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1 Introduction

A long literature has debated whether natural resource abundance is good for economic growth

(van der Ploeg 2011). If markets are efficient, then standard trade models predict that resource-

abundant regions benefit from an increase in resource prices. However, there are many accounts of

a potential “Natural Resource Curse,” in which resource extraction interacts with market failures

to make producer economies worse off. Indeed, Sachs and Warner (1995, 1999, 2001) find that

resource abundance is negatively associated with growth in cross-country data, concluding that the

Resource Curse is a “reasonably solid fact.” The empirical literature remains unsettled, however,

due to problems of small samples, data quality, and endogeneity.1 Understanding these questions is

crucial for the many countries and local areas whose economies rely on natural resource extraction.

The Resource Curse literature has identified several types of market failures through which nat-

ural resource extraction could reduce growth. In countries with strong political institutions that

limit corruption and conflict, concern has centered on the loss of local learning-by-doing spillovers

from manufacturers that might be crowded out during a natural resource boom. Indeed, a recent lit-

erature has shown that manufacturing plants exert positive productivity spillovers on other nearby

plants.2 Thus, if natural resource growth crowds out manufacturing, this also reduces produc-

tivity spillovers, which could reduce long-term overall growth. This possible chain of events—the

short-run crowd out of manufacturing, leading eventually to decreased manufacturing productiv-

ity, causing long-run manufacturing contraction and reduced overall growth and welfare—is often

called “Dutch Disease,” and the idea has been well-developed theoretically.3 Harding and Venables

(2013) and Ismail (2010) find that natural resource exports crowd out manufacturing exports in

cross-country data, and Sachs and Warner (2001) argue that Dutch Disease is what causes their

empirical finding of slower growth in resource-abundant countries.

In this paper, we ask what have been the local economic impacts of oil and gas booms and

busts within the U.S. over the past half century? In particular, we consider whether oil and gas

extraction has benefited people who live in resource-abundant areas, or whether there might be a

Natural Resource Curse acting through a Dutch Disease-style chain of events. Aside from being

1Auty and Mikesell (1998) and Gylfason, Herbertsson, and Zoega (1999) also find that natural resource abundance
is negatively correlated with growth, but others have arrived at different results when instrumenting for resource
abundance (Brunnschweiler and Bulte 2009), including country fixed effects (Manzano and Rigobon 2001), using
different measures of resource intensity (Lederman and Maloney 2007b), or conditioning on the quality of institutions
(Collier and Goderis (2009), Mehlum, Moene, and Torvik (2006)).

2See Ellison, Glaeser, and Kerr (2010), Greenstone, Hornbeck, and Moretti (2010), Kline and Moretti (2014),
Serafinelli (2012) and others for empirical results, and see Glaeser and Gottlieb (2009) and Moretti (2010) for literature
overviews on agglomeration and local labor markets.

3See Corden and Neary (1982), Krugman (1987), Matsuyama (1992), van Wijnbergen (1984), and others. Some
alternative definitions of “Dutch Disease” include only the crowd-out of tradable manufacturing, but this would arise
even in an efficient market due to standard Rybczynski effects, and is thus not really a “disease.” Like much of the
literature, we therefore think of Dutch Disease as the full possible chain of events including decreased manufacturing
productivity and decreased long-run growth.
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important for understanding the pathways of local economic growth, this question is very relevant

to local policymakers who are deciding whether to encourage or restrain resource booms. Indeed,

Maryland, New York State, the Delaware River Basin, Bulgaria, France, Germany Scotland, South

Africa, Wales, and many other areas have recently banned hydraulic fracturing for environmental

reasons (Rosenbaum 2016), and it is important for policymakers to know the foregone economic

gains, if any.

To organize the empirical work, we first lay out a Rosen-Roback spatial equilibrium model in

the spirit of Moretti (2010). There are two initially symmetric counties, each with natural resource,

local, and tradable goods sectors, and labor is imperfectly mobile across counties. In the local and

tradable sectors, we model intertemporal productivity spillovers from both “learning-by-doing” and

“agglomeration”—that is, we allow local productivity to be influenced both by past employment

in that sector and by the past overall population in the county. We model a resource boom as a

temporary increase in resource sector revenue productivity in one of the two counties. The resource

boom affects both counties through general equilibrium effects.

The model predicts that during a resource boom, local population and wages increase, and

local welfare increases during the boom even as higher wages crowd out the tradable sector. In

the absence of productivity spillovers, the counties return to parity after the resource boom ends,

there are no market failures, and the resource boom unambiguously increases cumulative welfare,

i.e. the sum of welfare over time. If there are productivity spillovers, however, the cumulative

welfare effect is ambiguous. If the resource boom crowds out enough tradable sector learning-by-

doing spillovers, then tradable sector productivity decreases and the boom can reduce cumulative

welfare. This illustrates how an analogue of Dutch Disease might arise within a country, where local

manufacturing is initially crowded out by higher local wages, not by currency appreciation. On the

other hand, if the effects of crowd-out are limited and agglomerative effects are strong, this further

augments the boom’s welfare gains. In the extreme, population could concentrate in the resource-

abundant county even after the boom ends, just as population continues to be concentrated in

historical river portage sites long after these sites lost any productive advantage (Bleakley and Lin

2012).

To empirically estimate the effects of natural resource booms, we combine county-level panel

data on employment, earnings, and population with a new dataset of county-level oil and gas

production and reserves that we constructed for this paper. Crucially, we also use restricted-

access plant-level microdata from the U.S. Census of Manufactures, which allow us both to observe

manufacturing revenue productivity and to measure differential effects across local vs. tradable

subsectors. Our empirical strategy is a “shift-share” approach inspired by Bartik (1991): the key

independent variable interacts time series variation in national oil and gas employment with cross-

sectional variation in counties’ initial oil and gas endowment. Extending our analysis back to the

1960s allows us to exploit dramatic time series variation, as hundreds of thousands of oil and gas
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jobs are created and destroyed nationwide in the boom of the 1970s and early 1980s, the bust of

the late 1980s, and the second boom of the past decade.

Our empirical results trace out the local economic impacts of oil and gas booms and busts,

with special attention to the possible chain of events suggested by the within-country version of

Dutch Disease. First, local wages, population, and employment in resource-abundant counties

are all procyclical with oil and gas: they rise during oil and gas booms and fall during busts.

During the most recent boom (2007-2014), wages were 1.6 to 3.0 percent higher in counties with

one standard deviation more oil and gas endowment, and wages also rose significantly in resource-

abundant counties during the boom of the 1970s and 1980s. This introduces the possibility that

some manufacturers could be crowded out.

Second, however, while manufacturing is often thought of as largely producing tradable goods,

the sector in aggregate is not crowded out by resource booms. Instead, manufacturing in resource-

abundant counties grows during resource booms and shrinks during busts. More disaggregated

analyses show that manufacturing’s procyclicality is driven by locally-traded subsectors and those

with upstream or downstream input-output linkages to oil and gas. By contrast, more highly-

tradable manufacturing subsectors contract during booms. Thus, these tradable subsectors could

still generate a Dutch Disease effect, if their contraction leads to reduced productivity.

Third, local manufacturing plants’ revenue-based total factor productivity (TFP-R) is procycli-

cal with local resource booms. This could either be because local output prices are procyclical

with resource booms, or because transport costs are countercyclical, as local buyer and supplier

bases grow during booms and shrink during busts. In tradable manufacturing subsectors, despite

the temporary contraction during booms, TFP-R never decreases. This rules out the productivity

decline that is central to a Dutch Disease mechanism.

Fourth, while county-level population, employment, wages, and revenue productivity are all

procyclical, the booms are canceled out by the busts. By the end of the 1990s, we see no significant

remaining long-term effects of the boom and bust cycle of the 1970s and 1980s.

The procyclicality of local wages plus the lack of adverse long-term effects foreshadows our

final result, on the cumulative effects of natural resource abundance. Over our full 1969-2014 sam-

ple, counties with higher oil and gas endowments average 1.0 percent higher real wages relative

to otherwise-similar counties with one standard deviation less endowment. Under additional as-

sumptions, we can control for general equilibrium effects (geographic spillovers) using an empirical

approach parallel to Miguel and Kremer (2004). Over the years in our sample, counties with one

standard deviation more endowment average 0.4 percent higher real wages compared to their own

counterfactual.

Real wages are not a measure of local welfare if resource booms also affect local amenities such as

environmental quality, and Muehlenbachs, Spiller and Timmins (2015) and others provide evidence

of adverse environmental effects from shale gas development. Our model shows how population
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changes identify a resource boom’s welfare effects: people “vote with their feet” by moving to

counties where they are better off, taking into account amenities that we might not observe. We

find that one standard deviation additional oil and gas endowment increases population by an

average of 0.8 percent over our sample, implying that oil and gas endowments increase cumulative

local welfare even in the presence of changes in unobserved amenities.

In summary, we find evidence against each link in the hypothesized Dutch Disease chain of

events. Manufacturing plants in resource-abundant counties benefit a surprising amount from local

demand growth, manufacturing productivity does not decrease, and overall, there is no Natural

Resource Curse: oil and gas abundance increases cumulative local wages and welfare.

In the remainder of this first section, we discuss related literature. Section 2 provides background

on oil and gas booms in the United States since the 1960s. Section 3 presents the model. Section 4

details the data, Section 5 outlines the empirical strategy, and Section 6 presents results. Section

7 concludes.

1.1 Related Literature

We build on a growing literature that uses within-country variation to identify the effects of

resource booms, both in the United States (Carrington (1996), Glaeser, Kerr, and Kerr (2015),

Haggerty et al. (2014), Jacobsen and Parker (2014), James and Aadland (2011), James and James

(2012), Papyrakis and Gerlagh (2007), and others) and other countries (Aragon and Rud (2011),

Asher and Novosad (2014a, 2014b), Caselli and Michaels (2013), Domenech (2008), Dube and

Vargas (2013), Monteiro and Ferraz (2012), and others). Recent papers by Bartik, Currie, Green-

stone, and Knittel (2017), Feyrer, Mansur, and Sacerdote (2015), Jacobsen (2015), Muehlenbachs,

Spiller and Timmins (2015), Munasib and Rickman (2015), Paredes, Komarek, and Loveridge

(2015), and Weber (2012) study the impacts of the recent hydraulic fracturing (“fracking”) boom

on income, housing values, environmental quality, and other outcomes. Acemoglu, Finkelstein, and

Notowidigdo (2013) study the effects of oil price shocks on health spending. Black, McKinnish, and

Sanders (2005a) study the Appalachian coal boom and bust, finding positive employment spillovers

to construction, retail, and services sectors but no effect on manufacturing employment. An im-

portant paper by Michaels (2010) studies the long-term effects of oil abundance in the southern

United States, using cross-sectional estimators to compare counties that have major oil fields to

other nearby counties that do not. He finds that resource discoveries cause oil-abundant counties

to specialize in oil production, but this did not reduce growth in other sectors: higher incomes

increased population, which increased the provision of local public goods, which in turn increased

employment in agriculture and manufacturing.

Our paper differs from existing work in four main ways. First, the U.S. Census of Manufactures

microdata allow a significant advance beyond previous work that used only publicly-available data

on sector-level aggregate employment. Unlike Michaels (2010) and Black, McKinnish, and Sanders
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(2005a), we find some evidence that resource booms cause some manufacturers to contract, but

this finding is only possible because our microdata allow us to look at the subset of manufacturers

producing more highly-traded goods. Furthermore, we directly study how resource booms affect

manufacturing productivity, which until now was a hypothesized but unmeasured mechanism.

Second, we have gathered very detailed data on resource abundance. Black, McKinnish, and

Sanders (2005a) proxy for resource abundance with binary variables based on initial coal sector

employment, Michaels (2010) proxies with a binary variable for whether a county lies over a large

existing oilfield, and Sachs and Warner (1995, 1999, 2001) and other cross-country studies use

rough proxies such as the share of natural resource exports in GDP. By contrast, we have con-

structed a complete measure of each county’s economically recoverable oil and gas endowment as of

1960, including subsequent production, proven reserves, and undiscovered reserves. Undiscovered

reserves are particularly important because production and proven reserves could be endogenous

to a county’s potential outcomes. For example, if local economic conditions were worse, New York

State might not have banned fracking, and its production would thus be higher.

Third, we pay more attention to the cylicality of natural resource extraction, as boom and bust

cycles are a fundamental feature of oil and gas production. Our 46-year panel allows us to track

counties and firms through multiple booms and busts. This is important empirically because it

allows us to control for secular time trends that could be correlated with resource endowments.

By contrast, analyses focusing only on the recent fracking boom must make stronger assumptions

about such confounders, which could be particularly problematic given that the fracking boom was

contemporaneous with the Great Recession and with the rapid decline of U.S. manufacturing.

Fourth, we provide a more careful treatment of general equilibrium effects and other forms

of geographic spillovers. Our model explicitly captures these effects, and our empirical strategy

delivers plausibly unbiased estimates of average treatment effects on the treated (or what we call

“absolute effects”) in the presence of geographic spillovers. By contrast, most previous papers on

resource booms estimated what we call “relative effects” without fully considering spillovers.4 One

recent exception is Feyrer, Mansur, and Sacerdote (2015), who estimate cross-county geographic

spillovers from the fracking boom.

Our work is also connected to the broader empirical literature on agglomeration and productivity

spillovers. As Ellison and Glaeser (1997) point out, agglomerative spillovers are difficult to identify

because both heterogeneous local natural advantages and spillovers can cause firms to co-locate.

To identify spillovers, several recent papers have exploited natural experiments, including the siting

of large manufacturing plants (Greenstone, Hornbeck, and Moretti 2010), portage sites (Bleakley

and Lin 2012), exogenous worker flows across firms (Serafinelli 2012), and the boundaries of the

Tennessee Valley Authority development region (Kline and Moretti 2014). Our analysis identifies

4The broader literature on local economic shocks has been more precise on this issue; see, for example, Hornbeck
and Moretti (2015) and Kline and Moretti (2014).
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spillovers using the natural experiment of local resource booms and busts.

More broadly, our work connects to the literature on local economic shocks, including studies of

local effects of national-level sectoral trends (Bartik 1991, Blanchard and Katz 1992), military base

closures (Hooker and Knetter 2001), place-based economic development policies (Busso, Gregory,

and Kline 2013), Chinese import competition (Autor, Dorn, and Hanson 2013), and other factors.

Against this literature, our paper is novel in that it studies oil and gas booms, which have helped lead

the recovery from the Great Recession (Moretti 2013). Our paper is also novel in that it studies

cross-industry spillovers, while much of the local labor market literature studies how exogenous

shocks affect county aggregates. Using the tech industry as an analogy, much of this literature

essentially studies how the tech boom affects wages, unemployment, and other aggregates in places

like Silicon Valley. But while a tech boom clearly benefits local land owners and labor suppliers,

it hurts other industries that draw on the same pool of land or labor but are not experiencing

positive revenue productivity shocks. As our model and empirical strategy make clear, the policy

implications then depend on whether externalities from the booming industry are more positive

than from the industries being crowded out.

2 Background: Oil and Gas Booms in Modern America

Figure 1 presents oil and natural gas prices in the U.S. from 1960 to 2014, using data from the

U.S. Energy Information Administration (EIA). Like all prices in this paper, these are in real 2010

dollars. Real oil and gas prices were steady and slowly declining from the end of the Second World

War through the early 1970s. Prices rose suddenly in October 1973 due to the Arab oil embargo

and again in 1979-1980 due to the Iranian Revolution and the Iran-Iraq war. Natural gas prices

closely follow oil prices over the entire study period, except for the most recent few years, when a

marked natural gas supply increase pushed natural gas prices down.

Figure 2 shows that U.S. oil production peaked in 1970 and began to decline. The decline was

monotonic for the first few years of the 1970s, until it was arrested by the supply response to the

1973 price shock. This supply response, coupled with the recession of the early 1980s, caused prices

to drop steadily from March 1981 to the end of 1985, and then sharply in the first six months of

1986. In the early 2000s, global demand growth spurred a second boom of high prices and increased

production.

Oil and gas production requires significant labor input. Figure 2 shows total national employ-

ment in the oil and gas sector, as reported in the Regional Economic Information System (REIS).

Closely mirroring the price trend, employment rose from under 400,000 people in the early 1970s to

over one million in the early 1980s, then dropped sharply in 1986 and continued to decline steadily

until 2002.5 Employment then surged again, more than doubling between 2002 and 2014.

5 We switch from the SIC to the NAICS classification system in 2000 and plot both SIC and NAICS data points

in that year.
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Of course, these large fluctuations in oil and gas employment are concentrated in the more

resource-abundant counties. Prior to the late 1990s, oil and gas were almost exclusively recovered

from “conventional” reserves: oil and gas accumulations trapped beneath an impermeable rock

layer where the resulting reservoir could be reached with a vertical well. Figure 3 shows each

county’s early endowment: that is, the value of oil and gas per square mile that was in the ground

in 1960 and was economically recoverable using technologies available during the boom and bust

of the 1970s and 1980s. (We detail the construction of this variable in Section 4.1.)

