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1 Introduction

This paper solves a version of the problem faced by a financial benchmark administrator.

Acting as a mechanism designer, the benchmark administrator constructs a “fixing,” meaning

an estimator of a market value or reference rate based on transactions or other submission

data. The data are generated by agents whose profits depend on the realization of the fixing.

Agents may misreport, or trade at distorted prices, in order to manipulate the fixing. We

characterize optimal transactions weights for benchmark fixings, assuming that the mechanism

designer cannot use transfers.

The London Interbank Offered Rate (LIBOR) is arguably the single most important

benchmark used in financial markets. Literally millions of different financial contracts, includ-

ing interest rate swaps, futures, options, variable rate loans, and mortgages, have payments

that are contractually dependent on LIBOR. The aggregate outstanding amount of LIBOR-

linked contracts has been estimated at over $300 trillion (Hou and Skeie, 2013). LIBOR and

related reference rates such as EURIBOR and TIBOR also serve an important price discovery

function, as benchmarks for evaluating investment performance and as indicators of current

conditions in credit and interest-rate markets. Given the important role of these interbank

offering rate (IBOR) benchmarks in financial markets, reports that they have been systemat-

ically manipulated have triggered a regulatory reform process. Similar concerns have recently

been raised over manipulation of foreign exchange and commodity benchmarks.1

LIBOR reflects the reference rate at which large banks indicate they can borrow short-

term wholesale funds on an unsecured basis in the interbank market. Each day, in each major

currency and for each of a range of key maturities, LIBOR is currently reported as a trimmed

average of the rates reported by a panel of banks to the benchmark administrator. (For de-

tails, see, for example, Hou and Skeie, 2013.) Importantly, these bank submissions are for

hypothetical loans; they need not be based on actual market transactions.2 Investigations

have revealed purposeful misreporting of these rates. Two rather different incentives for ma-

nipulation have been identified. The first, dramatically exacerbated by the recent financial

crisis, was to improve market perceptions of a submitting bank’s creditworthiness, by under-

stating the rate at which the bank could borrow. (The reports of each individually named

bank are revealed to the market.) The second incentive was to profit from LIBOR-linked po-

sitions held by the bank. For example, in a typical email uncovered by investigators, a trader

at a reporting bank wrote to the LIBOR rate submitter: “For Monday we are very long 3m

1See Financial Stability Board (2014).
2Each bank submits an answer to the question: “At what rate could you borrow funds, were you

to do so by asking for and then accepting inter-bank offers in a reasonable market size just prior to 11
am?”
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cash here in NY and would like setting to be as low as possible...thanks”.3 This second form

of manipulation, revealed by investigators to have been active over many years, is the main

subject of this paper.

Manipulation has been reported across a range of financial market benchmarks, includ-

ing those for term swap rates (ISDAFix), foreign exchange rates, and commodity prices.

Benchmark manipulation has also been a concern in certain goods markets, such as those for

pharmaceuticals.4

The Financial Stability Board is leading an ongoing global process to overhaul key ref-

erence rate and foreign currency benchmarks with a view to improving their robustness to

manipulation. A key principle of IOSCO (2013) is that fixings of key benchmarks should be

“anchored” in actual market transactions or executable quotations.5

This paper has a relatively narrow and theoretical focus. Under restrictive conditions, we

focus on the optimal design of a transactions-based weighting scheme. In order to illustrate

the problem that we study, we ask the reader to imagine the following abstract situation.

An econometrician is choosing an efficient estimator of an unknown parameter. Data are

generated by strategic agents whose utilities depend on the realized outcome of the estima-

tor. Thus, the chosen estimator influences the data generating process. This game-theoretic

component must be considered in the design of the estimator.

Our model features a benchmark administrator, which is a mechanism designer. The

agents are traders, for example banks or individuals within banks or other trading firms. The

mechanism designer observes the transactions generated by the anonymous agents. The data

generated by each transaction consist only of the price and size (the notional amount of the

transaction). Whether or not manipulated, the transactions prices are noisy signals of the fun-

damental value. For non-manipulated transactions, noise arises from market microstructure

effects, as explained by Aı̈t-Sahalia and Yu (2009), and also from asynchronous reporting. For

example, the main WMR benchmark for currency exchange rates on a given day are based on

transactions that occur within 30 seconds of 4:00pm London time, and based on trades that

occur at bids or asks with uncertain price impacts. In an over-the-counter market, moreover,

each pair of transacting counterparties is generally unaware of the prices at which other pairs

of counterparties are negotiating trades at around the same time. The benchmark admin-

istrator is restricted to a benchmark that is linear with respect to transactions prices, with

3December 14, 2006, Trader in New York to Submitter; source: Malloch and Mamorsky (2013).
Another example: “We have another big fixing tom[orrow] and with the market move I was hoping we
could set the 1M and 3M Libors as high as possible”.

4See for example Gencarelli (2002).
5See also Wheatley, 2012; BIS, 2013; Market Participants Group on Reference Rate Reform, 2014.

In order to weaken the incentive to under-report funding costs (the first incentive mentioned above)
it has been suggested that the bank-level reports be made public with a three-month lag.
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weighting coefficients that can depend on the size of the transaction. A common benchmark

used in equity and bond markets is the “volume weighted average price” (VWAP), for which

the weight on a given transaction price is proportional to the size of the transaction. As we

shall see, a VWAP benchmark is approximated, with a large number of transactions, within

the family of fixing designs that our modeled benchmark administrator can consider.

Agents have private information about their exposures to the benchmark, and observe

private signals of the fundamental value of the benchmark asset. If an agent decides to trade

according to the signal received, there is no manipulation. However, the agent can choose to

manipulate, effecting a transaction with an artificially inflated or reduced price in order to

gain from the associated distortion of the benchmark. Manipulation is assumed to be costly

for agents. For example, in order to cause an upward distortion in the benchmark, a trader

would need to buy the underlying asset at a price above its fair market value. In order to

manipulate the price downward, the agent would need to sell the asset at a price below its

true value. Either way, by trading at a distorted price, the agent suffers a loss. The idea here

is that the agent has pre-existing contracts (for example swaps) that can be settled at market

values linked to the benchmark. On a large pre-existing swap position, for instance, the agent

may be able to generate a profit from distorting the price of the underlying benchmark asset

that exceeds the cost of the distortion.

This suggests the benefit of avoiding benchmarks whose underlying asset market is thinly

traded relative to the market for financial instruments that are contractually linked to the

benchmark. In the case of LIBOR, unfortunately, the volume of transactions in the underlying

market for interbank loans that determines LIBOR is tiny by comparison with the volume of

swap contracts that are contractually settled on LIBOR. This situation magnifies the incentive

to manipulate LIBOR. Even the optimal fixing design may admit a significant potential for

manipulation.

In addition to choice of the benchmark asset and the fixing design, regulators can im-

plement a range of governance and compliance safeguards, raising the cost of manipulation,

consistent with the suggestions of Wheatley (2012) and the IOSCO (2013). Our setting allows

for an extra cost for trading at a price away from the fair value, associated with the risk of

detection of manipulation by the authorities, and resulting penalties or loss of reputation.

Crucially, we assume that the mechanism designer cannot use transfers. In particular,

fines or litigation damages, forms of negative transfer, are not available as a tool of the

benchmark administrator. Coulter and Shapiro (2013) propose a model based on a “whistle-

blower” mechanism that implements truthful reporting by heavy reliance on both positive

and negative transfers. They assume that the private information of any bank is observed by

at least two other banks. We avoid making such specialized assumptions.

Our work falls into a growing literature on mechanism design without transfers. The



2 The baseline model 5

techniques we use are reminiscent of those used to study direct revelation mechanisms and,

to some degree, principal-agent models. There are, however, essential differences. Due to the

absence of transfers and without access to a single-crossing condition, truthful reporting is

usually not implementable. Thus, in particular, we cannot rely on the Revelation Principle,

forcing us to develop new solution techniques. The objective function is not typical. Our

mechanism designer is minimizing the mean squared error of the estimator (benchmark).

Our main findings are the following. First, even if truthful reporting is implementable, it

is not necessarily optimal from the viewpoint of overall efficiency, considering the potential for

reporting distortions. Typically, an optimal benchmark will allow for a nonzero probability of

manipulation. Second, a robust benchmark must put nearly zero weight on small transactions.

This is intuitive, and stems from the fact that it is cheap for agents to make small manipulated

transactions. For instance, Scheck and Gross (2013) describe a strategy said to be used by oil

traders to manipulate the daily oil price benchmark published by Platt’s: “Offer to sell a small

amount at a loss to drive down published oil prices, then snap up shiploads at the lower price.”

Third, although the weight is always nondecreasing in the size of a transaction, the optimal

benchmark assigns almost equal weight to all large transactions. This is in order to avoid

overweighing manipulated transactions made by agents with particularly strong incentives to

manipulate. Under conditions, our main result characterizes the exact shape of the optimal

weighing function.

We do not analyze estimators that assign different weights to transactions based on the

transactions prices themselves (that is, nonlinear estimators). This extension is an obvious

next step. For example, some benchmarks such as LIBOR dampen or eliminate the influence

of prices that are outliers.

