (1− γ)(1− αh(λ?c))
. (C.16)

An interior solution exists if and only if

s− (1− α(0, 0))γ∆

γ(1− φ(0)α(0, 0)) + (1− γ)(1− αh(0))
< v−c−∆ <

s− (1− α(1, 0))γ∆

γ(1− φ(1)α(1, 0)) + (1− γ)(1− αh(1))
.

(C.17)

Noticing that αh(0) = 0 and that φ(0) = 0, we can simplify the inequality on the left to

s− (1− α(0, 0))γ∆ < v − c−∆.

Finally, since we have assumed that r?c > c + ∆, we require s > (1− α(λ?c , 0))γ∆. This
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condition is satisfied vacuously when equation (C.16) holds.

When s− (1− α(0, 0))γ∆ ≥ v − c−∆, we must have entry with probability zero which

brings us back to case 1.

This concludes the analysis of all cases. By direct inspection, we check that for any given

pair (s, c), there is exactly one equilibrium (up to payoff-irrelevant changes in equilibrium

strategies). Figure C.1 summarizes our conclusions by depicting the equilibrium

correspondence in the (s, c) space. “Full entry” means that λ?c = 1 in the relevant range.

“Interior entry” means that λ?c ∈ (0, 1). When we say that “only low-cost dealers sell,” we

mean that if there is at least one low-cost dealer in the market, then all customers trade

with low-cost dealers. When we say that “all dealers sell” or that “high-cost dealers sell

with probability θ,” we refer to the probability of selling to a slow trader upon a visit.

Finally, the trapezoidal area denoted by “(gap)” corresponds to the case in which low-cost

dealers have a gap in the support of their offer distribution.

Fig. C.1: The benchmark case: Equilibrium correspondence

0 (1! ,(1, 1))." (1! ,(1, 0))." (1! ,(0, 0))."
c

v!"

v

7
c

S

(gap)

NO ENTRY

INTERIOR
ENTRY, ALL
SELLERS SELL

FULL ENTRY,
ONLY
LOW-COST
SELLERS SELL

(Case 1)

ONLY FAST TRADERS ENTER

(Case 2.2.2)

(Case 2.2.2)

(Case 2.2.1 (a))

(Case 2.1)

(Case 2.1)

INTERIOR ENTRY,
ONLY LOW-COST
SELLERS SELL

FULL ENTRY, ALL
SELLERS SELL

FULL ENTRY,
HIGH-COST
SELLERS 
SELL WITH
PROB. θ

(Case 2.2.1 (b))

C.2 Proof of Proposition 8

Generalized statement (without assuming A.2): If s ≤ (1− α̂)γmin{∆, v − c}, then

equilibrium in the benchmark case leads to efficient matching. That is, slow traders always

enter, and all traders buy from a low-cost dealer, in the event that there is at least one such
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dealer present in the market. Additionally, if s ≥ κ(1−α̂)γmin{∆, v−c}, where κ < 1,27 the

equilibrium with the benchmark achieves the second best, in the sense that each slow trader

buys from the first low-cost dealer that she contacts, thus minimizing search costs subject to

matching efficiency.

Proof. The theorem follows directly from the derivation above (cases 2.1 and 2.2.1 (a)).

When

κ(1− α̂)γmin{∆, v − c} ≤ s ≤ (1− α̂)γmin{∆, v − c},

we are in the region in which the equilibrium achieves the second best. Slow traders always

enter, and search until they find the first low-cost dealer (low-cost dealers always post prices

below the reservation price, and high-cost dealers always post prices above the reservation

price). If there are no low-cost dealers in the market and c > v − ∆, then traders exit

without trading. When c < v−∆, they buy from a high-cost dealer. When s < κ(1− α̂)γ∆,

low-cost dealers post prices below the reservation price with probability ζ?c ∈ (0, 1). Because

high-cost dealers still post prices above the reservation-price (and above the prices posted

by low-cost dealers), the matching of traders to low-cost dealers is efficient.

C.3 Supporting analysis of the case s < κ(1− α̂)γ∆

Here, we provide the supporting analysis of the case s < κ(1 − α̂)γ∆ in the context of

Section 4. We show that a low-cost dealer’s incentive to quote a high price (leading to

higher-than-efficient search by slow traders in equilibrium) disappears as the number N of

dealers gets large, in the sense formalized in Lemma 8.