More recently, prospecting and extraction has focused on extracting “unconventional” oil and

gas trapped in small pores within impermeable rocks. “Fracking” was pioneered for oil and gas

wells in 1947 and was used in some areas during the 1970s boom. There were significant advances

in horizontal drilling in the 1980s and 1990s, and commercially-viable shale gas extraction was

pioneered in the Barnett Shale in northern Texas in 1997. Since then, large amounts of tight oil

and shale gas have become economically recoverable. Figure 4 maps the additional endowment that

became economically exploitable only after the end of the 1990s. This illustrates regions where large

amounts of shale gas or tight oil are newly economically recoverable, such as the Bakken Shale in

western North Dakota, the Niobara shale in eastern Colorado, the Marcellus and Utica Shales in

Pennsylvania, Ohio, New York, and West Virginia, the Barnett Shale, Granite Wash, and Eagle

Ford in Texas, the Woodford Shale in Texas and Oklahoma, and the Haynesville Shale on the

border of Texas and Louisiana.

3 Theoretical Framework

3.1 Overview

Our theoretical model nests multi-period productivity spillovers into Moretti’s (2011) version of

the Rosen-Roback spatial equilibrium framework, illustrating a within-country version of Dutch

Disease. There are two counties, c ∈ {a, b}, with imperfectly mobile population. There are three

production sectors, indexed j ∈ {m, l, r}, representing tradable goods, local (non-tradable) goods,

and natural resources, respectively. Each sector has revenue productivity Xjc. County b does not

have natural resources, so Xrb = 0.

There are three time periods, indexed by t. t = 0 represents the initial equilibrium, in which

the two counties are symmetric, so Xra = Xrb = 0. In t = 1, county a experiences a “resource

boom,” meaning that Xra > 0. This could reflect either a technological improvement or a price

increase. The boom is temporary, so we again have Xra = Xrb = 0 for t = 2. Below, we provide

detail on production and consumption and describe the effects of the resource boom on equilibrium

outcomes.6

6We chose to simplify functional forms so that key results can be seen in closed form. Notwithstanding, the basic
predictions in Section 3.6 are very general. Our 2014 NBER working paper has a similar model with more general
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3.2 Production

Each production sector j ∈ {m, l, r} comprises a composite firm that employs Njc workers and

earns revenue Rjc = XjcN
1−γ
jc , with γ ∈ (0, 1).7 Profit maximization gives labor demand Njc =[

Xjc(1−γ)
Wc

] 1
γ
, and county total labor demand is Nc = Nmc + Nlc + Nrc. Revenue productivity Xjc

is PjcΩjc, price times physical productivity. Resource revenue productivity Xrc is exogenous, as

described above. The tradable good price is exogenous and normalized to Pmc = 1, and the local

good price Plc is endogenously determined.

Tradable and local sector physical productivities Ωjc evolve over time subject to two types of

possible productivity spillovers. First, “learning-by-doing spillovers” θj ≥ 0 would imply that a

sector’s current productivity increases in that sector’s past employment. Second, “agglomeration

spillovers” Λ ≥ 0 would imply that current productivity increases with past local population,

echoing the findings of Bleakley and Lin (2012) and others. Specifically, using lower case letters

for natural logs (so ωjc = ln(Ωjc) , njc = ln(Njc), and nc = ln(Nc)), we assume that physical

productivity in sector j ∈ {m, l} is

ωjc,t+1 = ρjωjct + θjnjct + Λnct + ζj . (1)

We conceptualize the possible learning-by-doing spillovers as between-firm, local, and intertem-

poral. Although the exact functional forms vary, this conceptualization is consistent with Arrow’s

(1962) original formulation of learning-by-doing, with Kline and Moretti (2014), and with the pre-

vious theoretical literature on Dutch Disease, including Krugman (1987), Matsuyama (1992), and

van Wijnbergen (1984). Modeling productivity spillovers as between-firm and local matches the

empirical results of Ellison, Glaeser, and Kerr (2010), Greenstone, Hornbeck, and Moretti (2010),

Kline and Moretti (2014), and Serafinelli (2012), who document productivity spillovers to other

firms in the same area. While within-firm learning may also occur (see Benkard (2000) and others),

we focus on between-firm spillovers because within-firm spillovers are not externalities meriting

policy intervention. We model intertemporal learning-by-doing instead of only contemporaneous

spillovers because this admits the possibility that a natural resource boom could affect (and possibly

reduce) local productivity and welfare in the long term, after the boom is over.

One could imagine any number of other market failures, including contemporaneous productiv-

ity spillovers and environmental externalities. The social welfare function we specify and empiri-

cally calibrate below captures these and any other factor that would manifest through real wages

or migration.

Following Moretti (2010), we also model a housing sector that does not require local labor, with

functional forms, and our 2015 NBER working paper has a model that generates similar results in a Melitz (2003)
model of firm heterogeneity.

7The model’s basic predictions generalize to the case with different γm, γl, and γr, but we choose a homogeneous
γ to highlight geographic rather than intersectoral differences.
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constant elasticity supply function phc = knc + k0.

3.3 Consumers and Workers

Each individual decides what to consume and where to live, supplying one unit of labor. Individual

i consumes Cil, Cih, and Cim units of local goods, housing, and tradable goods, respectively.

Individuals also receive utility Acεic from living in county c, where Ac is county c’s “amenity” and

εic is individual i’s idiosyncratic taste for county c. Amenities could represent factors such as local

public goods, congestion, and environmental quality, some of which could change during a resource

boom. In this theoretical framework, we consider a resource boom that does not affect Ac, but

we also introduce some results that allow the empirical welfare analysis to accommodate possible

effects on Ac. Individuals have Cobb-Douglas preferences, maximizing utility

Uic = CαilC
β
ihC

1−α−β
im Acεic, (2)

subject to budget constraint Wc ≥ PlcCil + PhcCih + Cim. We assume α, β, (1− α− β) ∈ (0, 1).

Again using lower case letters for natural logs, indirect utility is uic = wc−αplc−βphc+ac+ln εic,

plus a constant. Individuals choose to live in county a instead of county b if uia > uib. We assume

that ln εic is distributed type I extreme value with scale parameter s2, where s ∈ (0,∞). This gives

a logit model, and the inverse labor supply difference between the two counties is

wa − wb = α(pla − plb) + β(pha − phb) + s(na − nb)− (aa − ab). (3)

In equilibrium, consumers and firms optimize, and the labor, local goods, and housing markets

clear.

3.4 Social Welfare

Of course, the first-best response to unpriced productivity spillovers would be for a policymaker to

measure and price these externalities. The general problem of the social planner with learning-by-

doing or agglomeration spillovers is well-explored; see, for example, Arrow (1962) and Glaeser and

Gottlieb (2008, 2009). We therefore do not study this issue further. Instead, we focus on a different

welfare question: does the resource boom increase local social welfare in the producer county? This

question is important because it helps local policymakers to evaluate policies such as fracking bans

that restrain or prevent resource booms.

As a measure of social welfare, we consider the indirect utility of people who live in county c in

all periods. Up to a constant, this is
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uc =
∑
t

uct =
∑
t

δt [wct − αplct − βphct + act] , (4)

where δ is the discount factor.8

One might also be interested in national or global-level welfare. We focus on local welfare

effects for two reasons. First, many of the significant policy decisions to discourage oil and gas

drilling, such as fracking bans, are made by state or local authorities. Second, significant additional

assumptions are required to empirically identify national social welfare impacts, due to general

equilibrium effects.

3.5 Relative and Absolute Effects

Our welfare question can be asked in two different ways, depending on what county a is compared

to. First, we can consider the relative effects of a natural resource boom: does the resource boom

increase cumulative social welfare in county a relative to county b?

ua − ub =
∑
t

δt [(wat − wbt)− α (plat − plbt)− β (phat − phbt) + (aat − abt)] (5)

Substituting labor supply from Equation (3), we see that this can also be written as a function

of only relative population:

ua − ub =
∑
t

δts (nat − nbt) . (6)

Intuitively, people vote with their feet by migrating to the county with higher welfare. This

equation will be useful empirically, as it will allow us to sign the relative welfare effect even without

a direct estimate of how the resource boom affects local prices and amenities.

Second, we can consider absolute effects: does the resource boom increase cumulative social

welfare in county a relative to counterfactual? Specifically, we denote with (0) a counterfactual

outcome if Xra = Xrb = 0 always.

8We assume that the social planner focuses on permanent residents both because this may be more realistic and
because it eliminates the need to keep track of migrants’ idiosyncratic taste shocks εic. We ignore producer surplus
because many firms are owned by shareholders outside of the county. In the empirical section, however, we will
estimate effects on manufacturing revenues and housing rents. We note that the social planner maximizes indirect
utility in units of log dollars instead of in units of dollars. Under the usual log approximation to percent differences,
however, both the absolute and relative effects comparisons described below give approximate percent differences in
welfare in units of dollars.
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ua − ua(0) =
∑
t

δt [(wat − wat(0))− α (plat − plat(0))− β (phat − phat(0)) + (aat − aat(0))] (7)

Of course, relative and absolute effects are different because ub 6= ua(0) due to general equilib-

rium effects. Relative effects are important from a positive perspective: they describe how resource

producers vs. non-producers fare during a resource boom. Absolute effects are important from a

normative perspective: they answer the question of whether a local policymaker should restrain a

resource boom. In the remainder of the paper, we distinguish between relative and absolute effects

for welfare and for other outcomes.

3.6 Effects of Resource Booms, and the Definition of Dutch Disease

We now consider the predicted effects of a natural resource boom – that is, an increase in county

a’s resource sector revenue productivity Xra in period t = 1. Appendix A solves for the equilibrium

and derives these predictions in absolute as well as relative terms.

3.6.1 Contemporaneous Effects

Predictions 1 and 2 consider the contemporaneous (t = 1) effects of a resource boom.

Prediction 1: A resource boom increases population and wages in t = 1.

Prediction 2: A resource boom increases local sector employment and prices, and decreases

tradable sector employment, in t = 1.

These two predictions would arise in any standard model, and in our model they arise either

with or without productivity spillovers. Prediction 1 is important because the entire Dutch Disease

mechanism begins with an initial wage increase during the resource boom. If migration moderates

the wage increase, then any subsequent Dutch Disease effects will also be moderated. Although

manufactures are often thought of as goods that are traded across counties, Prediction 2 highlights

that the effect of a resource boom on overall manufacturing employment depends on the share of

manufactures that are traded vs. sold locally. If manufacturing is largely traded outside the county,

then it will be crowded out during a resource boom. If more of manufacturing is sold locally, then

it will be “crowded in.” Of course, the decrease in tradable sector employment does not imply any

economic inefficiency.

3.6.2 Long-Term Effects with and without Productivity Spillovers

Predictions 3 and 4 demonstrate the long-term (t = 2) effects.
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Prediction 3: If and only if there are agglomeration spillovers or local sector learning-by-doing

spillovers (i.e. Λ > 0 or θl > 0), a resource boom in t = 1 increases local sector productivity in

t = 2. Furthermore, the sign of relative tradable sector productivity in t = 2 is the same as the

sign of

Λ− θm
αγ + βk + s

γ(1− α)
. (8)

For the local sector, this prediction follows from applying Predictions 1 and 2 to the productivity

evolution formula in Equation (1). Since both population and local sector employment increase in

county a in t = 1, either learning-by-doing (θl > 0) or agglomeration (Λ > 0) would increase local

sector productivity in t = 2. For the tradable sector, Equation (8) says that relative productivity

ωma,t=2 − ωmb,t=2 decreases if the foregone learning-by-doing θm
αγ+βk+s
γ(1−α) outweighs the agglomer-

ation effect Λ. Alternatively, tradable sector relative productivity could increase if Λ is sufficiently

large, or stay the same if learning-by-doing and agglomeration are zero or exactly offset.

Prediction 4 then illustrates the possibility that foregone learning-by-doing spillovers could

generate a perverse result in which the initial increase in resource sector revenue productivity

actually reduces cumulative welfare.

Prediction 4: A resource boom increases cumulative relative welfare ua − ub if and

only if

γ + βk + s

δ
+ Λ + αθl > θm

αγ + βk + s

γ
. (9)

This prediction shows that relative welfare is more likely to increase under several conditions.

First, if the social planner is less patient (δ is small), then growth during the boom in t = 1 can

outweigh any losses in t = 2. Second, if agglomeration spillovers Λ are large, then county a benefits

more from the population increase during the boom. Third, if local sector learning-by-doing θl is

strong, and/or the local good expenditure share α is large, then county a benefits more from an

increase in local sector learning-by-doing in t = 2. Fourth, if tradable sector learning-by-doing θm

is weak, the sector’s contraction in t = 1 has smaller negative consequences in t = 2. Fifth, if

housing supply is more elastic (i.e. k is lower), the housing expenditure share β is lower, locational

preferences are weaker (i.e. s is smaller), or production is less labor-intensive (i.e. γ is larger), then

the tradable sector contracts less in t = 1.

Predictions 3 and 4 allow us to contrast the cases with vs. without productivity spillovers.

If there are no productivity spillovers (i.e. Λ = θm = θl = 0), then the two counties have equal

productivity, population, and wages after t = 1, and a resource boom unambiguously increases

relative welfare.9 If there are productivity spillovers, then local sector relative productivity will

9As we show in Appendix A, this is also true for absolute welfare, although the formulas differ because the absolute
welfare effect equals the relative effect plus an adjustment to account for the fact that the resource boom also increases
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increase, and the signs of both tradable sector relative productivity and relative welfare will depend

on the relative strengths of the learning-by-doing vs. agglomeration spillovers.

Of course, one could easily imagine extending our stylized model beyond three periods, and our

empirical work spans many years. In that case, any productivity differences in t = 2 could grow

over time if the spillovers θj and Λ and/or the persistence of past productivity differences ρ are

sufficiently large.10 In the theoretical extreme, this could cause all population to concentrate in

one of the two counties. On the other hand, if spillovers and/or productivity persistence are small,

then the differences between counties in t = 2 will disappear as the counties converge back to parity

in long-run steady state.

We can formalize what we mean by a “Resource Curse” and “Dutch Disease” in the context of

these four predictions. A “Resource Curse” is when “natural resource abundance reduces cumulative

welfare.” We think of the within-country analogue of Dutch Disease as the possible chain of events

through which an increase in resource sector revenue productivity increases local wages (Prediction

1), leading to decreased tradable sector employment (Prediction 2), leading to decreased tradable

sector productivity (i.e. the sign of Equation (8) is negative in Prediction 3), which could be large

enough to cause a decrease in cumulative welfare (Prediction 4).

The model generates a set of five specific empirical tests that both quantify the local economic

effects of natural resource booms and test the chain of events that would arise under a within-

country analogue of Dutch Disease. First, do local wages rise substantially during a boom, or is

this dampened by migration? Higher local wages increase local welfare during the boom but also

could crowd out the tradable sector. Second, even if wages rise, is manufacturing actually crowded

out during a boom, or might the sector instead grow as local demand increases? Third, how

does manufacturing productivity evolve over time? Some productivity decline, either transitory or

permanent, is a necessary condition for Dutch Disease. Fourth, what are the long-term effects after

the boom and bust are over? In other words, are any economic effects permanent or transitory?

Fifth, what are the cumulative welfare effects over the boom and bust cycle? Depending on the

discount rate, a boom and bust could still generate positive cumulative welfare gains even if the

effects in t = 2 are negative. Before answering these questions, we detail the data and estimating

equations.

4 Data

4.1 Resource Data

In the model, there are two counties, one with natural resources and one without. In reality,

welfare in county b.
10The condition for county productivity in sector j to diverge from period to period is just ωja,t+1 − ωjb,t+1 >

ωjat − ωjbt. Substituting this into Equation (1) gives (ρj − 1)(ωjat − ωjbt) + θj(njat − njbt) + Λ(nat − nbt) > 0.
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there is continuous variation in resource endowments across many counties. To match the model, we

would like a measure of each county’s oil and gas revenue productivity, or perhaps more generally,

the oil and gas supply curve given the technology available in each year. We proxy for this with

the density of “economically recoverable” oil and gas that was in the ground before our analysis

begins. We want this endowment measure to be determined only by geological factors that are

exogenous to economic outcomes. There are no nationally-comprehensive 1960s-era estimates of

economically recoverable oil and gas reserves, although such data are available more recently. We

thus construct 1960 endowments by adding production from year 1960 to year T plus remaining

reserves at time T . There are two types of reserves, “proven” and “undiscovered,” so our measure

of county c’s endowment density is

Rc =

∑T
t=1960 Productionct + ProvenReservescT + UndiscoveredReservescT

Area (SquareMiles)c
(10)

We divide by county area (including both land and water area) to account for variation in

county size.

