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1. INTRODUCTION

Empirical work on auctions often requires estimating a complex structural model

relying on strong assumptions about the data generating process. For example,

computing revenue under counterfactual auction formats typically involves mak-

ing simplifying assumptions, such as bidders having independent private values

(IPV) or bidders’ values being independent of the number of bidders who partici-

pate in the auction.1 The researcher may then estimate the underlying distribution

of bidder valuations from bid data, and use the estimated distribution to simu-

late the counterfactuals of interest. While these structural methods are sometimes

necessary, we demonstrate that some key questions in the analysis and design of

auctions can be answered with a simple-to-compute tool we refer to as the bidder

exclusion effect.

The bidder exclusion effect is the decrease in expected auction revenue when

a random bidder is excluded from an auction. The effect is not of intrinsic in-

terest but instead serves as a means to an end, providing a simple and powerful

tool for empirical auction work. We show that the bidder exclusion effect can be

used to test whether the number of bidders varies exogenously across auctions,

as an important class of entry models imply, and as some recent methodological

advances in structural auctions assume. The bidder exclusion effect can also be

used to bound above the revenue gains from optimal auction design, building on

and providing a new empirical interpretation of the theoretical work of Bulow and

Klemperer (1996).

In contrast to much of the empirical auctions literature, our approach does not

involve estimating bidder primitives in a structural model, nor does it rely on ex-

ogenous variation in the number of bidders. Computation only requires calculat-

ing sample means or conditional means. We do not require instruments, and even

with valid instruments, instrumental variables approaches would not suffice to

1Paarsch and Hong (2006); Hendricks and Porter (2007); Athey and Haile (2007); and Hickman,
Hubbard, and Saglam (2012) describe structural econometric methods for auction data and survey
the literature.
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answer the auction design questions our method addresses. Our approach is also

valid under a broad range of information settings and auction formats.

For the intuition behind how the bidder exclusion effect can be estimated, con-

sider the example of an n > 2 bidder ascending auction with private values and no

reserve price, where in equilibrium bidders bid their values. If a bidder is excluded

at random from the auction, with probability n−2
n he will be one of the n− 2 lowest

bidders, and so his exclusion will not affect revenue. With probability 2
n , he will

be one of the two highest bidders, and revenue will drop from the second-highest

to the third-highest bid of the n bidders. The bidder exclusion effect is therefore 2
n

times the expected difference between the second and third-highest bids.

This estimator is robust to a variety of modeling frameworks which would nor-

mally complicate or prohibit identification in auction models. For example, Athey

and Haile (2002) prove that the joint distribution of bidder valuations is not iden-

tified in ascending auction models with correlated private values because the re-

searcher never observes the willingness to pay of the highest bidder. The bidder

exclusion effect, however, is identified in this setting—and in a broad class of other

auction settings considered in the literature—when the econometrician observes

the second and third-highest bids and the number of bidders. With these data,

the bidder exclusion effect is point identified in ascending auctions with (pos-

sibly asymmetric and correlated) private values and auction-level heterogeneity

(observed or unobserved).

While it is particularly straightforward to find the bidder exclusion effect in the

example above, we show that it can be bounded above in a wide range of other

settings, including common values, bidders bidding below their values (which we

refer to throughout as “low bidding”), binding reserve prices, and first price auc-

tions. Bounds can also be obtained when the econometrician only observes the sec-

ond and third-highest bids and not the number of bidders. Incorporating auction-

level covariates parametrically or nonparametrically is also straightforward, as the

bounds on the bidder exclusion effect reduce to conditional means in these cases.
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In each of these settings, an estimate of the bidder exclusion effect (or an esti-

mate of an upper bound on the effect), sheds light on several important issues in

empirical auctions work. First, it is possible to test whether bidders’ valuations are

independent of the number of bidders who participate in the auction.2 This type of

independence is central to identification in many recent methodological advances.3

Knowing whether the number of bidders is independent of valuations is also key

to modeling bidders’ entry decisions. Specifically, a prominent distinction in the

auction literature is between entry models which have this property, and models

of selective bidder entry, which do not.4 Choosing an inappropriate entry model

might result in misleading estimates of bidders’ valuations, or unreliable counter-

factual simulations.

Although the assumption that bidders’ values and the number of bidders are

independent is widely used in the empirical auctions literature and is critical for

modeling entry, it is rarely tested. We propose a simple test of this assumption,

which involves comparing the estimated bidder exclusion effect to the observed

difference in average revenue between n − 1 and and n bidder auctions. If the

two quantities are significantly different, then n − 1 bidder auctions are not just

like n bidder auctions with one bidder randomly removed, and this is evidence

against exogeneity of bidder participation. Estimating the bidder exclusion effect

can therefore guide the decision of whether to rely on exogenous variation in the

number of bidders for identification and, similarly, guide the choice of the most

appropriate entry model. In contrast to other methods of discriminating between

entry models, this does not require exogenous variation in, or even observing, the

2This type of independence has a variety of names in the auctions literature: “exogenous participa-
tion” (Athey and Haile 2002, 2007), “valuations are independent of N” (Aradillas-López, Gandhi,
and Quint 2013a), or an absence of “selective entry” (Roberts and Sweeting 2013a).
3See, for example, Haile and Tamer (2003), Aradillas-López, Gandhi, and Quint (2013a), and Sec-
tions 5.3 and 5.4 of Athey and Haile (2007).
4Bajari and Hortacsu (2003); Bajari, Hong, and Ryan (2010); Athey, Levin, and Seira (2011); Kras-
nokutskaya and Seim (2011) and Athey, Coey, and Levin (2013) feature entry models without selec-
tion, derived from the theoretical work of Levin and Smith (1994). Roberts and Sweeting (2013b,a);
Bhattacharya, Roberts, and Sweeting (2013) and Gentry and Li (2013), present models of selective
entry.
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number of underlying potential bidders.5 Nor does it require fully estimating an

entry model or other complex structural auction model.6

The bidder exclusion effect also allows the analyst to gauge how important it

is to set reserve prices optimally. A typical empirical approach to answering this

question would rely on assumptions on the distribution of values and the informa-

tion environment to estimate a detailed model, determine optimal reserve prices

using the seller’s first-order condition, and finally measure the revenue difference

between the optimally designed auction and a no-reserve auction (e.g. Paarsch

(1997); Li, Perrigne, and Vuong (2003); Krasnokutskaya (2011)).

We circumvent these steps by relying on a result from the auction theory litera-

ture. Under the assumptions of Bulow and Klemperer (1996), sellers raise expected

revenue more by adding another bidder than by designing the auction optimally.

When revenue is concave in the number of bidders, dropping a bidder has a larger

effect on revenue than adding a bidder, and the bidder exclusion effect is an up-

per bound on the revenue gains from improving the auction mechanism, and, in

particular, on setting an optimal reserve price. Calculating the bidder exclusion

effect thus allows the researcher to determine whether reserve prices are likely to

be important without expending the effort or imposing the assumptions necessary

to compute a more detailed structural model. Additionally, because the bidder ex-

clusion effect is simple to compute, the magnitude of other estimated effects, such

as an experimental change in the auction process, can easily be compared to the

important benchmark of optimal mechanism design.

5The literature uses the term “potential bidders” to refer to bidders who could possibly choose to
enter a given auction, in contrast to “participating bidders”—those who actually do enter. Marmer,
Shneyerov, and Xu (2013) and Roberts and Sweeting (2013a) propose tests for selective entry based
on observing exogenous variation in the number of potential bidders.
6Li and Zheng (2009) estimate models with and without selective bidder entry, and select between
them on the basis of their predictive power. Aradillas-López, Gandhi, and Quint (2013b) provide
an alternative test of selective entry which is somewhat more complex than ours but which has the
advantage of not requiring observing multiple order statistics of bids.
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We illustrate the uses of the bidder exclusion effect in two different applications.

Our first application uses data from US timber auctions from 1982-1989. We esti-

mate that removing a single bidder at random would decrease revenue by approx-

imately 13% on average. Under conditions discussed below, this implies that the

increase in expected seller revenue from using an optimal reserve price is bounded

above by 13%. Timber auctions are a setting in which much of the previous litera-

ture has modeled entry as being non-selective.7 We find evidence of selective entry

unconditionally, but after controlling for bidder types (loggers vs. mills), the evi-

dence for selective entry appears weaker. This is suggestive that models relying

on exogenous variation in the number of bidders may be appropriate in timber

auction settings once the bidder type has been accounted for.

Our second application illustrates the use of the bidder exclusion effect in bound-

ing the impact of optimal auction design when minimal data is available. We study

wholesale used-car auctions in which the number of bidders varies auction by auc-

tion but is unobserved to the econometrician. We estimate an upper bound on the

bidder exclusion effect, averaged over the unobserved realizations of the number

of bidders. By applying the Bulow-Klemperer theorem, we obtain an upper bound

on the revenue increase from an optimal reserve price. In our setting, the upper

bound is approximately $200. We illustrate how this bound can also be calculated

conditional on observable covariates, and we use it as a benchmark for other re-

cently estimated effects at auto auctions (Tadelis and Zettelmeyer 2011; Lacetera,

Larsen, Pope, and Sydnor 2013; Hortaçsu, Matvos, Syverson, and Venkataraman

2013).

In the spirit of Haile and Tamer (2003) and Aradillas-López, Gandhi, and Quint

(2013a), our empirical approach does not seek to point identify and estimate the

distribution of bidder values. Instead we draw inferences from functions of the

value distribution which are point, or partially, identified. To our knowledge, we

are the first to point out that a statistic which is straightforward—and in some cases

trivial—to compute has implications for modeling entry in auctions or evaluating

7See, for example, Haile and Tamer (2003) and Aradillas-López, Gandhi, and Quint (2013a).
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the revenue impact of optimal mechanism design. More broadly, our approach ties

in closely to the recent literature on sufficient statistics for welfare analysis (Chetty

2009; Einav, Finkelstein, and Cullen 2010; Jaffe and Weyl 2013), which focuses on

obtaining robust welfare or optimality implications from simple empirical objects

without estimating detailed structural models.

2. MODEL AND EMPIRICAL STRATEGY

Our modeling setup is standard, following Athey and Haile (2002). We consider

single-unit ascending auctions with risk-neutral bidders throughout.8 We assume

the auctions analyzed took place without a reserve price.9 Let N be a random vari-

able denoting the number of auction participants and let n represent realizations

of N. Let Wi = (Vi, Si) denote bidder i’s value and private signal, and Bi his bid.

With private values, Vi = Si for all i. With common values, for all i and j, Vi and Sj

are strictly affiliated conditional on any χ ⊂ {Sk}k/∈j, but not perfectly correlated.