The remainder of the paper is organized as follows. Section 2 introduces the primitives of

the model and the solution concept. Section 3 offers some preliminary analysis in preparation

for a treatment of the problem in Section 4. Section 5 concludes and discusses extensions and

future research. Most proofs are relegated to appendices.

2 The baseline model

A mechanism designer (benchmark administrator) will estimate an uncertain variable Y,

which can be viewed as the “true” market value of an asset. To this end, she designs a bench-

mark fixing, which is an estimator Ŷ that can depend on the transaction data
{

(X̂i, ŝi)
}n
i=1

generated by a fixed set {1, 2, . . . , n} of agents. Here, X̂i is the price and ŝi is the quantity

of the transaction of agent i. The size ŝi of each transaction is restricted to [0, s̄], a technical

simplification that could be motivated as a risk limit imposed by a market regulator or by an

agent’s available capital. The price X̂i is a noisy or manipulated signal of Y , in a sense to
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be defined. Agents are strategic: they have preferences, to be explained, over their respective

transactions and over the benchmark Ŷ . The sensitivity of a given agent’s utility to Ŷ is

known only to that agent. The agents do not collude.

We describe in detail the problem of the benchmark administrator and the agents. Further

interpretation of our assumptions is postponed to the end of the section.

2.1 The problem of the benchmark administrator

The benchmark administrator minimizes the mean squared error E
[
(Y − Ŷ )2

]
of the bench-

mark fixing Ŷ , which is restricted to a linear estimator of the form

Ŷ =

n∑
i=1

f(ŝi)X̂i,

where f : [0, s̄] → R+ is a transaction weighing function to be chosen. In particular, the

weight placed on a given transaction depends only on its size, and not on its price or on the

identities of the agents. We do not require that the weights sum to one, but we do require

the estimator to be unbiased. We will later provide distributional conditions under which

unbiasedness is equivalent to the condition that the weights sum to one in expectation, that

is,

E

[
n∑
i=1

f(ŝi)

]
= 1.

Finally, we impose a technical regularity condition, restricting the chosen weighting function

to F = {f : [0, s̄]→ R+ : f is continuous and piecewise C1
a}, where C1

a is the set of functions

that have an absolutely continuous derivative.6 That is, f must be continuous, and there

must exist a finite partition of [0, s̄] into intervals such that, on the interiors of each of these

intervals, f has an absolutely continuous derivative.

We summarize the problem of the administrator as

inf
f∈F

E

(Y − n∑
i=1

f(ŝi)X̂i

)2
 subject to E

[
n∑
i=1

f(ŝi)

]
= 1. (P)

Since F is an infinite-dimensional space that is not compact, existence of a solution is not a

trivial issue.

6This is a smaller set than C1, the space of continuously differentiable functions. Absolute con-
tinuity of the derivative is the minimal assumption that allows us to use the second derivative as a
control variable in the optimal control problem that we will consider.
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2.2 The problem of the agents

Agent i privately observes his type (Ri, Xi, si), where (Xi, si) is interpreted as the naturally

preferred transaction (price and quantity), before considering the incentive to manipulate,

and where Ri is the agent’s profit exposure to the benchmark. Specifically, the agent’s payoff

includes a profit component RiŶ . (Here, Ri can be negative). The agent chooses a transaction

(X̂i, ŝi) that can be different from (Xi, si). This substitution, however, induces a cost γŝi|Xi−
X̂i| that is proportional to the size of the transaction and to the deviation of the price from

the specified level Xi, where γ > 0 is a fixed parameter. We denote zi = X̂i −Xi and assume

that the manipulation magnitude |zi| cannot exceed some maximal level z̄, which can be

thought of as an exogenous detection threshold. In total, given a weighting function f , the

payoff of the agent choosing (X̂i, ŝi) 6= (Xi, si) is Rif(ŝi)zi − γŝi|zi|. Given the additivity of

the benchmark across transactions, each agent can ignore the contribution of any of the other

transactions chosen by that agent to the distortion-related profit RiŶ .

Without loss of generality,7 we normalize to zero the payoff from the truthful reporting

choice (X̂i, ŝi) = (Xi, si)). We can summarize the problem of agent i as

max
zi∈[−z̄, z̄], ŝi∈[0, s̄]

[Rif(ŝi)zi − γŝi|zi|]1{zi 6=0}, (A)

where we assume that the agent chooses not to manipulate when he is indifferent.8 The

problem has a solution because f is continuous.

2.3 The distribution of data

The types {(Ri, Xi, si)}ni=1 are drawn in the following way. First, Y is drawn from some

distribution with zero mean and a finite variance σ2
Y . Then, a pair (εi, si) is drawn for every

agent, i.i.d. across agents and independently of Y , from some joint distribution. We assume

that E (εi | si) = 0, and that var (εi| si) = v(si) for some C2 function v : [0, s̄] → R++.

The marginal distribution of si is given by a cumulative distribution function (cdf) G with

a continuous density g that is strictly positive on [0, s̄]. We define Xi to be Xi = Y + εi.

This implies that every agent observes a noisy and unbiased signal of Y . Finally, Ri are i.i.d.

across agents and independent of everything else, with a distribution given by a cdf H̃ on

[−R̄, R̄]. We allow the case of R̄ =∞.

We let κ(si) = var (Xi | si)−1 =
(
σY2 + v(si)

)−1
, the precision of Xi conditional on the

size si. We assume that this (unmanipulated) price precision is increasing with the size of

7In the sense that we can always rescale Ri and γ.
8This tie-breaking assumption in the direction favored by the mechanism designer is standard.
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the transaction, as implicitly supported by volume-weighted-average-price (VWAP) schemes

often used to report representative prices in financial markets.9 As a technical and natural

assumption, we also assume that as the size of a transaction increases the “marginal gain” in

precision is diminishing, in the following sense.

Assumption 1. The function κ : [0, s̄]→ R++ is nondecreasing and concave.

This is of course consistent with the simplest case of constant precision.

We next make an assumption with the effect that a manipulated transaction (with maximal

allowed manipulation level) has a smaller precision that any unmanipulated transaction.

Assumption 2. σ2
ε + z̄2 > v(0), where σ2

ε =
´ s̄

0 v(s)g(s) ds.

Finally, we assume that the probability distribution of the incentive Ri is symmetric

around zero, and that bigger incentives to manipulate are relatively less likely to occur than

smaller incentives, in the following sense.

Assumption 3. The cdf H̃ of Ri has a finite variance and a piecewise C1 density h̃ that is

symmetric around zero and strictly decreasing on (0, R̄).

Examples of distributions that satisfy Assumption 3 include normal and Laplace (“double

exponential”) distributions. Given the symmetry of H̃, we can define a cdf H on [0, R̄] such

that

H̃(R) =

1
2 −

1
2H(−R) if R < 0

1
2 + 1

2H(R) if R ≥ 0
.

That is, H is the distribution of Ri conditional on Ri ≥ 0. We let h denote the density of H.

2.4 Comments on assumptions

For tractability, we have restricted attention to estimators that are linear with respect to

price, with weights depending only on the sizes of the respective transactions. Our formu-

lation approximates, as a special case, the common volume-weighted-average-price (VWAP)

benchmark, which has relative size weights

ŝi∑n
j=1 ŝj

.

For large n, the VWAP is approximately of the form that we study.

9See, for example, Berkowitz et al. (1988).
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The problem faced by each agent is stylized. We aim to capture some of a manipulator’s

key incentives. The agent’s type (Xi, si) can be interpreted as the transaction that the agent

would make, given current market conditions, to fulfill her usual “legitimate” business needs.

For example, such a trade could be the result of a natural speculative, market making, or

hedging motive. The assumption that each agent can make only one transaction is not essen-

tial, and could be relaxed. Formally, we could justify it by saying that all of the transactions

made by a single agent are first aggregated and only then enter the estimator, as for one of

the currently proposed approaches for fixing LIBOR.

For simplicity, we have also assumed that the size of a price manipulation is bounded by z̄.

Alternatively, we could assume that there is a convex cost function ψ(|z|) that represents, for

example, an increasing probability of detection. Formally, in our setting ψ(|z|) = c1{z /∈[−z̄, z̄]}

for some large c > 0. The results depend mainly, in this regard, on Assumption 2, which

essentially guarantees that the manipulation levels chosen by agents are high enough that

manipulated transactions are less precise signals of price than unmanipulated transactions.

The cost of manipulation reflects the losses that the agent incurs when trading away from

market prices in order to manipulate the fixing. We take a partial-equilibrium approach,

avoiding for the purpose of tractability a general endogenous model of unmanipulated trades.

The particular functional form (assumed mainly for tractability) can be further justifed by an

alternative interpretation of the nature of manipulations. Namely, imagine that agents can

submit “shill trades”, that is, make fictitious transactions at distorted prices and reimburse

each other using side payments. Then ŝi|Xi − X̂i| corresponds precisely to the side payment

that must be made.10

Finally, Ri can be thought of as the position that the agent holds in assets whose prices

depend on the level of the benchmark. If the agent holds positions such as options whose

market values are nonlinear with respect to the benchmark, we can view Ri as the so-called

“delta” (first-order) approximation of the sensitivity to the benchmark of the position’s mark-

to-market value. The assumption that Ri is symmetric around zero is, in effect, a belief by

the benchmark administrator that upward and downward manipulative incentives are similar,

other than with respect to their signs.