Lemma 8. Letting s̄(N) = (1− α̂)γ∆ and s(N) = κ(1− α̂)γ∆, we have

lim
N→∞

Ns̄(N) =∞ and lim
N→∞

Ns(N) = 0,

where the convergence to 0 in the second equation is exponentially fast.

The quantity Ns is the upper bound on the search costs incurred by a slow trader. If slow

traders adopted the sub-optimal strategy of searching the entire market, we would get the

fully efficient outcome of a centralized exchange, before considering the search costs. Thus,

(1 − µ)Ns is an upper bound on the potential welfare loss in our setting. Lemma 8 says

that the case s < κ(1− α̂)γ∆ in which case the benchmark fails to achieve the second best

can be safely ignored for practical purposes, given that the (rough) upper bound of possible

inefficiency goes to 0 exponentially fast28 with N . On the other hand, the search-cost range

27κ = (1− γ)N−1/
[
µ(1− γ)N−1 + (1− µ)[1− (1− γ)N ]/(Nγ)

]
.

28For example, if µ = γ = 1
2 , κ ≈ 0.019 for just N = 10, and κ ≈ 1.5 ∗ 10−6 for N = 25.
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(κ(1 − α̂)γ∆, (1 − α̂)γ∆) is much more important, as the potential welfare gains or losses

are unbounded in this region (if we allow v to get large).

To prove the first claim, we show that (1− α̂) converges to zero (as N →∞) more slowly

than log(N)/N . (That (1− α̂) converges to 0 follows from Lebesgue Dominated Convergence

Theorem.) We have

1− α̂ =

ˆ 1

0

aNΦ(z)

1 + aNΦ(z)
dz,

where

aN =
Nµ

(
1− (1− γ)N−1

)
1−(1−γ)N

γ
(1− µ) +Nµ(1− γ)N−1

.

Clearly,

1− α̂ ≥
ˆ 1

Φ−1( 1
N

)

aNΦ(z)

1 + aNΦ(z)
dz ≥

(
1− Φ−1(

1

N
)

)
aN

N + aN
.

The term aN/(N + aN) has a finite and strictly positive limit. It is therefor enough to show

that

lim
N→∞

N

logN

(
1− Φ−1(

1

N
)

)
> 0.

Using equation (C.4) to invert Φ, and applying d’Hospital rule a few times to simplify the

expression, we obtain

lim
N→∞

N

logN

(
1− Φ−1(

1

N
)

)
= lim

N→∞

N

logN

((
1

N

) 1
N

− 1

)
= lim

K→∞
K
(
e

1
K − 1

)
= 1.

To prove the second claim, recall that

Nκ =
N(1− γ)N−1

µ(1− γ)N−1 + (1− µ)1−(1−γ)N

Nγ

=
1

µ
N

+ (1− µ) 1−(1−γ)N

N2γ(1−γ)N−1

.

The above expression goes to 0 as quickly as N2(1− γ)N−1, that is, exponentially.

Clearly, the result is true in the generalized setting without assuming A.2.

C.4 Proof of Proposition 9

Generalized statement (not assuming A.2): In the absence of a benchmark, if min{v, c̄} >
c+ ∆, there does not exist an equilibrium achieving the second best.

Proof. In an equilibrium in which the second-best is achieved under the condition s < γ∆,

high-cost dealers can only sell when there are no low-cost dealers in the market, and the

slow trader searched the entire market. Thus, if an equilibrium like this exists, high-cost
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dealers quote prices as if they participated in an auction with all other high-cost dealers. A

standard result in auction theory says that in this case they must bid their costs, that is,

they must offer to sell for c+ ∆.

Consider a situation when a slow trader enters and the first dealer has low costs, for

some c < v. If the second-best is achieved, that offer needs to be accepted by a slow trader.

Under the assumption of the Proposition, we can find a c? that satisfies v > c? > c+ ∆. By

the above observation, (almost) all prices in the support of the distribution of the low-cost

dealer at c = c? must be accepted by a slow trader in the first search round. This leads to

a contradiction. Since high-cost dealers post a price of c + ∆ conditional on c, they make

zero profits. They can profitably deviate at c = c by quoting a price in the support of the

distribution of a low-cost dealer at c = c?.

C.5 Generalized statement of Theorem 2 (not assuming A.2)

Theorem: If (i) κ(1− α̂)γmin{∆, v − c} ≤ s ≤ (1− α̂)γmin{∆, v − c̄} and (ii) c̄ > c+ ∆

both hold, then the equilibrium in the benchmark case yields a strictly higher social surplus

that any equilibrium in the no-benchmark case.