For the subset of auctions which have exactly n bidders enter, let Fn denote the

joint distribution of W ≡ ((Vi)i=1,...,n, (Si)i=1,...,n). By bidder symmetry, we refer to

the case where Fn is exchangeable with respect to bidder indices. Let V1:n, . . . , Vn:n

represent the bidders’ valuations ordered from smallest to largest. Similarly, let

B1:n, . . . , Bn:n represent their bids ordered from smallest to largest, with realiza-

tions of Bk:n denoted bk:n.

For k ≤ m ≤ n, let Bk:m,n represent the kth smallest bid in m bidder auctions,

where the m bidders are selected uniformly at random from the n bidders in auc-

tions which had exactly n bidders enter. Some remarks on this quantity are in

order. We stress that this is counterfactual if m < n: it is common knowledge

amongst the remaining m bidders that n− m of the original n bidders have been

dropped, and that they are competing in an m-bidder auction, not an n-bidder auc-

tion. The distribution of Bk:m,m and Bk:m,n for m < n may be different, as different

8Appendix C contains extensions to first price auctions.
9Section 5 discusses analysis of counterfactual settings in which reserve prices are used, and Ap-
pendix B contains extensions of the paper to cases where the auctions analyzed took place with a
binding reserve price.
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kinds of goods may attract different numbers of entrants, and bidders may value

goods sold in auctions with m entrants differently from those sold in auctions with

n entrants. Finally, Bk:m,m and Bk:m are the same random variable.

Our empirical strategy centers around three key quantities. The first is the bid-

der exclusion effect. We define the bidder exclusion effect in n bidder auctions with

no reserve price, ∆(n), as the expected fall in revenue produced by randomly ex-

cluding a bidder from those auctions. In ascending auctions, the bidder exclusion

effect is:

∆(n) ≡ E(Bn−1:n)− E(Bn−2:n−1,n),

that is, the expected second-highest bid in n bidder auctions, minus the expected

second-highest bid in n− 1 bidder auctions, where those n− 1 bidder auctions are

obtained by publicly dropping a bidder at random from n bidder auctions.

The second quantity, Γ(n), is the expected fall in revenue from dropping a bid at

random, assuming all other bids remain unchanged:

Γ(n) ≡ 2
n

E(Bn−1:n − Bn−2:n).

This expression comes from the fact that with probability 2
n one of the highest two

bids will be dropped, and revenue will drop to the third-highest bid of the original

sample, and with probability n−2
n , one of the lowest n − 2 bids will be dropped,

and revenue will not change.

The third quantity, Ψ(n), is the difference in expected revenue between those

auctions in which n bidders choose to enter, and those in which n − 1 choose to

enter:

Ψ(n) ≡ E(Bn−1:n)− E(Bn−2:n−1).

Unlike ∆(n), the quantities Γ(n) and Ψ(n) are not counterfactual and can al-

ways be estimated using data on the two highest bids and the number of auction

entrants. Section 3 gives conditions under which ∆(n) is equal to, or bounded
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above by, Γ(n). As Section 4 describes, if entry is selective, then ∆(n) 6= Ψ(n).

Combining this with the results of Section 3, we have testable implications of se-

lective entry in terms of the relation between Γ(n) and Ψ(n). Section 5 relates the

increase in revenue from an optimal reserve to ∆(n), and, by the results of Section

3, to Γ(n).

3. IDENTIFYING AND ESTIMATING THE BIDDER EXCLUSION EFFECT

3.1. The Naı̈ve Approach. A naı̈ve approach to estimating the bidder exclusion

effect is to compare revenue between n bidder and n − 1 bidder auctions. This

approach is appropriate under two strong assumptions, both of which are fre-

quently employed in the structural auctions literature: First, the number of bid-

ders varies exogenously, and, second, the number of bidders is correctly observed.

While these assumptions greatly aid in identification and testing in many struc-

tural settings, they may not hold in practice.

An appealing alternative is an instrument variables approach.10 However, even

with valid instruments for bidder participation, instrumental variables estimates

would only capture the effect on revenue for those auctions in which the instru-

ment causes more bidders to enter (Angrist and Imbens 1995). Our approach,

which we turn to next, does not require instruments or variation in the number of

bidders, and applies to all auctions, rather than a subset determined by the choice

of instrument.

3.2. The Basic Model: Point Identification. The following proposition demon-

strates how the bidder exclusion effect can be expressed using only data from n

bidder auctions. The proof, and the proofs of all subsequent results, are in Appen-

dix A.

10For example, Haile, Hong, and Shum (2003) use the numbers of nearby sawmills and logging
firms as instruments for the number of bidders at US timber auctions, in a test for common values.
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Proposition 1. In ascending auctions with private values and no reserve price where

bidders bid their values, for all n > 2 the bidder exclusion effect ∆(n) = Γ(n) ≡
2
n E(Bn−1:n − Bn−2:n).

This expression for ∆(n) follows from the observation that with probability 2
n

one of the highest two bidders will be dropped, and revenue will drop to the third-

highest bid of the original sample, and with probability n−2
n , one of the lowest

n− 2 bidders will be dropped, and revenue will not change. This result holds with

asymmetric and correlated private values.

Estimating the bidder exclusion effect in this setting is trivial, as long as the

total number of auction participants and the second and third-highest bids are

observed. One simply forms the sample analog of Γ(n).11 Incorporating auction-

level observables into estimation is also straightforward. For a vector of auction-

level covariates X, one estimates the sample analog of

Γ(n|X) ≡ 2
n

E(Bn−1:n − Bn−2:n|X), (1)

using any standard parametric or nonparametric approach for estimating condi-

tional means.

3.3. Extensions to the Basic Model. We now demonstrate that upper bounds on

the bidder exclusion effect are available with private values and low bidding, with

symmetric common values, and in settings where the number of entrants is un-

observed but it is known be greater than some lower bound. Upper bounds are

more important than lower bounds for our applications. Models of selective entry

often imply that bidders’ valuations are increasing with the total number of en-

trants (Aradillas-López, Gandhi, and Quint 2013a,b). An upper bound allows us

to detect sufficiently large increases in valuations with the number of entrants, in a

11Alternatively, if all bids are observed, one could estimate the bidder exclusion effect by removing
one bid at random from n bidder auctions and computing the average decrease in the second-
highest bid. This second alternative could not be used in ascending auctions, as the highest will-
ingness to pay is never observed. Moreover, this alternative would be subject to more sampling
error, as it effectively involves simulating an indicator variable which is 1 with probability 2

n (the
indicator for selecting one of the top two bids), rather than directly using the probability 2

n .
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sense which will be made precise. Similarly, to bound above the impact of optimal

mechanism design, an upper bound on the bidder exclusion effect is required. Ap-

pendices B and C describe further extensions, showing how the bidder exclusion

effect can be identified or bounded with binding reserve prices, and in first price

auctions.

3.3.1. Low Bidding. In the “button auction” model of ascending auctions with pri-

vate values (Milgrom and Weber (1982)), bidders drop out at their values. As high-

lighted in Haile and Tamer (2003), in practice bidders’ (highest) bids may not equal

their values. For example, in English auctions, multiple bidders may attempt to bid

at a certain price but only the first bid the auctioneer sees may be recorded. The

researcher may be willing to assume that the bidder with the second-highest valua-

tion bids his value, as there are only two bidders remaining at this stage. However

she may only be willing to assume that the remaining bids are lower than the bid-

ders’ values. The following assumption is equivalent to an argument in Athey and

Haile (2002) and similar to an assumption in Haile and Tamer (2003):12

Assumption 1. Bidders have private values. The second-highest bidder bids his value,

and lower bidders’ bids are less than or equal to their values.

Our next proposition shows that this assumption can be used to obtain an upper

bound on the bidder exclusion effect.

Proposition 2. If in ascending auctions with no reserve price, Assumption 1 holds, then

for all n > 2 the bidder exclusion effect ∆(n) ≤ Γ(n) ≡ 2
n E(Bn−1:n − Bn−2:n).

3.3.2. Symmetric Common Values. Under the assumptions of Proposition 1, the change

in auction revenue when one bidder is excluded can be computed by removing one

bidder’s bid, and calculating the fall in revenue assuming the other bids remain

unchanged. This is not true with common values, as removing a bidder changes

12Athey and Haile (2002) argue, “...for many ascending auctions, a plausible alternative hypothesis
is that bids Bn−2:n and below do not always reflect the full willingness to pay of losing bidders,
although Bn−1:n does (since only two bidders are active when that bid is placed).” Haile and Tamer
(2003) allow for Bn−1:n to also not represent the full willingness to pay of the first losing bidder.
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the remaining bidders’ equilibrium bidding strategies. It follows from Theorem

9 of Athey and Haile (2002) that with symmetric common values, in the button

auction model of ascending auctions, the equality of Proposition 1 can be replaced

by an inequality.13 Removing one bidder’s bid and assuming other bids remain

unchanged overstates the decline in revenue from excluding a random bidder, be-

cause it does not account for the increase in bids due to the reduced winner’s curse.

The following assumption and proposition summarize this result:

Assumption 2. Bidders have symmetric common values, and bidding follows a button

auction format.

Proposition 3. If in ascending auctions with no reserve price, Assumption 2 holds, then

for all n > 2 the bidder exclusion effect ∆(n) < Γ(n) ≡ 2
n E(Bn−1:n − Bn−2:n).

3.3.3. Unobserved Number of Bidders. In some settings the number of bidders may

not be known to the researcher. In ascending auctions, for example, not all poten-

tial bidders may place bids. A lower bound on the number of potential bidders

may be known, however, as in our used-car data application in Section 7. Let n

represent this lower bound, such that for all realizations n of the random variable

N, n > n. In this case the results of Propositions 2–3 extend to yield an upper

bound on the average bidder exclusion effect, E(∆(N)), where the expectation is

over the unobserved number of bidders N.

Corollary 1. In ascending auctions with no reserve price, if for all realizations n, 2 <

n ≤ n and either Assumption 1 or Assumption 2 holds, then E(∆(N)) ≤ 2
n E(BN−1:N −

BN−2:N).

Estimation in the case where n is unknown consists of computing the mean gap

between second and third order statistics and scaling this quantity by 2/n. The

expectation of this gap conditional on covariates can be estimated by standard

nonparametric or parametric techniques.

13Theorem 9 is used for a different purpose in Athey and Haile (2002). They show that, assuming
total bidder participation varies exogenously across auctions, private value models can be tested
against common value models.
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4. TESTING INDEPENDENCE OF VALUATIONS AND SIGNALS, AND N

If bidders’ valuations and signals do not vary systematically with the number

of auction participants, then n− 1 bidder auctions are just like n bidder auctions

with one bidder removed at random. This suggests a test of whether bidders’ val-

uations and signals are independent of the number of entrants. If the estimated

bidder exclusion effect is significantly different from the observed change in rev-

enue between n and n− 1 bidder auctions, this is evidence against independence

of valuations and signals, and the number of entrants. We develop this test in

more detail below. Throughout this section, we assume that the econometrician

observes the total number of bidders as well as the second and third-highest bids

from all auctions.