3 Preliminary analysis

In this section we more formally state the problem of the benchmark administrator, provide

some basic properties of an optimal benchmark, and present solutions to some preliminary

10This assumption is that the cost is linear in size. We can view γ as a per-dollar cost of using an
illegal transfer channel, for example resulting from the possibility of detection and punishment.
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cases that provide intuition as well as elements on which to build when solving the general

case.

3.1 Solution without manipulation

We first solve the problem assuming that, regardless of the weighting function f , agents do

not manipulate. The law of iterated expectation implies that

E (Ŷ ) = E

[
n∑
i=1

f(si)

]
E (Y ). (3.1)

Thus, Ŷ is unbiased if and only if E [
∑n

i=1 f(si)] = 1. It follows that

E
[
(Y − Ŷ )2

]
= −

σ2
Y

n
+

n∑
i=1

E
[
f2(si)(σ

2
Y + v(si))

]
.

Using the symmetry assumption, we can now formulate the problem of the benchmark ad-

ministrator as

inf
f∈F

ˆ s̄

0
f2(s)(σ2

Y + v(s))g(s) ds subject to

ˆ s̄

0
f(s)g(s) ds =

1

n
.

Proposition 1. Absent manipulation, the weighing function that solves problem P is given

by

f?(s) =
1

n

η

σ2
Y + v(s)

,

where

η =

(
E
[

1

σ2
Y + v(s1)

])−1

.

The proof is skipped. This problem can be viewed as special case of generalized least

squares (heteroskedastic) estimation. The benchmark administrator’s optimal weights are

proportional to the precision of each price observation conditional on its size. There is an obvi-

ous extension to the case of general covariance structure on the observation “noise” (ε1, . . . , ε).

The function f?( · ) is just a rescaling of κ( · ), and thus nondecreasing and concave.

3.2 Solution with full manipulation

We turn next to the case in which every agent is assumed to manipulate.11 Because, assuming

manipulation, the size of a transaction is not informative about the variance of εi, and given

11Formally, we assume that agents solve the problem (A) after replacing the indicator 1{zi 6=0} with 1.
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the agent’s optimal magnitude of manipulation, |zi| = z̄, we obtain the following result.

Proposition 2. If agents are certain to manipulate, the optimal weighing function is f?(s) =

1/n.

Again, we skip the easy proof. The result simply says that it is optimal to put equal

weight on every transaction because, from the viewpoint of the benchmark administrator,

every manipulated transaction is an equally precise signal of Y .

3.3 Incentives to manipulate

Having solved the two extreme cases with no manipulation and complete manipulation, we

turn back to the problem A facing an agent. By symmetry, we may concentrate on the event

that Ri ≥ 0. Generically, an agent with type Ri will manipulate if and only if there is some

s ∈ [0, s̄] such that Rif(s) > γs. Thus, if an agent with type Ri chooses to manipulate, then

all agents with types R > Ri will also manipulate. Similarly, if an agent with type Ri chooses

not to manipulate, all agents with types R < Ri will also choose not to manipulate. It follows

that with every function f we may associate a unique threshold Rf such that types above Rf

manipulate, and types below Rf do not. This easy observation leads to the following result.

Proposition 3. It is possible to implement an outcome with no manipulations if and only

if R̄ ≤ nγE(s1). If the benchmark administrator is further constrained to implement non-

manipulation, the optimal weighing function is given by f?(s) = γR̄−1s on [0, s0] and

f?(s) =
1

n

η

σ2
Y + v(s)

, s ∈ [s0, s̄],

where η = 2γs0R̄
−1
(
σ2
Y + v(s0)

)
, and where s0 is chosen to satisfy the constraint

ˆ s̄

0
f?(s)g(s) ds =

1

n
.

Proof. We sketch the proof. The remaining details are easy. By the above characterization,

it is possible to implement truthful reporting if and only if, for every s ∈ [0, s̄], we have

R̄f(s) ≤ γs. Because the administrator is constrained by
´ s̄

0 f(s)g(s) ds = 1/n, it is necessary

that
1

n
≤ γ

R̄

ˆ s̄

0
sg(s) ds.

This condition is also sufficient. If this condition holds, we can obtain the optimal weighing

function by applying basic results from optimal control theory.
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Although the result implies that implementing truthful reporting may sometimes be pos-

sible, R̄ may be very large in practice, so the necessary (and sufficient) condition will typically

be violated. Indeed, as mentioned in the Introduction, the underlying asset market for LI-

BOR is thinly traded relative to the market for instruments that determine the incentives

to manipulate. The following example shows that it need not be optimal for the benchmark

administrator to induce truthful reporting with certainty, even in the case when it is possible.

Example 4. Suppose that γ = 1, n = 10, R̄ = 5, σ2
Y = 1, v(s) = 1 for every s, z̄ = 1,

g is the uniform density on [0, 1], and h̃ is the symmetric triangular density on [−5, 5].12

Then f is feasible and implements truthful reporting if and only if f(s) = s/5. The value

of the administrator’s objective function is 2
75 ≈ 0.0267. Consider an alternative function fα

with fα(s) = αs for s ∈ [0, sα0 ], and fα(s) = αsα0 for all s ∈ [sα0 , s̄], where α ≥ 1
5 and sα0 is

chosen such that the constraint in problem P holds. In words, fα is linear up to sα0 , and flat

afterwards. Agents with |Ri| ≥ 1
α will manipulate, and in this particular case they will always

choose ŝi = sα0 . The value of the administrator’s objective function is strictly below 2
75 for all

α between 0.2 and 0.9. Thus, it is optimal to allow manipulation. At the optimal α? (equal

to approximately 0.3) the objective function is approximately 0.0243, and the unconditional

probability of manipulation is about 0.12. Perhaps somewhat surprisingly, fα? is not the

optimal function overall, as we will see later.

The main consequence of Proposition 3 from the point of view of further analysis is that we

cannot rely on the Revelation Principle. Using the language of Direct Revelation Mechanisms,

the reports of agents will typically differ from their true types regardless of the function f

that the mechanism designer chooses. In particular, we must determine how the function f

influences the mapping from true types into reports made by optimizing agents.

3.4 Basic properties of optimal benchmarks

In this subsection we make a few important steps toward the solution of the benchmark

administrator’s problem. First, given the assumptions in Section 2, we can see that agents

who decide to manipulate will choose |zi| = z̄ with probability one. Moreover, from the

viewpoint of the benchmark administrator, zi = z̄ and zi = −z̄ are equally likely, even

conditional on ŝi.
13 Therefore, equation (3.1) still holds if we replace si by ŝi, that is, forcing

12A careful reader will notice that this distribution does not satisfy Assumption 3. This does not
matter in this example.

13Formally, if the function f is chosen in such a way that some agents who decide to manipulate
are indifferent between choosing different levels of ŝi, we could specify the best responses of agents in
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the estimator Ŷ to be unbiased is equivalent to the requirement that E [
∑n

i=1 f(ŝi)] = 1.

We denote by Ψf (·) the cdf of the distribution of the transaction size ŝi conditional on the

transaction being manipulated. This distribution is a consequence of the agent’s optimal

manipulation in response to f, and will be determined later. From an application of the law

of iterated expectations and arguments from subsection 3.3,

E
[
(Y − Ŷ )2

]
=

n∑
i=1

ˆ s̄

0
f2(ŝi) dQ(ŝi)−

σ2
Y

n
,

where

dQ(s) = (σ2
Y + v(s))H(Rf )g(s) ds+ (σ2

X + z̄2)(1−H(Rf )) dΨf (s)

and where σ2
X = σ2

Y + σ2
ε and σ2

ε =
´ s̄

0 v(s)g(s) ds. (The integral with respect to Ψf is a

Riemann-Stieltjes integral.) The displayed equation simply states that if |Ri| ≤ Rf (which

happens with probability H(Rf )), then transaction i is unmanipulated, ŝi = si, X̂i has

variance σ2
Y + v(si), and ŝi is distributed according to g. On the other hand, if transaction i

is manipulated (which happens with probability (1−H(Rf ))), then ŝi is uninformative about

si and X̂i has variance σ2
X + z̄2 from the viewpoint of the benchmark administrator.

Our main task in this subsection is to determine Ψf ( · ) for each admissible f ∈ F . This

is complicated by the fact that f need not be well behaved. For example, f is not necessarily

differentiable or even concave. The next two lemmas overcome these hurdles.

Lemma 5. For any function f0 that is feasible for problem P, there exists a nondecreasing

feasible function f̄ that yields a (weakly) lower value of the program P.

Proof. See Appendix A.

Lemma 6. For any function f0 that is feasible for problem P, there exists a concave feasible

function f̄ that yields a (weakly) lower value of the program P.

Proof. See Appendix A.

The proofs are technical and thus relegated to the Appendix but the intuition behind

the results is straightforward and instructive. Suppose that a feasible function f0 is not

nondecreasing or not concave. Then we can find an interval [s0, s1] ⊂ [0, s̄] such that there is

no manipulation within this interval. Absent manipulation, however, we saw in Proposition 1

that the optimal weight is proportional to κ(·), which by Assumption 1 is nondecreasing and

such a way that ŝi would be informative of the sign of zi. Because the probability of an agent being
indifferent between multiple levels of ŝi is zero for every f , we can ignore this issue.
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concave. Thus, we can modify f0 in that interval so as to retain feasibility but improve the

value of the program P.