D Supporting Content for Section 5

D.1 Proof of Theorem 3

The proof of Theorem 3 is very similar to the proof of Theorem 1, so we skip some of the

details. Denote the expected profits of a dealer in the benchmark case conditional on x

(where x = (v − c)+) by χb(x) and in the case with no benchmark by χnb. Recall from

Propositions 1 and 2 that

χb(x) =
λ(x)(1− µ)

N

s

1− α(λ(x))

and χnb = Xλ?(1− µ)/N .

Assume that condition (i) holds. Then, using the fact that λ(x) is given by s = (1 −
α(λ(x)))x in the relevant range, we can write χb(x) = (1− µ)λ(x)x/N. By Lemma 3, λ(x)

is increasing and convex, so χb(x) is also convex. Therefore, applying Jensen’s Inequality we

get

E [χb(x)] ≥ χb (E [x]) = χb(X) = χnb.

Now assume that condition (ii) holds. As in the proof of Theorem 1 we want to find a

condition on X that would guarantee that the profit function χb is subdifferentiable at X.
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Using the reasoning from the proof of Theorem 1, we can establish existence of a constant

η ∈ (0, α̂), that depends only on µ and N , and such that X ≤ s/(1− η) guarantees existence

of a supporting hyperplane at X (thus allowing us to apply Jensen’s Inequality).

D.2 Proof of Theorem 4

To prove the Theorem, we first describe the equilibrium path, and then show the optimality

of dealers’ strategies under a sufficiently high ∆.

If the environment is efficient, the benchmark is introduced, only low-cost dealers en-

ter and we have a reservation-price equilibrium in the trading-stage subgame described in

Section 3.1 (with the exception that N is now replaced by M, which is equal to L in equilib-

rium). Because s < (1− ᾱ)(v − c̄), we have full entry in this case, and the reservation price

of slow-traders is

r?c = c+
s

1− ᾱL
,

where the subscript L in ᾱL indicates that N is replaced by L in the definition of ᾱ given

by equation (3.7).

If the environment is inefficient (all dealers have high costs), the benchmark is not in-

troduced, and high-cost dealers enter if and only if X∆ > s. To see this, note that in this

case, we can apply the analysis of Section 3.2 with the exception that c is replaced by c+ ∆

(correspondingly, X is replaced by X∆). In particular, high-cost dealers make strictly pos-

itive expected profits if and only if X∆ > s because this condition guarantees that there is

positive probability of entry by slow traders, according to Proposition 2. Existence follows

from Proposition 3 for all ∆ ≥ ∆?
1 for some ∆?

1 with X∆?
1
> s. Indeed, the inspection of

the proof shows that a sufficient condition is that X∆ − s is sufficiently small which we can

achieve by taking high enough ∆.

On the equilibrium path in the pre-play stage, low-cost dealers vote in favor of the

benchmark, and enter if the benchmark is introduced or if the benchmark is not introduced

and X∆ > s. High-cost dealers vote against the benchmark and enter if and only if the

benchmark is not introduced and X∆ > s.

We now verify the optimality of these dealer strategies.

Set ∆?
0 = s/(1− ᾱ), and suppose that ∆ ≥ ∆?

0 so that s < (1− ᾱ)∆.

First, we show that a high-cost dealer does not want to deviate and enter when the

benchmark is introduced. Indeed, when the benchmark is observed, slow traders follow a

reservation-price strategy with

r?c = c+
s

1− ᾱM
≤ c+

s

1− ᾱ
,
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using the fact that ᾱM is increasing in M .29 Since s ≤ (1 − ᾱ)∆ for ∆ ≥ ∆?
0, we conclude

that c + ∆ ≥ r?c . Thus, using familiar arguments from previous sections, we show that a

high-cost dealer cannot make positive profits after entering the market, regardless of the

identities of other dealers in the market.30

Second, we show that a high-cost dealer does not want to deviate and stay out of the

market when the benchmark is not introduced and X∆ > s. By the remark above, high-cost

dealers make strictly positive profits on the equilibrium path in that case.

Third, low-cost dealers cannot deviate by changing their entry decision because, by the

specification of their strategy, they enter if and only if their expected profits are strictly

positive.

Fourth, we show that any coalition of high-cost dealers does not want to deviate by voting

in favor of the benchmark. By what we established above, if the benchmark is introduced, a

high-cost dealer finds it optimal not to enter and hence earns no profits. Thus, this cannot

be a strictly profitable deviation.