Let Fn
m denote the distribution of values and signals of a random subset of m

bidders, in auctions with n bidders, where the m ≤ n bidders are drawn uni-

formly at random from the n bidders. Following Aradillas-López, Gandhi, and

Quint (2013a), we say valuations and signals are independent of N if Fn
m = Fn′

m for any

m ≤ n, n′. With private values, we simply say valuations are independent of N, as

valuations and signals are equal.

When valuations and signals are independent of N, we have Fn
n−1 = Fn−1

n−1 , i.e.

the distribution of valuations and signals among n− 1 bidders randomly selected

from n bidder auctions is the same as the distribution of valuations and signals

in auctions in which the realized number of participants was indeed n− 1. Thus

if valuations and signals are independent of N, it follows that E(Bn−2:n−1,n) =

E(Bn−2:n−1,n−1) = E(Bn−2:n−1), and

∆(n) ≡ E(Bn−1:n)− E(Bn−2:n−1,n) (2)

= E(Bn−1:n)− E(Bn−2:n−1) (3)

≡ Ψ(n). (4)
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If valuations or signals are not independent of N, we refer to entry as being se-

lective. Selective entry may occur if bidders observe a signal of their value before

entering, so that the entry decision, and consequently the number of entrants, may

be correlated with bidder valuations (e.g. Roberts and Sweeting (2013a); Gentry

and Li (2013)).14 By contrast if bidders do not observe signals of their values be-

fore entering and play mixed entry strategies, then the variation in the number of

entrants is independent of valuations (e.g. Athey, Levin, and Seira (2011); Kras-

nokutskaya and Seim (2011)).

The previous section discusses estimating the bidder exclusion effect, ∆(n), when

it is point identified, and estimating an upper bound on ∆(n) when it is not. If the

econometrician observes auction revenue and the total number of auction partic-

ipants, then Ψ(n) can be estimated by the difference in average revenue between

n and n − 1 bidder auctions. Comparing estimates of ∆(n) and Ψ(n) is the idea

behind the test for selective entry.

4.1. Testing for selective entry with private values. In private value settings where

bidders bid their values, by Proposition 1, ∆(n) = Γ(n) for n > 2. If in addition

valuations are independent of N, then ∆(n) = Ψ(n), implying that Γ(n) = Ψ(n).

We define T(n) as

T(n) ≡ Ψ(n)− Γ(n)

=
(

E(Bn−1:n)− E(Bn−2:n−1)
)
− 2

n
E(Bn−1:n − Bn−2:n)

= E
(

n− 2
n

Bn−1:n +
2
n

Bn−2:n
)
− E(Bn−2:n−1). (5)

14Aradillas-López, Gandhi, and Quint (2013a) prove that in the entry model of Marmer, Shneyerov,
and Xu (2013) where potential bidders observe signals of their values when deciding whether to
enter, if the distribution of values and signals is symmetric and affiliated, and a symmetric equilib-
rium exists in cutoff strategies, then valuations are not independent of N (Theorem A3 of Aradillas-
López, Gandhi, and Quint 2013a).
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The first term in the final expression is the expected revenue in n bidder auctions

when one bidder is dropped at random, and the second term is the expected rev-

enue in n− 1 bidder auctions.15

To assess whether valuations are independent of N (i.e. whether entry is not

selective) we test the null hypothesis T(n) = 0 for n > 2. For any given n this can

be implemented as a simple t-test.16 Let An represent the set of auctions with n

entrants. We form the test statistic, T̂(n), for this null by replacing expectations by

sample averages:

T̂(n) =
1
|An| ∑

j∈An

(
n− 2

n
bn−1:n

j +
2
n

bn−2:n
j

)
− 1
|An−1| ∑

j∈An−1

(bn−2:n−1
j ). (6)

A simple regression-based form of this test is as follows. Let yj = n−2
n bn−1:n

j +

2
n bn−2:n

j if j ∈ An and yj = bn−2:n−1
j if j ∈ An−1. Regress yj on a constant and an

indicator 1(j ∈ An). The coefficient on the indicator is T̂(n).

If T̂(n) is significantly different from 0, the test indicates the presence of selective

entry. This test is consistent against all forms of selective entry which affect ex-

pected revenue, i.e. if Γ(n) 6= Ψ(n) then the test rejects with probability approach-

ing 1 as the number of auctions goes to infinity. Appendix D provides Monte Carlo

evidence on the power of this test relative to simply comparing mean values in

n− 1 and n bidder auctions, in a model of selective entry which nests that of Levin

and Smith (1994). The bidder exclusion test is a reasonably powerful alternative to

the mean comparison test, given that it uses considerably less data. Moreover, the

15Athey and Haile (2002) propose a test of private vs. common values in which they assume val-
uations and signals are independent of N and point out that, under this assumption, T(n) < 0 in
a common values setting and T(n) = 0 in a private values setting. We discuss generalizations to
common values settings in Section 4.2.
16Standard techniques, like a Wald test or a Bonferroni correction, can be used to test T(n) = 0 for
all n in some finite set. Note also that this test only uses information on the second and third-highest
bids. If more losing bids are available and interpretable as the willingness-to-pay of lower-value
bidders, this test could be made more powerful by including information from these losing bids.
Intuitively, one could compare the revenue drop which would occur if k out of n bidders were
dropped at random to the actual revenue difference between n and n− k bidder auctions.
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bidder exclusion test is implementable with ascending auction data whereas the

mean comparison test is not.17

4.2. Testing for selective entry with common values or low bidding. With sym-

metric common values or low bidding, Propositions 2 and 3 imply that ∆(n) ≤
Γ(n). If in addition valuations and signals are independent of N, then ∆(n) =

Ψ(n), implying that Ψ(n) ≤ Γ(n). We can test this null using the same statis-

tic as before, T̂(n). Unlike private value settings where bidders bid their val-

ues, this test only indicates the presence of selective entry if T̂(n) is significantly

greater than zero, and not if it is significantly less than zero. This test is consistent

against forms of selective entry in which bidders’ values are “sufficiently increas-

ing” with N: precisely, if E(Bn−2:n−1,n) − E(Bn−2:n−1) > 2
n E(Bn−1:n − Bn−2:n) −(

E(Bn−1:n)− E(Bn−2:n−1,n)
)
.18

4.3. Incorporating covariates. Testing is also possible if valuations and signals are

assumed independent of N conditional on a set of observable auction character-

istics X rather than unconditionally. Under this assumption the null hypothesis

in private values auctions where bidders bid their values is T(n|X) = 0, where

T(n|X) is defined as

T(n|X) = E
(

n− 2
n

Bn−1:n +
2
n

Bn−2:n
∣∣∣∣X)− E(Bn−2:n−1|X). (7)

With symmetric common values or low bidding, the null is T(n|X) < 0. This

test can be performed nonparametrically, without assuming any particular form

for the conditional means. Chetverikov (2011); Andrews and Shi (2013) and Cher-

nozhukov, Lee, and Rosen (2013) develop inference procedures which apply to this

setting.

17The bidder exclusion test uses the second and third-highest values in n bidder auctions and the
second-highest value in n− 1 bidder auctions, while the mean comparison test uses all n values in
n bidder auctions and all n− 1 values in n− 1 bidder auctions. The mean comparison test cannot
be implemented in ascending auctions because the highest valuation is never observed.
18This feature is shared by the test proposed in Aradillas-López, Gandhi, and Quint (2013b), which
the authors explain, “has power against a fairly wide class of ‘typical’ violations of [valuations
being independent of N].”
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A simple parametric version of this test is as follows. For a fixed n, specify the

bidding equation for bidders in auction j as

bj = αn + βXj + εnj, (8)

where Xj represents a vector of observable characteristics of auction j and εnj ⊥⊥ Xj.

Then

n− 2
n

bn−1:n
j +

2
n

bn−2:n
j = a1 + βXj + e1j, j ∈ An (9)

bn−2:n−1
j = a2 + βXj + e2j, j ∈ An−1 (10)

where a1 = αn +E(n−2
n εn−1:n

nj + 2
n εn−2:n

nj ), a2 = αn−1 +E(εn−2:n−1
(n−1)j ), E(e1j) = E(e2j) =

0 and e1j, e2j ⊥⊥ Xj.

After controlling for observables, a1 determines the expected second order statis-

tic (i.e. seller’s revenue) when a bidder is removed at random from n bidder auc-

tions and a2 determines the expected second order statistic in n− 1 bidder auctions

when the actual number of bidders is indeed n− 1. In a private values framework,

testing the null hypothesis of equation (7) amounts to testing the null of a1 = a2.

With common values or low bidding, the null is a1 < a2.

We combine (9) and (10) as follows:

yj = a2 + (a1 − a2)1(j ∈ An) + βXj + e3j, j ∈ An ∪ An−1, (11)

where if j ∈ An, then yj = n−2
n bn−1:n

j + 2
n bn−2:n

j and e3j = e1j, and if j ∈ An−1,

then yj = bn−2:n−1
j and e3j = e2j. This allows for a convenient regression-based test

of the null hypothesis that valuations (or valuations and signals, in the common

values case) are independent of N. When β = 0, this test nests the regression-based

test described in Section 4.1.
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4.4. Bidder asymmetries. The approach to testing for selective entry with private

values described above does not require bidder symmetry. If bidders are asymmet-

ric, the assumption of independence between valuations and N is less straightfor-

ward, and it less clear what it might mean if a test rejects the assumption. Intu-

itively, values may fail to be independent of N either because different bidders are

more likely to enter depending on N, or because the same bidders enter but the

value of the goods sold varies by N. We formalize and prove this statement in

Appendix E, following the setup of Coey, Larsen, and Sweeney (2014).

5. BOUNDING THE IMPACT OF OPTIMAL RESERVE PRICES

The celebrated theorem of Bulow and Klemperer (1996) relates bidder entry to

optimal mechanism design.19 Under their assumptions, with symmetric bidders

and independent signals, an English auction with no reserve price and n + 1 bid-

ders is more profitable in expectation than any mechanism with n bidders. When

bidders have affiliated signals, Bulow and Klemperer (1996) show that an auction

with n + 1 bidders and no reserve price still outperforms any “standard” mech-

anism with n bidders.20 On these grounds, they suggest that sellers may be bet-

ter off trying to induce more entry than trying to implement a better mechanism.

As they acknowledge, this interpretation may be problematic if the new bidders

are weaker than the bidders who would have entered anyway (for example, if in-

creased marketing efforts induce lower-value bidders to enter the auction).