Given Lemmas 5 and 6, from this point we restrict attention without loss of generality to

weighting functions in the set

Fc = {f ∈ F : f is nondecreasing and concave}.

The concavity of f implies that we can use first-order conditions to solve the agent’s manip-

ulation problem. Nevertheless, f is not necessarily differentiable, so we use “subdifferential”

calculus.14 We denote by ∂f(s0) the subdifferential of f at the point s0. We have established

the following result.

Lemma 7. For f in Fc, an agent with type Ri manipulates if and only if |Ri| ≥ Rf , where

Rf = max
{
R ∈ [0, R̄] : Rf(s) ≤ γs, s ∈ [0, s̄]

}
.

If agent i manipulates, then she chooses ŝi if and only if

γ

Ri
∈ ∂f(ŝi).

Proof. The first claim follows from the arguments made in subsection 3.3. A function f ∈ Fc
is subdifferentiable at any point s ∈ (0, s̄) because f is concave, and the existence of a

subdifferential at 0 and s̄ follows from Rif(s) ≤ γs, and the fact that f is nondecreasing.

Thus ŝi is a global maximum of Rif(s)− γs if and only if 0 ∈ ∂(Rif(ŝi)− γŝi).

If f is actually differentiable at s, the condition for optimality boils down to the usual

first-order condition Rif
′(s) = γ.

14A note on terminology: usually the terms “subderivative” and “subdifferential” refer to convex
rather than concave functions. However, we still use these terms to avoid using awkward phrases like
“superderivative”.
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We can now characterize Ψf ( · ) for f ∈ Fc. For any s ∈ [0, s̄],

Ψf (s) = P
(
ŝi ≤ s

∣∣ |Ri| ≥ Rf)
= P

(
∂f(ŝi) ≥ ∂f(s)

∣∣ Ri ≥ Rf)
= P

(
γ

Ri
≥ ∂f(s)

∣∣ Ri ≥ Rf)
= P

(
Ri ≤

γ

f ′(s+)

∣∣ Ri ≥ Rf)

=
H
(

γ
f ′(s+)

)
−H(Rf )

1−H(Rf )
,

where “≥” applied to sets should be understood as the strong set order, and where f ′(s+)

denotes the right derivative of f at s. (We define f ′(s̄+) to be 0.) Because the right derivative

of a concave function is a right-continuous and nonincreasing function, Ψf ( · ) is a well defined

cdf. We note that discontinuities in f ′ correspond to atoms in the distribution of manipulated

transaction sizes.

We are ready to restate the problem of the benchmark administrator as an optimal control

problem. For clarity of exposition, we henceforth assume that R̄ = +∞, so that implementing

truthful reporting is never possible.15 Using an approach familiar from principal-agent models,

we address the best way, given a target R, for the administrator to implement an outcome

in which exactly those types with |Ri| ≥ R choose to manipulate. The problem of the

administrator is now

inf
f∈Fc

ˆ s̄

0
f2(s)

[
(σ2
Y + v(s))H(R) dG(s) + (σ2

X + z̄2) dH

(
γ

f ′(s+)

)]
(P(R))

subject to f(0) = 0, f ′(0+) =
γ

R
,

ˆ s̄

0
f(s)

[
H(R) dG(s) + dH

(
γ

f ′(s+)

)]
=

1

n
. (3.2)

The three constraints f(0) = 0, f ′(0+) = γ/R, and f ∈ Fc together guarantee that

f(s) ≤ γ

R
s, s ∈ [0, s̄].

The necessity of f(0) = 0 is obvious, and f ′(0+) = γ
R is necessary to implement an outcome

in which exactly those types with |Ri| ≥ R choose to manipulate.16 Solving P(R) is an

15This is practically without loss of generality because we can specify the cdf H to put arbitrary
small probability mass on Ri above some finite R̄.

16Note the emphasis on the word “exactly”. It is possible that the best way to implement an
outcome in which types below some R do not manipulate is to make sure that types below some
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intermediate step toward solving P. In the final step, we determine the optimal threshold R.

4 Solution in the general case

In this section we present a partial solution to problem P(R). Describing the exact solution

in complete generality seems difficult. Therefore, we first present a partial characterization

in the general case, and then give a complete characterization for the case of constant noise

variance v(s), or uniform distribution of unmanipulated transaction sizes (constant g(s)).

As the proofs of results in this section are technical, they are relegated to Appendix B.

Our approach to solving problem P(R) for a fixed R is that of optimal control theory. This

optimal control problem has three state variables: the value of the function f, the value of the

first derivative f ′, and an auxiliary state variable corresponding to the isoperimetric constraint

(3.2). The second derivative of f serves as a control variable. Because f is only piecewise C1,

we need to allow for jumps in the state variable f ′. Thus, we have additional controls that

determine the points at which f ′ jumps and the magnitudes of the jumps. We apply a general

version of the Maximum Principle that allows for jumps in the state variables. Because the

Hamiltonian for problem P(R) is not convex, we are unable to apply any of the standard

sufficiency results from optimal control theory. We thus prove existence of a solution directly

from Weierstrass’ Theorem. To this end, we approximate the non-compact space Fc by an

increasing sequence of smaller compact spaces, and show that a corresponding sequence of

solutions converges to a function that solves the problem in the original space.

The following second-order ordinary differential equation (ODE), parametrized by (R, η),

will play a key role in the results. Consider

f ′′(s) =

[
2f(s)

(
σ2
Y + v(s)

)
− η
]
H(R)g(s)− 2γ

(
σ2
X + z̄2

)
h
(

γ
f ′(s)

)
[
2f(s)

(
σ2
X + z̄2

)
− η
] (
−h′

(
γ

f ′(s)

))
γ2

(f ′(s))3

. (♦)

Further, we define

R̂ = max

{
R ≥ 0 :

γH(R)

R
E (s1) +

γ(1−H(R))

R
s̄ ≥ 1

n

}
as the highest level of R that is implementable (in the sense that there exists a function f

that is feasible for P(R)).

R? > R do not manipulate. Since we optimize over all R in the final step, this formulation is without
loss of generality.



4 Solution in the general case 17

Proposition 8. For any fixed R ∈ (0, R̂), the solution f? to problem P(R) exists and has

the following properties. There exists s0 ∈ (0, s̄) and η > 0 such that f?(s) = γ
Rs for all

s ∈ [0, s0]; in the interval (s0, s̄], f
? is C1 and there exists a partition of (s0, s̄] into a finite

number of intervals such that f? is either affine or satisfies the ODE (♦). Moreover, in the

last of these intervals, f? satisfies the ODE (♦) and lims↗s̄ f
′(s) = 0.

Proof. See Appendix B.

This characterization is not sharp because, in full generality (that is, without some re-

striction on the function g or v), the term
[
2f(s)

(
σ2
Y + v(s)

)
− η
]
H(R)g(s) is difficult to

control. In particular, we cannot guarantee that the solution to the ODE (♦) is concave. An

inspection of the proof shows that the affine parts may only appear in places where the solu-

tion to the ODE (♦) fails to be concave. Nevertheless, the optimal function is continuously

differentiable in (s0, s̄), that is, the connections between the affine and strictly concave parts

must be smooth. With some additional restrictions, we can rule out the affine parts and pin

down the optimal function precisely.

Proposition 9. Fix R ∈ (0, R̂), and suppose that either (i) v(s) is constant, or (ii) g(s) is

constant. Then the solution f? to the problem P(R) is given by f?(s) = γ
Rs for s ∈ [0, s0], and

by the solution to the ODE (♦) on [s0, s̄] with initial conditions f(s0) = γs0
R and f ′(s0) = γ

R ,

where the constant η is chosen so as to satisfy the terminal condition (f?)′(s̄) = 0, and s0 is

chosen so that the constraint (3.2) holds. In particular, f? is continuously differentiable on

the entire domain.

Proof. See Appendix B.

Propositions 8 and 9 indicate that the optimal benchmark provides an incentive for

“smoothing out” manipulations, preventing them from “bunching” around a given trans-

action size. This is perhaps somewhat surprising. The manipulated transactions have the

same precisions, as signals of Y , and yet it is optimal to attach different weights to them.

In particular this shows that the functions considered in Example 4 are not optimal. The

intuition behind this result is quite clear and depends on the assumption that the cdf H

is a (strictly) convex function.17 Another robust finding is that the optimal weighing func-

17Notice that locally the term f2(s)(σ2
Y + v(s))H(R)g(s) does not depend on whether there is a

jump in f ′ or not. However, the term f2(s)(σ2
X + z̄2) dH

(
γ

f ′
+(t)

)
is sensitive to jumps in f ′. After a

transformation using integration by parts, we can show that the problem of choosing f ′ locally boils
down to maximizing a concave functional, so the optimal thing to do is to minimize variation of f ′

(think about a risk-averse consumer smoothing out consumption).
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Fig. 4.1: Optimal weighing function for Example 10
(the dotted line is the optimal solution in the absence of manipulations)
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tion becomes flat as the transaction size increases. This is true regardless of the shape of

v. Intuitively, assigning too much weight to very large transactions is suboptimal because it

induces agents with high incentives to manipulate to choose large transaction sizes (resulting

in overweighing such transactions in the estimator).