Fifth, we show that any coalition of low-cost dealers does not want to deviate by voting

against the benchmark. Note that L ≥ 2 is common knowledge among low-cost dealers.

In equilibrium, the benchmark is introduced, high-cost dealers stay out, and the low cost

dealer’s expected profit is equal to

1− µ
L

s

1− ᾱL
> 0,

which does not depend on ∆. If the benchmark is not introduced, slow traders believe with

probability one that only high-cost dealers are present in the market. By taking ∆ high

enough we can make X∆−s arbitrarily small, so the equilibrium probability of entry by slow

traders is arbitrarily small without the benchmark (see the analysis in Section 3.2). Because

L ≥ 2 the expected profits of low-cost dealers in this case converge to zero as the posterior

probability of meeting a slow trader approaches zero. Because the profit on equilibrium path

is bounded away from zero, low-cost dealers do not want to deviate in this way if ∆ is above

some cutoff level ∆?
2.

We conclude the proof by defining ∆? = max{∆?
0, ∆?

1, ∆?
2}.

Note that ∆?
1 and ∆?

2 can be chosen so that X∆ > s if ∆ is close to max{∆?
1, ∆?

2}. If

additionally s is sufficiently small, we can guarantee that X∆ > s for all ∆ in some right

neighborhood of ∆?.

29This is shown in Janssen and Moraga-González (2004).
30Note that off-equilibrium path traders may observe offers above their reservation price, something

that never happens on equilibrium path. We specify off-equilibrium beliefs of traders by saying that this
off-equilibrium event does not change the belief of any trader about the types of active dealers. This is
consistent with a perfect Bayesian equilibrium.
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E Supporting Content for Section 6

In this subsection we provide the supporting arguments for the analysis in Section 6. For

simplicity, we assume that γ = 1 throughout (the results can be generalized to the hetero-

geneous case in a straightforward way).

Specifying and solving an equilibrium model of manipulation, while desirable, is beyond

the scope of this paper. Instead, we consider the following mechanism design problem.

Suppose that there exists a benchmark administrator who can design an arbitrary “bench-

mark announcement” mechanism with transfers. Here, a mechanism is a pair (M, g), where

M = (M1× · · · ×MN) is the product of the message spaces of the N respective dealers, and

where g : M → [c, c̄] ×RN . The function g maps the dealers’ messages (m1, . . . , mN) to an

announced benchmark c̃ and to transfers t1, . . . , tN from the respective dealers to the mecha-

nism designer. Each mechanism induces a game in which dealers first submit messages. The

second stage of the game is the trading game presented in Section 2 of this paper, in which

traders assume that the announced benchmark c̃ is a truthful report of the actual cost c.

In this setting, “Nash implementability” means that there exists a mechanism whose

associated game has a Nash equilibrium in which the announced benchmark c̃ is the true

cost c. “Full implementability” adds the requirement that this is the unique equilibrium of

the mechanism-induced game.

Proposition 10. Truthful revelation of c is Nash implementable, but is not fully Nash-

implementable.

Proof. The first part of the proposition follows trivially from the observation that the ad-

ministrator can ask all dealers to report c and punish them (with a high enough transfer) if

the reports disagree. The benchmark may be then made equal (for example) to the average

of the reports. The second part follows from the fact that the choice rule to be implemented

is not monotonic. (See Maskin 1999 for the definition of monotonicity and the relevant

result.)

The proposition states that each dealer wants to report a message supporting the an-

nouncement of a benchmark that is the true cost c, provided that he believes that all other

dealers report in this manner. However, for the mechanism that we construct, there is also

an equilibrium in which all dealers report the same, but false, common cost level. The second

part of Proposition 10 asserts that this cannot be avoided. That is, there does not exist a

mechanism that leads to truthful revelation of c as a unique Nash equilibrium. Informally,

this means that the benchmark is not robust to collusion.

Benchmark manipulation is studied by two recent papers in different settings. Coulter and

Shapiro (2014) solve a mechanism design problem with transfers in a setting that incorporates
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important incentives to manipulate that are absent from our model. They reach a similar

conclusion in that it is possible to implement a truthful benchmark, but their mechanism

can also be “rigged” for false reporting through collusion by dealers. Duffie and Dworczak

(2014) consider a different model of benchmark design and manipulation, showing that,

without transfers, an optimizing mechanism designer will not in general implement truthful

reporting. Instead, considering a restricted class of mechanisms, they characterize a robust

benchmark that minimizes the variance of the “garbling,” meaning the difference between

the announced benchmark and the true cost level.
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