19Following Bulow and Klemperer (1996) and most of the auction theory literature, we use “op-
timal” to mean optimal given a fixed set of participants. If entry is endogenous, then the mech-
anism’s design may affect the number of participants. Optimal reserve prices for fixed and for
endogenous entry may be different (McAfee and McMillan (1987); Levin and Smith (1994)).
20A “standard” mechanism in this context is one in which 1) losers pay nothing, 2) the bidder with
the highest signal wins (if anyone) and pays an amount which increases in his own signal given any
realization of other bidders’ signals. Bulow and Klemperer (1996) highlight a result of Lopomo’s
(1995), which shows that an optimal mechanism in this class is an English auction followed by a
final, take-it-or-leave-it offer to the high bidder (a reserve price). When bidders have correlated
values, Crémer and McLean (1988), McAfee, McMillan, and Reny (1989), and McAfee and Reny
(1992) have provided examples of non-standard mechanisms which extract all bidder surplus and
outperform an auction with a reserve price.
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We propose an alternative interpretation of their theorem, namely that it can be

used in empirical work to easily obtain upper bounds on the effect of improving

mechanism design, without having to fully estimate a detailed structural model.

Below we use the term “increasing marginal revenue” as it is defined in Bulow and

Klemperer (1996).21 We use the term “optimal reserve price” to refer to a take-it-or-

leave-it offer made to the final bidder—the last remaining bidder after the auction

ends—which maximizes the expected payment of that bidder.22 Throughout we

assume sellers are risk-neutral.

We make the following assumption before stating our main revenue-bounding

result:

Assumption 3. Expected revenue is concave in the number of bidders.
21Let (S1, . . . , Sn) denote the private signals of the n bidders in n bidder auctions. The n + 1th

bidder, were he to enter, has a private signal denoted Sn+1. We denote the marginal distribution
of Sj by Fn

j , and the corresponding density by f n
j . Define S ≡ (S1, . . . , Sn+1), and S = S−(n+1),

that is, the signals of bidders other than bidder n + 1. Let Fn
j (Sj|S−j) and f n

j (Sj|S−j) represent the
distribution and density of bidder j’s signal conditional on competitors’ signals. Let vj(S) represent
the value to bidder j given all signals, and define vj(S) ≡ ESn+1 vj(S). Define MRj(S) and MRj(S)
as

MRj(S) ≡
−1

f n
j (Sj|S−j)

d
dSj

(
vj(S)(1− Fn

j (Sj|S−j))
)

(12)

MRj(S) ≡
−1

f n
j (Sj|S−j)

d
dSj

(
vj(S)(1− Fn

j (Sj|S−j))
)

(13)

We say bidders have “increasing marginal revenue” (as a function of their private signals) if
Sj > Si ⇒ MRj(S) > MRi(S) and MRj(S) > MRi(S). Equivalently, bidders have decreasing
marginal revenue, when marginal revenue is considered to be a function of bidder “quantity” (i.e.
(1− Fn

j (Sj|S−j)) and (1− Fn
j (Sj|S−j))) rather than of their private signals. In the independent pri-

vate values case, this assumption simplifies to the function MRj(S) = MRj(S) = Sj −
1−Fn

j (Sj)

f n
j (Sj)

being increasing in Sj. For more on the interpretation of bidders’ marginal revenue, see Bulow and
Roberts (1989).
22As discussed in Bulow and Klemperer (1996), with correlated bidder signals, expected revenue
will generally be greater when the reserve is set optimally conditional on the observed bids rather
than being set before the auction takes place. Note that Bulow and Klemperer (1996) used the term
“optimal reserve price” to refer to a take-it-or-leave-it offer made to the final bidder which maxi-
mizes the seller’s expected profit (i.e. the expected payment of the bidder if the offer is accepted
and the seller’s value of retaining the good if the offer is not accepted), and the authors focus on
cases where the seller always values the good less than buyers. We focus instead on expected bid-
der payments in order to generalize to cases in which the seller’s value lies above the lower bound
of the support of buyer valuations and where the mechanism designer is not the seller but rather an
intermediary (an auction house or platform) who is paid based on payments raised from bidders.
See Section 7. Additionally, data on seller valuations is uncommon.
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Proposition 4. In ascending auctions with no reserve price, if i) either Assumption 1

or Assumption 2 holds, ii) Assumption 3 holds, and iii) bidders are symmetric and have

increasing marginal revenue, then for all n > 2 the increase in expected revenue from

using the optimal reserve price is less than Γ(n) ≡ 2
n E(Bn−1:n − Bn−2:n).

The idea behind the proof is as follows. By the Bulow-Klemperer theorem, the

increase in expected revenue from the optimal reserve price is less than the increase

in expected revenue from adding another bidder, which by revenue concavity, is in

turn less than the bidder exclusion effect. The result then follows from Proposition

2, if Assumption 1 holds, and from Proposition 3, if Assumption 2 holds. As-

sumption 3, revenue being concave in the number of bidders, is natural in many

contexts, although it will not hold in all environments.23 In Appendix F we demon-

strate that with independent private values (or conditionally independent private

values), symmetry and increasing marginal revenue (or conditionally increasing

marginal revenue) are sufficient to guarantee Assumption 3.24

Proposition 4 implies that an estimate of the bidder exclusion effect in n bidder

auctions provides an upper bound on the revenue increase from using an optimal

reserve price in these auctions. As pointed out by Bulow and Klemperer (1996),

even when signals are affiliated, an ascending auction with a optimal reserve yields

at least as much expected revenue as any standard mechanism (Lopomo (1995)).

Thus the increase in expected revenue from using any standard mechanism is also

less than Γ(n).25

23Dughmi, Roughgarden, and Sundararajan (2012) provided a counterexample where all bidders
have iid values, which are 1 with probability p and 0 otherwise. For sufficiently small p, the revenue
increase from one to two bidders is smaller than from two to three bidders. It can be proved
that, for any exchangeable value distribution Fn+1, a necessary and sufficient condition for the
revenue change from n− 1 to n bidders to be larger than from n to n + 1 bidders is 3(E(Vn:n+1)−
E(Vn−1:n+1)) > E(Vn+1:n+1)− E(Vn:n+1).
24We prove a special case of results already established by Dughmi, Roughgarden, and Sundarara-
jan (2012) (Theorem 3.2). The specialization to our current single item auction setting allows us to
use only elementary mathematics, in contrast to Dughmi, Roughgarden, and Sundararajan (2012)’s
proof which relies on matroid theory.
25In later work, Bulow and Klemperer (2002) highlighted that the assumption of marginal revenues
increasing in signals may be more stringent in common values settings than in private values set-
tings, and the authors provided examples of common values settings in which the original Bulow
and Klemperer (1996) result does not hold.
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The estimated bidder exclusion effect provides a bound on the impact of optimal

reserve prices for a fixed number of bidders, even if the data comes from auctions

with selective entry, as computation of the bidder exclusion effect (or its upper

bound) does not require exogenous variation in the number of bidders. When the

number of bidders is unknown, an upper bound on the average bidder exclusion

effect, as described in Section 3.3.3, provides an upper bound on the benefit to

improving auction design averaged over the (unobserved) realized values of N.

Section 7 illustrates this empirical application.

6. APPLICATION 1: TESTING FOR SELECTIVE ENTRY AT TIMBER AUCTIONS

Our first application uses US timber auction data to illustrate how the bidder

exclusion effect can be used to distinguish between models of entry and bound

the impact of optimal auction design. The Forest Service’s timber auction data has

been used extensively in the empirical auctions literature, and is a natural context

to demonstrate the applications of the bidder exclusion effect. For example, Haile

and Tamer (2003) and Aradillas-López, Gandhi, and Quint (2013a) use timber auc-

tion data and develop bounds methods relying on the assumption that valuations

are independent of N (i.e. that entry is not selective). Below we test the validity

of this assumption. Optimal reserve prices have also been a major focus of tim-

ber auction work.26 By estimating the bidder exclusion effect and relating it to

the work of Bulow and Klemperer (1996), we are able to side-step the need for

a complex structural model and still obtain a simple estimate of the revenue im-

provement which would arise from an optimal reserve price.

Our data comes from ascending auctions held in California between 1982 and

1989 in which there were at least three entrants. There are 1,086 such auctions. The

data contains all bids, as well as information at the auction level, such as appraisal

variables, measures of local industry activity, and other sale characteristics.

26For example, both Haile and Tamer (2003) and Aradillas-López, Gandhi, and Quint (2013a) study
optimal reserve prices.
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By Propositions 2 and 3, with private values and low bidding, or in button auc-

tions with symmetric common values, the bidder exclusion effect is smaller than
2
n E(Bn−1:n − Bn−2:n). We estimate the sample analog of this upper bound con-

ditional on the number of entrants in the auction but unconditional on auction

characteristics. Figure 1 shows the results, both as a percentage of revenue, and in

absolute terms.27 In our sample we estimate this upper bound on the bidder ex-

clusion effect to be 12% of auction revenue, averaging over all values of n, with a

standard error of 0.4%. Under the conditions of Proposition 4, the average increase

in revenue from setting an optimal reserve price is therefore less than around 13%.

We now turn to the test for selective entry. We begin with the simplest version

of the test, without controlling for covariates. Table 1 displays the results of this

test using the timber auction data. In this table, a1 represents the expected second

order statistic when a bidder is removed at random from n bidder auctions, a2

represents the expected second order statistic in n − 1 bidder auctions when the

actual number of bidders is indeed n− 1, and the test statistic is given by T̂(n) =

a1 − a2. For most n ∈ {3, ..., 8}, T̂(n) is insignificant, although at n = 3 and n = 5,

the test statistic is significant and positive, indicating that selective entry may be

a concern. Intuitively, a positive T(n) indicates that bidders’ values are higher in

n than n− 1 bidder auctions, as might be the case when attractive goods tend to

draw many entrants.

Table 2 shows the results of the selective entry test conditional on auction char-

acteristics. The objects a1, a2, and T(n) are as in Table 1, but after controlling for co-

variates (following the parametric procedure described in Section 4.3). We control

for appraisal variables (quintiles of the reserve price, selling value, manufacturing

costs, logging costs, road construction costs, and dummies for missing road costs

and missing appraisals), sale characteristics (species Herfindahl index, density of

27The larger confidence interval for the n = 7 auctions in the right panel of Figure 1 is driven by an
outlier (an outlier in terms of its realization of Bn−1:n − Bn−2:n but not as a percentage of revenue,
(Bn−1:n − Bn−2:n)/Bn−1:n, and thus in the left panel the effect is still precisely measured).
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timber, salvage sale or scale sale dummies, deciles of timber volume, and dum-

mies for forest, year, and primary species), and local industry activity (number of

logging companies in the county, sawmills in the county, small firms active in the

forest-district in the last year, and big firms active in the forest-district in the last

year).

There is stronger evidence for selective entry when controlling for auction char-

acteristics than in the unconditional case. Conditional on auction characteristics,

average revenue when a bidder is removed at random from n bidder auctions is

higher than average revenue is n − 1 bidder auctions when n ∈ {3, 4, 5, 7}, and

this difference is significant at the 95% level. Again, this supports positive selec-

tion: bidders’ valuations appear to be higher in auctions with more entrants. With

n ∈ {6, 8} the difference is negative and insignificant, consistent with a setting

where valuations are independent of N. The joint null hypothesis of no selective

entry across all n ∈ {3, . . . , 8} can be rejected at the 99.9% level.

