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Economic uncertainty is a powerful force in the modern economy. Recent work shows

that surges in uncertainty can trigger business cycles, bank runs and asset price fluctua-

tions.1 But the way uncertainty shocks are typically modelled is that one day, every agent

suddenly knows that future outcomes will be less predictable than in the past. This myste-

rious belief shock is isomorphic to a preference shock. Such belief shocks are not disciplined

by data, making the theories hard to test. Furthermore, if certainty is the precision of be-

liefs that arises from accumulating a body of information, a sudden rise in uncertainty

seems to imply a sudden loss of information. Just like the loss of productivity associated

with real business cycle recessions is puzzling, so is the loss of information associated with

uncertainty-driven downturns.

This paper provides a data-disciplined theory of belief formation that explains large

fluctuations in uncertainty. It starts from the premise that real people do not know what the

true distribution of economic outcomes is, when it changes, or by how much. They observe

economic information and, conditional on that information, estimate the probabilities of

alternative outcomes. Much of their uncertainty comes from not knowing if their estimates

are correct. Because everyday occurrences are observed frequently, their probabilities are

easy to learn. After a short period, new data does not significantly alter those estimates. In

contrast, the tails of a distribution are rarely observed; so their size and shape is difficult to

assess. When people use observed data to infer the probabilities of unobserved tail events,

new data can “wag the tail” of the distribution: It causes large revisions in tail probabilities.

Since variance is expected squared distance from the mean, changes in the probabilities of

events far from the mean have outsized effects on conditional variance and thus uncertainty.

Thus, everyday fluctuations in a data series can produce large fluctuations in conditional

variance for an agent who is constantly re-estimating the tails of the distribution.

We use real-time data to measure the uncertainty (conditional standard deviation)

that arises from not knowing the true model. Then, we use a combination of data and

probability theory results to explain why uncertainty varies so much. These results reveal

that it is the combination of parameter uncertainty and tail risk that makes uncertainty

more variable and more counter-cyclical than stochastic volatility alone. We learn why the

greatest contribution to uncertainty fluctuations comes not from changes in the variance

1See e.g., Bloom, Floetotto, Jaimovich, Sapora-Eksten, and Terry (2012), Fajgelbaum, Schaal, and
Taschereau-Dumouchel (2014), or Bacchetta, Tille, and van Wincoop (2012).
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of the data, but rather from the time-varying risk of the unobserved tail events – the black

swans.

To explore uncertainty, we use a forecasting model with two key features: First, out-

comes are not conditionally normally distributed, and second, agents use real-time data to

re-estimate parameters that govern the distribution’s higher moments, such as skewness.

For each quarter, we use the vintage of U.S. (real) GDP growth data that was available

at that date to estimate the forecasting model, update the forecast, and compute un-

certainty. We define macroeconomic uncertainty as the standard deviation of next-period

GDP growth yt+1, conditional on all information observed through time t: Std[yt+1|It]. We

use this definition because in most models this is the theoretically-relevant moment: When

there is an option value of waiting, forecasts with a higher conditional variance (larger

expected forecast error) raise the value of waiting to observe additional information. In

order to study how uncertainty changes and why, we feed GDP data into our forecasting

model and compute this standard deviation.

This conceptually simple measurement exercise makes three contributions. (1) It pro-

vides a unified framework to explore the origins of and connections between uncertainty

shocks, news shocks (changes in the forecasts of future outcomes) and disaster risk. These

strands of the literature have evolved separately and have all suffered from the criticism

that the right beliefs can rationalize almost any economic outcome. Allowing all three

shocks to arise from observed macro outcomes offers the prospect of a unified information-

based macro theory and a way to discipline the shocks to beliefs. (2) The results teach us

that when agents do not know the distribution of shocks, re-estimating beliefs can amplify

changes. It is not obvious that parameter learning would amplify shocks. Because most

macro data is announced only quarterly and is highly persistent, parameter learning is a

slow, gradual process. Thus, one might think that learning would make uncertainty shocks

smoother than changes in volatility. Instead, we find that the opposite is true. This finding

complements models that rely on large, counter-cyclical shocks to uncertainty to generate

interesting economic and financial effects. (3) The results are consistent with the observed

forecast data, in particular with the puzzling forecast bias observed in professional fore-

casts of GDP growth. Our theoretical results use a change-of-measure argument to prove

that the combination of parameter uncertainty and skewness produces such a bias. When
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the estimated model matches the degree of skewness observed in the GDP growth data, it

also matches the size of the forecast bias. The finding resolves a puzzle in the forecasting

literature. It also produces beliefs that look similar to what an ambiguity-averse agent

might report. But, just as importantly, this evidence suggests that the model accurately

describes how people form beliefs.

While using data to infer beliefs is a key strength of our approach, this is not about

measuring uncertainty in the most sophisticated possible way. Rather, we use a simple

framework to describe a theoretical mechanism, supported by data, to explain why uncer-

tainty, beliefs and tail risk vary. The key assumption of the mechanism is that agents use

everyday events to revise their beliefs about probabilities over the entire state space. This

is what allows small changes in data to trigger large changes in black swan probabilities and

sizeable fluctuations in uncertainty. The idea that data in normal times would change how

we assess tail risk might strike one as implausible. But there is an abundance of evidence

that perceptions of tail risks vary on a daily basis.2 If we think that tail risks fluctuate

in times when no extreme events occur, then either beliefs are random and irrational, or

there is some information in the everyday data that agents use to update their beliefs.3

In section 2, we build our forecasting model. Using a change-of measure technique, we

amend a standard class of models where GDP growth is assumed to be conditionally nor-

mally distributed (whether with homoscedastic or heteroskedastic innovations) by adding

an exponential twist, with parameters that regulate the conditional skewness of outcomes.

Each period t, our forecaster uses the complete history of GDP data as seen at time t and

Bayes law to estimate her model and forecast GDP growth in t+ 1. Initially, we hold the

volatility of the innovations fixed so that we can isolate the changes in uncertainty that

come from parameter learning.

Even when the forecaster is certain that the variance of innovations is constant, we find

large changes in conditional variance of forecasts – big uncertainty shocks. Then we ask

how much of these fluctuations comes from skewness, how much comes from parameter

updating and how much from their interaction. To tease this out, we turn off parameter

2See data based on firm-level asset prices Kelly and Jiang (2014) or on index options Gao and Song
(2015).

3Of course, it is possible that the everyday data that is informative about tail outcomes is not GDP
data. But the same principles apply to other series. One could apply the same framework and estimate
tail risk from some other series to amplify its effect on uncertainty.
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learning and skewness, one-by-one. We find that skewness alone generates a tiny fraction

of changes in conditional variance. Parameter learning alone accounts for about one-third

of our result. Most of the changes in conditional variance come from the interaction of

skewness and parameter updating.

Our results reveal that the main source of uncertainty fluctuations is something we call

“black swan risk,” which is the conditional probability of a rare event, in this case an ex-

tremely low growth realization. When the forecasting model implies a normal distribution

of outcomes, the probability of an n-standard-deviation event is constant. But when we

allow our forecaster to estimate a non-normal model, the probability of negative outliers

can fluctuate. A new piece of data can lead the forecaster to estimate more negative skew-

ness, which makes extreme negative outcomes more likely and raises uncertainty. When

we apply this model to GDP data, we find that 75% of the variation in uncertainty can be

explained by changes in the estimated probability of black swans.

The skewed forecasting model appears to be a plausible model of belief formation

because it matches an important feature of professional economic forecasts: The average

forecast is nearly half a percentage point lower than the average GDP growth realization.

This bias has been a puzzle in the forecasting literature because an unbiased forecaster with

a linear model and more than sixty years of data should not make such large systematic

errors. We offer a new explanation for this forecasting puzzle: Forecast bias arises from

rational Bayesian belief updating when forecasters believe outcomes have negative skewness

and are uncertain about model parameters. While this bias might prompt one to use

another estimation procedure, keep in mind that the objective in this paper is to describe

a belief-formation process. The fact that our model has forecasts that are just as biased as

professional forecasts suggests that Bayesian estimation might offer a good approximation

to human behavior.

Section 4 investigates how volatility changes and parameter learning interact. To do

that, we estimate the full model, with two hidden Markov volatility states. Adding stochas-

tic volatility makes uncertainty shocks one third larger on average. It also helps the model’s

performance in two key respects. First, it prevents a downward trend in uncertainty. When

all parameters are believed to be constant, uncertainty trends down partly because param-

eters are being more precisely estimated over time, but mostly because the 70s and early
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80s were much more volatile times for real GDP than the 90s and 2000s. So, the forecaster

revises down the variance parameters over time and uncertainty trends down. When there

are two (unobserved) volatility regimes, the forecaster infers that the 70s and early 80s

were likely a high volatility regime and that the regime switches in the mid 80s. Second,

this model produces a larger surge in uncertainty during the financial crisis. With constant

volatility, uncertainty rises slightly. But upon seeing a few pieces of highly-volatile data,

the stochastic volatility forecaster quickly shifts probability weight to the high-volatility

regime, causing uncertainty to spike.

Section 5 compares our model-based uncertainty series to commonly-used uncertainty

proxies and finds that it is less variable, but more persistent than the proxy variables.

The most highly correlated proxies are Baker, Bloom, and Davis (2015) policy uncertainty

index, the price of a volatility option (VIX), and Jurado, Ludvigson, and Ng (2015) macro

uncertainty index.

