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1 Introduction

Financial markets have become highly institutionalized. For example, individual investors were

holding directly 47.9% of U.S. stocks in 1980, but only 21.5% in 2007, with most of the remainder

held by financial institutions such as mutual funds, pension funds and insurance companies (French

(2008)). Financial institutions account for an even larger share of the market for bonds, derivatives

and commodities.

Investment decisions in financial institutions are made by professional managers on behalf of

the investors owning the assets. This generates an agency problem, as the objectives of investors

and managers may not coincide. How does the agency problem manifest itself in the contracts

that investors and managers write and in the portfolios that managers choose? What are the

implications for equilibrium asset prices? Does the agency problem render financial markets less

efficient, and if so in what ways? These are the questions that we address in this paper.

We first develop a model of optimal contracting between investors and managers that combines

(i) moral hazard arising from managers’ effort to acquire information and (ii) adverse selection

arising from managers’ preferences and the private information they may acquire. The optimal

contract involves risk limits: the risk of the portfolio chosen by managers is kept within bounds,

even when the optimal level of risk given the private information that managers may acquire exceeds

the bounds. Investors constrain their managers in that way because the latter may not acquire

information and gamble for a high fee. Risk limits are pervasive in the asset-management industry,

and are often referred to as tracking-error constraints. They can concern risk measured in absolute

terms or relative to a benchmark portfolio.1

We next embed our contracting model into a continuous-time equilibrium asset-pricing model

with one riskless and multiple risky assets. The prices of the risky assets are influenced by random

demand by noise traders. High demand raises prices and causes overvaluation, while low demand

causes undervaluation. Managers can observe noise-trader demand and thus the direction of the

1Risk limits relative to a benchmark portfolio are common for pension funds, insurance companies, endowments,
sovereign wealth funds, institutional asset managers, and mutual funds. They can bound a managed portfolio’s
tracking error (standard deviation of the difference between the portfolio’s return and the return of a benchmark
portfolio), or the difference between the weight that the managed portfolio allocates to each asset class, geographical
area, or industry sector, and the corresponding benchmark weight. Risk limits in absolute terms are more common
for hedge funds and trading desks in broker-dealer firms. For a discussion of tracking-error constraints and their
implications for financial markets, see the 2003 report by the Committee on the Global Financial System (BIS
(2003)). According to that report, bounds on tracking error are on average 1% for actively-managed bond portfolios
and between 2-6% for actively-managed stock portfolios (p.20). The Norwegian Sovereign Wealth Fund (NBIM),
one of the largest institutional investors globally, reports the following regarding its tracking-error constraint: “The
Ministry of Finance has set limits for how much risk NBIM may take in its active management of the fund. The
most important limit is expressed as expected relative volatility (tracking error) and puts a ceiling on how much the
return on the fund may be expected to deviate from the return on the benchmark portfolio. The expected tracking
error limit is 125 basis points, or 1.25%.” (https://www.nbim.no/en/investments/investment-risk/)
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mispricing.

We show two main results. First, risk limits generate an inverted risk-return relationship: over-

valued assets have low expected return and high volatility, while undervalued assets have high

expected return and low volatility. The high volatility of overvalued assets stems from an amplifi-

cation effect. Positive news to asset fundamentals cause managers’ positions to become larger and

risk limits to become more binding. In response to the binding limits, managers cut down on their

positions. In the case of overvalued assets, this amounts to buying the assets because managers

are shorting them to begin with (or, in an extension of our model, they are under-weighting them

relative to a benchmark portfolio). Buying pressure causes prices to rise, amplifying the initial

shock. Our amplification effect differs from those commonly emphasized in the literature because

it concerns distortions during bubbles rather than crises.2 The potential of risk limits to induce

distortions and amplification during bubbles has been noted in the policy debate.3 Risk-return

inversion has been documented in a large empirical literature.4

The second result concerns the aggregate price distortion that risk limits generate. Because

risk limits can prevent managers from absorbing noise-trader demand, they cause overvalued assets

to become more overvalued and undervalued assets to become more undervalued. We show that

the positive distortions dominate, biasing the aggregate market upward. Indeed, since overvalued

assets have higher share price and volatility than undervalued ones, risk limits bind more severely

for a short position in the former than for a long position of an equal number of shares in the

latter. A common theme of both of our main results is that corrective forces in asset markets may

2For amplification effects during crises see, for example, Bernanke and Gertler (1989), Geanakoplos (1997), Holm-
strom and Tirole (1997) and Kiyotaki and Moore (1997) in macroeconomic settings, and Shleifer and Vishny (1997),
Gromb and Vayanos (2002) and He and Krishnamurthy (2012, 2013) in finance settings.

3For example, the BIS (2003) report notes: “Overvalued assets/stocks tend to find their way into major indices,
which are generally capitalization-weighted and therefore will more likely include overvalued securities than under-
valued securities. Asset managers may therefore need to buy these assets even if they regard them as overvalued;
otherwise they risk violating agreed tracking errors.” (p.19). In a similar spirit, a 2015 IMF working paper (Jones
(2015)) notes: “Another source of friction capable of amplifying bubbles stems from the captive buying of securities
in momentum-biased market capitalization-weighted financial benchmarks. Underlying constituents that rise most in
price will see their benchmark weights increase irrespective of fundamentals, inducing additional purchases from fund
managers seeking to minimize benchmark tracking error. As a case in point, the 1980s Heisei bubble saw Japan’s
share of the MSCI World equity market capitalization soar from 21% in 1983 to 51% by 1989, while during the 1990s
technology bubble, the technology sector weighting in the S&P500 rose from 5% in 1993 to 34% by 2000.” (p.21).

4Haugen and Baker (1996) and Ang, Hodrick, Xing, and Zhang (2006) document that expected return is negatively
related to volatility in the cross-section of U.S. stocks. The latter paper also documents a negative relationship between
expected return and the idiosyncratic component of volatility. Since volatility is negatively related to expected return,
it is also negatively related to CAPM alpha, which is expected return adjusted for CAPM beta, i.e., for systematic
risk. Black (1972), Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014) document that alpha is
negatively related to beta in the cross-section of U.S. stocks, and Asness, Frazzini, and Pedersen (2014) find a similar
relationship at the industry-sector level. The relationship between expected return and beta is almost flat during
1926-2012 (Frazzini and Pedersen (2014)), and turns negative during the second half of the sample (Baker, Bradley,
and Wurgler (2011)). Alternative explanations for the inverted risk-return relationship include leverage constraints
(Black (1972), Frazzini and Pedersen (2014)) and disagreement (Hong and Sraer (2016)). The leverage explanation
can account for the negative relationship between beta and alpha but not for that between beta and expected return.
Our explanation can account for both relationships.
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be weaker during bubbles than during crises.

Section 2 develops our model of optimal contracting. A risk-averse investor can employ a

manager to invest in one riskless and one risky asset. Investment takes place in one period and the

assets pay off in the next and final period. The manager is either risk-averse and able to observe

a private signal about the payoff of a risky asset by incurring a private cost, or risk-neutral and

unable to observe the signal at any cost. If the investor employs the manager, then they agree on a

fee that can be any non-negative and increasing function of the investor’s final wealth. Our model

builds on Vayanos (2018), who assumes symmetric return distributions. We extend his analysis to

asymmetric distributions because such distributions arise in our equilibrium asset-pricing model.

To induce the risk-averse manager type to observe the signal, the investor must make the fee

sufficiently high when wealth is high, i.e., when the manager has taken a large position in the risky

asset and that position has performed well. Such a fee, however, can induce the risk-neutral type,

who is uninformed, to also take a large position and gamble. We show that if the cost of observing

the signal is sufficiently high, then the investor cannot induce the risk-neutral type to take less risk

than even the best-informed risk-averse type (i.e., the type with most extreme signal realization).

Intuitively, when the risk-neutral type takes less risk, she receives a lower fee conditional on her

position performing well (because the position is smaller) and a higher fee conditional on her

position performing poorly. Hence, her fee becomes less risky, and this attracts the risk-averse

type, who the investor must expose to a high level of risk so that she observes the signal.

Since the uninformed risk-neutral type pools with the best-informed risk-averse type, the in-

vestor designs the fee so that the common position of both types in the risky asset is strictly below

the optimal position given the latter type’s information. The common position involves pooling

by an interval of risk-averse types. Hence, it becomes independent of the signal when the signal

realization is sufficiently extreme.

Section 3 develops a frictionless continuous-time equilibrium asset-pricing model, which Section

4 uses to embed our contracting model in. The model of Section 3 has one risky asset, but is

extended to multiple assets in Section 4. The dividend flow of the risky asset follows a square-root

process, the riskless rate is constant, and there are overlapping generations of risk-averse investors

living over infinitesimal intervals. We show that this novel combination of assumptions yields a

closed-form solution for the equilibrium price of the risky asset. The price is an affine increasing

function of the dividend flow. The square-root specification ensures that the volatility of the asset’s

return per share, and hence of a position in the asset, also increases in the dividend flow. This

property is critical for our subsequent analysis.

Section 4 modifies the model of Section 3 by assuming that some investors are experts, who
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observe noise-trader demand and invest in the risky asset without a manager, and some are non-

experts. It uses a limit version of our contracting model, when the uncertainty between the two

periods is small, to deduce the optimal contract between non-experts and their managers. The risk

limit depends on the distribution of expected returns, which is endogenously derived in equilibrium

(and depends on the risk limit).

The equilibrium in Section 4 involves an unconstrained region, where the risk limit does not

bind, and a constrained region where it binds. An increase in the asset’s dividend flow moves the

equilibrium towards the constrained region because the volatility of an asset position increases. The

price in each region is characterized by a second-order ordinary differential equation (ODE), with

smooth-pasting between regions. The solution is no longer affine or closed-form. Yet, by exploiting

the structure of the ODEs, we prove existence of a solution and a number of key properties (e.g.,

monotonicity, convexity, comparison to the case of no risk limits), which in turn we use to prove

our main results.

Section 5 extends our model to risk limits specified relative to a benchmark portfolio. Such

risk limits do not come out of our contracting model, which restricts the fee to depend only on the

investor’s wealth. We show that asset prices have the exact same properties as in Section 4, provided

that we consider positions relative to the benchmark portfolio. In particular, risk limits yield high

volatility for assets that managers underweight relative to the benchmark portfolio (rather than

short) and low volatility for assets that they overweight (rather than long).

The agency problem in asset management and its implications for managers’ portfolio choice

and equilibrium asset prices are the subject of a large theoretical literature. One strand of the

literature focuses on managers’ reputation concerns.5 A second and related strand focuses on

investors’ decisions to invest with managers as a function of managers’ past performance.6 Our

paper belongs to a third strand that studies contracts between investors and managers.7 Our focus

on risk limits and their asymmetric effects across overvalued and undervalued assets is new to the

literature.

Some of the papers on asset-management contracts take prices as given and study how con-

tracts can address the combination of (i) moral hazard arising from managers’ effort to acquire

5See, for example, Froot, Scharfestein, and Stein (1993), Dow and Gorton (1997), Dasgupta and Prat (2008),
Dasgupta, Prat, and Verardo (2011), and Guerrieri and Kondor (2012).

6See, for example, Shleifer and Vishny (1997), Berk and Green (2004), Vayanos (2004), Basak, Pavlova, and
Shapiro (2007), He and Krishnamurthy (2012, 2013), Kaniel and Kondor (2012), Vayanos and Woolley (2013), and
Makarov and Plantin (2015).

7Papers within the third strand assume or derive contracts that are performance-contingent. While the fees paid
by investors to asset-management firms often depend only on assets under management and not on performance,
salaries paid by the firms to their manager-employees depend on performance evaluated in absolute and/or relative
terms. This is noted in the BIS (2003) report (p.22-23). It is documented more extensively in Ma, Tang, and
Gómez (forthcoming), who show that for 79% of the mutual funds in their sample, managers receive bonuses that
are performance-contingent.

4



information and (ii) adverse selection arising from the private information that managers acquire.

Stoughton (1993) shows that rendering managers’ linear fee more sensitive to performance induces

them to choose a less risky portfolio but does not change their incentives to acquire informa-

tion. Admati and Pfleiderer (1997) rely on that observation to show that benchmarking distorts

managers’ portfolio choice without encouraging them to acquire more information. Li and Tiwari

(2009) show that benchmarking can improve information-acquisition incentives when the fee has an

option-like component. Dybvig, Farnsworth, and Carpenter (2010) study information acquisition

and portfolio choice under general non-linear contracts. Their work builds on Demski and Sap-

pington (1987), in which managers’ action is not explicitly portfolio choice. He and Xiong (2013)

show that investors may limit managers’ choice of assets to enhance their information-acquisition

incentives. Our contracting model has similarities with a two-state version of Dybvig, Farnsworth,

and Carpenter (2010). The key difference is that we introduce the uninformed risk-neutral type,

whose presence gives rise to risk limits.8

Other papers determine equilibrium asset prices given contracts. In Kapur and Timmermann

(2005), managers receive a fee assumed to be linear in the fund’s performance in absolute terms

and relative to a benchmark. Benchmarking is beneficial when managers have limited liability,

and raises the price of the benchmark portfolio. The same effect of benchmarking on prices arises

in Cuoco and Kaniel (2011) when the fee is assumed to be linear, but can reverse when the fee

has option-like components. Sato (2016) derives optimal contracts in a model with overlapping

generations of managers who can abscond with a fraction of fund value. He shows that asset

expected returns rise with the extent of delegation. Cvitanic and Xing (2018) derive optimal

contracts in a continuous-time model with infinitely-lived managers and a similar form of moral

hazard. They show that contracts are linear in absolute performance, relative performance, and

a measure of quadratic variation, and that mispricings worsen when the agency problem becomes

more severe.9 Gorton, He, and Huang (2010), Huang (2018) and Sockin and Xiaolan (2018) assume

moral hazard on information acquisition and show that externalities arise because contracts depend

on the informativeness of equilibrium prices, which in turn depends on contracts.10 Contracts in

all of the above papers do not involve risk limits.

8For papers that study contract choice taking prices as given and that do not assume or explicitly model moral
hazard on information acquisition, see, for example, Bhattacharya and Pfleiderer (1985), Starks (1987), Das and
Sundaram (2002), Palomino and Prat (2003), Ou-Yang (2003) and Cadenillas, Cvitanic, and Zapatero (2007).

9Cvitanic and Xing (2018) build on an earlier version of our paper (Buffa, Vayanos, and Woolley (2014)), consid-
ering general contracts and focusing on the case where the asset’s dividend flow follows an Ornstein-Uhlenbeck rather
than a square-root process. Other papers on benchmarking include Buffa and Hodor (2018), who consider managers
with heterogeneous benchmarks, and Kashyap, Kovrijnykh, Li, and Pavlova (2018) who examine how the effects of
benchmarking on prices feed into real investment. See also Brennan (1993), Basak and Pavlova (2013), and Qiu
(2017), where managers’ relative-performance concerns arise because of preferences rather than explicit contracts.

10Kyle, Ou-Yang, and Wei (2011) explore moral hazard on information acquisition in a model where managers are
not price-takers. Equilibrium models in which managers observe private signals and that effort involves no moral
hazard include Garcia and Vanden (2009), Malamud and Petrov (2014) and Garleanu and Pedersen (2018).
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2 Risk Limits in a Static Contracting Model

2.1 Model

There are two periods 0 and 1. The riskless rate is zero. A risky asset pays D per share in period

1 and trades at price S per share in period 0. We assume that D takes the values S + d and S − d,

where d > 0. The prior probabilities of these outcomes are π0 and 1− π0, respectively.

An investor can invest in the risky asset by employing an asset manager. The investor has

negative exponential utility over consumption in period 1, with coefficient of absolute risk aversion

ρ. The manager can be risk-averse or risk-neutral. A risk-averse manager has negative exponential

utility over period 1 consumption, with coefficient of absolute risk aversion ρ̄, and can observe an

informative signal about the asset payoff by incurring a private cost K. A risk-neutral manager has

linear utility over period 1 consumption, and cannot observe the signal at any cost. The probability

that the manager is risk-neutral is λ ∈ (0, 1). Both the risk-averse and the risk-neutral manager

have an outside option of zero. Our assumed heterogeneity across managers captures the idea that

investors are concerned that managers may take excessive risk relative to their information. This

is because the risk-neutral manager does not observe the signal but may take more risk than a

risk-averse manager who observes it.

We denote the risk-averse manager’s posterior probability of S+d by π, and assume that π takes

values in an interval [πmin, πmax] with πmin <
1
2 < πmax, and with positive density h(π). Setting

π̄ ≡ max{1− πmin, πmax} > 1
2 and h(π) = 0 for the additional values of π, we take the interval to

be [1− π̄, π̄]. We refer to the risk-averse manager with posterior π for S + d as the risk-averse type

π. When not making reference to a specific posterior, e.g., before the signal is observed, we refer

to the risk-averse manager as the risk-averse type. We likewise refer to the risk-neutral manager

as the risk-neutral type.

If the investor employs the manager, then they agree on a contract in period 0. The contract

specifies a fee f(W ) that is paid to the manager in period 1 and can depend on the investor’s

gross-of-fee wealth W in that period. Given the fee, the risk-averse type chooses whether or not to

observe the signal, and the risk-averse and risk-neutral types choose a position of z shares for the

investor.

We allow the fee f(W ) to be a general function of W subject to two restrictions. The first

restriction is that the fee must be non-negative, i.e., the manager has limited liability. The second

restriction, to which we refer as monotonicity, applies only to values of W that can be obtained in

equilibrium. The fee levels corresponding to any two such values W1 > W2 must satisfy f(W1) −
f(W2) ≥ ε(W1 − W2), where ε is a positive constant that does not depend on (W1,W2). The
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constant ε can be arbitrarily small, and in fact we focus on the limit of the optimal fee when ε goes

to zero. In that limit, monotonicity requires only that the fee is non-decreasing in W across values

of W that can be obtained in equilibrium.

A non-decreasing fee is economically appealing because it ensures that the manager does not

engage in (unmodeled) activities that reduce W , e.g., costly round-trip transactions, so to raise

her fee. If, in addition, these activities yield a slight benefit to the manager, then the fee must be

strictly increasing. We impose the lower bound ε on the fee’s slope to rule out that the investor

can induce the risk-averse and risk-neutral types to choose different positions z just by exploiting

their indifference over z holding the fee level constant.

If the investor does not employ the manager, then he pays no fee and cannot invest in the risky

asset. Employing the manager is always optimal for the investor. Indeed, the investor can replicate

the outcome of not employing the manager by employing her, setting the fee to zero, and inducing

the risk-averse and risk-neutral types to choose a zero position by exploiting their indifference over

z. This fee satisfies monotonicity because the only value of W that is obtained in equilibrium is

zero. From now on we assume that the investor employs the manager. We also assume that the

optimal contract induces the risk-averse type to observe the signal, and we determine a sufficient

condition for this property to hold at the end of this section.

We set the investor’s wealth in period 0 equal to zero. This assumption is without loss of

generality because the investor has negative exponential utility. The investor’s gross-of-fee wealth

W in period 1 is given by the budget constraint

W = z(D − S). (2.1)

Wealth in period 1 is equal to the capital gains between periods 0 and 1.

The investor chooses the fee f(W ) to maximize his utility. He is subject to the manager’s

incentive-compatibility (IC) constraints on whether or not to observe the signal and what position

z to choose. He must also ensure that the fee satisfies non-negativity and monotonicity. Non-

negativity ensures that the manager’s individual rationality (IR) constraint is satisfied.

When writing the (IC) constraints, we can focus on values of W that can be obtained in

equilibrium. These are the values for which the monotonicity property f(W1)−f(W2) ≥ ε(W1−W2)

must hold. Positions that give rise to other values of W can be made dominated by extending the fee

function f(W ) to be equal to zero for those values. The fee function can alternatively be extended

so that it is non-decreasing for all W . Under either extension, the (IC) constraints can concern only

(i) the positions chosen by the risk-averse and risk-neutral types, and (ii) the opposites of those

positions because they yield the same values of W as the original positions with possibly different

7



probabilities.

The non-decreasing extension of the fee function is in Vayanos (2018). That paper develops our

contracting model in the simpler cases where π is distributed symmetrically around 1
2 and takes

two values or a continuum of values. We extend his analysis to the continuum asymmetric case

because the equilibrium model of Section 3, in which we embed the model of this section, has those

features.

2.2 Optimal Contract

We denote by z(π) the position chosen by the risk-averse type π, and by ẑ the position chosen by

the risk-neutral type. We denote by

U(π, z) ≡ −
[
πe−ρ̄f(zd) + (1− π)e−ρ̄f(−zd)

]
(2.2)

the utility of the risk-averse type π when she chooses position z, and set U(π) ≡ U(π, z(π)). We

denote by

Û(z) ≡ π0f(zd) + (1− π0)f(−zd) (2.3)

the utility of the risk-neutral type when she chooses position z, and set Û ≡ Û(ẑ). Using this

notation, we next state the incentive compatibility (IC) constraints.

A first (IC) constraint concerns the decision of the risk-averse type whether or not to observe

the signal. Observing the signal is optimal if

eρ̄K
∫ π̄

1−π̄
U(π)h(π)dπ ≥ U(π0). (2.4)

The left-hand side of (2.4) is the utility when the risk-averse type observes the signal. That

utility involves an integral over all possible posteriors π that the risk-averse type may have. The

integral is multiplied by eρ̄K because the private cost K of observing the signal is subtracted from

consumption. The right-hand side of (2.4) is the utility when the risk-averse type does not observe

the signal. Without the signal, the risk-averse type’s probability for S + d is the prior π0.

The remaining (IC) constraints concern the choice of positions by the risk-averse type after

she has observed her signal, and by the risk-neutral type. The risk-averse type π must prefer the

position z(π) to positions chosen by other risk-averse types π′ ∈ [1 − π̄, π̄] and to the position ẑ

chosen by the risk-neutral type. She must also prefer z(π) to the opposites of those positions. This

8



yields the constraint

U(π) ≥ max

{
max

π′∈[1−π̄,π̄]
U(π, z(π′)), U(π, ẑ) max

π′∈[1−π̄,π̄]
U(π,−z(π′)), U(π,−ẑ)

}
. (2.5)

The risk-neutral type prefers the position ẑ to positions chosen by risk-averse types and to the

opposite of those positions and of ẑ if

Û ≥ max

{
max

π′∈[1−π̄,π̄]
Û(z(π′)), max

π′∈[1−π̄,π̄]
Û(−z(π′)), Û(−ẑ)

}
. (2.6)

We denote by

∆(π) ≡ f(z(π)d)− f(−z(π)d)

the difference in fee levels across the payoff realizations S + d and S − d for the risk-averse type π.

We denote by

∆(π̂) ≡ f(ẑd)− f(−ẑd)

the corresponding quantity for the risk-neutral type. Lemma 2.1 derives necessary and sufficient

conditions for the part of the (IC) constraint (2.5) that concerns the risk-averse types to hold.

Lemma 2.1. The (IC) constraint

U(π) ≥ max

{
max

π′∈[1−π̄,π̄]
U(π, z(π′)), max

π′∈[1−π̄,π̄]
U(π,−z(π′))

}
(2.7)

holds for all π ∈ [1− π̄, π̄] if and only if the following conditions (i)-(iii) hold:

(i) ∆(π) is non-decreasing.

(ii) If ∆(π) is continuous at π, then U(π) is differentiable at π and

U ′(π) = −U(π)
eρ̄∆(π) − 1

π + (1− π)eρ̄∆(π)
. (2.8)

If instead ∆(π) is discontinuous at π, then U(π) has left- and right-derivatives at π, which

are given by substituting the left- and right-limits of ∆(π), respectively, into (2.8).

(iii) U(π) = U(1− π).

The function ∆(π) has the following additional properties:
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(iv) By redefining z(π) for a measure-zero set of types to another position that gives those types

the same utility, we can assume ∆(π) = −∆(1− π) for π 6= 1
2 .

(v) ∆(π) ≥ 0 for π ∈ (1
2 , π̄], and ∆(π) ≤ 0 for π ∈ [1− π̄, 1

2).

Property (i) of Lemma 2.1 is a sorting condition. When the risk-averse type is more optimistic

that state S + d will occur, the fee that she receives in that state relative to state S − d must be

higher. The fee difference ∆(π) is the sorting device. Property (ii) is an envelope condition. If the

fee levels f(z(π)d) and f(−z(π)d) are differentiable in π, then the envelope condition follows by

differentiating the utility U(π) ≡ U(π, z(π)) with respect to π and using the first-order condition

for z(π). The envelope condition does not require, however, differentiability or even continuity of

f(z(π)d) and f(−z(π)d).

Property (iii) follows because the utility of the risk-averse type π choosing a position z is the

same as that of type 1− π choosing −z. Hence, neither type can achieve a larger utility than the

other. Utility for type π and position z is the same as for type 1 − π and position −z because in

both cases wealth takes the values zd and −zd with probabilities π and 1 − π, respectively. The

same argument implies that by possibly redefining positions in cases of indifference, we can assume

z(π) = −z(1−π) and hence ∆(π) = −∆(1−π). While the redefinition could, in principle, concern

a large set of types and hence change the investor’s payoffs, Lemma 2.1 shows that a redefinition

over a measure-zero set suffices to yield ∆(π) = −∆(1 − π) (Property (iv)). Lemma 2.2 derives

properties of z(π) that parallel those of ∆(π).

Lemma 2.2. The positions (z(π), ẑ) have the following properties:

(i) z(π) is non-decreasing.

(ii) z(π) = −z(1− π) for π 6= 1
2 .

(iii) z(π) ≥ 0 for π ∈ (1
2 , π̄], and z(π) ≤ 0 for π ∈ [1− π̄, 1

2).

Properties (i) and (ii) of Lemma 2.2 follow by combining their counterparts from Lemma 2.1

with the monotonicity of the fee. The argument is as follows. The monotonicity of the fee implies

that the fee difference ∆ increases strictly with position size z: a larger position z yields a larger

capital gain in state S+d and hence a larger fee in that state, while also yielding a larger capital loss

in state S−d and hence a smaller fee in that state. As a consequence, any monotonicity property of

∆ extends to z. For example, since ∆(π) is non-decreasing (Property (i) in Lemma 2.1), z(π) must

also be non-decreasing: if z(π) were decreasing, then ∆(π) would have to be decreasing. Moreover,
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since ∆(π) and ∆(1 − π) are opposites (Property (iv) in Lemma 2.1), z(π) and z(1 − π) must

also be opposites: if, for example, z(π) exceeded −z(1− π), then ∆(π) would also have to exceed

−∆(1 − π). Property (iii) follows from Properties (i) and (ii): since z(π) is non-decreasing and

z(π) = −z(1− π), z(π) must be non-negative for π > 1
2 and non-positive for π < 1

2 .

We next turn to the position ẑ of the risk-neutral type. Since that type does not observe the

signal, the investor wants her to choose a position that is less extreme than the position z(π̄) of

the most optimistic risk-averse type π̄ and the position z(1 − π̄) = −z(π̄) of the most pessimistic

risk-averse type 1 − π̄. The investor can ensure that ẑ does not exceed z(π̄) in absolute value by

setting the fee f(W ) to zero for W > z(π̄)d. The investor may be unable, however, to ensure that

ẑ is (strictly) smaller than z(π̄) in absolute value. In that case, the risk-neutral type is pooled with

the most optimistic or most pessimistic risk-averse types. Pooling gives rise, in turn, to risk limits.

Because of the monotonicity of the fee, the investor can avoid pooling if he can induce the

risk-neutral type to accept a fee difference ∆̂ that is smaller than ∆(π̄) in absolute value. Two

countervailing effects determine the possibility of pooling. On the one hand, the most optimistic

and the most pessimistic risk-averse types are better informed than the risk-neutral type, and

hence tend to prefer a more extreme fee difference. This favors separation. On the other hand,

risk-aversion induces a preference for a less extreme fee difference. This favors pooling.

The pooling effect dominates when the cost K of observing the signal is sufficiently high. This

is because to induce the risk-averse type to observe the signal, the investor must pay her more when

she achieves a favorable wealth outcome. When K is high, the fee difference between favorable and

unfavorable wealth outcomes must be large. This can leave the risk-averse type exposed to more

risk than she finds optimal given her information and risk-aversion. Hence, any attempt by the

investor to induce a less extreme position by the risk-neutral type, by paying her less conditional

on good performance and more conditional on bad performance, would attract the risk-averse type.

The condition on K under which the pooling effect dominates involves not only a lower bound

but also an upper bound. This is because if K is too high, then the investor cannot induce

the risk-averse type to observe the signal regardless of the fee difference. Lemma 2.3 states the

pooling condition. The lower bound on K is implied by the inequality in the right-hand side

and the upper bound by the inequality in the left-hand side. We set π̄0 ≡ max{π0, 1 − π0} and

h̄(π) ≡ h(π) + h(1− π).

Lemma 2.3. When the pooling condition

1−
∫ π̄
π̄0

(π − π̄0)h̄(π)dπ

1− π̄0
< e−ρ̄K < 1−

(π̄ − π̄0)
∫ π̄
π̄0

(π − π̄0)h̄(π)dπ

π̄(1− 2π̄0) + π̄2
0

(2.9)

11



holds, |ẑ| ≥ z(π̄).

When the pooling condition holds, the position z(π̄) of the most optimistic risk-averse type π̄

and z(1 − π̄) of the most pessimistic risk-averse type 1 − π̄ are bounded in absolute value by the

position ẑ of the risk-neutral type. This ranking of positions yields the central result of this section.

This is that the investor imposes, through the design of the fee, a binding limit on positions: a

maximum long and a maximum short position that are opposites, and are smaller in absolute

value than the optimal positions conditional on facing the most optimistic and most pessimistic

risk-averse types, respectively. The limit is binding because the extreme positions attract the

uninformed risk-neutral type. The risk-neutral type chooses the maximum long position if π0 >
1
2 ,

chooses the maximum short position if π0 <
1
2 , and is indifferent between the two if π0 = 1

2 .

Because the limit is binding, it involves pooling by risk-averse types: the maximum long position

is chosen by an interval of optimistic risk-averse types, and the maximum short position is chosen

by an interval of pessimistic risk-averse types. Indeed, since the maximum long and maximum

short positions are smaller in absolute value than the optimal positions conditional on facing the

most optimistic and most pessimistic risk-averse types, respectively, they are also smaller than

the optimal positions conditional on facing slightly less optimistic and slightly less pessimistic

risk-averse types. The investor thus sets the positions of the latter types equal to the maximum

long and maximum short position, respectively. Pooling is characterized by an interval [π∗, π̄] of

optimistic risk-averse types who choose the maximum long position, and an interval [1− π̄, 1− π∗]
of pessimistic risk-averse types who choose the maximum short position.