Some bidders in timber auctions may be stronger than others. One common

distinction in the literature is between mills, who have the capacity to process the

timber, and loggers, who do not. Mills typically have higher valuations than log-

gers (e.g. Athey, Levin, and Seira 2011; Athey, Coey, and Levin 2013; Roberts and

Sweeting 2013a). The evidence of selective entry above may be driven by differ-

ences in logger and mill entry patterns. We next turn to the question of whether

evidence of selective entry exists, even after restricting attention to a more homo-

geneous subset of bidders–in this case, loggers.28

Table 3 presents these results. The sample size is significantly smaller when re-

stricting to auctions in which all entrants are loggers. At n = 4, the test still rejects

the null hypothesis that valuations are independent of N. However, the evidence

on the whole is much weaker in the loggers-only sample: at n ∈ {3, 5, 6} the dif-

ference is much smaller and insignificant, although the smaller sample size may

play a role. Taken together the results from Tables 2 and 3 suggest that selective

28There are too few auctions without logger entrants (only 21) to present the same analysis for
mills.
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entry may be a feature of timber auctions but might be reasonably controlled for

by accounting for bidder types.

7. APPLICATION 2: BOUNDING THE IMPACT OF OPTIMAL AUCTION DESIGN AT

AUTO AUCTIONS

Our second application uses wholesale used-car auction data to illustrate how

the bidder exclusion effect can be used to bound the revenue impact of optimal

auction design. Recent studies report causal effects of various interventions at

used-car auctions, and our approach allows us to judge the economic relevance of

these effects by benchmarking them against the effect of optimal auction design, a

question to which much of the auction literature—both theoretical and empirical—

is dedicated. This setting also provides an illustration of bounding the bidder ex-

clusion effect under minimal assumptions and minimal data requirements. Specif-

ically, records from used-car auctions do not contain the number of bidders and

this number can vary from auction to auction, posing challenges for many struc-

tural auctions techniques, but not for our approach.

Our dataset contains the second and third-highest bids from 6,003 sales of used

cars. The data also records car characteristics. Summary statistics for these auction

sales are shown in Table 4. These cars are mostly late-model (two years old on

average), low-mileage cars (33,369 miles on average). The market thickness mea-

sure comes from a larger, nationwide sample of auto auction sales from which our

final sample is taken, and represents the total number of sales for a given make-

by-model-by-age combination.29 Table 4 shows that, on average, a given make-by-

model-by-age combination sold over 1,000 times in the nationwide sample.

29This larger, nationwide sample contains 901,338 auction sales from 27 auction houses nationwide
between 2007 and 2010. For each auction in this larger sample, we observe a complete bid log of
all bids submitted. However, bid logs at wholesale auto auctions do not contain identities of floor
bidders (those who are physically present at the auction); the log simply records the identity as
“Floor” for any floor bidder. Therefore, we are only able to identify the third order statistic of bids in
cases where at least two of the last three bidders to place bids were online bidders (whose identities
are always recorded). This leaves a sample of 8,005 auction sales. We drop recreational vehicles
(including boats, motorhomes, motorcycles) or observations lying outside the first or ninety-ninth
percentiles of mileage, age, or the number of online bidders. This leaves 6,003 records.
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Multiple auctions take place in different lanes within the auction house simul-

taneously, and it is impossible to determine the number of participating bidders

(who may be physically present at the auction house or watching online) for any

given sale. The data does record the number of online bidders who have logged

in to the online console for a given lane at some point during the sale day, which

is 35 bidders on average. However, many of these online bidders may not actually

be participating bidders for a given sale. Based on personal observations at these

auction houses, we choose n = 5 in the following exercises as a lower bound on

the number of bidders present.

Table 4 also displays summary statistics for the second order statistic (the highest

observed bid), third order statistic (one bid increment beyond where the third-final

bidder dropped out), and the gap between the two. Following Section 3.3.3, when

the number of bidders is unobserved, an upper bound on the bidder exclusion ef-

fect, averaged over the unobserved values of n, is given by the mean of the gap

between second and third order statistics scaled by 2/n. This implies an uncondi-

tional estimate of the bidder exclusion effect upper bound of (2/5)× 425 = $170.

This provides an upper bound on the average revenue increase from implementing

an optimal reserve price.

Next, following Section 3.3.3, we estimate the upper bound on the average bid-

der exclusion effect conditional on covariates X, approximating the conditional

expectation using a kernel regression.30 Figure 2 displays the estimates with X be-

ing the vehicle’s mileage, the vehicle’s age, the number of online bidders, or the

market thickness measure. Panels A and B suggest that auctions of cars which are

lower in mileage or younger in age exhibit a lower bidder exclusion effect. That

is, excluding a random bidder from the auction does less damage to revenue in

these auctions than in auctions for older, higher mileage cars. This is consistent

with sales of newer, lower mileage cars being cases where demand is high and

many bidders participate, and hence optimal auction design is less important and

a no-reserve auction is likely to perform well. Similarly, Panels C and D suggest

30We use an Epanechnikov kernel and rule-of-thumb bandwidth.
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that in cases where more bidders have logged in online or where the car is of a fre-

quently sold make-by-model-by-age combination, the bidder exclusion effect and

the impact of an optimal reserve price are small.

The bidder exclusion effect also leads to bounds on the revenue from bidders

which could be expected in any auction, ranging from an efficient, no-reserve auc-

tion to an auction with an optimal reserve price, as a function of sale characteris-

tics. For each observation j, let lower and upper bounds on revenue conditional

on observables Xj be denoted π j(Xj) and π j(Xj), given by

π j(Xj) = b
nj−1:nj
j (Xj) (14)

π j(Xj) = b
nj−1:nj
j (Xj) +

2
n

(
b

nj−1:nj
j (Xj)− b

nj−2:nj
j (Xj)

)
(15)

The lower bound is the observed second order statistic (the no-reserve revenue)

and the upper bound is the observed second order statistic plus the scaled gap be-

tween second and third order statistics (the expectation of this upper bound is an

upper bound on the optimal reserve revenue, under the conditions of Proposition

4). The shaded region in Figure 3 shows the area between the upper pointwise

95% confidence band for Ê(π j|Xj) and the lower pointwise 95% confidence band

for Ê(π j|Xj), where each conditional expectation is estimated using a kernel re-

gression as above.

Panels A and B of Figure 3 demonstrate that the expected revenue is tightly

bounded, regardless of the seller’s choice of reserve price, for newer, high-mileage

cars. Similarly, Panels C and D show that the fraction of expected revenue which

could be manipulated through the use of reserve prices is much smaller for auc-

tions of more popular cars or auctions in lanes where more online bidders have

logged in.

These estimates provide a benchmark for evaluating the relative economic sig-

nificance of other effects measured in this industry. For example, Tadelis and

Zettelmeyer (2011), through a field experiment at a wholesale auto auction, found
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that revealing information about the quality of the car through standardized con-

dition reports led to a difference in revenue of $643.31 Similarly, Lacetera, Larsen,

Pope, and Sydnor (2013) studied auctioneers at wholesale auto auctions and found

that a one-standard-deviation improvement in auctioneer performance raised rev-

enue by $348.32 Hortaçsu, Matvos, Syverson, and Venkataraman (2013) used whole-

sale auto auction data to study the impact of auto firms’ financial distress on prices,

and found that a 1,000 point increase in credit default swap spreads decreased

wholesale auction prices by approximately $68.33 The cars studied in these papers

have average mileage and age values which correspond to a bidder exclusion ef-

fect of approximately $200 in Figure 3.34 Therefore, a comparison to the bidder

exclusion effect suggests that information-disclosing reports or high-performing

auctioneers do more to increase revenues than would the use of an optimal re-

serve price. Similarly, swings in auction prices resulting from changes in firms’

perceived financial stability are at least one-third of the size of price changes which

the adoption of optimal reserve prices could generate.

8. CONCLUSION

We developed a simple procedure for estimating the causal effect of removing a

random bidder on auction revenue—the bidder exclusion effect—without requir-

ing instruments, a detailed structural model, or exogenous variation in the number

31Tables 2 and 3 of Tadelis and Zettelmeyer (2011) show that the probability of sale and expected
price conditional on sale for the treatment group, for which condition reports were posted, were
0.455 and $8,738.90, respectively, vs. 0.392 and $8,502.20 in the control group.
32Table 2, row 8 of Lacetera, Larsen, Pope, and Sydnor (2013) shows that one standard deviation
of the probability of sale among auctioneers is 0.023. Table 1 shows that the average price on cars
conditional on sale is $15,141. The product of these two numbers represents the increase in revenue
which would be expected by employing an auctioneer who performs at one standard deviation
above the mean, all else equal.
33This number represents the price conditional on sale, but Hortaçsu, Matvos, Syverson, and
Venkataraman (2013) focus primarily on cars which sell with very high probability (fleet/lease
cars). Therefore, the effect on the price conditional on sale is a good approximation for overall
effect of financial distress on revenue from bidders.
34The average odometer reading and age are 75,959 miles and five years old in Table 16 of Tadelis
and Zettelmeyer (2011); 56,237 miles and 4.4. years in Table 1 of Lacetera, Larsen, Pope, and Sydnor
(2013); and 44,270 miles in Table 4 of Hortaçsu, Matvos, Syverson, and Venkataraman (2013) (which
does not report age).
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of bidders. Our approach is robust to a wide range of auction settings. The bid-

der exclusion effect is useful in testing the independence of bidders’ valuations

and the number of bidders participating, allowing the researcher to distinguish

between models of entry. Furthermore, we introduced a new empirical use for

the theoretical results of Bulow and Klemperer (1996), demonstrating that the bid-

der exclusion effect can be used to bound the revenue improvements achievable

through optimal auction design.

Given that our approach makes only weak assumptions on the auction setting,

it does not yield identification of some objects of interest. For example, while our

approach yields bounds on the revenue gain which an optimal reserve price could

achieve, stronger assumptions on the structure of bidders’ valuations or the un-

derlying entry model would be required in order to obtain a recommendation of

the actual reserve price which should be implemented.