Our message is that understanding the sources of economic uncertainty requires re-

laxing the full-information assumptions of rational expectations hypothesis. In such a

full-information world, agents are assumed to know what the true distribution of economic

outcomes is. Their only uncertainty is about what realization will be drawn from a known

distribution. To measure the uncertainty of such a forecaster, it makes sense to estimate a

model on as much data as possible, take the parameters as given, and estimate the condi-

tional standard deviation of model innovations. This is what stochastic volatility estimates

typically are (Born and Pfeifer, 2012). But in reality, the macroeconomy is not governed

by a simple, known model and we surely do not know its parameters. Instead, our fore-

cast data (from the Survey of Professional Forecasters or SPF) suggests that forecasters

estimate simple models to approximate complex processes and constantly use new data to

update beliefs. Forecasters are not irrational. They simply do not know the economy’s true

data-generating process. In such a setting, uncertainty and volatility can behave quite dif-

ferently. Our findings teach us that learning about the distribution of economic outcomes

may itself generate fluctuations.

Related Literature A new and growing literature uses uncertainty shocks as a driving

process to explain business cycles (e.g., Bloom, Floetotto, Jaimovich, Sapora-Eksten, and

Terry (2012), Basu and Bundick (2012), Christiano, Motto, and Rostagno (2014), Ilut and
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Schneider (2014), Bidder and Smith (2012)), investment dynamics (Bachmann and Bayer,

2014), price-setting (Baley and Blanco, 2015), asset prices (e.g., Bansal and Shaliastovich

(2010), Pastor and Veronesi (2012)), or to explain banking panics (Bruno and Shin, 2015).

A related literature uses tail risk to explain asset pricing puzzles (e.g., Rietz (1988), Barro

(2006), and Wachter (2013)) and business cycle fluctuations Gourio (2012). These theories

are complementary to ours. We explain where uncertainty shocks come from, while these

papers trace out the many economic and financial consequences of these shocks.

A growing literature in macroeconomics and finance explores how agents use informa-

tion to form beliefs, with tools such as rational inattention (e.g., Maćkowiak and Wiederholt

(2009), Matejka and McKay (2015), Kacperczyk, Nosal, and Stevens (2015)), inattentive-

ness (Reis, 2006), sentiments (Angeletos and La’O, 2013) or information diffusion (Amador

and Weill, 2010). Our mechanism is not inconsistent with any of these frictions, all of which

have Bayesian updating as a foundation. Instead, our paper shows how enriching the set

of variables updated, to include parameters that govern tail risk, can link these dynamics

to fluctuations in uncertainty as well. An advantage of our approach is that the belief

formation process that we postulate is strictly disciplined by and consistent with the data.

A small subset of these theories explains why uncertainty fluctuates using nonlinearities

in a production economy (Van Nieuwerburgh and Veldkamp (2006), Fajgelbaum, Schaal,

and Taschereau-Dumouchel (2014), Jovanovic (2006)), active experimentation (Bachmann

and Moscarini (2012)) or multiple equilibria (Bacchetta, Tille, and van Wincoop (2012)).

Bachmann and Bayer (2013) support this endogenous uncertainty approach by arguing that

uncertainty Granger-causes recessions, but not the other way around. In Nimark (2014),

the key assumption is that only extreme events are reported. Thus, the publication of a

signal reveals that the true event is extreme, which raises uncertainty. Our model differs

because it does not depend on an economic environment, only on a forecasting procedure.

In addition, our paper contributes a framework that connects uncertainty with disaster

risk and news shocks, unifying the literature on the role of beliefs in macroeconomics.

Our exercise also connects with a set of papers that measure uncertainty shocks in

various ways. Bloom (2009), Baker, Bloom, and Davis (2015), Giglio, Kelly, and Pruitt

(2015), Stock and Watson (2012), Jurado, Ludvigson, and Ng (2015), Justiniano and Prim-

iceri (2008), Born and Pfeifer (2014) document the properties of uncertainty shocks in the
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U.S. and in emerging economies, while Bachmann, Elstner, and Sims (2013) use forecaster

data to measure ex-ante and ex-post uncertainty in Germany. While our paper also en-

gages in a measurement exercise, we primarily contribute a quantitative model of why such

shocks arise.

Our methodological approach is motivated by Hansen (2007) and Chen, Dou, and

Kogan (2013), which critique models that give agents knowledge of parameters that econo-

metricians cannot identify. We were also inspired by two preceding papers that estimate

Bayesian forecasting models to describe agents’ beliefs. Cogley and Sargent (2005) use

such a model to understand the behavior of monetary policy, while Johannes, Lochstoer,

and Mou (forthcoming) estimate a model of consumption growth to capture properties

of asset prices. While the concept is similar, our use of a model with skewness is what

allows non-extreme data to whip tail risk estimates around. When the model is normal

or discrete-state (as in Collin-Dufresne, Johannes, and Lochstoer (2013)), only potential

disasters affect beliefs about tail probabilities. Furthermore, disaster states cannot be too

extreme. Otherwise, agents will never believe they might be in the disaster. This severely

limits the size of uncertainty fluctuations that result. In our model, the probability of every

tail event, no matter how extreme, fluctuates when new data is observed.

Our work further draws on tools and ideas in finance models with learning and non-

normal distributions, such as Breon-Drish (2015), Straub and Ulbricht (2013) and Chabakauri,

Zachariadis, and Yuan (2015). In our model, agents learn about parameters instead of

states. We also draw on ideas in the economic forecasting literature about model compar-

isons, e.g., Giacomini and Rossi (2013) and in the Bayesian estimation literature in macroe-

conomics (e.g., Del Negro and Schorfheide (2011)). Finally, the black swan metaphor and

its relation to tail risk is of course borrowed from Taleb (2010).

1 Definitions and Data Description

A model, denoted M, has a vector of parameters θ. Together, M and θ determine a

probability distribution over a sequence of outcomes yt. Let yt ≡ {yτ}tτ=1 denote a series

of data (in our exercises, the GDP growth rates) available to the forecaster at time t. In

every model, agent i’s information set Iit will include the model M and the history yt of

observations up to and including time t. The state St, innovations, and the parameters θ
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are never observed.

The agent, whom we call a forecaster and index by i, is not faced with any economic

choices. He simply uses Bayes’ law to forecast future outcomes. Specifically, at each date

t, the agent conditions on his information set Iit and forms beliefs about the distribution

of yt+1. We call the expected value E (yt+1|Iit) an agent i’s forecast and the square root of

the conditional variance V ar (yt+1|Iit) is what we call uncertainty. Forecasters’ forecasts

will differ from the realized growth rate. This difference is what we call a forecast error.

Definition 1. An agent i’s forecast error is the distance, in absolute value, between the

forecast and the realized growth rate: FEi,t+1 = |yt+1 − E[yt+1|Iit]|.

We date the forecast error t + 1 because it depends on a variable yt+1 that is not

observed at time t. Similarly, if there are Nt forecasters at date t, an average forecast error

is

F̄Et+1 =
1

Nt

Nt∑
i=1

FEi,t+1.

We define forecast errors and uncertainty over one-period-ahead forecasts because that is

the horizon we focus on in this paper. But future work could use these same tools to

measure uncertainty at any horizon.

Definition 2. Uncertainty is the standard deviation of the time-(t + 1) GDP growth,

conditional on an agent’s time-t information: Uit =

√
E
[

(yt+1 − E[yt+1|Iit])2
∣∣∣ Iit].

Volatility is the same standard deviation as before, but now conditional on the history

yt, the model M and the parameters θ:

Definition 3. Volatility is the standard deviation of the unexpected innovations in yt+1,

taking the model and its parameters as given:

Vt =

√
E
[

(yt+1 − E[yt+1|yt, θ,M])2
∣∣∣ yt,M, θ

]
.

If an agent knew the parameters (i.e., if Iit = {yt,M, θ}), then uncertainty and volatil-

ity would be identical. The only source of uncertainty shocks would be volatility shocks.

Many papers equate volatility, uncertainty and squared forecast errors. These defini-

tions allow us to understand the conditions under which these are equivalent. Volatility
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and uncertainty are both ex-ante measures because they are time-t expectations of t + 1

outcomes (time-t measurable). However, forecast error is an ex-post measure because it

is not measurable at the time when the forecast is made. Combining definition 1 and

definition 2 reveals that Uit =
√
E[FE2

i,t+1|Iit]. So, uncertainty squared is the same as the

expected squared forecast error.4

There are two pieces of data that we use to estimate and to evaluate our forecasting

models. The first is real-time GDP data from the Philadelphia Federal Reserve. The

variable we denote yt is the growth rate of GDP. Specifically, it is the log-difference of

the real GDP series, times 400, so that it can be interpreted as an annualized percentage

change. We use real-time data because we want to accurately assess what agents know at

each date. Allowing them to observe final GDP estimates, which are not known until much

later, is not consistent with the goal.5 Therefore, yt represents the estimate of GDP growth

between the end of quarter t − 1 and quarter t, based on the GDP estimates available at

time t. Similarly, yt is the history of GDP growth up to and including period t, based on

the data available at time t.

We use the second set of data, professional GDP forecasts, to evaluate our forecasting

models. We describe below the four key moments that we use to make that assessment. The

data come from the Survey of Professional Forecasters (SPF), released by the Philadelphia

Federal Reserve. The data are a set of individual forecaster predictions of real US output

for both the current quarter and for one quarter ahead from quarterly surveys from 1968

Q4 to 2013 Q4. In each quarter, the number of forecasters varies from quarter-to-quarter,

with an average of 40.5 forecasts per quarter.