For the case of constant v, the optimal f? will often be flat after some threshold transaction

size s1 < s̄ (see Example 10). This is consistent with f? being the solution to the ODE (♦)

because (as the proof in Appendix B formally demonstrates) we can interpret 0/0 in ODE

(♦) as 0. We then have 2f?(s)(σ2
Y + v) = η in [s1, s̄]. Since f? is C1, manipulations cease

gradually as s approaches s1 (that is, there is no atom of manipulations at s1).

Finally, a general feature of an optimal benchmark is that f?(s) coincides with γ
Rs for

small transaction sizes. In other words, the constraint that the cutoff type Rf? prefers to

avoid manipulation is binding. As a consequence, robust benchmarks put small weights on

small transactions.

Example 10. To illustrate the above points we consider a numerical example. We take the

same parameters as in Example 4, with the exception that h(x) = 1
2 exp(−1

2x) and R = 4.

The unconditional probability of manipulation is around 0.135. The optimal weighing function

is depicted in Figure 4.1. The function is smooth (C1), but the first derivative is changing

rapidly close to s0 ≈ 0.40 and s1 ≈ 0.83. All of the manipulated transactions are in the

interval [s0, s1]. As can be seen in Figure 4.2, manipulations are in fact highly concentrated

around s0.

We conclude this subsection with a short discussion of the intuition for the ODE (♦). We
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Fig. 4.2: Density of manipulations
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can rewrite the ODE as

[
2f(s)

(
σ2
X + z̄2

)
− η
]
dH

(
γ

f ′(s)

)
︸ ︷︷ ︸

Ih

+
[
2f(s)

(
σ2
Y + v(s)

)
− η
]
H(R)g(s)︸ ︷︷ ︸

Ig

=
d

ds

[(
2f(s)

(
σ2
X + z̄2

)
− η
)
h

(
γ

f ′(s)

)
γ

f ′(s)

]
︸ ︷︷ ︸

Ia

.

The term Ih is zero (that is, 2f(s)
(
σ2
X + z̄2

)
= η) when the weight is chosen optimally

from the point of view of manipulated transactions. This factor is multiplied by the density of

sizes corresponding to manipulated transactions. In this case the term Ia is also zero because

h

(
γ

f ′(s)

)
γ

f ′(s)
= 0

whenever f is constant. On the other hand, the term Ig is zero (that is, 2f(s)
(
σ2
Y + v(s)

)
= η)

when the weight is chosen optimally from the point of view of unmanipulated transactions.

This factor is multiplied by the density of sizes corresponding to unmanipulated transactions.

Ideally the benchmark administrator would like to set both of the terms Ih and Ig to zero,

but this is of course impossible because σ2
X + z̄2 > σ2

Y + v(s). The administrator thus

faces a tradeoff. Either she puts insufficient weight on unmanipulated transactions, which are

relatively precise signals of the fundamental value, or she puts too much weight on manipulated

transactions, which are relatively noisy signals of the fundamental value Y .

In balancing these two effects, the administrator takes into account the term Ia. Having

chosen f, she knows that the types in [Rf , ∞) will manipulate. By controlling f ′, she can
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control the sizes of the transactions at which consecutive types Ri in [Rf , ∞) submit manip-

ulations. We note that, roughly speaking, the type Ri = γ/f ′(s) chooses size s. The term

γ/f ′(s) starts at Rf when s = 0, and ends at +∞ when s = s̄. The lower is f ′, the lower

is the resulting probability mass of “remaining” manipulated transactions. When f ′ reaches

0, manipulations stop. In short, the term Ia accounts for the fact that when the benchmark

administrator chooses f(s) at s, she takes into account the effect of the speed with which the

slope changes on the remaining mass of manipulated transactions.

4.1 Choosing the optimal R

Having characterized the solution to problem P(R) for a fixed manipulation threshold R,

one can solve the original problem P by choosing an optimal threshold R?. This simply

involves computing the optimal weighing function f? for every R < R̂, evaluating the objective

function, and finding the maximum over all R, achieved at some R? (the optimum is attained,

by Berge’s Theorem). This can be done numerically. The tradeoff is clear and the intuition

doesn’t go beyond that developed in Example 4. We have no theoretical results to offer at

this time but it should be clear from the findings of the previous subsection that one should

not expect to obtain R? analytically. In particular, even with additional assumptions, we are

not able to solve the ODE (♦) analytically.

Example 11. With the parametric assumptions of Example 10, it turns out that R? ≈ 2.4

achieves the minimum for the objective P. Figure 4.3 presents the optimal weighing function

for R = 1, R = 2.4, R = 4 and R = 5. The ex-ante probabilities of manipulations under these

target levels are 0.61, 0.30, 0.14 and 0.08, respectively. The corresponding densities of sizes of

manipulated transactions are depicted in Figure 4.4.

5 Conclusions and future research

We developed a simple model for the design of robust benchmark fixings in settings for which

incentives to manipulate the benchmark arise from a profit motive related to investment

positions that are valued according to the benchmark. We have restricted attention to fixings

that are given by a size-dependent weighted average price, an important limitation. We

characterize the optimal weight for each size of transaction. We showed that an optimal

benchmark fixing must in general allow some amount of manipulation, puts very small weight

on small transactions, and nearly equal weight on large transactions.



5 Conclusions and future research 21

Fig. 4.3: Optimal weighing functions for Example 11

Fig. 4.4: Densities of manipulations (log scale)
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The most important next step would be to allow weights that depend on the prices of

transactions. The easiest example of this would be too exclude “outlier” prices. A slightly

more sophisticated method would be to compute, for every transaction, the posterior proba-

bility that the transaction is manipulated, and to use this information to construct weights.

We have ignored collusion throughout.
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A Proofs for section 3

Proof of Lemma 5

Take a feasible function f0 and suppose it is not nondecreasing (if it is, just set f̄ = f0).

Then there exist s0 and s1 such that s0 < s1, but f0(s0) > f0(s1). Without loss of generality

we can assume (making the interval smaller if necessary and using continuity of f0) that

f0 is strictly decreasing in [s0, s1]. This implies that (increasing s0 slightly if necessary)

there are no manipulations in [s0, s1], and this will continue to be true for any function

f that is is non-increasing in this interval. It is easy to see that we can construct a non-

increasing, continuous and piecewise C2 function f̂ on [s0, s1] with the following properties:

f̂(s0) = f0(s0), f̂(s1) = f0(s1),
´ s1
s0
f̂(s)g(s) ds =

´ s1
s0
f0(s)g(s) ds and there exists s2 ∈ (s0, s1)

such that f̂(s) < f0(s) for s ∈ (s0, s2) and f̂(s) > f0(s) for s ∈ (s2, s1). We then define

f̄(s) =

f̂(s) if s ∈ [s0, s1]

f0(s) otherwise.

By construction, f̄ is feasible (it is continuous, piecewise C2, and satisfies the constraint that

guarantees an unbiased estimator). The difference in the value of the administrator’s objective

function P under f̄ and f0 is (using the fact that there are no manipulation in [s0, s1] under

f̄), ˆ s1

s0

(
f̄2(s)− f2

0 (s)
)

(σ2
Y + v2(s))g(s) ds =

ˆ s1

s0

(
f̄(s)− f0(s)

)
φ(s)g(s) ds,

where φ(s) ≡
(
f̄(s) + f0(s)

)
(σ2
Y +v(s)) is a strictly decreasing function (we used Assumption

1). By the mean value theorem, there exists x ∈ (s0, s1) such that

ˆ s1

s0

(
f̄(s)− f0(s)

)
φ(s)g(s) ds = φ(s0)

ˆ x

s0

(
f̄(s)− f0(s)

)
g(s) ds.

But
´ x
s0

(
f̄(s)− f0(s)

)
g(s) ds < 0 because the integrand is (strictly) negative on [s0, s2),

(strictly) positive on (s2, s1] and because
´ s1
s0

(
f̄(s)− f0(s)

)
g(s) ds = 0.

Therefore, f̄ is feasible and yields a smaller value of the objective function than does f0.

Proof of Lemma 6

Take a feasible f0 and suppose it is not concave (if it is, set f̄(s) = f0(s)). This means that

we can find an affine function ϕ(s) = a+ bs and an interval [s0, s1] such that ϕ(s0) = f0(s0),

ϕ(s1) = f0(s1) and ϕ(s) ≥ f0(s) for all s ∈ (s0, s1), with a strict inequality for at least some
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s̃ ∈ (s0, s1). We first prove that there can be no manipulations18 in (s0, s1). It’s enough to

show that for generic R and for all s ∈ (s0, s1),

Rf0(s)− γs < max {Rf0(s0)− γs0, Rf0(s1)− γs1} .

We have

max {Rf0(s0)− γs0, Rf0(s1)− γs1} =

Ra+ (Rb− γ) s1 if Rb > γ

Ra+ (Rb− γ) s0 if Rb < γ.