Because “economically recoverable” depends on the extraction technology, we construct different

endowment variables for pre- vs. post-fracking periods. The variable Rearlyc measures endowment

in the first boom, with T = 1995, using reserves estimates from the late 1990s. Rtotalc measures

total endowments including unconventional resources requiring fracking, with T = 2011, using the

latest estimates of proven and undiscovered reserves. For our primary empirical specifications, we

define an endowment variable Rct, which takes value Rearlyc until 2000, and Rtotalc beginning in

2001. The precise year in which Rearlyc ends does not make much difference, and we show that the

conclusions are not sensitive to using either Rearlyc or Rtotalc for the entire period.

We now detail the data sources for production, proven reserves, and undiscovered reserves. Oil

and gas production data are from a new county-by-year panel dataset from 1960 to 2011, the first

such comprehensive county-level dataset. Much of this data is drawn from a well-level database of

oil and gas production provided by DrillingInfo, a market research company, which we collapse to

the county-by-year level. The DrillingInfo data do not include several states and are incomplete in

early years for some other states, so we have also gathered county-level oil and gas production data

from local authorities in 14 additional states; see Appendix Table A1 for details. In several states

with relatively low production, county-level production data do not exist for some early years, so we

impute production by multiplying state-level production by the county’s share of state production

in the earliest year when it is observed.

Proven reserves data are from the EIA’s survey 23L, which collects proven reserves and pro-

duction by each firm in each oil field (U.S. EIA 2014). The EIA granted us confidential access to

county-by-year totals.11 This is an improvement over publicly-available proven reserves data used

11We were required to use these EIA data inside a Census Research Data Center, which is cumbersome for analyses
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in previous work, which include only the largest fields.

Undiscovered reserves are estimated by the U.S. Geological Survey (USGS) on the basis of the

expected oil, gas, and natural gas liquid yield using current technology, including estimated future

discoveries over the next 30 years. We map these data to counties by intersecting the most detailed

available USGS geological maps with county outlines. The USGS defines undiscovered reserves as

“undiscovered petroleum is that which is postulated from geologic knowledge and theory to exist

outside of known accumulations” [emphasis added].12 These resources are unaffected by proven

reserves or past production except insofar as greater prospecting in an area might transfer resources

from the “undiscovered” to the “proven” category. Thus, while both production and proven reserves

could be endogenous to economic activity, our measure of Rc including undiscovered reserves is in

principle determined only by geological factors. This is an improvement over previous papers that

measure endowments from production, exports, or proven reserves.

We transform physical units of oil and gas to dollar values using their average prices (as always,

in real 2010 dollars) over 1960-2011: $34.92 per barrel of oil and $3.20 per mmBtu of gas. To make

regression results more easily interpretable, we normalize Rearlyc and Rtotalc into standard deviation

units. Across U.S. counties, Rearlyc and Rtotalc have standard deviations of 6.3 and 9.1 million dollars

per square mile, respectively.

Table 1 presents descriptive statistics for the resource data, focusing on total endowment Rtotalc .

There are several basic facts to highlight. First, there are 715 more counties with undiscovered oil

than counties that produce oil, and 1165 more counties with undiscovered gas than counties that

produce gas. This highlights the exogeneity of our measure of resource endowments: Rtotalc does not

just include counties that produce in equilibrium. Second, multiplying total endowments by average

prices shows that oil and gas are roughly equal constituents in total endowments, representing 42

and 58 percent of Rtotalc , respectively. Third, there is substantial variation in Rtotalc across counties:

the standard deviation across all counties (including those with zero endowments) is about three

times the mean. This variation is also highlighted in Figures 3 and 4, which show Rtotalc and

Rtotalc −Rearlyc , respectively.

Fourth, the primary constituent of oil endowment is the actual production over 1960-2011 –

proven and undiscovered reserves are relatively small. For natural gas, by contrast, reserves are a

much larger share of endowment. Combining oil and gas, 58 percent of Rtotalc is from production,

while the remaining 42 percent is from reserves. For Rearlyc , which is not reported in the table,

reserves are smaller, so production is 82 percent of endowment. This difference in composition be-

tween Rearlyc and Rtotalc highlights that one effect of the recent unconventional oil and gas boom has

been to dramatically increase economically recoverable reserves, which have not yet been exploited.

that do not involve the Census of Manufactures data. For estimates that do not use Census of Manufactures data,
we approximate early period proven reserves with data from the 1999 Oil and Gas Journal Data Book and current
proven reserves using the EIA list of top 100 oil fields in 2009 (U.S. EIA 2009).

12See U.S. Geological Survey (2013) for more details on assessment methodology.
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4.2 County-Level Economic Outcomes

Our primary source of data on employment, earnings, and population is the Regional Economic

Information System (REIS), which at the time of this writing has county-level data data available

from 1969 to 2014. We use the REIS for national-level coal employment and oil and gas employment,

as well as county-level population, total employment, total earnings, manufacturing employment,

and manufacturing earnings. We construct earnings per worker by dividing total earnings by total

employment. Due to REIS confidentiality restrictions, manufacturing earnings and manufacturing

employment are not disclosed for some smaller counties, so the sample sizes in those regressions will

be smaller. See Appendix B.2 for additional details on the REIS. Because earnings per worker is

an imperfect proxy for labor input costs, we study hourly wage data from the Current Population

Survey in Appendix A5.

Nationwide historical housing rent data are not available on an annual basis. We use Decennial

Census data on mean rents until the year 2000 and add the American Community Survey five-year

estimates for 2009 and 2014. We use rents instead of housing prices because this better reflects

the current cost of living in our model, whereas house prices presumably capitalize expectations of

future market conditions, including the future duration of a natural resource boom or bust.

Table 2 describes the data on county-level economic outcomes. A few counties merge or split

during our sample period. In these cases, we define counties at the most disaggregated level at

which data are observed for a consistent geographic area. This gives a population of 3075 counties

in the lower 48 states.

4.3 Manufacturing Census Microdata

The Census of Manufactures (CM) includes microdata for all manufacturing plants in the United

States. The data include the county where the plant is located, its four-digit SIC code, as well

as number of employees, total wage bill, value of materials inputs, and total revenues.13 The CM

microdata are available for 1963 and every five years beginning in 1967, i.e. 1972, 1977, ..., 2007.

We convert all industry codes to four-digit year-1987 SIC codes.

We use plant-level revenue productivity (TFP-R) estimates made available by Foster, Grim, and

Haltiwanger (2014) for years 1972-2007. These are standard Cobb-Douglas log-TFP-Rs estimated

in OLS, with separate production function coefficients for each industry.

For about 6000 relatively-homogeneous products defined at the 7-digit SIC level, the CM records

both physical production quantities and sales revenues.14 We divide revenues by physical output

to arrive at a plant-by-product-by-year dataset of manufacturing output prices. We drop imputed

13Employment and earnings data for non-responders and small plants with fewer than five employees is imputed
and/or marked as an “administrative record.” For these plants, we use the employment and earnings data drawn
from tax records, but we do not use any imputed variables.

14 These are the data used by Foster, Haltiwanger, and Syverson (2008) to study the distinction between physical

productivity and revenue productivity.
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data, as well as any reported prices that differ from the 7-digit median by a factor of more than

five.

We also construct a “county-level Manufacturing Census dataset” by collapsing across plants

to the county-by-year level.

4.3.1 Industry Classifications

When using the CM, we also examine subsets of manufacturers that may be differentially

affected by resource booms. We distinguish subsectors along two dimensions: tradability and

linkage to oil and gas.

Using the Commodity Flow Survey, Holmes and Stevens (2014) calculate a measure of trans-

portation costs for each four-digit SIC industry that is closely correlated with average product

shipment distance. Ready-mixed concrete, ice, and newspapers have the highest η, while watches,

x-ray equipment, space propulsion units, and aircraft parts have the lowest. We define a four-digit

SIC industry as “tradable” if the Holmes and Stevens ηloglog is less than 0.8, which corresponds

to an average shipment distance of approximately 500 miles. By this definition, 69 percent of

four-digit manufacturing industries are tradable.

We classify four-digit SIC industries as upstream or downstream of the oil and gas sector using

the Bureau of Economic Analysis Input-Output tables for 1987 (U.S. BEA 2014). For each industry,

we calculate the direct oil and gas output share (the share of output purchased by the oil and gas

sector) and the indirect oil and gas output share (the share of output purchased by the oil and

gas sector through an intermediate industry), and we define the “upstream linkage share” as the

sum of these two quantities. We define an industry as “upstream” of oil and gas if this upstream

linkage share is larger than 0.1 percent. An industry is “downstream” if the oil and gas input

cost share is larger than 0.1 percent.15 We refer to an industry as “non-linked” if it is neither

upstream nor downstream. Using such small cutoff values in defining upstream and downstream

is conservative in the sense that “non-linked” industries have very limited linkage to oil and gas

and thus should not be directly affected by that sector. 27 percent of industries are upstream, 2.5

percent are downstream, 73 percent are non-linked, and 2.1 percent (largely chemical plants) are

both upstream and downstream. Appendix Table A2 presents the most-linked upstream industries

(such as oil and gas field machinery and equipment, cement, lubricants, chemicals, and pipes) and

downstream industries (such as petroleum refining, fertilizers, chemicals, and plastics).

15 We do not add the analogous “indirect input share” because this is primarily a measure of electricity intensity,

given that the electricity generation sector uses substantial amounts of natural gas.

18



5 Empirical Strategy

5.1 County-Level Data

As suggested by the model, our initial regressions use county-level panel data, measuring differ-

ences in economic outcomes for higher- vs. lower-endowment counties through the boom and bust

cycles between 1969 and 2014. We use separate strategies to estimate relative effects vs. absolute

effects, which we denote by τ r and τa, respectively. In Appendix A.3, we use the Rubin Causal

Model to show formally how τ r and τa translate from the two-county model to the many-county

empirical setting. Intuitively, τ r is the effect of a resource boom on the average difference in out-

comes between higher- vs. lower-endowment counties. General equilibrium effects and other types

of geographic spillovers are (by definition) part of the relative effect. By contrast, τa is the average

treatment effect on the treated: the average across counties of each county’s difference in potential

outcomes if it had higher vs. lower endowments. We must control for geographic spillovers when

estimating the absolute effect.

Define Yct as an outcome in county c in year t, and define Y0c as a vector of two baseline

values of the outcome from two different years at the beginning and end of the 1960s, with separate

coefficients µt for each year of the sample.16 Also define φdt as a vector of Census division-by-year

indicator variables. To illustrate the relative effects of resource booms, we begin by graphing the

estimates of τ rt from the following equation, where the subscript t on τ rt indicates that separate

coefficients are estimated for each year of the sample:

lnYct = τ rt Rct + λRct + µt ln Y0c + φdt + εct, (11)

with 1969 as the omitted year in τ rt . The estimated τ rt show how outcomes such as population

and wages covary with oil and gas endowments Rct in each year. For example, with population or

wages as the outcome, Prediction 1 is that τ̂ rt should be relatively large during the boom of the late

1970s, as wages rise in counties with higher Rct and population migrates to those counties. More

generally, the τ̂ rt for population and wages should covary with national oil and gas employment,

both rising during booms and falling during busts. We omit the τ rt for 1969, so λ measures the

association between endowments and the outcome in 1969, while the τ rt measure the difference

between the associations in year t and in 1969.

16When the outcome Yct is population, Y0c is county c’s population in 1966 and 1960, from the U.S. Census Bureau.
When the outcome is employment or earnings per worker, Y0c is county c’s values of that variable for 1968 and 1964,
from County Data Books. There are no housing price or rent data available for 1950 or 1960, so when the outcome
is housing rents, Y0c is 1940 mean rents and county c’s earnings per worker in 1968 and 1964. In regressions using
the county-level Manufacturing Census dataset, Y0c is the 1967 and 1963 values of Yc. Including two logged baseline
values and allowing their coefficients to vary by year means that we control for how baseline levels and trends in lnY
are associated with lnY in any later year. We add one to each variable before logging so that zero values do not
become missing. The decision of how to address zeros makes little difference because there are very few zeros in the
data.
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This intuition suggests a “shift-share” regression in the spirit of Bartik (1991), in which our key

independent variable is the interaction of county-level oil and gas endowment Rct with time-series

variation in national oil and gas employment, denoted Et. For our primary estimates, we use a

differencing approach instead of fixed effects, because errors εct are sufficiently serially correlated

that differences are more efficient. Our specification to estimate relative effects is:

∆ lnYct = τ rRct∆ lnEt + λRct + µt ln Y0c + φdt + εct. (12)

This and all other regressions use robust standard errors, clustered by state. Because Y and

E are logged, τ is the differential elasticity of outcomes with respect to Et for counties with one

standard deviation additional endowment per square mile.

Equation (12) provides an unbiased estimate of the relative effect τ r if Rct∆ lnEt ⊥ εct |
{Rct, ln Y0c, φdt}, i.e. as long as resource booms are uncorrelated with unobserved economic trends,

conditional on baseline outcomes and other controls. The fact that our sample covers multiple

booms and a bust means that ∆ lnEt increases, then decreases, then increases again in partic-

ular years. It is difficult to imagine a confounder that has this same particular time trend and

differentially affects resource-abundant counties.

The absolute effect τa can be identified only under some additional assumption about the

structure of spillovers; see Manski (2013). In our context, most geographic spillovers are local: for

example, people are more likely to move across the state for a job than across the country. We

thus assume that geographic spillovers from other counties scale with the distance from county c,

and that counties outside a maximum radius of 400 miles are unaffected. Specifically, we calculate

total oil and gas endowment (in units of dollars) for all other counties with centroids within eight

different doughnuts around county c: 0-50, 50-100, ... , and 350-400 miles. We denote this total

endowment in doughnut d around county c as Rctd, where the t subscript again reflects the fact

that we use early endowment until the year 2000 and total endowment thereafter. The following

specification estimates the absolute effect:

∆ lnYct = τaRct∆ lnEt +
8∑
d=1

[νdRctd∆ lnEt + ϑdRctd] + λRct + µt ln Y0c + φdt + εct. (13)

In this equation, νd represents the effect of additional endowment in doughnut d on a county’s

economic outcomes. This specification is analogous to the Miguel and Kremer (2004) approach to

estimating geographic spillovers. Clarke (2015) shows that this provides an unbiased estimate of τa

if there are no spillover effects outside the maximum radius. This assumption would be violated if,

for example, cities such as Denver and Houston grow during the boom as they provide management

and financing for business operations in far-away counties. We consider this particular concern in
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Section 6.7, and in general we present the absolute effects estimates with additional caution.

5.2 Census of Manufactures Microdata

We also use plant-level Census of Manufactures microdata to estimate how changes in resource

booms affect continuing plants. We focus on relative effects so as to not need to impose assumptions

about the nature of geographic spillovers. In the estimating equation below, f indexes plants,

c indexes counties, λnt denotes the full interactions of four-digit SIC codes and years, and the

difference operator ∆ now reflects a 5-year difference between rounds of the Census of Manufactures.

The regression is:

∆ lnYfct = τ rRct∆ lnEt + βRct + φdt + λnt + εfct. (14)

5.3 Long Differences

Finally, we also use a long difference specification to test for pre-1973 trends and measure long-term

effects of the boom and bust of the 1970s and 1980s. To do this, we construct a county-level (not

county-by-year) dataset of long differences ∆ lnYc and regress this on endowment Rearlyc , controlling

for two baseline outcomes ln Y0c and for census division fixed effects φd:

∆ lnYc = τ rRearlyc + µ ln Y0c + φd + εc. (15)

6 Results

In this section, we present the results of the five empirical tests suggested at the end of Section 3,

illustrating the possible Dutch Disease chain of events. We first present relative effects in Sections

6.1 through 6.6, including initial conditions and pre-1973 trends, effects on county-level aggregates,

effects on the manufacturing sector, and long-term effects. In Section 6.7, we estimate geographic

spillovers and absolute effects, and in Section 6.8 we estimate the welfare effects of resource booms.

6.1 Initial Conditions and Pre-1973 Trends

Table 3 describes initial conditions before the 1970s oil boom. Of course, these are “initial con-

ditions” only in the sense that our main sample begins at the end of the 1960s. Most counties

and states that produced oil and gas during the 1970s boom had already been producing for many

years, so their local economies may have already been shaped by oil and gas abundance. The first

two rows present population and total employment data from the 1969 REIS, while the remaining

five rows show manufacturing employment from the 1967 Census of Manufactures. Column 1 shows

the mean across all 3075 counties in the data. Manufacturing was about one-fifth of employment
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at the time. Within manufacturing, 73 percent is “non-linked” by our conservative definition. Of

non-linked employment, 73 percent is tradable by our definition, while the remainder is local.