Formally, t ∈ {1, 2, . . . , T} is the quarter in which the survey of professional forecasters

is given. Let i ∈ {1, 2, . . . , I} index a forecaster and It ⊂ {1, 2, . . . , I} be the subset of

forecasters who participate in a given quarter. Thus, the number of forecasts made at time

t is Nt =
∑I

i=1 I(i ∈ It). Finally, let yt+1 denote the GDP growth rate over the course of

4Of course, what people measure with forecast errors is typically not the expected squared forecast error.

It is an average of realized squared forecast errors:
√

1/Nt
∑
i FE

2
i,t+1.

5Naturally, forecasters may use other information in conjunction with past GDP growth realizations to
compute their forecasts. We explore a model with additional signals in Kozeniauskas, Orlik, and Veldkamp
(2014). Another approach would be to take many series, extract a principle component or predictive quantile
factor as in Jurado, Ludvigson, and Ng (2015) or Giglio, Kelly, and Pruitt (2015) and apply this Bayesian
methodology to that factor. While this would likely produce a higher-precision forecast, the complexity
would obscure the main message, which is about how the uncertainty shocks arise.

9



period t. Thus, if GDPt is the GDP at the end of period t, observed at the start of quarter

t+ 1, then yt+1 ≡ ln(GDPt)− ln(GDPt−1). This timing convention may appear odd. But

we date the growth t+ 1 because it is not known until the start of date t+ 1.

2 A Skewed Forecasting Model with Parameter Uncertainty

The purpose of the paper is to explain why relaxing rational expectations and assuming

that agents do not know the true distribution of outcomes opens up an additional source

of uncertainty shocks. The key ingredients for our mechanism to operate are parameter

uncertainty and skewness in the distribution. To isolate this new mechanism, we consider

as simple a model as possible that has these two ingredients. We set the model up with

stochastic volatility so that we can eventually explore the interaction and relative magni-

tudes of volatility and uncertainty fluctuations. But our results begin by shutting down

the stochastic volatility so that we can see what comes from parameter updating alone.

Later, we turn stochastic volatility back on to get a more complete picture of the sources

of uncertainty shocks.

We consider a forecaster who observes real-time GDP growth data in every quarter, and

forecasts the next period’s growth. The agent contemplates a simple hidden state model as

a true data generating process for GDP growth, but does not know the parameters of this

model.6 Each period, he starts with prior beliefs about these parameters and the current

state, observes the new GDP data and the new revisions of past GDP data, and updates

his beliefs using Bayes’ law.

A key question is which forecasting model the agent should use. Once we move away

from a linear-normal model, there is an infinite set of possibilities. We narrow this set by

focusing on a simple distribution with skewness. In the real GDP (1968:Q4-2013:Q4) data

we use for our forecasting model estimation, the skewness of GDP growth is strong: -0.30.

Skewness is also a feature of many models. Models where workers lose jobs quickly and

find jobs gradually, or models where borrowing constraints amplify downturns are just a

6A related question is what happens if the agent does not know the form of the model. However, families
of models can be indexed by parameters. A parameter could even be an indicator for one of two non-nested
models. The point is that model uncertainty can be represented as parameter uncertainty. We can always
roll the question back to one deeper level and question further assumptions. This paper is a first step in
that direction.
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couple of examples of models that generate booms that are more gradual than crashes.

Finally, we find that a model with skewness both does a better job of matching features of

forecast data and generates much larger uncertainty shocks.

Estimating the parameter uncertainty in skewed distributions typically requires particle

filtering, which is possible, but typically burdensome. We make this problem tractable by

using a change of measure to introduce skewness. The Radon-Nikodym theorem tells us

that, for any measure g that is absolutely continuous with respect to a measure induced

by a normal distribution, we can find a change-of-measure function f such that g(x) =∫
f(x)dΦ(x), where Φ is a normal cdf. If we estimate such an f function, we can use f−1

to take skewed data and transform it into normal data, so that we can then use standard

tools from Kalman filtering and Bayesian econometrics to estimate the model parameters.

Concave functions of normal variables will produce negatively skewed variables and convex

functions of normals will produce positively skewed variables.

Thus, we consider the following general forecasting model that is a standard linear

hidden state model with a functional operator f that can be non-linear to capture skewness.

yt = c+ b f (Xt) (1)

Xt = x(St) + σ(St)εt

where εt ∼ N(0, 1) is an i.i.d. random variable. We explore linear and non-linear transfor-

mations f that induce either conditionally normal or skewed distributions for yt.

Of course, allowing a forecaster to explore the whole function space of non-linear f ’s

is not viable. Instead, we use an approximating function. We focus the problem by

considering a function f whose log is a linear approximation to many functions that would

fit the data. If this approximate function generates large uncertainty shocks, it tells us

that the set of functions f approximates likely do as well.

Following textbook Bayesian statistics practices (e.g., Headrick (2010), Hoaglin, Mosteller,

and Tukey (1985)), we use an exponential f function to approximate the class of skewed

distributions.7 Exponential models are used because they have three desirable properties:

7What we are doing is estimating a probability density from a set of discrete data. A typical approach
is to use a Kernel density estimator. But we want to account for parameter uncertainty. Standard Kernel
densities have too many parameters to feasibly estimate their joint distribution. Therefore, Bayesian statis-
ticians use the g-and-h family to estimate distributions with skewness, using a small number of parameters.
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(1) The domain is the real line (so it can take a normal variable as an argument); (2) it is

monotone; and (3) it can be either globally concave or globally convex, depending on the

estimated parameters. For our purposes, the simplicity allows us to better understand why

the combination of skewness and parameter uncertainty generates large, countercyclical

uncertainty shocks, even though the underlying process that we estimate is homoscedastic.

Thus, our baseline skewed forecasting model is (1) with the following specific assumptions.

Model 1 assumptions (M1): Skewed

f(Xt) = exp (−Xt) (2)

σ(St) = σ̄ ∀t
x(St) = St

St = ρSt−1 + σSεt

where εt ∼ N(0, 1) is an i.i.d. random variables, also independent of εt.

This is a simplified representation, a model, of how an agent forms beliefs. Specifically,

note that shocks have no time-varying volatility (constant σ̄). We want to understand the

fluctuations in conditional variance that come from skewness and parameter estimation

alone. This assumption allows us to see how uncertainty and the skewness of yt (2) depend

sensitively on the parameter values in (1).

To isolate the role of parameter uncertainty relative to skewness in Model 1, we make

two comparisons. First, we compare the results from the estimation of this model with

results when parameter uncertainty is ignored and the forecaster fixes model parameters.

This exercise allows us to contrast uncertainty (Definition 2) with volatility (Definition 3).

Next, to isolate the nonlinear transformation (skewness) effect, we compare these results

to those from a model where f is linear.

Our transformation is a simple, limiting case of this g-and-h transformation where h = 0.
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Model 2 assumptions (M2): Linear-Normal

f(Xt) = Xt (3)

σt = σ̄ ∀t
x(St) = St

St = ρSt−1 + σsεt

ContrastingM1 andM2 results shows that it is the combination of parameter uncertainty

and skewness that whips around tail risk (section 3.1), causes uncertainty to fluctuate

countercyclically (section 3.2), and makes forecasts downward biased (section 3.3).

So far, we held all innovation variances fixed. This was useful to illustrate and isolate

the effects of our mechanism. But estimating a model that has stochastic volatility, skew-

ness and parameter uncertainty teaches us about how these ingredients interact.

Model 3 assumptions (M3): Stochastic volatility

f(Xt) = exp (−Xt)

σ(St) ∈ {σ(H), σ(L)}
x(St) = x̄ ∀t

P (St = H|St−1 = H) = πHH , P (St = L|St−1 = L) = πLL

In this model, our forecaster estimates the Markov transition probabilities πHH and πLL

that govern changes in variance, instead of the ρ and σs parameters that governed the

hidden AR(1) process in the previous models.

Information sets and updating in skewed model (M1): Each forecaster has an iden-

tical information set, Iit = {yt,M1}, ∀i. The state St and the parameters θ = [c, b, ρ, σ̄, σS ]′

are never observed. The model structure (f , x(s), σ(s)) is known.

Our forecaster needs prior distributions over all the parameters to start the updating
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process. We start with a flat prior, estimate each parameter8 on GDP growth data from

1947:Q2-1968:Q3, and use the mean and variance of this estimate as the mean and variance

of prior beliefs. (See appendix for more details and prior estimation results.) Starting in

quarter 4 of 1968, each period, the agent observes yt and revisions of previous quarters’

data and updates his beliefs about future GDP growth using (4). We start the estimation of

the model in 1968:Q4 because this is the first quarter for which we have forecasts from the

Survey of Professional Forecasters. Recall that we do not use SPF data in the estimation

but only to evaluate our forecasting model.

To compute forecasts and the process for uncertainty, we use Bayesian updating. A

forecast is a conditional expectation of next-period growth, where the expectation is taken

over unknown parameters, states, and GDP growth realizations. Using the law of iterated

expectations, we can write this forecast as:

E
(
yt+1|yt

)
=

∫ ∫ ∫ ∫
yt+1p

(
yt+1|St+1, St, θ, y

t
)
p
(
St+1|St, θ, yt

)
p
(
St|θ, yt

)
p
(
θ|yt

)
dθdStdSt+1dyt+1

(4)

The first probability density function, p
(
yt+1|St+1, St, θ, y

t
)
, is the probability of t + 1

GDP growth, given the state and the parameters. This function is a composition of f−1

and a standard normal density, denoted φ. Conditional on estimates for b and c, we can

do a change of variable: Construct f−1((yt − c)/b) to transform GDP growth yt into a

variable Xt = x(St) + σ(St)εt, which we have constructed as a normally-distributed con-

tinuous variable with a persistent hidden state. This change-of-variable procedure allows

our forecaster to consider a family of non-normal distributions of GDP growth and convert

each one into a linear-normal (Kalman) filtering problem with unknown parameters that

can be estimated jointly using the standard Bayesian estimation techniques.