Theorem 2.1 determines the positions (z(π), ẑ) under the optimal contract when the pooling

condition (2.9) holds and the lower bound ε on the fee’s slope goes to zero. The optimal positions are

expressed in terms of the fee difference ∆(π), which Theorem 2.1 does not characterize. Theorem

2.1 also assumes that the investor finds it optimal to induce the risk-averse type to observe the

signal. We return to the determination of ∆(π) and to the optimality of information acquisition in

the special case that we consider in Section 2.3.

Theorem 2.1. Suppose that the pooling condition (2.9) holds and that the investor finds it optimal

to induce the risk-averse type to observe the signal. In the limit when ε goes to zero:

• The risk-averse types π ∈ [π∗, π̄] pool at the common position

z(π̄) =
1

2ρd
log

(
π∗

1− π∗

)
+

∆(π̄)

2d
. (2.10)

The risk-averse types π ∈ [1− π̄, 1− π∗] pool at −z(π̄).
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• The risk-averse types π ∈ [1− π∗, π∗] choose the distinct positions

z(π) =
1

2ρd
log

(
π

1− π

)
+

∆(π)

2d
. (2.11)

• The risk-neutral type chooses z(π̄) if π0 > 1
2 , chooses −z(π̄) if π0 < 1

2 , and is indifferent

between z(π̄) and −z(π̄) if π0 = 1
2 .

• The pooling threshold π∗ is the unique solution in (π̄0, π̄) of

(1− λ)

∫ π̄

π∗
(π − π∗)h̄(π)dπ = λ(π∗ − π̄0), (2.12)

and decreases in λ.

Equations (2.10) and (2.11) characterize the optimal positions (z(π), ẑ). The relevant risk

exposure that a position z(π) generates for the investor is z(π)− ∆(π)
2d . This is because the exposure

that the investor passes on to the manager through the fee has to be netted out.

Equation (2.12) determines the pooling threshold π∗. Reducing π∗, hence tightening the risk

limit, lowers the positions of the risk-averse types π ∈ [π∗, π̄] ∪ [1 − π̄, 1 − π∗] further below their

optimal level, in absolute value. The left-hand side of (2.12) reflects this cost of the risk limit.

On the other hand, reducing π∗ brings the position of the uninformed risk-neutral type closer to

its optimal level, which corresponds to the prior belief π0. The right-hand side of (2.12) reflects

this benefit of the risk limit. The optimal π∗ equates the cost to the benefit. An increase in the

probability λ of the risk-neutral type raises the benefit and lowers the cost, hence tightening the

risk limit.

2.3 Special Case

To embed the static contracting model into the continuous-time equilibrium model of the following

sections, we specialize it in two ways. First, we take the risk-aversion coefficient ρ̄ of the manager to

be large relative to that of the investor. This assumption captures the idea that the investor is large

relative to the manager, or equivalently that agents are identical but there are many investors for

any given manager.11 Second, we take uncertainty, measured by d, to be small. This assumption

11Suppose that the investor is an aggregate of N individual investors, each with risk-aversion coefficient ρ, and that
the manager has also risk-aversion coefficient ρ. Define one share of the risky asset to pay off (S + d)N or (S − d)N
instead of S + d or S − d. The risk-aversion coefficient of the investor group is ρ

N
. Redefine the numeraire so that

one new unit is N old units. The payoff of one share then becomes S+ d or S− d. Absolute risk-aversion coefficients
are multiplied by N , so the risk aversion of the investor group becomes ρ and that of the manager becomes Nρ ≡ ρ̄.
Moreover, the cost of observing the signal becomes K

N
, which is why we take it to be inversely proportional to N in

what follows.
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corresponds to periods being short, and allows us to bring the model to continuous time. We

take the probabilities (π0, π̄) to be (1
2(1 + µ0d), 1

2(1 + µ̄d)), the risk-aversion coefficient ρ̄ of the

manager to be Nρ, and the cost K of observing the signal to be kd
Nρ , where N is large, d is small,

and (µ0, µ̄, k, ρ) are held constant. We define µ by π ≡ 1
2(1 + µd), denote by h(µ) the continuous

density of µ in the interval [−µ̄, µ̄], and set h̄(µ) ≡ h(µ)+h(−µ). We treat (z(π),∆(π)) as functions

of µ rather than π, and refer to risk-averse types accordingly.

Since the (IC) constraints (2.4) and (2.5) involve the product of ρ̄ with the fee, they imply

that the fee is of order 1
N . Hence, when N is large, the fee is negligible relative to the investor’s

wealth. When, in addition, N is of order larger than 1
d , the fee’s contribution ∆(µ)

2d to the optimal

positions (z(µ), ẑ) is also negligible, and hence the investor’s risk exposure gross and net of the fee

is approximately the same. Building on these observations, Proposition 2.1 determines a condition

under which the investor induces the risk-averse type to observe the signal, and computes the

asymptotic behavior of the optimal positions (z(µ), ẑ).

Proposition 2.1. Suppose that (π0, π̄) = (1
2(1 + µ0d), 1

2(1 + µ̄d)), ρ̄ = Nρ, and K = kd
Nρ , where d

is small and N is large. In the limit when ε goes to zero,

• The investor induces the risk-averse type to observe the signal if N is of order larger than 1
d2 .

The pooling condition (2.9) holds if k < 2
∫ µ̄
|µ0| (µ− |µ0|) h̄(µ)dµ.

• Under these conditions,

– The common position of the risk-averse types µ ∈ [µ∗, µ̄] is z(µ̄) = µ∗

ρ + o(1), where

o(x) are terms of order smaller than x. The common position of the risk-averse types

µ ∈ [−µ̄,−µ∗] is −z(µ̄) = −µ∗

ρ + o(1).

– The positions z(µ) of the risk-averse types µ ∈ [1− µ∗, µ∗] are z(µ) = µ
ρ + o(1).

– The pooling threshold µ∗ (defined as π∗ = 1
2(1 + µ∗d)) is the unique solution in (|µ0|, µ̄)

of

(1− λ)

∫ µ̄

µ∗
(µ− µ∗)h̄(µ)dµ = λ(µ∗ − |µ0|). (2.13)

Proposition 2.1 implies that when N is large and d is small, the static contracting model is

equivalent to a simple reduced-form model without a manager. With probability 1−λ in the latter

model, the investor chooses his optimal position as if he knows the parameter µ that characterizes

the asset’s expected return, but he is subject to a risk limit. The investor’s optimal position

conditional on µ is µ
ρ , and the risk limit requires that the position does not exceed µ∗

ρ in absolute
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value. With probability λ, the investor chooses one of the positions µ∗

ρ and −µ∗

ρ . We use the

reduced-form model in the equilibrium analysis in Section 4.

3 A Dynamic Asset-Pricing Model Without Risk Limits

3.1 Model

Time t is continuous and goes from zero to infinity. The riskless rate is exogenous and equal to

r > 0. A risky asset pays a dividend flow Dt per share and is in supply of θ shares. The price St

per share of the risky asset is determined endogenously in equilibrium. The supply θ can result

from the asset issuer and from noise traders. We allow θ to take both positive and negative values.

Negative values arise when the demand by noise traders exceeds the supply by the asset issuer.

The risky asset’s return per share in excess of the riskless rate is

dRsht ≡ Dtdt+ dSt − rStdt, (3.1)

and the risky asset’s return per dollar in excess of the riskless rate is

dRt ≡
dRsht
St

=
Dtdt+ dSt

St
− rdt. (3.2)

For simplicity, we refer to dRsht and dRt as share return and dollar return, respectively, omitting

that they are in excess of the riskless rate. The share return is convenient when deriving the

equilibrium. The dollar return is more commonly used, and we focus on it when showing properties

of return moments. We refer to the dollar return simply as return.

The dividend flow Dt follows a square-root process

dDt = κ
(
D̄ −Dt

)
dt+ σ

√
DtdBt, (3.3)

where (κ, D̄, σ) are positive constants and dBt is a Brownian motion. The square-root specification

(3.3) allows for closed-form solutions, while also ensuring that dividends remain positive. A property

of the square-root specification that is key for our analysis is that the volatility of dividends per

share (i.e., of Dt) increases with the dividend level. This property is realistic: if a firm becomes

larger and keeps the number of its shares constant, then its dividends per share become more

uncertain in absolute terms (but not necessarily as fraction of the firm’s size).12

12Dividends are often assumed to follow a geometric Brownian motion (GBM). Under the GBM specification, the
volatility of dividends per share is proportional to the dividend level. Hence, the volatility of dividends per share
increases with the dividend level, exactly as under the square-root specification. The two specifications have different
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There are overlapping generations of investors living over infinitesimal periods. Each generation

forms a continuum with measure one. An investor belonging to the generation born at time t invests

in the riskless and in the risky asset. He receives the proceeds of his investment at time t + dt,

consumes, and then dies. The investor has negative exponential utility over consumption at time

t + dt, with coefficient of absolute risk aversion ρ. We denote by zt the investor’s position in the

risky asset, expressed in terms of number of shares. Without loss of generality, we set the investor’s

wealth at time t equal to zero. The investor’s position in the riskless asset thus is −ztSt, and his

wealth at time t+ dt is given by the budget constraint

dWt = zt(Dtdt+ dSt)− rztStdt = ztdRt. (3.4)

Wealth at time t+ dt is equal to the capital gains between t and t+ dt. These are, in turn, equal

to the number of shares zt times the share return dRt.

The investor chooses the number of shares zt to maximize − exp(−ρdWt+dt) subject to (3.4).

Given that uncertainty is Brownian, the investor’s objective is equivalent to

Et(dWt)−
ρ

2
Vart(dWt), (3.5)

a mean-variance objective over infinitesimal changes in wealth. The equilibrium price St of the

risky asset must be such that the solution to the investor’s maximization problem is zt = θ.

3.2 Equilibrium

The equilibrium price St is a function of the dividend flow Dt, which is the only state variable in

the model. Denoting this function by S(Dt), we can write the share return dRsht as

dRsht = Dtdt+ dS(Dt)− rS(Dt)dt

=

[
Dt + κ(D̄ −Dt)S

′(Dt) +
1

2
σ2DtS

′′(Dt)− rS(Dt)

]
dt+ σ

√
DtS

′(Dt)dBt, (3.6)

where the second step follows from (3.3) and Ito’s lemma.

Using the budget constraint (3.4), we can write the investor’s objective as

ztEt(dRsht )− ρ

2
z2
tVart(dR

sh
t ).

implications for the volatility of dividends per share as fraction of the dividend level. Under the GBM specification
that quantity is independent of the dividend level, while under the square-root specification it decreases with the
dividend level. We adopt the square-root over the GBM specification because of tractability.
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The first-order condition with respect to zt is

Et(dRsht ) = ρztVart(dR
sh
t ). (3.7)

The expected share return Et(dRsht ) is the drift term in (3.6), and the share return variance

Vart(dR
sh
t ) is the square of the diffusion term. Moreover, market clearing implies zt = θ. Mak-

ing these substitutions in (3.7), we find the following ordinary differential equation (ODE) for the

function S(Dt):

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) = ρθσ2DtS
′(Dt)

2. (3.8)

The ODE (3.8) is second-order and non-linear, and must be solved over (0,∞). We require that

its solution S(Dt) has a derivative that converges to finite limits at zero and infinity. This yields

one boundary condition at zero and one at infinity.

We look for an affine solution to the ODE (3.8):

S(Dt) = a0 + a1Dt, (3.9)

where (a0, a1) are constant coefficients. This function satisfies the boundary conditions since its

derivative is constant. Substituting this function into (3.8) and identifying terms, we can compute

(a0, a1).

Proposition 3.1. Suppose θ > − (r+κ)2

4ρσ2 . The equilibrium price St of the risky asset is given by

(3.9) with

a0 =
κ

r
a1D̄, (3.10)

a1 =
2

(r + κ) +
√

(r + κ)2 + 4ρθσ2
. (3.11)

The intuition for (3.10) and (3.11) is as follows. The coefficient a1 is the sensitivity of the price

St to changes in the dividend flow Dt. Consider a unit increase in Dt. If the supply θ of the risky

asset is equal to zero, then (3.11) implies that the price St increases by a1 = 1
r+κ . This is the

present value of the increase in future expected dividends discounted at the riskless rate r. Indeed,

a unit increase in Dt raises the expected dividend flow Et(Dt′) at time t′ > t by e−κ(t′−t). Hence,

the present value of future expected dividends increases by∫ ∞
t

e−κ(t′−t)e−r(t
′−t)dt′ =

1

r + κ
.
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If the supply θ of the risky asset is positive, then the price St increases by a1 <
1

r+κ in response

to a unit increase in Dt. This is because the increase in Dt not only raises expected dividends,

but also makes them riskier due to the square-root specification of Dt. Moreover, this risk raises

the discount rate when θ is positive because in equilibrium the investors hold the θ shares, so the

risky asset covaries positively with their wealth. If instead θ < 0, then the risk lowers the discount

rate, and the price St increases by a1 >
1

r+κ . Equation (3.11) implies that a1 decreases in θ, and

this effect is stronger if the volatility parameter σ and the investors’ risk-aversion coefficient ρ are

larger.

The coefficient a0 is equal to the price level when the dividend flow Dt is zero. If the mean-

reversion parameter κ were equal to zero, and hence the dividend flow were to stay at zero forever,

then a0 would be equal to zero. Because, however, κ is positive, and hence the dividend flow returns

with certainty to positive values, a0 is positive. Moreover, a0 inherits properties of a1 since the

larger a1 is, the more the price increases when the dividend flow becomes positive. In particular,

a0 decreases in the supply θ of the risky asset.

Since an increase in θ lowers a1, it makes the price less sensitive to changes in the dividend flow

Dt. Since it also lowers a0, it lowers the price for any value of Dt. Proposition 3.2 derives the effect

of θ on the expected return and the return volatility of the risky asset.

Proposition 3.2. An increase in θ raises the asset’s conditional expected return Et(dRt) and leaves

the return’s conditional volatility
√
Vart(dRt) unaffected. The effects on the unconditional values

of these variables, E(dRt) and
√
Var(dRt), are the same as on the conditional values.

Recall from (3.2) that the return of the risky asset is

dRt =
Dt

St
dt+

dSt
St
− rdt.

The volatility of that return is caused by the term dSt
St

, i.e., the capital gains per dollar invested.

Since an increase in θ lowers the sensitivity a1 of the price St to changes in the dividend flow Dt,

it makes the capital gains dSt = a1dDt per share less volatile. At the same time, the share price

St = a0 + a1Dt also decreases. Because θ has the same percentage effect on a0 and a1, the capital

gains dSt
St

per dollar invested do not change, and neither does return volatility
√

Vart(dRt). On

the other hand, expected return E(dRt) increases because of the term Dt
St
dt, i.e., the dividends per

dollar invested. An increase in θ does not affect the dividend flow Dt per share but lowers the share

price St.
13

13The price remains affine and the comparative statics in Proposition 3.2 still hold when there is an infinitely lived
representative investor with negative exponential utility over intertemporal consumption, rather than overlapping
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4 A Dynamic Asset-Pricing Model With Risk Limits

4.1 Model

The model is as described in Section 3 except that investors are divided into experts and non-

experts. The optimization problem of experts is as in Section 3, and we denote by z1t the optimal

number of shares. The behavior of non-experts follows instead the reduced-form model derived

in Section 2.3. With probability 1 − λ, a non-expert solves the same optimization problem as an

expert but is subject to a risk limit. We denote by z2t the optimal number of shares coming out

of the constrained problem. With probability λ, a non-expert chooses a position right at the risk

limit. The mass of non-experts is x ∈ [0, 1).

To specify the risk limit and explain why the reduced-form model is applicable, we recall the

static contracting model of Section 2 from which the reduced-form model derives. The payoff of

the risky asset can take two values yielding opposite capital gains d and −d per share. The investor

cannot invest in the risky asset on his own and must rely on a manager. The manager can observe

a signal about the probabilities of the two values.

Suppose, in line with the model of Section 2, that a non-expert cannot invest in the risky asset

on his own and must rely on a manager. Suppose additionally that a non-expert observes neither

the asset supply θ nor the dividend flow Dt, and the same is true for a manager who does not incur

the observation cost. These agents use the unconditional distribution of (θ,Dt).
14 On the other

hand, a manager who incurs the cost observes (θ,Dt), and so does an expert. We assume that the

observation cost is such that non-experts choose to induce risk-averse manager types to observe

(θ,Dt). The supply θ can be uncertain because noise-trader demand is random.

Under the above assumptions, we can embed the static contracting model of Section 2 into the

continuous-time equilibrium model of Section 3 if we can discretize the latter so that (i) the asset

payoff can take two values in each period, and (ii) the resulting capital gains are opposite and

independent of (θ,Dt). Ensuring (i) is straightforward, as a Brownian motion can be discretized to

take two values in each period. To ensure (ii), we use two degrees of freedom. First, by redefining

generations of investors living over infinitesimal periods. This is shown in an earlier version of our paper (Buffa,
Vayanos, and Woolley (2014)). A natural question is how the comparative statics extend to the case where the
investor has constant relative rather than constant absolute risk aversion utility. We have investigated this question
in a three-period binomial model with one riskless and one risky asset and with utility over terminal consumption. We
assume that noise traders cause the supply θ of the risky asset available to the investor to change in the first period.
The investor’s wealth remains the same before and after he trades with them, while his holdings B0 of the riskless
asset change. An increase in θ lowers the price of the risky asset and raises its expected return, as in Proposition 3.2.
The return volatility, which is independent of θ in Proposition 3.2, takes the same value for θ = 0 and for θ such that
B0 = 0, and is inverse hump-shaped in-between.

14We can rule out that these agents learn from the price St by assuming that non-experts do not observe St and
that managers must trade before observing St via a market order (i.e., a price-inelastic demand function).
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an asset share, we can multiply the two values of the capital gains (per share) by the same scalar

and render their difference independent of (θ,Dt). The redefinition does not affect the contracting

problem since a non-expert contracts with his manager only on his wealth and not on the share

price. Second, we can change one of the two values, holding their difference constant, so that it

becomes independent of (θ,Dt), while also changing the probabilities so that the asset’s expected

return does not change.

We next determine the risk limit that the model of Section 2 implies when it is embedded into the

model of Section 3 in the way described above. The risk limit in Section 2.3 is of the form |zt| ≤ µ∗

ρ .

The quantity zt represents redefined shares, for which the difference between the two values of the

capital gains is independent of (θ,Dt). Using (3.6) and taking dBt to be plus or minus
√
dt, the

difference between the two values of the capital gains before the redefinition is 2σ
√
DtS

′(Dt)
√
dt.

Hence, if the difference after the redefinition is set to 2
√
dt, one share corresponds to σ

√
DtS

′(Dt)

redefined shares, and the risk limit is

|z2t|σ
√
DtS

′(Dt) ≤
µ∗

ρ
. (4.1)

Intuitively, (4.1) requires that the volatility (standard deviation) of the manager’s position cannot

exceed a threshold.

The risk-limit parameter µ∗ is determined from (2.13), which involves the distribution h(µ) of

µ. To determine h(µ), we note that the expected return per share in the contracting model of

Section 2.3 is

E(R̂sh) =
1

2
(1 + µd)d+

1

2
(1− µd)(−d) = µd2

and the variance of the return per share is Var(R̂sh) = d2−µ2d4. Hence, for small d, µ = E(R̂sh)

Var(R̂sh)
.

Since the return per share R̂sh concerns redefined shares, σ
√
DtS

′(Dt) of which correspond to one

share,

µ =
Et
(

dRsht
σ
√
DtS′(Dt)

)
Vart

(
dRsht

σ
√
DtS′(Dt)

) =
Dt + κ(D̄ −Dt)S

′(Dt) + 1
2σ

2DtS
′′(Dt)− rS(Dt)

σ
√
DtS′(Dt)

, (4.2)

where the second step follows from (3.6). The distribution h(µ) of µ is determined by (4.2). It

depends on the unconditional distribution of (θ,Dt) and on the equilibrium form of the price

function S(Dt) (which depends on θ).

In the model of Section 2.3, the risk-neutral manager type chooses the maximum long position

if the unconditional expectation µ0 of µ is positive, chooses the maximum short position if µ0 < 0,
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and is indifferent between the two if µ0 = 0. For the equilibrium analysis in this section, it is

convenient that the risk-neutral type is equally likely to choose either position even when µ0 6= 0.

Under this condition, the positions chosen by risk-neutral types cancel in the aggregate, as half are

equal to the maximum long position and half to the maximum short position. The market-clearing

condition becomes (1 − x)z1t + (1 − λ)xz2t = θ, and involves only the position z1t of experts and

the position z2t of non-experts who employ risk-averse manager types.

To ensure that risk-neutral types invest in the manner described above, we assume that each

of them has prior belief π0 = 1
2(1 + |µ0|d) or π0 = 1

2(1− |µ0|d), and the two priors are independent

across types and equally likely. (Thus, half of the risk-neutral types have a wrong prior.) The

model of Section 2 can accommodate this extension. Corollary A.1 shows that Proposition 2.1

carries through provided that µ0 in (2.13) is replaced by zero.

In Sections 4.2 and 4.3 we derive properties of the equilibrium for given values of θ and µ∗. The

endogenous determination of µ∗, as a function of λ and other exogenous parameters, is not essential

for the qualitative properties of the equilibrium. The same is true in Section 4.4, where we determine

properties of the equilibrium that involve expectations over θ. The endogenous determination of µ∗

becomes essential in Section 4.5 where we examine how the equilibrium changes when λ changes.

This is because µ∗ changes endogenously as part of the equilibrium.

4.2 Equilibrium

The first-order condition of an expert is (3.7), with z1t replacing zt. To determine the position

z2t of a non-expert, we distinguish cases depending on whether the risk limit binds or not. We

occasionally refer to the position of a non-expert as being chosen by a manager, even though

managers are absent from the reduced-form model derived in Section 2.3.

Consider first the unconstrained region, where the risk limit (4.1) does not bind. The first-order

condition of a non-expert is (3.7), with z2t replacing zt. Since the first-order conditions of an expert

and a non-expert are identical, z1t = z2t. Setting z1t = z2t into the market-clearing condition, we

find

z1t = z2t =
θ

1− λx
. (4.3)

Substituting z1t from (4.3) into the first-order condition of an expert, we find the ODE

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) =
ρθ

1− λx
σ2DtS

′(Dt)
2. (4.4)
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Substituting z2t from (4.3) into (4.1), we find that the unconstrained region is defined by

|θ|
1− λx

σ
√
DtS

′(Dt) ≤
µ∗

ρ
. (4.5)

Consider next the constrained region, where (4.1) holds as an equality and the risk limit binds.

Using the market-clearing condition to write z1t as a function of z2t, and substituting into the

first-order condition of an expert, we find

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) = ρ
θ − (1− λ)xz2t

1− x
σ2DtS

′(Dt)
2. (4.6)

If θ > 0, then the asset’s expected return is positive and so is z2t. Conversely, if θ < 0, then z2t < 0.

Using these observations to substitute z2t from (4.1), which holds as an equality in the constrained

region, into (4.6), we find the ODE

Dt+κ(D̄−Dt)S
′(Dt)+

1

2
σ2DtS

′′(Dt)−rS(Dt) =
ρθ

1− x
σ2DtS

′(Dt)
2−sgn(θ)(1− λ)xµ∗

1− x
σ
√
DtS

′(Dt).

(4.7)

The function sgn(θ) is the sign function, equal to one if θ > 0 and to minus one if θ < 0. The

constrained region is defined by the opposite inequality to (4.5), i.e.,

|θ|
1− λx

σ
√
DtS

′(Dt) >
µ∗

ρ
. (4.8)

The price function S(Dt) solves the ODE (4.4) in the unconstrained region (4.5), and (4.7) in

the constrained region (4.8). The two ODEs are second-order and non-linear, and must be solved

as a system over (0,∞). As in Section 3.2, we require that S′(Dt) converges to finite limits at zero

and infinity.

Since S′(Dt) converges to a finite limit at zero, values of Dt close to zero belong to the uncon-

strained region (4.5). Conversely, since S′(Dt) converges to a finite limit at infinity, values of Dt

close to infinity belong to the constrained region (4.8). Hence, the unconstrained and constrained

regions are separated by at least one boundary point and more generally by an odd number of such

points. At a boundary point D∗, the values of S(D∗) implied by the two ODEs must be equal, and

the same is true for the values of S′(D∗). These are the smooth-pasting conditions. The boundary

points must be solved together with the ODEs. This makes the problem a free-boundary one.

The ODE (4.4) has an affine solution same as the one derived in Proposition 3.1, with θ
1−λx

replacing θ. That solution, however, does not satisfy the ODE (4.7). Hence, it represents the

equilibrium price only when non-experts do not impose a risk limit by setting µ∗ to infinity rather
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than to the optimal finite value given in Proposition 2.1. While a closed-form solution to the ODEs

(4.4) and (4.7) for finite µ∗ is not available, we can prove existence of a solution and a number

of key properties. Our proof approach follows that in Kondor and Vayanos (2018), although the

specific arguments differ.15

Theorem 4.1. Suppose θ > − (1−x)(r+κ)2

4ρσ2 and κD̄ > σ2

4 . A solution S(Dt) to the system of ODEs

(4.4) in the unconstrained region (4.5), and (4.7) in the constrained region (4.8), with a derivative

that converges to finite limits at zero and infinity, exists and has the following properties:

• It is increasing.

• It lies below the affine solution derived for µ∗ =∞ when θ > 0, and above it when θ < 0.

• Its derivative S′(Dt) lies below the derivative of the affine solution derived for µ∗ =∞ when

θ > 0, and above it when θ < 0.

• It is concave when θ > 0, and convex when θ < 0.

• The unconstrained and constrained regions are separated by only one boundary point D∗.

Theorem 4.1 confirms that an increase in the dividend flow Dt raises the price St. It also

shows that the risk limit exacerbates the effects that noise-trader demand has on the price. Indeed,

consider the case where non-experts do not impose a risk limit by setting µ∗ = ∞. The price is

then given by the affine solution in Proposition 3.1, with θ
1−λx replacing θ. Under that solution,

the price is higher when θ < 0, corresponding to high noise-trader demand, than when θ > 0,

corresponding to low noise-trader demand. Consider next the case where non-experts set µ∗ to its

optimal finite value. Theorem 4.1 shows that the price increases uniformly (lies above the affine

solution) for θ < 0, and decreases uniformly (lies below the affine solution) for θ > 0. Hence, the

difference between the price for θ < 0 and θ > 0 increases: the asset becomes even more expensive

when noise-trader demand is high, and becomes even cheaper when noise-trader demand is low.

15A key difficulty in proving existence is that a solution must be found over the open interval (0,∞), with a
boundary condition at each end. To address this difficulty, we start with a compact interval [ε,M ] ⊂ (0,∞) and show
that there exists a unique solution to the ODEs with one boundary condition at ε and one at M . The boundary
conditions are derived from the limits of S′(Dt) at zero and infinity. In the case of M , for example, the requirement
that S′(Dt) has a finite limit at infinity determines that limit uniquely, and we set S′(M) equal to that value. To
construct the solution over [ε,M ], we use S′(M) and an arbitrary value for S′′(M) as initial conditions for the ODEs
at M , and show that there exists a unique S′′(M) so that the boundary condition at ε is satisfied. Showing uniqueness
uses continuity of solutions with respect to the initial conditions, as well as a monotonicity property with respect to
the initial conditions that follows from the structure of our ODEs. We next show that when ε converges to zero and
M to infinity, the solution over [ε,M ] converges to a solution over (0,∞). The monotonicity property of solutions
with respect to the initial conditions is key to the convergence proof because it yields monotonicity of the solution
with respect to ε and M .
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Intuitively, the risk limit exacerbates the effects that noise-trader demand has on the price because

it can prevent the managers employed by non-experts from absorbing that demand.

The risk limit exacerbates the effects of noise-trader demand not only on the price level but

also on the price sensitivity to changes in the dividend flow Dt. Recall from Proposition 3.1 that

in the absence of a risk limit (µ∗ = ∞), the price is more sensitive to Dt when θ < 0 than when

θ > 0. Theorem 4.1 shows that in the presence of a risk limit (µ∗ finite), the price becomes even

more sensitive to Dt when θ < 0 and even less sensitive when θ > 0. These effects are driven by

the same forces as the non-linearities, to which we next turn.

Theorem 4.1 shows that the price is non-linear in Dt: it is (strictly) concave for θ > 0 and

(strictly) convex for θ < 0. These effects are driven by the trading of the managers employed by

non-experts in response to their risk limit. Suppose that θ > 0 and Dt is in the constrained region.

Following an increase in Dt, the non-experts’ long positions go up in value and their volatility rises.

The risk limit induces the managers employed by non-experts to cut those positions. They thus sell

some shares of the asset to experts, and these sales dampen the price rise. The dampening effect is

weaker when Dt is smaller and in the unconstrained region because it concerns not actual sales but

an expectation that sales might occur in the future. The price increase is thus smaller for larger

Dt, resulting in concavity. Conversely, suppose that θ < 0 and Dt is in the constrained region.

Following an increase in Dt, the managers employed by non-experts cut their short positions, and

thus buy from experts. These purchases amplify the price rise. The amplification effect is weaker

when Dt is smaller and in the unconstrained region, resulting in convexity.

Because of the amplification effect, the price is more sensitive to changes in Dt than in the

absence of a risk limit when θ < 0. Conversely, because of the dampening effect, the price is less

sensitive to changes in Dt than in the absence of a risk limit when θ > 0.

Figure 1 illustrates the properties of the price shown in Theorem 4.1 using a numerical example.

The figure’s left panel plots the price as a function of Dt. The thin lines represent the price in

the absence of a risk limit (µ∗ = ∞) and the thick lines the price with a risk limit (µ∗ finite). In

each case, the solid blue line corresponds to a positive value of θ and the dashed red line to the

opposite negative value. The figure’s right panel plots the position of non-experts using the same

conventions. Besides confirming the properties shown in Theorem 4.1, the figure shows that the

risk limit has a larger effect on prices and positions when θ < 0 than when θ > 0. We return to

this point in Section 4.4, where we analyze overvaluation bias.
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Figure 1: Effect of Risk Limit on Prices and Positions
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Asset price St (left panel) and position z2t of non-experts (right panel) as a function of the dividend flow
Dt. The thin lines in each panel represent the price in the absence of a risk limit (µ∗ = ∞) and the thick
lines the price with a risk limit (µ∗ finite). In each case, the solid blue line corresponds to a positive value
of supply θ and the dashed red line to the opposite negative value. Parameter values are: r = 0.03, κ = 0.1,
D̄ = 0.2, σ = 0.2, θ ∈ {0.01,−0.01}, ρ = 1, x = 0.9, λ = 0.2.