Column 2 shows coefficients and standard errors from regressions of natural logs of each vari-

able on oil and gas endowment per square mile Rearlyc , controlling for census division fixed ef-

fects. Endowments are positively and significantly correlated with population and employment,

and positively but not significantly correlated with manufacturing employment. Consistent with

the Michaels (2010) results for several southern states, this implies that resource-abundant coun-

ties had grown faster over the decades since they began producing oil and gas. The confidential

Census data show that the manufacturing sector correlation depends heavily on the type of man-

ufacturing. A one standard deviation increase in oil and gas endowment is associated with an 8.9

percent increase in linked manufacturing employment. By contrast, the relationships between en-

dowments and employment in other manufacturing subsectors are insignificant, and point estimates

are negative.17

As Figures 1 and 2 in Section 2 showed, oil and gas prices and employment were relatively

steady between 1969, when our main sample begins, and the 1973 oil price shock. The 1969-1972

period is thus an opportunity for “placebo tests”: given that national oil and gas activity was rela-

tively stable, changes in economic outcomes should be uncorrelated with oil and gas endowments,

conditional on our standard control variables. Table 4 provides such tests: each column presents

a regression of the 1972-1969 difference in a logged outcome from the REIS on early endowment

Rearlyc , controlling for census division indicators and controls for baseline levels ln Y0c, as formal-

ized in Equation (15). The absence of pre-1973 trends supports our causal interpretation of the

association of resource abundance with changes in outcomes during resource booms.18 Of course,

even if there were monotonic trends associated with resource abundance, our identification would

still be credible because it exploits non-monotonic changes in the oil and gas sector: a boom, a

bust, and a boom over a 46-year period.

6.2 Relative Effects on County-Level Aggregates

Prediction 1 of the model is that natural resource booms increase local population and wages,

and this prediction is important because the wage increase is the first step in the potential Dutch

Disease mechanism. How do oil and gas booms differentially affect these county-level aggregate

economic outcomes for counties with higher vs. lower endowments? Figure 5 presents the estimates

17Including division fixed effects does affect the magnitudes and even the signs of these correlations. This is partially
because as the map in Figure 3 shows, a large amount of oil and gas is in sparsely-populated Rocky mountain states.
The sensitivity of the cross sectional correlations to the inclusion of such controls emphasizes the importance of
exploiting time series variation in oil and gas booms.

18The table includes five of the six county-level outcomes that we consider in Tables 5, 8, and 10. The sixth is
housing rents, which we cannot test in this framework because it is not observed annually (and furthermore is not
available for 1950 or 1960).
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of τ rt from Equation (11) for employment, population, and earnings per worker using the REIS data.

Our key time-series variable Et (national oil and gas employment) is plotted in gray against the right

axis. Each of the outcomes is highly procyclical with the resource boom. The figure also illustrates

the dynamic adjustment to a local economic shock highlighted by Blanchard and Katz (1992). As

the resource sector expands, total employment and wages rise immediately. Population adjusts

more slowly, however, meaning that the short-run effects of a resource boom are to increase wages

and decrease unemployment. Within one to two years, people migrate in search of higher wages,

and this migration moderates wage changes. To account for this delayed population adjustment,

we use the one-year lag of ∆ lnEt in all regressions with population as the outcome. Appendix

Figure A3 plots each outcome separately and includes confidence intervals.

Table 5 presents formal estimates of τ r, the relative effects of oil and gas booms, using Equation

(12).19 The positive coefficients mean that outcomes in higher-endowment counties are statisti-

cally significantly more procyclical with national oil and gas employment than in lower-endowment

counties. In other words, a boom significantly increases relative growth, and a bust significantly

decreases relative growth. A boom that increases national oil and gas employment by 100 log

points increases relative population, employment, housing rents, and earnings per worker by ap-

proximately 1.19, 2.82, 2.70 and 1.79 percent, respectively, for counties with one standard deviation

additional endowment.

There are several reasons why an increase in county average earnings per worker during a

resource boom might not translate to an increase in manufacturers’ labor input costs. First, average

labor quality could change during a resource boom. If higher-skill workers enter the labor force

during a resource boom, either by transitioning from unemployment or by migrating from other

counties, this could cause average earnings per worker to increase even as wages are unchanged for

workers of the same skill type. Second, labor input per worker could change: if people work more

hours during resource booms, earnings per worker would increase even if unit labor costs did not.

In Appendix A5, we use Current Population Survey microdata to address these concerns. The

CPS records hourly wages and worker demographics. Using these data, we find estimates compara-

ble to those in Table 5. Controlling for observable and unobservable worker characteristics does not

statistically significantly change the estimates, and we find no effect of resource booms on average

hours worked.

A third reason why county average wages or earnings per worker might not affect manufacturers

is that manufacturing workers may be imperfectly substitutable with other workers. In the extreme,

manufacturing wages could even be completely unaffected, even as county average wages rise. Using

the REIS data, Column 5 of Table 5 shows that relative manufacturing earnings per worker are

19The population regression in column 1 has 3075 fewer observations than the employment regression in column 2
because we lose one year of data when we use the one-year lag of ∆ lnEt. The housing rent sample size is smaller
because we observe this variable approximately every ten years instead of every year. Manufacturing earnings per
worker and manufacturing employment have smaller sample sizes due to the REIS non-disclosure protocols.
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also procyclical with resource booms. The coefficient is smaller, but not statistically different, than

the coefficient in column 4. In Appendix A5, the point estimates of τ r for manufacturing workers

are actually larger than for the average worker, although this again is not statistically different.

Appendix D presents further robustness checks. Appendix Table A6 shows that the results are

similar when using Rearlyc or Rtotalc in all years in place of Rct, measuring resource boom intensity by

national-level oil and gas wage and salary employment or oil and gas prices instead of total oil and

gas employment, or using an analogous fixed effects estimator instead of a difference estimator.20

In Appendix Table A7, we show that for most of the six main outcomes, the overall procyclicality is

driven both by increases during oil and gas booms and decreases during busts, although coefficients

tend to be smaller for the post-2001 period. We have also constructed nationwide county-level coal

endowment data analogous to our oil and gas data, which we use to study the effects of coal booms

and busts in Appendix Table A8. Results in our nationwide data are broadly consistent with the

Black, McKinnish, and Sanders (2005a, 2005b) estimates for several eastern states. As shown in

Appendix Figure A4, however, the 1970s coal boom was about an order of magnitude smaller than

the 1970s oil and gas boom in terms of national employment growth. Thus, although the coal boom

occurred in a similar period and in some of the same counties as the oil and gas boom, controlling

for its effects has very little impact on our estimates of τ r from oil and gas booms.

Per the model’s Prediction 2, the magnitude of a resource boom’s effects on tradable goods

producers depends on the magnitude of the wage increase. The coefficients for Figure 5 show that

during the second oil and gas boom in our sample (2007-2014), earnings per worker average 2.3

percent higher than their 1969 or 2002-2003 levels in counties with one standard deviation additional

endowment. Should we think of this relative increase as large or small? We can benchmark these

magnitudes in three ways.

First, given that the average labor input revenue share in manufacturing is on the order of 0.25,

total costs increased by 0.6 percent of revenues over the 2007-2014 period. While this is small, it

represents a much larger share of variable profits, and it may be exacerbated by increases in costs of

any locally sourced materials inputs. Second, for 2011, the coefficient of variation across counties

in earnings per worker is 21.7 percent. Thus, an increase in earnings per worker of 2.3 percent

represents 0.11 of a standard deviation.

Third, we can compare the cross-county wage increase to estimates from the cross-country Dutch

Disease literature. Sachs and Warner (2001, page 834) show that natural resource exports are

strongly negatively correlated with GDP growth and argue that Dutch Disease (through currency

appreciation) is the primary mechanism. They estimate that near the peak of the boom in 1979, a

10 percentage point increase in a country’s share of natural resource exports in GDP was associated

with a 6.9 percent increase in price level. For context, Nigeria’s natural resource exports equaled

20When using oil and gas prices to measure booms, coefficients have comparable t-statistics but are mechanically
smaller, because oil and gas booms historically have entailed larger proportional increases in oil and gas prices than
in national oil and gas employment. This can be seen by comparing Figure 1 to Figure 2.
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10 percent of GDP, and one standard deviation across countries is about eight percent. Thus, a one

standard deviation increase in natural resources leads to about a 5.5 percent increase in exporters’

local costs. This is about 2.4 times larger than the 2.3 percent cross-county increase we estimate

for 2007-2014.

6.3 Relative Effects on County-Level Manufacturing Employment

After wages rise, that the next step of the Dutch Disease mechanism is that the tradable sector

is crowded out, per the model’s Prediction 2. Is that what happens in U.S. counties?

Figure 6 presents estimates of Equation (11) for manufacturing employment. There is no evi-

dence of crowding out. To the contrary, relative manufacturing employment in resource-abundant

counties is clearly procyclical with oil and gas booms. Manufacturing employment grows during

the boom of the 1970s, drops off during the bust in the late 1980s, and grows again during the

boom of the 2000s. In counties with one standard deviation additional endowment, manufacturing

employment was two to three percent larger at the peaks of the two booms in our sample, compared

to the 1969-1972 pre-boom period.

Returning to Table 5, Column 6 presents presents formal estimates of τ r for manufacturing

employment. A boom that increases national oil and gas employment by 100 log points increases

relative manufacturing employment by approximately 2.93 percent in counties with one standard

deviation larger endowment. Remarkably, this point estimate is slightly larger than the estimate

for total employment across all sectors presented in column 2.

6.4 County-Level Manufacturing Census Dataset: Subsectors and Alternative

Outcomes

In the context of Prediction 2, manufacturing’s procyclicality with resource booms suggests that

a significant share manufacturing is locally-traded, and that growth in locally-traded manufacturing

subsectors outweighs any contraction in traded subsectors. Do the data bear this out? Table 6

presents estimates of Equation (12) using the county-level Manufacturing Census dataset, which

we constructed by collapsing the CM microdata across plants to the county-by-year level. Each

panel presents a different outcome, while each column presents estimates with outcomes collapsed

from different manufacturing sub-sectors.

Column 1 presents estimates for all manufacturing plants. The first panel examines employment,

confirming the result from Table 5 that the sector is procyclical with oil and gas. The point

estimates are slightly larger in the CM data but not statistically different. The second and third

panels consider revenues (“total value of shipments”) and investment. Revenues are even more

procyclical than employment, and investment is even more procyclical than revenues.

Column 2 presents analogous results for plants that are upstream or downstream of oil and

gas. Columns 3 considers non-linked plants, and columns 4 and 5 divide the non-linked plants into

subsamples that produce more vs. less tradable goods. Results are generally consistent with the
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model’s Prediction 2. Non-linked and local industries are clearly procyclical with resource booms.

In contrast, column 5 suggests that tradable subsectors are countercyclical. Point estimates for all

variables other than investment have similar magnitude but opposite signs as the point estimates

for local non-tradables, although revenue results are more noisy. Crucially, these results arise for

well-defined subsets of manufacturing plants that would not be possible to isolate in aggregate data.

Do firms adjust to resource booms on the “intensive margin,” by hiring more workers within

the same plant, or on the “extensive margin,” by opening and keeping open more plants? Because

opening physical plants may involve larger sunk costs than hiring workers into existing plants, this

could affect the persistence of a resource boom’s effects. In the bottom two panels, we see that

different sub-sectors adjust differently on the intensive vs. extensive margins. In column 2, the

linked sector adjusts largely on the extensive margin, with a much larger coefficient on number of

plants than on employees per plant. In contrast, the non-linked sectors adjust more on the intensive

margin, with the non-linked local sector significantly increasing the number of employees per plant,

and the non-linked tradable sector significantly contracting on that margin.

6.5 Effects of Resource Booms on Manufacturing Revenue Productivity

In this section, we first study the contemporaneous effects of resource booms on manufacturing

productivity. These effects could be an important part of the mechanism making aggregate manu-

facturing wages and employment procyclical with resource booms. We then study the evolution of

productivity in the highly tradable manufacturing subsectors.

Table 7 presents estimates of the contemporaneous effects of oil and gas booms on manufacturing

revenue productivity, using Equation (14) with plant-level data from the Census of Manufactures.

The dependent variable is first differences of the natural log of outcomes within surviving plants over

the five year periods between each CM. As in the previous table, each panel examines a different

outcome, and the columns include the same subsets of plants. For each outcome, we present two

sets of estimates: sub-table (a) has only census division-by-year fixed effects, while sub-table (b)

also includes four-digit industry-by-year effects.

The first and second panels analyze two different measures of revenue productivity: value added

per worker and revenue total factor productivity. Both tell qualitatively similar stories. For the

manufacturing sector overall, revenue productivity is positively associated with oil and gas booms.

These effects are smaller for TFP-R than value added per worker, although the value added effects

are substantially attenuated by including industry-year controls. Effects appear to be stronger

for local industries and those linked to the oil and gas sector. By contrast, in non-linked and

tradable industries, neither measure of revenue productivity covaries with resource booms, with

point estimates close to zero.

One concern might be that even though these are within-plant estimates, the apparent pro-

ductivity increase for linked and local sectors could be driven by selection. Specifically, if resource
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booms allow lower-productivity firms to operate during booms, a boom would allow more firms

to remain in operation even if they receive a negative productivity shock. However, this potential

selection effect would bias against our results, which show that the average continuing plant in

linked and non-linked local industries experiences a productivity increase during a boom.

As Foster, Haltiwanger, and Syverson (2008) highlight, the revenue productivity effects in Table

7 could reflect either higher markups or higher physical productivity. Indeed, our model predicts

higher prices for locally traded goods during resource booms. Given that the CM does not have

physical output data for most plants, this cannot be tested conclusively. In Appendix Table A9, we

show that resource booms do not statistically significantly affect prices in the subset of plants that

report physical output. Because prices can only be calculated for relatively homogeneous goods,

however, this subset of plants is both relatively unusual and relatively small. Thus, the results only

tentatively suggest that the TFP-R effects may reflect physical productivity.

If the results in Table 7 do reflect physical productivity, what might be the mechanism? A

natural starting point is reductions in Marshall’s (1890) three types of transport costs: goods,

people, and ideas. “Goods” linkages could increase productivity if local economic growth allows

goods to be procured from and delivered to more nearby suppliers and buyers, either in the resource

sector or in other procyclical local sectors. This is consistent with Table 7 results, which show TFP-

R growth in linked and local sectors, but not in tradables.

Worker flows seem to be less important than in Greenstone, Hornbeck, and Moretti (2010) or

Serafinelli (2012). For the entire CPS-MORG panel, which includes 281,301 manufacturing workers,

there are only 220 that transition from oil and gas to manufacturing. Of these, 130 go to refining,

and in every other two-digit industry, only around 0.001 percent of incoming workers come from oil

and gas. The “ideas” channel seems even less likely: much of the oil and gas sector’s innovation does

not occur at the drilling site, and much of it seems unlikely to translate to non-resource industries.

Beyond the three classical transport costs, several other channels might contribute to the pro-

ductivity effects. For example, plant-level economies of scale could be relevant, perhaps due to

higher capacity utilization, although the CM microdata do not suggest strong scale economies.

Furthermore, local government actions, from tax cuts to the infrastructure improvements studied

by Michaels (2010), might improve measured productivity. However, this channel does not seem

particularly important given the near-zero effects on tradable sector plants that would presumably

also benefit. Tax cuts and infrastructure take time to implement, so they might be more relevant

in a long-term cross-sectional analysis like Michaels (2010) than in these relatively short-term dif-

ference estimates. In summary, the contemporaneous TFP-R gains from natural resource booms

are likely driven by some combination of higher output prices and lower transport costs for inputs

and outputs.

Table 6 showed that only the highly tradable manufacturing subsectors appear to contract

during natural resource booms. Thus, if we are to see any evidence of Dutch Disease, it will be in
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these subsectors. Per the model’s Prediction 3, the next step in the Dutch Disease chain of events

would be that the tradable sector contraction leads to reduced productivity. Is this what we see in

the data, or is productivity unaffected?

Figure 7 shows the evolution of employment and TFP-R for the tradable manufacturing sub-

sectors, presenting the τ rt coefficients from estimates of Equation (11) in county-by-year data. (We

calculate county-level TFP-R by taking the mean across all plants in the county-year cell.) Em-

ployment is generally countercyclical, as suggested by the negative coefficient in Table 6: relative

employment in resource-abundant counties contracted during the boom of the 1970s and 1980s

before recovering through the 1990s. Thus, if there were foregone learning-by-doing effects, relative

productivity would also eventually become negative. In reality, however, we see that relative TFP-

R is never negative, implying no significant loss of learning-by-doing spillovers. With 90 percent

confidence, we can rule out the TFP-R dropped more than 0.39 percent in any census year in coun-

ties with one standard deviation additional endowment. Connecting to Prediction 3, this shows

that any effects of resource booms on tradable sector productivity are economically and statistically

insignificant. Thus, this key link in the possible Dutch Disease chain of events is broken.