The second probability density function, p
(
St+1|St, θ, yt

)
, is the probability of a hid-

den state. In models 1 and 2, the hidden state has a linear law of motion and normally-

distributed shocks. Thus, the Kalman filter delivers the mean and variance of the (condi-

8In the results we present, we introduced one modification. Notice that the b parameter governs the mean
of the Xt process. To see this, note that for b < 0, we can rewrite b exp(−Xt) = −exp(−Xt + ln(|b|)). To
streamline our code, we simply remove the time-t sample mean of the Xt and set b = −1. After estimating
the parameters of the mean-zero process, we add back in the sample mean. This approach is supported by
the fact that when we have estimated b in more complex settings, we come up with consistently negative
values and quantitatively similar estimates.
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tional) normal density. In model 3, the hidden discrete Markov filter delivers a closed-form

solution for the probability of each state (H or L).

Finally, the last probability density function is the probability of the parameter vector

θ, conditional on the t-history of observed GDP data. To estimate the posterior param-

eters distribution, we employ Markov Chain Monte Carlo (MCMC) techniques.9 At each

date t, the MCMC algorithm produces a sample of parameter vectors,
{
θd
}D
d=1

, such that

the probability of any parameter vector θd being in the sample is equal to the posterior

probability of those parameters, p
(
θd|yt

)
. Therefore, we can compute an approximation

to any integral by averaging over sample draws:
∫
f(θ)p(θ|yt)dθ ≈ 1/D

∑
d f(θd).

To estimate uncertainty, we compute these probability density terms and integrate

numerically to get a forecast. In similar fashion, we also calculate E
(
y2t+1|yt

)
. Applying

the variance formula V ar
(
yt+1|yt

)
= E

(
y2t+1|yt

)
−E

(
yt+1|yt

)2
, and taking the square root

yields uncertainty: Ut =
√
V ar (yt+1|yt).

Beliefs in skewed model (M1), conditional on parameters. The exponential form

of f in model 1 allows us to describe the conditional mean and variance jointly

E
[
yt+1|yt, θ,M

]
= c+ b exp

(
−E

[
St+1|yt, θ,M

]
+

1

2
V ar

[
St+1|yt, θ,M

]
+

1

2
σ2
)

where the following recursion characterizes the updating of state belief E
[
St|yt, θ,M

]
=

(1−Kt)E
[
St|yt−1, θ,M

]
+Kt ln((yt−c)/b), and where the termKt = V ar

[
ln((yt − c)/b)|yt−1, θ,M

](
V ar

[
ln((yt − c)/b)|yt−1, θ,M

]
+ σ2s

)−1
is the Kalman gain. The conditional variance is

V ar
[
ln((yt − c)/b)|yt−1, θ,M

]
= ρ2

[
1

V ar [ln((yt−1 − c)/b)|yt−2, θ,M]
+

1

σ2s

]−1
+ σ2 (5)

and volatility is
√
V ar[yt+1|yt, θ,M].

3 Results: Black Swan Risk and Uncertainty Fluctuations

Constant volatility may or may not be a realistic feature of the data. But it is a helpful

starting point because it will allow us to isolate the fluctuations in uncertainty that come

9More details are presented in the Appendix B.
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from skewness and parameter learning. We begin by showing that neither parameter

updating nor skewness alone produces the large uncertainty fluctuations. Instead, most of

the effect arises from the interaction of these two forces. Then, we proceed to explain how

this interaction effect works.

model: unc/vol normal (M2) skewed (M1)

Mean Ut 4.20% 4.53%
Vt 3.45% 4.01%

Std deviation Ut 0.48% 1.50%
Vt 0% 0.05%

Autocorrelation Ut 0.99 0.97
Vt 0 0.93

Cyclical properties

Corr(Ũt, Et[yt+1]) 0.04 -0.78

Corr(Ṽt, Et[yt+1]) 0 -0.74

Forecast properties
data normal skewed

Mean forecast 2.29% 2.73% 2.27%
Mean |F Err| 1.87% 2.25% 2.51%
Std forecast 2.25% 1.17% 0.64%
Std |F Err| 1.46% 2.17% 2.39%

Table 1: Properties of model uncertainty series. Forecasts are computed using equation
(4). Forecast error is (forecast - final GDP growth). Uncertainty, denoted Ut, is computed as in Definition
2. Volatilities, denoted Vt, are computed as in Definition 3 assuming that the parameters θ are known and
equal to the mean posterior beliefs at the end of the sample for the parameter learning models.

What effects can parameter estimation alone explain? Column 1 of table 1 reveals

that, without skewness (or any other higher moment in play), parameter revisions generate

small uncertainty shocks. This happens when, for example, the forecaster sees an outlier

observation and revises up the estimated variance of one or both innovations. With known

parameters these revisions do not take place and stdev(Ut) = 0. When parameters are

updated every period, stdev(Ut) = 0.48.

Column 1 also exposes two aspects of linear-normal model forecasts that do not look

realistic. (1) Our forecasters’ uncertainty is not counter-cyclical (Correl(Ut,GDP) = 13%).

Every common proxy for uncertainty is counter-cyclical and most theories use uncertainty
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to explain the onset of a recession. So, a forecasting model that fails to deliver this

feature is suspect. (2) The normal model does not explain the low average forecasts of

GDP observed in the professional forecaster data. The true average of GDP growth over

1968:Q4-2013:Q4 is 2.68%. The average professional forecast of GDP growth is 2.24%,

almost half a percentage point lower.10 This model fails to explain that gap.

What part of the results can skewness alone explain? One reason that uncertainty

varies so little with a normal forecasting model is that the normal distribution has the

unusual properties that the conditional variance is the same irrespective of the conditional

mean. An n-standard-deviation event is always equally unlikely. Since uncertainty is

a conditional variance, the normal distribution shuts down much scope for changes in

uncertainty. The skewed forecasting model does have a conditional variance that depends

on the mean. Even when parameters of the model are known, changes in the estimated

state move the conditional standard deviation of the forecast. This raises the question of

whether most of our variation in uncertainty comes from skewness alone.

In table 1, column 2, the rows labelled Vt report the moments of the model without

parameter uncertainty or parameter revisions. Indeed, even without the parameter revi-

sions, uncertainty does vary. But that effect is tiny. It is less than 5% of the size of the

fluctuations in the full model.

Figure 1 plots the time series of our uncertainty estimates, breaking out the fluctuations

that come from parameter updating or skewness alone. Column “skewed” of Table 1 shows

that updating beliefs about the skewness of the GDP growth distribution has a large effect

on uncertainty. Such learning increases the average level of uncertainty by only 8%. But it

amplifies uncertainty shocks. The standard deviation of the uncertainty series was 0.48%

with normally-distributed outcomes and rises to 1.50% when our forecaster updates beliefs

about skewness. One can interpret the magnitude of this standard deviation relative to

the mean. A 1-standard deviation shock to uncertainty raises uncertainty 33% above its

mean. That is quite a volatile process and offers a stark contrast to the relatively modest

changes in volatility typically measured.

10This gap only arises in final GDP estimates. The average initial GDP announcement has 2.3% growth
on average, in line with the forecasts. But if these initial announcements are themselves BEA forecasts of
what the final GDP estimate will be, there is still a puzzle about why early estimates are systematically
lower than final estimates.
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Figure 1: Uncertainty implied by normal (M2) and skewed (M1) models (detrended)
.

Since using growth rates of GDP is a form of trend-removal, it makes sense to correlate

a stationary series with another stationary series. Therefore, we detrend volatility and

uncertainty in order to discern the nature of their cyclical components (Table 1, middle

panel). We remove the trend in uncertainty using log deviations from an exponential trend:

Ũt ≡ ln(Ut)− ln(U trendt ) (6)

The resulting series, plotted in figure 1, reveals large, highly counter-cyclical uncertainty

shocks. Not only is the level higher, uncertainty rose noticeably during each of the reces-

sions since 1970.

Keep in mind that there is still no stochastic volatility in this model. To the extent that

we believe that there are volatility shocks to GDP, this would create additional shocks to

uncertainty, above and beyond those we have already measured. In addition, uncertainty is

very persistent here. That persistence also declines once we introduce stochastic volatility.

These series are not yet a complete picture of macroeconomic uncertainty. Instead, they

are a look at what part of uncertainty is missed when we just measure volatility.
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3.1 Skewness and Time-Varying Black Swan Risk

To understand why uncertainty varies so much, it is helpful to look at the probability

of tail events. Since our estimated probability distribution is negatively skewed, negative

outliers are more likely than positive ones. For a concrete example, let us consider the

probability of a particular negative growth event. The historical mean of GDP growth is

2.68%, while its standard deviation is 3.32%. If GDP growth were normally distributed,

then yt+1 ≤ −6.8% would be a 1-in-100-year event (Pr= 0.0025 quarterly). Let us call this

rare event a black swan.

Black SwanRiskt = Prob[yt+1 ≤ −6.8%|It]. (7)

The correlation between black swan risk and uncertainty is 97% (75% for the detrended

series). This illustrates that uncertainty shocks arise in times when the estimated proba-

bilities of extreme events change. Our model suggests that uncertainty builds up gradually

over time as more and more unusual observations are realized.