We believe that given the robustness and computational simplicity of the bid-

der exclusion effect it will prove a useful tool for empirical work in other settings

as well. Under certain assumptions, for example, the bidder exclusion effect pro-

vides a bound on the revenue loss a seller would face if bidders were to merge or

collude. Appendix G provides a brief discussion of this setting. The bidder ex-

clusion effect also provides a simple specification check of whether bidders have

independent private values. Briefly, under the assumption of IPV, one can invert

the second-order statistic distribution to obtain an estimate of the underlying dis-

tribution of buyer valuations (Athey and Haile 2007) and simulate the revenue

increase under an optimal reserve price. If the simulated revenue increase exceeds

the bidder exclusion effect, the validity of either the assumption of independence

or the assumption of private values—or both—is in question.
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FIGURE 1. Bounding the Bidder Exclusion Effect
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Notes: Graphs show point estimates and 95% pointwise confidence intervals for
2
n E(Bn−1:n − Bn−2:n), for various values of n, the total number of entrants in the auction.
Estimates in the left graph are expressed as a percentage of auction revenue. Estimates in
the right graph are expressed in dollars per thousand board feet.
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FIGURE 2. Upper Bounds on the Bidder Exclusion Effect
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Notes: Vertical axis in each panel represents upper bounds on the bidder exclusion effect in
dollars. Solid line represents bidder exclusion effect conditional on mileage (A), age (B), number
of online bidders (C), and market thickness (D). Estimates come from kernel regression with
Epanechnikov kernel and rule-of-thumb bandwidth. Dashed lines represent pointwise 95%
confidence bands.
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FIGURE 3. Upper and Lower Bounds on Expected Revenue
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about the conditional expectation of the sum of the second order statistic and the scaled gap
between second and third order statistics (scaled by 2/n). Estimates are conditional on mileage
(A), age (B), number of online bidders (C), and market thickness (D), and come from kernel
regression with Epanechnikov kernel and rule-of-thumb bandwidth.



36 COEY, LARSEN, AND SWEENEY

TABLE 1. Unconditional Tests for Selective Entry, All Auctions

Entrants 3 4 5 6 7 8
a1 78.15∗∗∗ 92.34∗∗∗ 119.75∗∗∗ 125.64∗∗∗ 123.16∗∗∗ 147.24∗∗∗

(6.36) (4.62) (4.81) (11.14) (6.69) (9.65)

a2 49.60∗∗∗ 78.37∗∗∗ 89.09∗∗∗ 119.66∗∗∗ 125.02∗∗∗ 130.46∗∗∗
(2.62) (6.43) (3.50) (4.85) (11.15) (12.04)

T(n) = a1 − a2 28.55∗∗∗ 13.97 30.66∗∗∗ 5.98 -1.86 16.78
(6.87) (7.92) (5.95) (12.15) (13.00) (15.43)

Sample Size 497 496 456 350 243 164
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Table presents results of test for selective entry unconditional on covariates, for
various levels of the number of entrants.

TABLE 2. Conditional Tests for Selective Entry, All Auctions

Entrants 3 4 5 6 7 8
a1 -44.52 -120.64 3.34 -95.81∗∗ -111.39 -172.47

(59.38) (74.72) (24.72) (32.93) (71.81) (159.06)

a2 -64.84 -137.66 -10.47 -89.90∗∗ -124.05 -167.05
(59.39) (75.24) (25.01) (31.83) (72.75) (145.70)

T(n) = a1 − a2 20.32∗∗∗ 17.02∗∗∗ 13.81∗∗∗ -5.91 12.66∗ -5.42
(5.33) (4.21) (3.63) (4.75) (5.78) (17.94)

Sample Size 497 496 456 350 243 164
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Table presents results of test for selective entry conditional on covariates described
in Section 4.3, for various levels of the number of entrants.
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TABLE 3. Testing for Selective Entry, Auctions with Only Loggers

Entrants 3 4 5 6
a1 -158.28 -183.18 26.03 -285.34∗∗

(108.96) (115.53) (42.50) (115.06)

a2 -172.28 -222.73 8.53 -266.30
(105.59) (128.23) (43.13) (111.34)

T(n) = a1 − a2 14.00 39.54∗ 17.51 -19.04
(16.65) (19.29) (9.92) (25.66)

Sample Size 149 138 109 76
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Table presents results of test for selective entry conditional on covariates described
in Section 4.3, for various levels of the number of entrants, and only for auctions in which
all entrants are loggers.

TABLE 4. Wholesale auto auction data descriptive statistics

Mean s.d. Min. Max.

Mileage 33,369 29,601 13 163,036

Age 1.95 2.18 0 10

# Online bidders 34.71 16.71 4 76

Market thickness 1,196.01 1,648.60 2 8,465

bn−1:n 15,429 7,733 300 55,100

bn−2:n 15,004 7,648 225 53,400

bn−1:n − bn−2:n 425 494 50 6650

Sample size 6,003
Notes: Age is in years. # Online bidders is the number of bidders who had logged into the lane the
car was sold in. Market thickness is the number of cars of the same make-by-model-by-age
combination as a given car. bn−1:n is the final auction price (second order statistic), bn−2:n is the
highest bid of the third-final bidder (third order statistic).
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APPENDIX A. PROOFS

A.1. Proof of Proposition 1. Let (V1, . . . , Vn) be a random vector of values dis-

tributed according to Fn. Let (Ṽ1, . . . , Ṽn−1) be a random vector obtained by drop-

ping a value uniformly at random from (V1, . . . , Vn). With probability n−2
n , Ṽn−2:n−1 =

Vn−1:n and revenue is unchanged, and with probability 2
n , Ṽn−2:n−1 = Vn−2:n and

revenue falls by Vn−1:n − Vn−2:n. The expected fall in revenue from dropping a

bidder at random is therefore 2
n E(Vn−1:n −Vn−2:n) = 2

n E(Bn−1:n − Bn−2:n).

A.2. Proof of Proposition 2.

∆(n) = E(Bn−1:n)− E(Bn−2:n−1,n)

= E(Vn−1:n)− E(Vn−2:n−1,n)

=
2
n

E(Vn−1:n −Vn−2:n)

≤ 2
n

E(Bn−1:n − Bn−2:n).

The first equality is true by definition of ∆(n). The second follows by Assumption

1. The third follows because with probability 2
n dropping a value from (V1, . . . , Vn)

uniformly at random will cause the second-highest value to drop from Vn−1:n

to Vn−2:n, and otherwise the second-highest value will be unchanged. The final

equality holds by Assumption 1.

A.3. Proof of Proposition 3. Athey and Haile (2002), Theorem 9 proves that for

button auction ascending auctions with symmetric common values, regardless of

the equilibrium played, E(Bn−2:n−1,n) > 2
n E(Bn−2:n) + n−2

n E(Bn−1:n). This implies

E(Bn−1:n)− E(Bn−2:n−1,n) < 2
n E(Bn−1:n − Bn−2:n), as required.

A.4. Proof of Corollary 1.

E(∆(N)) ≤ E
(

2
N
(BN−1:N − BN−2:N)

)
≤ 2

n
E(BN−1:N − BN−2:N),
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where the first inequality follows by Proposition 2 if Assumption 1 holds and from

Proposition 3 if Assumption 2 holds, and the second by n ≥ n for all realizations n

of the random variable N.

A.5. Proof of Proposition 4. Theorem 1 of Bulow and Klemperer (1996) implies

that the increase in expected revenue from using an optimal reserve price is less

than the increase in expected revenue from adding another bidder, which by As-

sumption 3, is less than the bidder exclusion effect. The result follows from Propo-

sition 2 if Assumption 1 holds and from Proposition 3 if Assumption 2 holds.

APPENDIX B. BINDING RESERVE PRICES

We consider ascending auctions with private values where bidders bid their val-

ues, and where there is a reserve price below which bids are not observed. We

modify our notation accordingly: ∆(n, r) denotes the fall in expected revenue pro-

duced by randomly excluding a bidder from n bidder auctions, when the reserve

price is r.

Proposition 5. In ascending auctions with private values and a reserve price of r where

bidders bid their value, for all n > 2 the bidder exclusion effect ∆(n, r) = 2
n E(Bn−1:n −

max(Bn−2:n, r)|r ≤ Bn−1:n)Pr(r ≤ Bn−1:n) + 1
n r Pr(Bn−1:n < r ≤ Bn:n).

Proof. If r ≤ Bn−1:n, then with probability 2
n dropping a bidder at random will

cause revenue to fall from Bn−1:n to max(Bn−2:n, r), so that in expectation revenue

falls by 2
n E(Bn−1:n −max(Bn−2:n, r)|r ≤ Bn−1:n). If Bn−1:n < r ≤ Bn:n, then with

probability 1
n dropping a bidder at random will cause revenue to fall from r to 0.

If Bn:n < r, then dropping a bidder at random will not change revenue. These

observations imply the result. �

This expression for ∆(n, r) can be estimated given observed data, as it does not

depend on knowing the value of bids lower than the reserve price.
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B.1. Applications of the Bidder Exclusion Effect with Binding Reserve Prices.

When the reserve price equals r in both n and n− 1 bidder auctions, the expected

revenue difference between those auctions is

E(max(Bn−1:n, r)|r ≤ Bn:n)Pr(r ≤ Bn:n)

− E(max(Bn−2:n−1, r)|r ≤ Bn−1:n−1)Pr(r ≤ Bn−1:n−1). (16)

If valuations are independent of N, then Fn
n−1 = Fn−1

n−1 = Fn−1 and hence expres-

sion (16) equals the expression for ∆(n, r) of Proposition 5. As in Section 4.1, we

can test this hypothesis with a t-test, where the test statistic is formed by replac-

ing expectations by sample averages. This test is consistent against forms of se-

lective entry which affect expected revenue, i.e. such that E(max(Bn−2:n−1,n, r)|r ≤
Bn−1:n−1,n)Pr(r ≤ Bn−1:n−1,n) 6= E(max(Bn−2:n−1, r)|r ≤ Bn−1:n−1)Pr(r ≤ Bn−1:n−1).

This test can be adapted to incorporate covariates. The null hypothesis is:

E
(
1(r ≤ Bn−1:n)

(
n− 2

n
Bn−1:n +

2
n

max{Bn−2:n, r}
)
+ 1(Bn−1:n < r ≤ Bn:n)

n− 1
n

r
∣∣∣∣X)

= E(1(r ≤ Bn−1:n−1)max{Bn−2:n−1, r}|X). (17)

This states that, conditional on covariates, revenue in n bidder auctions when

one bidder is dropped at random equals revenue in n − 1 bidder auctions. The

regression-based test of Section 6 can be modified to test this restriction.

For the application to optimal mechanism design, we require an upper bound

on ∆(n, 0). Using the fact that bids are non-negative, we have

∆(n, 0) =
2
n

E(Bn−1:n − Bn−2:n|r ≤ Bn−2:n)Pr(r ≤ Bn−2:n)

+
2
n

E(Bn−1:n − Bn−2:n|Bn−2:n < r ≤ Bn−1:n)Pr(Bn−2:n < r ≤ Bn−1:n)

+
2
n

E(Bn−1:n − Bn−2:n|Bn−1:n < r)Pr(Bn−1:n < r) (18)

≤ 2
n

E(Bn−1:n − Bn−2:n|r ≤ Bn−2:n)Pr(r ≤ Bn−2:n)

+
2
n

E(Bn−1:n|Bn−2:n < r ≤ Bn−1:n)Pr(Bn−2:n < r ≤ Bn−1:n)
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+
2
n

r Pr(Bn−1:n < r) (19)

The terms in (19) do not depend on knowing the value of bids lower than the

reserve price, and can be estimated given observed data.