6.6 Long-Term Effects

Predictions 3 and 4 highlight the importance of measuring the long-term effects of resource booms.

Prediction 3 states that if either local sector learning-by-doing θl or agglomeration Λ is positive,

local sector productivity will be higher in higher-endowment counties after the boom is over. For the

tradable sector, post-boom relative productivity effects depend on whether foregone learning-by-

doing outweighs the agglomeration effect; Figure 7 showed that the overall effects are insignificant.

Of course, in a more general context outside of our model, a resource boom could have long-term

effects through other mechanisms, such as adjustment costs, labor market search frictions, or other

frictions that can deepen recessions following booms, as well as persistent changes in environmental

quality or development of local infrastructure and public goods. These issues motivate empirical

tests of the long-term impacts of oil and gas booms on productivity and other outcomes.

The most recent boom and bust cycle is not complete as of the end of our sample in 2014.

However, we can measure the relative effects of the 1970s and 1980s boom and bust, as of the end

of the 1990s—safely before the more recent boom began. To do this, we use the long differences

regression in Equation (15), regressing the change in log outcomes between 1972 and 1997 on Rearlyc ,

controlling for baseline outcomes ln Y0c and census division fixed effects φd.

Table 8 examines the long-term effects of the boom and bust on log TFP-R. For the top

panel, we collapse plant-level log TFP-R to county means and difference between 1972 and 1997 to

generate the long difference, then estimate Equation (15). The bottom panel of Table 8 instead uses

plant-level data for 1972 and 1997, where we run a difference-in-differences estimator, controlling

for county fixed effects and 4-digit SIC-by-year effects and reporting the interaction of the 1997
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year indicator with resource endowment Rearlyc . Both specifications find no significant differences

in productivity in any sector. Thus, the TFP-R effects measured in Table 7, plus any potential

longer-term effects, cancel out over the boom and bust of the 1970s and 1980s.

Table 9 presents estimates of Equation (15) for each of the six main county-level outcomes from

Table 5. To match the CM years, we also use 1997-1972 long differences, except for housing rents,

where we use 2000-1970. The results here are foreshadowed by Figure 5, as well as Appendix Figure

A3: these figures show that the coefficients in the late 1990s are very close to zero, implying that

the bust has unwound the effects of the boom. Indeed, for all six outcomes, the long difference

results confirm zero long-term effects of the 1970s and 1980s boom and bust.

In the context of our model, these results also provide insight as to whether resource booms

have lasting impacts on amenities such as environmental quality. If there are no productivity

differences, then the model predicts that population and wages differ if and only if there are amenity

differences.21 The fact that there are no statistically significant long-term effects on productivity,

population, or wages therefore suggests that people perceive equal amenities in resource-abundant

counties. Thus, the oil and gas boom and bust of the 1970s and 1980s had no detectable negative

long-term effects on average amenities. This counters concerns about potential harm from oil and

gas extraction using conventional technologies. However, we emphasize that our estimates from the

conventional boom of the 1970s and 1980s do not generalize to some current questions about the

environmental effects of fracking.

6.7 Geographic Spillovers and Absolute Effects

So far, we have studied the relative effects τ r of natural resource booms on higher- vs. lower-

endowment counties. We now estimate geographic spillovers and absolute effects τa, using Equation

(13). While the model focuses on general equilibrium effects induced by migration, geographic

spillovers could also occur through other channels. For example, producer states may redistribute

tax revenues to their non-producer counties, and there may be business demand spillovers as firms

in non-producer counties expand to serve higher demand in nearby producer counties.

The expected sign of the spillovers depends on the outcome and the channel. Migration and

business demand spillovers both suggest positive wage spillovers to nearby counties. By contrast,

direct migration predicts negative population spillovers, but business demand spillovers increase

labor demand in nearby counties, which would draw migrants from other more distant counties.

Even if the sign of the geographic spillover is known, the sign of the difference between τ r and τa

is ambiguous, depending on the geographic arrangement of treatment units in the sample, i.e. the

geographic clustering of oil and gas endowments across the United States. Imagine momentarily

that the average treatment effect on the treated τa is positive. In one extreme, if treatment counties

21See Equations (29) and (30) in Appendix A.
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are uniformly geographically dispersed, τ r < τa with positive geographic spillovers, and τ r > τa

with negative geographic spillovers. Intuitively, positive spillovers increase outcomes for many

control units, attenuating the difference between treatment and control, and negative spillovers

reduce outcomes for many control units, increasing the difference between treatment and control.

In another extreme, however, treatment counties could be clustered together such that all ge-

ographic spillovers impact other treatment counties, with no impact on control. In this case, we

have the opposite result: τ r > τa with positive spillovers, and τ r < τa with negative spillovers.

Intuitively, positive spillovers increase outcomes for treatment units only, magnifying the difference

between treatment and control, while negative spillovers reduce outcomes for treatment units only,

reducing the difference between treatment and control. Reality is somewhere between these two ex-

tremes: figures 3 and 4 show that oil and gas endowments are moderately geographically clustered.

Thus, τa could be larger or smaller than τ r.

Table 10 presents estimates of τa from Equation (13) for the six main county-level outcome

variables. In each case, τ̂a is smaller than the corresponding τ̂ r from Table 5. Figure 8 presents the

estimates of νr for each of the eight different distance doughnuts. Spillovers from nearby counties

are statistically significantly positive for all outcomes.

Population is close to a zero-sum game, as resource booms will have limited effect on total

nationwide population. This explains why population spillovers in the top left panel of Figure 8 tend

negative from counties with centroids between 300 and 400 miles from county c: the migration into

producer counties and other nearby counties has to come from more distant counties. Consistent

with reduced population (and thus reduced housing demand), housing rents also tend negative in the

300-400 mile doughnuts. For earnings per worker and manufacturing earnings per worker, spillovers

are statistically zero after about 150 miles. This is roughly consistent with Feyrer, Mansur, and

Sacerdote (2015), who find that drilling during the recent fracking boom only impacted wages and

employment in other counties within about a 100-mile radius.

As discussed in Section 5, in order for the τa from Equation (13) to be an unbiased estimate of

the absolute effect, there must be no spillover effects not captured in the empirical model – i.e. no

spillovers from counties more than 400 miles away. This is particularly important for earnings per

worker and housing rents, given that these variables enter our welfare analysis in the next section.

The statistically zero effects for these outcomes from endowments more than 150 miles from county

c supports the identifying assumption. One additional factor that could violate this assumption is

if large cities such as Denver or Houston benefit from resource booms by providing management,

financial services, or inputs to firms in distant counties. To test this, Appendix Table repeats the

estimates in Table 10, after excluding counties whose populations were larger than 250,000 people

in 1960. The estimates are almost exactly the same.
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6.8 Social Welfare Effects

In our final set of empirical results, we present the social welfare effects of oil and gas booms over

our sample. In our model, the zero long-term impacts on productivity documented in Section

6.6 already imply that resource booms increase welfare in both relative and absolute terms. Two

questions remain. First, could there be mechanisms not considered in the model that cause resource

booms to reduce welfare? Second, quantitatively how large are the welfare effects?

We first quantify effects on “real earnings,” i.e. earnings net of the increase in local prices.

These equal welfare effects under the assumption that resource booms do not affect amenities. To

quantify real earnings effects, we combine the formal estimates of τ r and τa from Equations (12)

and (13) into an empirical analogue of the welfare formulas in Equations (5) and (7).22 Specifically,

beginning with Equations (5) and (7), we substitute empirical estimates τ̂ r for (wat−wbt) and other

relative effects, and τ̂a for (wat −wat(0)) and other absolute effects. We must also incorporate the

actual length and magnitude of booms and busts over our 1969-2014 sample. To do this, we

multiply the treatment effects by the sum of annual changes in national oil and gas employment

∆Et, where each annual change is weighted by (T − t + 1), the number of remaining years in the

sample. Dividing by 45 then gives the annual average effect. Thus, from the perspective of the 1969

policymaker, the average real earnings effect of natural resource booms and busts over 1969-2014

is

Ŵ =
1

45

T=2014∑
t=1970

[
δt−1969∆ lnEt · (T − t+ 1) · (τ̂earnings − ατ̂rent − βτ̂local)

]
, (16)

where τ̂ can be either τ̂ r or τ̂a. Because τ̂ is in log units, this formula approximates the percent

change in real earnings. We use δ = 1. Following Hornbeck and Moretti (2015), we assume that

the prices of all locally-traded goods move proportionally with housing prices, and we assume that

the expenditure share on local goods plus housing is α+ β = 0.3.

Table 11 presents results, with standard errors in parentheses. Column 1 presents relative

effects using τ̂ r, while column 2 presents absolute effects using τ̂a. The first two rows present

regression coefficients for earnings per worker and housing rents from Equations (12) and (13). For

housing rents, these are the same as the estimates in Tables 5 and 10. For consistency, we use

the same estimation sample (with data from 1970, 1980, 1990, 2000, 2009, and 2014) to estimate

both τ̂earnings and τ̂rent, so the coefficients for earnings per worker are slightly different than in the

previous tables. Row 3 shows that the relative and absolute real earnings gains from a boom causing

a 100 log point increase in national oil and gas employment are 1.6 and 0.7 percent, respectively.

22To see the intuition, notice that the relative earnings gains over our sample are the integral under the 1969-2014
earnings effects illustrated in Figure 5. To calculate the real relative earnings gains, we would then subtract off
the local good and housing expenditure shares times the integral under the equivalent figures for those goods. This
would then reflect the relative real earnings effect of one additional standard deviation oil and gas endowment over
the 1969-2014 period.
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Row 4 presents calibrations of Equation (16). The annual average real earnings gain from one

standard deviation additional oil and gas endowment is approximately 1.0 percent relative to other

counties during the boom, and approximately 0.4 percent relative to a county’s own counterfactual.

These real earnings gains equal social welfare gains only if resource booms do not affect ameni-

ties. As Muehlenbachs, Spiller and Timmins (2015) and others have shown, however, oil and gas

production may affect environmental quality. Equation (6) from the model shows that the sign of

the relative welfare effect is the same as the average population change. Intuitively, people migrate

to producer counties if and only if their utility is higher there. Row 5 of Table 11 presents estimates

of τ r and τa for population using the same sample of years as rows 1 and 2, and row 6 presents

calibrations of Equation (16) after substituting τ̂population for τ̂earnings−ατ̂rent− βτ̂local. That final

row shows that population averages approximately 0.8 percent higher in counties with one standard

deviation additional endowment over the full 1969-2014 period. Thus by this metric as well, oil

and gas endowments have increased relative welfare.

7 Conclusion

The dramatic oil and gas price changes and improvements in drilling technology over the past

15 years raise the important question of how resource booms and busts shape the economic ge-

ography of the United States. The agglomeration literature suggests that booms might bring

both short-term benefits and, due to persistent productivity spillovers, cause long-term economic

transformations in resource rich areas. Alternatively, there might instead be a “Natural Resource

Curse,” perhaps due to a version of the Dutch Disease mechanism in which wage increases crowd

out externality-generating manufacturing establishments. To test between these alternative mecha-

nisms, we combine a new panel dataset of oil and gas production and reserves with restricted-access

microdata from the Census of Manufactures to estimate how oil and gas booms have differentially

affected U.S. counties since the 1960s.

Our empirical results document that oil and gas booms significantly increase wages, even as

people migrate to producer counties. Notwithstanding, overall manufacturing employment, output,

and revenue productivity are actually procyclical with resource booms. Although resource booms

do seem to crowd out more highly-tradable manufacturing, there are no temporary or permanent

reductions in tradable subsectors’ revenue productivity. This implies that a key link in the Dutch

Disease chain of events is not active. Across outcomes, we see no “long-run” effects: by the end of

the 1990s, the boom and bust of the 1970s and 1980s had zero significant effects on TFP-R and other

key outcomes. Over the full 1969-2014 sample, a county with one standard deviation additional oil

and gas endowment averaged 1.0 percent higher wages when compared to less resource-abundant

counties, and 0.4 percent higher real wages compared to its own counterfactual.

What might be the relationship between these results and the cross-country estimates? Might

32



a comparable strategy in country-level data “generalize down” to the U.S., and might our results

“generalize up” to the cross-country setting? As discussed in Section 6, the currency appreciation

caused by country-level natural resource exports appears to be larger than the wage appreciation

caused by county-level oil and gas production. Furthermore, our estimates do not capture any

learning-by-doing spillovers that happen at the country level but not at the county level. Thus,

it is possible that the mechanism of crowding out plus foregone positive productivity spillovers is

more relevant for countries than for counties. On the other hand, while manufacturers are often

thought of as producing nationally- or internationally-traded goods, this paper echoes Holmes

and Stevens (2014) in highlighting how a meaningful share of manufacturers benefit from highly

localized demand growth. Since we find that natural resource booms exert positive spillovers to

manufacturers in the same county, they surely do so for manufacturers in the same country.

In summary, while post-1960 resource booms did not produce strong agglomerative forces, we

also find no evidence for a Dutch Disease mechanism in the United States. On net, our estimates

suggest that oil and gas abundance has increased welfare in producer areas in modern American

history.
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Tables

Table 1: Oil and Gas Endowments: Descriptive Statistics

Mean SD Max N>0

Oil (million barrels)

Production 1960-2011 33.4 229 8993 1141

Current proven reserves 2.58 43.5 2152 109

Current undiscovered reserves 7.11 41.0 878 1856

1960-2011 average price ($/barrel) 34.92

Natural Gas (billion cubic feet)

Production 1960-2011 273 1238 23183 1117

Current proven reserves 50.2 457 19676 239

Current undiscovered reserves 314 1471 51014 2282

1960-2011 average price ($/mcf) 3.20

1960 oil and gas endowment ($million/square mile) 3.1 9.1 209 2292

Notes: This table presents the components of total 1960 oil and gas endowment for the 3075 counties in
our sample. The 1960 oil and gas endowment is the product of physical quantities of oil and gas production
and reserves with their average prices over 1960-2011, divided by county land area. Prices are in real 2010
dollars.

Table 2: County-Level Outcomes: Descriptive Statistics

N Mean SD Min Max

Population (000s) 141,424 83.1 274 0.06 10,117

Employment (000s) 141,424 44.7 164 0.06 6088

Housing rent ($/month) 18,446 576 180 0 1795

Earnings per worker ($000s) 141,424 30.7 6.9 11.4 105

Manufacturing earnings per worker ($000s) 114,192 46.6 16.6 2.47 600

Manufacturing employment (000s) 114,238 7.0 24.7 0 950

Notes: Housing rent is from the 1970, 1980, 1990, and 2000 Decennial Censes and the 2009 and 2014 American
Community Survey five-year estimates. All other variables are from the Regional Economic Information
System, for years 1969-2014. Prices are in real 2010 dollars.
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Table 3: Baseline Employment Characteristics and Correlation with Oil and Gas Endowments

(1) (2)

Mean Association with

(000s) endowment Rearly
c

Population 63.1 0.073**

(0.023)

Total employment 29.2 0.080**

(0.022)

Manufacturing employment 5.99 0.028

(0.046)

Up/downstream manufacturing employment 1.65 0.089*

(0.052)

Non-linked manufacturing employment 4.35 -0.020

(0.049)

Non-linked local manufacturing employment 1.16 -0.017

(0.045)

Non-linked tradable manufacturing employment 3.19 -0.034

(0.062)

Notes: Population and total employment are from the 1969 REIS. Manufacturing employment is from the
1967 Census of Manufactures. Column 2 presents the coefficient of a regression of natural log of the listed
variable on early period oil and gas endowment Rearly

c , controlling for Census division fixed effects. Sample
size is 3075 counties. Robust standard errors in parentheses, clustered by state.

Table 4: Economic Trends Before the 1970’s Boom

(1) (2) (3) (4) (5)

Population Employment Earnings/ Mfg. earnings/ Mfg.

Outcome: worker worker employment

Endowment Rearly
c 0.000449 -0.00223 0.000340 -0.00189 -0.00614

(0.00110) (0.00162) (0.000815) (0.00219) (0.00790)

Observations 3,075 3,075 3,075 2,483 2,484

Notes: This table presents estimates of Equation (15). The dependent variable is the 1972-1969 change in
the natural log of the listed outcome. All regressions include census division indicators and controls for the
natural log of the outcome variable in two baseline years. *, **, ***: Statistically different from zero with
90, 95, and 99 percent certainty, respectively. Robust standard errors in parentheses, clustered by state.
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Table 5: Effects of Resource Booms on County-Level Outcomes

(1) (2) (3) (4) (5) (6)

Population Employment Housing Earnings/ Mfg. earnings/ Mfg.