When the distribution of GDP growth is non-normal and states and parameter esti-

mates change over time, the probability of this black swan event fluctuates. Figure 3.1

plots the estimated black swan probability each period. The black swan probability varies

Uncertainty
Black Swan Risk

1970 1980 1990 2000 2010

−0.4

−0.2

0

0.2

Figure 2: When the probability of a black swan event is high, uncertainty is high. Black
Swan Risk is defined in (7). Both black swan risk and the uncertainty series are exponentially
detrended.

considerably. Leading up to the 2008 financial crisis, the black swan probability rose from

3.5% in 2007:Q1 to over 4.6% in 2009:Q3.

These results teach us that when we include parameter uncertainty in our notion of
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economic uncertainty, and we consider a model with skewed outcomes, then most changes

in uncertainty coincide with changes in the estimated probability of rare events. Most

of these uncertainty shocks were not present when we did not allow the forecaster to

update his skewness belief. When we allow for learning about skewness, new pieces of data

cause changes in the skewness estimates. Tail event probabilities are very sensitive to this

skewness parameter. When the probability of extreme events is high, uncertainty is high

as well.

This explanation raises the question: What types of data realizations make estimated

skewness more negative, increase black swan risk, and thereby generate uncertainty shocks?

We find two types of episodes that set up large uncertainty shocks. The first is simply a

large negative GDP growth realization. When a negative outlier is observed, the forecaster

revises skewness to be more negative and increases the estimated variance of shocks, both

of which cause the probability of a black swan event and uncertainty to rise. This is what

happens in 2008 and in the early 1980s. But there is a second, more subtle cause of uncer-

tainty shocks that comes from a sequence of mild positive GDP growth realizations in a

row followed by a mildly negative observation. These observations cause the forecaster to

increase the estimated mean of the distribution. When the mean increases, the existing neg-

ative outlier data points become further from the mean. Because the previously-observed

negative realizations are more extreme, the estimate of skewness rises and the probability

of rare negative events can rise as well. This is what happens in the early 1970s as can

be seen in Figure 3. A sequence of positive growth realizations causes a rise and then a

fall in uncertainty. But the persistence of the high estimated skewness sets the stage for

the large rise in uncertainty in the second half of the 1970s. This mechanism provides

one explanation for why uncertainty seems to rise particularly at the end of long spells of

consistently positive growth.

3.2 Negative Skewness as a Force for Counter-Cyclical Uncertainty

One way of understanding the cyclical effect skewness has on uncertainty is by thinking

about the skewed distribution as a non-linear transformation of a normal distribution. The

transformation has no economic interpretation. It does not represent a utility function,

production function or anything other than an estimated change-of-measure function that

20



−5 0 5 10
0

1

2

3

4

5

6

7

8

Growth rate (%)

Fr
eq

ue
nc

y

 

 

71Q2 73Q1
Mean 3.62 4.02
Std. 3.40 3.41
Skew. −0.46 −0.67

Mean
71Q2

Mean
73Q1

Both dates
71Q2 only
73Q1 only

−20 −13.4 0 10 20
0

2

4

6

8

10

12

14

Growth rate (%)

De
ns

ity

71Q2 73Q1

Densities at −13.4%
(a −5σ event)

71Q2: 0.46%
73Q1: 0.93%

Figure 3: An example of a positive growth episode that increased the estimated mean,
skewness and black swan probability.

regulates the skewness of outcomes.11 But since many problems in economics use normal

shocks and compute means and variances of concave functions of these shocks, we can

leverage that intuition here to understand the role of skewness. (See Albagli, Hellwig,

and Tsyvinski (2015) for a similar approach.) The following result shows that a concave

transformation of a variable with a normal probability density results in a variable whose

distribution has negative skewness. For proof see Appendix A.

Lemma 1. Suppose that y is a random variable with a probability density function φ(g−1(y)),

where φ is a standard normal density and g is an increasing, concave function. Then,

E[(y − E[y])3] < 0.

The unconditional distribution of GDP growth rates is negatively skewed. Therefore,

when we estimate the change of measure function that maps a normal variable x into

GDP growth, we consistently find that the coefficient b is negative, meaning that the

transformation is increasing and concave. A concave transformation of a normal variable

11Although this paper does not try to explain the negative skewness of outcomes, many other theories
do. Negative skewness can arise when the economy is functioning very well (high X̃t), then improving its
efficiency results in a small increase in GDP. But if there is a high degree of dysfunction or inefficiency
(low X̃), then the economy can fall into depression. Many models generate exactly this type of effect
through borrowing or collateral constraints, other financial accelerator mechanisms, matching frictions, or
information frictions. Even a simple diminishing returns story could explain such skewness.
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puts more weight on very low realizations and makes very high realizations extremely

unlikely. In other words, the concave transformation creates a negatively-skewed variable.

Breaking the probability density into a normal and a concave function is helpful because

it allows us to understand where counter-cyclical uncertainty comes from. We can use the

Radon-Nikodym theorem to characterize the conditional variance of a skewed variable as

the conditional variance of a normal variable, times a Radon-Nikodym derivative.

V ar[yt+1|yt] =

∫
(yt+1 − E[yt+1|yt])2f(yt+1|yt)dyt+1

If f(yt+1|yt) = f(g(xt+1)|yt) = φ(xt+1|xt), then by the Radon-Nikodym theorem,

V ar[yt+1|yt] =

∫
(xt+1 − E[xt+1|xt])2

dg

dx
φ(xt+1|xt)dxt+1

V ar[yt+1|yt] = E

[
dg(xt+1)

dx

∣∣∣∣xt]V ar[xt+1|xt] + cov(
dg

dx
, (xt+1 − E[xt+1|xt])2)

The conditional variance of the normal variable xt+1 obviously depends on its history xt,

but it is not affected by what the expected value of xt+1 is. Normal variables have the

property that their conditional variance is the same throughout the state-space. Condi-

tional variance is not mean-dependent. That is not true of the skewed variable y. Because

g is an increasing, concave function, dg/dx is largest when x is low and falls as x rises.

This tells us that V ar[yt+1|yt] is largest when E[yt+1|yt] is low and falls as the expected

GDP growth rate rises. This is the origin of counter-cyclical uncertainty. It arises naturally

if a variable has a negatively-skewed distribution that can be characterized as a concave

transformation of a normal variable.

Figure 4 illustrates why uncertainty is counter-cyclical. The concave line is a mapping

from x into GDP growth, y. The slope of this curve is a Radon-Nikodym derivative. A

given amount of uncertainty is like a band of possible x’s. If x was uniform, the band would

represent the positive-probability set and the width of the band would measure uncertainty

about x. If that band is projected on to the y-space, the implied amount of uncertainty

about y depends on the state x. When x is high, the mapping is flat, and the resulting

width of the band projected on the y-axis (y uncertainty) is small. When x is low, the band

projected on the y axis is larger and uncertainty is high. This mechanism for generating
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Figure 4: Nonlinear change of measure and counter-cyclical uncertainty. A given amount of
uncertainty about x creates more uncertainty about y when x is low than it does when x is high.

counter-cyclical uncertainty is related to Straub and Ulbricht (2013), except that in their

model, the concave function arises from assumptions about an economic environment. In

this paper, the concave function is estimated and captures only the fact that GDP growth

data is negatively skewed.

Learning about skewness causes this concave curve to shift over time. When a negative

outlier is observed, the estimated state falls and estimated skewness becomes more negative.

More skewness translates into more curvature in the change of measure function. Combined

with a low estimated state, this generates even more uncertainty. Thus, bad events trigger

larger increases in uncertainty. This is reflected is the more negative correlation between

forecasts and uncertainty in the skewed model in Table 1.

3.3 Why Skewness and Parameter Uncertainty Lower Forecasts

Aside from generating larger uncertainty shocks, the model with skewness also explains

the low GDP growth forecasts in the professional forecaster data. The average forecast is

2.27% in the model and 2.29% in the forecaster (SPF) data.12 These forecasts are puzzling

because the average GDP growth rate is 2.68%. It cannot be that over 70 years of post-war

history, forecasters have not figured out that the sample mean is 0.4% higher than their

12Various studies prior to ours document a downward (pessimistic) forecast bias. Elliott and Timmermann
(2008) argue that stock analysts over-estimate earnings growth and the Federal Reserve under-estimates
GDP growth. Wieland and Wolters (2013) document the bias in the Greenbook forecasts of the Federal
Reserve both for the GDP growth and inflation forecasts.
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forecasts on average. Our next result shows that these low forecasts are entirely rational

for a Bayesian who believes that outcomes are negatively skewed and faces parameter

uncertainty. This is an application of the Box (1971) result that Bayesian estimates of

parameters in non-linear functions are typically biased.

Lemma 2. Suppose that y is a random variable with a probability density function f that

can be expressed as f(y;µ, σ) = φ((g−1(y) − µ)/σ) where φ is a standard normal density

and g is a concave function. Let the mean of y be ȳ ≡
∫
yf(y;µ, σ)dy. A forecaster does not

know the true parameters µ and σ, but estimates probability densities h(µ′|σ′) and k(σ′),

with means µ and σ. The forecaster uses these parameter densities to construct a forecast:

ŷ ≡
∫ ∫ ∫

y f(y|µ′, σ′)h(µ′|σ′) k(σ′) dy dµ′ dσ′. Then ŷ < ȳ.