4.3 Risk-Return Inversion

In the model of Section 3, in which there is no risk limit, the supply θ has no effect on the asset’s

return volatility (Proposition 3.2). This result no longer holds with a risk limit: volatility is higher

when θ < 0, corresponding to high noise-trader demand, than when θ > 0, corresponding to low

noise-trader demand.

Proposition 4.1. Under the assumptions in Theorem 4.1, both the conditional and the uncondi-

tional volatility of the asset’s return are:

• Higher when θ < 0 than when θ > 0.

• Higher than under the affine solution derived for µ∗ =∞ when θ < 0, and lower when θ > 0.

The intuition for Proposition 4.1 is related to the convexity and concavity results of Theorem

4.1. For Dt close to zero, the risk limit is far from binding, and volatility is independent of θ, as

in the case of no risk limit. For large values of Dt, the risk limit binds, and forces the managers

employed by non-experts to trade when Dt changes. As explained after Theorem 4.1, trading

amplifies movements in Dt when θ < 0, and dampens them when θ > 0. The amplification effect
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causes volatility to be higher when θ < 0 than in the risk limit’s absence. Conversely, the dampening

effect causes volatility to be lower when θ > 0 than in the risk limit’s absence, and hence also lower

than when θ < 0. The same comparisons hold for smaller values of Dt because of the expectation

that the risk limit might bind in the future.

Since the asset’s expected return is positive when θ > 0 and negative when θ < 0, Proposition

4.1 implies a negative relationship between volatility and expected return: expected return is low

and volatility is high when θ < 0, and conversely expected return is high and volatility is low when

θ > 0. High volatility goes together with overvaluation (low expected return) because they are

both driven by high noise-trader demand. Indeed, to accommodate the high demand, investors

hold short positions. Moreover, some of these positions have to be unwound because of the risk

limit when the market goes up, yielding amplification and high volatility.

A negative relationship between volatility and expected return runs counter to the prediction

of standard theories that investors should earn a higher return as compensation for bearing more

risk. A negative relationship has been documented empirically within asset classes, and is known

as the volatility anomaly. Haugen and Baker (1996) and Ang, Hodrick, Xing, and Zhang (2006)

document the volatility anomaly in the cross-section of U.S. stocks.

The negative relationship between volatility and expected return in our model holds as a

comparative-statics result rather than as a cross-sectional result because there is only one risky

asset. We can, however, extend our model to multiple risky assets and derive a cross-sectional re-

sult. The simplest way to perform the extension is to assume that dividend flows are independent

across assets, and that the risk limit for non-experts applies asset-by-asset rather than across their

entire portfolio. The contracting model of Section 2 would yield an asset-by-asset risk limit when

extended to multiple assets if each manager can acquire information on only one asset and a non-

expert hires one manager per asset. Deriving a risk limit across an entire portfolio would require

deriving optimal contracts in the model of Section 2 when each manager can acquire information

on multiple assets.

Formally, the extension is as follows. There are N risky assets instead of one. Asset n = 1, .., N

pays a dividend flow Dnt per share and is in supply of θn shares. The dividend flow Dnt follows

the square-root process

dDnt = κn
(
D̄n −Dnt

)
dt+ σn

√
DntdBnt, (4.9)

which generalizes (3.3), and the Brownian motions {dBnt}n=1,..,N are independent. Experts and

non-experts can invest in all N risky assets. The position z2nt of a non-expert in asset n is subject
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to the risk limit

|z2nt|σ
√
DntS

′(Dnt) ≤
µ∗n
ρ
, (4.10)

which generalizes (4.1).

The multi-asset extension yields a replica of the one-asset model: the price for each asset is given

by Proposition 3.1 in the case of no risk limits, and by Theorem 4.1 in the case of risk limits. In the

multi-asset extension, the negative relationship between volatility and expected return becomes a

cross-sectional result.

An additional advantage of the multi-asset extension is that we can use it to study how expected

return relates to CAPM beta.16 The CAPM implies a positive relationship between beta and

expected return. Empirically, however, the relationship is flat or negative, a fact known as the

beta anomaly. Black (1972), Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014)

document a flat relationship in the cross-section of U.S. stocks. Baker, Bradley, and Wurgler (2011)

find that the relationship turns negative in recent decades.

Our multi-asset extension yields a negative relationship between beta and expected return. This

is because with independent dividend flows, an asset’s beta is proportional to the asset’s return

variance times the asset price. Assets with θ < 0 have high beta because they have both high price

(Theorem 4.1) and high return variance (Proposition 4.1).17

Proposition 4.2. In the multi-asset extension of our model, suppose θn > − (1−x)(r+κn)2

4ρσ2
n

and

κnD̄n >
σ2
n
4 for all n = 1, .., N . An asset n with θn < 0 has higher conditional and unconditional

CAPM beta than an otherwise identical asset n′ with θn′ > 0.

Figure 2 illustrates the properties of return moments shown in this section using a numerical

example. The figure’s left panel plots the conditional expected return as a function of Dt. The

thin lines represent the expected return in the absence of a risk limit (µ∗ =∞) and the thick lines

the expected return with a risk limit (µ∗ finite). In each case, the solid blue line corresponds to

a positive value of θ and the dashed red line to the opposite negative value. The figure’s middle

panel plots the conditional return volatility as a function of Dt using the same conventions. The

figure’s right panel plots the conditional CAPM betas in a two-asset model as a function of Dt,

16An asset’s CAPM beta is the covariance between the asset’s return and the return of the market portfolio, divided
by the variance of the market portfolio’s return. With only one asset, the market portfolio coincides with the asset
and the beta is one.

17The negative relationship between beta and expected return would arise even in the absence of a risk limit:
the return variance would be independent of θ (Proposition 3.2), but the price would be higher for low-θ assets
(Proposition 3.1).
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Figure 2: Effect of Risk Limit on Return Moments
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Conditional expected return Et(dRt) (left panel), conditional return volatility
√
Vart(dRt) (middle panel),

and conditional CAPM beta Covt(dR1t,dRMt)
Var(dRMt)

(right panel) as a function of the dividend flow Dt. The thin

lines in each panel represent the return moments in the absence of a risk limit (µ∗ = ∞) and the thick
lines the return moments with a risk limit (µ∗ finite). In each case, the solid blue line corresponds to
a positive value of supply θ and the dashed red line to the opposite negative value. Beta is computed
in a two-asset model as a function of Dt, considering a realization where D1t = D2t = Dt and taking
the market portfolio to consist of an equal number of shares in each asset. Parameter values are as in Figure 1.

considering a realization where D1t = D2t = Dt. We use the same conventions as in the other

two panels, and take the market portfolio to consist of an equal number of shares in each asset.18

The figure confirms the negative relationship between return volatility and beta on one hand, and

expected return on the other.

4.4 Overvaluation Bias

Proposition 4.1 shows that the risk limit exacerbates the effects that noise-trader demand has on

the price level: the asset becomes even more expensive when noise-trader demand is high (θ < 0)

and even cheaper when noise-trader demand is low (θ > 0). In this section we show that these

effects of the risk limit do not cancel on average, but there is a bias towards overvaluation.

Suppose that the supply θ of the asset can take either a positive value or the opposite negative

value, with each outcome being equally likely. Figure 3 plots the average price, taking expectations

over the two values of θ, as a function of Dt. In the multi-asset extension of our model, the average

18We are assuming that asset issuers supply an equal number of shares of each asset, and that an empiricist who
constructs the market portfolio observes that supply only and not its combination with noise-trader demand.
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Figure 3: Effect of Risk Limit on Average Price
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n=1 Snt as a function of the dividend flow Dt. The thin line represents the average price

in the absence of a risk limit (µ∗ = ∞), and the thick line represents the same quantity with a risk limit
(µ∗ finite). Half of the assets are in positive supply and the other half are in the opposite negative supply.
The parameters of the dividend-flow process are the same across assets, and we consider a realization
where Dnt = Dt for all n = 1, ..N . The parameters of the dividend-flow process are the same across assets.
Parameter values are as in Figure 1.

price can be interpreted as the cross-sectional average of prices. The multi-asset interpretation

requires that half of the assets are in positive supply and the other half are in the opposite negative

supply, that the parameters of the dividend-flow process are the same across assets, and that we

consider a realization where Dnt = Dt for all n = 1, ..N . We adopt the multi-asset interpretation

in the rest of this section.

The thin line in Figure 3 represents the average price in the absence of a risk limit (µ∗ = ∞),

and the thick line represents the same quantity with a risk limit (µ∗ finite). Imposing the risk limit

raises the average price: overvalued assets (θ < 0, low expected return) appreciate by more than

undervalued assets (θ > 0, high expected return) depreciate.

Key to the price asymmetry is that the risk limit binds more severely for overvalued assets than

for undervalued ones. Indeed, recall from (4.1) that the risk limit constrains the volatility of a

manager’s asset position. Since the share price and volatility per share are larger for overvalued

assets than for an undervalued ones, the risk limit binds more severely for a short position in the

former than for a long position of an equal number of shares in the latter.

The risk limit’s asymmetric effect on positions yields the price asymmetry. With a binding risk

limit, non-experts hold smaller short positions, in terms of number of shares, in overvalued assets
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than they hold long positions in undervalued ones. Market clearing requires that if the supply θ is

opposite across the two types of assets, experts hold larger short positions than long positions. For

experts to be induced to do so, overvaluation must be severe.

The right panel of Figure 1 confirms the risk limit’s asymmetric effect on positions. The

risk limit for overvalued assets (θ < 0) becomes binding at Dt = 0.356. For undervalued assets

(θ > 0) instead, the risk limit becomes binding at Dt = 0.576. Moreover, for any Dt > 0.576,

the discrepancy between the position of non-experts with and without the risk limit is larger for

overvalued than for undervalued assets.

4.5 Comparative Statics

Some of the results in Sections 4.2, 4.3 and 4.4 compare the equilibrium in which non-experts

impose the optimal risk limit to the equilibrium in which they (suboptimally) impose no limit.

All exogenous parameters are held constant in those comparisons. This section compares instead

equilibria in which the risk limit is always set to its optimal value, and changes because exogenous

parameters change. The parameter we focus on is the fraction λ of risk-neutral manager types.

An increase in λ has two effects on equilibrium prices. The risk-limit effect is that non-experts

tighten the risk limit to account for the higher probability that their manager is uninformed. The

informed-trading effect is that because the manager is uninformed with higher probability, she is

more likely to trade suboptimally and not absorb noise-trader demand. The risk-limit effect derives

from Proposition 2.1: (2.13) shows that µ∗ decreases when λ increases. The informed-trading effect

enters through (4.4): an increase in λ raises the aggregate risk aversion parameter ρ
1−λx of the

agents absorbing noise-trader demand. The comparisons in Sections 4.2, 4.3 and 4.4 isolate the

risk-limit effect relative to the case λ = 0. This is because the aggregate risk aversion parameter
ρ

1−λx is held constant, and a comparison is made with the case where µ∗ =∞, a value that can be

derived from (2.13) by setting λ = 0 and µ̄ =∞.

Figure 4 illustrates the risk-limit and informed-trading effects. The left panel plots the price,

and the middle panel plots the conditional expected return, both as a function of Dt. The thin

solid blue and dashed red lines correspond to the base case, in which λ = 0.2. The dotted blue

and red lines correspond to λ = 0.5 and isolate the risk-limit effect. The thick solid blue and thick

dashed red lines also correspond to λ = 0.5 and show the combined effect. The figure confirms that

the risk-limit and the informed-trading effect work in the same direction, exacerbating the impact

of noise-trader demand. It shows additionally that the risk-limit effect is the stronger of the two.

The endogenous determination of the risk limit plays a critical role in the comparative statics.

Because the risk-limit and the informed-trading effect render the asset more mispriced in equilib-
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Figure 4: Comparative statics
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Price St (left panel), conditional expected return Et(dRt) (middle panel), and risk-limit parameter µ∗ (right
panel) for different values of the fraction λ of risk-neutral manager types. The thin solid blue and dashed
red lines correspond to the base case, in which λ = 0.2. The dotted blue and red lines correspond to λ = 0.5
and isolate the risk-limit effect. The thick solid blue and thick dashed red lines also correspond to λ = 0.5
and show the combined effect. The blue lines correspond to a positive value of supply θ and the red lines
correspond to the opposite negative value. The dashed-dotted line in the right panel shows the impact of
λ on µ∗ when prices are held constant. The dotted line shows the impact when equilibrium prices change
because of the risk-limit effect, and the solid line shows the impact when prices change because of the
combined effect. Values for parameters other than λ are as in Figure 1.

rium, investors partly relax the risk limit to benefit from the larger mispricing. This mitigates

partly the two effects, as shown in the right panel of Figure 4. When prices are held constant, an

increase in λ from 0.2 to 0.5 lowers µ∗ sharply (dashed-dotted line). The decline in µ∗ becomes

smaller when investors respond to the change in equilibrium prices caused by the risk-limit effect

(dotted line). The decline in µ∗ becomes almost non-existent when investors respond to the change

in prices caused by the combined effect (solid line).

5 Benchmarks

In the contracting model of Section 2, the manager’s fee can depend only on the investor’s wealth

W and not on asset payoffs (except through W ). This can describe situations where investors do

not observe the payoffs of the assets in which managers invest. For example, investors may not be

familiar with the types of assets (or strategies) in which hedge funds invest, and indices for those

assets may not be readily available. In other situations, however, managers invest in a well-defined
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set of assets for which indices are available. For example, equity mutual funds hold long positions

in the stock market. In such situations, managers’ fees can depend on indices or other asset payoff

information, in addition to the managers’ return. In particular, investors can pay managers based

on how their return compares to a stock-market index.

Extending the model of Section 2 to the case where the manager’s fee can depend both on the

investor’s wealth and on asset payoffs, and embedding it into the equilibrium model of Section 3,

introduces new complications. For example, by observing the asset payoffs, the investor can learn

about their volatility, and set a laxer risk limit when volatility is high. In this section we do not

determine the optimal contract, but employ a simple extension of the reduced-form model derived

in Section 2.3 to determine equilibrium prices. We show that the analysis of Section 4 carries

through essentially unchanged.

We assume that with probability 1− λ, a non-expert solves the same optimization problem as

an expert but is subject to the risk limit

|z2t − η|σ
√
DtS

′(Dt) ≤
µ∗

ρ
, (5.1)

where z2t is the non-expert’s position in terms of number of shares, and η is a non-negative constant.

With probability λ, a non-expert chooses a position right at the risk limit, and is equally likely

to be at the upper or at the lower limit. The average position in that case is η. We assume that

choice outcomes are independent across non-experts. The market-clearing condition is (1−x)z1t +

(1− λ)xz2t + λxη = θ, where z1t denotes the position of an expert.

Intuitively, (5.1) requires that the volatility of the manager’s position in the risky asset, relative

to a benchmark position η, is bounded. The risk limit (4.1) in Section 4 is a special case of (5.1)

with η = 0. When η > 0, the benchmark position is long. Setting η positive rather than zero is

likely to be better for the investor if his optimal position in the risky asset under his prior beliefs

is long. Suppose, for example, that η is a known supply by the asset issuer and η − θ is a random

mean-zero demand by noise traders. (The total supply is η − (η − θ) = θ.) If the investor does

not observe the noise-trader demand, then the optimal position under his prior beliefs is equal (or

close) to η.

To derive the ODE in the unconstrained region, we note that the market-clearing condition

implies that the common position of experts and non-experts is

z1t = z2t =
θ − λxη
1− λx

. (5.2)
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Substituting z1t from (5.2) into the first-order condition of an expert, we find the ODE

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) =
ρ(θ − λxη)

1− λx
σ2DtS

′(Dt)
2. (5.3)

Substituting z2t from (5.2) into (5.1), which holds as a strict inequality in the unconstrained region,

we find that the unconstrained region is defined by

|θ − η|
1− λx

σ
√
DtS

′(Dt) ≤
µ∗

ρ
. (5.4)

To derive the ODE in the constrained region, we use the market-clearing condition to write z1t

as a function of z2t, and substitute into the first-order condition of an expert. This yields

Dt + κ(D̄−Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) = ρ
θ − (1− λ)xz2t − λxη

1− x
σ2DtS

′(Dt)
2. (5.5)

We next note that z2t− η has the same sign as θ− η. Indeed, since non-experts are prevented from

choosing the same position as experts by the risk limit, and since that limit is not binding if z2t

is sufficiently close to η, z1t − η and z2t − η have the same sign. The market-clearing condition

written as (1− x)(z1t − η) + (1− λ)x(z2t − η) = θ− η then implies that z2t − η and θ− η have the

same sign. Using that observation to substitute z2t from (5.1), which holds as an equality in the

constrained region, into (5.5), we find the ODE

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) =
ρ(θ − xη)

1− x
σ2DtS

′(Dt)
2

− sgn(θ − η)(1− λ)xµ∗

1− x
σ
√
DtS

′(Dt).

(5.6)

The constrained region is defined by the opposite inequality to (5.4), i.e.,

|θ − η|
1− λx

σ
√
DtS

′(Dt) >
µ∗

ρ
. (5.7)

The results of Theorem 4.1 and Propositions 4.1 and 4.2 carry through provided that all compar-

isons between θ and zero are replaced by ones between θ and η. Our numerical solutions indicate

that the overvaluation bias shown in Section 4.4 carries through as well provided that the two

equally likely values of θ average to η rather than to zero.

Proposition 5.1. Suppose that θ > − (1−x)(r+κ)2

4ρσ2 + xη and κD̄ > σ2

4 . A solution S(Dt) to the

system of ODEs (5.3) in the unconstrained region (5.4), and (5.6) in the constrained region (5.7),

with a derivative that converges to finite limits at zero and infinity, exists. It has the same properties
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as in Theorem 4.1 and Propositions 4.1 and 4.2 provided that all comparisons between θ and zero

are replaced by ones between θ and η.

When θ < η, the risk limit renders the asset more expensive because it can induce managers

employed by non-experts to hold a larger long position: the managers’ unconstrained position,

given by (5.2), is smaller than η when θ < η, and the risk limit brings it closer to η. The risk

limit also renders the price more sensitive to changes in Dt because of the amplifying effect of the

trading that it induces: managers employed by non-experts are forced to buy the asset when Dt

increases. Because of the amplifying effect, the price becomes convex and the return becomes more

volatile. The converse results hold when θ < η.

6 Conclusion

We study how the agency relationship between investors and asset managers affects equilibrium

asset prices. We first develop a static contracting model that combines (i) moral hazard arising from

managers’ effort to acquire information and (ii) adverse selection arising from managers’ preferences

and the private information they may acquire. We show that the optimal contract involves risk

limits: the risk of the portfolio chosen by managers is kept within bounds, even when the optimal

level of risk given the private information that managers may acquire exceeds the bounds. Investors

constrain their managers in that way because the latter may not acquire information and gamble

for a high fee.

We next embed the contracting model into an equilibrium asset-pricing model with noise traders

and overlapping generations of investors and managers. The frictionless version of that model is to

our knowledge new to the literature. It yields a simple closed-form solution for asset prices, and

generates more realistic properties than the tractable CARA-normal alternative, e.g., prices and

dividends are always positive, and the volatility of asset returns per share increases in the dividend

flow.

We show two main results. First, risk limits generate an inverted risk-return relationship:

overvalued assets have low expected return and high volatility, while undervalued assets have high

expected return and low volatility. The high volatility of overvalued assets arises because managers

buy them during bull markets to meet risk limits. Unlike previous literature on amplification

effects, amplification in our model happens during bubbles rather than crises. Our second result also

concerns distortions during bubbles. Risk limits cause overvalued assets to become more overvalued

and undervalued assets to become more undervalued. Yet, because overvalued assets have higher

share price and volatility, risk limits are more constraining when trading against overvaluation,
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biasing the aggregate market upward.

Our analysis suggests that risk limits (or tracking-error constraints as they are often referred to

in the asset management industry) can have important effects on managers’ portfolio policies and

equilibrium asset prices. Empirical research has started to investigate these effects. For example,

Christoffersen and Simutin (2017) find that mutual-fund managers who manage pension-fund assets,

and hence face greater pressure to meet benchmarks, hold a larger fraction of their portfolios in

high-beta stocks and achieve lower alphas. This is consistent with our results that overvaluation

is associated with high beta, and that more constrained managers hold more shares in overvalued

assets and fewer shares in undervalued ones. Lines (2016) finds that mutual-fund managers shift

their portfolio weights towards those of the benchmark when volatility rises, putting downward

price pressure on overweight stocks and upward pressure on underweight stocks. This is consistent

with the amplification effect that we derive.

Extending the empirical investigation by bringing in proxies for noise-trader demand could yield

sharper tests of the theoretical mechanisms. Such proxies could include flows into mutual funds,

or restricted mandates by institutional investors not to invest in some industry sectors. Empirical

studies have documented that high demand according to these proxies is associated with low future

returns.19 Our analysis implies additionally that high demand should be associated with high

volatility, and that the trading of managers with tight risk limits should be contributing to this.

Another promising extension concerns the normative and policy implications. While each in-

vestor in our model seeks to limit the risk taken by his manager, the combined effect of those efforts

is to raise the volatility of overvalued assets. Would a regulator or a social planner internalize this

effect and impose a laxer risk limit? More generally, how would privately optimal risk limits com-

pare to socially optimal ones? Our model can help address these questions because it provides an

explicit contractual problem that risk limits solve, and captures the two-way feedback from risk

limits to equilibrium asset prices.

19Frazzini and Lamont (2008) argue that noise-trader demand (“dumb money” in their terminology) can be proxied
by flows into mutual funds, as these predict low long-horizon returns for the stocks bought by the funds. In a similar
spirit, Coval and Stafford (2007) find that that stocks sold by mutual funds that experience extreme outflows earn
high long-horizon returns, while stocks bought by funds that experience extreme inflows earn low returns. Hong and
Kacperczyk (2009) find that stocks in “sin industries” (alcohol, gaming and tobacco) are less held by institutions,
presumably because of restricted mandates, and earn higher returns. An alternative proxy for noise-trader demand
could be holdings by controlling shareholders, e.g., in family firms.
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Appendix

A Proofs for Section 2

Proof of Lemma 2.1. In this and subsequent proofs we denote by

Γ(π) ≡ π0f(z(π)d) + (1− π0)f(−z(π)d)

the expected fee for the risk-averse type π under the prior probabilities (π0, 1− π0), and by

Γ̂ ≡ π0f(ẑd) + (1− π0)f(−ẑd)

the same quantity for the risk-neutral type. Using the definitions of (∆(π), ∆̂,Γ(π), Γ̂), we can

write the utility of the risk-averse type π when she chooses positions z(π′), z(π) and ẑ as

U(π, z(π′)) = −
[
πe−ρ̄(1−π0)∆(π′) + (1− π)eρ̄π0∆(π′)

]
e−ρ̄Γ(π′), (A.1)

U(π) = U(π, z(π)) = −
[
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

]
e−ρ̄Γ(π), (A.2)

U(π, ẑ) = −
[
πe−ρ̄(1−π0)∆̂ + (1− π)eρ̄π0∆̂

]
e−ρ̄Γ̂, (A.3)

respectively, and the utility of the risk-neutral type when she chooses positions ẑ and z(π′) as

Û = Γ̂, (A.4)

Û(z(π′)) = Γ(π′), (A.5)

respectively.

We next show that the (IC) constraint (2.7) implies Property (i). Equation (A.1) implies that

the risk-averse type π prefers z(π) to z(π′) if

−
[
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

]
e−ρ̄Γ(π) ≥ −

[
πe−ρ̄(1−π0)∆(π′) + (1− π)eρ̄π0∆(π′)

]
e−ρ̄Γ(π′).

(A.6)

Conversely, the risk-averse type π′ prefers z(π′) to z(π) if

−
[
π′e−ρ̄(1−π0)∆(π′) + (1− π′)eρ̄π0∆(π′)

]
e−ρ̄Γ(π′) ≥ −

[
π′e−ρ̄(1−π0)∆(π) + (1− π′)eρ̄π0∆(π)

]
e−ρ̄Γ(π).

(A.7)
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Multiplying (A.6) and (A.7) by minus one, to make their sides positive, and then multiplying each

side of (A.6) by the corresponding side of (A.7), we find

[
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

] [
π′e−ρ̄(1−π0)∆(π′) + (1− π′)eρ̄π0∆(π′)

]
≤
[
πe−ρ̄(1−π0)∆(π′) + (1− π)eρ̄π0∆(π′)

] [
π′e−ρ̄(1−π0)∆(π) + (1− π′)eρ̄π0∆(π)

]
⇔ (π − π′)

[
eρ̄[π0∆(π)−(1−π0)∆(π′)] − eρ̄[π0∆(π′)−(1−π0)∆(π)]

]
≥ 0

⇔ (π − π′)
[
eρ(∆(π)−∆(π′)) − 1

]
≥ 0. (A.8)

Equation (A.8) implies that if π > π′ then ∆(π) ≥ ∆(π′). Hence, ∆(π) is non-decreasing.

We next show that the (IC) constraint (2.7) implies Property (ii). Consider first a point π at

which ∆(π) is continuous. Equations (A.6) and (A.7) imply

[
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

]
e−ρ̄Γ(π)

πe−ρ̄(1−π0)∆(π′) + (1− π)eρ̄π0∆(π′)
≥ e−ρ̄Γ(π′) ≥

[
π′e−ρ̄(1−π0)∆(π) + (1− π′)eρ̄π0∆(π)

]
e−ρ̄Γ(π)

π′e−ρ̄(1−π0)∆(π′) + (1− π′)eρ̄π0∆(π′)
.

(A.9)

Since ∆(π) is continuous at π, both fractions in (A.9) converge to e−ρ̄Γ(π) when π′ goes to π.

Equation (A.9) then implies that e−ρ̄Γ(π′) converges to the same limit. Hence, Γ(π) is continuous

at π. Equation (A.2) implies

U(π)− U(π′)

π − π′

=

[
π′e−ρ̄(1−π0)∆(π′) + (1− π′)eρ̄π0∆(π′)

]
e−ρ̄Γ(π′) −

[
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

]
e−ρ̄Γ(π)

π − π′
.

(A.10)

Combining (A.10) with (A.6), we find

U(π)− U(π′)

π − π′

≥

[
π′e−ρ̄(1−π0)∆(π′) + (1− π′)eρ̄π0∆(π′)

]
e−ρ̄Γ(π′) −

[
πe−ρ̄(1−π0)∆(π′) + (1− π)eρ̄π0∆(π′)

]
e−ρ̄Γ(π′)

π − π′

=
[
eρ̄π0∆(π′) − e−ρ̄(1−π0)∆(π′)

]
e−ρ̄Γ(π′). (A.11)
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Combining (A.10) with (A.7), we find

U(π)− U(π′)

π − π′

≤
[
π′e−ρ̄(1−π0)∆(π) + (1− π′)eρ̄π0∆(π)

]
e−ρ̄Γ(π) −

[
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

]
e−ρ̄Γ(π)

π − π′

=
[
eρ̄π0∆(π) − e−ρ̄(1−π0)∆(π)

]
e−ρ̄Γ(π). (A.12)

Since (∆(π),Γ(π)) are continuous at π, the right-hand side of (A.11) converges to

[
eρ̄π0∆(π) − e−ρ̄(1−π0)∆(π)

]
e−ρ̄Γ(π)

when π′ goes to π. Equations (A.11) and (A.12) then imply that U(π)−U(π′)
π−π′ converges to the same

limit. Using (A.2), we can write that limit as

−U(π)
eρ̄π0∆(π) − e−ρ̄(1−π0)∆(π)

πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)
= −U(π)

eρ̄∆(π) − 1

π + (1− π)eρ̄∆(π)
.

Hence, U(π) is differentiable at π, with U ′(π) given by (2.8).

Consider next a point π at which ∆(π) is discontinuous. Since ∆(π) is non-decreasing, ∆(π)

has left- and right-limits at π, which we denote by ∆(π−) and ∆(π+), respectively. Equation (A.9)

written for π′ < π implies that Γ(π) has a left-limit Γ(π−) at π, given by

e−ρ̄Γ(π−) =

[
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

]
e−ρ̄Γ(π)

πe−ρ̄(1−π0)∆(π−) + (1− π)eρ̄π0∆(π−)
. (A.13)

Consider next π′ < π′′ < π and the (IC) constraint that the risk-averse type π′ prefers z(π′) to

z(π′′). Taking the limit of that equation when π′′ goes to π, we find

−
[
π′e−ρ̄(1−π0)∆(π′) + (1− π′)eρ̄π0∆(π′)

]
e−ρ̄Γ(π′) ≥ −

[
πe−ρ̄(1−π0)∆(π−) + (1− π)eρ̄π0∆(π−)

]
e−ρ̄Γ(π−).

(A.14)

Combining (A.10) with (A.13) and (A.14), we obtain the following counterpart of (A.12):

U(π)− U(π′)

π − π′

≤

[
π′e−ρ̄(1−π0)∆(π−) + (1− π′)eρ̄π0∆(π−)

]
e−ρ̄Γ(π−) −

[
πe−ρ̄(1−π0)∆(π−) + (1− π)eρ̄π0∆(π−)

]
e−ρ̄Γ(π−)

π − π′

=
[
eρ̄π0∆(π−) − e−ρ̄(1−π0)∆(π−)

]
e−ρ̄Γ(π−). (A.15)
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Since (∆(π),Γ(π)) have left-limits at π, the right-hand side of (A.11) converges to

[
eρ̄π0∆(π−) − e−ρ̄(1−π0)∆(π−)

]
e−ρ̄Γ(π−)

when π′ goes to π from the left. Equations (A.11) and (A.15) then imply that U(π)−U(π′)
π−π′ converges

to the same limit. Using (A.2) and (A.13), we can write that limit as

−U(π)
eρ̄π0∆(π−) − e−ρ̄(1−π0)∆(π−)

πe−ρ̄(1−π0)∆(π−) + (1− π)eρ̄π0∆(π−)
= −U(π)

eρ̄∆(π−) − 1

π + (1− π)eρ̄∆(π−)
.

Hence, U(π) has a left-derivative at π, with U ′(π) given by substituting ∆(π−) in (2.8). The

argument for the right-derivative is identical.

We next show that the (IC) constraint (2.7) implies Property (iii). Equation (2.2) implies

U(π,−z) = U(1− π, z). (A.16)

Using (A.16), we can write the condition that the risk-averse type π prefers z(π) to −z(1− π) as

U(π) ≥ U(π,−z(1− π)) = U(1− π, z(1− π)) = U(1− π). (A.17)

The same derivation for the risk-averse type 1 − π yields U(1 − π) ≥ U(π), and hence U(π) =

U(1 − π). Equations (A.17) and U(π) = U(1 − π) imply that the risk-averse type π is indifferent

between z(π) and −z(1− π).