APPENDIX C. FIRST PRICE AUCTIONS

We now give upper and lower bounds on the bidder exclusion effect in first

price auctions with symmetric IPV, and symmetric conditionally independent pri-

vate values (CIPV). Let b(Vi, Fn) denote bidder i’s equilibrium bid, as a function

of his value, Vi, and the distribution of bidders’ valuations, Fn. We assume Vi is

continuously distributed on some interval [0, u]. In this section we use subscripts

to make explicit the distribution with respect to which expectations are taken, e.g.

expected revenue with no reserve price is EFn(b(Vn:n, Fn)) in n bidder auctions and

is EFn
n−1

(b(Vn−1:n−1, Fn
n−1)) when one of the n bidders is randomly excluded. The

bidder exclusion effect is ∆(n) ≡ EFn(b(Vn:n, Fn))− EFn
n−1

(b(Vn−1:n−1, Fn
n−1)).

Proposition 6. In first price auctions without a reserve price if i) bidders have symmet-

ric independent private values, or ii) there is a random variable U common knowledge

to bidders such that bidders have symmetric independent private values conditional on

U, then EFn(b(Vn:n, Fn)) − EFn
n−1

(b(Vn−1:n−1, Fn)) < ∆(n) < EFn(b(Vn:n, Fn)) −
EFn

n−1
(b(Vn−2:n−1, Fn)).

Proof. We first consider the case of symmetric independent private values. For the

lower bound, note that in symmetric independent private values settings, equi-

librium bids are strictly increasing in n: b(vi, Fn) > b(vi, Fn
n−1) (see, for example,

Krishna (2009)). This implies EFn
n−1

b(Vn−1:n−1, Fn) > EFn
n−1

b(Vn−1:n−1, Fn
n−1), and

therefore EFn(b(Vn:n, Fn))− EFn
n−1

b(Vn−1:n−1, Fn) < ∆(n).

For the upper bound, we have

EFn
n−1

(b(Vn−2:n−1, Fn)) < EFn
n−1

(Vn−2:n−1) (20)

= EFn
n−1

(b(Vn−1:n−1, Fn
n−1)). (21)
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The inequality holds because equilibrium bids are strictly less than values. The

equality holds by revenue equivalence of first and second price auctions with

symmetric independent private values. It follows that ∆(n) < EFn(b(Vn:n, Fn))−
EFn

n−1
(b(Vn−2:n−1, Fn)).

If values are symmetric and CIPV, then because U is common knowledge to

bidders these lower and upper bounds hold conditional on every realization of

U, and therefore hold unconditionally, taking expectations with respect to U. The

bounds thus extend to the conditionally independent private values case. �

The lower bound above is the expected fall in revenue in n bidder auctions when

one bid is removed at random, assuming the good will be sold at a price equal to

the highest of the remaining bids. The upper bound is the expected fall in revenue

in n bidder auctions when one bid is removed at random, assuming the good will

be sold at a price equal to the second highest of the remaining bids. The following

corollary characterizes these bounds more explicitly in terms of the bids from n

bidder auctions.

Corollary 2. In first price auctions without a reserve price if i) bidders have symmetric

independent private values, or ii) there is a random variable U common knowledge to

bidders such that bidders have symmetric independent private values conditional on U,

then

1
n

(
EFn(b(Vn:n, Fn))− EFn(b(Vn−1:n, Fn))

)
< ∆(n) (22)

and

∆(n) <
n− 2

n

(
EFn(b(Vn:n, Fn))− EFn(b(Vn−1:n, Fn))

)
+

2
n

(
EFn(b(Vn:n, Fn))− EFn(b(Vn−2:n, Fn))

)
. (23)

Proof. For the lower bound, note that with probability n−1
n dropping a bid at ran-

dom will not change the highest bid, and with probability 1
n the highest bid will
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drop from b(Vn:n, Fn) to b(Vn−1:n, Fn). For the upper bound, note that with proba-

bility n−2
n the difference between the highest bid in the original sample and the

second-highest bid after one bid has been dropped at random is b(Vn:n, Fn) −
b(Vn−1:n, Fn), and with probability 2

n it is b(Vn:n, Fn)− b(Vn−2:n, Fn). �

Several remarks on these bounds are in order. The lower bound holds under

symmetric correlated private values too, as long as equilibrium bids are strictly

increasing in n.35 The upper bound holds if bidders are risk-averse, as first price

auctions raise more revenue than ascending auctions, with symmetric risk-averse

bidders in IPV environments (Riley and Samuelson 1981). In the CIPV case, if

U is not common knowledge amongst bidders, then bidders’ private information

is correlated conditional on what they know at the time of bidding. This affects

equilibrium bidding behavior and the argument of Proposition 6 does not hold.

Finally, the upper bound of Proposition 6 can be replaced by EFn(b(Vn:n, Fn)) −
EFn′

n−1
(b(Vn−2:n−1, Fn′)) for any n′ > n − 1, as bids are below values in n′ bidder

auctions too. Consequently, ∆(n) ≤ EFn(b(Vn:n, Fn))− supn′ EFn′
n−1

(b(Vn−2:n−1, Fn′)).

C.1. Applications of the Bidder Exclusion Effect in First Price Auctions. As with

ascending auctions, the bidder exclusion effect can be used to test for selective en-

try in first price auctions. Under the null hypothesis that entry is not selective,

for all n ≥ 2, Fn
n−1 = Fn−1

n−1 = Fn−1. This implies that the bidder exclusion ef-

fect ∆(n) ≡ EFn(b(Vn:n, Fn))− EFn
n−1

(b(Vn−1:n−1, Fn
n−1)) equals EFn(b(Vn:n, Fn))−

EFn−1(b(Vn−1:n−1, Fn−1)). If the sample analog of EFn(b(Vn:n, Fn))−EFn−1(b(Vn−1:n−1, Fn−1))—

which is simply average revenue in n bidder auctions minus average revenue

in n − 1 bidder auctions—lies outside the sample analogs of the lower or upper

bounds of Corollary 2, this is evidence against the null hypothesis. This test is

consistent against violations of the null when values are “sufficiently” decreas-

ing or increasing with n. Precisely, this is the case if EFn−1(b(Vn−1:n−1, Fn−1)) >

EFn
n−1

(b(Vn−1:n−1, Fn)) or EFn−1(b(Vn−1:n−1, Fn−1)) < EFn
n−1

(b(Vn−2:n−1, Fn)). Again,

35Pinkse and Tan (2005) give conditions for this to hold.
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the regression-based test of Section 6 can be modified to test that the null hypoth-

esis holds conditional on observable covariates, rather than unconditionally.

The application to optimal mechanism design also works for first price auctions.

The Bulow-Klemperer theorem is stated for ascending auctions, but by revenue

equivalence also applies to first price auctions when bidders have symmetric IPV

(or symmetric CIPV). Thus Proposition 4 extends to first price auctions, where the

upper bound on the effect on expected revenue of improving mechanism design is

given by Corollary 2.

APPENDIX D. MONTE CARLO POWER SIMULATIONS

For some evidence on how powerful our test of selective entry is, we compare

it to another test, which simply compares bidders’ mean values in n and n + 1

bidder auctions. This latter test requires the econometrician to observe all bidders’

values. Relative to our test based on the bidder exclusion effect, it requires more

data, and does not allow for low bidding. Furthermore, this mean comparison test

is not actually feasible in ascending auctions in practice given that the highest bid

is never observed.

In our simulation, there are 10 potential bidders, who have iid lognormal private

values drawn from ln N(θ, 1), where θ is itself a random variable. All potential bid-

ders see a common signal δ = θ + ε, and Bayes update on the value of θ given their

observation of δ. The random variables (δ, θ, ε) are jointly normally distributed:
δ

θ

ε

 ∼ N




0

0

0

 ,


1 + σ2

ε , 1, σ2
ε

1, 1, 0

σ2
ε , 0, σ2

ε


 . (24)

As σε increases, the ratio of noise to signal increases, and the variable δ becomes

less informative about the variable θ. To learn their value and bid in the ascending

auction, potential bidders must pay an entry cost of 0.5. They play mixed entry

strategies, entering with a probability p that depends on δ. In the limit as σε → ∞,

the signal δ is uninformative about θ and the entry probability p no longer varies
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with δ. This limiting case corresponds to the entry model of Levin and Smith

(1994).

For each σε ∈ {1, 1.25, 1.5, . . . , 7}, and for n ∈ {3, 4}, we generate 1,000 datasets

with auctions in which n or n + 1 bidders choose to enter. Each dataset contains

500 n bidder auctions and 500 n + 1 bidder auctions. We calculate the probability

of rejecting the null hypothesis of no selective entry at the 5% level over the 1,000

datasets, for each value of σε and n, and for both bidder exclusion test, and the

comparison of means test. Figure 4 shows the rejection probabilities as a function

of σε. The comparison of means uses more data (in the case of Panel (A), all three

bids from n = 3 auctions and all four bids from n = 4 auctions; and, in the case of

Panel (B), all four bids from n = 4 auctions and all five bids from n = 5 auctions),

and is more powerful. The simulation results suggest that when not all bidders’

values are observed and the comparison of means test is infeasible (as in ascend-

ing auctions), the bidder exclusion based test is a reasonably powerful alternative,

especially when entry is more selective (corresponding in this model to low values

of σε.)

APPENDIX E. ASYMMETRIC BIDDERS

We give sufficient conditions for valuations to be independent of N with asym-

metric bidders and private values, following the setup of Coey, Larsen, and Sweeney

(2014). Let N be the full set of potential bidders. Let P be a random vector rep-

resenting the identities of bidders participating in an auction, with realizations

P ⊂ N. Let N be a random variable representing the number of bidders par-

ticipating in an auction, with realizations n ∈ N. When necessary to clarify the

number of bidders in a set of participating bidders, we let Pn denote an arbitrary

set of n participating bidders. Define FP to be the joint distribution of (Vi)i∈P when



46 COEY, LARSEN, AND SWEENEY

FIGURE 4. Monte Carlo Power Comparison
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(A) 3 and 4 Bidder Auctions

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 m¡

 P
ro

ba
bi

lit
y 

of
 R

ej
ec

tin
g 

N
ul

l

 

 
Bidder Exclusion Test
Mean Comparison Test

(B) 4 and 5 Bidder Auctions

Notes: Figures show the simulated probability of rejecting the null hypothesis of no
selective entry for various levels of entry selectiveness (with greater σε corresponding to
less selective entry), for two tests: one based on a comparison of means between n and
n + 1 bidder auctions, and one based on the bidder exclusion effect computed on n and
n + 1 bidder auctions. The left panel shows the case of n = 3, and the right panel shows
the case of n = 4.