The logic of the result is the following: If GDP growth is a concave transformation

of a normal underlying variable, Jensen’s inequality tells us that expected values will be

systematically lower than the mean realization. But by itself, Jensen’s inequality does not

explain the forecast bias because the expected GDP growth and the mean GDP growth

should both be lowered by the concave transformation (see Figure 5, left panel). It must

E[Xt+1|Xt, M, θ]

Jensen effect

E[yt+1|yt, M, θ]

GDP

Growth (y)

State (x) E[Xt+1|Xt]

Additional Jensen effect
from model uncertainty

E[yt+1|yt, M, θ]

E[yt+1|yt]

Forecaster believes

f(Xt+1|Xt)

GDP

Growth (y)

State (x)

Figure 5: Explaining why average forecasts are lower than mean GDP growth. The result has
two key ingredients: The forecaster faces more uncertainty than he would if he knew the true distribution
of outcomes, and a Jensen inequality effect from the concave change of measure.

be that there is some additional uncertainty in expectations, making the Jensen inequality

effect larger for forecasts than it is for the unconditional mean of the true distribution (see

Figure 5, right panel). This would explain why our results tell us that most of the time the

sample mean is greater than the average forecast. If the agent knew the true parameters,

he would have less uncertainty about yt+1. Less uncertainty would make the Jensen effect
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smaller and raise his estimate of yt+1, on average. Thus, it is the combination of parameter

uncertainty and a skewed distribution that can explain the forecast bias.

This downward bias in beliefs is the kind of bias that is typically only seen in models of

ambiguity aversion or robust control. Those models use a particular form of risk preferences

to make agents act as if they believed that systematically bad outcomes would arise. Such

models with non-linear transformations of preferences are typically solved as if they had

simple preferences with twisted probabilities. Our framework generates similar beliefs

because the non-linear functions of normal variables that we introduce to capture skewness

are similar to the non-linear functions robustness/ambiguity solution methods employ to

“twist” their probabilities.

This parallel is useful because it suggests that results from ambiguity aversion theories

could be reproduced in Bayesian settings with standard preferences. We could replace the

min-max preferences of ambiguity with a skewed distribution of outcomes and agents who

are imperfectly informed about the distribution’s parameters. This could be a useful step

forward for this literature simply because the data disciplines econometric estimates of

probability distributions more precisely than it does preference specifications.

3.4 Introducing Additional Signals to Reduce Forecast Error

Clearly, the model is not forecasting GDP as accurately as the forecasters in the Survey

of Professional Forecasters do (Table 1, bottom panel). However, this is a problem that

we can remedy, without changing our main message. The forecasts in the model are based

only on prior GDP releases. In reality, forecasters have access to other sources of data that

improve the accuracy of their forecasts. The fact that the model produces a forecast error

that is too large and too volatile reflects this problem.

Suppose that each period, each forecaster i observes an additional signal zit that is the

next period’s GDP growth, with common signal noise and idiosyncratic signal noise:

zit = yt+1 + ηt + εit (8)

where ηt ∼ N(0, σ2η) is common to all forecasters and εit ∼ N(0, σ2ε ) is i.i.d. across fore-

casters. The two signal noise variances σ2η and σ2ε can be calibrated to match the average
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dispersion of forecasts and the average forecast error, 1/T
∑

t FEt. Kozeniauskas, Orlik,

and Veldkamp (2014) embeds this non-normal forecasting model with additional forecasting

information (signals) in a business cycle model to show how micro uncertainty and higher-

order uncertainty can all arise from the same mechanism. The results in that paper show

that these additional signals remedy the forecast accuracy problem, without compromising

the large, counter-cyclical uncertainty shocks.

3.5 Convergence and the Downward Trend in Uncertainty

Since the parameters in this model are constant, eventually agents will learn them if the

model is correctly specified. Even in our 45-year sample, there is evidence of convergence.

There is a downward trend in uncertainty, some of which comes from the decline in the

uncertainty about the parameter values. Between 1970 and 2013, uncertainty falls from

6.2% to 3.5%. Does this decline imply that all parameter uncertainty should be resolved

in the near future and these effects will disappear? There are three reasons why parameter

uncertainty would persist.

First, our forecasting model is clearly not a complete description of the macroeconomy.

Our simple specification represents the idea that people use simple models to understand

complex economic processes. Bayesian learning converges when the model is correctly

specified. But when the estimated model and the true data-generating process differ, there

is no guarantee that parameter beliefs will converge to the truth. Even as the data sample

becomes large, parameter beliefs can continue to fluctuate, generating uncertainty shocks.

Second, much of the trend decline in uncertainty comes from lower estimated volatility.

The mean estimate of the transitory shock variance (σ2) falls by 46% between 1970:Q1 and

2013:Q4. The mean estimate of variances decline simply because GDP growth becomes

less volatile in the second half of the sample and agents react to that by revising down their

estimates of the variance parameters. Lower innovation variance also reduces uncertainty.

Finally, simply adding time-varying parameters can prevent convergence. If we assume

that some or all of the parameters drift over time, then beliefs about these parameters will

continue to change over time. One example of a model with time-varying parameters is a

stochastic volatility model. We turn to these results next.
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4 Uncertainty Shocks with Stochastic Volatility

So far, we have explored homoskedastic models, in order to isolate the uncertainty shocks

that come from parameter learning. But both changes in volatility and in parameter

estimates can contribute to uncertainty shocks. To quantify the contribution of each,

we estimate a model with stochastic volatility and parameter learning. The result is an

uncertainty series that is a bit more volatile than before, but without the downward trend

in uncertainty and with a larger spike in uncertainty around the time of the financial crisis.

Recall that variance is itself a hidden state that can take on one of two values σ(St) ∈
{σ(H), σ(L)}. State changes are governed by a Markov transition matrix whose entries are

also estimated by our forecaster.

Uncertainty
Volatility

1980 1990 2000 2010

3

4

5

6

Figure 6: Uncertainty Ut and volatility Vt in the skewed model with stochastic volatility.

Figure 6 plots the uncertainty that results with parameter learning and stochastic

volatility in the skewed model. This plot is not detrended, and yet we see no downward

trend in uncertainty after 1990. The average level of uncertainty is 4.29%, which is lower

primarily because the forecaster viewed the highly-volatile 1970s data as a transitory state,

not a permanent feature of the data. The forecaster with the homoskedastic model needs

to accumulate lots of low-volatility observations to revise down her estimate of the fun-

damental volatility over time. The forecaster with the stochastic volatility model revises

her beliefs by increasing the probability of being in the low-volatility state, and in doing

so lowers her uncertainty within a few quarters. Allowing volatility to be stochastic does

make uncertainty fluctuate more. The standard deviation of Ut rises from 1.5% in the

homoskedastic model to 2.0% with stochastic volatility. But adding stochastic volatility

has only a small effect on the correlation of uncertainty with GDP growth (-0.72).
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Uncertainty Volatility

Mean 4.29% 3.43%
Std deviation 2.00% 0.34%
Autocorrelation 0.83 0.22
Mean forecast 2.05% 2.35%
Mean |F Err| 2.61% 2.42%
Std forecast 0.54% 0.09%
Std |F Err| 2.37% 2.30%

Table 2: Properties of stochastic volatility model. Forecasts are computed using equation
(4). Uncertainty, denoted Ut is computed as in Definition 2. Volatilities, denoted Vt, are computed as in
Definition 3 assuming that the parameters θ are known and equal to the the mean posterior beliefs at the
end of the sample for the parameter learning model.

The main lessons from combining the stochastic volatility view with the parameter

learning view of uncertainty shocks are that (1) Both channels contribute to our under-

standing of uncertainty shocks; (2) Stochastic volatility allows the model to explain high

uncertainty during the financial crisis; and (3) Incorporating stochastic volatility helps to

avoid the downward trend in uncertainty that arises with a homoskedastic model. It pre-

vents uncertainty from converging to a constant level. The more realistic version of this

effect is that all parameters of the model can change or drift over time. Such a model

would keep learning active and might be a better description of reality. But such a rich

model is obviously difficult to estimate. The hope is that this simple first step in that

direction might give us some insight about how time-varying parameters and parameter

learning might interact more generally.

5 Data Used to Proxy for Uncertainty

Our model generates a measure of economic uncertainty. In this section, we describe the

commonly used proxies of uncertainty, analyze their theoretical relationship with condi-

tional variance and then compare their statical properties to those of our measure.
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Forecast Dispersion Some authors use forecast dispersion as a measure of uncertainty13

often because it is regarded as “model-free.” It turns out that dispersion is only equivalent

to uncertainty in models with uncorrelated signal noise and no parameter uncertainty.

Any unbiased forecast can be written as the difference between the true variable being

forecast and some forecast noise that is orthogonal to the forecast:

yt+1 = E[yt+1|Iit] + ηt + eit (9)

where the forecast error (ηt + eit) is mean-zero and orthogonal to the forecast. We can

further decompose any forecast error into a component that is common to all forecasters

ηt and a component that is the idiosyncratic error eit of forecaster i.

Dispersion Dt is the average squared difference of each forecast from the average fore-

cast. We can write each forecast as yt+1−ηt−eit. Then, with a large number of forecasters,

we can apply the law of large numbers, set the average eit to 0 and write the average forecast

as Ē[yt+1] = yt+1 − ηt. Thus,

Dt ≡
1

N

∑
i

(E[yt+1|Iit]− Ē[yt+1])
2 =

1

N

∑
i

e2it (10)

Note that dispersion reflects only private noise eit, not public noise ηt. Uncertainty is

the conditional standard deviation of the forecast error, which is
√
E[(ηt + eit)2|Iit] and

depends on both sources of noise. Thus, whether dispersion accurately reflects uncertainty

depends on the private or public nature of information.