We next show that Properties (i), (ii) and (iii) imply the (IC) constraint (2.7). For this result

and subsequent proofs we use

U(π) = U(π̄) exp

[∫ π̄

π
H(∆(π′), π′)dπ′

]
, (A.18)

where

H(∆, π) ≡ eρ̄∆ − 1

π + (1− π)eρ̄∆
.

Equation (A.18) follows by integrating the ordinary differential equation (ODE) (2.8). The integra-

tion proof must account for possible points of discontinuity of ∆(π). Since ∆(π) is non-decreasing,

its discontinuity points are at most countable, and the same is true for the discontinuity points of

π → H(∆(π), π). Hence, π → H(∆(π), π) is measurable, and the integral
∫ π̄
π H(∆(π′), π′)dπ′ in

(A.18) is well-defined. Since U(π) and
∫ π̄
π H(∆(π′), π′)dπ′ have left- and right-derivatives, the func-

tion K(π) ≡ U(π) exp
[
−
∫ π̄
π H(∆(π′), π′)dπ′

]
has also left- and right-derivatives. Moreover, Prop-
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erty (ii) implies that the left- and right-derivatives of K(π) are zero for all π. Hence, K(π) = U(π̄),

which implies (A.18).

Combining (A.2) and (A.18), we find

e−ρ̄Γ(π) = −
U(π̄) exp

[∫ π̄
π H(∆(π′), π′)dπ′

]
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

. (A.19)

Substituting e−ρ̄Γ(π) and e−ρ̄Γ(π′) from (A.19) into (A.6), we find that (A.6) is equivalent to

U(π̄) exp

[∫ π̄

π
H(∆(π′′), π′′)dπ′′

]
≥ U(π̄) exp

[∫ π̄

π′
H(∆(π′′), π′′)dπ′′

]
πe−ρ̄(1−π0)∆(π′) + (1− π)eρ̄π0∆(π′)

π′e−ρ̄(1−π0)∆(π′) + (1− π′)eρ̄π0∆(π′)

⇔ 1 ≤ exp

[∫ π

π′
H(∆(π′′), π′′)dπ′′

]
π + (1− π)eρ̄∆(π′)

π′ + (1− π′)eρ̄∆(π′)
, (A.20)

where the second step follows by dividing both sides by

U(π̄) exp

[∫ π̄

π
H(∆(π′′), π′′)dπ′′

]
,

which is negative. Since H(∆, π) is increasing in ∆, and ∆(π) is non-decreasing,

exp

[∫ π

π′
H(∆(π′′), π′′)dπ′′

]
≥ exp

[∫ π

π′
H(∆(π′), π′′)dπ′′

]
= exp

[[
log
(
π′′ + (1− π′′)eρ̄∆(π′)

)]π′
π

]
=
π′ + (1− π′)eρ̄∆(π′)

π + (1− π)eρ̄∆(π′)
. (A.21)

Equation (A.21) implies that (A.20) holds for all (π, π′). Hence, U(π) ≥ maxπ′∈[1−π̄,π̄] U(π, z(π′))

for all π ∈ [1− π̄, π̄]. To show U(π) ≥ maxπ′∈[1−π̄,π̄] U(π,−z(π′)) for all π ∈ [1− π̄, π̄], we note that

U(π) ≥ U(π,−z(π′)) = U(1− π, z(π′))

⇔ U(1− π) ≥ U(1− π, z(π′)), (A.22)

where the first step follows from (A.16) and the second from Property (iii). Equation (A.22) holds

because of equation U(π) ≥ maxπ′∈[1−π̄,π̄] U(π, z(π′)) written for 1 − π instead of π. Hence, the

(IC) constraint (2.7) holds.

We next show that the (IC) constraint (2.7) implies Property (iv). Suppose that ∆(π) is

continuous at π. Property (ii) implies that U(π) is differentiable at π. Property (iii) implies that
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U(π) is also differentiable at 1− π, with U ′(1− π) = −U ′(π). Combining the latter equation with

(2.8), we find

− U(1− π)H(∆(1− π), 1− π) = U(π)H(∆(π), π)

⇔ H(−∆(1− π), π) = H(∆(π), π)

⇔ ∆(π) = −∆(1− π),

where the second step follows from Property (iii) and because the definition of H(∆, π) implies

H(∆, 1− π) = −H(−∆, π), (A.23)

and the third step follows because H(∆, π) is increasing in ∆. Suppose next that ∆(π) is discon-

tinuous at π, and that ∆(π) 6= −∆(1− π). Since the risk-averse type π is indifferent between z(π)

and −z(1− π), we can redefine z(π) for π ∈ [1− π̄, 1
2) to −z(1− π), preserving the (IC) constraint

(2.7). Under this redefinition, ∆(π) = −∆(1− π). Since the points of discontinuity of ∆(π) are at

most countable, the redefinition concerns a measure-zero set of types.

We finally show that the (IC) constraint (2.7) implies Property (v). Property (v) follows from

Properties (i) and (iv): since ∆(π) is non-decreasing and ∆(π) = −∆(1 − π), ∆(π) must be non-

negative for π > 1
2 and non-positive for π < 1

2 .

Proof of Lemma 2.2. To show Property (i), suppose by contradiction that z(π) > z(π′) for

π < π′. Using the definition of ∆(π), we find

∆(π) ≡ f(z(π)d)− f(−z(π)d)

= f(z(π)d)− f(z(π′)d) + f(z(π′)d)− f(−z(π′)d) + f(−z(π′)d)− f(−z(π)d)

≥ 2ε(z(π)− z(π′))d+ f(z(π′)d)− f(−z(π′)d)

> f(z(π′)d)− f(−z(π′)d) ≡ ∆(π′), (A.24)

where the third step follows from fee monotonicity and the fourth from z(π) > z(π′). Equation

(A.24) yields ∆(π) > ∆(π′), which is a contradiction because ∆(π) is non-decreasing.

To show Property (ii), we use a similar argument. Suppose by contradiction that z(π) >
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−z(1− π). Using the definition of ∆(π), we find

∆(π) ≡ f(z(π)d)− f(−z(π)d)

= f(z(π)d)− f(−z(1− π)d) + f(−z(1− π)d)− f(z(1− π)d) + f(z(1− π)d)− f(−z(π)d)

≥ 2ε(z(π) + z(1− π))d+ f(−z(1− π)d)− f(z(1− π)d)

> f(−z(1− π)d)− f(z(1− π)d) ≡ −∆(1− π), (A.25)

where the third step follows from fee monotonicity and the fourth from z(π) > −z(1−π). Equation

(A.24) yields ∆(π) > −∆(1 − π), which is a contradiction because ∆(π) = −∆(1 − π). We can

likewise derive a contradiction by assuming z(π) < −z(1− π). Hence, z(π) = −z(1− π).

Property (iii) follows from Properties (i) and (ii): since z(π) is non-decreasing and z(π) =

−z(1− π), z(π) must be non-negative for π > 1
2 and non-positive for π < 1

2 .

To prove Lemma 2.3, we first prove the following lemma.

Lemma A.1. The (IC) constraint (2.4) is equivalent to∫ π̄

1
2

exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
h̄(π)dπ ≤ e−ρ̄K , (A.26)

and yields the following bounds on K and ∆(π̄):

e−ρ̄K > 1−
∫ π̄
π̄0

(π − π̄0)h̄(π)dπ

1− π̄0
, (A.27)

eρ̄∆(π̄) ≥
π̄0

(
1− e−ρ̄K

)
+
∫ π̄
π̄0

(π − π̄0)h̄(π)dπ∫ π̄
π̄0

(π − π̄0)h̄(π)dπ − (1− π̄0) (1− e−ρ̄K)
, (A.28)

where π̄0 ≡ max{π0, 1− π0}.

Proof of Lemma A.1. Substituting U(π) from (A.18) into (2.4), we find

eρ̄K
∫ π̄

1−π̄
U(π̄) exp

[∫ π̄

π
H(∆(π′), π′)dπ′

]
h(π)dπ ≥ U(π̄) exp

[∫ π̄

π0

H(∆(π′), π′)dπ′
]
.

Dividing both sides by

eρ̄KU(π̄) exp

[∫ π̄

π0

H(∆(π′), π′)dπ′
]
,
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which is negative, we find∫ π̄

1−π̄
exp

[∫ π0

π
H(∆(π′), π′)dπ′

]
h(π)dπ ≤ e−ρ̄K . (A.29)

To show that (A.29) is equivalent to (A.26), suppose first π0 ≥ 1
2 . We write the left-hand side of

(A.29) as∫ π̄

1−π̄
exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
h(π)dπ

=

∫ 1
2

1−π̄
exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
h(π)dπ +

∫ π̄

1
2

exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
h(π)dπ

=

∫ π̄

1
2

exp

[∫ π̄0

1−π
H(∆(π′), π′)dπ′

]
h(1− π)dπ +

∫ π̄

1
2

exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
h(π)dπ,

(A.30)

where the first step follows because π̄0 = π0 for π0 ≥ 1
2 , and the third step follows from the change

of variable π to 1− π. To simplify (A.30), we note that

∫ π̄0

1−π
H(∆(π′), π′)dπ′ =

∫ 1
2

1−π
H(∆(π′), π′)dπ′ +

∫ π

1
2

H(∆(π′), π′)dπ′ +

∫ π̄0

π
H(∆(π′), π′)dπ′

=

∫ π

1
2

H(∆(1− π′), 1− π′)dπ′ +
∫ π

1
2

H(∆(π′), π′)dπ′ +

∫ π̄0

π
H(∆(π′), π′)dπ′

= −
∫ π

1
2

H(−∆(1− π′), π′)dπ′ +
∫ π

1
2

H(∆(π′), π′)dπ′ +

∫ π̄0

π
H(∆(π′), π′)dπ′

= −
∫ π

1
2

H(∆(π′), π′)dπ′ +

∫ π

1
2

H(∆(π′), π′)dπ′ +

∫ π̄0

π
H(∆(π′), π′)dπ′

=

∫ π̄0

π
H(∆(π′), π′)dπ′, (A.31)

where the second step follows from the change of variable π′ to 1− π′, the third step follows from

(A.23), and the fourth step follows from Property (iv) of Lemma 2.1. Using (A.31), we write (A.30)

as ∫ π̄

1
2

exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
h̄(π)dπ.

Therefore, when π0 ≥ 1
2 , (A.29) is equivalent to (A.26). To reach the same conclusion when π0 <

1
2 ,
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we write the left-hand side of (A.29) as

∫ π̄

1−π̄
exp

[
−
∫ 1−π0

1−π
H(∆(1− π′), 1− π′)dπ′

]
h(π)dπ

=

∫ π̄

1−π̄
exp

[∫ 1−π0

1−π
H(−∆(1− π′), π′)dπ′

]
h(π)dπ

=

∫ π̄

1−π̄
exp

[∫ 1−π0

1−π
H(∆(π′), π′)dπ′

]
h(π)dπ

=

∫ π̄

1−π̄
exp

[∫ 1−π0

π
H(∆(π′), π′)dπ′

]
h(1− π)dπ

=

∫ π̄

1−π̄
exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
h(1− π)dπ, (A.32)

where the first step follows from the change of variable π′ to 1 − π′, the second step follows from

(A.23), the third step follows from Property (iv) of Lemma 2.1, the fourth step follows from the

change of variable π to 1−π, and the fifth step follows because π̄0 = 1−π0 for π0 <
1
2 . This brings

us to the case π0 ≥ 1
2 , with h(1− π) replacing h(π).

To derive the bounds (A.27) and (A.28), we derive a lower bound for exp
[∫ π̄0

π H(∆(π′), π′)dπ′
]

by distinguishing two cases for π. For π ∈ [π̄0, π̄],

exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
≥ exp

[∫ π̄0

π
H(∆(π̄), π′)dπ′

]
= exp

[[
log
(
π′ + (1− π′)eρ̄∆(π̄)

)]π
π̄0

]
=

π + (1− π)eρ̄∆(π̄)

π̄0 + (1− π̄0)eρ̄∆(π̄)
(A.33)

where the first step follows because H(∆, π) is increasing in ∆, and ∆(π) is non-decreasing. For

π ∈ (1
2 , π̄0),

exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
≥ exp

[∫ π̄0

π
H(0, π′)dπ′

]
= 1 (A.34)

because H(∆, π) is increasing in ∆, and ∆(π) is non-negative for π > 1
2 . Combining (A.26), (A.33)

and (A.34), we find

∫ π̄0

1
2

h̄(π)dπ +

∫ π̄

π̄0

π + (1− π)eρ̄∆(π̄)

π̄0 + (1− π̄0)eρ̄∆(π̄)
h̄(π)dπ ≤ e−ρ̄K . (A.35)
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Grouping together terms in eρ̄∆(π̄) and using∫ π̄0

1
2

h̄(π)dπ +

∫ π̄

π̄0

h̄(π)dπ =

∫ π̄

1
2

h̄(π)dπ =

∫ π̄

1
2

[h(π) + h(1− π)]dπ =

∫ π̄

1−π̄
h(π)dπ = 1,

we find

π̄0

(
1− e−ρ̄K

)
+

∫ π̄

π̄0

(π − π̄0)h̄(π)dπ

≤ eρ̄∆(π̄)

[∫ π̄

π̄0

(π − π̄0)h̄(π)dπ − (1− π̄0)
(
1− e−ρ̄K

)]
. (A.36)

Since the left-hand side of (A.36) is positive, (A.36) can hold only if the term in square brackets

in the right-hand side is positive. The latter condition is equivalent to the upper bound (A.27) on

K. Assuming that (A.27) holds, dividing both sides of (A.36) by the term in square brackets in

the right-hand side yields the lower bound (A.28) on ∆(π̄).

Proof of Lemma 2.3. In this and subsequent proofs we denote by

Gπ(∆) ≡ −
[
πe−ρ̄(1−π0)∆ + (1− π)eρ̄π0∆

]
the utility of the risk-averse type π when she receives (1− π0)∆ under payoff realization S + d and

−π0∆ under payoff realization S − d. The function Gπ(∆) is concave, maximum at

∆∗(π) ≡ 1

ρ̄
log

(
π(1− π0)

(1− π)π0

)
, (A.37)

increasing for ∆ < ∆∗(π), and decreasing for ∆ > ∆∗(π). We likewise set

Ḡπ(∆) ≡ −
[
πe−ρ̄(1−π̄0)∆ + (1− π)eρ̄π̄0∆

]
,

∆̄∗(π) ≡ 1

ρ̄
log

(
π(1− π̄0)

(1− π)π̄0

)
. (A.38)

The functionGπ(∆(π)) characterizes how the expected utility U(π) of risk-averse type π depends

on the fee difference ∆(π), holding the expected fee Γ(π) under the prior probabilities (π0, 1− π0)

constant. Indeed, using Gπ(∆), we can write (A.2) as U(π) = Gπ(∆(π))e−ρΓ(π). Holding Γ(π)

constant, U(π) is hump shaped in ∆(π) and maximum for ∆∗(π).

Using (A.2), (A.3) and Gπ(∆), we can write the constraint U(π) ≥ U(π, ẑ), which is included
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in (2.5), as

−
[
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

]
e−ρΓ(π) ≥ −

[
πe−ρ̄(1−π0)∆̂ + (1− π)eρ̄π0∆̂

]
e−ρΓ̂

⇔ Gπ(∆(π))e−ρΓ(π) ≥ Gπ(∆̂)e−ρΓ̂. (A.39)

Using (A.4) and (A.5), we can write the constraint Û ≥ Û(z(π′)), which is included in (2.6), as

Γ̂ ≥ Γ(π′). (A.40)

We next explain the role of the two inequalities in (2.9). The inequality in the left-hand side

is (A.27). The inequality in the right-hand side is equivalent to the lower bound (A.28) on ∆(π̄)

exceeding

min{∆∗(π̄),−∆∗(1− π̄)} = min

{
1

ρ̄
log

(
π̄(1− π0)

(1− π̄)π0

)
,

1

ρ̄
log

(
π̄π0

(1− π̄)(1− π0)

)}
=

1

ρ̄
log

(
π̄(1− π̄0)

(1− π̄)π̄0

)
= ∆̄∗(π̄). (A.41)

Indeed, multiplying by ρ̄ and taking the exponential, we find that the latter condition is equivalent

to

π̄0

(
1− e−ρ̄K

)
+
∫ π̄
π̄0

(π − π̄0)h̄(π)dπ∫ π̄
π̄0

(π − π̄0)h̄(π)dπ − (1− π̄0) (1− e−ρ̄K)
>
π̄(1− π̄0)

(1− π̄)π̄0
. (A.42)

Rearranging (A.42), we find the inequality in the left-hand side of (2.9).

To show that |ẑ| ≥ z(π̄), we proceed in two steps. The first step is to suppose that |ẑ| < z(π̄)

and show that there exists π̂ ∈ [π̄0, π̄) such that ∆(π̂) = ∆̄∗(π̂) and

F (π) ≡ exp

[∫ π̂

π
H(∆(π′), π′)dπ′

]
− πe−ρ̄(1−π̄0)∆(π) + (1− π)eρ̄π̄0∆(π)

π̂e−ρ̄(1−π̄0)∆(π̂) + (1− π̂)eρ̄π̄0∆(π̂)
≥ 0 (A.43)

for all π ∈ [π̂, π̄]. The second step is to show that these properties together with (2.9) yield a

violation of (A.26) and hence a contradiction.

The intuition for the first step is that if |ẑ| < z(π̄) then the investor exposes the risk-neutral

type to a lower level of risk than the optimal level ∆∗(π̄) or ∆∗(1 − π̄) of the extreme risk-averse

type π̄ or 1 − π̄. Hence, there exists an intermediate risk-averse type π̂ or 1 − π̂ whose optimal

level of risk coincides with the level to which the risk-neutral type is exposed. The intuition for

the second step is that because the investor exposes type π̂ or 1− π̂ to her optimal level of risk, he

cannot expose more extreme types to high risk levels (otherwise they would mimic type π̂ or 1− π̂),
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and hence cannot provide sufficient incentives to observe the signal. The proof of the second step

requires a variational argument because while it is possible to expose some more extreme types to

high risk levels, it is the average exposure that matters, and bounding it requires optimizing over

the function ∆(π).

Step 1: Suppose that |ẑ| < z(π̄). We distinguish cases according to how π0 compares with 1
2 .

When π0 >
1
2 , ẑ is non-negative, and fee monotonicity implies ∆(π̄) > ∆̂ ≥ 0. (A negative

position ẑ is dominated by the opposite positive position −ẑ because it yields the same wealth

outcomes ẑd and −ẑd but with worse probabilities: the probability of ẑd < 0 is π0 > 1
2 under

ẑ and 1 − π0 under −ẑ.) Condition π0 > 1
2 also implies ∆∗(π̄) < −∆∗(1 − π̄), as can be seen

by the derivation of (A.41). Since (2.9) implies that the lower bound (A.28) on ∆(π̄) exceeds

min{∆∗(π̄),−∆∗(1 − π̄)} = ∆∗(π̄), Gπ̄(∆) is decreasing for ∆ ∈ [∆∗(π̄),∆(π̄)], and hence is more

negative for ∆(π̄) than for all ∆ ∈ [∆∗(π̄),∆(π̄)). The fee difference ∆̂, which is smaller than ∆(π̄)

because of fee monotonicity, cannot be in [∆∗(π̄),∆(π̄)), and hence is smaller than ∆∗(π̄). Indeed,

if ∆̂ ∈ [∆∗(π̄),∆(π̄)), then Gπ̄(∆(π̄)) < Gπ̄(∆̂) < 0 and Γ̂ ≥ Γ(π̄) (implied by (A.40)) yield a

violation of (A.39). Since ∆∗(π0) = 0 ≤ ∆̂ < ∆∗(π̄) and ∆∗(π) is continuous and increasing, there

exists a unique π̂ ∈ [π0, π̄) such that ∆∗(π̂) = ∆̂. Since ∆∗(π̂) = ∆̂ is the only maximizer of Gπ̂(∆),

and since (A.40) implies Γ̂ ≥ Γ(π̂), (A.39) implies ∆(π̂) = ∆∗(π̂) = ∆̂ and Γ(π̂) = Γ̂. Combining

Γ(π̂) = maxπ∈[π0,π̄] Γ(π) and (A.19), and noting that U(π̄) < 0, we find

exp
[∫ π̄
π H(∆(π′), π′)dπ′

]
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

≥
exp

[∫ π̄
π̂ H(∆(π′), π′)dπ′

]
π̂e−ρ̄(1−π0)∆(π̂) + (1− π̂)eρ̄π0∆(π̂)

(A.44)

for all π ∈ [π̂, π̄]. Since π̄0 = π0 (which follows from π0 > 1
2), π̂ ∈ [π̄0, π̄). Moreover, (A.37)

and (A.38) imply ∆̄∗(π) = ∆∗(π), and hence ∆(π̂) = ∆∗(π̂) implies ∆(π̂) = ∆̄∗(π̂). Furthermore,

(A.44) implies (A.43).

When π0 <
1
2 , ẑ is non-positive, and fee monotonicity implies −∆(π̄) = ∆(1 − π̄) < ∆̂ ≤ 0.

Condition π0 <
1
2 also implies ∆∗(π̄) > −∆∗(1−π̄), as can be seen by the derivation of (A.41). Since

(2.9) implies that the lower bound (A.28) on ∆(π̄) = −∆(1− π̄) exceeds min{∆∗(π̄),−∆∗(1− π̄)} =

−∆∗(1 − π̄), G1−π̄(∆) is increasing for ∆ ∈ [∆(1 − π̄),∆∗(1 − π̄)], and hence is more negative for

∆(1− π̄) than for all ∆ ∈ (∆(1− π̄),∆∗(1− π̄)]. A similar argument as in the case π0 >
1
2 implies

that ∆̂, which exceeds ∆(1 − π̄) because of fee monotonicity, cannot be in (∆(1 − π̄),∆∗(1 − π̄)],

and hence exceeds ∆∗(1− π̄). Following a similar argument as in the case π0 >
1
2 , we can construct

1− π̂ ∈ (1− π̄, π0] such that ∆(1− π̂) = ∆∗(1− π̂) = ∆̂ and Γ(1− π̂) = Γ̂. Combining Γ(1− π̂) =
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maxπ∈[1−π̄,π0] Γ(π) and (A.19), and noting that U(π̄) < 0, we find

exp
[∫ π̄
π H(∆(π′), π′)dπ′

]
πe−ρ̄(1−π0)∆(π) + (1− π)eρ̄π0∆(π)

≥
exp

[∫ π̄
1−π̂H(∆(π′), π′)dπ′

]
(1− π̂)e−ρ̄(1−π0)∆(1−π̂) + π̂eρ̄π0∆(1−π̂)

(A.45)

for all π ∈ [1 − π̄, π0]. Since π̄0 = 1 − π0 (which follows from π0 <
1
2), π̂ ∈ [π̄0, π̄). Moreover,

(A.37) and (A.38) imply ∆̄∗(1−π) = −∆∗(π), and hence ∆(π̂) = −∆(1− π̂) = −∆∗(1− π̂) implies

∆(π̂) = ∆̄∗(π̂). Furthermore, (A.45) implies

exp

[∫ 1−π̂

π
H(∆(π′), π′)dπ′

]
− πe−ρ̄π̄0∆(π) + (1− π)eρ̄(1−π̄0)∆(π)

(1− π̂)e−ρ̄π̄0∆(1−π̂) + π̂eρ̄(1−π̄0)∆(1−π̂)
≥ 0

for all π ∈ [1− π̄, 1− π̂], or equivalently

exp

[∫ 1−π̂

1−π
H(∆(π′), π′)dπ′

]
− (1− π)e−ρ̄π̄0∆(1−π) + πeρ̄(1−π̄0)∆(1−π)

(1− π̂)e−ρ̄π̄0∆(1−π̂) + π̂eρ̄(1−π̄0)∆(1−π̂)
≥ 0 (A.46)

for all π ∈ [π̂, π̄]. Making the change of variable π′ to 1− π′, we can write (A.46) as

exp

[∫ π

π̂
H(∆(1− π′), 1− π′)dπ′

]
− (1− π)e−ρ̄π̄0∆(1−π) + πeρ̄(1−π̄0)∆(1−π)

(1− π̂)e−ρ̄π̄0∆(1−π̂) + π̂eρ̄(1−π̄0)∆(1−π̂)
≥ 0

⇔ exp

[
−
∫ π

π̂
H(−∆(1− π′), π′)dπ′

]
− (1− π)e−ρ̄π̄0∆(1−π) + πeρ̄(1−π̄0)∆(1−π)

(1− π̂)e−ρ̄π̄0∆(1−π̂) + π̂eρ̄(1−π̄0)∆(1−π̂)
≥ 0

⇔ exp

[∫ π̂

π
H(∆(π′), π′)dπ′

]
− (1− π)eρ̄π̄0∆(π) + πe−ρ̄(1−π̄0)∆(π)

(1− π̂)eρ̄π̄0∆(π̂) + π̂e−ρ̄(1−π̄0)∆(π̂)
≥ 0, (A.47)

where the second step follows from (A.23) and the third step follows from Property (iv) of Lemma

2.1. Equation (A.47) implies (A.43).

When π0 = 1
2 , ẑ can have any sign. If ẑ is non-negative, then we follow the argument in the

case π0 >
1
2 . If ẑ is non-positive, then we follow the argument in the case π0 <

1
2 . In both cases we

use the properties ∆∗(π̄) = −∆∗(1− π̄) and π̄0 = π0 = 1− π0, which are implied by π0 = 1
2 .

Step 2: Consider the problem of minimizing∫ π̄

π̂
exp

[∫ π̂

π
H(∆(π′), π′)dπ′

]
h̄(π)dπ (A.48)

with respect to ∆(π) that is defined over [π̂, π̄], is left-continuous with right-limits, and satisfies
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F (π) ≥ 0 and ∆(π̂) = ∆̄∗(π̂). The Lagrangian for this problem is

∫ π̄

π̂
exp

[∫ π̂

π
H(∆(π′), π′)dπ′

]
h̄(π)dπ −

∫ π̄

π̂
F (π)µ(π)dπ

=

∫ π̄

π̂
exp

[∫ π̂

π
H(∆(π′), π′)dπ′

]
[h̄(π)− µ(π)]dπ

+

∫ π̄

π̂

πe−ρ̄(1−π̄0)∆(π) + (1− π)eρ̄π̄0∆(π)

π̂e−ρ̄(1−π̄0)∆(π̂) + (1− π̂)eρ̄π̄0∆(π̂)
µ(π)dπ,

and yields the first-order condition

−H∆(∆(π), π)

∫ π̄

π
exp

[∫ π̂

π′
H(∆(π′′), π′′)dπ′′

]
[h̄(π′)− µ(π′)]dπ′

+ ρ̄µ(π)
(1− π)π̄0e

ρ̄π0∆(π) − π(1− π̄0)e−ρ̄(1−π0)∆(π)

π̂e−ρ̄(1−π̄0)∆(π̂) + (1− π̂)eρ̄π̄0∆(π̂)
= 0. (A.49)

If F (π) > 0 for π in an open interval (π1, π2), then for π in that interval µ(π) = 0 and (A.49)

becomes∫ π̄

π
exp

[∫ π̂

π′
H(∆(π′′), π′′)dπ′′

]
[h̄(π′)− µ(π′)]dπ′ = 0. (A.50)

Differentiating (A.50) in (π1, π2), and using µ(π) = 0, h̄(π) > 0 and F (π) > 0, we find

exp

[∫ π̂

π
H(∆(π′), π′)dπ′

]
= 0 >

πe−ρ̄(1−π̄0)∆(π) + (1− π)eρ̄π̄0∆(π)

π̂e−ρ̄(1−π̄0)∆(π̂) + (1− π̂)eρ̄π̄0∆(π̂)
,

a contradiction. Hence, the function ∆(π) that minimizes (A.48) satisfies F (π) = 0 in a set that is

dense in [π̂, π̄]. Since ∆(π) is left-continuous and F (π̂) = 0, this set coincides with [π̂, π̄]. Suppose

next, by contradiction, that ∆(π) is discontinuous at a point π1. Since ∆(π) is left-continuous,

π1 6= π̄. Since, in addition, F (π1) = F (π+
1 ) = 0 implies Ḡπ(∆(π1)) = Ḡπ(∆(π+

1 )), and since

∆(π̂) = ∆̄∗(π̂), π1 6= π̂. Hence, π1 ∈ (π̂, π̄). Combining (A.49) for π1 and for π′1 > π1, we find

∫ π′1

π1

exp

[∫ π̂

π′
H(∆(π′′), π′′)dπ′′

]
[h̄(π′)− µ(π′)]dπ′

+
µ(π1)Ḡ′π1

(∆(π1))

H∆(∆(π1), π1)Ḡπ̂(∆(π̂))
−

µ(π′1)Ḡ′π′1
(∆(π′1))

H∆(∆(π′1), π′1)Ḡπ̂(∆(π̂))
= 0. (A.51)

If ∆(π1) < ∆(π+
1 ), in which case ∆(π1) < ∆̄∗(π1) < ∆(π+

1 ), Ḡ′π1
(∆(π1)) > 0 and Ḡ′π1

(∆(π+
1 )) < 0,

then the second term in (A.50) is non-negative because µ(π1) ≥ 0, and the third term is non-

negative because µ(π′1) ≥ 0. If µ(π+
1 ) > 0, then the third term is positive in the limit when π′1 goes

to π1. Since the first term goes to zero in that limit, (A.50) is violated, a contradiction. If instead
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µ(π+
1 ) = 0, then the first term is positive close to the limit because h̄(π1) > 0, and hence (A.50)

is again violated, a contradiction. Therefore, ∆(π1) > ∆̄∗(π1) > ∆(π+
1 ). If ∆(π) is discontinuous

at an additional point π′2, then the same reasoning implies ∆(π′2) > ∆̄∗(π′2) > ∆(π′+2 ). Assume

without loss of generality that π′2 > π1, and take the infimum π2 of the discontinuity points π′2

that exceed π1. The infimum π2 must strictly exceed π1 because otherwise taking the limit in

∆(π′2) > ∆̄∗(π′2) yields ∆(π+
1 ) ≥ ∆̄∗(π1). Hence, ∆(π) is continuous in the non-empty interval

(π1, π2). Differentiating F (π) = 0 in that interval, we find

H(∆(π), π) exp

[∫ π̂

π
H(∆(π′), π′)dπ′

]
+

eρ̄π0∆(π) − e−ρ̄(1−π0)∆(π)

π̂e−ρ̄(1−π̄0)∆(π̂) + (1− π̂)eρ̄π̄0∆(π̂)

− ρ̄∆′(π)
(1− π)π̄0e

ρ̄π0∆(π) − π(1− π̄0)e−ρ̄(1−π0)∆(π)

π̂e−ρ̄(1−π̄0)∆(π̂) + (1− π̂)eρ̄π̄0∆(π̂)
= 0

⇔ ρ̄∆′(π)
(1− π)π̄0e

ρ̄π0∆(π) − π(1− π̄0)e−ρ̄(1−π0)∆(π)

π̂e−ρ̄(1−π̄0)∆(π̂) + (1− π̂)eρ̄π̄0∆(π̂)
= 0, (A.52)

where the second step follows by using F (π) = 0 and the definition of H(∆, π). Equation (A.52)

with the initial condition ∆(π+
1 ) < ∆̄∗(π1) implies ∆(π) = 0 for π ∈ (π1, π2), and hence ∆(π+

1 ) =

∆(π2). This is a contradiction. Indeed, if π2 is a discontinuity point, then ∆(π2) > ∆̄∗(π2) >

∆̄∗(π1) > ∆(π+
1 ). If instead, π2 is a continuity point and hence a limit of discontinuity points,

then taking the limit in ∆(π′2) > ∆̄∗(π′2) yields ∆(π+
2 ) ≥ ∆̄∗(π2), which implies ∆(π2) = ∆(π+

2 ) ≥
∆̄∗(π2) > ∆̄∗(π1) > ∆(π+

1 ). Therefore, ∆(π) can have at most one discontinuity point π1. Equation

(A.52) with the initial condition ∆(π̂) = ∆̄∗(π̂) implies, however, that ∆(π) is of the form ∆(π) =

∆̄∗(π) for π ∈ [π̂, π3] and ∆(π) = ∆(π3) for π ∈ (π3, π1], where π3 ∈ [π̂, π1]. This implies ∆(π1) ≤
∆̄∗(π1), a contradiction. Therefore, ∆(π) is continuous over the entire interval [π̂, π̄]. Equation

(A.52) with the initial condition ∆(π̂) = ∆̄∗(π̂) implies that ∆(π) is of the form ∆(π) = ∆̄∗(π)

for π ∈ [π̂, π3] and ∆(π) = ∆̄∗(π3) for π ∈ (π3, π̄], where π3 ∈ [π̂, π̄]. The solution that minimizes

(A.48) corresponds to π3 = π̄. That solution, which is non-decreasing, also minimizes (A.48) over

the set of non-decreasing functions that satisfy F (π) ≥ 0 and ∆(π̂) = ∆∗(π̂). Indeed, a non-

decreasing function has a countable set of discontinuity points, and left- and right-limits at those

points. By setting its value at the discontinuity points to its left-limit, we can transform it into a

left-continuous function with right-limits. Since this operation is performed at a countable set of

points, the resulting function yields an identical value for (A.48).