P is the set of participating bidders.36 As before, Fn represents the joint distribu-

tion of values conditional on there being n entrants, but unconditional on the set

of participants. Therefore, Fn(v1 . . . vn) = ∑Pn⊂N Pr(P = Pn|N = n)FPn(v1 . . . vn).

For P′ ⊂ P, let FP′|P denote the joint distribution of (Vi)i∈P′ in auctions where P is

the set of participants. Finally, let FP
m denote the joint distribution of values of m

bidders drawn uniformly at random without replacement from P, when the set P

enters.

Definition 1. Valuations are independent of supersets if for all P′ ⊂ P, FP′|P = FP′ .

Definition 2. Bidder identities are independent of N if, for all Pn, Pr(P = Pn|N =

n) = 1
n+1 ∑Pn+1⊃Pn Pr(P = Pn+1|N = n + 1).

36We adopt the convention that bidders are ordered according to their identities, i.e. if P = {2, 5, 12}
then FP is the joint distribution of (V2, V5, V12), rather than, for example, the joint distribution of
(V5, V2, V12).
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These definitions describe different kinds of exogeneity. Definition 1 requires

that conditional on some set of bidders participating, those bidders’ values are

independent of which other bidders participate (what Athey and Haile (2002) re-

fer to as exogenous participation). Definition 2 requires that the distribution of

participating bidder identities in n bidder auctions is just like the distribution of

participating bidder identities in n + 1 bidder auctions, with one bidder randomly

removed.37 It restricts who participates, but not what their values are. The fol-

lowing proposition shows that together these conditions imply that valuations are

independent of N. Consequently, evidence of selective entry suggests either that

valuations are not independent of supersets, or that bidder identities are not inde-

pendent of N.

Proposition 7. If valuations are independent of supersets and bidder identities are inde-

pendent of N, then valuations are independent of N.

Proof. The proof follows Coey, Larsen, and Sweeney (2014), Lemma 3. It suffices to

prove that Fn
m = Fn+1

m for any n ≥ m.

Fn
m(v) = ∑

Pn

Pr(P = Pn|N = n)FPn
m (v)

= ∑
Pn

∑
Pn+1⊃Pn

1
n + 1

Pr(P = Pn+1|N = n + 1)FPn
m (v)

= ∑
Pn+1

∑
Pn⊂Pn+1

1
n + 1

Pr(P = Pn+1|N = n + 1)FPn
m (v)

= ∑
Pn+1

∑
Pn⊂Pn+1

1
n + 1

Pr(P = Pn+1|N = n + 1)FPn|Pn+1
m (v)

= ∑
Pn+1

Pr(P = Pn+1|N = n + 1)FPn+1
m (v)

= Fn+1
m (v)

37To see this, fix Pn and note that for each Pn+1 ⊃ Pn, Pn is obtained by dropping the bidder
Pn+1 \ Pn from Pn+1. When bidders are dropped uniformly at random, this occurs with probability

1
n+1 .
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The second equality follows because bidder identities are independent of N. The

fourth equality follows because FPn = FPn|Pn+1 , as valuations are independent of

supersets. The fifth equality follows because randomly selecting m bidders from

n + 1 bidders is the same as randomly selecting n bidders from n + 1 bidders, and

then randomly selecting m bidders from those n bidders. �

APPENDIX F. REVENUE CONCAVITY

In this section we give conditions for concavity of expected revenue in symmet-

ric IPV (and CIPV) auctions. In the symmetric IPV case, a sufficient condition for

concavity of expected revenue is for bidders marginal revenue to be increasing in

their values. This is a special case of a result established by Dughmi, Roughgarden,

and Sundararajan (2012).

Proposition 8. In ascending auctions with symmetric independent private values and

no reserve price, if bidders’ marginal revenue is increasing in their values then expected

revenue is concave in the number of bidders.

Proof. We first prove that if Z1, . . . , Zn+1 are iid random variables,

E(max{Z1, . . . , Zn})− E(max{Z1, . . . , Zn−1}) ≥

E(max{Z1, . . . , Zn+1})− E(max{Z1, . . . , Zn}). (25)

For any z1, . . . , zn+1 ∈ Rn+1,

max{0, zn+1 −max{z1, . . . , zn−1}} ≥ max{0, zn+1 −max{z1, . . . , zn}}, (26)

implying

max{z1, . . . , zn−1, zn+1} −max{z1, . . . , zn−1} ≥ max{z1, . . . , zn+1} −max{z1, . . . , zn}.
(27)

Consequently for any random variables Z1, . . . , Zn+1,

E(max{Z1, . . . , Zn−1, Zn+1})− E(max{Z1, . . . , Zn−1}) ≥
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E(max{Z1, . . . , Zn+1})− E(max{Z1, . . . , Zn}), (28)

because (27) holds for every realization z1, . . . , zn+1 of Z1, . . . , Zn+1. If the Zi are

iid, then E(max{Z1, . . . , Zn−1, Zn+1}) = E(max{Z1, . . . , Zn}), yielding (25).

The expected revenue from any mechanism is the expected marginal revenue

of the winning bidder (Myerson 1981). Ascending auctions assign the good to

the bidder with the highest valuation, and therefore highest marginal revenue,

because marginal revenue is increasing in valuations. It follows that expected rev-

enue with n bidders is E(max{MR(V1), . . . , MR (Vn)}). As MR(V1), . . . , MR(Vn+1)

are iid random variables, we have

E(max{MR(V1), . . . , MR(Vn)})− E(max{MR(V1), . . . , MR(Vn−1)}) ≥

E(max{MR(V1), . . . , MR(Vn+1)})− E(max{MR(V1), . . . , MR(Vn)}), (29)

implying that expected revenue is concave in the number of bidders. �

When there exists a random variable U such that bidder values V1, . . . , Vn are

iid conditional on U, if marginal revenue is increasing in values conditional on

each realization of U, then Proposition 8 applies conditional on each realization

of U. Taking expectations over U, it follows that expected revenue is concave in

CIPV environments if bidders’ marginal revenue curves are increasing in values

conditional on each value of U.

APPENDIX G. BIDDER COLLUSION AND MERGERS

The bidder exclusion effect may also be used to bound above the expected fall

in revenue resulting from mergers or collusion between bidders. Consider first the

case of two random bidders forming a bidding ring.38 This bidding ring excludes

one bidder from the auction. If the bidder which is excluded is chosen randomly

between the bidders in the ring, and if the bidders were randomly matched when

38A bidding ring is a group of bidders in an auction who collude in order to keep prices down.
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forming a ring, the setting is equivalent to one in which a bidder is randomly—

and legally—excluded from the auction. Under the conditions of Proposition 1,

the seller’s losses are given by ∆(n) = Γ(n) ≡ 2
n E(Bn−1:n − Bn−2:n). In the case of

low bidding or symmetric common values, the seller’s losses are bounded above

by Γ(n).

The bidder exclusion effect also provides a bound on revenue losses due to

mergers between bidders with private values. This argument requires additional

steps given that mergers may result in increased production efficiencies and hence

an increased willingness to pay of the merged entity. If the merger does not de-

crease bidders’ values, revenue should be at least as great after a merger between

two random bidders as after excluding a random bidder. We state the result for the

general case of asymmetric bidders. In auctions where Pn ⊂ N is the set of par-

ticipants, let (Vi)i∈Pn denote values before a merger. When bidders i and j merge,

let Mk denote the value of bidder k 6= i, j, and Mi,j denote the value of the merged

entity.

Assumption 4. Mergers do not decrease values: When bidders i and j merge, Mk ≥ Vk

for all k 6= i, j, and Mi,j ≥ max{Vi, Vj}.

Proposition 9. In ascending auctions with private values and no reserve price where

Assumptions 1 and 4 hold, then for all n > 2, ∆(n) is greater than or equal to the decrease

in expected revenue from two randomly selected bidders merging.

Proof. We follow the notation from Appendix E. In addition, in auctions where

Pn is the set of entrants, if i, j ∈ Pn were to merge we let FPi∼j
n

n−2:n−1 denote the dis-

tribution of the second-highest value of the unmerged and merged entities, i.e. of

{Mk}k 6=i,j ∪ {Mi,j}.

Consider an n bidder auction with participants Pn. For any v ∈ R,

FPn
n−2:n−1(v) =

1
n ∑

i∈Pn

FPn\{i}|Pn
n−2:n−1 (v)

≥ 1
n ∑

i∈Pn

1
n− 1 ∑

j∈Pn\i
FPi∼j

n
n−2:n−1(v)
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The first equality follows from the definition of FPn
n−2:n−1. The second equality fol-

lows because by the assumption that mergers do not decrease values, for every

j 6= i, the second-highest term in {Vk}k 6=i is less than the second-highest term in

{Mk}k 6=i,j ∪ {Mi,j}. Therefore the distribution of the second-highest value after

dropping one of the n bidders in Pn uniformly at random is first order stochas-

tically dominated by the distribution of the second-highest value when two bid-

ders are selected to merge at random. It follows that the bidder exclusion effect

is greater than the decrease in expected revenue if two randomly selected bidders

merge. This holds conditional on each set of entrants Pn, so it also holds uncondi-

tionally, averaging over all Pn, yielding the result. �

In practice it is likely that bidders are not randomly matched to merge or to

form bidding rings, and in these cases the loss in expected revenue may exceed

than the bidder exclusion effect.39 However, the expected loss in seller revenue

between a no-reserve auction with no collusion or mergers and one with collusion

or a merger of two non-random bidders is bounded above by the expectation of the

gap between the second and third order statistics of bids, E(Bn−1:n− Bn−2:n). If the

number of bidders is unobserved, the average revenue loss due can be bounded

by averaging over all (unobserved) realizations of N.40

In the timber auctions example of Section 6—a setting in which Baldwin, Mar-

shall, and Richard (1997) point out that accusations of collusion are historically

quite common—a bound on the fall in revenue from two random bidders collud-

ing or merging is given by the bidder exclusion effect estimate of 13%. A bound on

the loss in seller revenue when instead two non-random bidders form a bidding

39Consider the example of bidders 1,2 and 3, with values 0,1, and 1. Assume bidders 2 and 3
merge, forming a bidder with value 1. The drop in revenue from the merger is 1, which is larger
than the bidder exclusion effect of 2

3 . Similarly, if bidders know their valuations prior to forming a
bidding ring, bidders among the n− 2 lowest values would have little incentive to collude among
themselves. Collusion among the two highest bidders, on the other hand, would lower the auction
price to the third order statistic.
40This approach to bounding the loss due to collusion or mergers does not allow one to estimate
the loss due to collusive actions or mergers which have already occurred, but rather counterfactual
impacts which additional collusion or mergers would entail. Also, the above approach extends
easily to bidding rings or mergers of size larger than two.
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ring can be recovered simply by scaling the values in Figure 1 by a factor of n/2,

yielding the expected gap between the second and third order statistics.