Take the case Rb > γ. Then we have, for all s ∈ (s0, s1),

Rf0(s)− γs ≤ Ra+ (Rb− γ) s < Ra+ (Rb− γ) s1.

Similarly, for Rb < γ and for all s ∈ (s0, s1),

Rf0(s)− γs ≤ Ra+ (Rb− γ) s < Ra+ (Rb− γ) s0.

This conclusion depended only on the fact that f0 lies below the line described by the affine

function ϕ. Thus, if f0 cannot be improved upon by another feasible function f̄ , it must be

the case that f0 restricted to the interval [s0, s1] arises as a solution to the following optimal

control problem:19

min
u

ˆ s1

s0

f2(s)(σ2
Y + v(s))g(s) ds (A.1)

subject to ˆ s1

s0

f(s)g(s) ds =

ˆ s1

s0

f0(s)g(s) ds,

u(s) = f ′(s),

f(s0) = f0(s0),

f(s1) = f0(s1),

f(s) ≤ ϕ(s).

Here, the first derivative plays the role of the control variable, and the value of the function is

the state variable. We get rid of the isoperimetric constraint
´ s1
s0
f(s)g(s) ds =

´ s1
s0
f0(s)g(s) ds

18Strictly speaking, the measure of manipulations is zero.
19In the sense that f0 is the resulting state variable f if u is chosen optimally.



A Proofs for section 3 26

by defining an auxiliary state variable Γ with

Γ′(s) = f(s)g(s)

and

Γ(s0) = 0, Γ(s1) =

ˆ s1

s0

f0(s)g(s) ds.

We can now derive the necessary conditions for a function f to solve the above problem. We

formally state the necessary conditions in the form of a Lemma.

Lemma 12. Let u?(s) be an admissible control which solves Problem A.1 above. Let f(s)

and Γ(s) be the corresponding state variables. Then there exist a constant λ0 ∈ {0, 1}, a

vector function λ(s) = (λ1(s), λ2(s)) with one-sided limits everywhere, and a non-decreasing

function q(s) such that:

(i) (λ0, λ(s), q(s1)− q(s0)) 6= (0, 0, 0) for all s in [s0, s1].

(ii) u?(s) maximizes H(f(s), u, λ(s), s) over all u ∈ R, and for almost all s, where

H(f(s), u, λ(s), s) = −λ0f
2(s)(σ2

Y + v(s))g(s) + λ1(s)u+ λ2(s)f(s)g(s).

(iii) q(s) is constant on any interval on which ϕ(s) > f(s), and is continuous at all s ∈
(s0, s1), where f(s) = ϕ(s) and u?(s) is discontinuous.

(iv) If we define λ?1(s) = λ1(s)− q(s), then λ?1(s) and λ2(s) are continuous and have contin-

uous derivatives at all points of continuity of u?(s) and q(s), and we have

(λ?1)′ (s) =
[
2λ0f(s)(σ2

Y + v(s))− λ2(s)
]
g(s) (A.2)

λ′2(s) = 0. (A.3)

Proof. Apply Theorem 2, page 332, of Seierstad and Sydsaeter (1987).

Suppose that λ0 = 1. First, notice that λ2 must be constant. Indeed, its derivative is equal

to 0 almost everywhere, so it is piecewise constant. And since it is continuous by condition

(iv), it must be constant. We denote η ≡ λ2(s). Second, to satisfy condition (ii), we need

λ1(s) = 0 almost everywhere. On any interval on which the constraint f(s) ≤ ϕ(s) does not
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bind, we must have, by conditions (iii) and (iv), a constant level of q(s). Hence, at any such s,

λ′1(s) = (λ?1)′ (s), which must be equal to 0 almost everywhere. Thus, on any interval on which

the constraint does not bind, an optimal f must coincide with η
2(σ2

Y +v(s))
for some constant η.

By Assumption 1, the function κ(s) ≡
(
(σ2
Y + v(s)

)−1
is concave. This is a contradiction of

the fact that f0 solves the problem A.1. Indeed, since η
2(σ2

Y +v(s))
is concave, it is impossible

that f0(s) coincides with η
2(σ2

Y +v(s))
whenever f0(s) is strictly below ϕ(s) (and this is the case

for at least some point, by assumption). At the same time, however, f0 coincides with the

values of an affine function at the ends of the interval [s0, s1].

Now consider the case λ0 = 0. Similar arguments lead to the conclusion that λ1(s) = 0

almost everywhere, and η ≡ λ2(s). Since the constraint cannot bind everywhere, there must be

an interval on which λ?1 is constant. But because we have (λ?1)′ (s) = −ηg(s), this means that

η = 0. Applying Theorem 6 on page 346 from Seierstad and Sydsaeter (1987), which states

that (λ0, λ(s)) 6= (0, 0) in some open interval contained in (s0, s1), we get a contradiction.

B Proofs of Propositions 8 and 9

We first prove Proposition 8. We fix some R < R̂, which guarantees that the set of

functions f ∈ Fc that satisfy the constraints of problem P(R) is non-empty. Given that f

must be continuous and piecewise C1 with an absolutely continuous derivative, we can treat

the optimization problem P(R) as an optimal control problem for which f and f ′ are state

variables, and f ′′ is the control variable. Moreover, we optimize over a finite set of points

(τj)
k
j=1 ⊂ [0, s̄] at which the first derivative f ′ may jump down by an amount vj . Summing

up, the problem can be expressed as:

inf
−∞ < f ′′ ≤ 0

(τj , vj > 0)kj=1

ˆ s̄

0
f2(s)

[(
σ2
Y + v

)
H(R)dG(s) +

(
σ2
X + z̄2

)
dH

(
γ

f ′(s+)

)]
(B.1)

subject to

ˆ s̄

0
f(s)

[
H(R)dG(s) + dH

(
γ

f ′(s+)

)]
=

1

n
, (B.2)

f(0) = 0, f ′(0+) =
γ

R
,

f ′(τ+
j )− f ′(τ−j ) = −vj , j = 1, 2, . . . , k.

We can simplify the objective function by applying integration by parts for the Riemann-
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Stieltjes Integral, and, using the fact that f is absolutely continuous, get

ˆ s̄

0
f2(s) dH

(
γ

f ′(s+)

)
= f2(s̄)− 2

ˆ s̄

0
f(s)f ′(s)H

(
γ

f ′(s+)

)
ds

= 2

ˆ s̄

0
f(s)f ′(s)

(
1−H

(
γ

f ′(s)

))
ds.

In the last step we replaced the directional derivative by the derivative because f is almost

everywhere differentiable (the points at which it is not differentiable do not influence the value

of the integral). Therefore, the objective function becomes

ˆ s̄

0

[
f2(s)

(
σ2
Y + v(s)

)
H(R)g(s) + 2f(s)f ′(s)

(
σ2
X + z̄2

)(
1−H

(
γ

f ′(s)

))]
ds.

Applying the same method, we get

ˆ s̄

0
f(s) dH

(
γ

f ′(s+)

)
=

ˆ s̄

0
f ′(s)

(
1−H

(
γ

f ′(s)

))
ds,

which allows us to express the constraint as

ˆ s̄

0

[
f(s)H(R)g(s) + f ′(s)

(
1−H

(
γ

f ′(s)

))]
ds =

1

n
.

Moreover, we can transform the problem into an unconstrained one by defining an auxiliary

state variable Γ by

Γ(t) =

ˆ t

0

[
f(s)H(R)g(s) + f ′(s)

(
1−H

(
γ

f ′(s)

))]
ds, t ∈ [0, s̄].

This means that

Γ′(s) = f(s)H(R)g(s) + f ′(s)

(
1−H

(
γ

f ′(s)

))
with Γ(0) = 0 and Γ(s̄) = 1/n.

Finally, to simplify notation, we denote the state variables f, f ′ and Γ by x1, x2, and

x3, respectively, and the control variable, f ′′, by u. Then, the full statement of the optimal

control problem, suppressing dependence on s in the notation, is

sup

−∞ < u ≤ 0

(τj , vj ≥ 0)kj=1

−
ˆ s̄

0

[
x2

1

(
σ2
Y + v

)
H(R)g + 2x1x2

(
σ2
X + z̄2

)(
1−H

(
γ

x2

))]
ds (B.3)

subject to
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x′1 = x2, x1(0) = 0, x1(s̄) − free, x1(τ+
j )− x1(τ−j ) = 0,

x′2 = u, x2(0) =
γ

R
, x2(s̄) − free, x2(τ+

j )− x2(τ−j ) = −vj ,

x′3 = x1H(R)g + x2

(
1−H

(
γ

x2

))
, x3(0) = 0, x3(s̄) =

1

n
, x3(τ+

j )− x3(τ−j ) = 0.

We now apply the Maximum Principle for an optimal control problem with jumps in the state

variable to identify necessary conditions for the optimal control u?. These necessary conditions

are introduced in the Lemma below.

Lemma 13. Let u?(s), (τ?j , v
?
j )
k
j=1 be an admissible control that solves the problem above. Let

x(s) = (x1(s), x2(s), x3(s)) be the corresponding vector of state variables. Then there exist a

constant λ0 ∈ {0, 1} and a continuous function λ(t) = (λ1(t), λ2(t), λ3(t)) such that:

1. (λ0, λ(s̄+)) 6= (0, 0).