Using our solution of the minimization problem, we can show that (A.26) is violated for any

∆(π) that is defined over [1 − π̄, π̄], is non-decreasing, and satisfies ∆(π) = −∆(1 − π), F (π) ≥ 0
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and ∆(π̂) = ∆̄∗(π̂). We write (A.26) as

∫ π̂

1
2

exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
h̄(π)dπ

+ exp

[∫ π̄0

π̂
H(∆(π′), π′)dπ′

] ∫ π̄

π̂
exp

[∫ π̂

π
H(∆(π′), π′)dπ′

]
h̄(π)dπ ≤ e−ρ̄K . (A.53)

Since (A.48) is minimized for ∆(π) = ∆̄∗(π),

∫ π̄

π̂
exp

[∫ π̂

π
H(∆(π′), π′)dπ′

]
h̄(π)dπ

≥
∫ π̄

π̂
exp

[∫ π̂

π
H(∆̄∗(π′), π′)dπ′

]
h̄(π)dπ

≥
∫ π̄

π̂
exp

[∫ π̂

π
H(∆̄∗(π̄), π′)dπ′

]
h̄(π)dπ, (A.54)

where the second step follows because ∆̄∗(π) is increasing and H(∆, π) is increasing in ∆. Moreover,

for π ∈ [π̄0, π̂],

exp

[∫ π̄0

π
H(∆(π′), π′)dπ′

]
≥ exp

[∫ π̄0

π
H(∆(π̂), π′)dπ′

]
= exp

[∫ π̄0

π
H(∆̄∗(π̂), π′)dπ′

]
≥ exp

[∫ π̄0

π
H(∆̄∗(π̄), π′)dπ′

]
, (A.55)

where the first step follows because H(∆, π) is increasing in ∆, the second step follows because

∆(π̂) = ∆̄∗(π̂), and the third step follows because ∆̄∗(π) is increasing and H(∆, π) is increasing in

∆. Substituting (A.34), (A.54) and (A.55) into (A.53), we find∫ π̄0

1
2

h̄(π)dπ +

∫ π̄

π̄0

exp

[∫ π̄0

π
H(∆̄∗(π̄), π′)dπ′

]
h̄(π)dπ ≤ e−ρ̄K

⇔
∫ π̄0

1
2

h̄(π)dπ +

∫ π̄

π̄0

π + (1− π)eρ̄∆̄∗(π̄)

π̄0 + (1− π̄0)eρ̄∆̄∗(π̄)
h̄(π)dπ ≤ e−ρ̄K , (A.56)

where the second step follows as in (A.33). Since (A.56) is identical to (A.35) with ∆̄∗(π̄) replacing

∆(π̄), the argument that follows (A.35) implies that ∆̄∗(π̄) exceeds the lower bound (A.28) on

∆(π̄). This contradicts (2.9).

Proof of Theorem 2.1. If the investor induces the risk-averse type to observe the signal, then

he chooses positions (z(π), ẑ) and fee levels (f(z(π)d), f(−z(π)d), f(ẑd), f(−ẑd)) for π ∈ [1− π̄, π̄]
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to maximize the utility

U =− (1− λ)

∫ π̄

1−π̄

[
πe−ρ[z(π)d−f(z(π)d)] + (1− π)e−ρ[−z(π)d−f(−z(π)d)]

]
h(π)dπ

− λ
[
π0e
−ρ[ẑd−f(ẑd)] + (1− π0)e−ρ[−ẑd−f(−ẑd)]

]
. (A.57)

The investor is subject to the (IC) constraints (2.4), (2.6), (2.7),

U(π) ≥ max {U(π, ẑ), U(π,−ẑ)} , (A.58)

and the non-negativity and monotonicity of the fee. We refer to this optimization problem as (P).

We can simplify (P) using symmetry. Making the change of variable π to 1 − π, we can write

the first half of the integral in (A.57) as

∫ 1
2

1−π̄

[
πe−ρ[z(π)d−f(z(π)d)] + (1− π)e−ρ[−z(π)d−f(−z(π)d)]

]
h(π)dπ

=

∫ π̄

1
2

[
(1− π)e−ρ[z(1−π)d−f(z(1−π)d)] + πe−ρ[−z(1−π)d−f(−z(1−π)d)]

]
h(1− π)dπ

=

∫ π̄

1
2

[
(1− π)e−ρ[−z(π)d−f(−z(π)d)] + πe−ρ[z(π)d−f(z(π)d)]

]
h(1− π)dπ,

where the second step follows from Property (ii) of Lemma 2.2. Properties (ii) and (iii) of Lemma

2.2 imply that the (IC) constraint (2.7) reduces to

U(π) ≥ max

{
max

π′∈( 1
2
,π̄]
U(π, z(π′)), U

(
π,

∣∣∣∣z(1

2

)∣∣∣∣)
}

(A.59)

for all π ∈ [1
2 , π̄]. Likewise, the (IC) constraint (A.58) reduces to

U(π) ≥ U(π, |ẑ|) (A.60)

for all π ∈ [1
2 , π̄]. Distinguishing the cases π0 > 1

2 , where π̄0 = π0 and ẑ ≥ 0; π0 < 1
2 , where

π̄0 = 1− π0 and ẑ ≤ 0; and π0 = 1
2 ; we find

π0e
−ρ[ẑd−f(ẑd)] + (1− π0)e−ρ[−ẑd−f(−ẑd)] = π̄0e

−ρ[|ẑ|d−f(|ẑ|d)] + (1− π̄0)e−ρ[−|ẑ|d−f(−|ẑ|d)].
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We likewise find that the (IC) constraint (2.6) reduces to

Û = π̄0f(|ẑ|d) + (1− π̄0)f(−|ẑ|d)

≥ max

{
max

π′∈( 1
2
,π̄]

[π̄0f(z(π)d) + (1− π̄0)f(−z(π)d)],

[
π̄0f

(∣∣∣∣z(1

2

)∣∣∣∣ d)+ (1− π̄0)f

(
−
∣∣∣∣z(1

2

)∣∣∣∣ d)]
}
.

(A.61)

Hence, the problem (P) reduces to maximizing

U =− (1− λ)

∫ π̄

1
2

[
πe−ρ[z(π)d−f(z(π)d)] + (1− π)e−ρ[−z(π)d−f(−z(π)d)]

]
h̄(π)dπ

− λ
[
π̄0e
−ρ[|ẑ|d−f(|ẑ|d)] + (1− π̄0)e−ρ[−|ẑ|d−f(−|ẑ|d)]

]
(A.62)

over (z(π), |ẑ|) and (f(z(π)d), f(−z(π)d), f(|ẑ|d), f(−|ẑ|d)) for π ∈ [1
2 , π̄], subject to (2.4), (A.59),

(A.60), (A.61), z(π) ≥ 0, and the non-negativity and monotonicity of the fee. Given a solution

z(π) for π ∈ [1
2 , π̄], we define z(π) for π ∈ [1− π̄, 1

2) by z(π) = −z(1− π).

When the pooling condition (2.9) holds, the problem (P) reduces to maximizing (A.62) over

(z(π), |ẑ|) and (f(z(π)d), f(−z(π)d), f(|ẑ|d), f(−|ẑ|d)) for π ∈ [1
2 , π̄] subject to the following con-

straints: (i) (A.26), (ii) ∆(π) is non-decreasing, (iii) U(π) is given by (A.18), (iv) z(π) ≥ 0, (v)

|ẑ| = z(π̄), (vi) f(−z(π̄)d) = 0, and (vii) fee monotonicity. Indeed, Lemma A.1 shows that the (IC)

constraint (2.4) is equivalent to (i). Lemma 2.1 shows that the (IC) constraint (A.59) for π ∈ [1
2 , π̄]

is equivalent to (ii) and (iii). Lemma 2.3 implies (v) because it is suboptimal for the investor to

induce the uninformed risk-neutral type to choose a more extreme position than that of types π̄ and

1− π̄. (For a detailed proof that |ẑ| > z(π̄) is suboptimal in the symmetric case h(π) = h(1−π), see

Vayanos (2018).) Lemma 2.2 shows that (ii) and (vii) imply that z(π) is non-decreasing. Constraint

(vii) and z(π) non-decreasing imply that non-negativity reduces to (vi). The (IC) constraint (A.60)

follows from (v) and the (IC) constraint (A.59). The (IC) constraint (A.61) follows from Lemma

2.3 and (v).

Using (∆(π),Γ(π)) and (v), we can write (A.62) as

U =− (1− λ)

∫ π̄

1
2

[
πe−ρ[z(π)d−(1−π0)∆(π)] + (1− π)eρ[z(π)d−π0∆(π)]

]
eρΓ(π)h̄(π)dπ

− λ
[
π̄0e
−ρ[z(π̄)d−(1−π0)∆(π̄)] + (1− π̄0)eρ[z(π̄)d−π0∆(π̄)]

]
eρΓ(π̄). (A.63)

The problem (P) reduces to maximizing (A.63) over (z(π),∆(π), Γ̄(π)) for π ∈ [1
2 , π̄], subject to (i),

(ii), (iii), (iv), (vi) and (vii). Since ∆(π) ≡ f(z(π)d)− f(−z(π)d), we must impose the additional

constraint (viii) ∆(π) is non-negative, ∆(π) = 0 when z(π) = 0, and ∆(π) is constant in any
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interval where z(π) is constant.

The limit when ε goes to zero of the solution to (P) is the solution to maximizing (A.63) over

(z(π),∆(π), Γ̄(π)) for π ∈ [1
2 , π̄], subject to (i), (ii), (iii), (iv), (vi), (viii) and z(π) non-decreasing.

The reason why we can replace (vii) by z(π) non-decreasing when deriving the limit is that for all

ε > 0 (ii) and (vii) imply z(π) non-decreasing, but for ε = 0 (vii) is implied by z(π) non-decreasing

and (A.59) (or equivalently (ii) and (iii)) and is hence redundant.

Using (A.19) and Γ(π̄) = π0∆(π̄), which follow from (iii) and (vi), respectively, we can write

(A.63) as

U =− (1− λ)

∫ π̄

1
2

[
πe−ρ[z(π)d−∆(π)] + (1− π)eρz(π)d

]

× exp

[
−ρ
ρ̄

∫ π̄

π
H(∆(π′), π′)dπ′

][
πe−ρ̄∆(π) + 1− π
π̄e−ρ̄∆(π̄) + 1− π̄

] ρ
ρ̄

h̄(π)dπ

− λ
[
π̄0e
−ρ[z(π̄)d−∆(π̄)] + (1− π̄0)eρz(π̄)d

]
. (A.64)

The problem (P) reduces to maximizing (A.64) over (z(π),∆(π)) for π ∈ [1
2 , π̄], subject to (i), (ii),

(iv), (viii) and z(π) non-decreasing. In other words, (A.64) must be maximized over non-negative

and non-decreasing (z(π),∆(π)), subject to the (IC) constraint (A.26) and the constraint that

∆(π) = 0 when z(π) = 0 and that ∆(π) is constant in any interval where z(π) is constant.

Without loss of generality, we can assume z(1
2) = 0 and hence ∆(1

2) = 0. Indeed, if z(1
2) > 0,

then we can set z(1
2) and ∆(1

2) to zero. Since the density h(π) is continuous, this change does

not affect the (IC) constraint (A.26) and the investor’s utility (A.64). Moreover, the functions

(z(π),∆(π)) remain non-negative and non-decreasing, and the constraint that ∆(π) = 0 when

z(π) = 0 and that ∆(π) is constant in any interval where z(π) is constant, remains satisfied.

We next consider

π̂ ≡ inf{π : z(π) = z(π̄) ∀ π ∈ [π̂, π̄]},

and show that for the solution to (P), π̂ is equal to π∗ defined in (2.12), and z(π̄) is given by

(2.10). We proceed by contradiction. We assume that these properties are not true, and show that

the investor can raise his utility by changing z(π) while leaving ∆(π) the same. Since ∆(π) does

not change, it remains non-negative and non-deceasing, and the (IC) constraint (A.26) remains

satisfied. Moreover, under all the changes that we consider, z(π) remains non-negative and non-

decreasing, and ∆(π) remains equal to zero when z(π) = 0 and remains constant in any interval

where z(π) is constant. Note that since z(π) is constant in [π̂, π̄], ∆(π) is also constant in that

interval.
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Equation (2.12) defines π∗ ∈ (π̄0, π̄) uniquely because (i) the left-hand side decreases in π∗ and

the right-hand side increases in π∗, (ii) the left-hand side is positive for π∗ = π̄0 and the right-hand

side is zero for that value, and (iii) the left-hand side is zero for π∗ = π̄ and the right-hand side is

positive for that value. Since, in addition, the left-hand side decreases in λ and the right-hand side

increases in λ, π∗ decreases in λ. Equation (2.12) also implies

(1− λ)

∫ π̄

π∗
πh̄(π)dπ + λπ̄0

=
1− λ
π∗ − π̄0

(
(π∗ − π̄0)

∫ π̄

π∗
πh̄(π)dπ + π̄0

∫ π̄

π∗
(π − π∗)h̄(π)dπ

)
=

(1− λ)π∗

π∗ − π̄0

∫ π̄

π∗
(π − π̄0)h̄(π)dπ, (A.65)

and

(1− λ)

∫ π̄

π∗
(1− π)h̄(π)dπ + λ(1− π̄0)

=
1− λ
π∗ − π̄0

(
(π∗ − π̄0)

∫ π̄

π∗
(1− π)h̄(π)dπ + (1− π̄0)

∫ π̄

π∗
(π − π∗)h̄(π)dπ

)
=

(1− λ)(1− π∗)
π∗ − π̄0

∫ π̄

π∗
(π − π̄0)h̄(π)dπ. (A.66)

Suppose that π̂ < π∗, and consider first the case where

z(π̄) ≤ 1

2ρd
log

(
(1− λ)

∫ π̄
π̂ πh̄(π)dπ + λπ̄0

(1− λ)
∫ π̄
π̂ (1− π)h̄(π)dπ + λ(1− π̄0)

)
+

∆(π̄)

2d
. (A.67)

If the investor replaces z(π) for all π ∈ [π∗, π̄] by z(π̄) + φ, for small φ > 0, then his utility (A.63)

becomes

U =− (1− λ)

{∫ π∗

1
2

[
πe−ρ[z(π)d−(1−π0)∆(π)] + (1− π)eρ[z(π)d−π0∆(π)]

]
eρΓ(π)h̄(π)dπ

+

[
e−ρ[(z(π̄)+φ)d−(1−π0)∆(π̄)]

∫ π̄

π∗
πh̄(π)dπ + eρ[(z(π̄)+φ)d−π0∆(π̄)]

∫ π̄

π∗
(1− π)h̄(π)dπ

]
eρΓ(π̄)

}
− λ

[
π̄0e
−ρ[(z(π̄)+φ)d−(1−π0)∆(π̄)] + (1− π̄0)eρ[(z(π̄)+φ)d−π0∆(π̄)]

]
eρΓ(π̄). (A.68)

Equation (A.68) implies

∂U

∂φ

∣∣∣∣
φ=0

=ρd

{
e−ρ[z(π̄)d−(1−π̄0)∆(π̄)]

(
(1− λ)

∫ π̄

π∗
πh̄(π)dπ + λπ̄0

)
−eρ[z(π̄)d−π̄0∆(π̄)]

(
(1− λ)

∫ π̄

π∗
(1− π)h̄(π)dπ + λ(1− π̄0)

)}
eρΓ(π̄).
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Hence, utility increases if

∂U

∂φ

∣∣∣∣
φ=0

> 0⇔ z(π̄) <
1

2ρd
log

(
(1− λ)

∫ π̄
π∗ πh̄(π)dπ + λπ̄0

(1− λ)
∫ π̄
π∗(1− π)h̄(π)dπ + λ(1− π̄0)

)
+

∆(π̄)

2d
. (A.69)

Equation (A.67) implies (A.69) if

(1− λ)
∫ π̄
π̂ πh̄(π)dπ + λπ̄0

(1− λ)
∫ π̄
π̂ (1− π)h̄(π)dπ + λ(1− π̄0)

<
(1− λ)

∫ π̄
π∗ πh̄(π)dπ + λπ̄0

(1− λ)
∫ π̄
π∗(1− π)h̄(π)dπ + λ(1− π̄0)

⇔
∫ π∗
π̂ πh̄(π)dπ + π∗

π∗−π̄0

∫ π̄
π∗ (π − π̄0) h̄(π)dπ∫ π∗

π̂ (1− π)h̄(π)dπ + 1−π∗
π∗−π̄0

∫ π̄
π∗ (π − π̄0) h̄(π)dπ

<
π∗

1− π∗
, (A.70)

where the equivalence follows from (A.65) and (A.66). Equation (A.70) is equivalent to

∫ π∗
π̂ πh̄(π)dπ∫ π∗

π̂ (1− π)h̄(π)dπ
<

π∗

1− π∗
,

which holds because π̂ < π∗.

Consider next the case where

z(π̄) >
1

2ρd
log

(
(1− λ)

∫ π̄
π̂ πh̄(π)dπ + λπ̄0

(1− λ)
∫ π̄
π̂ (1− π)h̄(π)dπ + λ(1− π̄0)

)
+

∆(π̄)

2d
. (A.71)

In the sub-case π̂ > 1
2 , consider a small η > 0 and suppose that the investor replaces z(π) for all

π ∈ [π̂− η, π̄] by (1−φ)z(π) +φz(π̂− η), for small φ > 0. Under this change, z(π) decreases for all

π ∈ [π̂ − η, π̄] because z(π) ≥ z(π̂ − η). Moreover, the decrease is strict for all π ∈ (π̂, π̄] because

z(π) = z(π̄) > z(π̂ − η). The investor’s utility (A.63) becomes

U =− (1− λ)

{∫ π̂−η

1
2

[
πe−ρ[z(π)d−(1−π0)∆(π)] + (1− π)eρ[z(π)d−π0∆(π)]

]
eρΓ(π)h̄(π)dπ

+

∫ π̂

π̂−η

[
πe−ρ[[(1−φ)z(π)+φz(π̂−η)]d−(1−π0)∆(π)] + (1− π)eρ[[(1−φ)z(π)+φz(π̂−η)]d−π0∆(π)]

]
eρΓ(π)h̄(π)dπ

+

[
e−ρ[[(1−φ)z(π̄)+φz(π̂−η)]d−(1−π0)∆(π̄)]

∫ π̄

π̂
πh̄(π)dπ

+eρ[[(1−φ)z(π̄)+φz(π̂−η)]d−π0∆(π̄)]

∫ π̄

π̂
(1− π)h̄(π)dπ

]
eρΓ(π̄)

}
− λ

[
π̄0e
−ρ[[(1−φ)z(π̄)+φz(π̂−η)]d−(1−π0)∆(π̄)] + (1− π̄0)eρ[[(1−φ)z(π̄)+φz(π̂−η)]d−π0∆(π̄)]

]
eρΓ(π̄).

(A.72)
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Equation (A.72) implies

∂U

∂φ

∣∣∣∣
φ=0

=(1− λ)ρd

∫ π̂

π̂−η
[z(π̂ − η)− z(π)]

[
πe−ρ[z(π)d−(1−π0)∆(π)] + (1− π)eρ[z(π)d−π0∆(π)]

]
eρΓ(π)h̄(π)dπ

+ ρd[z(π̂ − η)− z(π̄)]

[
e−ρ[z(π̄)d−(1−π0)∆(π̄)]

(
(1− λ)

∫ π̄

π̂
πh̄(π)dπ + λπ̄0

)
−eρ[z(π̄)d−π0∆(π̄)]

(
(1− λ)

∫ π̄

π̂
(1− π)h̄(π)dπ + λ(1− π0)

)]
eρΓ(π̄). (A.73)

Since (A.71) implies

e−ρ[z(π̄)d−(1−π0)∆(π̄)]

(
(1− λ)

∫ π̄

π̂
πh̄(π)dπ + λπ̄0

)
− eρ[z(π̄)d−π0∆(π̄)]

(
(1− λ)

∫ π̄

π̂
(1− π)h̄(π)dπ + λ(1− π0)

)
< 0,

the second term in (A.73) is non-zero and dominates the first term for small η. Since, in addition,

z(π̄) > z(π̂ − η), the second term in (A.73) is positive. Hence, ∂U
∂φ

∣∣∣
φ=0

> 0.

In the sub-case π̂ = 1
2 , suppose that the investor replaces z(π) for all π ∈ (π̂, π̄] by z(π̄)−φ, for

small φ > 0. The investor’s utility (A.63) becomes

U =− (1− λ)

[
e−ρ[(z(π̄)−φ)d−(1−π0)∆(π̄)]

∫ π̄

1
2

πh̄(π)dπ + eρ[(z(π̄)−φ)d−π0∆(π̄)]

∫ π̄

1
2

(1− π)h̄(π)dπ

]
eρΓ(π̄)

− λ
[
π̄0e
−ρ[(z(π̄)−φ)d−(1−π0)∆(π̄)] + (1− π̄0)eρ[(z(π̄)−φ)d−π0∆(π̄)]

]
eρΓ(π̄). (A.74)

Equation (A.74) implies

∂U

∂φ

∣∣∣∣
φ=0

=− ρd

[
e−ρ[z(π̄)d−(1−π0)∆(π̄)]

(
(1− λ)

∫ π̄

1
2

πh̄(π)dπ + λπ̄0

)

−eρ[z(π̄)d−π0∆(π̄)]

(
(1− λ)

∫ π̄

1
2

(1− π)h̄(π)dπ + λ(1− π̄0)

)]
eρΓ(π̄).

Since (A.71) implies that the term in square brackets is negative, ∂U
∂φ

∣∣∣
φ=0

> 0.

Suppose next that π̂ > π∗, and consider first the case where (A.71) holds. The investor can

raise his utility through the same change in z(π) as in the case where π̂ < π∗, (A.71) holds, and

π̂ > 1
2 .

Consider next the case where (A.67) holds. Consider a small η > 0, and suppose that the

investor replaces z(π) for all π ∈ [π̂ − η, π̄] by (1− φ)z(π) + φz(π̂ − η), for small φ < 0. Under this

change, z(π) increases for all π ∈ [π̂−η, π̄] because z(π) ≥ z(π̂−η). Moreover, the increase is strict
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for all π ∈ (π̂, π̄] because z(π) = z(π̄) > z(π̂−η). The investor’s utility (A.63) becomes (A.72), and

its partial derivative with respect to φ is (A.73). When (A.67) holds as a strict inequality, it implies

together with z(π̄) > z(π̂− η) that the second term in (A.73) is negative. Hence, ∂U
∂φ

∣∣∣
φ=0

< 0, and

utility increases. When (A.67) holds as an equality, the second term in (A.73) is zero, and utility

increases if

∂U

∂φ

∣∣∣∣
φ=0

< 0⇔ (1−λ)ρd

∫ π̂

π̂−η
[z(π̂−η)−z(π)]

[
πe−ρ[z(π)d−(1−π0)∆(π)] + (1− π)eρ[z(π)d−π0∆(π)]

]
eρΓ(π)h̄(π)dπ < 0.

(A.75)

For small η, (A.75) is equivalent to

π̂e−ρ[z(π̂
−)d−(1−π0)∆(π̂−)] + (1− π̂)eρ[z(π̂

−)d−π0∆(π̂−)] < 0⇔ z(π̂−) <
1

2ρd
log

(
π̂

1− π̂

)
+

∆(π̂−)

2d
.

Hence, utility may not increase only if (A.67) holds as an equality and

z(π̂−) ≥ 1

2ρd
log

(
π̂

1− π̂

)
+

∆(π̂−)

2d
. (A.76)

When (A.67) holds as an equality

z(π̄) =
1

2ρd
log

(
(1− λ)

∫ π̄
π̂ πh̄(π)dπ + λπ̄0

(1− λ)
∫ π̄
π̂ (1− π)h̄(π)dπ + λ(1− π̄0)

)
+

∆(π̄)

2d

=
1

2ρd
log

( ∫ π∗
π̂ πh(π)dπ + π∗

π∗−π̄0

∫ π̄
π∗ (π − π̄0) h̄(π)dπ∫ π∗

π̂ (1− π)h(π)dπ + 1−π∗
π∗−π̄0

∫ π̄
π∗ (π − π̄0) h̄(π)dπ

)
+

∆(π̄)

2d

<
1

2ρd
log

(
π∗

1− π∗

)
+

∆(π̄)

2d
, (A.77)

where the second step follows from (A.65) and (A.66), and the third step follows from π∗ < π̂.

Equations (A.76), (A.77), z(π̄) = z(π̂+) ≥ z(π̂−), and π∗ < π̂ imply ∆(π̄) = ∆(π̂+) > ∆(π̂−), i.e.,

∆(π) is discontinuous at π̂. We can, however, rule out such a discontinuity. Hence, (A.67) cannot

hold as an equality together with (A.76), completing our proof that π̂ cannot exceed π∗.

To rule out a discontinuity of ∆(π) at π̂ < π̄, we consider a small η > 0, and assume that the

investor replaces ∆(π) by ∆(π̂−) +φ− for all π ∈ [π̂−η, π̂), and by ∆(π̄)−φ+ for all π ∈ (π̂, π̂+η],

where (φ−, φ+) are small and chosen so that (A.26) holds. Using (A.64) to compute the change

in the investor’s utility, we show that utility increases. (We use (A.64) rather than (A.63) because

it accounts for the change in Γ(π) induced by the change in ∆(π).) The intuition why utility

increases is that the investor exposes types π > π̂ or π < 1 − π̂ to a high level of risk because

∆(π̄) > ∆̄∗(π̄). Reducing risk for types slightly above π̂ and below 1− π̂, while raising it for types
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slightly below π̂ and above 1− π̂, allows the investor to compensate the risk-averse type less while

preserving incentives to observe the signal. For a detailed proof that ∆(π) is continuous at π̂ in

the symmetric case h(π) = h(1−π), see Vayanos (2018). The proof establishes more generally that

∆(π) is continuous at any π > 1
2 .

To rule out a discontinuity of ∆(π) at π̄, we assume that the investor lowers ∆(π̄) by a small

φ > 0. Since ∆(π) for π < π̄ remains the same, so does the left-hand side of the (IC) constraint

(A.26). Moreover, the only effect on the integral in (A.64) is through the term π̄e−ρ̄∆(π̄) + 1 − π̄,

which increases. Hence, the term in (A.64) that corresponds to the risk-averse type increases. Since

the term that corresponds to the risk-neutral type also increases, utility increases.

Since π̂ cannot exceed π∗ and cannot be smaller than π∗, it is equal to π∗. If

z(π̄) >
1

2ρd
log

(
2(1− λ)

∫ π̄
π∗ πh(π)dπ + λ

2

2(1− λ)
∫ π̄
π∗(1− π)h(π)dπ + λ

2

)
+

∆(π̄)

2d
, (A.78)

then the investor can raise his utility through the same change in z(π) as in the case where π̂ < π∗,

(A.71) holds, and π̂ > 1
2 . If instead (A.78) holds as a strict inequality in the other direction, then

the investor can raise his utility through the same change in z(π) as in the case where π̂ > π∗ and

(A.67) holds. Hence, (A.78) holds as an equality, which means from (A.65) and (A.66) that z(π̄)

is given by (2.10).