Mean-Squared Forecast Error A measure that captures both private and common

forecast errors is the forecast mean-squared error.

A mean-squared error (MSEt+1) of a forecast of yt+1 made in quarter t is the square

root of the average squared distance between the forecast and the realized value

MSEt+1 =

√∑
i∈It(E[yt+1|Iit]− yt+1)2

Nt
. (11)

If forecast errors were completely idiosyncratic, with no common component, then

13See e.g. Diether, Malloy, and Scherbina (2002), and Johnson (2004).
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dispersion in forecasts and mean-squared forecasting errors would be equal. 14 We use this

insight to measure how much variation in mean-squared errors (MSE) comes from changes

in the accuracy of average forecasts and how much comes from changes in dispersion. Using

SPF data, we regress MSE2 on (Ēt[yt+1]− yt+1)
2. We find that the R2 of this regression

is 80%. The remaining variation is due to changes in forecast dispersion. This teaches

us that most of the fluctuations in MSE come from changes in average forecast errors. It

implies that using forecast dispersion as a proxy for uncertainty will miss an important

source of variation.

Volatility and Confidence Measures Jurado, Ludvigson, and Ng (2015) offer a state-

of-the-art macro volatility measure. It uses a rich set of time series, computes conditional

volatility of the unforecastable component of the future value of each of these series, and

then aggregates these individual conditional volatilities into a macro uncertainty index.

Other proxy variables for uncertainty are informative, but have a less clear connection to a

conditional variance definition of uncertainty. The market volatility index (VIX) is a traded

blend of options that measures expected percentage changes of the S&P500 in the next 30

days. It captures expected volatility of equity prices. It would require a complex model

to link macroeconomic uncertainty to the VIX. Nevertheless, we compare its statistical

properties to those of our uncertainty measure in Figure 7.

Another commonly cited measure of uncertainty is business or consumer confidence.

The confidence survey asks respondents whether their outlook on future business or em-

ployment conditions is “positive, negative or neutral.” Likewise, the index of consumer

sentiment asks respondents whether future business conditions and personal finances will

be “better, worse or about the same.” These questions are about the direction of future

changes and not about any variance or uncertainty. They may be correlated with uncer-

tainty because uncertainty is counter-cyclical.

Finally, Baker, Bloom, and Davis (2015) use newspaper text analysis, the number of

expiring tax laws, and forecast dispersion to create a policy uncertainty index. While

14To see this, note that FE2
jt = (E[yt+1|Ijt]− yt+1)2. We can split up FE2

jt into the sum ((E[yt+1|Ijt]−
Ēt[yt+1]) + (Ē[yt+1] − yt+1))2, where Ēt[yt+1] =

∫
j
E[yt+1|Ijt] is the average forecast. If the first term in

parentheses is orthogonal to the second, 1/N
∑
j FE

2
jt = MSE2

t is simply the sum of forecast dispersion

and the squared error in the average forecast: E[yt+1|Ijt]− Ēt[yt+1])2 + (Ēt[yt+1]− yt+1)2.
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the qualitative nature of the data precludes any theoretical comparison, we include it for

comparison as an influential alternative.

VIX
JLN index
Forecast Dispersion
Mean Sq Error
BBD index

VIX
JLN index
Forecast Dispersion
Mean Sq Error
BBD index

1970 1980 1990 2000 2010

−1
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Figure 7: Comparing variables used to measure uncertainty in the literature. See Table 3 for
definitions and sources.

Mean Standard autocorr correlation correlation

deviation with yt+1 with Ũt
JLN index 69.78 9.54 0.32 -0.51 30.6%
forecast MSE 2.64% 1.53% 0.48 0.04 -15.4%
forecast dispersion 1.54% 0.95% 0.74 -0.19 -15.2%
VIX 20.55 7.81 0.58 -0.41 40.2%
BBD index 105.95 31.79 0.65 -0.41 60.0%

Table 3: Properties of uncertainty measures used in the literature. JLN index is
the uncertainty measure from Jurado, Ludvigson, and Ng (2015). Forecast MSE and dispersion are defined
in (11) and (10) and use data from 1968:Q4-2011:Q4. Growth forecast is constructed as ln(Et(GDPt)) −
ln(Et(GDPt−1)). V IXt is the Chicago Board Options Exchange Volatility Index closing price on the last
day of quarter t, from 1990:Q1-2011:Q4. BBD index is the uncertainty measure from Baker, Bloom, and
Davis (2015). Ũt is uncertainty from our skewed model, measured as the log deviation from trend (eq. 6).

Comparing Uncertainty Proxies to Model-Generated Uncertainty Figure 7 plots

each of the uncertainty proxies. There is considerable comovement, but also substantial

variation in the dynamics of each process. These are clearly not measures of the same

stochastic process, each with independent observation noise. Furthermore, they have prop-
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erties that are quite different from our model-implied uncertainty metric. Table 3 shows

that our uncertainty metric is negatively correlated with traditional measures of volatility,

but is highly correlated with Baker, Bloom, and Davis (2015) policy uncertainty index,

the volatility index (VIX) and the Jurado, Ludvigson, and Ng (2015) stochastic volatility

measure.

Inferring Uncertainty From Probability Forecasts One way to infer the uncertainty

of an economic forecaster is to ask them about the probabilities of various events. The

SPF asks about the probability that GDP growth exceeds 6%, is between 5-5.9%, between

4-4.9%, . . . , and below -2%. The survey averages across all forecasters and reports a single

average probability for each bin. Since this data does not completely describe a conditional

distribution, computing the conditional variance requires approximation. The most obvious

approximation is to assume that these are probabilities of ten discrete growth rates, each

corresponding to the mid-point of a bin.15

The resulting conditional variance series is not very informative. It hardly varies (range

is [0.0072, 0.0099]). It does not spike in the financial crisis. In fact, the SPF-implied

variance suggests that uncertainty in 2008 was roughly the same as it was in 2003. The

problem is that the growth rates are top- and bottom-coded. All extremely bad GDP

events are grouped in the bin “growth less than 2%.” If there is a very high probability of

growth below 2%, then since most of the probability is concentrated in one bin, variance

and, thus, uncertainty is low.

The main point of our paper is that most uncertainty shocks come from changes in

the probabilities of extreme events. This survey truncates extremes and, therefore, fails to

capture most changes in uncertainty.

15For example, when agents assign a probability to 1 − 2% GDP growth, we treat this as if that is the
probability placed on the outcome of 1.5% GDP growth. When the agent says that there is probability p6.5
of growth above 6%, we treat this as probability p6.5 placed on the outcome yt+1 = 6.5%. And if the agent
reports probability p−2.5 of growth below -2%, we place probability of p−2.5 on yt+1 = −2.5%. Then, the
expected rate of GDP growth is ȳ =

∑
mεM pmm for M = {−2.5,−1.5, . . . , 6.5}. Finally, the conditional

variance of beliefs about GDP growth are var[y|I] =
∑
mεM pm(m− ȳ)2.
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6 Conclusions

Theories based on news shocks, uncertainty shocks, higher-order uncertainty shocks, tail

risk shocks, and belief shocks generally have been influential in macroeconomics. But they

leave unanswered the question: Why do beliefs fluctuate in this way? Just like output

arises from feeding inputs into a technology, beliefs arise from feeding information sets into

a belief-formation procedure. Just like a complete theory explains why the inputs and

output change, it should also tell us why beliefs change.

In this paper, we consider a Bayesian belief-formation mechanism that allows for es-

timation of tail risk. We feed in an information set that is simply the real-time available

GDP history and a reference forecasting model that the forecaster estimates in the real

time just like an econometrician. We find that these simple ingredients produce large,

countercyclical fluctuations in tail risk and uncertainty. Furthermore, without any prefer-

ence assumptions, they produce a downward bias in mean beliefs that resembles ambiguity

or robustness.

This theory of the origins of belief shocks suggests a change in our approach to mea-

surement. Most economic uncertainty measures ignore parameter estimation uncertainty.

Sometimes referred to as “rational expectations econometrics,” the traditional approach

entails estimating a model on the full sample of data and then treating the estimated

parameters as truth to infer what the volatility of innovations was in each period in the

past. In equating volatility with uncertainty, the econometrician assumes that the uncer-

tain agent knows the true distribution of outcomes at every moment in time and is only

uncertain about which outcome will be chosen from this distribution. Assuming such pre-

cise knowledge of the economic model rules out most uncertainty and ignores many sources

of uncertainty shocks.

We explore the uncertainty shocks that arise when an agent is not endowed with knowl-

edge of the true economic model and needs to estimate it, just like an econometrician. The

conditional variance of this agent’s forecast, his uncertainty, is much higher and varies more

than volatility does. When the agent considers skewed distributions of outcomes, new data

or real-time revisions to existing data can change his beliefs about the skewness of the

distribution, and thus the probability of extreme events. Small changes in the estimated

skewness can increase or decrease the probability of these tail events many-fold. Because
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tail events are so far from the mean outcome, changes in their probability have a large

effect on conditional variance, which translates into large shocks to uncertainty. Thus, our

message is that beliefs about black swans, extreme events that are never observed, but

whose probability is inferred from a forecasting model, are responsible for much of the

shocks to macroeconomic uncertainty.