2. If the Hamiltonian H is defined by

H(x, u, λ) = −λ0x
2
1

(
σ2
Y + v

)
H(R)g − 2λ0x1x2

(
σ2
X + z̄2

) [
1−H

(
γ

x2

)]

+λ1x2 + λ2u+ λ3

[
x1H(R)g + x2

(
1−H

(
γ

x2

))]
,

then for all s ∈ [0, s̄] such that s 6= τ?j for j = 1, . . . , k, we have

H(x?(s), u, λ(s)) ≤ H(x?(s), u?(s), λ(s)), u ∈ (−∞, 0].

3. For all s ∈ [0, s̄] such that s 6= τ?j for j = 1, . . . , k, and except for points of discontinuity

of u?, λ is continuously differentiable and

λ′i(s) = −∂H (x?(s), u?(s), λ(s))

∂xi
, i ∈ {1, 2, 3}.

4. The transversality conditions λ1(s̄+) = 0 and λ2(s̄+) = 0 are satisfied.

5. At the jump points τ?j , for j = 1, . . . , k, λ2(τ?j ) = 0,

6. For all s 6= τ?j , for j = 1, . . . , k, λ2(s) ≥ 0.
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Proof. Apply Theorem 7, p. 196, of Seierstad and Sydsaeter (1987).

Before we proceed, we state a simple lemma that will be used throughout the remainder.

Lemma 14. Suppose X is a nonnegative random variable with a finite variance and a continuously

differentiable decreasing density h on (0, ∞). Then limx→∞ h(x)x2 = 0 and limx→∞ h
′(x)x3 =

0.

Proof. The first claim follows directly from the definition of variance, and the second can be

obtained by applying integration by parts.

We now simplify the necessary conditions. First, it is easy to rule out the degenarate case

λ0 = 0, and thus λ0 = 1.20 Second, except possibly at jump points, we have

λ′1 =
[
2x1

(
σ2
Y + v

)
− λ3

]
H(R)g + 2x2

(
σ2
X + z̄2

) [
1−H

(
γ

x2

)]
, (B.4)

λ′2 =
[
2x1

(
σ2
X + z̄2

)
− λ3

] [
1−H

(
γ

x2

)
+ h

(
γ

x2

)
γ

x2

]
− λ1, (B.5)

λ′3 = 0. (B.6)

Third, each λk function is continuous and continuously differentiable between jump points,

and λ2 = 0 at jump points. Moreover, λ3 is a constant, and we denote η ≡ λ3. Since λ2 ≥ 0,

u must be zero if λ2 > 0, and can be an arbitrary negative number if λ2 = 0.

If λ2 = 0 on an interval (which is required for u < 0), then we must have λ′′2 = 0 almost

everywhere. That is,

2γ
(
σ2
X + z̄2

)
h

(
γ

x2

)
+
[
η − 2x1

(
σ2
X + z̄2

)]
h′
(
γ

x2

)
γ2u

x3
2

+
[
η − 2x1

(
σ2
Y + v

)]
H(R) = 0.

If x2 = 0, then (using Lemma 14) this equality boils down to
[
η − 2x1

(
σ2
Y + v

)]
H(R) = 0,

so we must have η = 2x1

(
σ2
Y + v

)
. Otherwise, we may rewrite the equality as

u =

[
2x1

(
σ2
Y + v

)
− η
]
H(R)g − 2γ

(
σ2
X + z̄2

)
h
(
γ
x2

)
[
2x1

(
σ2
X + z̄2

)
− η
] (
−h′

(
γ
x2

))
γ2

x32

. (B.7)

20This claim does require a proof but we skip it because it is not difficult and uses similar arguments
to the ones below.
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If we treat 0/0 as 0, then equation (B.7) gives an “if and only if” condition for λ2 = 0. Notice

that if 2x1

(
σ2
X + z̄2

)
< η, then

2x1

(
σ2
Y + v

)
− η < 2x1

(
σ2
X + z̄2

)
− η < 0,

so that the numerator in (B.7) becomes negative and u > 0. This contradicts feasibility. Thus

we need 2x1

(
σ2
X + z̄2

)
≥ η in any interval [s0, s1] in which λ2 = 0. In fact this must be a

strict inequality if x2(s0) > 0. Since x1 is strictly increasing when x2 > 0, it is obvious that

2x1

(
σ2
X + z̄2

)
> η for all s > s0. And if 2x1(s0)

(
σ2
X + z̄2

)
= η, then it can be shown that

there does not exist a finite, concave and nondecreasing solution to the ODE (B.7). For future

use, notice that in the interval with λ2 = 0, λ1 is uniquely pinned down, in that

λ1 =
[
2x1

(
σ2
X + z̄2

)
− η
] [

1−H
(
γ

x2

)
+ h

(
γ

x2

)
γ

x2

]
. (B.8)

On the other hand, if λ2 > 0, we must have u = 0. Therefore, the optimal u is either 0 or

determined by equation (B.7).

Lemma 15. For every optimal solution, x1(s) = γs/R on an interval of the form [0, s0], for

some s0 > 0.

Proof. The claim follows immediately from the observation that if η > 0 (which is indeed the

case and will be demonstrated later), then the solution to the ODE (B.7) cannot be concave

for s close to 0. Therefore λ2 > 0, and we must have u = 0 initially. Since x1(0) = 0 and

x2(0) = γ
R , we obtain x1(s) = γs

R in some interval [0, s0].

From now on, we let s0 = max
{
s : f(s) = γs

R

}
. Notice that this is well defined (because

f is continuous), strictly larger than zero (by the Lemma above), and strictly smaller than s̄

(because we assumed R < R̂), and also that f(s) = γs
R for all s ≤ s0.

Lemma 16. There is at most one jump in x2 in the optimal solution. If there is a jump, then

it must be at s0. Further, x1 must be linear (with strictly positive slope) in a right neighborhood

of s0.

Proof. First, notice that λ2 is continuous and equal to zero at every jump point. We apply

Note 7 on p. 197 of Seierstad and Sydsaeter (1987), which states that the Hamiltonian is
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continuous at the jump points (for all jump points in (0, s̄)). In particular,

φ(x2) =
[
η − 2x1

(
σ2
X + z̄2

)]
x2

[
1−H

(
γ

x2

)]
+ λ1x2

must be continuous at any such jump points. Suppose that λ2 = 0 a.e. in a subinterval

contained in the neighborhood of some jump point τ (on either side). Then we have φ(x2) =[
η − 2x1

(
σ2
X + z̄2

)]
γh( γx2 ) (using equation (B.8), and continuity of λ1). Therefore, if there

is a jump in x2 in this case, then continuity of φ at τ requires that η = 2x1(τ)
(
σ2
X + z̄2

)
.

However, by the remark made above, 2x1

(
σ2
X + z̄2

)
> η on every closed interval in which

λ2 = 0 almost everywhere. Since x1 is continuous, we get a contradiction.

So we are left to explore the possibility of a jump when λ2 > 0 on both sides of τ . (This

means that x1 is linear on both sides of τ .) Since λ2(τ) = 0, and λ2 > 0 for all s 6= τ in the

neighborhood of τ, we must have λ′2(τ−) ≤ 0 and λ′2(τ+) ≥ 0. This means that

[
2x1(τ)

(
σ2
X + z̄2

)
− η
] [

1−H
(

γ

x2(τ−)

)
+ h

(
γ

x2(τ−)

)
γ

x2(τ−)

]
≤ λ1(τ)

≤
[
2x1(τ)

(
σ2
X + z̄2

)
− η
] [

1−H
(

γ

x2(τ+)

)
+ h

(
γ

x2(τ+)

)
γ

x2(τ+)

]
.

Because x2 can only jump down, and because

1−H
(
γ

x2

)
+ h

(
γ

x2

)
γ

x2

is an increasing function of x2, we must have 2x1(τ)
(
σ2
X + z̄2

)
≤ η, and, moreover, λ1(τ) ≤ 0.

As an immediate conclusion, we cannot have jumps in the interval [s̃, s̄], where s̃ is a point

such that 2x1(s̃)
(
σ2
X + z̄2

)
> η. In particular, if λ2 = 0 a.e. in some interval, then there are

no jumps in x2 to the right of this interval.

In the maximal interval (τ, s1] within which u = 0 a.e., we have

λ′1 =
[
2x1

(
σ2
Y + v

)
− η
]
H(R)g + 2x2

(
σ2
X + z̄2

) [
1−H

(
γ

x2

)]
(B.9)

λ′2 =
[
2x1

(
σ2
X + z̄2

)
− η
] [

1−H
(
γ

x2

)
+ h

(
γ

x2

)
γ

x2

]
− λ1 (B.10)

λ′′2 = 2γ
(
σ2
X + z̄2

)
h

(
γ

x2

)
−
[
2x1

(
σ2
Y + v

)
− η
]
H(R)g. (B.11)

Since λ2(τ) = λ2(s1) = 0 (by Lemma 13), λ2 > 0 for almost all s ∈ (τ, s1), and λ′2 is

differentiable in (τ, s1), we must have λ′′2 < 0 at least in some subinterval. But this means

that 2x1

(
σ2
Y + v

)
> η at least at one point s̃ ∈ (τ, s1). Since x1 is non-decreasing, it follows
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that 2x1(s̃)
(
σ2
X + z̄2

)
> η. From the remark above, there can be no more jumps in x2 after

the (possible) jump at τ, that is, there is at most one jump in x2. Summarizing what we have

shown so far, and using Lemma 15, we conclude that τ = s0.