To show that z(π) is given by (2.11) for π ∈ (1
2 , π
∗), we maximize (A.63) point-wise over z(π),

without requiring that z(π) is non-negative and non-decreasing, and that ∆(π) is equal to zero

when z(π) = 0 and is constant in any interval where z(π) is constant. This point-wise maximization

yields (2.11). Since ∆(π) is non-negative and non-decreasing, (2.11) implies that z(π) is positive

and increasing for π ∈ (1
2 , π
∗). The properties that z(π) is non-negative and non-decreasing extend

to the larger interval [1
2 , π̄]: in the case of 1

2 because z(1
2) = 0, and in the case of [π∗, π̄] because

(2.10), (2.11) and ∆(π∗−) ≤ ∆(π̄) imply z(π∗−) ≤ z(π̄). Since z(π) is positive and increasing for

π ∈ (1
2 , π
∗), the constraint that ∆(π) is equal to zero when z(π) = 0 and is constant in any interval

where z(π) is constant is trivially satisfied.

Proof of Proposition 2.1. We first show that the pooling condition (2.9) holds and that the

pooling threshold µ∗ is given by (2.13). Since π0 = 1
2(1 + µ0d),

π̄0 = max{π0, 1− π0} = max

{
1

2
(1 + µ0d),

1

2
(1− µ0d)

}
=

1

2
(1 + |µ0|d). (A.79)

Making the change of variable π = 1
2(1 + µd) in the integrals in (2.9), and using π̄ = 1

2(1 + µ̄d),

59



(A.79) and K = kd
Nρ = kd

ρ̄ , we can write (2.9) as

1−

∫ µ̄
|µ0| (µ− |µ0|) h̄(µ)dµ

1
2(1− |µ0|d)

d < e−kd < 1−
(µ̄− |µ0|)

∫ µ̄
|µ0| (µ− |µ0|) h̄(µ)dµ

(1 + µ̄d)|µ0|d+ 1
4(1 + |µ0|d)2

d2

⇔ 2

(∫ µ̄

|µ0|
(µ− |µ0|) h̄(µ)dµ

)
d+ o(d) > kd+ o(d) > 4

(
(µ̄− |µ0|)

∫ µ̄

|µ0|
(µ− |µ0|) h̄(µ)dµ

)
d2 + o(d2).

(A.80)

For small d, (A.80) holds if k < 2
∫ µ̄
|µ0| (µ− |µ0|) h̄(µ)dµ. Making the same substitutions in (2.12),

and setting π∗ = 1
2(1 + µ∗d), we find (2.13).

We next show that ∆(µ̄) is of order 1
N . Making the same substitutions as above in (A.28), we

find

∆(µ̄) ≥ 1

Nρ
log

 1
2(1 + |µ0|d)

(
1− e−kd

)
+
(∫ µ̄
|µ0| (µ− |µ0|) h̄(µ)dµ

)
d(∫ µ̄

|µ0| (µ− |µ0|) h̄(µ)dµ
)
d− 1

2(1− |µ0|d) (1− e−kd)

 (A.81)

=
1

Nρ

{
log

[∫ µ̄
|µ0| (µ− |µ0|) h̄(µ)dµ+ k

2∫ µ̄
|µ0| (µ− |µ0|) h̄(µ)dµ− k

2

]
+ o(1)

}
. (A.82)

Therefore, ∆(µ̄) is bounded below by a term of order 1
N . Suppose next, by contradiction, that

∆(µ̄) is of order larger than 1
N . Since

exp

[
−ρ
ρ̄

∫ π̄

π
H(∆(π′), π′)dπ′

] [
πe−ρ̄∆(π) + 1− π
π̄e−ρ̄∆(π̄) + 1− π̄

] ρ
ρ̄

= exp

[
−2d

N

∫ µ̄

µ

eNρ∆(µ′) − 1

1 + µ′d+ (1− µ′d)eNρ∆(µ′)
dµ′

][
(1 + µd)e−Nρ∆(µ) + 1− µd
(1 + µ̄d)e−Nρ∆(µ̄) + 1− µ̄d

] 1
N

is equal to one plus a term of order 1
N , (A.64) implies that the investor’s utility U is lower than

the upper bound

max
z(µ)µ∈(0,µ∗),z(µ̄)

1

2

{
−(1− λ)

∫ µ∗

0

[
(1 + µd)e−ρz(µ)d + (1− µd)eρz(µ)d

]
h̄(µ)dµ

−
(

(1− λ)

∫ µ̄

µ∗
(1 + µd)h̄(µ)dµ+ λ(1 + |µ0|d)

)
e−ρz(µ̄)d

−
(

(1− λ)

∫ µ̄

µ∗
(1− µd)h̄(µ)dµ+ λ(1− |µ0|d)

)
eρz(µ̄)d

}
(A.83)

by a term of order larger than 1
N . Consider next the function ∆̂(µ) = X(µ)

ρ̄ = X(µ)
Nρ , where X(µ)

is equal to zero for µ ∈ (0, |µ0|) and to a value X(µ̄) independent of N for µ ∈ (|µ0|, µ̄]. Equation
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(A.64) and Theorem 2.1 imply that under that under ∆̂(µ), the investor’s utility U is lower than

the upper bound in (A.83) by a term of order 1
N . Moreover, (A.82) and Lemma A.1 imply that if

X(µ̄) > log

[∫ µ̄
|µ0| (µ− |µ0|) h̄(µ)dµ+ k

2∫ µ̄
|µ0| (µ− |µ0|) h̄(µ)dµ− k

2

]
,

then (A.26) is satisfied. Hence, ∆(µ) is dominated by ∆̂(µ), a contradiction.

We next determine the asymptotic behavior of z(µ) for µ ∈ (0, µ∗) and of z(µ̄). Since the

function ∆(µ) is non-negative and non-decreasing, and since ∆(µ̄) is of order 1
N , ∆(µ) for µ < µ̄ is

of order equal to or smaller than 1
N . Therefore, ∆(µ)

2d is of order equal to or smaller than 1
Nd , which

is of order smaller than one because N is assumed to be of order larger than 1
d2 . Since ∆(µ)

2d is of

order smaller than one, and

1

2ρd
log

(
π

1− π

)
=

1

2ρd
log

(
1 + µd

1− µd

)
=
µ

ρ
+ o(1),

(2.10) and (2.11) imply that the asymptotic behavior of z(µ) for µ ∈ (0, µ∗) and of z(µ̄) is as in the

proposition.

We finally show that the investor finds it optimal to induce the risk-averse type to observe the

signal. When the risk-averse type does not observe the signal, the investor’s utility is bounded

above by the utility of paying the manager a zero fee and having her choose the position z that is

optimal given the prior π0. That utility is

max
z

1

2

{
−(1 + µ0d)e−ρzd − (1− µ0d)eρzd

}
= −1

2

√
1− µ2

0d
2. (A.84)

The utility (A.84) is lower than the upper bound (A.83) by a term of order d2. Indeed, the upper

bound in (A.83) exceeds

max
z

1

2

{
−
(

(1− λ)

∫ µ̄

0
(1 + µd)h̄(µ)dµ+ λ(1 + |µ0|d)

)
e−ρzd

−
(

(1− λ)

∫ µ̄

0
(1− µd)h̄(µ)dµ+ λ(1− |µ0|d)

)
eρzd

}
, (A.85)

because constraining z(µ) to be constant in (0, µ̄] yields a lower maximum than without the con-

straint. Since∫ µ̄

0
h̄(µ)dµ =

∫
0
[h(µ) + h(−µ)]dµ =

∫ µ̄

−µ̄
h(µ)dµ = 1,
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(A.85) is equal to

max
z

1

2

{
−
[
1 +

(
(1− λ)

∫ µ̄

0
µh̄(µ)dµ+ λ|µ0|

)
d

]
e−ρzd

−
[
1−

(
(1− λ)

∫ µ̄

0
µh̄(µ)dµ+ λ|µ0|

)
d

]
eρzd

}

= −1

2

√
1−

(
(1− λ)

∫ µ̄

0
µh̄(µ)dµ+ λ|µ0|

)2

d2. (A.86)

Since, in addition,∫ µ̄

0
µh̄(µ)dµ =

∫ µ̄

0
µ[h(µ) + h(−µ)]dµ =

∫ µ̄

−µ̄
|µ|h(µ)dµ > |µ0|,

(A.86) exceeds (A.84) by a term of order d2. Therefore, (A.83) exceeds (A.84) by a term of order

equal to or larger than d2. Since the investor’s utility when the risk-averse type observes the signal

is lower than (A.83) by a term of order 1
N , which is assumed smaller than 1

d2 , it exceeds the utility

when the risk-averse type does not observe the signal.

We end this section by proving a corollary on the modification of the model of Section 2.3

presented at the end of Section 4.1.

Corollary A.1. Suppose that the model is as in Section 2.3, except that each risk-neutral type has

prior belief π+
0 = 1

2(1 + |µ0|d) or π−0 = 1
2(1 − |µ0|d), with the two prior beliefs being independent

across types and equally likely. Proposition 2.1 carries through provided that (2.13) is replaced by

(1− λ)

∫ µ̄

µ∗
(µ− µ∗)h̄(µ)dµ = λµ∗. (A.87)

Proof of Corollary A.1. Since the prior beliefs π+
0 and π−0 yield the same π̄0, Lemma 2.3 implies

that (2.9) yields pooling under both beliefs. Hence, under (2.9), the risk-neutral type chooses z(π̄)

under prior belief π+
0 and −z(π̄) under prior belief π−0 . Since π+

0 and π−0 are equally likely, z(π̄)

and −z(π̄) are also equally likely, and the investor’s objective (A.62) is replaced by

U =− (1− λ)

∫ π̄

1
2

[
πe−ρ[z(π)d−f(z(π)d)] + (1− π)e−ρ[−z(π)d−f(−z(π)d)]

]
h̄(π)dπ

− λ
[

1

2
e−ρ[|ẑ|d−f(|ẑ|d)] +

1

2
e−ρ[−|ẑ|d−f(−|ẑ|d)]

]
, (A.88)

with |ẑ| = z(π̄). The difference between (A.88) and (A.62) is that π̄0 is replaced by 1
2 . The rest of

the proof of Theorem 2.1 and Proposition 2.1 carry through with that change. Hence, (2.12) holds
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with π̄0 replaced by 1
2 , and (2.13) holds with |µ0| replaced by zero.

B Proofs for Section 3

Proof of Proposition 3.1. Substituting the affine price function (3.9) into the ODE (3.8), we

find

Dt + κ(D̄ −Dt)a1 − r(a0 + a1Dt) = ρθσ2Dta
2
1. (B.1)

Equation (B.1) is affine in Dt. Identifying the terms that are linear in Dt yields the equation

ρθσ2a2
1 + (r + κ)a1 − 1 = 0. (B.2)

Equation (B.2) is quadratic in a1. When θ > 0, the left-hand side is increasing for positive values

of a1, and (B.2) has a unique positive solution, given by (3.11). When θ < 0, the left-hand side is

hump-shaped for positive values of a1, and (B.2) has either two positive solutions, or one positive

solution, or no solution. Condition θ > − (r+κ)2

4ρσ2 in Proposition 3.1 ensures that two positive

solutions exist when θ < 0. Equation (3.11) gives the smaller of the two solutions, which is the

continuous extension of the unique positive solution when θ > 0. Identifying the constant terms

yields the equation

κD̄a1 − ra0 = 0,

whose solution is (3.10).

Proof of Proposition 3.2. Substituting the price from (3.9) into (3.6), we find that the asset’s

share return is

dRsht =
[
Dt + κ(D̄ −Dt)a1 − r(a0 + a1Dt)

]
dt+ σ

√
Dta1dBt

= ρθσ2Dta
2
1dt+ σ

√
Dta1dBt, (B.3)

where the second step follows from (B.1). Substituting the share return from (B.3) and the price
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from (3.9) into (3.2), we find that the asset’s (dollar) return is

dRt =
ρθσ2Dta

2
1dt+ σ

√
Dta1dBt

a0 + a1Dt

=
ρθσ2Dta1dt+ σ

√
DtdBt

κ
r D̄ +Dt

=

ρθσ2Dtdt

r+κ+
√

(r+κ)2+4ρθσ2
+ σ
√
DtdBt

κ
r D̄ +Dt

, (B.4)

where the second step follows from (3.10) and the third step follows from (3.11).

The conditional expected return is the drift coefficient in (B.4) times dt,

Et(dRt) =
ρθσ2Dtdt(

r + κ+
√

(r + κ)2 + 4ρθσ2
) (

κ
r D̄ +Dt

) .
It is increasing in θ because the function

Y (θ) ≡ θ

A+
√
B + Cθ

for positive constants (A,B,C) is increasing in θ. (The derivative of Y (θ) has the same sign as

A+
√
B + Cθ − C

2
√
B + Cθ

θ = A+
1√

B + Cθ

(
B +

Cθ

2

)
.

This expression is positive for B+Cθ > 0, a condition which is required for the term in the square

root to be positive.) The unconditional expected return is the unconditional expectation of the

conditional expected return,

E(dRt) = E (Et(dRt)) ,

because of the law of iterative expectations. Since Et(dRt) is increasing in θ for any given Dt,

E(dRt) is increasing in θ.

The return’s conditional volatility is the diffusion coefficient in (B.4) times
√
dt,

√
Vart(dRt) =

σ
√
Dtdt

κ
r D̄ +Dt

. (B.5)

It is independent of θ. The return’s unconditional variance is the unconditional expectation of the

return’s conditional variance,

Var(dRt) = E (Vart(dRt)) . (B.6)
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Since Vart(dRt) is independent of θ for any given Dt, Var(dRt) is independent of θ, and so is the

return’s unconditional volatility
√
Vart(dRt). Equation (B.6) is implied by the law of total variance

Var(dRt) = E (Vart(dRt)) + Var (Et(dRt)) (B.7)

and because in continuous time the second term in the right-hand side of (B.7) is negligible relative

to the first: the second term is of order dt2 while the first is of order dt.

C Proofs for Section 4

Proof of Theorem 4.1. We prove the theorem through a series of lemmas. Lemma C.1 shows

existence of a solution to the ODE system in a compact interval and with initial conditions at the

one end of the interval.

Lemma C.1. [Existence in compact interval with conditions at one boundary] Con-

sider ε > 0 and M > ε sufficiently large. A solution S(Dt) to the system of ODEs (4.4) in the

unconstrained region (4.5), and (4.7) in the constrained region (4.8), with the initial conditions

S′(M) =
2

(r + κ) +
√

(r + κ)2 + 4 ρθ
1−xσ

2
, (C.1)

S(M) =
1

r

(
(κD̄ + rM)S′(M) +

1

2
σ2MΦ +

sgn(θ)(1− λ)xµ∗

1− x
σ
√
MS′(M)

)
, (C.2)

exists, either in the entire interval [ε,M ], or in a maximal interval (ε̂,M ] with ε̂ ≥ ε. In the latter

case limDt→ε̂ |S′(Dt)| =∞.

Proof of Lemma C.1. The ODEs (4.4) and (4.7) satisfy the conditions of the Cauchy-Lipschitz

theorem for any Dt > 0. To show this for the ODE (4.4), we write it as a system of two first-order

ODEs:

S′(Dt) = T (Dt),

T ′(Dt) =
2

σ2Dt

(
ρθ

1− λx
σ2DtT (Dt)

2 −Dt − κ(D̄ −Dt)T (Dt) + rS(Dt)

)
.

The function

(Dt, S, T ) −→

(
T

2
σ2Dt

(
ρθ

1−λxσ
2DtT

2 −Dt − κ(D̄ −Dt)T + rS
) )
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is continuously differentiable for (Dt, S, T ) ∈ (0,∞) × (−∞,∞) × (−∞,∞). Hence, it is locally

Lipschitz in that set, and the Cauchy-Lipschitz theorem implies that for any (Dt, S, T ) ∈ (0,∞)×
(−∞,∞) × (−∞,∞), the ODE (4.4) has a unique solution in a neighborhood of Dt with initial

conditions S(Dt) = S and S′(Dt) = T . The same argument establishes local existence of a solution

to the ODE (4.7).

Consider the solution to the ODE (4.7) with initial conditions (C.1) and (C.2). The value of

S(M) in (C.2) is implied from the ODE (4.7) by setting S′′(M) = Φ. Indeed, (C.2) is equivalent to

S(M) =
1

r

(
M + κ(D̄ −M)S′(M) +

1

2
σ2MΦ− ρθ

1− x
σ2MS′(M)2 +

sgn(θ)(1− λ)xµ∗

1− x
σ
√
MS′(M)

)
(C.3)

because the value of S′(M) in (C.1) solves the equation

ρθ

1− x
σ2S′(M)2 + (r + κ)S′(M)− 1 = 0. (C.4)

Equation (C.4) is quadratic in S′(M). When θ > 0, the left-hand side is increasing for positive

values of S′(M), and (C.4) has a unique positive solution, given by (C.1). When θ < 0, the left-

hand side is hump-shaped for positive values of S′(M), and (C.4) has either two positive solutions,

or one positive solution, or no solution. Condition θ > − (1−x)(r+κ)2

4ρσ2 in Theorem 4.1 ensures that

two positive solutions exist when θ < 0. Equation (C.1) gives the smaller of the two solutions,

which is the continuous extension of the unique positive solution when θ > 0.

Since S′(M) is independent of M , (4.8) is met for M sufficiently large. Continuity then implies

that the solution to the ODE (4.7) with initial conditions (C.1) and (C.2) lies in the constrained

region (4.8) in a neighborhood to the left of M . We extend the solution maximally to the left of M ,

up to a point m1 where either the solution explodes (limDt→m1 |S′(Dt)| = ∞) or condition (4.8)

that defines the constrained region is violated in a neighborhood to the left of m1. In the second

case, we extend the solution to the left of m1 by using the ODE (4.4) instead of (4.7). If the first

derivative of
√
DtS

′(Dt) at m1 is non-zero, then it has to be positive because (4.8) is violated to

the left of m1, and the extended solution lies in the unconstrained region (4.5) in a neighborhood

to the left of m1, by continuity. (Extending the solution to the left of m1 by using the ODE (4.4)

instead of (4.7) yields the same first derivative of
√
DtS

′(Dt), i.e., the first derivatives of
√
DtS

′(Dt)

from the left, using (4.4), and the right, using (4.7), coincide. The first derivatives of S(Dt) from

the left and the right coincide because the first derivative from the right is used as initial condition

when extending the solution to the left. The second derivatives of S(Dt) from the left and the right

coincide because the first derivatives coincide and (4.5) holds with equality at m1. The result, used
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next in the proof, that higher-order derivatives of
√
DtS

′(Dt) from the left and the right coincide if

all lower-order derivatives are zero uses a similar argument and differentiation of (4.4) and (4.7).) If

the first derivative of
√
DtS

′(Dt) at m1 is zero, then the second derivative must also be zero because

otherwise (4.8) would not be violated to the left of m1. If the third derivative of
√
DtS

′(Dt) at m1

is non-zero, then it has to be positive because (4.8) is violated to the left of m1, and the extended

solution lies in the unconstrained region (4.5) in a neighborhood to the left of m1, by continuity.

Proceeding in this manner for higher-order derivatives, we conclude that the extended solution

(using the ODE (4.4) instead of (4.7) to the left of m1) may not lie in the unconstrained region

(4.5) in a neighborhood to the left of m1 only if all n-th order derivatives of
√
DtS

′(Dt) at m1, for

n ≥ 1, are zero. Writing, however, the ODE (4.7) in terms of the function U(Dt) ≡
√
DtS

′(Dt)

taking the (n + 1)-th order derivative of the resulting equation at m1, and using U(m1) > 0 and

dn+1

dDn+1
t

[U(Dt)]Dt=m1
= 0 for all n ≥ 0, we find

dn+1

dDn+1
t

[
Dt + κ(D̄ −Dt)

U(Dt)√
Dt

+
1

2
σ2
√
Dt

(
U ′(Dt)−

1

2Dt
U(Dt)

)
− rS(M)

−r
∫ Dt

M

U(D′t)√
D′t

dD′t

]
Dt=m1

=
dn+1

dDn+1
t

[
ρθ

1− x
σ2U(Dt)

2 − sgn(θ)(1− λ)xµ∗

1− x
σU(Dt)

]
Dt=m1

⇒ dn+1

dDn+1
t

[
κ
D̄ −Dt√

Dt
− 1

4
σ2 1√

Dt

]
Dt=m1

− r dn

dDn
t

[
1√
Dt

]
Dt=m1

= 0

for all n ≥ 0, a contradiction. Hence, the extended solution lies in the unconstrained region (4.5)

in a neighborhood to the left of m1. We extend that solution maximally to the left of m1, up to

a point m2 where either the solution explodes (limDt→m2 |S′(Dt)| = ∞) or where condition (4.5)

is violated in a neighborhood to the left of m2. In the second case, we extend the solution to the

left of m1 by using the ODE (4.7) instead of (4.4). Repeating this process yields a solution to the

system of ODEs (4.4) in the unconstrained region (4.5), and (4.7) in the constrained region (4.8),

with initial conditions (C.1) and (C.2), which either is defined in [ε,M ] or explodes at an ε̂ ≥ ε.

Lemma C.2 shows that the solution derived in Lemma C.1 is either increasing in Dt or is

decreasing and then increasing.

Lemma C.2. [Monotonicity] For the solution derived in Lemma C.1, either S′(Dt) > 0 for all

Dt, or there exists m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m,

and S(m) > 0.

Proof of Lemma C.2. Since S′(M) > 0, S′(Dt) > 0 for Dt smaller than and close to M . Suppose

that there exists Dt < M such that S′(Dt) ≤ 0, and consider the supremum m within that set.
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The definition of m implies S′(Dt) > 0 for all Dt in the non-empty set (m,M), S′(m) = 0, and

S′′(m) ≥ 0. If S′′(m) = 0, then differentiation of (4.4) and (4.7) at m yields S′′′(m) < 0, which

contradicts S′(Dt) > S′(m) = 0 for Dt > m. Hence, S′′(m) > 0, which in turn implies S′(Dt) < 0

for Dt smaller than and close to M

Suppose next, by contradiction, that there exists Dt < m such that S′(Dt) ≥ 0, and consider

the supremum m1 within that set. The definition of m1 implies that S′(Dt) < 0 for all Dt in the

non-empty set (m1,m), S′(m1) = 0, and S′′(m1) ≤ 0.

Substituting S′(m) = 0 and S′′(m) > 0 in (4.4) and (4.7), we find that in both cases

m− rS(m) < 0. (C.5)

Likewise, substituting S′(m1) = 0 and S′′(m1) ≤ 0 in (4.4) and (4.7), we find

m1 − rS(m1) ≥ 0. (C.6)

Equations (C.5) and (C.6) imply

S(m)− S(m1) >
m−m1

r
> 0,

which contradicts S′(Dt) < 0 for all Dt ∈ (m1,m). Hence, either S′(Dt) > 0 for all Dt, or there

exists m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ] and S′(Dt) < 0 for all Dt < m. In the

latter case, (C.5) implies S(m) > m
r > 0.

Lemma C.3 shows a monotonicity property of the solution with respect to the initial conditions.

If a solution S1(Dt) lies below another solution S2(Dt) at M , and their first derivatives are equal

at M , then S1(Dt) lies below S2(Dt) for all Dt < M , while the comparison reverses for the first

derivatives.

Lemma C.3. [Monotonicity over initial conditions] Consider two solutions S1(Dt) and S2(Dt)

derived in Lemma C.1 for Φ1 and Φ2 > Φ1, respectively. For all Dt < M , S1(Dt) < S2(Dt) and

S′1(Dt) > S′2(Dt).

Proof of Lemma C.3. Equation (C.1) implies S′1(M) = S′2(M). Equations (C.3) and Φ1 < Φ2

imply S1(M) < S2(M) and S′′1 (M) < S′′2 (M). Combining the latter inequality with S′1(M) =

S′2(M), we find S′1(Dt) > S′2(Dt) for Dt smaller than and close to M . Moreover, by continuity,

S1(Dt) < S2(Dt) for Dt smaller than and close to M . Suppose, by contradiction, that there exists

Dt < M such that S1(Dt) ≥ S2(Dt) or S′1(Dt) ≤ S′2(Dt), and consider the supremum m within that
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set. The definition of m implies S1(Dt) < S2(Dt) and S′1(Dt) > S′2(Dt) for all Dt in the non-empty

set (m,M), and S1(m) = S2(m) or S′1(m) = S′2(m).

Since S1(M) < S2(M) and S′1(Dt) > S′2(Dt) for all Dt ∈ (m,M), S1(m) < S2(m). Hence,

S′1(m) = S′2(m). Equations (4.4) and (4.7) both imply, however, that since S1(m) < S2(m),

S′′1 (m) < S′′2 (m). Hence, S′1(Dt) < S′2(Dt) for Dt close to and larger than m, a contradiction.

Lemma C.4 derives properties of the solution for Φ = 0. For this and subsequent results, we

use the function Z(Dt) defined by

Z(Dt) ≡ (κD̄ + rDt)S
′(Dt)− rS(Dt).

Lemma C.4. [Solution for Φ = 0] The solution S(Dt) derived in Lemma C.1 has the following

properties for Φ = 0:

• When θ > 0, the solution satisfies Z(ε) < 0 if it can be defined in [ε,M ], and satisfies

limDt→ε̂ S
′(Dt) = −∞ and limDt→ε̂ S(Dt) > 0 if it explodes at ε̂ ≥ ε.

• When θ < 0, the solution can be defined in [ε,M ], and satisfies Z(ε) > 0.

Proof of Lemma C.4. We start with the case θ > 0. Suppose first that there exists Dt < M

such that S′(Dt) ≤ 0. Lemma C.2 implies that there exists a unique m < M such that S′(Dt) > 0

for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m, and S(m) > 0. Hence, if the solution can be defined

in [ε,M ], it satisfies

(κD̄ + rε)S′(ε) ≤ 0 < rS(m) ≤ rS(ε),

which implies Z(ε) < 0. If instead the solution explodes at ε̂ ≥ ε, it satisfies limDt→ε̂ S
′(Dt) = −∞

and limDt→ε̂ S(Dt) > S(m) > 0.

Suppose next that S′(Dt) > 0 for all Dt ≤M . We will show that the solution is strictly convex,

can be defined in [ε,M ], and satisfies Z(ε) < 0. We first show that S′′′(M) < 0. We write the ODE

(4.7) as

1

2
σ2S′′(Dt) =

ρθ

1− x
σ2S′(Dt)

2− sgn(θ)(1− λ)xµ∗

1− x
σ

1√
Dt
S′(Dt)−1+

rS(Dt)− κD̄S′(Dt)

Dt
+κS′(Dt).

(C.7)
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Differentiating both sides, we find

1

2
σ2S′′′(Dt) =2

ρθ

1− x
σ2S′(Dt)S

′′(Dt)−
sgn(θ)(1− λ)xµ∗

1− x
σ

 1√
Dt
S′′(Dt)−

1

2D
3
2
t

S′(Dt)


+
rS′(Dt)− κD̄S′′(Dt)

Dt
− rS(Dt)− κD̄S′(Dt)

D2
t

+ κS′′(Dt). (C.8)

Setting Dt = M in (C.8) and using S′′(M) = Φ = 0, we find

1

2
σ2S′′′(M) =

sgn(θ)(1− λ)xµ∗

1− x
σ

1

2M
3
2

S′(M) +
rS′(M)

M
− rS(M)− κD̄S′(M)

M2

= −sgn(θ)(1− λ)xµ∗

1− x
σ

1

2M
3
2

S′(M) < 0, (C.9)

where the second step follows by substituting S(M) from (C.2) and using again Φ = 0.

Since S′′′(M) < 0 and S′′(M) = 0, S′′(Dt) > 0 for Dt smaller than and close to M . Suppose,

by contradiction, that there exists Dt < M such that S′′(Dt) ≤ 0, and consider the supremum

m within that set. The definition of m implies that S′′(Dt) > 0 for all Dt in the non-empty set

(m,M), S′′(m) = 0, and S′′′(m) ≥ 0.

Suppose that m lies in the constrained region. Setting Dt = m in (C.8), and using S′′(m) = 0

and S′′′(m) ≥ 0, we find

sgn(θ)(1− λ)xµ∗

1− x
σ

1

2m
3
2

S′(m) +
rS′(m)

m
− rS(m)− κD̄S′(m)

m2
≥ 0

⇔ −sgn(θ)(1− λ)xµ∗

1− x
σ

1

2m
3
2

S′(m) +
1

m

(
ρθ

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
≥ 0, (C.10)

where the second step follows by substituting S(m) from (4.7) and using again S′′(m) = 0. The

contradiction follows because both terms in the left-hand side of (C.10) are negative. The first

term is negative because S′(m) > 0. The second term is negative because (i) S′′(Dt) > 0 for all

Dt ∈ (m,M) implies S′(m) < S′(M), and (ii) the latter inequality together with S′(m) > 0 imply

that the left-hand side of (C.4) becomes negative when S′(M) is replaced by S′(m).

Suppose next that m lies in the unconstrained region. The ODE (4.4) yields the following

counterpart of (C.8):

1

2
σ2S′′′(Dt) = 2

ρθ

1− λx
σ2S′(Dt)S

′′(Dt)+
rS′(Dt)− κD̄S′′(Dt)

Dt
− rS(Dt)− κD̄S′(Dt)

D2
t

+κS′′(Dt).

(C.11)

Setting Dt = m in (C.11), and using S′′(m) = 0, S′′′(m) ≥ 0, and (4.4), we find the following
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counterpart of (C.10):

1

m

(
ρθ

1− λx
σ2S′(m)2 + (r + κ)S′(m)− 1

)
≥ 0. (C.12)

The contradiction follows because (i) S′′(Dt) > 0 for all Dt ∈ (m,M) implies S′(m) < S′(M),

(ii) the latter inequality together with S′(m) > 0 imply that the left-hand side of (C.4) becomes

negative when S′(M) is replaced by S′(m), and (iii) the left-hand side of (C.4) being negative,

λ ∈ (0, 1) and θ > 0 imply that the left-hand side of (C.12) is negative. Since S′′(Dt) > 0 for all

Dt < M , S(Dt) is strictly convex.

If the solution explodes at ε̂ ≥ ε, then convexity implies limDt→ε̂ S
′(Dt) = −∞, contradicting

S′(Dt) > 0 for all Dt. Hence, the solution can be defined in [ε,M ]. Moreover, convexity implies

rS(ε) ≥ rS(M) + r(ε−M)S′(M)

= (κD̄ + rε)S′(M) +
sgn(θ)(1− λ)xµ∗

1− x
σ
√
MS′(M), (C.13)

where the second step follows by substituting S(M) from (C.2) and using Φ = 0. Equation (C.13)

implies Z(ε) < 0 because S′(M) > 0 and S′(M) > S′(ε).