This paper has focused on the belief formation process. In our approach disciplined

by the data we uncovered the mechanisms that make uncertainty fluctuate over time. As

such, this paper is a foundation on which other theories can build. Kozeniauskas, Orlik, and

Veldkamp (2014) show how a similar mechanism can be embedded in a production economy

with heterogeneous information, forecast dispersion and heterogeneous firm outputs. Our

mechanism could also be used to model default risk. Since “black swan” probabilities

could be interpreted as default probabilities, the model would then tell us what kinds

of data realizations trigger high default premia and debt crises. In another project, our

mechanism could be embedded in a consumption-based asset pricing model. We know that

a well-engineered stochastic process for time-varying rare event probabilities can match

many features of equity returns. Our tools could be used to estimate these rare event

probabilities and assess whether the estimates explain asset return puzzles.
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Maćkowiak, B., and M. Wiederholt (2009): “Optimal sticky prices under rational
inattention,” American Economic Review, 99 (3), 769–803.

Matejka, F., and A. McKay (2015): “Rational Inattention to Discrete Choices: A New
Foundation for the Multinomial Logit Model,” American Economic Review, 105(1), 272–
98.

Nimark, K. (2014): “Man-Bites-Dog Business Cycles,” American Economic Review,
104(8), 2320–2367.

Pastor, L., and P. Veronesi (2012): “Uncertainty about Government Policy and Stock
Prices,” Journal of Finance, 67(4), 1219–1264.

Reis, R. (2006): “Inattentive producers,” Review of Economic Studies, 73(3), 793–821.

Rietz, T. (1988): “The Equity Risk Premium: A Solution,” Journal of Monetary Eco-
nomics, 22(1), 117–131.

Roberts, G., A. Gelman, and W. Gilks (1997): “Weak Convergence and Optimal
Scaling of Random Walk Metropolis Algorithms,” Annals of Applied Probability, 7(1),
110–120.

Stock, J., and M. Watson (2012): “Disentangling the Channels of the 2007-2009 Re-
cession,” Brookings Papers on Economic Activity, pp. 81–135.

Straub, L., and R. Ulbricht (2013): “Credit Crunches, Information Failures, and the
Persistence of Pessimism,” Toulouse School of Economics working paper.

Taleb, N. N. (2010): The Black Swan: The Impact of the Highly Improbable. Random
House.

Van Nieuwerburgh, S., and L. Veldkamp (2006): “Learning Asymmetries in Real
Business Cycles,” Journal of Monetary Economics, 53(4), 753–772.

Wachter, J. (2013): “Can Time-Varying Risk or Rare Disasters Explain Aggregate Stock
Market Volatility?,” Journal of Finance, 68(3), 987–1035.

Wieland, V., and M. H. Wolters (2013): “Forecasting and policy making,” in Hand-
book of economic forecasting, ed. by G. Elliott, and A. Timmermann. North-Holland
Amsterdam.

38



A Proofs

Lemma 1: Skewness and the concave change of measure We can write the skew-
ness of y (times the variance, which is always positive) as

E[(y − E[y])3] =

∫
(y − E[y])3φ(g−1(y))dy (12)

where φ(g−1(y)) is the probability density of y, by assumption. Using the change of variable
rule, we can replace y with g(x).

E[(g(x)− E[g(x)])3] =

∫
(g(x)− E[g(x)])3

∂g

∂x
φ(x)dx (13)

Note that we replaced φ(g−1(g(x))) = φ(x), meaning that x is a standard normal variable.
Because g is increasing and concave, ∂g/∂x is positive and decreasing in x.
If ∂g/∂x were a constant, then 13 would be the skewness of a normal variable, which

is zero. Thus,

−
∫ 0

−∞
(g(x)− E[g(x)])3φ(x)dx =

∫ ∞
0

(g(x)− E[g(x)])3φ(x)dx

Since ∂g/∂x is positive and decreasing, it is higher for any y < 0 than it is for any y > 0
and since both sides of the inequality are positive

−
∫ 0

−∞
(g(x)− E[g(x)])3

∂g

∂x
φ(x)dx >

∫ ∞
0

(g(x)− E[g(x)])3
∂g

∂x
φ(x)dx

Adding the negative of the left side to both sides of the inequality reveals that

E[(g(x)− E[g(x)])3] =

∫
(g(x)− E[g(x)])3

∂g

∂x
φ(x)dx < 0.

Lemma 2: Forecast bias. In the forecast ŷ ≡
∫ ∫ ∫

yf(y|µ′, σ′)g(µ′|σ′)h(σ′)dydµ′dσ′,
we can substitute g(x) for y and substitute x = g−1(y) into φ((g−1(y) − µ)/σ) = f(y) to
get

ŷ =

∫ ∫ ∫
g(x)φ((x− µ′)/σ′)g(µ′|σ′)h(σ′)dg(x)dµ′dσ′

Then, we can define x̃ = (x− µ)/σ and substitute it in for x:

ŷ =

∫ ∫ ∫
g(µ′ + σ′x̃)φ(x̃)g(µ′|σ′)h(σ′)dg(x)dµ′dσ′

Note that the inside integral evaluated at µ′ = µ and σ′ = σ is the true mean of y:
ȳ ≡

∫
yf(y|µ, σ)dy =

∫
g(µ + σx̃)φ(x̃)dg(x). Let us use the notation ỹ(µ′, σ′) =

∫
g(µ′ +

σ′x̃)φ(x̃)dg(x) to denote the mean of y, given any mean and variance parameters µ′ and σ′.
Notice that since g is assumed to be a concave function, ỹ is concave in the parameters µ′

and σ′. Then, by Jensen’s inequality, we know that for any concave function ỹ, E[ỹ(µ, σ)] <
ỹ(µ, σ). Note by inspection that E[ỹ(µ, σ)] = ŷ and ỹ(µ, σ) = ȳ and the result follows.
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B Estimating the model

In what follows we show how to use Metropolis-Hastings algorithm to generate samples
from p

(
θ|yt

)
for each t = 1, 2, .., T . 16

The general idea of MCMC methods is to design a Markov chain whose stationary
distribution, π (with πT = π where T is a transitional kernel), is the distribution p we
are seeking to characterize. In particular, the Metropolis-Hastings sampling algorithm
constructs an ergodic Markov chain that satisfies a detailed balance property with respect
to p and, therefore, produces the respective approximate samples. The transition kernel of
that chain, T , is constructed based on sampling from a proposal conditional distribution
q
(
θ|θ(d)

)
where d denotes the number of the sampling step. Specifically, given the d-step

in the random walk θ(d) the next-step θ(d+1) is generated as follows

θ(d+1) =

 θ′ with probability α
(
θ(d), θ′

)
= min

(
1,

p(θ′|yt)
p(θ(d)|yt)

q(θ(d)|θ′)
q(θ′|θ(d))

)
θ(d) with probability 1− α

(
θ(d), θ′

)
where θ′ ∼ q

(
θ|θ(d)

)
.

In our application, the simulation of the parameters is done through simple random
walk proposals or multiplicative random walk proposals in case of variance parameters17.

The standard deviations of the shocks in the random walk proposals can be adjusted to
optimize the performance of the sampler. Choosing a proposal with small variance would
result in relatively high acceptance rates but with strongly correlated consecutive samples.
See Roberts, Gelman, and Gilks (1997) for the results on optimal scaling of the random
walk Metropolis algorithm.

Since the proposals are independent of each other and symmetric in all the cases, we

have q (θ|θ′) = q (θ′|θ), and the acceptance probability simplifies to min

(
1,

p(θ′|yt)
p(θ(d)|yt)

)
. To

compute that acceptance ratio, note that the posterior distribution p
(
θ|yt

)
is given by

p
(
θ|yt

)
=
p
(
yt|θ

)
p (θ)

p (yt)

16We drop here the dependence on M hoping that no confusion arises.
17In the case of the transition probability matrix for the hidden state in the skewed stochastic volatility

model, the move is slightly more involved due to the constraint on the sum of rows. We reparameterize
each row (qi1, ..., qiN ) as

qij =
ωij∑
j ωij

, ωij > 0, j ∈ {1, ..., N}

so that the summation constraint does not hinder the random walk. The proposed move on ωij is then
given by

logω′ij = logωij + τωξω (14)

where ξω ∼ N (0, 1). Note that this reparametrization requires that we select a prior distribution on ωij
rather than on qij .
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where p
(
yt
)

=
∫
p
(
yt|θ

)
p (θ) dθ is the marginal likelihood (or data density).

In turn, the predictive distribution of the data, p
(
yt+1|yt, θ

)
can be obtained as an

integral against the filtering distribution obtained through the Kalman filter.

Estimating Prior Beliefs To discipline the priors, we use historical data, i.e. the
vintage of the data as of 1968:Q3 (1947:Q2-1968:Q2). We use uniform priors on all the
parameters, and estimate respective models using Bayesian techniques described above.
The mean and standard deviations of the posterior parameter distributions as of 1968:Q3
become the moments of the prior distributions for respective parameters that will be used
in the real-time estimation from 1968:Q4 onwards. The results for the respective models
are reported in the tables below.

To compute volatility in these models, we fix parameters at the estimated means of
these prior distributions. Figure 8 plots the priors and the evolution of parameter beliefs
over the sample.

Normal Skewed
Parameter Mean Stdev Mean Stdev

c 2.35 0.68 41.27 6.97
ρ 0.47 0.12 0.05 0.07
σ̄2 4.89 3.45 0.02 0.01
σ2s 15.92 4.47 0.005 0.007

Table 4: Moments of the prior distributions in the linear-normal and skewed models.
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Figure 8: Skewed Model (M1) Parameters: Posterior Means, Medians, and 95% Credible
Sets.
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