Outcome: rent worker worker employment

∆ln(National oil&gas emp) 0.0119*** 0.0282*** 0.0270*** 0.0179*** 0.0108*** 0.0293***

×endowment (0.00201) (0.00607) (0.00754) (0.00510) (0.00376) (0.00724)

Observations 135,274 138,349 15,371 138,349 111,709 111,754

Notes: This table presents estimates of Equation (12). The dependent variable is the change in the natural
log of the listed outcome. All regressions include census division-by-year indicators and controls for year
interacted with natural log of the outcome variable in two baseline years. Population effects in column (1)
use the one year lag of ∆ln(National oil&gas employment). *, **, ***: Statistically different from zero with
90, 95, and 99 percent certainty, respectively. Robust standard errors in parentheses, clustered by state.

Table 6: Effects on Manufacturing Subsectors and Alternative Outcomes

(1) (2) (3) (4) (5)

All Upstream / Non-linked Non-linked Non-linked

downstream and local and tradable

Employment

∆ln(National oil&gas employment) 0.0351** 0.0463** .0181 0.0433*** -0.0327*

×endowment (0.0133) (0.0176) (0.0115) (0.00584) (0.0172)

Revenue

∆ln(National oil&gas employment) 0.0676*** 0.0489* 0.0456*** 0.0670* -0.0621

×endowment (0.0178) (0.0257) (0.0133) (0.0361) (0.0509)

Investment

∆ln(National oil&gas employment) 0.118*** 0.109** 0.0587* 0.0984*** -.00477

×endowment (0.0305) (0.0438) (0.0315) (0.0241) (0.0547)

Number of plants

∆ln(National oil&gas employment) 0.0212*** 0.0307*** 0.00741** 0.0123* -0.00955**

×endowment (0.00233) (0.00897) (0.00300) (0.00645) (0.00371)

Employees per plant

∆ln(National oil&gas employment) 0.00906 0.0106 0.00580 0.0297*** -.0316**

×endowment (0.0110) (0.00971) (0.0135) (0.00740) (0.0154)

Observations 24,600 24,600 24,600 24,600 24,600

Notes: This table presents estimates of Equation (12) for different outcomes (in rows) and manufacturing
subsectors (in columns), using county-by-Census year data. The dependent variable is the change in the
natural log of the listed outcome. All regressions include census division-by-year indicators and controls
for year interacted with natural log of the outcome variable in two baseline years. *, **, ***: Statistically
different from zero with 90, 95, and 99 percent certainty, respectively. Robust standard errors in parentheses,
clustered by state.
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Table 7: Effects of Resource Booms on Continuing Manufacturing Plants

(1) (2) (3) (4) (5)

All Upstream / Non-linked Non-linked Non-linked

downstream and local and

tradable

Value added per worker

∆ln(National oil&gas employment) 0.0131*** 0.00996** 0.0134*** 0.0201*** 0.00156

×endowment (0.00373) (0.00429) (0.00334) (0.00479) (0.00428)

Observations 1,140,000 388,000 752,000 379,000 372,000

Revenue productivity

∆ln(National oil&gas employment) 0.00240** 0.00226 0.00286*** 0.00393** -0.000565

×endowment (0.000951) (0.00149) (0.000967) (0.00163) (0.00129)

Observations 756,000 280,000 476,000 251,000 225,000

(a) No Industry Controls

Value added per worker

∆ln(National oil&gas employment) 0.00544*** 0.00512* 0.00489*** 0.00832*** 0.000680

×endowment (0.00182) (0.00297) (0.00152) (0.00166) (0.00350)

Observations 1,140,000 388,000 752,000 379,000 372,000

Revenue productivity

∆ln(National oil&gas employment) 0.00253** 0.00261** 0.00184 0.00377* -0.000448

×endowment (0.00115) (0.00121) (0.00181) (0.00197) (0.00182)

Observations 756,000 280,000 476,000 251,000 225,000

(b) With 4-digit Industry-by-Year Controls
Notes: This table presents estimates of Equation (14), using plant-by-Census year data. The dependent
variable is the change in the natural log of the outcome variable. All regressions include census division-by-
year indicators. Sample sizes are rounded to the nearest 1,000 due to Census disclosure rules. *, **, ***:
Statistically different from zero with 90, 95, and 99 percent certainty, respectively. Robust standard errors
in parentheses, clustered by state.
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Table 8: Long-Term Revenue Productivity Effects of the Boom and Bust of the 1970s and

1980s

(1) (2) (3) (4) (5)

All Upstream / Non-linked Non-linked Non-linked

downstream and local and tradable

County-level average log revenue productivity

Endowment Rearly
c 0.00145 0.00667 -0.0101 -0.00470 -0.00771

(0.00681) (0.0103) (0.00774) (0.00597) (0.00673)

Observations 2,769 2,033 2,710 2,525 2,260

Plant-level revenue productivity with 4-digit SIC-by-year controls

1(year=1997)×endowment Rearly
c 0.00132 -0.00108 0.00319 0.000743 0.00230

(0.00249) (0.00141) (0.00270) (0.00190) (0.00274)

Observations 338,000 116,000 222,000 110,000 112,000

Notes: The top panel presents estimates of Equation (15), using 1997-1972 changes in within-county mean
of log revenue productivity as the dependent variable. The bottom panel presents regressions using 1997 and
1972 data of plant-level log TFP-R on an interaction of a 1997 indicator variable with endowment Rearly

c ,
controlling for county fixed effects and 4-digit industry-by-year interactions. All regressions include census
division-by-year indicators. In the plant-level regressions, sample sizes are rounded to the nearest 1,000 due
to Census disclosure rules. *, **, ***: Statistically different from zero with 90, 95, and 99 percent certainty,
respectively. Robust standard errors in parentheses, clustered by state.

Table 9: Long-Term County-Level Effects of the Boom and Bust of the 1970s and 1980s

(1) (2) (3) (4) (5) (6)

Population Employment Housing Earnings/ Mfg. earnings/ Mfg.

Outcome: rent worker worker employment

Endowment Rearly
c -0.0000928 -0.00117 -0.00666 0.000545 -0.00980 -0.00271

(0.00475) (0.00572) (0.00407) (0.00178) (0.00660) (0.0151)

Observations 3,075 3,075 3,075 3,075 2,483 2,484

Notes: This table presents estimates of Equation (15), using 1997-1972 changes in log outcomes as the
dependent variable. (Because housing rents are not available in 1997 or 1972, the housing rent regression
uses the 2000-1970 change.) All regressions include census division-by-year indicators and controls for year
interacted with natural log of the outcome variable in two baseline years. *, **, ***: Statistically different
from zero with 90, 95, and 99 percent certainty, respectively. Robust standard errors in parentheses, clustered
by state.
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Table 10: Absolute Effects of Resource Booms on County-Level Outcomes

(1) (2) (3) (4) (5) (6)

Population Employment Housing Earnings/ Mfg. earnings/ Mfg.

Outcome: rent worker worker employment

∆ln(National oil&gas emp) 0.00692*** 0.0162*** 0.0120* 0.0102*** 0.00176 0.0166**

×endowment (0.00155) (0.00579) (0.00702) (0.00304) (0.00212) (0.00626)

Observations 135,274 138,349 15,371 138,349 111,709 111,754

Notes: This table presents estimates of Equation (13). The dependent variable is the change in the natural
log of the listed outcome. All regressions include census division-by-year indicators and controls for year
interacted with natural log of the outcome variable in two baseline years. Population effects in column (1)
use the one year lag of ∆ln(National oil&gas employment). *, **, ***: Statistically different from zero with
90, 95, and 99 percent certainty, respectively. Robust standard errors in parentheses, clustered by state.

Table 11: 1969-2014 Welfare Gains from Resource Booms

(1) (2)

Row Parameter Relative effects Absolute effects

1 τ̂earnings 0.024 0.011

(0.007) (0.003)

2 τ̂rent 0.027 0.012

(0.008) (0.007)

3 τ̂earnings − 0.3 · τ̂rent 0.016 0.007

(0.005) (0.001)

4 Annual average real earnings gain (log points) 0.010 0.004

(0.003) (0.001)

5 τ̂population 0.012 0.008

(0.002) (0.002)

6 Annual average population gain (log points) 0.008 0.005

(0.001) (0.001)

Notes: Rows 1, 2, and 5 present estimates of Equation (12) and (13) in columns 1 and 2, respectively, using
data from 1970, 1980, 1990, 2000, 2009, and 2014. Robust standard errors in parentheses, clustered by state.
Rows 3, 4, and 6 present additional calculations, with standard errors from the Delta method.
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Figures

Figure 1: Real Oil and Gas Prices
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Notes: Oil and gas price data are from the Energy Information Administration. Prices are in real 2010
dollars.

Figure 2: National Oil and Gas Employment and Production
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Notes: Oil and gas production data are from the Energy Information Administration. Oil and gas employ-
ment data are from the Regional Economic Information System. We switch from the SIC to the NAICS
classification system in 2000 and plot both data points in that year.
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Figure 3: Early Endowment per Square Mile
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Notes: This figure maps each county’s oil and gas endowment as of 1960 that is economically recoverable
during the oil and gas boom of the 1970s and 1980s. See Section 4.1 for details of variable construction.

Figure 4: Change in Endowment After Early Period
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Notes: This figure maps each county’s difference between the early period oil and gas endowment graphed
in figure 3 and the total endowment that is economically recoverable using current technologies. It largely
reflects “unconventional” endowments that are economically recoverable only with hydraulic fracturing. See
Section 4.1 for details of variable construction.
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Figure 5: County-Level Aggregates Over Time in Resource-Abundant Counties
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Notes: This figure presents the τ rt regression coefficients from Equation (11) with natural log of county
employment, population, and earnings per worker as dependent variables. 1969 is the omitted year in τ rt , so
the regression coefficients are relative to the 1969 associations between resources and outcomes.

Figure 6: Manufacturing Employment Over Time in Resource-Abundant Counties
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Notes: This figure presents the τ rt coefficients and 90 percent confidence intervals from Equation (11) with
natural log of county manufacturing employment as the dependent variable. 1969 is the omitted year in
τ rt , so the regression coefficients are relative to the 1969 association between resources and manufacturing
employment.
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Figure 7: Employment and Productivity Over Time for Tradable Manufacturing Subsectors
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Notes: This figure presents the τ rt coefficients and 90 percent confidence intervals from Equation (11) with
the natural log of county mean ln(TFP-R) and county manufacturing employment, using data from only the
highly tradable manufacturing subsectors, as the dependent variables. 1972 is the omitted year in τ rt , so the
regression coefficients are relative to the 1972 associations between resources and outcomes.
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Figure 8: Geographic Spillovers
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Dutch Disease or Agglomeration? The Local Economic Effects of Natural Resource Booms in Modern

America
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A Model Appendix

A.1 Solving for Equilibrium

In equilibrium, firms and consumers optimize, and supply equals demand for labor, housing, and

the local good.

A.1.1 Equilibrium in Housing and Local Good Markets

Subtracting the housing supply function in county b from county a gives the relative price of

housing:

pha − phb = k (na − nb) . (17)

The equilibrium price of the local good is determined by two conditions. First, local good

supply equals demand:

ΩlcN
1−γ
lc = Nc

αWc

Plc
, (18)

where demand is from maximizing the Cobb-Douglas utility function.

Second, the composite firm for any sector j maximizes profits, giving first-order condition

(1− γ)PjcΩjcN
−γ
jc = Wc. (19)

Combining these two equations gives the local good price:

Plc =
αγWcN

γ
c (1− γ)γ−1

Ωlc
.

Taking logs gives

plc = wc + γnc + γ lnα+ (γ − 1) ln(1− γ)− ωlc. (20)

Taking the difference between counties a and b gives the relative price of the local good:

pla − plb = (wa − wb) + γ (na − nb)− (ωla − ωlb) . (21)

A.1.2 Labor Market Equilibrium

County aggregate labor demand is the sum across sectors j ∈ {m, l, r}:
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Nc =
∑
j

Njc =

[
Xjc(1− γ)

Wc

] 1
γ

(22)

=
(1− γ)1/γ

W
1/γ
c

[
X1/γ
mc +X1/γ

rc + Ω
1/γ
lc

(
αγWcN

γ
c (1− γ)γ−1

Ωlc

)1/γ
]

(23)

=
(1− γ)1/γ

1− α(1− γ)
W

−1
γ
c

[
X1/γ
mc +X1/γ

rc

]
. (24)

Taking logs and re-arranging gives inverse labor demand in county c:

wc = γx̃c + λγ − γnc, (25)

where λ ≡ ln
[

(1−γ)1/γ

1−α(1−γ)

]
. Subtracting wa − wb gives relative inverse labor demand:

wa − wb = γ (x̃a − x̃b)− γ (na − nb) , (26)

where x̃c ≡ ln
(
X

1/γ
mc +X

1/γ
rc

)
measures traded and resource sector productivity. This equation

shows how higher productivity raises relative wages, but this is dampened by migration.

To solve for the population difference, substitute housing and local good prices into labor supply,

giving

wa − wb = α ((wa − wb) + γ (na − nb)− (ωla − ωlb)) + βk (na − nb) + s(na − nb)− (aa − ab) (27)

=
αγ + βk + s

1− α
(na − nb)−

α

1− α
(ωla − ωlb)−

α

1− α
(aa − ab) (28)

Equating this to relative inverse labor demand from Equation (26) and simplifying gives relative

population: shown in Equation (29):

na − nb =
1

γ + βk + s
[γ(1− α) (x̃a − x̃b) + α (ωla − ωlb) + (aa − ab)] , (29)

where ωlc is natural log local sector physical productivity. This shows that people will migrate

to the county with higher productivity and amenities. There will be more migration if production

is more labor intensive (i.e. γ is smaller), if housing supply is more elastic (i.e. k is lower), if the

housing expenditure share β is lower, or if locational preferences are weaker (i.e. s is smaller).

The equilibrium wage difference is derived by substituting the population difference into the

inverse labor demand difference:

wa − wb =
γ

γ + βk + s
[(βk + s+ γα) (x̃a − x̃b)− α (ωla − ωlb)− (aa − ab)] . (30)
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This shows that higher resource or tradable sector productivity increases nominal wages. Higher

amenities encourage people to accept lower wages, as does higher local sector productivity ωla, as

this reduces the local good price.

A.1.3 Absolute Population and Wages

We can also close the model to solve for absolute population and wages as a function of productivity

and primitives. To do this, fix total population in the two counties at Na +Nb = N . Rearranging

and taking logs gives nb = ln (N −Na). Substituting this into the population difference from

Equation (29) and simplifying gives population:

na = ξ − ln
(

1 + eξ
)

+ n, (31)

where Γc ≡ γ(1 − α)x̃c + αωlc + ac and ξ ≡ Γa−Γb
γ+βk+s . Substituting this into Equation (25) gives

wages:

wa = γ ·
[
x̃a + λ− ξ + ln

(
1 + eξ

)
− n

]
. (32)

Equations (31) and (32) are symmetric for county b.

A.2 Predictions: Derivations and Additional Details

A.2.1 Contemporaneous Effects on County Aggregates

Prediction 1’s relative population and wage increases are immediate from Equations (29) and

(30). In period t = 1, ωla = ωlb, ωma = ωmb, amenities are unchanged by assumption, and

(x̃a − x̃b) > 0 because ωra − ωrb > 0. Thus, na − nb = 1
γ+βk+s [γ(1− α) (x̃a − x̃b)] > 0 and

wa − wb = γ
γ+βk+s [(βk + s+ γα) (x̃a − x̃b)] > 0 in t = 1, both of which are positive because

(x̃a − x̃b), α, (1− α), β, γ, and s are all positive. Migration is an outward shift in labor supply, so

it reduces equilibrium wages.

Prediction 1 also holds in absolute terms. The absolute effect on population can be derived

from Equation (31):

na − na(0) = ξt − ln
(

1 + eξt
)

+ ln 2 > 0.

It is also true that na − na(0) < x̃a − x̃a(0). Using this and (25), we have wa − wa(0) > 0: the

absolute wage effect is also positive.
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A.2.2 Contemporaneous Effects on Manufacturing

For any sector j, differencing the first-order conditions gives relative sectoral labor demand:

nja − njb =
1

γ
(ωja − ωjb) +

1

γ
(pja − pjb)−

1

γ
(wa − wb) . (33)

Substituting local sector relative price from Equation (21) into Equation (33) and simplifying

gives

nla − nlb = na − nb. (34)

Using Prediction 1, this is positive in t = 1. Of course, this equality is a feature of our Cobb-

Douglas functional forms, but the result that non-tradable sector employment grows with the local

economy is more general.

For the tradable sector, substituting the wage difference from Equation (30) into Equation (33)

and assuming that ωla = ωlb and aa = ab gives relative employment:

nma − nmb = −βk + s+ αγ

βk + s+ γ
(x̃a − x̃b) . (35)

Because (x̃a − x̃b) > 0 in t = 1, (nma − nmb) < 0 in t = 1. This proves Prediction 2 in relative

terms.