We next consider the case θ < 0. We will show that the solution is strictly concave, can be

defined in [ε,M ], and satisfies Z(ε) > 0. Equation (C.9) implies S′′′(M) > 0. Since S′′′(M) > 0

and S′′(M) = 0, S′′(Dt) < 0 for Dt smaller than and close to M . Suppose, by contradiction, that

there exists Dt < M such that S′′(Dt) ≥ 0, and consider the supremum m within that set. The

definition of m implies that S′′(Dt) < 0 for all Dt in the non-empty set (m,M), S′′(m) = 0, and

S′′′(m) ≤ 0.

Suppose that m lies in the unconstrained region. Since S′′(m) = 0 and S′′′(m) ≤ 0, (C.12)

holds as an inequality in the opposite direction, i.e.,

1

m

(
ρθ

1− λx
σ2S′(m)2 + (r + κ)S′(m)− 1

)
≤ 0. (C.14)

Unlike in the case θ > 0, (C.14) does not yield a contradiction when combined with the comparison

between S′(m) and S′(M). This is because the left-hand side of (C.4) is hump-shaped for positive

values of S′(M), rather than increasing. It increases until the mid-point between the two positive

roots, and then decreases to −∞.

To derive a contradiction, we examine the behavior of Z(Dt) in (m,M). Since

Z ′(Dt) = (κD̄ + rDt)S
′′(Dt) < 0 (C.15)
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for all Dt ∈ (m,M), Z(Dt) is decreasing in (m,M). Moreover, (C.2) and Φ = 0 imply

Z(M) = (κD̄ + rM)S′(M)− rS(M) = −sgn(θ)(1− λ)xµ∗

1− x
σ
√
MS′(M), (C.16)

and (4.4) and S′′(m) = 0 imply

Z(m) = (κD̄ + rm)S′(m)− rS(m) = m

(
ρθ

1− λx
σ2S′(m)2 + (r + κ)S′(m)− 1

)
. (C.17)

Since Z(Dt) is decreasing,

Z(m) > Z(M)

⇔ m

(
ρθ

1− λx
σ2S′(m)2 + (r + κ)S′(m)− 1

)
> −sgn(θ)(1− λ)xµ∗

1− x
σ
√
MS′(M) > 0, (C.18)

where the second step follows from (C.16) and (C.17). Equation (C.18) contradicts (C.14).

Suppose next that m lies in the constrained region. Since S′′(m) = 0 and S′′′(m) ≤ 0, (C.10)

holds as an inequality in the opposite direction, i.e.,

−sgn(θ)(1− λ)xµ∗

1− x
σ

1

2m
3
2

S′(m) +
1

m

(
ρθ

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
≤ 0. (C.19)

Equations (4.7) and S′′(m) = 0 imply

Z(m) = (κD̄ + rm)S′(m)− rS(m)

= m

(
ρθ

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
− sgn(θ)(1− λ)xµ∗

1− x
σ
√
mS′(m). (C.20)

Equation (C.15) implies

Z(m) = Z(M)−
∫ M

m
(κD̄ + rDt)S

′′(Dt)dDt

⇒ Z(m) ≥ Z(M)−
∫ M

m
rmS′′(Dt)dDt

⇔ Z(m) > Z(M) + rm[S′(m)− S′(M)]

⇔ m

(
ρθ

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
− sgn(θ)(1− λ)xµ∗

1− x
σ
√
mS′(m)

> −sgn(θ)(1− λ)xµ∗

1− x
σ
√
MS′(M) + rm[S′(m)− S′(M)], (C.21)

72



where the last step follows from (C.16) and (C.20). Combining (C.19) and (C.21), we find

− sgn(θ)(1− λ)xµ∗

1− x
σ

√
m

2
S′(m) > −sgn(θ)(1− λ)xµ∗

1− x
σ
√
MS′(M) + rm[S′(m)− S′(M)]

⇔ (1− λ)xµ∗

1− x
σ

√
m

2
S′(m)− rm[S′(m)− S′(M)] >

(1− λ)xµ∗

1− x
σ
√
MS′(M). (C.22)

The left-hand side of (C.22) is linear in S′(m). Since S′′(Dt) < 0 for all Dt ∈ (m,M), S′(m) is

bounded below by S′(M). To derive an upper bound for S′(m), we note that since S′(m) > S′(M),

(C.21) implies

ρθ

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1 +

(1− λ)xµ∗

1− x
σ

1√
m
S′(m) > 0.

Hence, S′(m) is smaller than the larger positive root of the quadratic equation

ρθ

1− x
σ2S′(m)2 +

(
r + κ+

(1− λ)xµ∗

1− x
σ

1√
m

)
S′(m)− 1 = 0,

which is

−

(
r + κ+ (1−λ)xµ∗

1−x σ 1√
m

)
+

√(
r + κ+ (1−λ)xµ∗

1−x σ 1√
m

)2
+ 4ρσ

2θ
1−x

2ρσ
2θ

1−x

.

This root is, in turn, smaller than

−

(
r + κ+ (1−λ)xµ∗

1−x σ 1√
m

)
+
(
r + κ+ (1−λ)xµ∗

1−x σ 1√
m

)√
1 +

4 ρσ
2θ

1−x
(r+κ)2

2ρσ
2θ

1−x

= S∗ +
B√
m
,

where S∗ is the larger positive root of (C.4) and

B ≡ −
(1−λ)xµ∗

1−x σ + (1−λ)xµ∗

1−x

√
1 +

4 ρσ
2θ

1−x
(r+κ)2

2ρσ
2θ

1−x

> 0.

When S′(m) in (C.22) is set to S′(M), the left-hand side is smaller than the right-hand side. When

S′(m) in (C.22) is set to the upper bound S∗ + B√
m

, the left-hand side is a quadratic function

of
√
m, with the coefficient of (

√
m)2 = m being −r[S∗ − S′(M)] < 0. It is, therefore, bounded

above, and smaller than the right-hand side for sufficiently large M . Hence, (C.22) does not hold,

a contradiction. Since S′′(Dt) < 0 for all Dt < M , S(Dt) is strictly concave.

If the solution explodes at ε̂ ≥ ε, then concavity implies limDt→ε̂ S
′(Dt) = ∞. The right-hand

side of (4.4) and (4.7) is of order S′(Dt)
2 for Dt close to ε̂. The left-hand side, however, does not
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exceed

Dt + κ(D̄ −Dt)S
′(Dt)− rS(Dt)

≤ Dt + κ(D̄ −Dt)S
′(Dt)− rS(M)− r(Dt −M)S′(Dt),

where both the first and the second steps follow from concavity. Hence, the left-hand side is

bounded by a term of order S′(Dt), a contradiction. Therefore, the solution does not explode and

can be defined in [ε,M ]. Equation Z(ε) > 0 holds because Z(Dt) is decreasing and Z(M) > 0 from

(C.16).

Lemma C.5 derives properties of the solution for |Φ| large.

Lemma C.5. [Solution for large |Φ|] The solution S(Dt) derived in Lemma C.1 has the following

properties:

• When θ > 0 and Φ is negative and large, the solution can be defined in [ε,M ], and satisfies

Z(ε) > 0.

• When θ < 0 and Φ is positive and large, the solution satisfies Z(ε) < 0 if it can be defined in

[ε,M ], and satisfies limDt→ε̂ S
′(Dt) = −∞ and limDt→ε̂ S(Dt) > 0 if it explodes at ε̂ ≥ ε.

Proof of Lemma C.5. We start with the case θ > 0. Suppose that Φ is negative and sufficiently

large so that S(M) defined by (C.2) is negative. We will show that S′(Dt) > 0 and S′′(Dt) < 0

for all Dt. Both inequalities hold by continuity for Dt smaller than and close to M . Suppose, by

contradiction, that there exists Dt < M such that S′(Dt) ≤ 0 or S′′(Dt) ≥ 0, and consider the

supremum m within that set. The definition of m implies S′(Dt) > 0 and S′′(Dt) < 0 for all Dt in

the non-empty set (m,M), and S′(Dt) = 0 or S′′(Dt) = 0.

Since S′(M) > 0 and S′′(Dt) < 0 for all Dt ∈ (m,M), S′(m) > 0. Hence, S′′(m) = 0. Since, in

addition, S(M) < 0 and S′(Dt) > 0 for all Dt ∈ (m,M), S(m) < 0. Setting Dt = m in (C.8) and

(C.11), and using S(m) < 0, S′(m) > 0 and S′′(m) = 0, we find S′′′(m) > 0. Hence, S′′(Dt) > 0

for Dt close to and larger than m, a contradiction. Therefore, S′(Dt) > 0 and S′′(Dt) < 0 for all

Dt.

Since the solution is concave, we can use the same argument as in the proof of Lemma C.4 in

the case θ < 0, to show that the solution does not explode at ε̂ ≥ ε. Hence, the solution can be

defined in [ε,M ]. It satisfies Z(ε) > 0 because S(ε) < 0 and S′(ε) > 0.

We next consider the case θ < 0. We will show, by contradiction, that there exists Dt < M

such that S′(Dt) ≤ 0. Existence of such a Dt will imply, from Lemma C.2, existence of a unique
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m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m, and S(m) > 0.

Hence, if the solution can be defined in [ε,M ], it satisfies

(κD̄ + rε)S′(ε) ≤ 0 < rS(m) ≤ rS(ε),

which implies Z(ε) < 0. If instead the solution explodes at ε̂ ≥ ε, it satisfies limDt→ε̂ S
′(Dt) = −∞

and limDt→ε̂ S(Dt) > S(m) > 0.

To derive the contradiction, we assume that S′(Dt) > 0 for all Dt ≤ M , and will show that

S′′(Dt) is bounded below by Φ
2 . Continuity yields the bound S′′(Dt) ≥ Φ

2 for Dt smaller than

and close to M because S′(M) = Φ. Suppose, by contradiction, that there exists Dt such that

S′′(Dt) <
Φ
2 , and consider the supremum within that set. The definition of m implies S′′(m) > Φ

2

for all Dt in the non-empty set (m,M), and S′′(m) = Φ
2 .

If m lies in the constrained region, (4.7) implies

1

2
σ2S′′(m) =

ρθ

1− x
σ2S′(m)2 − sgn(θ)(1− λ)xµ∗

1− x
σ

1√
m
S′(m)− 1 +

rS(m)− κ(D̄ −m)S′(m)

m

≥ ρθ

1− x
σ2S′(m)2 − 1 +

rS(M) + rS′(M)(m−M)− κ(D̄ −m)S′(m)

m

=
ρθ

1− x
σ2S′(m)2 − 1

+
κD̄(S′(M)− S′(m)) + 1

2σ
2MΦ +

sgn(θ)(1−λ)xµ∗

1−x σ
√
MS′(M) + rmS′(M) + κmS′(m)

m

>
ρθ

1− x
σ2S′(M)2 − 1 +

1
2σ

2MΦ− (1−λ)xµ∗

1−x σ
√
MS′(M)

m
, (C.23)

where the second step follows from S′(m) > 0 and because convexity implies

S(m) ≥ S(M) + S′(M)(m−M),

the third step follows by substituting S(M) from (C.2), and the fourth step follows because S′(M) >

S′(m) > 0. Since for sufficiently large Φ,

1

2
σ2MΦ− (1− λ)xµ∗

1− x
σ
√
MS′(M) > 0,

the right-hand side of (C.23) is bounded below by

ρθ

1− x
σ2S′(M)2 − 1 +

1

2
σ2Φ− (1− λ)xµ∗

1− x
σ

1√
M
S′(M),

which, in turn, is bounded below by 1
4σ

2Φ for sufficiently large Φ. Hence, (C.23) implies that S′′(m)

75



exceeds Φ
2 , a contradiction. If m lies in the unconstrained region, we can follow the same steps to

derive a counterpart of (C.23) using (4.4), and then derive a contradiction. Hence, S′′(Dt) ≥ Φ
2 for

all Dt ≤M .

If the solution explodes at ε̂ ≥ ε, then convexity implies limDt→ε̂ S
′(Dt) = −∞. This is ruled

out, however, by S′(Dt) > 0 for all Dt ≤ M . Hence, the solution can be defined in [ε,M ].

Since, however, S′′(Dt) is bounded below by Φ
2 , and S′(M) is independent of Φ, S′(ε) is negative

for sufficiently large Φ. This contradicts our assumption that S′(Dt) > 0 for all Dt ≤ M , and

establishes that there exists Dt < M such that S′(Dt) ≤ 0.

Taken together, Lemmas C.4 and C.5 show that for two extreme values of Φ (Φ = 0 and |Φ|
large) the solution lies on two different “sides” of the equation Z(ε) = 0, which we use as boundary

condition at ε. Lemma C.6 uses these results and a continuity argument to show that there exists

Φ such that Z(ε) = 0 holds. It also uses the monotonicity property of the solution shown in Lemma

C.3 to establish that this Φ is unique.

Lemma C.6. [Existence in compact interval with conditions at both boundaries] Con-

sider an interval [ε,M ], with ε sufficiently small and M sufficiently large. A solution S(Dt) to

the system of ODEs (4.4) in the unconstrained region (4.5), and (4.7) in the constrained region

(4.8), with the boundary conditions (C.1) and Z(ε) = 0 exists in [ε,M ] and is unique. Moreover,

S′′(M) < 0 when θ > 0, and S′′(M) > 0 when θ < 0.

Proof of Lemma C.6. We denote by ZΦ(ε) the value of Z(ε) for the solution S(Dt) derived

in Lemma C.1. If limDt→ε̂ S
′(Dt) = −∞ for ε̂ ≥ ε, in which case limDt→ε̂ S(Dt) > 0, we set

ZΦ(ε) = −∞. If limDt→ε̂ S
′(Dt) = ∞ for ε̂ ≥ ε, in which case limDt→ε̂ S(Dt) is finite or −∞, we

set ZΦ(ε) =∞.

Lemma C.3 implies that for Φ1 < Φ2, ZΦ1(ε) > ZΦ2(ε) if ZΦ1(ε) and ZΦ2 are finite, ZΦ2(ε) = −∞
if ZΦ1(ε) = −∞, and ZΦ1(ε) = ∞ if ZΦ2(ε) = ∞. Hence, ZΦ(ε) is equal to ∞ in an interval

(−∞,
¯
Φ], is finite and decreasing in an interval (

¯
Φ, Φ̄), and is equal to −∞ in the remaining interval

[Φ̄,∞). Continuity of the solution with respect to the initial conditions implies that ZΦ(ε) is

continuous in Φ in (
¯
Φ, Φ̄). Moreover, if

¯
Φ is finite, then limΦ→

¯
Φ

Φ>
¯
Φ

ZΦ(ε) =∞, and if Φ̄ is finite, then

limΦ→Φ̄
Φ<Φ̄

ZΦ(ε) = −∞.

When θ > 0, Lemma C.4 implies that Z0(ε) is negative and possibly equal to −∞, and Lemma

C.5 implies that ZΦ(ε) is positive and finite for Φ negative and large. Hence,
¯
Φ = −∞. If Φ̄ > 0,

then continuity and monotonicity of ZΦ(ε) in (−∞, 0], limΦ→−∞ ZΦ(ε) > 0, and Z0(ε) < 0 imply

that there exists a unique Φ ∈ (−∞, 0) such that ZΦ(ε) = 0. If Φ̄ ≤ 0, then continuity and
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monotonicity of ZΦ(ε) in (−∞, Φ̄), limΦ→−∞ ZΦ(ε) > 0, and limΦ→Φ̄
Φ<Φ̄

ZΦ(ε) = −∞ imply that there

exists a unique Φ ∈ (−∞, Φ̄) such that ZΦ(ε) = 0. In both cases, there exists a unique Φ ∈ (−∞, 0)

such that ZΦ(ε) = 0. The solution S(Dt) derived in Lemma C.1 for this Φ satisfies Z(ε) = 0 and

S′′(M) = Φ < 0.

When θ < 0, Lemma C.4 implies that Z0(ε) is positive and finite, and Lemma C.5 implies that

ZΦ(ε) is negative and possibly equal to −∞ for Φ positive and large. Hence,
¯
Φ < 0 and Φ̄ > 0. If

Φ̄ < ∞, then continuity and monotonicity of ZΦ(ε) in [0, Φ̄), Z0(ε) > 0 and limΦ→Φ̄
Φ<Φ̄

ZΦ(ε) = −∞
imply that there exists a unique Φ ∈ (0, Φ̄) such that ZΦ(ε) = 0. If Φ̄ = ∞, then continuity

and monotonicity of ZΦ(ε) in [0,∞), Z0(ε) > 0 and limΦ→∞ ZΦ(ε) < 0 imply that there exists a

unique Φ ∈ (0,∞) such that ZΦ(ε) = 0. In both cases, there exists a unique Φ ∈ (0,∞) such

that ZΦ(ε) = 0. The solution S(Dt) derived in Lemma C.1 for this Φ satisfies Z(ε) = 0 and

S′′(M) = Φ > 0.

Lemmas C.7-C.11 show properties of the solution derived in Lemma C.6. Lemma C.7 shows

that the solution is increasing in Dt.

Lemma C.7. [Monotonicity and Positivity] For the solution derived in Lemma C.6, S(Dt) > 0

and S′(Dt) > 0 for all Dt ∈ [ε,M ].

Proof of Lemma C.7. The solution derived in Lemma C.6 coincides with that derived in Lemma

C.1 for a specific value of Φ. Hence, Lemma C.2 implies that either S′(Dt) > 0 for all Dt, or there

exists m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m, and S(m) > 0.

In the second case, S′(ε) ≤ 0 and S(ε) > 0, contradicting Z(ε) = 0.

Since S′(ε) > 0, Z(ε) = 0 implies S(ε) > 0. Combining S(ε) > 0 with S′(Dt) > 0 for all Dt, we

find S(Dt) > 0 for all Dt.

Lemma C.8 shows that the solution lies below the affine solution derived for µ∗ = ∞ when

θ > 0, and above it when θ < 0.

Lemma C.8. [Comparison with the affine solution] Consider the solution derived in Lemma

C.6, and the affine solution a0 + a1Dt derived for µ∗ =∞. When θ > 0, S(Dt) < a0 + a1Dt for all

Dt ∈ [ε,M ], and when θ < 0, S(Dt) > a0 + a1Dt for all Dt ∈ [ε,M ].

Proof of Lemma C.8. To derive the affine solution for µ∗ = ∞, we substitute the affine price

function (3.9) into the ODE (4.4) and identify terms. Identifying the terms that are linear in Dt
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yields the equation

ρθ

1− λx
σ2a2

1 + (r + κ)a1 − 1 = 0. (C.24)

Identifying the constant terms yields (3.10). When θ > 0, (C.24) has the unique positive solution,

given by

a1 =
2

(r + κ) +
√

(r + κ)2 + 4 ρθ
1−λxσ

2
. (C.25)

When θ < 0, Condition θ > − (1−x)(r+κ)2

4ρσ2 in Theorem 4.1 ensures that (C.24) has two positive

solutions. Equation (C.25) gives the smaller of the two solutions, which is the continuous extension

of the unique positive solution when θ > 0.

To prove the lemma, we start with the case θ > 0, and consider the problem of maximizing

V (Dt) ≡ S(Dt)− (a0 + a1Dt),

over the compact set [ε,M ]. The result in the lemma will follow if we show that the maximum

value Vmax of V (Dt) is negative. Using (3.10), we can write V (Dt) as

V (Dt) = S(Dt)−
a1

r
(κD̄ + rDt).

Suppose first that V (Dt) is maximized at Dt = M . Using (C.2), we can write V (M) as

V (M) =
1

r

(
(κD̄ + rM)(S′(M)− a1) +

1

2
σ2MΦ +

sgn(θ)(1− λ)xµ∗

1− x
σ
√
MS′(M)

)
. (C.26)

Equations (C.1) and (C.25) imply that S′(M) and a1 are independent of M , and that S′(M) < a1.

Since, in addition Φ < 0, (C.26) implies that Vmax = V (M) < 0 for M sufficiently large.

Suppose next that V (Dt) is maximized at an interior point m ∈ (ε,M) that lies in the con-

strained region. The first- and second-order conditions of the maximization problem are S′(m) = a1
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and S′′(m) ≤ 0. Setting Dt = m in (4.7) and using S′(m) = a1 and S′′(m) ≤ 0, we find

m+ κ(D̄ −m)a1 − rS(m) ≥ ρθ

1− x
σ2ma2

1 −
sgn(θ)(1− λ)xµ∗

1− x
σ
√
ma1

⇒ m+ κ(D̄ −m)a1 − rS(m) >
ρθ

1− x
σ2ma2

1 −
(1− λ)xρθ

(1− x)(1− λx)
σ2ma2

1

⇔ m+ κ(D̄ −m)a1 − rS(m) >
ρθ

1− λx
σ2ma2

1

⇔ (κD̄ + rm)a1 − rS(m) > 0

⇔ Vmax = V (m) < 0, (C.27)

where the second step follows from (4.8) and the fourth step follows from (C.24).

Suppose next that V (Dt) is maximized at an interior point m ∈ (ε,M) that lies in the uncon-

strained region. Setting Dt = m in (4.4) and using S′(m) = a1 and S′′(m) ≤ 0, we find

m+ κ(D̄ −m)a1 − rS(m) ≥ ρθ

1− λx
σ2ma2

1

⇔ (κD̄ + rm)a1 − rS(m) ≥ 0

⇔ Vmax = V (m) ≤ 0, (C.28)

To show that (C.28) holds as a strict inequality, we proceed by contradiction. If (C.28) holds as an

equality, then S(m) and S′(m) are the same as under the affine solution S(Dt) = a1
r (κD̄ + rDt).

Hence, the solution derived in Lemma C.6 coincides with the affine solution in an interval in the

unconstrained region that includes m and that has a boundary with the constrained region at an

m1 ≥ m. Setting Dt = m1 in (C.8) and using S(m1) = a1
r (κD̄+rm1), S′(m1) = a1 and S′′(m1) = 0,

we find that the third derivative of S(Dt) from the right at m1 is

1

2
σ2S′′′(m1) =

sgn(θ)(1− λ)xµ∗

1− x
σ

1

2D
3
2
t

S′(Dt) > 0. (C.29)

Since S′′′(m1) > 0, S′′(Dt) is positive in a neigborhood to the right of m1, and hence S′(Dt) exceeds

a1. This means that V (Dt), which is equal to zero for all Dt ∈ [m,m1] because S(Dt) coincides

with the affine solution, increases to the right of m1, a contradiction since V (Dt) would then be

maximized in the constrained region.

If V (Dt) is maximized at ε, then S′(ε) ≤ a1 and hence,

Vmax = V (ε) = S(ε)− a1

r
(κD̄ + rε) =

1

r
(κD̄ + rε)(S′(ε)− a1) ≤ 0, (C.30)

where the second step follows from Z(ε) = 0. To show that (C.30) holds as a strict inequality, we
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follow the same argument as in the case where V (Dt) is maximized at an interior point m in the

unconstrained region.

The argument in the case θ < 0 is symmetric. We consider the problem of minimizing V (Dt)

over [ε,M ], and show that the minimum value Vmin of V (Dt) is positive.

Suppose first that V (Dt) is minimized at Dt = M . Equations (C.1) and (C.25) imply that

S′(M) and a1 are independent of M , and that S′(M) > a1. Since, in addition, Φ > 0, (C.26)

implies that Vmin = V (M) > 0 for M sufficiently large.

Suppose next that V (Dt) is maximized at an interior point m ∈ (ε,M) that lies in the con-

strained region. The first- and second-order conditions of the maximization problem are S′(m) = a1

and S′′(m) ≥ 0. Setting Dt = m in (4.7), using S′(m) = a1 and S′′(m) ≤ 0, and proceeding as in

the derivation of (C.27), we find Vmax = V (m) > 0.

Suppose next that V (Dt) is maximized at an interior point m ∈ (ε,M) that lies in the uncon-

strained region. Setting Dt = m in (4.4), using S′(m) = a1 and S′′(m) ≥ 0, and proceeding as in

the derivation of (C.28), we find Vmax = V (m) ≥ 0. To show that (C.28) holds as a strict inequality,

we follow the same argument as in the case θ < 0 and find that (C.29) implies S′′′(m1) < 0. This

implies that V (Dt), which is equal to zero for all Dt ∈ [m,m1], decreases to the right of m1, a

contradiction since V (Dt) would then be minimized in the constrained region.

If V (Dt) is maximized at ε, then S′(ε) ≥ a1, and hence (C.30) implies Vmin = V (ε) ≥ 0. To

show that (C.30) holds as a strict inequality, we follow the same argument as in the case where

V (Dt) is maximized at an interior point m in the unconstrained region.

Note that since Z(ε) implies

S(ε)− a1

r
(κD̄ + rε) =

1

r
(κD̄ + rε)(S′(ε)− a1),

Lemma C.8 implies that S′(ε) < a1 when θ > 0, and S′(ε) > a1 when θ < 0.

Lemma C.9 shows that the constrained and the unconstrained regions have a single boundary

and hence do not alternate. Proving this result requires condition κD̄ > σ2

4 of Theorem 4.1. This

condition is required in all subsequent lemmas as well because they build on Lemma C.9, but is

not used in all previous lemmas.

Lemma C.9. [Single boundary between unconstrained and constrained region] There

exists m ∈ [ε,M ] such that the unconstrained region is [ε,m] and the constrained region is (m,M ].

Proof of Lemma C.9. The constrained region includes a neighborhood to the left of M , for
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sufficiently large M , as shown in Lemma C.1. The unconstrained region includes a neighborhood

to the right of ε, for sufficiently small ε. This is because S′(ε) is bounded above uniformly for all

values of ε sufficiently small. When θ > 0, the upper bound is a1. When θ < 0, Lemma C.5 implies

that Φ is bounded above because otherwise Z(ε) < 0. The upper bound on Φ implies one on S(M)

from (C.2), which in turn implies one on S(ε) from Lemma C.7, which in turn implies one on S′(ε)

from Z(ε) = 0.

Consider the non-empty set of m > ε such that [ε,m] lies in the unconstrained region, and the

supremum m1 of that set. Consider the non-empty set of m > m1 such that (m1,m) lies in the

constrained region, and the supremum m2 of that set. Suppose, by contradiction, that m2 < M ,

in which case the unconstrained region begins again at m2. Consider, in that case, the non-empty

set of m > ε such that [m2,m] lies in the unconstrained region, and the supremum m3 of that set.

Since the constrained region includes a neighborhood to the left of M , m3 < M .

Since (4.5) holds as an equality at mi, i = 1, 2, 3,

√
miS

′(mi) =
µ∗(1− λx)

ρσ|θ|
. (C.31)

Since (4.5) holds to the left of mi, i = 1, 3, and (4.8) holds to the right of mi, the derivative of
√
DtS

′(Dt) is non-negative for Dt = mi, and hence

√
mS′′(mi) +

1

2
√
mi
S′(mi) ≥ 0⇔ miS

′′(mi) ≥ −
S′(mi)

2
= −µ

∗(1− λx)

2ρσ|θ|
1
√
mi

for i = 1, 3,

(C.32)

where the last step follows from (C.31). Conversely, since (4.8) holds to the left of m2, and (4.5)

holds to the right of m2, the derivative of
√
DtS

′(Dt) is non-positive for Dt = m2, and hence

m2S
′′(m2) ≤ −S

′(m2)

2
= −µ

∗(1− λx)

2ρσ|θ|
1
√
m2

. (C.33)

Since (4.8) holds in (m1,m2),

S(m2)− S(m1) =

∫ m2

m1

S′(Dt)dDt >

∫ m2

m1

µ∗(1− λx)

ρσ|θ|
1√
Dt
dDt =

2µ∗(1− λx)

ρσ|θ|
(
√
m2 −

√
m1).

(C.34)

Conversely, since (4.5) holds in (m2,m3),

S(m3)− S(m2) =

∫ m3

m2

S′(Dt)dDt ≤
∫ m3

m2

µ∗(1− λx)

ρσ|θ|
1√
Dt
dDt =

2µ∗(1− λx)

ρσ|θ|
(
√
m3 −

√
m2).
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(C.35)

Since (4.5) holds as an equality at mi, i = 1, 2, 3, these points satisfy both (4.4) and (4.7).

Setting Dt = mi in (4.4) and using (C.31), we find

mi + κ(D̄ −mi)
µ∗(1− λx)

ρσ|θ|
1
√
mi

+
1

2
σ2miS

′′(mi)− rS(mi) =
(µ∗)2(1− λx)

ρθ
. (C.36)

Subtracting (C.36) for m2 from the same equation for m1, we find

m1 −m2 +
µ∗(1− λx)

ρσ|θ|

[
κD̄

(
1
√
m1
− 1
√
m2

)
− κ(
√
m1 −

√
m2)

]
+

1

2
σ2
[
m1S

′′(m1)−m2S
′′(m2)

]
− r[S(m1)− S(m2)] = 0,

⇒ m1 −m2 +
µ∗(1− λx)

ρσ|θ|
m2 −m1√
m1 +

√
m2

(
κD̄

1
√
m1m2

+ κ

)
+
µ∗(1− λx)

ρσ|θ|
σ2

4

(
1
√
m2
− 1
√
m1

)
+

2µ∗(1− λx)

ρσ|θ|
r(
√
m2 −

√
m1) < 0

⇒ µ∗(1− λx)

ρσ|θ|
1

√
m1 +

√
m2

(
κD̄ − σ2

4√
m1m2

+ κ+ 2r

)
− 1 < 0, (C.37)

where the second step follows from (C.32), (C.33) and (C.34), and the third step follows by dividing

throughout by m2 −m1 > 0. Subtracting (C.36) for m3 from the same equation for m2, and using

(C.32), (C.33) and (C.34), we similarly find

µ∗(1− λx)

ρσ|θ|
1

√
m2 +

√
m3

(
κD̄ − σ2

4√
m2m3

+ κ+ 2r

)
− 1 ≥ 0. (C.38)

Condition κD̄ − σ2

4 > 0 of Theorem 4.1 ensures that because m3 > m1, the left-hand side of

(C.37) is larger than the left-hand side of (C.38). This is a contradiction because the former should

be negative and the latter non-negative. Therefore, m2 = M , and the lemma holds by setting

m = m1.

Lemma C.10 shows that the solution is concave when θ > 0, and convex when θ < 0.

Lemma C.10. [Concavity/convexity] The solution derived in Lemma C.6 satisfies S′′(Dt) < 0

for all Dt ∈ [ε,M ] when θ > 0, and S′′(Dt) > 0 for all Dt ∈ [ε,M ] when θ < 0.

Proof of Lemma C.10. We start with the case θ > 0. Lemma C.6 shows that S′′(M) < 0.
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Moreover, setting Dt = ε in (4.4) and solving for S′′(ε), we find

1

2
σ2εS′′(ε) =

ρθ

1− λx
σ2εS′(ε)2 − κ(D̄ − ε)S′(ε) + rS(ε)− ε

=
ρθ

1− λx
σ2εS′(ε)2 + (r + κ)εS′(ε)− ε

= ε

(
ρθ

1− λx
σ2S′(ε)2 + (r + κ)S′(ε)− 1

)
< 0, (C.39)

where the second step follows from Z(ε) = 0, and the last step because S′(ε) < a1.