So if there is a jump, then we have the following: λ2(s1) = λ2(s0) = 0 and λ1(s0) ≤ 0 ≤
λ1(s1), where (s0, s1] is the maximal interval in which u = 0 a.s. Notice that in this interval

x2 is constant.

We can now rule out the case x2 = 0 in [s0, s1]. We would have s1 = s̄, x1 constant (i.e.

x1(s) = γs0
R for s ∈ [s0, s̄]), and

λ′1 =
[
2
γs0

R

(
σ2
Y + v

)
− η
]
H(R)g.

Since we have

2
γs0

R

(
σ2
Y + v

)
− η < 2

γs0

R

(
σ2
X + z̄2

)
− η ≤ 0,

we get λ′1 < 0 which in conjunction with λ1(s0) ≤ 0 gives a contradiction with the transver-

sality condition λ1(s̄) = 0 from Lemma 13. This concludes the proof of the Lemma.

We now establish that in any optimal solution, x1 follows (B.7) in some interval with s̄ as

the right endpoint. In particular, this rules out solutions that are piecewise linear. Moreover,

x2(s̄) = 0, that is, the optimal function x1 becomes flat as s gets closer to s̄.

Lemma 17. In any optimal solution, there exists s1 < s̄ such that in the interval [s1, s̄], x1

follows (B.7), and x2(s̄) = 0.

Proof. There are two possible cases: either u follows (B.7) or u = 0, in some interval containing

s̄ as the right endpoint. In the first case, to satisfy the transversality condition for λ1, we

need [
2x1(s̄)

(
σ2
X + z̄2

)
− η
] [

1−H
(

γ

x2(s̄)

)
+ h

(
γ

x2(s̄)

)
γ

x2(s̄)

]
= 0.

Because 2x1(s̄)
(
σ2
X + z̄2

)
> η, this means that we must have x2(s̄) = 0 (applying Lemma

14). In the second case, suppose that x2(s̄) > 0. Because λ1 is continuous, and λ1(s̄) = 0,

λ1(s) is arbitrarily close to 0 for s close to s̄. But this means that λ′2(s) > 0 for s close to s̄.

Because λ2(s) ≥ 0, we get a contradiction with the transversality condition λ2(s̄) = 0. This

establishes that x2(s̄) = 0.

Because we have excluded the possibility that x1 is flat on [s0, s̄] in Lemma 16, it follows

that x1 must satisfy (B.7) in some subinterval contained in [s0, s̄]. So to finish the proof of

the Lemma, we need to show that it is impossible that the optimal x1 has x2 = 0 with λ2 > 0
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in some (s1, s̄) when the solution to the left of s1 satisfies (B.7). In such a case we would have

λ1(s1) = λ2(s1) = λ2(s̄) = λ1(s̄) = 0, and in the interval (s1, s̄),

λ′1 =
[
2x1(s̄)

(
σ2
Y + v

)
− η
]
H(R)g,

λ′2 = −λ1,

which leads to an immediate contradiction.21

Finally, having restricted the set of candidate solutions, we prove that at least one of these

candidates is indeed a solution, thereby concluding the proof of Proposition 8.

Lemma 18. There exists a solution to Problem (B.3).

Proof. Since λ2 ≥ 0 in the optimal solution, we can view the control variable u as coming from

a bounded interval [−M, 0], and this modification doesn’t change anything in the analysis

above (taking M large enough that the solution to (B.7) does not violate the constraint

u ≥ −M). Similarly, we can impose a constraint that there is at most K < ∞ jumps in x2,

and, by Lemma 16, this also doesn’t change the set of candidate solutions. Define formally

FM,K
c = {f ∈ Fc : |f ′′(s)| ≤M a.e. and |{s ∈ [0, s0] : f ′(s−) 6= f ′(s+)}| ≤ K}. (B.12)

Functions from the space FM,K
c are uniformly bounded in the ‖ · ‖C2 norm, and thus, by

Arzela-Ascoli Theorem, relatively compact as a subset of the space Fc endowed with the

‖ · ‖C1 norm. Because Lipschitz continuity is preserved in the limit, FM,K
c is closed, and

thus compact. Moreover, the functional we are maximizing (and the constraint) is continuous

(by Lebesgue Dominated Convergence Theorem and Lemma 14) on Fc with this norm. By

Weierstrass’ Theorem, the maximum is attained when we restrict attention to the space FM,K
c .

Thus, we have existence of solution for a sequence of problems indexed by N obtained by

taking the original problem and replacing u ∈ (−∞, 0] with u ∈ [−N, 0] (and restricting the

number of allowed jumps in x2 to at most N). Let f (N) be the corresponding sequence of

solutions. By the remark above, for large enough N, f (N) = f?, for some f?. But the space

FN,Nc approximates the space Fc as N → ∞ in the ‖ · ‖C1 norm, thus by continuity of the

functional that we are maximizing, f? must also be a solution to the original problem.

21Except for the special case when v is constant and 2x1(s̄)
(
σ2
Y + v

)
= η. But then x1 is the

solution to (B.7) in [s1, s̄] (using Lemma 14), and λ2 = 0.



B Proofs of Propositions 8 and 9 35

Proof of Proposition 9.

In this subsection we examine the case in which either the observation variance v(s) is constant,

or the distribution of unmanipulated transaction sizes is uniform, that is, g(s) is constant.

We start with another simple lemma.

Lemma 19. Whenever u = 0 in some interval [t, t̄], then the function 2x1(σ2
Y + v) is quasi-

convex in this interval.

Proof. When u = 0, x1 is an affine function, in particular it’s convex. Recall that κ(s) =

(σ2
Y + v(s))−1 is a concave function by Assumption 1. Thus 2x1(σ2

Y + v) can be seen as a

positive convex function divided by a positive concave function, and is thus quasi-convex.

Lemma 20. When either (i) v(s) is constant, or (ii) g(s) is constant, we cannot have u ≡ 0

in any interval (t1, t2) ⊂ (s0, s̄).

Proof. Suppose to the contrary that there exists such interval (t1, t2), and take it to be

maximal (i.e. such that it cannot be enlarged to a bigger interval in which u ≡ 0). By

what was shown above, we know that x2 is constant and strictly positive in (t1, t2), and

λ2(t1) = λ2(t2) = 0. (Note that t1 can be equal to s0 and there can be a jump at s0). By the

same argument as in the proof of Lemma 16 , if u = 0 and λ2 > 0 in (t1, t2), then there must

be a point s̃ ∈ (t1, t2) such that λ′′2(s̃) < 0, in particular 2x1(s̃)(σ2
Y + v(s̃)) > η. From now

on, we consider the cases (i) and (ii) seprately.

In case (i), we know that 2x1(s)(σ2
Y + v(s)) is nondecreasing in s, and thus 2x1(s)(σ2

Y +

v(s)) > η for all s ≥ s̃. By Lemma 17, we know that x1 follows equation (B.7) in some terminal

interval [s1, s̄], and that x2(s)→ 0 as s↗ s̄. But then we would have

[
2x1(s)

(
σ2
Y + v

)
− η
]
H(R)g(s) > 2γ

(
σ2
X + z̄2

)
h(

γ

x2(s)
)

for points s close to s̄ (since g is bounded away from zero and 2x1

(
σ2
Y + v

)
> η for all s > s̃).

This means that u > 0, contradicting concavity of x1.

In case (ii), we make use of equation (B.11). We know that λ′′2 is negative at some point

s̃ ∈ (t1, t2). It is also easy to observe that λ′′2(t1) ≥ 0. By Lemma 19, the function 2x1(σ2
Y +v)

is quasi-convex. Thus, using the assumption that g is constant, λ′′2 is quasi-concave in (t1, t2).

This means that it is increasing on (t1, t̃) and decreasing on (t̃, t2), for some t̃ ∈ [t1, t2].

Therefore, λ′′2 must cross zero from above, and once it does, it stays below zero until t2. This

produces a contradiction. Indeed, since λ′2(t1) ≥ 0 and lims→t2 λ
′
2(s) = 0, it would mean that

λ′2(s) > 0 for all s ∈ (t1, t2) which is impossible given that λ2(t1) = λ2(t2) = 0.
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Combining Lemma 16 with Lemma 20, we get the following corollary.

Corollary 21. When either (i) v(s) is constant, or (ii) g(s) is constant, there can be no

jumps in x2.

It follows that the optimal x1 is the solution to equation (B.7) on (s0, s̄). Because we have

established that there are no jumps in x2, it must be the case that x2(s0) = γ
R which gives

the second initial condition (the first one is x1(s0) = γs0
R ). Moreover, we have the condition

x2(s̄) = 0 by Lemma 17 which uniquely pins down the constant η for a given s0. Finally, s0

must be chosen so that the constraint is satisfied. Recalling that f(s) = x1(s), f ′(s) = x2(s),

and f ′′(s) = u(s) concludes the proof of Proposition 9.
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