Prediction 2 also holds in absolute terms. Logging the first-order condition from Equation (19),

we have

njc =
1

γ
[ωjc + pjc + ln(1− γ)− wc] > 0. (36)

For the local sector, the absolute price difference in t = 1 is pla − pla(0) = (wa − wa(0)) +

γ (na − na(0)). This means that the local good price rises more than the wage. Substituting this

into Equation (36) and taking absolute effects, we have nla − nla(0) = na − na(0) > 0. For the

tradable sector, substituting wa−wa(0) > 0 into Equation (36) immediately gives nma−nma(0) < 0

in t = 1.

A.2.3 Long-Term Effects

Substituting employment differences from Equations (34) and (35) into the productivity evolution

from Equation (1) gives closed-form solutions for local and tradable sector productivity in period

t = 2. Assuming no amenity change, these are

ωla − ωlb = (θl + Λ)
γ(1− α)

βk + s+ γ
(x̃a,t=1 − x̃b,t=1) (37)
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and

ωma − ωmb =
Λγ(1− α)− θm (βk + s+ αγ)

βk + s+ γ
(x̃a,t=1 − x̃b,t=1) . (38)

Since (x̃a,t=1 − x̃b,t=1) > 0 and {θl,Λ} ≥ 0 by assumption, Equation (37) shows that ωla−ωlb >
0. Equation (37) simplifies directly to Equation (8). This proves Prediction 3.

With the exception of Equation (8), Prediction 3 also holds in absolute terms. Substituting the

signs of the absolute effects on total population from Prediction 1 and local sector employment from

Prediction 2 into the productivity evolution from Equation (1) immediately gives ωla−ωla(0) > 0.

For the tradable sector, we have

ωma,t=2 − ωma,t=1(0) = θm (nma,t=1 − nma,t=1(0)) + Λ (na,t=1 − na,t=1(0)) . (39)

Since nma,t=1−nma,t=1(0) < 0 and na,t=1−na,t=1(0) > 0 from Predictions 2 and 1, respectively,

we again have that the t = 2 productivity impact trades off agglomeration spillovers with foregone

learning-by-doing.

A.2.4 Overall Welfare Effects

Substituting labor supply from Equation (3) into the relative welfare effect from Equation (5) shows

that relative welfare can be measured by migration:23

ua − ub =
∑
t

δts (nat − nbt) . (40)

Substituting the population difference from Equation (29), assuming Xrc = 0 always except

Xra > 0 in t = 1, and simplifying gives

ua − ub =
sδ(1− α)

βk + s+ γ
(x̃a,t=1 − x̃b,t=1)

[
γ +

δ

βk + s+ γ
(γΛ + αγθl − θm (βk + s+ αγ))

]
. (41)

This is positive if and only if the final term (in brackets) is positive, which is true if Equation

(9) holds.

The absolute welfare effects depend on the absolute wage and price levels. Substituting the

price levels into the absolute welfare effect from Equation (7) gives

23Note that this equation does not have an analogue for absolute effects, i.e. it is not true that ua − ua(0) =∑
t δ
ts (nat − nat(0)). Intuitively, the reason is that county a can have high population, and thus high population

relative to counterfactual, even if social welfare is worse than counterfactual, as long as social welfare is even worse
in county b.
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ua − ua(0) =
∑
t

[(1− α)γ (x̃at − x̃at(0)) + α (ωlat − ωlat(0))− (γ + βk) (nat − nat(0))] . (42)

This equation states that absolute social welfare effects depend on two factors: the county

productivity increases, which determine wages and local prices, net of the population inflows, which

reduce wages by γ and increase the utility impact of housing costs by βk. Substituting Equation

(31) into Equation (42) gives

ua − ua(0) =
∑
t

δt
[
(Γat − Γat(0))− (γ + βk)

(
ξt − ln

(
1 + eξt

)
+ ln 2

)]
. (43)

A.2.5 Special Case: Absolute Welfare with No Productivity Spillovers

We can also consider the special case of absolute welfare with no productivity spillovers, i.e. Equa-

tion (43) with Λ = θl = θm = 0. In that case, absolute and relative welfare effects are both zero in

period t = 2, as county a productivity has returned to equal county b productivity. Furthermore,

Γbt = Γat(0) for t = 1. Substituting this into Equation (43) gives

ua − ua(0) = δ

[
s (na,t=1 − nb,t=1) + (γ + βk) ln

(
1 + exp (na,t=1 − nb,t=1)

2

)]
. (44)

This equation is useful because it shows that the absolute welfare effect is unambiguously

positive: we know from Prediction 1 that (na,t=1 − nb,t=1) > 0, and substituting this into Equation

(44) implies ua − ua(0) > 0. Intuitively, this just says that if there are no market failures, an

increase in county a’s productivity increases welfare.

For comparison, the relative welfare effect when Λ = θl = θm = 0 is

ua − ub = δs (na,t=1 − nb,t=1) . (45)

Comparing Equations (44) and (45), we see that the absolute welfare effect equals the relative

effect plus adjustment factor (γ + βk) ln

(
1+exp(na,t=1−nb,t=1)

2

)
. This factor accounts for the fact

that the resource boom also increases wages in county b in t = 1, so the relative welfare gain is

smaller than the absolute welfare gain.

A.3 Relative and Absolute Effects with Many Counties

While the theoretical model has two counties, the empirical analysis has more than 3000. A

brief discussion using the Rubin Causal Model can help clarify the distinction between relative

and absolute effects in this more general context. Let Dc ∈ {1, 0} denote county c’s treatment
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assignment (i.e. whether or not it is endowed with natural resources), and let D−c denote the

vector of treatment assignments for all counties other than c. Let Yc denote an outcome for county

c, such as wages or employment in some time period, and let Yc (dc,d−c) denote county c’s potential

outcome as a function of any possible treatment assignments dc and d−c. As in Manski (2013),

potential outcomes depend on treatment status both in county c and in all other counties, due to

geographic spillovers.

In the two-county model, the relative effect is the difference between effect of the boom on

county a and the effect of the boom on county b. In the many-county world, the relative effect τ r

is the expectation over all counties of the effects of the boom on treated counties and the effects

on untreated counties:

τ r ≡ E [Yc (1,D−c)− Yc (0,0) | Dc = 1]− E [Yc (0,D−c)− Yc (0,0) | Dc = 0] . (46)

If the treatment is randomly assigned, then E [Yc (0,0) | Dc = 1] = E [Yc (0,0) | Dc = 0], so this

simplifies to

τ r ≡ E [Yc (1,D−c) | Dc = 1]− E [Yc (0,D−c) | Dc = 0] . (47)

The relative effects estimating equation (Equation (12)) estimates a continuous-treatment ana-

logue to τ r by comparing outcomes in more- vs. less-treated counties.

In the two-county model, the absolute effect is the difference between county a’s potential

outcomes if it does vs. does not have natural resources. In the many-county world, the absolute

effect τa is the expectation over all counties of the difference in potential outcomes with vs. without

resources:

τa ≡ E [Yc (1,D−c)− Yc (0,D−c) | Dc = 1] . (48)

In other words, this is the average treatment effect on the treated. The absolute effects esti-

mating equation (Equation (13)) estimates a continuous-treatment analogue to τa by comparing

outcomes in more- vs. less-treated counties while controlling for spillovers from other counties.

Both τ r and τa are causal parameters in the sense that they represent effects of natural re-

source endowments; both equal zero if natural resources do not affect outcomes. Furthermore,

both τ r and τa compare observed outcomes of treated counties E [Yc (1,D−c) | Dc = 1] to some

other quantity. The difference is that τ r compares this to actual outcomes in untreated counties

E [Yc (0,D−c) | Dc = 0], whereas τa compares this to counterfactual outcomes in treated counties

E [Yc (0,D−c) | Dc = 1].

Both parameters also are conditional on the actual treatment status of other counties. One

might also be interested in treatment effects conditional on some d−c other than actual treatments

D−c – for example, if fracking were banned throughout the eastern U.S. Our empirical analysis does
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not consider those cases because they would require significant additional empirical assumptions.
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B Data Appendix

B.1 Oil and Gas Endowments
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Table A1: State-Level Sources of Oil and Gas Production Data

State Resource Title Source Years

CA Oil, Gas Summary of Operations: California Oil Fields ftp://ftp.consrv.ca.gov/pub/oil/Summary of Operations/ 1960-1977

IL Gas Natural Gas Production in Illinois Bryan Huff, Illinois State Geological Survey 1973-1992

IL Oil Historic County Production in Illinois Bryan Huff, Illinois State Geological Survey 1932-2011

IN Gas Petroleum Data Management System http://igs.indiana.edu/PDMS/WellSearch.cfm 1863-2011

IN Oil Petroleum Data Management System http://igs.indiana.edu/PDMS/Fields.cfm 1965-2011

KS Oil, Gas County Production http://www.kgs.ku.edu/PRS/petro/interactive.html 1960-2011

KY Oil Oil and Gas Production http://kgs.uky.edu/kgsmap/OGProdPlot/OGProduction.asp 1883-2011

KY Gas Oil and Gas Production http://kgs.uky.edu/kgsmap/OGProdPlot/OGProduction.asp 1986-2011

LA Oil, Gas Crude and Natural Gas Production by Parish Sharron Allement, Louisiana Office of Conservation 1965-1977

MI Oil, Gas Michigan’s Oil and Gas Fields, 1965-1982 http://www.michigan.gov/deq 1965-1982

MT Oil, Gas Annual Reviews for the Years 1965-1985 http://bogc.dnrc.mt.gov/annualreview/ 1965-1985

NM Oil, Gas Annual Report New Mexico Oil & Gas Engineering Committee 1960-1985

NV Oil, Gas Historical Production Lowell Taylor, Nevada Division of Minerals 1954-2011

NY Oil, Gas New York Natural Gas and Oil Production http://www.dec.ny.gov/energy/1601.html 1967-2011

OK Oil Report on Oil and Natural Gas Activity Jason Lawter, Oklahoma Corporation Commission 1963-2011

PA Oil Oil and Gas Developments in Pennsylvania http://www.libraries.psu.edu/ 1960-1991

UT Oil, Gas Pre-1984 Production Download File http://oilgas.ogm.utah.gov/ 1965-1983
Notes: This details additional state-level sources of oil and gas production data that are used to augment the DrillingInfo database.
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B.2 Regional Economic Information System

The REIS gathers two measures of employment and earnings. Series 7 and 27 measure wage and

salary earnings and employment, based primarily on unemployment insurance payment records.

This corresponds closely to data from the Quarterly Census of Employment and Wages. Series 5

and 25 measures total earnings and employment, adding sole proprietors (who file a Schedule C

on their tax returns) and general partners in partnerships (who file a Form 1065). Neither series

includes limited partners, who are likely to be only passive investors in oil and gas businesses. Series

5 and 25 are intended to be a more comprehensive measure of total earnings and employment, so

we use these series in all specifications. Substituting Series 7 and 27 does not meaningfully change

the estimates.

In general, these measures appear to correctly allocate economic activity to counties. Unem-

ployment insurance payments are assigned to the county where the employing establishment is

located, not the firm headquarters. Sole proprietor and partnership earnings and employment are

assigned to the tax-filing address of the recipient, which is typically the person’s residence. This

will misallocate employment when the filer is not working in his or her county of residence.

For population, the REIS uses annual mid-year estimates constructed by the U.S. Census Bu-

reau. In recent years, the Census Bureau estimates county c’s population as

populationct = populationt−1 + birthsct − deathsct + net migrationct,

where the population base (populationt−1) comes initially from the decennial census, and births

and deaths are measured from vital statistics data provided by the National Center for Health

Statistics. Net domestic migration is primarily measured using Internal Revenue Service income

tax data: individuals are matched across years using their social security numbers, and they are

counted as migrants when their tax address changes. For the elderly, tax data are augmented with

Medicare enrollment data. Net international migration is measured using the American Community

Survey. While the ACS is only a sample survey, international migration is a relatively small share

of a county’s total migration.24

Earlier in our sample, the Census Bureau used county-level data on school enrollment and

number of occupied housing units, along with county-level population estimates from state agencies,

to arrive at each year’s total population count. Thus, throughout the sample, the Census Bureau

used actual data to count migration, and did not simply interpolate between decennial census

counts.25

County-level land area are from http://quickfacts.census.gov/qfd/download data.html.

There are 3075 counties in the sample through 2001. In 2002, Broomfield County, Colorado,

24See http://www.census.gov/popest/methodology/2015-natstcopr-meth.pdf for full methodology for recent mid-
year population estimates.

25See http://hdl.handle.net/2027/coo.31924000774731 for full methodology for the 1966 population estimates.
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was created by breaking off pieces of other counties, primarily Adams and Boulder Counties. We

never include Broomfield County in the sample, and we include Adams and Boulder Counties in

Colorado only in 2001 and before. Thus, in 2002 and later, there are 3073 counties in the sample.

B.3 Industry Linkages

Table A2: Linked Manufacturing Industries

Top Ten Upstream Industries

SIC Codes Industry Upstream Linkage Share

3533 Oil and gas field machinery and equipment 0.23

324 Hydraulic cement 0.12

3295 Ground or treated minerals 0.086

2899 Chemicals and chemical preparations, n.e.c. 0.066

3491, 3492, 3494, 3498 Pipe, valves, and pipe fittings 0.037

3441 Fabricated structural metal 0.034

3312 Blast furnaces and steel mills 0.033

2892 Explosives 0.031

2992 Lubricating oils and greases 0.031

3313 Electrometallurgical products, except steel 0.028

All Downstream Industries

SIC Codes Industry Input Cost Share

291 Petroleum refining 0.69

2999 Products of petroleum and coal, n.e.c. 0.31

2873, 2874 Nitrogenous and phosphatic fertilizers 0.081

2895 Carbon black 0.062

281, 2865, 2869 Industrial inorganic and organic chemicals 0.021

308 Miscellaneous plastics products, n.e.c. 0.001

285 Paints and allied products 0.001

Notes: Linkages are calculated using data from the 1987 Bureau of Economic Analysis input-output tables
(U.S. BEA 2014). Upstream linkage share is the sum of oil and gas output share and the share of output
purchased by the oil and gas sector through an intermediate industry. “n.e.c.” stands for “not elsewhere
classified.”
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C Current Population Survey Data and Regressions

C.1 Current Population Survey Data

In order to directly measure wages instead of earnings per worker, we construct two datasets from

the Current Population Survey (CPS). The first is a repeated cross section formed by combining all

observations from the May CPS for 1977 and 1978 with all observations from the Merged Outgoing

Rotation Group (MORG) files beginning in 1979. Table A3 describes these data for hourly wage and

hours worked. The second dataset is a panel based on the MORG, which includes each individual’s

change in hourly earnings in the 12 months between two “outgoing rotation” interviews.26 We

include only workers employed by the private sector or government and exclude self-employed and

unemployed.

Except for large counties in recent years, the CPS does not include county identifiers.27 In

regressions with CPS data, we thus use state-level oil and gas endowment Rst, which is constructed

analogously to the county-level measure described earlier and normalized to a standard deviation

of one across states. For context, one standard deviation of state-level total endowments is $4.5

million per square mile.

Table A3: Current Population Survey: Descriptive Statistics

N Mean SD Min Max

Hourly wage ($/hour) 5,970,555 18.6 14.0 0.0001 2826

Hours worked per week 6,001,940 38.3 10.8 0 99

Notes: Data are at the individual-by-interview level. Wages are in real 2010 dollars.

C.2 CPS Empirical Strategy

We estimate relative effects using two parallel specifications in the two different datasets, using i

to index individuals. For the CPS repeated cross section, we regress natural log of an outcome

variable on the resource boom variable, using controls Xi for individual i’s age, education, gender,

race, and industry. We index states by s, months by m, and years by t, and include vectors of state

26Since the CPS sampling frame is the household, not the individual, this panel includes only individuals who do
not change residence between the two interviews. The CPS does not include unique individual identifying codes, so
we use the approach of Madrian and Lefgren (1999) to match individuals between interviews.

27It is not possible to construct a panel over our entire study period using any consistently-defined geographical
area less aggregated than the state. Before 1977, the May CPS data do not include a complete set of state identifiers.
From 1977 to June 1985, there are geographic identifiers for state and approximately 45 Standard Metropolitan
Statistical Areas (MSAs). From July-December 1985, only state identifiers are included. In 1986 and again in 1993,
the CPS changes to different and more disaggregated MSA definitions, and beginning in late 2004 there are identifiers
for large counties and for Core Based Statistical Areas (CBSAs). While these geographical areas comprise precisely-
defined sets of counties in any particular year, counties are often moved between areas over time. To avoid potentially
confounding effects of changes in geographic definitions, we use only state identifiers.
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indicators υs, month indicators µm, and year indicators νt. With Yismt as an outcome variable

(either wages or hours worked per week), the specification is

lnYist = τ rRst lnEt + λRst + ρXi + υs + µm + νt + εismt. (49)

To illustrate effects, we also plot estimates from another regression in which a separate τ rt is

estimated for each year of the sample:

lnYist = τ rt Rst + λRst + ρXi + υs + µm + νt + εismt, (50)

with 2001 as the omitted year in τ rt .