Suppose, by contradiction, that there exists Dt ∈ (ε,M) such that S′′(Dt) ≥ 0, and consider

the infimum m1 within that set. Since S′′(ε) < 0, m1 > ε. The definition of m1 implies S′′(Dt) < 0

for all Dt ∈ (ε,m1), S′′(m1) = 0 and S′′′(m1) ≥ 0.

Suppose that m1 lies in the unconstrained region. Setting Dt = m1 in (C.11), and using

S′′(m1) = 0, S′′′(m1) ≥ 0 and (4.4), we find (C.12), written for m1 instead of m. The contradiction

follows because (i) S′′(Dt) < 0 for all Dt ∈ (ε,m1) implies S′(m1) < S′(ε) < a1, (ii) the latter

inequality together with S′(m1) > 0 imply that the left-hand side of (C.24) becomes negative when

a1 is replaced by S′(m1).

Suppose next that m1 lies in the constrained region and that S′′′(m1) > 0. Since S′′(m1) = 0,

S′′′(m1) > 0 implies that S′′(Dt) > 0 for Dt close to and larger than m1. We denote by m2 the

supremum of the set of m such that S′′(Dt) > 0 for all Dt ∈ (m1,m). Since S′′(M) < 0, m2 < M .

The definition of m2 implies S′′(Dt) < 0 for all Dt ∈ (m1,m2), S′′(m2) = 0 and S′′′(m2) ≤ 0.

Setting Dt = m1 in (C.8), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and (4.7), we find (C.10), written

for m1 instead of m. Multiplying both sides by m1
S′(m1) > 0, we rewrite that equation as

−sgn(θ)(1− λ)xµ∗

1− x
σ

1

2
√
m1

+
ρθ

1− x
σ2S′(m1) + r + κ− 1

S′(m1)
≥ 0. (C.40)

Since m2 exceeds m1, Lemma C.9 implies that it lies in the constrained region. Setting Dt = m2

in (C.8), and using S′′(m1) = 0, S′′′(m1) ≤ 0 and (4.7), we find (C.19), written for m2 instead of

m. Multiplying both sides by m2
S′(m2) > 0, we rewrite that equation as

−sgn(θ)(1− λ)xµ∗

1− x
σ

1

2
√
m2

+
ρθ

1− x
σ2S′(m2) + r + κ− 1

S′(m2)
≤ 0. (C.41)

Since m2 > m1 and S′(m2) > S′(m1), the left-hand side of (C.41) is larger than the left-hand

side of (C.40). This is a contradiction because the former should be non-positive and the latter

non-negative.

Suppose finally that m1 lies in the constrained region and that S′′′(m1) = 0. If there exists
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Dt > m1 such that S′′(Dt) > 0, then the same argument as in the case where S′′′(m1) > 0 yields

a contradiction. If S′′(Dt) ≤ 0 for all Dt > m1, then S′′(m1) = S′′′(m1) = 0 implies S′′′′(m1) ≤ 0.

To derive a contradiction, we differentiate twice (4.7) at Dt = m1. Using S′′(m1) = S′′′(m1) = 0,

we find

1

2
σ2m1S

′′′′(m1) =
sgn(θ)(1− λ)xµ∗

1− x
σ

1

4m
3
2
1

S′(m1) > 0. (C.42)

Hence, S′′(Dt) < 0 for all Dt ∈ [ε,M ].

We next consider the case θ < 0. Lemma C.6 shows that S′′(M) > 0. Moreover, setting Dt = ε

in (4.4), solving for S′′(ε), and using Z(ε) = 0, we find the following counterpart of (C.39)

1

2
σ2εS′′(ε) = ε

(
ρθ

1− λx
σ2S′(ε)2 + (r + κ)S′(ε)− 1

)
. (C.43)

We will show that S′′(ε) > 0, ruling out the cases S′(ε) < 0 and S′(ε) = 0 by contradiction

arguments.

Suppose, by contradiction, that S′′(ε) < 0. We denote by m1 the supremum of the set of m

such that S′′(Dt) < 0 for all Dt ∈ [ε,m). Since S′′(M) > 0, m1 < M . The definition of m1 implies

S′′(Dt) < 0 for all Dt ∈ [ε,m1), S′′(m1) = 0 and S′′′(m1) ≥ 0. Equations Z(ε) = 0, (C.15) and

S′′(Dt) < 0 for all Dt ∈ [ε,m1) imply Z(m1) < 0.

If m1 lies in the unconstrained region, (4.4) and S′′(m1) = 0 imply (C.17), written for m1

instead of m. Moreover, setting Dt = m1 in (C.11), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and

(4.4), we find (C.12), written for m1 instead of m. The two equations yield a contradiction when

combined with Z(m1) < 0.

If m1 lies in the constrained region, (4.7) and S′′(m1) = 0 imply (C.20), written for m1 instead

of m. Moreover, setting Dt = m1 in (C.8), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and (4.7), we find

(C.10), written for m1 instead of m. The two equations yield a contradiction when combined with

Z(m1) < 0, as can be seen by multiplying the latter equation by −m2
1 and adding it to the former

equation.

Suppose next by contradiction that S′′(ε) = 0. Since S′(ε) > a1, (C.43) implies that S′(ε) is

equal to the larger positive root of (C.24), which we denote by a∗1. Hence, S′(ε) is the same as

under the affine solution S(Dt) =
a∗1
r (κD̄ + rDt). The same is true for S(ε) because of Z(ε) = 0.

Hence, the solution derived in Lemma C.6 coincides with the affine solution in an interval in the

unconstrained region that includes ε and that has a boundary with the constrained region at an

m1 ≥ m. Proceeding as in the proof of Lemma C.8, we find that the third derivative of S(Dt) from

the right at m1 is negative, and hence S′′(Dt) is negative in a neigborhood to the right of m1. Since
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Z(m1) = 0, we can then use the previous argument to derive a contradiction. This establishes that

S′′(ε) > 0.

Suppose, by contradiction, that there exists Dt ∈ (ε,M) such that S′′(Dt) ≤ 0, and consider

the infimum m1 within that set. Since S′′(ε) > 0, m1 > ε. The definition of m1 implies S′′(Dt) > 0

for all Dt ∈ (ε,m1), S′′(m1) = 0 and S′′′(m1) ≤ 0. Equations Z(ε) = 0, (C.15) and S′′(Dt) > 0 for

all Dt ∈ [ε,m1) imply Z(m1) > 0.

Suppose that m1 lies in the unconstrained region. Equations (4.4) and S′′(m1) = 0 imply

(C.17), written for m1 instead of m. Moreover, setting Dt = m1 in (C.11), and using S′′(m1) = 0,

S′′′(m1) ≤ 0 and (4.4), we find (C.14), written for m1 instead of m. The two equations yield a

contradiction when combined with Z(m1) > 0.

Suppose next that m1 lies in the constrained region and that S′′′(m1) < 0. Since S′′(m1) = 0,

S′′′(m1) < 0 implies that S′′(Dt) < 0 for Dt close to and larger than m1. We denote by m2 the

supremum of the set of m such that S′′(Dt) < 0 for all Dt ∈ (m1,m). Since S′′(M) > 0, m2 < M .

The definition of m2 implies S′′(Dt) < 0 for all Dt ∈ (m1,m2), S′′(m2) = 0 and S′′′(m2) ≥ 0.

Setting Dt = m1 in (C.8), and using S′′(m1) = 0, S′′′(m1) ≤ 0 and (4.7), we find (C.19), written

for m1 instead of m. Multiplying both sides by m1, we rewrite that equation as

−sgn(θ)(1− λ)xµ∗

1− x
σ

1

2
√
m1

S′(m1) +
ρθ

1− x
σ2S′(m1)2 + (r + κ)S′(m1)− 1 ≤ 0. (C.44)

Since m2 exceeds m1, Lemma C.9 implies that it lies in the constrained region. Setting Dt = m2

in (C.8), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and (4.7), we find (C.10), written for m2 instead of

m. Multiplying both sides by m2, we rewrite that equation as

−sgn(θ)(1− λ)xµ∗

1− x
σ

1

2
√
m2

S′(m2) +
ρθ

1− x
σ2S′(m2)2 + (r + κ)2 − 1 ≥ 0. (C.45)

Since S′′(Dt) < 0 for all Dt ∈ (m1,m2), Z(m2) < Z(m1) Using (C.20) to compute Z(m1) and

Z(m2), we find

m1

(
ρθ

1− x
σ2S′(m1)2 + (r + κ)S′(m1)− 1

)
− sgn(θ)(1− λ)xµ∗

1− x
σ
√
m1S

′(m1)

> m2

(
ρθ

1− x
σ2S′(m2)2 + (r + κ)S′(m2)− 1

)
− sgn(θ)(1− λ)xµ∗

1− x
σ
√
m2S

′(m2)

⇒ ρθ

1− x
σ2S′(m1)2 + (r + κ)S′(m1)− 1− sgn(θ)(1− λ)xµ∗

1− x
σ

1
√
m1

S′(m1)

>
ρθ

1− x
σ2S′(m2)2 + (r + κ)S′(m2)− 1− sgn(θ)(1− λ)xµ∗

1− x
σ

1
√
m2

S′(m2), (C.46)

where the second step follows by multiplying the left-hand side, which is positive since Z(m1) > 0,
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by m2
m1

> 1. Multiplying (C.44) by −1 and adding to the sum of (C.45) and (C.46), we find

−sgn(θ)(1− λ)xµ∗

1− x
σ

1

2
√
m1

S′(m1) > −sgn(θ)(1− λ)xµ∗

1− x
σ

1

2
√
m2

S′(m2),

a contradiction since m2 > m1 and S′(m2) < S′(m1).

Suppose finally that m1 lies in the constrained region and that S′′′(m1) = 0. If there exists

Dt > m1 such that S′′(Dt) < 0, then the same argument as in the case where S′′′(m1) < 0 yields

a contradiction. If S′′(Dt) ≥ 0 for all Dt > m1, then S′′(m1) = S′′′(m1) = 0 implies S′′′′(m1) ≥ 0.

To derive a contradiction, we differentiate twice (4.7) at Dt = m1. Using S′′(m1) = S′′′(m1) = 0,

we find

1

2
σ2m1S

′′′′(m1) =
sgn(θ)(1− λ)xµ∗

1− x
σ

1

4m
3
2
1

S′(m1) < 0. (C.47)

Hence, S′′(Dt) > 0 for all Dt ∈ [ε,M ].

Lemma C.11 shows that the derivative of the solution lies below the derivative of the affine

solution derived for µ∗ =∞ when θ > 0, and above it when θ < 0.

Lemma C.11. [Comparison with the derivative of the affine solution] Consider the solution

derived in Lemma C.6, and the affine solution a0 + a1Dt derived for µ∗ = ∞. When θ > 0,

S′(Dt) < a1 for all Dt ∈ [ε,M ], and when θ < 0, S(Dt) > a1 for all Dt ∈ [ε,M ].

Proof of Lemma C.11. When θ > 0, the result follows because the solution is concave and

S′(ε) < a1. When θ < 0, the result follows because the solution is convex and S′(ε) > a1.

Lemma C.12 shows that if a solution to the system of ODEs exists in (0,∞) and its derivative

converges to finite limits at zero and infinity, then these limits are almost uniquely determined.

Lemma C.12. [Limits at zero and infinity] Consider a solution S(Dt) to the system of ODEs

(4.4) in the unconstrained region (4.5), and (4.7) in the constrained region (4.8), defined in (0,∞).

Suppose that S′(Dt) converges to finite limits at zero and infinity, denoted by S′(0) and S′(∞),

respectively. Then S′(∞) is a root of (C.4), and S′(0) satisfies Z(0) ≡ κD̄S′(0)− rS(0) = 0, where

S(0) denotes the limit of S(Dt) at zero.

Proof of Lemma C.12. We start with the limit at zero. Since limDt→0 S
′(Dt) exists and is finite,

the same is true for limDt→0 S(Dt). (The latter limit is S(Dt)−
∫ Dt

0 S′
(
D̂t

)
dD̂t for any given Dt).
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Since limDt→0 S
′(Dt) exists and is finite, values of Dt close to zero lie in the unconstrained

region. Moreover, since limDt→0 S
′(Dt) and limDt→0 S(Dt) exist and are finite, taking the limit

of both sides of the ODE (4.4) when Dt goes to zero implies that limDt→0DtS
′′(Dt) exists and is

finite. If the latter limit differs from zero, then |S′′(Dt)| ≥ `
Dt

for ` > 0 and for all Dt smaller than

a sufficiently small η > 0. Since, however, for Dt < η,

S′(Dt) = S′(η) +

∫ Dt

η
S′′(D̂t)dD̂t ⇒ |S′(Dt)− S′(η)| ≥

∫ η

Dt

`

D̂t

dD̂t = ` log

(
η

Dt

)
,

limDt→0 S
′(Dt) would be plus or minus infinity, a contradiction. Hence, limDt→0DtS

′′(Dt) = 0.

Taking the limit of (4.4) when Dt goes to zero, and using limDt→0 S
′(Dt) = S′(0), limDt→0 S

′(Dt) =

S(0), limDt→0DtS
′′(Dt) = 0, and the finiteness of S′(0) and S(0), we find Z(0) = 0.

We next consider the limit at infinity. Since limDt→∞ S
′(Dt) exists and is finite, it is equal to

limDt→∞
S(Dt)
Dt

. This follows by writing S(Dt)
Dt

as

S(Dt)

Dt
=
S(0) +

∫ Dt
0 S′

(
D̂t

)
dD̂t

Dt
,

and noting that limDt→∞
S(0)
Dt

= 0 and limDt→∞

∫Dt
0 S′(D̂t)dD̂t

Dt
= limDt→∞ S

′(Dt).

Since limDt→∞ S
′(Dt) exists and is finite, large values of Dt lie in the constrained region. Di-

viding both sides of the ODE (4.7) by Dt, taking the limit when Dt goes to infinity, and using

the existence and finiteness of limDt→∞ S
′(Dt) and limDt→∞

S(Dt)
Dt

, we find that limDt→∞ S
′′(Dt)

exists and is finite. If the latter limit differs from zero, then |S′′(Dt)| ≥ ` > 0 for ` > 0 and for

all Dt sufficiently large, implying that limDt→0 S
′(Dt) would be plus or minus infinity, a contra-

diction. Hence, limDt→0 S
′′(Dt) = 0. Taking the limit of (4.7) when Dt goes to infinity, and using

limDt→∞ S
′(Dt) = limDt→0

S(Dt)
Dt

= S(∞), limDt→0 S
′′(Dt) = 0, and the finiteness of S′(∞), we

find that S′(∞) is a root of (C.4).

Lemma C.13 shows that a solution to the system of ODEs with a derivative that converges to

finite limits at zero and infinity exists in (0,∞), and has the properties in Lemmas C.7-C.11.

Lemma C.13. [Existence in (0,∞)] A solution S(Dt) to the system of ODEs (4.4) in the un-

constrained region (4.5), and (4.7) in the constrained region (4.8), with a derivative that converges

to finite limits at zero and infinity exists in (0,∞), and has the properties in Lemmas C.7-C.11.

Proof of Lemma C.13. We will construct the solution in (0,∞) as the simple limit of solutions

in compact intervals [ε,M ]. We denote by Sε,M (Dt) the solution derived in Lemma C.6, and by
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Φε,M and Zε,M (Dt) the corresponding values of Φ and Z(Dt).

We start with the case θ > 0, and first derive the limit when ε goes to zero, holding M

constant. Consider ε1 > ε2 > 0, and suppose, by contradiction, that Φε2,M > Φε1,M . Indeed,

suppose, by contradiction, that Φε2,M ≤ Φε1,M . Lemma C.3 then implies Sε2,M (ε1) ≤ Sε1,M (ε1)

and S′ε2,M (ε1) ≥ S′ε1,M (ε1), which in turn imply Zε2,M (ε1) ≥ Zε1,M (ε1) = 0. This is a contradiction

because S′′ε2,M (Dt) < 0 and Zε2,M (ε2) = 0 imply Zε2,M (ε1) < 0. Hence, Φε2,M > Φε1,M , and Lemma

C.3 implies Sε2,M (Dt) > Sε1,M (Dt) and S′ε2,M (Dt) < S′ε1,M (Dt) for all Dt ∈ (ε1,M).

Since for given Dt ∈ (0,M), the function ε → Sε,M (Dt), defined for ε < Dt, is increasing in ε

and is bounded above by the affine solution derived for µ∗ = ∞ (Lemma C.8), it converges to a

finite limit SM (Dt) when ε goes to zero. Likewise, since for given Dt, the function ε → S′ε,M (Dt),

defined for ε < Dt, is decreasing in ε and is bounded below by zero (Lemma C.7), it converges to

a finite limit ŜM (Dt) when ε goes to zero.

The simple limit SM (Dt) of Sε,M (Dt) is differentiable, and its derivative is the simple limit

ŜM (Dt) of S′ε,M (Dt). To show this result, we use the intermediate value theorem together with

a uniform bound on S′′ε,M (Dt). The function Sε,M (Dt) is bounded above by the affine solution

a1
r (κD̄+ rDt) and below by zero (Lemma C.7). Likewise, the function S′ε,M (Dt) is bounded above

by a1 (Lemma C.11) and below by zero. Hence, for any given Dt and neighborhood N around Dt,

the ODEs (4.4) and (4.7) imply a bound Q on S′′ε,M (m) that is uniform over m ∈ N , ε and M . The

intermediate value theorem implies that for m ∈ N ,∣∣∣∣Sε,M (m)− Sε,M (Dt)

m−Dt
− S′ε,M (Dt)

∣∣∣∣ =
∣∣S′ε,M (m′)− S′ε,M (Dt)

∣∣ =
∣∣S′′ε,M (m′′)

∣∣ |m′−Dt| < Q|m−Dt|,

where m′ is between m and Dt, and m′′ is between m′ and Dt. Taking the limit when ε goes to

zero, we find∣∣∣∣SM (m)− SM (Dt)

m−Dt
− ŜM (Dt)

∣∣∣∣ ≤ Q|m−Dt|,

which establishes that SM (Dt) is differentiable at Dt and its derivative is S′M (Dt) = ŜM (Dt).

Since S′ε,M (Dt) and S′ε,M (Dt) have simple limits, we can use the ODEs (4.4) and (4.7) to construct

a simple limit for S′′ε,M (Dt), which we denote by
ˆ̂
SM (Dt). The same argument that establishes

S′M (Dt) = ŜM (Dt) can be used to establish
ˆ̂
SM (Dt) = S′′M (Dt), and hence that SM (Dt) solves

the system of ODEs in (0,M ]. Since S′ε,M (Dt) is decreasing in Dt and is bounded below by zero,

its limit S′M (Dt) over ε is non-increasing in Dt and has the same lower bound. Hence, S′M (Dt)

converges to a finite limit S′M (0) when Dt goes to zero. Using the same argument as in Lemma

C.12, we can show that ZM (0) ≡ κD̄S′M (0)−rSM (0) = 0, where SM (0) denotes the limit of SM (Dt)
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when Dt goes to zero.

Since SM (Dt), S
′
M (Dt) and S′′M (Dt) are the simple limits of Sε,M (Dt), S

′
ε,M (Dt) and S′′ε,M (Dt),

respectively, the properties in Lemmas C.7, C.8, C.10 and C.11 hold as weak inequalities for all

Dt ∈ (0,M ]. Following similar arguments as in these Lemmas and using ZM (0) = 0, we can show

that the inequalities are strict.

We next derive the limit when M goes to infinity. Consider M2 > M1. Since S′′M2
(Dt) < 0

and S′M2
(M1) = S′M1

(M1), S′M2
(M1) > S′M1

(M1). Suppose, by contradiction, that SM2(M1) ≤
SM1(M1). Equations SM2(M1) ≤ SM1(M1) and S′M2

(M1) > S′M1
(M1) imply SM2(Dt) < SM1(Dt)

for Dt smaller than and close to M1. The same argument as in Lemma C.3 then implies SM2(Dt) <

SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for all Dt ∈ (0,M1). Since SM2(M1) ≤ SM1(M1) and S′M2
(Dt) >

S′M1
(Dt) for all Dt ∈ (0,M1), SM2(0) < SM1(0). Combining the latter equation with S′M2

(0) ≥
S′M1

(0), which follows by taking the limit of S′M2
(Dt) > S′M1

(Dt) when Dt goes to zero, we find

ZM2(0) > ZM1(0), a contradiction since ZM2(0) = ZM1(0) = 0. Hence, SM2(M1) > SM1(M1) .

The inequalities SM2(Dt) > SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) hold by continuity for Dt

smaller than and close to M1. Suppose, by contradiction, that there exists Dt ∈ (0,M1) such

that SM2(Dt) ≤ SM1(Dt) or S′M2
(Dt) ≤ S′M1

(Dt), and consider the supremum m within that set.

The definition of m implies SM2(Dt) > SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for all Dt ∈ (m,M1), and

SM2(m) = SM1(m) or S′M2
(m) = S′M1

(m). Only one of the latter two equations holds since otherwise

the solutions SM1(Dt) and SM2(Dt) would coincide. If SM2(m) = SM1(m) and S′M2
(m) > S′M1

(m),

then SM2(Dt) < SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for Dt smaller than and close to M1. The

same argument as in Lemma C.3 then implies SM2(Dt) < SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for all

Dt ∈ (0,m). This, in turn, implies ZM2(0) > ZM1(0), a contradiction. If instead SM2(m) > SM1(m)

and S′M2
(m) = S′M1

(m), then the same argument as in Lemma C.3 implies SM2(Dt) > SM1(Dt) and

S′M2
(Dt) < S′M1

(Dt) for all Dt ∈ (0,m). This, in turn, implies ZM2(0) < ZM1(0), a contradiction.

Hence, SM2(Dt) > SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for all Dt ∈ (0,M1).

Since for given Dt ∈ (0,∞), the function M → SM (Dt), defined for Dt < M , is increasing in

M and is bounded above by the affine solution derived for µ∗ = ∞, it converges to a finite limit

S(Dt) when M goes to infinity. Likewise, since for given Dt ∈ (0,∞), the function M → S′M (Dt),

defined for Dt < M , is increasing in M and is bounded above by a1, it converges to a finite limit

Ŝ(Dt) when M goes to infinity. The same argument as when taking the limit over ε establishes that

Ŝ(Dt) = S′(Dt) and that S(Dt) solves the system of ODEs in (0,∞). Since S′M (Dt) is decreasing

in Dt and is bounded below by zero and above by a1, its limit S′(Dt) over M is non-increasing in

Dt and has the same bounds. Hence, S′(Dt) converges to finite limits S′(0) when Dt goes to zero

and S′(∞) when Dt goes to infinity. Lemma C.12 implies that Z(0) ≡ κD̄S′(0)− rS(0) = 0, where

S(0) denotes the limit of S(Dt) when Dt goes to zero. Lemma C.12 also implies that S′(∞) is a
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root of (C.4). Since S′(Dt) is the simple limit of S′M (Dt), which is positive and increasing in M , it

is also positive. Hence, S′(∞) is non-negative and equal to the unique positive root of (C.4). The

same arguments as when taking the limit over ε establish that the properties in Lemmas C.7, C.8,

C.10 and C.11 hold for all Dt ∈ (0,∞).

The argument in the case θ < 0 is symmetric. The monotonicity of Sε,M (Dt) and S′ε,M (Dt) as

functions of ε, and of SM (Dt) and S′M (Dt) as functions of M , is the opposite relative to the case

θ > 0. The limit S′(∞) is non-negative and equal to the smaller of the two positive roots of (C.4)

because S′(Dt) is bounded above by that root. The upper bound on S′(Dt) follows from the same

upper bound on S′M (Dt): convexity implies that S′M (Dt) < S′M (M) for all Dt ∈ (0,M), and S′(M)

is equal to the smaller positive root of (C.4).

Theorem 4.1 follows from Lemma C.13.

Proof of Proposition 4.1. Substituting the asset’s share return from (3.6) into (3.2), and setting

St = S(Dt), we find that the asset’s dollar return is

dRt =

[
Dt + κ(D̄ −Dt)S

′(Dt) + 1
2σ

2DtS
′′(Dt)

]
dt+ σ

√
DtS

′(Dt)dBt

S(Dt)
− rdt. (C.48)

The return’s conditional volatility is the diffusion coefficient in (C.48) times
√
dt:

√
Vart(dRt) =

σ
√
DtS

′(Dt)
√
dt

S(Dt)
. (C.49)

The return’s conditional volatility under the affine solution derived for µ∗ = ∞ is given by (B.5).

(While a1 is different than in Section 3, volatility is independent of a1.) Comparing (C.49) and

(B.5), we find that the return’s conditional volatility is higher than under the affine solution if

S′(Dt)(κD̄ + rDt) > rS(Dt)⇔ Z(Dt) > 0,

and is lower than under the affine solution if Z(Dt) < 0. When θ > 0, Z(0) = 0 and concavity

imply Z(Dt) < 0, and hence conditional volatility is lower than under the affine solution. When

instead θ < 0, Z(0) = 0 and convexity imply Z(Dt) > 0, and hence conditional volatility is higher

than under the affine solution. The comparison of conditional volatility across the cases θ > 0 and

θ < 0 follows from the comparison of each case with the affine solution since volatility under the

affine solution is independent of θ.

Since the return’s unconditional variance is the unconditional expectation of the return’s con-

ditional variance, the comparisons derived for conditional volatility carry over to unconditional
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volatility.

Proof of Proposition 4.2. The conditional beta of asset n is

βnt =
Covt(dRnt, dRMt)

Vart(dRMt)
, (C.50)

where dRnt denotes the return of asset n and dRMt denotes the return of the market portfolio.

Assuming that the market portfolio includes ηm shares of asset m = 1, .., N , its return is

dRMt =
dRshMt

SMt
=

∑N
m=1 ηmdR

sh
mt∑N

m=1 ηmSmt
=

N∑
m=1

ηmSmt∑N
m=1 ηmSmt

dRmt =
N∑
m=1

ωmtdRmt, (C.51)

where SMt denotes the market portfolio’s price and

ωmt ≡
ηmSmt∑N
m=1 ηmSmt

denotes the weight of asset n in the market portfolio. Equation (C.50) implies that the conditional

beta of asset n exceeds that of asset n′ if

Covt(dRnt, dRMt) > Covt(dRn′t, dRMt)

⇔ ωnVart(dRnt) > ωn′Vart(dRn′t)

⇔ ηnSntVart(dRnt) > ηn′Sn′tVart(dRn′t), (C.52)

where second step follows from (C.51) and the independence of returns across assets.

Suppose next that θn < 0 and θn′ > 0, and that assets n and n′ are otherwise identical

(κn = κn′ , D̄n = D̄n′ , σn = σn′ , ηn = ηn′ , and Dnt = Dn′t for a given t). Since a1 decreases in

θ (Equation (C.25)), the affine solution derived for µ∗ = ∞ is larger for θn than for θ′n. Since,

in addition, Snt lies above the affine solution for θn, while Sn′t lies below the affine solution for

θ′n (Theorem 4.1), Snt > Sn′t. Since, finally, Vart(dRnt) > Vart(dRn′t) (Proposition 4.1), (C.52)

implies Covt(dRnt, dRMt) > Covt(dRn′t, dRMt) and hence βnt > βn′t.

The unconditional beta of asset n is

βnt =
Cov(dRnt, dRMt)

Var(dRMt)
=

E (Covt(dRnt, dRMt))

E (Vart(dRMt))
,

Since the conditional covariance of Covt(dRnt, dRMt) is larger for asset n than for asset n′, the

same is true for the unconditional covariance, and hence for the unconditional beta.
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D Proofs for Section 5

Proof of Proposition 5.1. Setting θ̂ ≡ θ − η, we can write (5.3) as

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) =

(
ρθ̂

1− λx
+ ρη

)
σ2DtS

′(Dt)
2. (D.1)

and (5.6) as

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) =

(
ρθ̂

1− x
+ ρη

)
σ2DtS

′(Dt)
2

− sgn(θ̂)(1− λ)xµ∗

1− x
σ
√
DtS

′(Dt). (D.2)

Using (D.1) and (D.2), we can replicate the proofs of Theorem 4.1 and Propositions 4.1 and 4.2.

In those of these proofs that distinguish the cases θ > 0 and θ < 0, we instead distinguish the cases

θ̂ > 0 and θ̂ < 0, or equivalently θ > η and θ < η.

Lemma C.1 carries through by replacing the initial conditions (C.1) and (C.2) by

S′(M) =
2

(r + κ) +

√
(r + κ)2 + 4

(
ρθ̂

1−x + ρη
)
σ2

, (D.3)

S(M) =
1

r

(
(κD̄ + rM)S′(M) +

1

2
σ2MΦ +

sgn(θ̂)(1− λ)xµ∗

1− x
σ
√
MS′(M)

)
. (D.4)

The value of S′(M) in (D.3) solves the quadratic equation(
ρθ̂

1− x
+ ρη

)
σ2S′(M)2 + (r + κ)S′(M)− 1 = 0, (D.5)

which replaces (C.4). When ρθ̂
1−x+ρη > 0, the left-hand side of (D.5) is increasing for positive values

of S′(M), and (D.5) has a unique positive solution, given by (D.3). When ρθ̂
1−x + ρη < 0, the left-

hand side is hump-shaped for positive values of S′(M), and (D.5) has either two positive solutions,

or one positive solution, or no solution. Condition θ > − (1−x)(r+κ)2

4ρσ2 +xη in Proposition 5.1 ensures

that two positive solutions exist when ρθ̂
1−x + ρη < 0. Equation (D.3) gives the smaller of the two

solutions, which is the continuous extension of the unique positive solution when ρθ̂
1−x + ρη > 0.

Lemmas C.2 and C.3 carry through. Lemma C.4 carries through, but in the case θ̂ < 0 and m

lies in the constrained region, we need to distinguish between two subcases: ρθ̂
1−x + ρη < 0, where

we use the argument in the lemma’s proof, and ρθ̂
1−x +ρη < 0, where instead we adapt the argument

that concerns the case θ̂ > 0. Lemmas C.5-C.7 carry through. Lemma C.8 carries through by
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replacing (C.25) by

a1 =
2

(r + κ) +

√
(r + κ)2 + 4

(
ρθ̂

1−λx + ρη
)
σ2

. (D.6)

Lemmas C.9-C.13 and Propositions 4.1 and 4.2 carry through.
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