For the MORG panel, we regress individual i’s change in wages in the 12 months between the

interview on the change in the resource boom:

∆ lnYismt = τ rRst∆ lnEt + λRst + υs + µm + νt + εismt. (51)

C.3 CPS Results

Appendix Table A4 presents the results of the Current Population Survey wage regressions. The

top and bottom panels present estimates for all workers and manufacturing workers, respectively.

Column 1 presents estimates of Equation (49) with natural log of wages as the dependent variable.

The coefficient of 0.00962 implies that an oil and gas boom that increases national oil and gas

employment by 100 log points increases relative wages by 0.962 percent in states with one additional

standard deviation oil and gas endowment.

Appendix Figure A1 illustrates these results by plotting the τ rt coefficients from Equation (50).

The figure shows that states with one standard deviation additional endowment per square mile saw

relative wages rise 1.7 to 3.2 percent higher than their year-2001 equilibrium for the entire eleven-

year period between 1977 and 1987. Figure A2 presents analogous results, limiting to manufacturing

workers only. While the estimates for manufacturing workers are noisier, the basic trend is very

similar to the estimates for all workers.

Column 2 of Table A4 presents estimates of Equation (49), except with natural log of hours

worked as the dependent variable. There are no statistically-significant effects on hours worked,

and the standard errors rule out that a boom that increases national oil and gas employment by

100 log points increases hours worked by more than about one-third of one percent in states with

one standard deviation additional endowment.

Column 3 presents estimates of Equation (49), but excluding controls Xi for age, education,

race, and industry. The point estimates are statistically indistinguishable from those in column 1.
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Because worker-level demographic controls do not affect the estimates and there are no significant

effects on hours worked, this suggests that measures of earnings per worker available in the REIS

provide reasonable approximations to the effects of oil and gas booms on “wages,” i.e. quality-

adjusted per-unit labor input costs.

Column 4 presents estimates of Equation (51) using the MORG panel data, with the log of each

individual’s 12-month wage change as the dependent variable. The sample size is much smaller

because the MORG panel does not begin until 1979, because it includes only individuals who can

be matched between their first and second outgoing rotations, and because each person is counted

as one observation when calculating differences, while estimates of Equation (49) include both of

an individual person’s observations. The results are almost exactly identical.

When limiting the sample to manufacturing workers only, the standard errors widen, but es-

timates are statistically indistinguishable from the effects on all workers, and the point estimates

are actually larger. Columns 1-4 of Appendix Table A5 confirm that these results are robust to

the same set of robustness checks that we carry out for the county-level data in Appendix Table

A6; we omit the fixed effects robustness check from column 5 of Appendix Table A6 because the

primary CPS specification already includes state indicators. Instead, column 5 of Appendix Table

A5 shows that the estimates are robust to dropping outlying wages.

Table A4: Effects of Resource Booms on Wages in Current Population Survey

(1 ) (2) (3) (4)

Outcome Variable: ln(wage) ln(hours) ln(wage) ∆ln(wage)

All workers

ln(National oil&gas employment) 0.00962*** -0.000411 0.00832** 0.00969***

×endowment (0.00328) (0.00218) (0.00402) (0.00231)

Observations 5,696,671 5,723,794 5,696,671 1,587,855

Manufacturing workers

ln(National oil&gas employment) 0.0162** -0.00194 0.0102 0.0162

×endowment (0.00630) (0.00397) (0.00690) (0.00982)

Observations 980,388 985,243 980,388 288,868

Age, education, gender, race, industry Yes Yes No No

Notes: Columns 1-3 present estimates of variants of Equation (49), while column 4 presents estimates of
Equation (51). All regressions include year, month, and state indicator variables. *, **, ***: Statistically dif-
ferent from zero with 90, 95, and 99 percent confidence, respectively. Robust standard errors in parentheses,
clustered by state.
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Table A5: Current Population Survey: Alternative Specifications

(1) (2) (3) (4) (5)

Use early

endow-

ment

Rearly
c

Use total

endowment

Rtotal
c

Measure

intensity

by wage

emp. only

Measure

intensity

by oil and

gas price

Drop

outlying

wages

All workers

ln(National intensity) 0.00712*** 0.00834** 0.0289*** 0.00464** 0.00936***

×endowment (0.00232) (0.00315) (0.00322) (0.00208) (0.00300)

Observations 5,696,671 5,696,671 5,696,671 5,696,671 5,678,234

Manufacturing workers

ln(National intensity) 0.0148** 0.0145** 0.0289*** 0.00970*** 0.0165***

×endowment (0.00554) (0.00651) (0.00595) (0.00357) (0.00599)

Observations 980,388 980,388 980,388 980,388 978,752

Notes: This table presents alternative estimates of Equation (49). Columns 1, 2, and 5 measure “National
intensity” with “National oil&gas employment,” as in the main estimates. All regressions include year,
month, and state indicator variables, plus age, education, gender, race, and industry controls. *, **, ***:
Statistically different from zero with 90, 95, and 99 percent confidence, respectively. Standard errors are
robust and clustered by state.

Figure A1: CPS Wages Over Time in Resource Abundant Counties
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Notes: This figure presents the τ rt coefficients and 90 percent confidence intervals from Equation (50) with
natural log of hourly wage as the dependent variable. 2001 is the omitted year in τ rt , so the regression
coefficients are relative to the 2001 association between endowments and wages.
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Figure A2: CPS Manufacturing Wages Over Time in Resource Abundant Counties
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Notes: This figure presents the τ rt coefficients and 90 percent confidence intervals from Equation (50) with
natural log of hourly wage as the dependent variable, using only the sample of manufacturing workers in
the CPS. 2001 is the omitted year in τ rt , so the regression coefficients are relative to the 2001 association
between endowments and wages.
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D Additional Empirical Results
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D.1 Additional Tables and Figures

Table A6: Effects on County-Level Outcomes: Alternative Specifications

(1) (2) (3) (4) (5)

Use early

endow-

ment

Rearly
c

Use total

endowment

Rtotal
c

Measure

intensity

by wage

emp. only

Measure

intensity

by oil and

gas price

Fixed

effects

Population

∆ln(National intensity ) 0.0114*** 0.0130*** 0.0129*** 0.00324*** 0.00869

×endowment (0.00194) (0.00272) (0.00205) (0.000521) (0.00539)

Employment

∆ln(National intensity) 0.0273*** 0.0308*** 0.0316*** 0.00648*** 0.0174**

×endowment (0.00622) (0.00684) (0.00710) (0.00138) (0.00703)

Housing rent

∆ln(National intensity) 0.0257*** 0.0351*** 0.0252*** 0.0108** 0.0121

×endowment (0.00723) (0.0108) (0.00761) (0.00418) (0.00784)

Earnings per worker

∆ln(National intensity) 0.0167*** 0.0206*** 0.0220*** 0.00609*** 0.0177***

×endowment (0.00468) (0.00636) (0.00633) (0.00140) (0.00640)

Manufacturing earnings per worker

∆ln(National intensity) 0.0114*** 0.0122*** 0.0164*** 0.00280 0.00975

×endowment (0.00405) (0.00423) (0.00534) (0.00177) (0.00593)

Manufacturing employment

∆ln(National intensity) 0.0309*** 0.0249*** 0.0357*** 0.00305* 0.0267**

×endowment (0.00726) (0.00737) (0.00991) (0.00167) (0.0103)

Notes: This table presents alternative estimates of Equation (12). Columns 1, 2, and 5 measure “National
intensity” with “National oil&gas employment,” as in the main estimates. The dependent variable is the
change in the natural log of the listed outcome. Sample sizes are 135,274 (138,349) for the population
estimates, with column 5 fixed effects sample size in parenthesis, 138,349 (141,424) for employment and
earnings per worker, 15,371 (18,446) for housing rents, 111,709 (114,192) for manufacturing earnings per
worker, and 111,754 (114,238) for manufacturing employment. All regressions include census division-by-
year indicators and controls for year interacted with natural log of the outcome variable in two baseline
years. Population effects in column (1) use the one year lag of ∆ln(National oil&gas employment). *, **,
***: Statistically different from zero with 90, 95, and 99 percent certainty, respectively. Robust standard
errors in parentheses, clustered by state.
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Table A7: Effects of Resource Booms on County-Level Outcomes: Separate Effects by Time

Period

(1) (2) (3) (4) (5) (6)

Population Employment Housing Earnings/ Mfg. earnings/ Mfg.

Outcome: rent worker worker employment

∆ln(National oil&gas emp) 0.0151*** 0.0368*** 0.0503** 0.0117** -0.00331 0.0437***

×endowment×1(boom) (0.00267) (0.0106) (0.0232) (0.00532) (0.00482) (0.00876)

∆ln(National oil&gas emp) 0.0145*** 0.0372*** -0.0197 0.0215*** 0.0309*** 0.0327**

×endowment×1(bust) (0.00312) (0.00838) (0.0233) (0.00459) (0.00792) (0.0129)

∆ln(National oil&gas emp) -0.0103*** -0.0172** 0.0242 0.00285 -0.000779 -0.0365***

×endowment×1(post-2001) (0.00263) (0.00686) (0.0192) (0.00285) (0.00754) (0.00862)

Observations 135,274 138,349 15,371 138,349 111,709 111,754

Notes: This table presents estimates of Equation (12), allowing τ r to differ in three types of years: during
“booms” (when ∆Et > 0) and “busts” (when ∆Et ≤ 0), as well as for 2001 and after. The dependent
variable is the change in the natural log of the listed outcome. All regressions include census division-by-
year indicators and controls for year interacted with natural log of the outcome variable in two baseline
years. Population effects in column (1) use the one year lag of ∆ln(National oil&gas employment). *, **,
***: Statistically different from zero with 90, 95, and 99 percent certainty, respectively. Robust standard
errors in parentheses, clustered by state.

Table A8: Effects on County-Level Outcomes: Controlling for Coal Boom

(1) (2) (3) (4) (5) (6)

Population Employment Housing Earnings/ Mfg. earnings/ Mfg.

Outcome: rent worker worker employment

∆ln(National oil&gas emp) 0.0116*** 0.0278*** 0.0265*** 0.0175*** 0.0106*** 0.0294***

×endowment (0.00193) (0.00585) (0.00711) (0.00478) (0.00362) (0.00730)

∆ln(National coal emp) 0.00554** 0.0142*** 0.0184*** 0.0189*** 0.0127** -0.00644

×coal endowment×1(East) (0.00215) (0.00477) (0.00624) (0.00450) (0.00622) (0.00605)

∆ln(National coal emp) 0.0300*** 0.0469*** 0.0319 0.0456*** 0.0104 0.0259***

×coal endowment×1(West) (0.00700) (0.0136) (0.0329) (0.0130) (0.0213) (0.00721)

Observations 135,274 138,349 15,371 138,349 111,709 111,754

Notes: This table presents estimates of Equation (12), including effects of coal endowments. The dependent
variable is the change in the natural log of the listed outcome. All regressions include census division-by-year
indicators and controls for year interacted with natural log of the outcome variable in two baseline years.
Population effects in column (1) use the one year lag of ∆ln(National oil&gas employment) and ∆ln(National
coal emp). *, **, ***: Statistically different from zero with 90, 95, and 99 percent certainty, respectively.
Robust standard errors in parentheses, clustered by state.
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Table A9: Effects of Resource Booms on Prices for Plants with Physical Output Data

(1) (2) (3) (4) (5)

All Upstream / Non-linked Non-linked Non-linked

downstream and local and

tradable

∆ln(National oil&gas employment) -0.00310 -0.00739 -0.000847 -0.00173 0.00280

×endowment (0.00307) (0.00904) (0.00151) (0.00150) (0.00316)

Observations 420,000 87,000 333,000 248,000 86,000

Notes: This table presents estimates of Equation (14), with the sample limited to plants that report physical
output. The dependent variable is the natural log of price, at the product-by-plant-by-year level. All
specifications use differenced outcomes; the time between each Census is five years. All regressions include
Census division-by-year fixed effects. *, **, ***: Statistically different from zero with 90, 95, and 99 percent
certainty, respectively. Robust standard errors in parentheses, clustered by county.

Table A10: Absolute Effects of Resource Booms on County-Level Outcomes

(1) (2) (3) (4) (5) (6)

Population Employment Housing Earnings/ Mfg. earnings/ Mfg.

Outcome: rent worker worker employment

∆ln(National oil&gas emp) 0.00692*** 0.0162*** 0.0120* 0.0102*** 0.00176 0.0166**

×endowment (0.00155) (0.00579) (0.00702) (0.00304) (0.00212) (0.00626)

∆ln(National oil&gas emp) 0.101 0.281** 0.267 0.203*** 0.321*** 0.556**

×endowment from 0-50 miles (0.0652) (0.125) (0.266) (0.0726) (0.106) (0.240)

∆ln(National oil&gas emp) 0.0945*** 0.232** 0.436** 0.119** 0.0645 0.136**

×endowment from 50-100 miles (0.0268) (0.103) (0.199) (0.0464) (0.0665) (0.0587)

∆ln(National oil&gas emp) 0.0269** 0.000801 -0.0587 0.0460** 0.105*** -0.0475

×endowment from 100-150 miles (0.0124) (0.0338) (0.166) (0.0202) (0.0352) (0.0496)

∆ln(National oil&gas emp) -0.00152 0.0260 0.0622 0.0122 0.0275 0.00203

×endowment from 150-200 miles (0.0116) (0.0234) (0.0925) (0.0109) (0.0372) (0.0313)

∆ln(National oil&gas emp) -0.00322 0.0268* -0.0854 -0.00521 -0.00392 0.0732

×endowment from 200-250 miles (0.0149) (0.0144) (0.0602) (0.0119) (0.0435) (0.0489)

∆ln(National oil&gas emp) -0.000353 -0.00626 -0.00416 -0.00167 0.000436 0.0152

×endowment from 250-300 miles (0.00658) (0.0146) (0.0375) (0.0129) (0.0225) (0.0291)

∆ln(National oil&gas emp) -0.0121 -0.0140 -0.0796** 0.00631 -0.00997 0.00589

×endowment from 300-350 miles (0.00965) (0.0170) (0.0303) (0.0178) (0.0287) (0.0383)

∆ln(National oil&gas emp) -0.0239*** 0.000292 -0.0685 -0.0221 -0.00793 0.00645

×endowment from 350-400 miles (0.00870) (0.0178) (0.0470) (0.0152) (0.0400) (0.0324)

Observations 135,274 138,349 15,371 138,349 111,709 111,754

Notes: This table presents estimates of Equation (13). The dependent variable is the change in the natural
log of the listed outcome. All regressions include census division-by-year indicators and controls for year
interacted with natural log of the outcome variable in two baseline years. Population effects in column (1)
use the one year lag of ∆ln(National oil&gas employment). *, **, ***: Statistically different from zero with
90, 95, and 99 percent certainty, respectively. Robust standard errors in parentheses, clustered by state.
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Table A11: Absolute Effects of Resource Booms on County-Level Outcomes: Excluding Large

Counties

(1) (2) (3) (4) (5) (6)

Population Employment Housing Earnings/ Mfg. earnings/ Mfg.

Outcome: rent worker worker employment

∆ln(National oil&gas emp) 0.00736*** 0.0171*** 0.0112 0.0104*** 0.00195 0.0166**

×endowment (0.00176) (0.00627) (0.00718) (0.00343) (0.00226) (0.00664)

Observations 129,818 132,769 14,751 132,769 106,264 106,309

Notes: This table presents estimates of Equation (13). It parallels Table 10, except excluding counties with
population larger than 250,000 people in 1960. The dependent variable is the change in the natural log of
the listed outcome. All regressions include census division-by-year indicators and controls for year interacted
with natural log of the outcome variable in two baseline years. Population effects in column (1) use the one
year lag of ∆ln(National oil&gas employment). *, **, ***: Statistically different from zero with 90, 95, and
99 percent certainty, respectively. Robust standard errors in parentheses, clustered by state.
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Figure A3: County Aggregates Over Time in Resource Abundant Counties
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(b) Employment
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Figure A3

(c) Earnings per Worker
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(d) Manufacturing Earnings per Worker
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Figure A3

(e) Housing Rents
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Notes: These figures present the τ rt coefficients and 90 percent confidence intervals from Equation (11) with
various dependent variables. 1969 is the omitted year in τ rt , so the regression coefficients are relative to the
1969 associations between resources and outcomes. The point estimates for the population, employment,
and earnings per worker graphs are the same as in Figure 5.

Figure A4: National Manufacturing, Oil and Gas, and Coal Employment
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Notes: Employment data are from the Regional Economic Information System. We switch from the SIC to
the NAICS classification system in 2000 and plot both data points in that year.
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